1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines a generic engine for intraprocedural, path-sensitive,
11 //  dataflow analysis via graph reachability engine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtCXX.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/Support/Casting.h"
24 
25 using namespace clang;
26 using namespace ento;
27 
28 #define DEBUG_TYPE "CoreEngine"
29 
30 STATISTIC(NumSteps,
31             "The # of steps executed.");
32 STATISTIC(NumReachedMaxSteps,
33             "The # of times we reached the max number of steps.");
34 STATISTIC(NumPathsExplored,
35             "The # of paths explored by the analyzer.");
36 
37 STATISTIC(MaxQueueSize, "Maximum size of the worklist");
38 STATISTIC(MaxReachableSize, "Maximum size of auxiliary worklist set");
39 
40 //===----------------------------------------------------------------------===//
41 // Worklist classes for exploration of reachable states.
42 //===----------------------------------------------------------------------===//
43 
44 namespace {
45 class DFS : public WorkList {
46   SmallVector<WorkListUnit,20> Stack;
47 public:
48   bool hasWork() const override {
49     return !Stack.empty();
50   }
51 
52   void enqueue(const WorkListUnit& U) override {
53     Stack.push_back(U);
54   }
55 
56   WorkListUnit dequeue() override {
57     assert (!Stack.empty());
58     const WorkListUnit& U = Stack.back();
59     Stack.pop_back(); // This technically "invalidates" U, but we are fine.
60     return U;
61   }
62 };
63 
64 class BFS : public WorkList {
65   std::deque<WorkListUnit> Queue;
66 public:
67   bool hasWork() const override {
68     return !Queue.empty();
69   }
70 
71   void enqueue(const WorkListUnit& U) override {
72     Queue.push_back(U);
73   }
74 
75   WorkListUnit dequeue() override {
76     WorkListUnit U = Queue.front();
77     Queue.pop_front();
78     return U;
79   }
80 
81 };
82 
83 } // end anonymous namespace
84 
85 // Place the dstor for WorkList here because it contains virtual member
86 // functions, and we the code for the dstor generated in one compilation unit.
87 WorkList::~WorkList() {}
88 
89 std::unique_ptr<WorkList> WorkList::makeDFS() {
90   return llvm::make_unique<DFS>();
91 }
92 
93 std::unique_ptr<WorkList> WorkList::makeBFS() {
94   return llvm::make_unique<BFS>();
95 }
96 
97 namespace {
98   class BFSBlockDFSContents : public WorkList {
99     std::deque<WorkListUnit> Queue;
100     SmallVector<WorkListUnit,20> Stack;
101   public:
102     bool hasWork() const override {
103       return !Queue.empty() || !Stack.empty();
104     }
105 
106     void enqueue(const WorkListUnit& U) override {
107       if (U.getNode()->getLocation().getAs<BlockEntrance>())
108         Queue.push_front(U);
109       else
110         Stack.push_back(U);
111     }
112 
113     WorkListUnit dequeue() override {
114       // Process all basic blocks to completion.
115       if (!Stack.empty()) {
116         const WorkListUnit& U = Stack.back();
117         Stack.pop_back(); // This technically "invalidates" U, but we are fine.
118         return U;
119       }
120 
121       assert(!Queue.empty());
122       // Don't use const reference.  The subsequent pop_back() might make it
123       // unsafe.
124       WorkListUnit U = Queue.front();
125       Queue.pop_front();
126       return U;
127     }
128   };
129 } // end anonymous namespace
130 
131 std::unique_ptr<WorkList> WorkList::makeBFSBlockDFSContents() {
132   return llvm::make_unique<BFSBlockDFSContents>();
133 }
134 
135 namespace {
136 class UnexploredFirstStack : public WorkList {
137 
138   /// Stack of nodes known to have statements we have not traversed yet.
139   SmallVector<WorkListUnit, 20> StackUnexplored;
140 
141   /// Stack of all other nodes.
142   SmallVector<WorkListUnit, 20> StackOthers;
143 
144   typedef unsigned BlockID;
145   typedef std::pair<BlockID, const StackFrameContext *> LocIdentifier;
146   llvm::DenseSet<LocIdentifier> Reachable;
147 
148 public:
149   bool hasWork() const override {
150     return !(StackUnexplored.empty() && StackOthers.empty());
151   }
152 
153   void enqueue(const WorkListUnit &U) override {
154     const ExplodedNode *N = U.getNode();
155     auto BE = N->getLocation().getAs<BlockEntrance>();
156 
157     if (!BE) {
158 
159       // Assume the choice of the order of the preceeding block entrance was
160       // correct.
161       StackUnexplored.push_back(U);
162     } else {
163       LocIdentifier LocId = std::make_pair(
164           BE->getBlock()->getBlockID(), N->getStackFrame());
165       auto InsertInfo = Reachable.insert(LocId);
166 
167       if (InsertInfo.second) {
168         StackUnexplored.push_back(U);
169       } else {
170         StackOthers.push_back(U);
171       }
172     }
173     MaxReachableSize.updateMax(Reachable.size());
174     MaxQueueSize.updateMax(StackUnexplored.size() + StackOthers.size());
175   }
176 
177   WorkListUnit dequeue() override {
178     if (!StackUnexplored.empty()) {
179       WorkListUnit &U = StackUnexplored.back();
180       StackUnexplored.pop_back();
181       return U;
182     } else {
183       WorkListUnit &U = StackOthers.back();
184       StackOthers.pop_back();
185       return U;
186     }
187   }
188 };
189 } // end anonymous namespace
190 
191 std::unique_ptr<WorkList> WorkList::makeUnexploredFirst() {
192   return llvm::make_unique<UnexploredFirstStack>();
193 }
194 
195 //===----------------------------------------------------------------------===//
196 // Core analysis engine.
197 //===----------------------------------------------------------------------===//
198 
199 static std::unique_ptr<WorkList> generateWorkList(AnalyzerOptions &Opts) {
200   switch (Opts.getExplorationStrategy()) {
201     case AnalyzerOptions::ExplorationStrategyKind::DFS:
202       return WorkList::makeDFS();
203     case AnalyzerOptions::ExplorationStrategyKind::BFS:
204       return WorkList::makeBFS();
205     case AnalyzerOptions::ExplorationStrategyKind::BFSBlockDFSContents:
206       return WorkList::makeBFSBlockDFSContents();
207     case AnalyzerOptions::ExplorationStrategyKind::UnexploredFirst:
208       return WorkList::makeUnexploredFirst();
209     default:
210       llvm_unreachable("Unexpected case");
211   }
212 }
213 
214 CoreEngine::CoreEngine(SubEngine &subengine,
215     FunctionSummariesTy *FS,
216     AnalyzerOptions &Opts) : SubEng(subengine),
217                              WList(generateWorkList(Opts)),
218                              BCounterFactory(G.getAllocator()),
219                              FunctionSummaries(FS) {}
220 
221 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
222 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
223                                    ProgramStateRef InitState) {
224 
225   if (G.num_roots() == 0) { // Initialize the analysis by constructing
226     // the root if none exists.
227 
228     const CFGBlock *Entry = &(L->getCFG()->getEntry());
229 
230     assert (Entry->empty() &&
231             "Entry block must be empty.");
232 
233     assert (Entry->succ_size() == 1 &&
234             "Entry block must have 1 successor.");
235 
236     // Mark the entry block as visited.
237     FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
238                                              L->getDecl(),
239                                              L->getCFG()->getNumBlockIDs());
240 
241     // Get the solitary successor.
242     const CFGBlock *Succ = *(Entry->succ_begin());
243 
244     // Construct an edge representing the
245     // starting location in the function.
246     BlockEdge StartLoc(Entry, Succ, L);
247 
248     // Set the current block counter to being empty.
249     WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
250 
251     if (!InitState)
252       InitState = SubEng.getInitialState(L);
253 
254     bool IsNew;
255     ExplodedNode *Node = G.getNode(StartLoc, InitState, false, &IsNew);
256     assert (IsNew);
257     G.addRoot(Node);
258 
259     NodeBuilderContext BuilderCtx(*this, StartLoc.getDst(), Node);
260     ExplodedNodeSet DstBegin;
261     SubEng.processBeginOfFunction(BuilderCtx, Node, DstBegin, StartLoc);
262 
263     enqueue(DstBegin);
264   }
265 
266   // Check if we have a steps limit
267   bool UnlimitedSteps = Steps == 0;
268   // Cap our pre-reservation in the event that the user specifies
269   // a very large number of maximum steps.
270   const unsigned PreReservationCap = 4000000;
271   if(!UnlimitedSteps)
272     G.reserve(std::min(Steps,PreReservationCap));
273 
274   while (WList->hasWork()) {
275     if (!UnlimitedSteps) {
276       if (Steps == 0) {
277         NumReachedMaxSteps++;
278         break;
279       }
280       --Steps;
281     }
282 
283     NumSteps++;
284 
285     const WorkListUnit& WU = WList->dequeue();
286 
287     // Set the current block counter.
288     WList->setBlockCounter(WU.getBlockCounter());
289 
290     // Retrieve the node.
291     ExplodedNode *Node = WU.getNode();
292 
293     dispatchWorkItem(Node, Node->getLocation(), WU);
294   }
295   SubEng.processEndWorklist(hasWorkRemaining());
296   return WList->hasWork();
297 }
298 
299 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
300                                   const WorkListUnit& WU) {
301   // Dispatch on the location type.
302   switch (Loc.getKind()) {
303     case ProgramPoint::BlockEdgeKind:
304       HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred);
305       break;
306 
307     case ProgramPoint::BlockEntranceKind:
308       HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred);
309       break;
310 
311     case ProgramPoint::BlockExitKind:
312       assert (false && "BlockExit location never occur in forward analysis.");
313       break;
314 
315     case ProgramPoint::CallEnterKind: {
316       HandleCallEnter(Loc.castAs<CallEnter>(), Pred);
317       break;
318     }
319 
320     case ProgramPoint::CallExitBeginKind:
321       SubEng.processCallExit(Pred);
322       break;
323 
324     case ProgramPoint::EpsilonKind: {
325       assert(Pred->hasSinglePred() &&
326              "Assume epsilon has exactly one predecessor by construction");
327       ExplodedNode *PNode = Pred->getFirstPred();
328       dispatchWorkItem(Pred, PNode->getLocation(), WU);
329       break;
330     }
331     default:
332       assert(Loc.getAs<PostStmt>() ||
333              Loc.getAs<PostInitializer>() ||
334              Loc.getAs<PostImplicitCall>() ||
335              Loc.getAs<CallExitEnd>() ||
336              Loc.getAs<LoopExit>() ||
337              Loc.getAs<PostAllocatorCall>());
338       HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
339       break;
340   }
341 }
342 
343 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
344                                                  unsigned Steps,
345                                                  ProgramStateRef InitState,
346                                                  ExplodedNodeSet &Dst) {
347   bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
348   for (ExplodedGraph::eop_iterator I = G.eop_begin(), E = G.eop_end(); I != E;
349        ++I) {
350     Dst.Add(*I);
351   }
352   return DidNotFinish;
353 }
354 
355 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
356 
357   const CFGBlock *Blk = L.getDst();
358   NodeBuilderContext BuilderCtx(*this, Blk, Pred);
359 
360   // Mark this block as visited.
361   const LocationContext *LC = Pred->getLocationContext();
362   FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
363                                            LC->getDecl(),
364                                            LC->getCFG()->getNumBlockIDs());
365 
366   // Check if we are entering the EXIT block.
367   if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
368 
369     assert (L.getLocationContext()->getCFG()->getExit().size() == 0
370             && "EXIT block cannot contain Stmts.");
371 
372     // Get return statement..
373     const ReturnStmt *RS = nullptr;
374     if (!L.getSrc()->empty()) {
375       if (Optional<CFGStmt> LastStmt = L.getSrc()->back().getAs<CFGStmt>()) {
376         RS = dyn_cast<ReturnStmt>(LastStmt->getStmt());
377       }
378     }
379 
380     // Process the final state transition.
381     SubEng.processEndOfFunction(BuilderCtx, Pred, RS);
382 
383     // This path is done. Don't enqueue any more nodes.
384     return;
385   }
386 
387   // Call into the SubEngine to process entering the CFGBlock.
388   ExplodedNodeSet dstNodes;
389   BlockEntrance BE(Blk, Pred->getLocationContext());
390   NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
391   SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred);
392 
393   // Auto-generate a node.
394   if (!nodeBuilder.hasGeneratedNodes()) {
395     nodeBuilder.generateNode(Pred->State, Pred);
396   }
397 
398   // Enqueue nodes onto the worklist.
399   enqueue(dstNodes);
400 }
401 
402 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
403                                        ExplodedNode *Pred) {
404 
405   // Increment the block counter.
406   const LocationContext *LC = Pred->getLocationContext();
407   unsigned BlockId = L.getBlock()->getBlockID();
408   BlockCounter Counter = WList->getBlockCounter();
409   Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
410                                            BlockId);
411   WList->setBlockCounter(Counter);
412 
413   // Process the entrance of the block.
414   if (Optional<CFGElement> E = L.getFirstElement()) {
415     NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
416     SubEng.processCFGElement(*E, Pred, 0, &Ctx);
417   }
418   else
419     HandleBlockExit(L.getBlock(), Pred);
420 }
421 
422 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
423 
424   if (const Stmt *Term = B->getTerminator()) {
425     switch (Term->getStmtClass()) {
426       default:
427         llvm_unreachable("Analysis for this terminator not implemented.");
428 
429       case Stmt::CXXBindTemporaryExprClass:
430         HandleCleanupTemporaryBranch(
431             cast<CXXBindTemporaryExpr>(B->getTerminator().getStmt()), B, Pred);
432         return;
433 
434       // Model static initializers.
435       case Stmt::DeclStmtClass:
436         HandleStaticInit(cast<DeclStmt>(Term), B, Pred);
437         return;
438 
439       case Stmt::BinaryOperatorClass: // '&&' and '||'
440         HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
441         return;
442 
443       case Stmt::BinaryConditionalOperatorClass:
444       case Stmt::ConditionalOperatorClass:
445         HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
446                      Term, B, Pred);
447         return;
448 
449         // FIXME: Use constant-folding in CFG construction to simplify this
450         // case.
451 
452       case Stmt::ChooseExprClass:
453         HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
454         return;
455 
456       case Stmt::CXXTryStmtClass: {
457         // Generate a node for each of the successors.
458         // Our logic for EH analysis can certainly be improved.
459         for (CFGBlock::const_succ_iterator it = B->succ_begin(),
460              et = B->succ_end(); it != et; ++it) {
461           if (const CFGBlock *succ = *it) {
462             generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
463                          Pred->State, Pred);
464           }
465         }
466         return;
467       }
468 
469       case Stmt::DoStmtClass:
470         HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
471         return;
472 
473       case Stmt::CXXForRangeStmtClass:
474         HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
475         return;
476 
477       case Stmt::ForStmtClass:
478         HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
479         return;
480 
481       case Stmt::ContinueStmtClass:
482       case Stmt::BreakStmtClass:
483       case Stmt::GotoStmtClass:
484         break;
485 
486       case Stmt::IfStmtClass:
487         HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
488         return;
489 
490       case Stmt::IndirectGotoStmtClass: {
491         // Only 1 successor: the indirect goto dispatch block.
492         assert (B->succ_size() == 1);
493 
494         IndirectGotoNodeBuilder
495            builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
496                    *(B->succ_begin()), this);
497 
498         SubEng.processIndirectGoto(builder);
499         return;
500       }
501 
502       case Stmt::ObjCForCollectionStmtClass: {
503         // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
504         //
505         //  (1) inside a basic block, which represents the binding of the
506         //      'element' variable to a value.
507         //  (2) in a terminator, which represents the branch.
508         //
509         // For (1), subengines will bind a value (i.e., 0 or 1) indicating
510         // whether or not collection contains any more elements.  We cannot
511         // just test to see if the element is nil because a container can
512         // contain nil elements.
513         HandleBranch(Term, Term, B, Pred);
514         return;
515       }
516 
517       case Stmt::SwitchStmtClass: {
518         SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
519                                     this);
520 
521         SubEng.processSwitch(builder);
522         return;
523       }
524 
525       case Stmt::WhileStmtClass:
526         HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
527         return;
528     }
529   }
530 
531   assert (B->succ_size() == 1 &&
532           "Blocks with no terminator should have at most 1 successor.");
533 
534   generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
535                Pred->State, Pred);
536 }
537 
538 void CoreEngine::HandleCallEnter(const CallEnter &CE, ExplodedNode *Pred) {
539   NodeBuilderContext BuilderCtx(*this, CE.getEntry(), Pred);
540   SubEng.processCallEnter(BuilderCtx, CE, Pred);
541 }
542 
543 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
544                                 const CFGBlock * B, ExplodedNode *Pred) {
545   assert(B->succ_size() == 2);
546   NodeBuilderContext Ctx(*this, B, Pred);
547   ExplodedNodeSet Dst;
548   SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
549                        *(B->succ_begin()), *(B->succ_begin()+1));
550   // Enqueue the new frontier onto the worklist.
551   enqueue(Dst);
552 }
553 
554 void CoreEngine::HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
555                                               const CFGBlock *B,
556                                               ExplodedNode *Pred) {
557   assert(B->succ_size() == 2);
558   NodeBuilderContext Ctx(*this, B, Pred);
559   ExplodedNodeSet Dst;
560   SubEng.processCleanupTemporaryBranch(BTE, Ctx, Pred, Dst, *(B->succ_begin()),
561                                        *(B->succ_begin() + 1));
562   // Enqueue the new frontier onto the worklist.
563   enqueue(Dst);
564 }
565 
566 void CoreEngine::HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
567                                   ExplodedNode *Pred) {
568   assert(B->succ_size() == 2);
569   NodeBuilderContext Ctx(*this, B, Pred);
570   ExplodedNodeSet Dst;
571   SubEng.processStaticInitializer(DS, Ctx, Pred, Dst,
572                                   *(B->succ_begin()), *(B->succ_begin()+1));
573   // Enqueue the new frontier onto the worklist.
574   enqueue(Dst);
575 }
576 
577 
578 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
579                                   ExplodedNode *Pred) {
580   assert(B);
581   assert(!B->empty());
582 
583   if (StmtIdx == B->size())
584     HandleBlockExit(B, Pred);
585   else {
586     NodeBuilderContext Ctx(*this, B, Pred);
587     SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
588   }
589 }
590 
591 /// generateNode - Utility method to generate nodes, hook up successors,
592 ///  and add nodes to the worklist.
593 void CoreEngine::generateNode(const ProgramPoint &Loc,
594                               ProgramStateRef State,
595                               ExplodedNode *Pred) {
596 
597   bool IsNew;
598   ExplodedNode *Node = G.getNode(Loc, State, false, &IsNew);
599 
600   if (Pred)
601     Node->addPredecessor(Pred, G); // Link 'Node' with its predecessor.
602   else {
603     assert (IsNew);
604     G.addRoot(Node); // 'Node' has no predecessor.  Make it a root.
605   }
606 
607   // Only add 'Node' to the worklist if it was freshly generated.
608   if (IsNew) WList->enqueue(Node);
609 }
610 
611 void CoreEngine::enqueueStmtNode(ExplodedNode *N,
612                                  const CFGBlock *Block, unsigned Idx) {
613   assert(Block);
614   assert (!N->isSink());
615 
616   // Check if this node entered a callee.
617   if (N->getLocation().getAs<CallEnter>()) {
618     // Still use the index of the CallExpr. It's needed to create the callee
619     // StackFrameContext.
620     WList->enqueue(N, Block, Idx);
621     return;
622   }
623 
624   // Do not create extra nodes. Move to the next CFG element.
625   if (N->getLocation().getAs<PostInitializer>() ||
626       N->getLocation().getAs<PostImplicitCall>()||
627       N->getLocation().getAs<LoopExit>()) {
628     WList->enqueue(N, Block, Idx+1);
629     return;
630   }
631 
632   if (N->getLocation().getAs<EpsilonPoint>()) {
633     WList->enqueue(N, Block, Idx);
634     return;
635   }
636 
637   if ((*Block)[Idx].getKind() == CFGElement::NewAllocator) {
638     WList->enqueue(N, Block, Idx+1);
639     return;
640   }
641 
642   // At this point, we know we're processing a normal statement.
643   CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>();
644   PostStmt Loc(CS.getStmt(), N->getLocationContext());
645 
646   if (Loc == N->getLocation().withTag(nullptr)) {
647     // Note: 'N' should be a fresh node because otherwise it shouldn't be
648     // a member of Deferred.
649     WList->enqueue(N, Block, Idx+1);
650     return;
651   }
652 
653   bool IsNew;
654   ExplodedNode *Succ = G.getNode(Loc, N->getState(), false, &IsNew);
655   Succ->addPredecessor(N, G);
656 
657   if (IsNew)
658     WList->enqueue(Succ, Block, Idx+1);
659 }
660 
661 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N,
662                                                     const ReturnStmt *RS) {
663   // Create a CallExitBegin node and enqueue it.
664   const StackFrameContext *LocCtx
665                          = cast<StackFrameContext>(N->getLocationContext());
666 
667   // Use the callee location context.
668   CallExitBegin Loc(LocCtx, RS);
669 
670   bool isNew;
671   ExplodedNode *Node = G.getNode(Loc, N->getState(), false, &isNew);
672   Node->addPredecessor(N, G);
673   return isNew ? Node : nullptr;
674 }
675 
676 
677 void CoreEngine::enqueue(ExplodedNodeSet &Set) {
678   for (ExplodedNodeSet::iterator I = Set.begin(),
679                                  E = Set.end(); I != E; ++I) {
680     WList->enqueue(*I);
681   }
682 }
683 
684 void CoreEngine::enqueue(ExplodedNodeSet &Set,
685                          const CFGBlock *Block, unsigned Idx) {
686   for (ExplodedNodeSet::iterator I = Set.begin(),
687                                  E = Set.end(); I != E; ++I) {
688     enqueueStmtNode(*I, Block, Idx);
689   }
690 }
691 
692 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set, const ReturnStmt *RS) {
693   for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
694     ExplodedNode *N = *I;
695     // If we are in an inlined call, generate CallExitBegin node.
696     if (N->getLocationContext()->getParent()) {
697       N = generateCallExitBeginNode(N, RS);
698       if (N)
699         WList->enqueue(N);
700     } else {
701       // TODO: We should run remove dead bindings here.
702       G.addEndOfPath(N);
703       NumPathsExplored++;
704     }
705   }
706 }
707 
708 
709 void NodeBuilder::anchor() { }
710 
711 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
712                                             ProgramStateRef State,
713                                             ExplodedNode *FromN,
714                                             bool MarkAsSink) {
715   HasGeneratedNodes = true;
716   bool IsNew;
717   ExplodedNode *N = C.Eng.G.getNode(Loc, State, MarkAsSink, &IsNew);
718   N->addPredecessor(FromN, C.Eng.G);
719   Frontier.erase(FromN);
720 
721   if (!IsNew)
722     return nullptr;
723 
724   if (!MarkAsSink)
725     Frontier.Add(N);
726 
727   return N;
728 }
729 
730 void NodeBuilderWithSinks::anchor() { }
731 
732 StmtNodeBuilder::~StmtNodeBuilder() {
733   if (EnclosingBldr)
734     for (ExplodedNodeSet::iterator I = Frontier.begin(),
735                                    E = Frontier.end(); I != E; ++I )
736       EnclosingBldr->addNodes(*I);
737 }
738 
739 void BranchNodeBuilder::anchor() { }
740 
741 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
742                                               bool branch,
743                                               ExplodedNode *NodePred) {
744   // If the branch has been marked infeasible we should not generate a node.
745   if (!isFeasible(branch))
746     return nullptr;
747 
748   ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
749                                NodePred->getLocationContext());
750   ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
751   return Succ;
752 }
753 
754 ExplodedNode*
755 IndirectGotoNodeBuilder::generateNode(const iterator &I,
756                                       ProgramStateRef St,
757                                       bool IsSink) {
758   bool IsNew;
759   ExplodedNode *Succ =
760       Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
761                     St, IsSink, &IsNew);
762   Succ->addPredecessor(Pred, Eng.G);
763 
764   if (!IsNew)
765     return nullptr;
766 
767   if (!IsSink)
768     Eng.WList->enqueue(Succ);
769 
770   return Succ;
771 }
772 
773 
774 ExplodedNode*
775 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
776                                         ProgramStateRef St) {
777 
778   bool IsNew;
779   ExplodedNode *Succ =
780       Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
781                     St, false, &IsNew);
782   Succ->addPredecessor(Pred, Eng.G);
783   if (!IsNew)
784     return nullptr;
785 
786   Eng.WList->enqueue(Succ);
787   return Succ;
788 }
789 
790 
791 ExplodedNode*
792 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
793                                            bool IsSink) {
794   // Get the block for the default case.
795   assert(Src->succ_rbegin() != Src->succ_rend());
796   CFGBlock *DefaultBlock = *Src->succ_rbegin();
797 
798   // Sanity check for default blocks that are unreachable and not caught
799   // by earlier stages.
800   if (!DefaultBlock)
801     return nullptr;
802 
803   bool IsNew;
804   ExplodedNode *Succ =
805       Eng.G.getNode(BlockEdge(Src, DefaultBlock, Pred->getLocationContext()),
806                     St, IsSink, &IsNew);
807   Succ->addPredecessor(Pred, Eng.G);
808 
809   if (!IsNew)
810     return nullptr;
811 
812   if (!IsSink)
813     Eng.WList->enqueue(Succ);
814 
815   return Succ;
816 }
817