1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a generic engine for intraprocedural, path-sensitive, 11 // dataflow analysis via graph reachability engine. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/StmtCXX.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Support/Casting.h" 23 24 using namespace clang; 25 using namespace ento; 26 27 #define DEBUG_TYPE "CoreEngine" 28 29 STATISTIC(NumSteps, 30 "The # of steps executed."); 31 STATISTIC(NumReachedMaxSteps, 32 "The # of times we reached the max number of steps."); 33 STATISTIC(NumPathsExplored, 34 "The # of paths explored by the analyzer."); 35 36 //===----------------------------------------------------------------------===// 37 // Worklist classes for exploration of reachable states. 38 //===----------------------------------------------------------------------===// 39 40 WorkList::Visitor::~Visitor() {} 41 42 namespace { 43 class DFS : public WorkList { 44 SmallVector<WorkListUnit,20> Stack; 45 public: 46 bool hasWork() const override { 47 return !Stack.empty(); 48 } 49 50 void enqueue(const WorkListUnit& U) override { 51 Stack.push_back(U); 52 } 53 54 WorkListUnit dequeue() override { 55 assert (!Stack.empty()); 56 const WorkListUnit& U = Stack.back(); 57 Stack.pop_back(); // This technically "invalidates" U, but we are fine. 58 return U; 59 } 60 61 bool visitItemsInWorkList(Visitor &V) override { 62 for (SmallVectorImpl<WorkListUnit>::iterator 63 I = Stack.begin(), E = Stack.end(); I != E; ++I) { 64 if (V.visit(*I)) 65 return true; 66 } 67 return false; 68 } 69 }; 70 71 class BFS : public WorkList { 72 std::deque<WorkListUnit> Queue; 73 public: 74 bool hasWork() const override { 75 return !Queue.empty(); 76 } 77 78 void enqueue(const WorkListUnit& U) override { 79 Queue.push_back(U); 80 } 81 82 WorkListUnit dequeue() override { 83 WorkListUnit U = Queue.front(); 84 Queue.pop_front(); 85 return U; 86 } 87 88 bool visitItemsInWorkList(Visitor &V) override { 89 for (std::deque<WorkListUnit>::iterator 90 I = Queue.begin(), E = Queue.end(); I != E; ++I) { 91 if (V.visit(*I)) 92 return true; 93 } 94 return false; 95 } 96 }; 97 98 } // end anonymous namespace 99 100 // Place the dstor for WorkList here because it contains virtual member 101 // functions, and we the code for the dstor generated in one compilation unit. 102 WorkList::~WorkList() {} 103 104 WorkList *WorkList::makeDFS() { return new DFS(); } 105 WorkList *WorkList::makeBFS() { return new BFS(); } 106 107 namespace { 108 class BFSBlockDFSContents : public WorkList { 109 std::deque<WorkListUnit> Queue; 110 SmallVector<WorkListUnit,20> Stack; 111 public: 112 bool hasWork() const override { 113 return !Queue.empty() || !Stack.empty(); 114 } 115 116 void enqueue(const WorkListUnit& U) override { 117 if (U.getNode()->getLocation().getAs<BlockEntrance>()) 118 Queue.push_front(U); 119 else 120 Stack.push_back(U); 121 } 122 123 WorkListUnit dequeue() override { 124 // Process all basic blocks to completion. 125 if (!Stack.empty()) { 126 const WorkListUnit& U = Stack.back(); 127 Stack.pop_back(); // This technically "invalidates" U, but we are fine. 128 return U; 129 } 130 131 assert(!Queue.empty()); 132 // Don't use const reference. The subsequent pop_back() might make it 133 // unsafe. 134 WorkListUnit U = Queue.front(); 135 Queue.pop_front(); 136 return U; 137 } 138 bool visitItemsInWorkList(Visitor &V) override { 139 for (SmallVectorImpl<WorkListUnit>::iterator 140 I = Stack.begin(), E = Stack.end(); I != E; ++I) { 141 if (V.visit(*I)) 142 return true; 143 } 144 for (std::deque<WorkListUnit>::iterator 145 I = Queue.begin(), E = Queue.end(); I != E; ++I) { 146 if (V.visit(*I)) 147 return true; 148 } 149 return false; 150 } 151 152 }; 153 } // end anonymous namespace 154 155 WorkList* WorkList::makeBFSBlockDFSContents() { 156 return new BFSBlockDFSContents(); 157 } 158 159 //===----------------------------------------------------------------------===// 160 // Core analysis engine. 161 //===----------------------------------------------------------------------===// 162 163 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps. 164 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps, 165 ProgramStateRef InitState) { 166 167 if (G.num_roots() == 0) { // Initialize the analysis by constructing 168 // the root if none exists. 169 170 const CFGBlock *Entry = &(L->getCFG()->getEntry()); 171 172 assert (Entry->empty() && 173 "Entry block must be empty."); 174 175 assert (Entry->succ_size() == 1 && 176 "Entry block must have 1 successor."); 177 178 // Mark the entry block as visited. 179 FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(), 180 L->getDecl(), 181 L->getCFG()->getNumBlockIDs()); 182 183 // Get the solitary successor. 184 const CFGBlock *Succ = *(Entry->succ_begin()); 185 186 // Construct an edge representing the 187 // starting location in the function. 188 BlockEdge StartLoc(Entry, Succ, L); 189 190 // Set the current block counter to being empty. 191 WList->setBlockCounter(BCounterFactory.GetEmptyCounter()); 192 193 if (!InitState) 194 InitState = SubEng.getInitialState(L); 195 196 bool IsNew; 197 ExplodedNode *Node = G.getNode(StartLoc, InitState, false, &IsNew); 198 assert (IsNew); 199 G.addRoot(Node); 200 201 NodeBuilderContext BuilderCtx(*this, StartLoc.getDst(), Node); 202 ExplodedNodeSet DstBegin; 203 SubEng.processBeginOfFunction(BuilderCtx, Node, DstBegin, StartLoc); 204 205 enqueue(DstBegin); 206 } 207 208 // Check if we have a steps limit 209 bool UnlimitedSteps = Steps == 0; 210 // Cap our pre-reservation in the event that the user specifies 211 // a very large number of maximum steps. 212 const unsigned PreReservationCap = 4000000; 213 if(!UnlimitedSteps) 214 G.reserve(std::min(Steps,PreReservationCap)); 215 216 while (WList->hasWork()) { 217 if (!UnlimitedSteps) { 218 if (Steps == 0) { 219 NumReachedMaxSteps++; 220 break; 221 } 222 --Steps; 223 } 224 225 NumSteps++; 226 227 const WorkListUnit& WU = WList->dequeue(); 228 229 // Set the current block counter. 230 WList->setBlockCounter(WU.getBlockCounter()); 231 232 // Retrieve the node. 233 ExplodedNode *Node = WU.getNode(); 234 235 dispatchWorkItem(Node, Node->getLocation(), WU); 236 } 237 SubEng.processEndWorklist(hasWorkRemaining()); 238 return WList->hasWork(); 239 } 240 241 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc, 242 const WorkListUnit& WU) { 243 // Dispatch on the location type. 244 switch (Loc.getKind()) { 245 case ProgramPoint::BlockEdgeKind: 246 HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred); 247 break; 248 249 case ProgramPoint::BlockEntranceKind: 250 HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred); 251 break; 252 253 case ProgramPoint::BlockExitKind: 254 assert (false && "BlockExit location never occur in forward analysis."); 255 break; 256 257 case ProgramPoint::CallEnterKind: { 258 HandleCallEnter(Loc.castAs<CallEnter>(), Pred); 259 break; 260 } 261 262 case ProgramPoint::CallExitBeginKind: 263 SubEng.processCallExit(Pred); 264 break; 265 266 case ProgramPoint::EpsilonKind: { 267 assert(Pred->hasSinglePred() && 268 "Assume epsilon has exactly one predecessor by construction"); 269 ExplodedNode *PNode = Pred->getFirstPred(); 270 dispatchWorkItem(Pred, PNode->getLocation(), WU); 271 break; 272 } 273 default: 274 assert(Loc.getAs<PostStmt>() || 275 Loc.getAs<PostInitializer>() || 276 Loc.getAs<PostImplicitCall>() || 277 Loc.getAs<CallExitEnd>()); 278 HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred); 279 break; 280 } 281 } 282 283 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L, 284 unsigned Steps, 285 ProgramStateRef InitState, 286 ExplodedNodeSet &Dst) { 287 bool DidNotFinish = ExecuteWorkList(L, Steps, InitState); 288 for (ExplodedGraph::eop_iterator I = G.eop_begin(), E = G.eop_end(); I != E; 289 ++I) { 290 Dst.Add(*I); 291 } 292 return DidNotFinish; 293 } 294 295 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) { 296 297 const CFGBlock *Blk = L.getDst(); 298 NodeBuilderContext BuilderCtx(*this, Blk, Pred); 299 300 // Mark this block as visited. 301 const LocationContext *LC = Pred->getLocationContext(); 302 FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(), 303 LC->getDecl(), 304 LC->getCFG()->getNumBlockIDs()); 305 306 // Check if we are entering the EXIT block. 307 if (Blk == &(L.getLocationContext()->getCFG()->getExit())) { 308 309 assert (L.getLocationContext()->getCFG()->getExit().size() == 0 310 && "EXIT block cannot contain Stmts."); 311 312 // Process the final state transition. 313 SubEng.processEndOfFunction(BuilderCtx, Pred); 314 315 // This path is done. Don't enqueue any more nodes. 316 return; 317 } 318 319 // Call into the SubEngine to process entering the CFGBlock. 320 ExplodedNodeSet dstNodes; 321 BlockEntrance BE(Blk, Pred->getLocationContext()); 322 NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE); 323 SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred); 324 325 // Auto-generate a node. 326 if (!nodeBuilder.hasGeneratedNodes()) { 327 nodeBuilder.generateNode(Pred->State, Pred); 328 } 329 330 // Enqueue nodes onto the worklist. 331 enqueue(dstNodes); 332 } 333 334 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L, 335 ExplodedNode *Pred) { 336 337 // Increment the block counter. 338 const LocationContext *LC = Pred->getLocationContext(); 339 unsigned BlockId = L.getBlock()->getBlockID(); 340 BlockCounter Counter = WList->getBlockCounter(); 341 Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(), 342 BlockId); 343 WList->setBlockCounter(Counter); 344 345 // Process the entrance of the block. 346 if (Optional<CFGElement> E = L.getFirstElement()) { 347 NodeBuilderContext Ctx(*this, L.getBlock(), Pred); 348 SubEng.processCFGElement(*E, Pred, 0, &Ctx); 349 } 350 else 351 HandleBlockExit(L.getBlock(), Pred); 352 } 353 354 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) { 355 356 if (const Stmt *Term = B->getTerminator()) { 357 switch (Term->getStmtClass()) { 358 default: 359 llvm_unreachable("Analysis for this terminator not implemented."); 360 361 case Stmt::CXXBindTemporaryExprClass: 362 HandleCleanupTemporaryBranch( 363 cast<CXXBindTemporaryExpr>(B->getTerminator().getStmt()), B, Pred); 364 return; 365 366 // Model static initializers. 367 case Stmt::DeclStmtClass: 368 HandleStaticInit(cast<DeclStmt>(Term), B, Pred); 369 return; 370 371 case Stmt::BinaryOperatorClass: // '&&' and '||' 372 HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred); 373 return; 374 375 case Stmt::BinaryConditionalOperatorClass: 376 case Stmt::ConditionalOperatorClass: 377 HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(), 378 Term, B, Pred); 379 return; 380 381 // FIXME: Use constant-folding in CFG construction to simplify this 382 // case. 383 384 case Stmt::ChooseExprClass: 385 HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred); 386 return; 387 388 case Stmt::CXXTryStmtClass: { 389 // Generate a node for each of the successors. 390 // Our logic for EH analysis can certainly be improved. 391 for (CFGBlock::const_succ_iterator it = B->succ_begin(), 392 et = B->succ_end(); it != et; ++it) { 393 if (const CFGBlock *succ = *it) { 394 generateNode(BlockEdge(B, succ, Pred->getLocationContext()), 395 Pred->State, Pred); 396 } 397 } 398 return; 399 } 400 401 case Stmt::DoStmtClass: 402 HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred); 403 return; 404 405 case Stmt::CXXForRangeStmtClass: 406 HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred); 407 return; 408 409 case Stmt::ForStmtClass: 410 HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred); 411 return; 412 413 case Stmt::ContinueStmtClass: 414 case Stmt::BreakStmtClass: 415 case Stmt::GotoStmtClass: 416 break; 417 418 case Stmt::IfStmtClass: 419 HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred); 420 return; 421 422 case Stmt::IndirectGotoStmtClass: { 423 // Only 1 successor: the indirect goto dispatch block. 424 assert (B->succ_size() == 1); 425 426 IndirectGotoNodeBuilder 427 builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(), 428 *(B->succ_begin()), this); 429 430 SubEng.processIndirectGoto(builder); 431 return; 432 } 433 434 case Stmt::ObjCForCollectionStmtClass: { 435 // In the case of ObjCForCollectionStmt, it appears twice in a CFG: 436 // 437 // (1) inside a basic block, which represents the binding of the 438 // 'element' variable to a value. 439 // (2) in a terminator, which represents the branch. 440 // 441 // For (1), subengines will bind a value (i.e., 0 or 1) indicating 442 // whether or not collection contains any more elements. We cannot 443 // just test to see if the element is nil because a container can 444 // contain nil elements. 445 HandleBranch(Term, Term, B, Pred); 446 return; 447 } 448 449 case Stmt::SwitchStmtClass: { 450 SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(), 451 this); 452 453 SubEng.processSwitch(builder); 454 return; 455 } 456 457 case Stmt::WhileStmtClass: 458 HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred); 459 return; 460 } 461 } 462 463 assert (B->succ_size() == 1 && 464 "Blocks with no terminator should have at most 1 successor."); 465 466 generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()), 467 Pred->State, Pred); 468 } 469 470 void CoreEngine::HandleCallEnter(const CallEnter &CE, ExplodedNode *Pred) { 471 NodeBuilderContext BuilderCtx(*this, CE.getEntry(), Pred); 472 SubEng.processCallEnter(BuilderCtx, CE, Pred); 473 } 474 475 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term, 476 const CFGBlock * B, ExplodedNode *Pred) { 477 assert(B->succ_size() == 2); 478 NodeBuilderContext Ctx(*this, B, Pred); 479 ExplodedNodeSet Dst; 480 SubEng.processBranch(Cond, Term, Ctx, Pred, Dst, 481 *(B->succ_begin()), *(B->succ_begin()+1)); 482 // Enqueue the new frontier onto the worklist. 483 enqueue(Dst); 484 } 485 486 void CoreEngine::HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE, 487 const CFGBlock *B, 488 ExplodedNode *Pred) { 489 assert(B->succ_size() == 2); 490 NodeBuilderContext Ctx(*this, B, Pred); 491 ExplodedNodeSet Dst; 492 SubEng.processCleanupTemporaryBranch(BTE, Ctx, Pred, Dst, *(B->succ_begin()), 493 *(B->succ_begin() + 1)); 494 // Enqueue the new frontier onto the worklist. 495 enqueue(Dst); 496 } 497 498 void CoreEngine::HandleStaticInit(const DeclStmt *DS, const CFGBlock *B, 499 ExplodedNode *Pred) { 500 assert(B->succ_size() == 2); 501 NodeBuilderContext Ctx(*this, B, Pred); 502 ExplodedNodeSet Dst; 503 SubEng.processStaticInitializer(DS, Ctx, Pred, Dst, 504 *(B->succ_begin()), *(B->succ_begin()+1)); 505 // Enqueue the new frontier onto the worklist. 506 enqueue(Dst); 507 } 508 509 510 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, 511 ExplodedNode *Pred) { 512 assert(B); 513 assert(!B->empty()); 514 515 if (StmtIdx == B->size()) 516 HandleBlockExit(B, Pred); 517 else { 518 NodeBuilderContext Ctx(*this, B, Pred); 519 SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx); 520 } 521 } 522 523 /// generateNode - Utility method to generate nodes, hook up successors, 524 /// and add nodes to the worklist. 525 void CoreEngine::generateNode(const ProgramPoint &Loc, 526 ProgramStateRef State, 527 ExplodedNode *Pred) { 528 529 bool IsNew; 530 ExplodedNode *Node = G.getNode(Loc, State, false, &IsNew); 531 532 if (Pred) 533 Node->addPredecessor(Pred, G); // Link 'Node' with its predecessor. 534 else { 535 assert (IsNew); 536 G.addRoot(Node); // 'Node' has no predecessor. Make it a root. 537 } 538 539 // Only add 'Node' to the worklist if it was freshly generated. 540 if (IsNew) WList->enqueue(Node); 541 } 542 543 void CoreEngine::enqueueStmtNode(ExplodedNode *N, 544 const CFGBlock *Block, unsigned Idx) { 545 assert(Block); 546 assert (!N->isSink()); 547 548 // Check if this node entered a callee. 549 if (N->getLocation().getAs<CallEnter>()) { 550 // Still use the index of the CallExpr. It's needed to create the callee 551 // StackFrameContext. 552 WList->enqueue(N, Block, Idx); 553 return; 554 } 555 556 // Do not create extra nodes. Move to the next CFG element. 557 if (N->getLocation().getAs<PostInitializer>() || 558 N->getLocation().getAs<PostImplicitCall>()) { 559 WList->enqueue(N, Block, Idx+1); 560 return; 561 } 562 563 if (N->getLocation().getAs<EpsilonPoint>()) { 564 WList->enqueue(N, Block, Idx); 565 return; 566 } 567 568 if ((*Block)[Idx].getKind() == CFGElement::NewAllocator) { 569 WList->enqueue(N, Block, Idx+1); 570 return; 571 } 572 573 // At this point, we know we're processing a normal statement. 574 CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>(); 575 PostStmt Loc(CS.getStmt(), N->getLocationContext()); 576 577 if (Loc == N->getLocation().withTag(nullptr)) { 578 // Note: 'N' should be a fresh node because otherwise it shouldn't be 579 // a member of Deferred. 580 WList->enqueue(N, Block, Idx+1); 581 return; 582 } 583 584 bool IsNew; 585 ExplodedNode *Succ = G.getNode(Loc, N->getState(), false, &IsNew); 586 Succ->addPredecessor(N, G); 587 588 if (IsNew) 589 WList->enqueue(Succ, Block, Idx+1); 590 } 591 592 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N) { 593 // Create a CallExitBegin node and enqueue it. 594 const StackFrameContext *LocCtx 595 = cast<StackFrameContext>(N->getLocationContext()); 596 597 // Use the callee location context. 598 CallExitBegin Loc(LocCtx); 599 600 bool isNew; 601 ExplodedNode *Node = G.getNode(Loc, N->getState(), false, &isNew); 602 Node->addPredecessor(N, G); 603 return isNew ? Node : nullptr; 604 } 605 606 607 void CoreEngine::enqueue(ExplodedNodeSet &Set) { 608 for (ExplodedNodeSet::iterator I = Set.begin(), 609 E = Set.end(); I != E; ++I) { 610 WList->enqueue(*I); 611 } 612 } 613 614 void CoreEngine::enqueue(ExplodedNodeSet &Set, 615 const CFGBlock *Block, unsigned Idx) { 616 for (ExplodedNodeSet::iterator I = Set.begin(), 617 E = Set.end(); I != E; ++I) { 618 enqueueStmtNode(*I, Block, Idx); 619 } 620 } 621 622 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) { 623 for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) { 624 ExplodedNode *N = *I; 625 // If we are in an inlined call, generate CallExitBegin node. 626 if (N->getLocationContext()->getParent()) { 627 N = generateCallExitBeginNode(N); 628 if (N) 629 WList->enqueue(N); 630 } else { 631 // TODO: We should run remove dead bindings here. 632 G.addEndOfPath(N); 633 NumPathsExplored++; 634 } 635 } 636 } 637 638 639 void NodeBuilder::anchor() { } 640 641 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc, 642 ProgramStateRef State, 643 ExplodedNode *FromN, 644 bool MarkAsSink) { 645 HasGeneratedNodes = true; 646 bool IsNew; 647 ExplodedNode *N = C.Eng.G.getNode(Loc, State, MarkAsSink, &IsNew); 648 N->addPredecessor(FromN, C.Eng.G); 649 Frontier.erase(FromN); 650 651 if (!IsNew) 652 return nullptr; 653 654 if (!MarkAsSink) 655 Frontier.Add(N); 656 657 return N; 658 } 659 660 void NodeBuilderWithSinks::anchor() { } 661 662 StmtNodeBuilder::~StmtNodeBuilder() { 663 if (EnclosingBldr) 664 for (ExplodedNodeSet::iterator I = Frontier.begin(), 665 E = Frontier.end(); I != E; ++I ) 666 EnclosingBldr->addNodes(*I); 667 } 668 669 void BranchNodeBuilder::anchor() { } 670 671 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State, 672 bool branch, 673 ExplodedNode *NodePred) { 674 // If the branch has been marked infeasible we should not generate a node. 675 if (!isFeasible(branch)) 676 return nullptr; 677 678 ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF, 679 NodePred->getLocationContext()); 680 ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred); 681 return Succ; 682 } 683 684 ExplodedNode* 685 IndirectGotoNodeBuilder::generateNode(const iterator &I, 686 ProgramStateRef St, 687 bool IsSink) { 688 bool IsNew; 689 ExplodedNode *Succ = 690 Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()), 691 St, IsSink, &IsNew); 692 Succ->addPredecessor(Pred, Eng.G); 693 694 if (!IsNew) 695 return nullptr; 696 697 if (!IsSink) 698 Eng.WList->enqueue(Succ); 699 700 return Succ; 701 } 702 703 704 ExplodedNode* 705 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I, 706 ProgramStateRef St) { 707 708 bool IsNew; 709 ExplodedNode *Succ = 710 Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()), 711 St, false, &IsNew); 712 Succ->addPredecessor(Pred, Eng.G); 713 if (!IsNew) 714 return nullptr; 715 716 Eng.WList->enqueue(Succ); 717 return Succ; 718 } 719 720 721 ExplodedNode* 722 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St, 723 bool IsSink) { 724 // Get the block for the default case. 725 assert(Src->succ_rbegin() != Src->succ_rend()); 726 CFGBlock *DefaultBlock = *Src->succ_rbegin(); 727 728 // Sanity check for default blocks that are unreachable and not caught 729 // by earlier stages. 730 if (!DefaultBlock) 731 return nullptr; 732 733 bool IsNew; 734 ExplodedNode *Succ = 735 Eng.G.getNode(BlockEdge(Src, DefaultBlock, Pred->getLocationContext()), 736 St, IsSink, &IsNew); 737 Succ->addPredecessor(Pred, Eng.G); 738 739 if (!IsNew) 740 return nullptr; 741 742 if (!IsSink) 743 Eng.WList->enqueue(Succ); 744 745 return Succ; 746 } 747