1 //=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the template classes ExplodedNode and ExplodedGraph, 11 // which represent a path-sensitive, intra-procedural "exploded graph." 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 17 #include "clang/AST/Stmt.h" 18 #include "clang/AST/ParentMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include <vector> 23 24 using namespace clang; 25 using namespace ento; 26 27 //===----------------------------------------------------------------------===// 28 // Node auditing. 29 //===----------------------------------------------------------------------===// 30 31 // An out of line virtual method to provide a home for the class vtable. 32 ExplodedNode::Auditor::~Auditor() {} 33 34 #ifndef NDEBUG 35 static ExplodedNode::Auditor* NodeAuditor = 0; 36 #endif 37 38 void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) { 39 #ifndef NDEBUG 40 NodeAuditor = A; 41 #endif 42 } 43 44 //===----------------------------------------------------------------------===// 45 // Cleanup. 46 //===----------------------------------------------------------------------===// 47 48 typedef std::vector<ExplodedNode*> NodeList; 49 static inline NodeList*& getNodeList(void *&p) { return (NodeList*&) p; } 50 51 static const unsigned CounterTop = 1000; 52 53 ExplodedGraph::ExplodedGraph() 54 : NumNodes(0), recentlyAllocatedNodes(0), 55 freeNodes(0), reclaimNodes(false), 56 reclaimCounter(CounterTop) {} 57 58 ExplodedGraph::~ExplodedGraph() { 59 if (reclaimNodes) { 60 delete getNodeList(recentlyAllocatedNodes); 61 delete getNodeList(freeNodes); 62 } 63 } 64 65 //===----------------------------------------------------------------------===// 66 // Node reclamation. 67 //===----------------------------------------------------------------------===// 68 69 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) { 70 // Reclaimn all nodes that match *all* the following criteria: 71 // 72 // (1) 1 predecessor (that has one successor) 73 // (2) 1 successor (that has one predecessor) 74 // (3) The ProgramPoint is for a PostStmt. 75 // (4) There is no 'tag' for the ProgramPoint. 76 // (5) The 'store' is the same as the predecessor. 77 // (6) The 'GDM' is the same as the predecessor. 78 // (7) The LocationContext is the same as the predecessor. 79 // (8) The PostStmt is for a non-consumed Stmt or Expr. 80 81 // Conditions 1 and 2. 82 if (node->pred_size() != 1 || node->succ_size() != 1) 83 return false; 84 85 const ExplodedNode *pred = *(node->pred_begin()); 86 if (pred->succ_size() != 1) 87 return false; 88 89 const ExplodedNode *succ = *(node->succ_begin()); 90 if (succ->pred_size() != 1) 91 return false; 92 93 // Condition 3. 94 ProgramPoint progPoint = node->getLocation(); 95 if (!isa<PostStmt>(progPoint) || 96 (isa<CallEnter>(progPoint) || isa<CallExit>(progPoint))) 97 return false; 98 99 // Condition 4. 100 PostStmt ps = cast<PostStmt>(progPoint); 101 if (ps.getTag()) 102 return false; 103 104 if (isa<BinaryOperator>(ps.getStmt())) 105 return false; 106 107 // Conditions 5, 6, and 7. 108 ProgramStateRef state = node->getState(); 109 ProgramStateRef pred_state = pred->getState(); 110 if (state->store != pred_state->store || state->GDM != pred_state->GDM || 111 progPoint.getLocationContext() != pred->getLocationContext()) 112 return false; 113 114 // Condition 8. 115 if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) { 116 ParentMap &PM = progPoint.getLocationContext()->getParentMap(); 117 if (!PM.isConsumedExpr(Ex)) 118 return false; 119 } 120 121 return true; 122 } 123 124 void ExplodedGraph::collectNode(ExplodedNode *node) { 125 // Removing a node means: 126 // (a) changing the predecessors successor to the successor of this node 127 // (b) changing the successors predecessor to the predecessor of this node 128 // (c) Putting 'node' onto freeNodes. 129 assert(node->pred_size() == 1 || node->succ_size() == 1); 130 ExplodedNode *pred = *(node->pred_begin()); 131 ExplodedNode *succ = *(node->succ_begin()); 132 pred->replaceSuccessor(succ); 133 succ->replacePredecessor(pred); 134 if (!freeNodes) 135 freeNodes = new NodeList(); 136 getNodeList(freeNodes)->push_back(node); 137 Nodes.RemoveNode(node); 138 --NumNodes; 139 node->~ExplodedNode(); 140 } 141 142 void ExplodedGraph::reclaimRecentlyAllocatedNodes() { 143 if (!recentlyAllocatedNodes) 144 return; 145 146 // Only periodically relcaim nodes so that we can build up a set of 147 // nodes that meet the reclamation criteria. Freshly created nodes 148 // by definition have no successor, and thus cannot be reclaimed (see below). 149 assert(reclaimCounter > 0); 150 if (--reclaimCounter != 0) 151 return; 152 reclaimCounter = CounterTop; 153 154 NodeList &nl = *getNodeList(recentlyAllocatedNodes); 155 156 for (NodeList::iterator i = nl.begin(), e = nl.end() ; i != e; ++i) { 157 ExplodedNode *node = *i; 158 if (shouldCollect(node)) 159 collectNode(node); 160 } 161 162 nl.clear(); 163 } 164 165 //===----------------------------------------------------------------------===// 166 // ExplodedNode. 167 //===----------------------------------------------------------------------===// 168 169 static inline BumpVector<ExplodedNode*>& getVector(void *P) { 170 return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P); 171 } 172 173 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) { 174 assert (!V->isSink()); 175 Preds.addNode(V, G); 176 V->Succs.addNode(this, G); 177 #ifndef NDEBUG 178 if (NodeAuditor) NodeAuditor->AddEdge(V, this); 179 #endif 180 } 181 182 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { 183 assert(getKind() == Size1); 184 P = reinterpret_cast<uintptr_t>(node); 185 assert(getKind() == Size1); 186 } 187 188 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) { 189 assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0); 190 assert(!getFlag()); 191 192 if (getKind() == Size1) { 193 if (ExplodedNode *NOld = getNode()) { 194 BumpVectorContext &Ctx = G.getNodeAllocator(); 195 BumpVector<ExplodedNode*> *V = 196 G.getAllocator().Allocate<BumpVector<ExplodedNode*> >(); 197 new (V) BumpVector<ExplodedNode*>(Ctx, 4); 198 199 assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0); 200 V->push_back(NOld, Ctx); 201 V->push_back(N, Ctx); 202 P = reinterpret_cast<uintptr_t>(V) | SizeOther; 203 assert(getPtr() == (void*) V); 204 assert(getKind() == SizeOther); 205 } 206 else { 207 P = reinterpret_cast<uintptr_t>(N); 208 assert(getKind() == Size1); 209 } 210 } 211 else { 212 assert(getKind() == SizeOther); 213 getVector(getPtr()).push_back(N, G.getNodeAllocator()); 214 } 215 } 216 217 unsigned ExplodedNode::NodeGroup::size() const { 218 if (getFlag()) 219 return 0; 220 221 if (getKind() == Size1) 222 return getNode() ? 1 : 0; 223 else 224 return getVector(getPtr()).size(); 225 } 226 227 ExplodedNode **ExplodedNode::NodeGroup::begin() const { 228 if (getFlag()) 229 return NULL; 230 231 if (getKind() == Size1) 232 return (ExplodedNode**) (getPtr() ? &P : NULL); 233 else 234 return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin())); 235 } 236 237 ExplodedNode** ExplodedNode::NodeGroup::end() const { 238 if (getFlag()) 239 return NULL; 240 241 if (getKind() == Size1) 242 return (ExplodedNode**) (getPtr() ? &P+1 : NULL); 243 else { 244 // Dereferencing end() is undefined behaviour. The vector is not empty, so 245 // we can dereference the last elem and then add 1 to the result. 246 return const_cast<ExplodedNode**>(getVector(getPtr()).end()); 247 } 248 } 249 250 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L, 251 ProgramStateRef State, 252 bool IsSink, 253 bool* IsNew) { 254 // Profile 'State' to determine if we already have an existing node. 255 llvm::FoldingSetNodeID profile; 256 void *InsertPos = 0; 257 258 NodeTy::Profile(profile, L, State, IsSink); 259 NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); 260 261 if (!V) { 262 if (freeNodes && !getNodeList(freeNodes)->empty()) { 263 NodeList *nl = getNodeList(freeNodes); 264 V = nl->back(); 265 nl->pop_back(); 266 } 267 else { 268 // Allocate a new node. 269 V = (NodeTy*) getAllocator().Allocate<NodeTy>(); 270 } 271 272 new (V) NodeTy(L, State, IsSink); 273 274 if (reclaimNodes) { 275 if (!recentlyAllocatedNodes) 276 recentlyAllocatedNodes = new NodeList(); 277 getNodeList(recentlyAllocatedNodes)->push_back(V); 278 } 279 280 // Insert the node into the node set and return it. 281 Nodes.InsertNode(V, InsertPos); 282 283 ++NumNodes; 284 285 if (IsNew) *IsNew = true; 286 } 287 else 288 if (IsNew) *IsNew = false; 289 290 return V; 291 } 292 293 std::pair<ExplodedGraph*, InterExplodedGraphMap*> 294 ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd, 295 llvm::DenseMap<const void*, const void*> *InverseMap) const { 296 297 if (NBeg == NEnd) 298 return std::make_pair((ExplodedGraph*) 0, 299 (InterExplodedGraphMap*) 0); 300 301 assert (NBeg < NEnd); 302 303 llvm::OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap()); 304 305 ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap); 306 307 return std::make_pair(static_cast<ExplodedGraph*>(G), M.take()); 308 } 309 310 ExplodedGraph* 311 ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources, 312 const ExplodedNode* const* EndSources, 313 InterExplodedGraphMap* M, 314 llvm::DenseMap<const void*, const void*> *InverseMap) const { 315 316 typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty; 317 Pass1Ty Pass1; 318 319 typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty; 320 Pass2Ty& Pass2 = M->M; 321 322 SmallVector<const ExplodedNode*, 10> WL1, WL2; 323 324 // ===- Pass 1 (reverse DFS) -=== 325 for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) { 326 assert(*I); 327 WL1.push_back(*I); 328 } 329 330 // Process the first worklist until it is empty. Because it is a std::list 331 // it acts like a FIFO queue. 332 while (!WL1.empty()) { 333 const ExplodedNode *N = WL1.back(); 334 WL1.pop_back(); 335 336 // Have we already visited this node? If so, continue to the next one. 337 if (Pass1.count(N)) 338 continue; 339 340 // Otherwise, mark this node as visited. 341 Pass1.insert(N); 342 343 // If this is a root enqueue it to the second worklist. 344 if (N->Preds.empty()) { 345 WL2.push_back(N); 346 continue; 347 } 348 349 // Visit our predecessors and enqueue them. 350 for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) 351 WL1.push_back(*I); 352 } 353 354 // We didn't hit a root? Return with a null pointer for the new graph. 355 if (WL2.empty()) 356 return 0; 357 358 // Create an empty graph. 359 ExplodedGraph* G = MakeEmptyGraph(); 360 361 // ===- Pass 2 (forward DFS to construct the new graph) -=== 362 while (!WL2.empty()) { 363 const ExplodedNode *N = WL2.back(); 364 WL2.pop_back(); 365 366 // Skip this node if we have already processed it. 367 if (Pass2.find(N) != Pass2.end()) 368 continue; 369 370 // Create the corresponding node in the new graph and record the mapping 371 // from the old node to the new node. 372 ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0); 373 Pass2[N] = NewN; 374 375 // Also record the reverse mapping from the new node to the old node. 376 if (InverseMap) (*InverseMap)[NewN] = N; 377 378 // If this node is a root, designate it as such in the graph. 379 if (N->Preds.empty()) 380 G->addRoot(NewN); 381 382 // In the case that some of the intended predecessors of NewN have already 383 // been created, we should hook them up as predecessors. 384 385 // Walk through the predecessors of 'N' and hook up their corresponding 386 // nodes in the new graph (if any) to the freshly created node. 387 for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) { 388 Pass2Ty::iterator PI = Pass2.find(*I); 389 if (PI == Pass2.end()) 390 continue; 391 392 NewN->addPredecessor(PI->second, *G); 393 } 394 395 // In the case that some of the intended successors of NewN have already 396 // been created, we should hook them up as successors. Otherwise, enqueue 397 // the new nodes from the original graph that should have nodes created 398 // in the new graph. 399 for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) { 400 Pass2Ty::iterator PI = Pass2.find(*I); 401 if (PI != Pass2.end()) { 402 PI->second->addPredecessor(NewN, *G); 403 continue; 404 } 405 406 // Enqueue nodes to the worklist that were marked during pass 1. 407 if (Pass1.count(*I)) 408 WL2.push_back(*I); 409 } 410 } 411 412 return G; 413 } 414 415 void InterExplodedGraphMap::anchor() { } 416 417 ExplodedNode* 418 InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const { 419 llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I = 420 M.find(N); 421 422 return I == M.end() ? 0 : I->second; 423 } 424 425