1 //=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the template classes ExplodedNode and ExplodedGraph,
11 //  which represent a path-sensitive, intra-procedural "exploded graph."
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 #include "clang/AST/Stmt.h"
18 #include "clang/AST/ParentMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include <vector>
23 
24 using namespace clang;
25 using namespace ento;
26 
27 //===----------------------------------------------------------------------===//
28 // Node auditing.
29 //===----------------------------------------------------------------------===//
30 
31 // An out of line virtual method to provide a home for the class vtable.
32 ExplodedNode::Auditor::~Auditor() {}
33 
34 #ifndef NDEBUG
35 static ExplodedNode::Auditor* NodeAuditor = 0;
36 #endif
37 
38 void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
39 #ifndef NDEBUG
40   NodeAuditor = A;
41 #endif
42 }
43 
44 //===----------------------------------------------------------------------===//
45 // Cleanup.
46 //===----------------------------------------------------------------------===//
47 
48 static const unsigned CounterTop = 1000;
49 
50 ExplodedGraph::ExplodedGraph()
51   : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {}
52 
53 ExplodedGraph::~ExplodedGraph() {}
54 
55 //===----------------------------------------------------------------------===//
56 // Node reclamation.
57 //===----------------------------------------------------------------------===//
58 
59 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
60   // Reclaim all nodes that match *all* the following criteria:
61   //
62   // (1) 1 predecessor (that has one successor)
63   // (2) 1 successor (that has one predecessor)
64   // (3) The ProgramPoint is for a PostStmt.
65   // (4) There is no 'tag' for the ProgramPoint.
66   // (5) The 'store' is the same as the predecessor.
67   // (6) The 'GDM' is the same as the predecessor.
68   // (7) The LocationContext is the same as the predecessor.
69   // (8) The PostStmt is for a non-consumed Stmt or Expr.
70 
71   // Conditions 1 and 2.
72   if (node->pred_size() != 1 || node->succ_size() != 1)
73     return false;
74 
75   const ExplodedNode *pred = *(node->pred_begin());
76   if (pred->succ_size() != 1)
77     return false;
78 
79   const ExplodedNode *succ = *(node->succ_begin());
80   if (succ->pred_size() != 1)
81     return false;
82 
83   // Condition 3.
84   ProgramPoint progPoint = node->getLocation();
85   if (!isa<PostStmt>(progPoint) ||
86       (isa<CallEnter>(progPoint) ||
87        isa<CallExitBegin>(progPoint) || isa<CallExitEnd>(progPoint)))
88     return false;
89 
90   // Condition 4.
91   PostStmt ps = cast<PostStmt>(progPoint);
92   if (ps.getTag())
93     return false;
94 
95   if (isa<BinaryOperator>(ps.getStmt()))
96     return false;
97 
98   // Conditions 5, 6, and 7.
99   ProgramStateRef state = node->getState();
100   ProgramStateRef pred_state = pred->getState();
101   if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
102       progPoint.getLocationContext() != pred->getLocationContext())
103     return false;
104 
105   // Condition 8.
106   if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) {
107     ParentMap &PM = progPoint.getLocationContext()->getParentMap();
108     if (!PM.isConsumedExpr(Ex))
109       return false;
110   }
111 
112   return true;
113 }
114 
115 void ExplodedGraph::collectNode(ExplodedNode *node) {
116   // Removing a node means:
117   // (a) changing the predecessors successor to the successor of this node
118   // (b) changing the successors predecessor to the predecessor of this node
119   // (c) Putting 'node' onto freeNodes.
120   assert(node->pred_size() == 1 || node->succ_size() == 1);
121   ExplodedNode *pred = *(node->pred_begin());
122   ExplodedNode *succ = *(node->succ_begin());
123   pred->replaceSuccessor(succ);
124   succ->replacePredecessor(pred);
125   FreeNodes.push_back(node);
126   Nodes.RemoveNode(node);
127   --NumNodes;
128   node->~ExplodedNode();
129 }
130 
131 void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
132   if (ChangedNodes.empty())
133     return;
134 
135   // Only periodically relcaim nodes so that we can build up a set of
136   // nodes that meet the reclamation criteria.  Freshly created nodes
137   // by definition have no successor, and thus cannot be reclaimed (see below).
138   assert(reclaimCounter > 0);
139   if (--reclaimCounter != 0)
140     return;
141   reclaimCounter = CounterTop;
142 
143   for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
144        it != et; ++it) {
145     ExplodedNode *node = *it;
146     if (shouldCollect(node))
147       collectNode(node);
148   }
149   ChangedNodes.clear();
150 }
151 
152 //===----------------------------------------------------------------------===//
153 // ExplodedNode.
154 //===----------------------------------------------------------------------===//
155 
156 static inline BumpVector<ExplodedNode*>& getVector(void *P) {
157   return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P);
158 }
159 
160 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
161   assert (!V->isSink());
162   Preds.addNode(V, G);
163   V->Succs.addNode(this, G);
164 #ifndef NDEBUG
165   if (NodeAuditor) NodeAuditor->AddEdge(V, this);
166 #endif
167 }
168 
169 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
170   assert(getKind() == Size1);
171   P = reinterpret_cast<uintptr_t>(node);
172   assert(getKind() == Size1);
173 }
174 
175 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
176   assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
177   assert(!getFlag());
178 
179   if (getKind() == Size1) {
180     if (ExplodedNode *NOld = getNode()) {
181       BumpVectorContext &Ctx = G.getNodeAllocator();
182       BumpVector<ExplodedNode*> *V =
183         G.getAllocator().Allocate<BumpVector<ExplodedNode*> >();
184       new (V) BumpVector<ExplodedNode*>(Ctx, 4);
185 
186       assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
187       V->push_back(NOld, Ctx);
188       V->push_back(N, Ctx);
189       P = reinterpret_cast<uintptr_t>(V) | SizeOther;
190       assert(getPtr() == (void*) V);
191       assert(getKind() == SizeOther);
192     }
193     else {
194       P = reinterpret_cast<uintptr_t>(N);
195       assert(getKind() == Size1);
196     }
197   }
198   else {
199     assert(getKind() == SizeOther);
200     getVector(getPtr()).push_back(N, G.getNodeAllocator());
201   }
202 }
203 
204 unsigned ExplodedNode::NodeGroup::size() const {
205   if (getFlag())
206     return 0;
207 
208   if (getKind() == Size1)
209     return getNode() ? 1 : 0;
210   else
211     return getVector(getPtr()).size();
212 }
213 
214 ExplodedNode **ExplodedNode::NodeGroup::begin() const {
215   if (getFlag())
216     return NULL;
217 
218   if (getKind() == Size1)
219     return (ExplodedNode**) (getPtr() ? &P : NULL);
220   else
221     return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin()));
222 }
223 
224 ExplodedNode** ExplodedNode::NodeGroup::end() const {
225   if (getFlag())
226     return NULL;
227 
228   if (getKind() == Size1)
229     return (ExplodedNode**) (getPtr() ? &P+1 : NULL);
230   else {
231     // Dereferencing end() is undefined behaviour. The vector is not empty, so
232     // we can dereference the last elem and then add 1 to the result.
233     return const_cast<ExplodedNode**>(getVector(getPtr()).end());
234   }
235 }
236 
237 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
238                                      ProgramStateRef State,
239                                      bool IsSink,
240                                      bool* IsNew) {
241   // Profile 'State' to determine if we already have an existing node.
242   llvm::FoldingSetNodeID profile;
243   void *InsertPos = 0;
244 
245   NodeTy::Profile(profile, L, State, IsSink);
246   NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
247 
248   if (!V) {
249     if (!FreeNodes.empty()) {
250       V = FreeNodes.back();
251       FreeNodes.pop_back();
252     }
253     else {
254       // Allocate a new node.
255       V = (NodeTy*) getAllocator().Allocate<NodeTy>();
256     }
257 
258     new (V) NodeTy(L, State, IsSink);
259 
260     if (reclaimNodes)
261       ChangedNodes.push_back(V);
262 
263     // Insert the node into the node set and return it.
264     Nodes.InsertNode(V, InsertPos);
265     ++NumNodes;
266 
267     if (IsNew) *IsNew = true;
268   }
269   else
270     if (IsNew) *IsNew = false;
271 
272   return V;
273 }
274 
275 std::pair<ExplodedGraph*, InterExplodedGraphMap*>
276 ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
277                llvm::DenseMap<const void*, const void*> *InverseMap) const {
278 
279   if (NBeg == NEnd)
280     return std::make_pair((ExplodedGraph*) 0,
281                           (InterExplodedGraphMap*) 0);
282 
283   assert (NBeg < NEnd);
284 
285   OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
286 
287   ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
288 
289   return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
290 }
291 
292 ExplodedGraph*
293 ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
294                             const ExplodedNode* const* EndSources,
295                             InterExplodedGraphMap* M,
296                    llvm::DenseMap<const void*, const void*> *InverseMap) const {
297 
298   typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
299   Pass1Ty Pass1;
300 
301   typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
302   Pass2Ty& Pass2 = M->M;
303 
304   SmallVector<const ExplodedNode*, 10> WL1, WL2;
305 
306   // ===- Pass 1 (reverse DFS) -===
307   for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
308     assert(*I);
309     WL1.push_back(*I);
310   }
311 
312   // Process the first worklist until it is empty.  Because it is a std::list
313   // it acts like a FIFO queue.
314   while (!WL1.empty()) {
315     const ExplodedNode *N = WL1.back();
316     WL1.pop_back();
317 
318     // Have we already visited this node?  If so, continue to the next one.
319     if (Pass1.count(N))
320       continue;
321 
322     // Otherwise, mark this node as visited.
323     Pass1.insert(N);
324 
325     // If this is a root enqueue it to the second worklist.
326     if (N->Preds.empty()) {
327       WL2.push_back(N);
328       continue;
329     }
330 
331     // Visit our predecessors and enqueue them.
332     for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
333       WL1.push_back(*I);
334   }
335 
336   // We didn't hit a root? Return with a null pointer for the new graph.
337   if (WL2.empty())
338     return 0;
339 
340   // Create an empty graph.
341   ExplodedGraph* G = MakeEmptyGraph();
342 
343   // ===- Pass 2 (forward DFS to construct the new graph) -===
344   while (!WL2.empty()) {
345     const ExplodedNode *N = WL2.back();
346     WL2.pop_back();
347 
348     // Skip this node if we have already processed it.
349     if (Pass2.find(N) != Pass2.end())
350       continue;
351 
352     // Create the corresponding node in the new graph and record the mapping
353     // from the old node to the new node.
354     ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
355     Pass2[N] = NewN;
356 
357     // Also record the reverse mapping from the new node to the old node.
358     if (InverseMap) (*InverseMap)[NewN] = N;
359 
360     // If this node is a root, designate it as such in the graph.
361     if (N->Preds.empty())
362       G->addRoot(NewN);
363 
364     // In the case that some of the intended predecessors of NewN have already
365     // been created, we should hook them up as predecessors.
366 
367     // Walk through the predecessors of 'N' and hook up their corresponding
368     // nodes in the new graph (if any) to the freshly created node.
369     for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
370       Pass2Ty::iterator PI = Pass2.find(*I);
371       if (PI == Pass2.end())
372         continue;
373 
374       NewN->addPredecessor(PI->second, *G);
375     }
376 
377     // In the case that some of the intended successors of NewN have already
378     // been created, we should hook them up as successors.  Otherwise, enqueue
379     // the new nodes from the original graph that should have nodes created
380     // in the new graph.
381     for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
382       Pass2Ty::iterator PI = Pass2.find(*I);
383       if (PI != Pass2.end()) {
384         PI->second->addPredecessor(NewN, *G);
385         continue;
386       }
387 
388       // Enqueue nodes to the worklist that were marked during pass 1.
389       if (Pass1.count(*I))
390         WL2.push_back(*I);
391     }
392   }
393 
394   return G;
395 }
396 
397 void InterExplodedGraphMap::anchor() { }
398 
399 ExplodedNode*
400 InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const {
401   llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I =
402     M.find(N);
403 
404   return I == M.end() ? 0 : I->second;
405 }
406 
407