1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a generic engine for intraprocedural, path-sensitive, 11 // dataflow analysis via graph reachability engine. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/StmtCXX.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Support/Casting.h" 23 24 using namespace clang; 25 using namespace ento; 26 27 #define DEBUG_TYPE "CoreEngine" 28 29 STATISTIC(NumSteps, 30 "The # of steps executed."); 31 STATISTIC(NumReachedMaxSteps, 32 "The # of times we reached the max number of steps."); 33 STATISTIC(NumPathsExplored, 34 "The # of paths explored by the analyzer."); 35 36 //===----------------------------------------------------------------------===// 37 // Worklist classes for exploration of reachable states. 38 //===----------------------------------------------------------------------===// 39 40 namespace { 41 class DFS : public WorkList { 42 SmallVector<WorkListUnit,20> Stack; 43 public: 44 bool hasWork() const override { 45 return !Stack.empty(); 46 } 47 48 void enqueue(const WorkListUnit& U) override { 49 Stack.push_back(U); 50 } 51 52 WorkListUnit dequeue() override { 53 assert (!Stack.empty()); 54 const WorkListUnit& U = Stack.back(); 55 Stack.pop_back(); // This technically "invalidates" U, but we are fine. 56 return U; 57 } 58 }; 59 60 class BFS : public WorkList { 61 std::deque<WorkListUnit> Queue; 62 public: 63 bool hasWork() const override { 64 return !Queue.empty(); 65 } 66 67 void enqueue(const WorkListUnit& U) override { 68 Queue.push_back(U); 69 } 70 71 WorkListUnit dequeue() override { 72 WorkListUnit U = Queue.front(); 73 Queue.pop_front(); 74 return U; 75 } 76 77 }; 78 79 } // end anonymous namespace 80 81 // Place the dstor for WorkList here because it contains virtual member 82 // functions, and we the code for the dstor generated in one compilation unit. 83 WorkList::~WorkList() {} 84 85 std::unique_ptr<WorkList> WorkList::makeDFS() { 86 return llvm::make_unique<DFS>(); 87 } 88 89 std::unique_ptr<WorkList> WorkList::makeBFS() { 90 return llvm::make_unique<BFS>(); 91 } 92 93 namespace { 94 class BFSBlockDFSContents : public WorkList { 95 std::deque<WorkListUnit> Queue; 96 SmallVector<WorkListUnit,20> Stack; 97 public: 98 bool hasWork() const override { 99 return !Queue.empty() || !Stack.empty(); 100 } 101 102 void enqueue(const WorkListUnit& U) override { 103 if (U.getNode()->getLocation().getAs<BlockEntrance>()) 104 Queue.push_front(U); 105 else 106 Stack.push_back(U); 107 } 108 109 WorkListUnit dequeue() override { 110 // Process all basic blocks to completion. 111 if (!Stack.empty()) { 112 const WorkListUnit& U = Stack.back(); 113 Stack.pop_back(); // This technically "invalidates" U, but we are fine. 114 return U; 115 } 116 117 assert(!Queue.empty()); 118 // Don't use const reference. The subsequent pop_back() might make it 119 // unsafe. 120 WorkListUnit U = Queue.front(); 121 Queue.pop_front(); 122 return U; 123 } 124 }; 125 } // end anonymous namespace 126 127 std::unique_ptr<WorkList> WorkList::makeBFSBlockDFSContents() { 128 return llvm::make_unique<BFSBlockDFSContents>(); 129 } 130 131 //===----------------------------------------------------------------------===// 132 // Core analysis engine. 133 //===----------------------------------------------------------------------===// 134 135 static std::unique_ptr<WorkList> generateWorkList(AnalyzerOptions &Opts) { 136 switch (Opts.getExplorationStrategy()) { 137 case AnalyzerOptions::ExplorationStrategyKind::DFS: 138 return WorkList::makeDFS(); 139 case AnalyzerOptions::ExplorationStrategyKind::BFS: 140 return WorkList::makeBFS(); 141 case AnalyzerOptions::ExplorationStrategyKind::BFSBlockDFSContents: 142 return WorkList::makeBFSBlockDFSContents(); 143 default: 144 llvm_unreachable("Unexpected case"); 145 } 146 } 147 148 CoreEngine::CoreEngine(SubEngine &subengine, 149 FunctionSummariesTy *FS, 150 AnalyzerOptions &Opts) : SubEng(subengine), 151 WList(generateWorkList(Opts)), 152 BCounterFactory(G.getAllocator()), 153 FunctionSummaries(FS) {} 154 155 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps. 156 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps, 157 ProgramStateRef InitState) { 158 159 if (G.num_roots() == 0) { // Initialize the analysis by constructing 160 // the root if none exists. 161 162 const CFGBlock *Entry = &(L->getCFG()->getEntry()); 163 164 assert (Entry->empty() && 165 "Entry block must be empty."); 166 167 assert (Entry->succ_size() == 1 && 168 "Entry block must have 1 successor."); 169 170 // Mark the entry block as visited. 171 FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(), 172 L->getDecl(), 173 L->getCFG()->getNumBlockIDs()); 174 175 // Get the solitary successor. 176 const CFGBlock *Succ = *(Entry->succ_begin()); 177 178 // Construct an edge representing the 179 // starting location in the function. 180 BlockEdge StartLoc(Entry, Succ, L); 181 182 // Set the current block counter to being empty. 183 WList->setBlockCounter(BCounterFactory.GetEmptyCounter()); 184 185 if (!InitState) 186 InitState = SubEng.getInitialState(L); 187 188 bool IsNew; 189 ExplodedNode *Node = G.getNode(StartLoc, InitState, false, &IsNew); 190 assert (IsNew); 191 G.addRoot(Node); 192 193 NodeBuilderContext BuilderCtx(*this, StartLoc.getDst(), Node); 194 ExplodedNodeSet DstBegin; 195 SubEng.processBeginOfFunction(BuilderCtx, Node, DstBegin, StartLoc); 196 197 enqueue(DstBegin); 198 } 199 200 // Check if we have a steps limit 201 bool UnlimitedSteps = Steps == 0; 202 // Cap our pre-reservation in the event that the user specifies 203 // a very large number of maximum steps. 204 const unsigned PreReservationCap = 4000000; 205 if(!UnlimitedSteps) 206 G.reserve(std::min(Steps,PreReservationCap)); 207 208 while (WList->hasWork()) { 209 if (!UnlimitedSteps) { 210 if (Steps == 0) { 211 NumReachedMaxSteps++; 212 break; 213 } 214 --Steps; 215 } 216 217 NumSteps++; 218 219 const WorkListUnit& WU = WList->dequeue(); 220 221 // Set the current block counter. 222 WList->setBlockCounter(WU.getBlockCounter()); 223 224 // Retrieve the node. 225 ExplodedNode *Node = WU.getNode(); 226 227 dispatchWorkItem(Node, Node->getLocation(), WU); 228 } 229 SubEng.processEndWorklist(hasWorkRemaining()); 230 return WList->hasWork(); 231 } 232 233 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc, 234 const WorkListUnit& WU) { 235 // Dispatch on the location type. 236 switch (Loc.getKind()) { 237 case ProgramPoint::BlockEdgeKind: 238 HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred); 239 break; 240 241 case ProgramPoint::BlockEntranceKind: 242 HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred); 243 break; 244 245 case ProgramPoint::BlockExitKind: 246 assert (false && "BlockExit location never occur in forward analysis."); 247 break; 248 249 case ProgramPoint::CallEnterKind: { 250 HandleCallEnter(Loc.castAs<CallEnter>(), Pred); 251 break; 252 } 253 254 case ProgramPoint::CallExitBeginKind: 255 SubEng.processCallExit(Pred); 256 break; 257 258 case ProgramPoint::EpsilonKind: { 259 assert(Pred->hasSinglePred() && 260 "Assume epsilon has exactly one predecessor by construction"); 261 ExplodedNode *PNode = Pred->getFirstPred(); 262 dispatchWorkItem(Pred, PNode->getLocation(), WU); 263 break; 264 } 265 default: 266 assert(Loc.getAs<PostStmt>() || 267 Loc.getAs<PostInitializer>() || 268 Loc.getAs<PostImplicitCall>() || 269 Loc.getAs<CallExitEnd>() || 270 Loc.getAs<LoopExit>() || 271 Loc.getAs<PostAllocatorCall>()); 272 HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred); 273 break; 274 } 275 } 276 277 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L, 278 unsigned Steps, 279 ProgramStateRef InitState, 280 ExplodedNodeSet &Dst) { 281 bool DidNotFinish = ExecuteWorkList(L, Steps, InitState); 282 for (ExplodedGraph::eop_iterator I = G.eop_begin(), E = G.eop_end(); I != E; 283 ++I) { 284 Dst.Add(*I); 285 } 286 return DidNotFinish; 287 } 288 289 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) { 290 291 const CFGBlock *Blk = L.getDst(); 292 NodeBuilderContext BuilderCtx(*this, Blk, Pred); 293 294 // Mark this block as visited. 295 const LocationContext *LC = Pred->getLocationContext(); 296 FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(), 297 LC->getDecl(), 298 LC->getCFG()->getNumBlockIDs()); 299 300 // Check if we are entering the EXIT block. 301 if (Blk == &(L.getLocationContext()->getCFG()->getExit())) { 302 303 assert (L.getLocationContext()->getCFG()->getExit().size() == 0 304 && "EXIT block cannot contain Stmts."); 305 306 // Get return statement.. 307 const ReturnStmt *RS = nullptr; 308 if (!L.getSrc()->empty()) { 309 if (Optional<CFGStmt> LastStmt = L.getSrc()->back().getAs<CFGStmt>()) { 310 RS = dyn_cast<ReturnStmt>(LastStmt->getStmt()); 311 } 312 } 313 314 // Process the final state transition. 315 SubEng.processEndOfFunction(BuilderCtx, Pred, RS); 316 317 // This path is done. Don't enqueue any more nodes. 318 return; 319 } 320 321 // Call into the SubEngine to process entering the CFGBlock. 322 ExplodedNodeSet dstNodes; 323 BlockEntrance BE(Blk, Pred->getLocationContext()); 324 NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE); 325 SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred); 326 327 // Auto-generate a node. 328 if (!nodeBuilder.hasGeneratedNodes()) { 329 nodeBuilder.generateNode(Pred->State, Pred); 330 } 331 332 // Enqueue nodes onto the worklist. 333 enqueue(dstNodes); 334 } 335 336 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L, 337 ExplodedNode *Pred) { 338 339 // Increment the block counter. 340 const LocationContext *LC = Pred->getLocationContext(); 341 unsigned BlockId = L.getBlock()->getBlockID(); 342 BlockCounter Counter = WList->getBlockCounter(); 343 Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(), 344 BlockId); 345 WList->setBlockCounter(Counter); 346 347 // Process the entrance of the block. 348 if (Optional<CFGElement> E = L.getFirstElement()) { 349 NodeBuilderContext Ctx(*this, L.getBlock(), Pred); 350 SubEng.processCFGElement(*E, Pred, 0, &Ctx); 351 } 352 else 353 HandleBlockExit(L.getBlock(), Pred); 354 } 355 356 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) { 357 358 if (const Stmt *Term = B->getTerminator()) { 359 switch (Term->getStmtClass()) { 360 default: 361 llvm_unreachable("Analysis for this terminator not implemented."); 362 363 case Stmt::CXXBindTemporaryExprClass: 364 HandleCleanupTemporaryBranch( 365 cast<CXXBindTemporaryExpr>(B->getTerminator().getStmt()), B, Pred); 366 return; 367 368 // Model static initializers. 369 case Stmt::DeclStmtClass: 370 HandleStaticInit(cast<DeclStmt>(Term), B, Pred); 371 return; 372 373 case Stmt::BinaryOperatorClass: // '&&' and '||' 374 HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred); 375 return; 376 377 case Stmt::BinaryConditionalOperatorClass: 378 case Stmt::ConditionalOperatorClass: 379 HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(), 380 Term, B, Pred); 381 return; 382 383 // FIXME: Use constant-folding in CFG construction to simplify this 384 // case. 385 386 case Stmt::ChooseExprClass: 387 HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred); 388 return; 389 390 case Stmt::CXXTryStmtClass: { 391 // Generate a node for each of the successors. 392 // Our logic for EH analysis can certainly be improved. 393 for (CFGBlock::const_succ_iterator it = B->succ_begin(), 394 et = B->succ_end(); it != et; ++it) { 395 if (const CFGBlock *succ = *it) { 396 generateNode(BlockEdge(B, succ, Pred->getLocationContext()), 397 Pred->State, Pred); 398 } 399 } 400 return; 401 } 402 403 case Stmt::DoStmtClass: 404 HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred); 405 return; 406 407 case Stmt::CXXForRangeStmtClass: 408 HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred); 409 return; 410 411 case Stmt::ForStmtClass: 412 HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred); 413 return; 414 415 case Stmt::ContinueStmtClass: 416 case Stmt::BreakStmtClass: 417 case Stmt::GotoStmtClass: 418 break; 419 420 case Stmt::IfStmtClass: 421 HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred); 422 return; 423 424 case Stmt::IndirectGotoStmtClass: { 425 // Only 1 successor: the indirect goto dispatch block. 426 assert (B->succ_size() == 1); 427 428 IndirectGotoNodeBuilder 429 builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(), 430 *(B->succ_begin()), this); 431 432 SubEng.processIndirectGoto(builder); 433 return; 434 } 435 436 case Stmt::ObjCForCollectionStmtClass: { 437 // In the case of ObjCForCollectionStmt, it appears twice in a CFG: 438 // 439 // (1) inside a basic block, which represents the binding of the 440 // 'element' variable to a value. 441 // (2) in a terminator, which represents the branch. 442 // 443 // For (1), subengines will bind a value (i.e., 0 or 1) indicating 444 // whether or not collection contains any more elements. We cannot 445 // just test to see if the element is nil because a container can 446 // contain nil elements. 447 HandleBranch(Term, Term, B, Pred); 448 return; 449 } 450 451 case Stmt::SwitchStmtClass: { 452 SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(), 453 this); 454 455 SubEng.processSwitch(builder); 456 return; 457 } 458 459 case Stmt::WhileStmtClass: 460 HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred); 461 return; 462 } 463 } 464 465 assert (B->succ_size() == 1 && 466 "Blocks with no terminator should have at most 1 successor."); 467 468 generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()), 469 Pred->State, Pred); 470 } 471 472 void CoreEngine::HandleCallEnter(const CallEnter &CE, ExplodedNode *Pred) { 473 NodeBuilderContext BuilderCtx(*this, CE.getEntry(), Pred); 474 SubEng.processCallEnter(BuilderCtx, CE, Pred); 475 } 476 477 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term, 478 const CFGBlock * B, ExplodedNode *Pred) { 479 assert(B->succ_size() == 2); 480 NodeBuilderContext Ctx(*this, B, Pred); 481 ExplodedNodeSet Dst; 482 SubEng.processBranch(Cond, Term, Ctx, Pred, Dst, 483 *(B->succ_begin()), *(B->succ_begin()+1)); 484 // Enqueue the new frontier onto the worklist. 485 enqueue(Dst); 486 } 487 488 void CoreEngine::HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE, 489 const CFGBlock *B, 490 ExplodedNode *Pred) { 491 assert(B->succ_size() == 2); 492 NodeBuilderContext Ctx(*this, B, Pred); 493 ExplodedNodeSet Dst; 494 SubEng.processCleanupTemporaryBranch(BTE, Ctx, Pred, Dst, *(B->succ_begin()), 495 *(B->succ_begin() + 1)); 496 // Enqueue the new frontier onto the worklist. 497 enqueue(Dst); 498 } 499 500 void CoreEngine::HandleStaticInit(const DeclStmt *DS, const CFGBlock *B, 501 ExplodedNode *Pred) { 502 assert(B->succ_size() == 2); 503 NodeBuilderContext Ctx(*this, B, Pred); 504 ExplodedNodeSet Dst; 505 SubEng.processStaticInitializer(DS, Ctx, Pred, Dst, 506 *(B->succ_begin()), *(B->succ_begin()+1)); 507 // Enqueue the new frontier onto the worklist. 508 enqueue(Dst); 509 } 510 511 512 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, 513 ExplodedNode *Pred) { 514 assert(B); 515 assert(!B->empty()); 516 517 if (StmtIdx == B->size()) 518 HandleBlockExit(B, Pred); 519 else { 520 NodeBuilderContext Ctx(*this, B, Pred); 521 SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx); 522 } 523 } 524 525 /// generateNode - Utility method to generate nodes, hook up successors, 526 /// and add nodes to the worklist. 527 void CoreEngine::generateNode(const ProgramPoint &Loc, 528 ProgramStateRef State, 529 ExplodedNode *Pred) { 530 531 bool IsNew; 532 ExplodedNode *Node = G.getNode(Loc, State, false, &IsNew); 533 534 if (Pred) 535 Node->addPredecessor(Pred, G); // Link 'Node' with its predecessor. 536 else { 537 assert (IsNew); 538 G.addRoot(Node); // 'Node' has no predecessor. Make it a root. 539 } 540 541 // Only add 'Node' to the worklist if it was freshly generated. 542 if (IsNew) WList->enqueue(Node); 543 } 544 545 void CoreEngine::enqueueStmtNode(ExplodedNode *N, 546 const CFGBlock *Block, unsigned Idx) { 547 assert(Block); 548 assert (!N->isSink()); 549 550 // Check if this node entered a callee. 551 if (N->getLocation().getAs<CallEnter>()) { 552 // Still use the index of the CallExpr. It's needed to create the callee 553 // StackFrameContext. 554 WList->enqueue(N, Block, Idx); 555 return; 556 } 557 558 // Do not create extra nodes. Move to the next CFG element. 559 if (N->getLocation().getAs<PostInitializer>() || 560 N->getLocation().getAs<PostImplicitCall>()|| 561 N->getLocation().getAs<LoopExit>()) { 562 WList->enqueue(N, Block, Idx+1); 563 return; 564 } 565 566 if (N->getLocation().getAs<EpsilonPoint>()) { 567 WList->enqueue(N, Block, Idx); 568 return; 569 } 570 571 if ((*Block)[Idx].getKind() == CFGElement::NewAllocator) { 572 WList->enqueue(N, Block, Idx+1); 573 return; 574 } 575 576 // At this point, we know we're processing a normal statement. 577 CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>(); 578 PostStmt Loc(CS.getStmt(), N->getLocationContext()); 579 580 if (Loc == N->getLocation().withTag(nullptr)) { 581 // Note: 'N' should be a fresh node because otherwise it shouldn't be 582 // a member of Deferred. 583 WList->enqueue(N, Block, Idx+1); 584 return; 585 } 586 587 bool IsNew; 588 ExplodedNode *Succ = G.getNode(Loc, N->getState(), false, &IsNew); 589 Succ->addPredecessor(N, G); 590 591 if (IsNew) 592 WList->enqueue(Succ, Block, Idx+1); 593 } 594 595 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N, 596 const ReturnStmt *RS) { 597 // Create a CallExitBegin node and enqueue it. 598 const StackFrameContext *LocCtx 599 = cast<StackFrameContext>(N->getLocationContext()); 600 601 // Use the callee location context. 602 CallExitBegin Loc(LocCtx, RS); 603 604 bool isNew; 605 ExplodedNode *Node = G.getNode(Loc, N->getState(), false, &isNew); 606 Node->addPredecessor(N, G); 607 return isNew ? Node : nullptr; 608 } 609 610 611 void CoreEngine::enqueue(ExplodedNodeSet &Set) { 612 for (ExplodedNodeSet::iterator I = Set.begin(), 613 E = Set.end(); I != E; ++I) { 614 WList->enqueue(*I); 615 } 616 } 617 618 void CoreEngine::enqueue(ExplodedNodeSet &Set, 619 const CFGBlock *Block, unsigned Idx) { 620 for (ExplodedNodeSet::iterator I = Set.begin(), 621 E = Set.end(); I != E; ++I) { 622 enqueueStmtNode(*I, Block, Idx); 623 } 624 } 625 626 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set, const ReturnStmt *RS) { 627 for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) { 628 ExplodedNode *N = *I; 629 // If we are in an inlined call, generate CallExitBegin node. 630 if (N->getLocationContext()->getParent()) { 631 N = generateCallExitBeginNode(N, RS); 632 if (N) 633 WList->enqueue(N); 634 } else { 635 // TODO: We should run remove dead bindings here. 636 G.addEndOfPath(N); 637 NumPathsExplored++; 638 } 639 } 640 } 641 642 643 void NodeBuilder::anchor() { } 644 645 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc, 646 ProgramStateRef State, 647 ExplodedNode *FromN, 648 bool MarkAsSink) { 649 HasGeneratedNodes = true; 650 bool IsNew; 651 ExplodedNode *N = C.Eng.G.getNode(Loc, State, MarkAsSink, &IsNew); 652 N->addPredecessor(FromN, C.Eng.G); 653 Frontier.erase(FromN); 654 655 if (!IsNew) 656 return nullptr; 657 658 if (!MarkAsSink) 659 Frontier.Add(N); 660 661 return N; 662 } 663 664 void NodeBuilderWithSinks::anchor() { } 665 666 StmtNodeBuilder::~StmtNodeBuilder() { 667 if (EnclosingBldr) 668 for (ExplodedNodeSet::iterator I = Frontier.begin(), 669 E = Frontier.end(); I != E; ++I ) 670 EnclosingBldr->addNodes(*I); 671 } 672 673 void BranchNodeBuilder::anchor() { } 674 675 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State, 676 bool branch, 677 ExplodedNode *NodePred) { 678 // If the branch has been marked infeasible we should not generate a node. 679 if (!isFeasible(branch)) 680 return nullptr; 681 682 ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF, 683 NodePred->getLocationContext()); 684 ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred); 685 return Succ; 686 } 687 688 ExplodedNode* 689 IndirectGotoNodeBuilder::generateNode(const iterator &I, 690 ProgramStateRef St, 691 bool IsSink) { 692 bool IsNew; 693 ExplodedNode *Succ = 694 Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()), 695 St, IsSink, &IsNew); 696 Succ->addPredecessor(Pred, Eng.G); 697 698 if (!IsNew) 699 return nullptr; 700 701 if (!IsSink) 702 Eng.WList->enqueue(Succ); 703 704 return Succ; 705 } 706 707 708 ExplodedNode* 709 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I, 710 ProgramStateRef St) { 711 712 bool IsNew; 713 ExplodedNode *Succ = 714 Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()), 715 St, false, &IsNew); 716 Succ->addPredecessor(Pred, Eng.G); 717 if (!IsNew) 718 return nullptr; 719 720 Eng.WList->enqueue(Succ); 721 return Succ; 722 } 723 724 725 ExplodedNode* 726 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St, 727 bool IsSink) { 728 // Get the block for the default case. 729 assert(Src->succ_rbegin() != Src->succ_rend()); 730 CFGBlock *DefaultBlock = *Src->succ_rbegin(); 731 732 // Sanity check for default blocks that are unreachable and not caught 733 // by earlier stages. 734 if (!DefaultBlock) 735 return nullptr; 736 737 bool IsNew; 738 ExplodedNode *Succ = 739 Eng.G.getNode(BlockEdge(Src, DefaultBlock, Pred->getLocationContext()), 740 St, IsSink, &IsNew); 741 Succ->addPredecessor(Pred, Eng.G); 742 743 if (!IsNew) 744 return nullptr; 745 746 if (!IsSink) 747 Eng.WList->enqueue(Succ); 748 749 return Succ; 750 } 751