1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines a generic engine for intraprocedural, path-sensitive,
11 //  dataflow analysis via graph reachability engine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtCXX.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Support/Casting.h"
23 
24 using namespace clang;
25 using namespace ento;
26 
27 #define DEBUG_TYPE "CoreEngine"
28 
29 STATISTIC(NumSteps,
30             "The # of steps executed.");
31 STATISTIC(NumReachedMaxSteps,
32             "The # of times we reached the max number of steps.");
33 STATISTIC(NumPathsExplored,
34             "The # of paths explored by the analyzer.");
35 
36 //===----------------------------------------------------------------------===//
37 // Worklist classes for exploration of reachable states.
38 //===----------------------------------------------------------------------===//
39 
40 WorkList::Visitor::~Visitor() {}
41 
42 namespace {
43 class DFS : public WorkList {
44   SmallVector<WorkListUnit,20> Stack;
45 public:
46   bool hasWork() const override {
47     return !Stack.empty();
48   }
49 
50   void enqueue(const WorkListUnit& U) override {
51     Stack.push_back(U);
52   }
53 
54   WorkListUnit dequeue() override {
55     assert (!Stack.empty());
56     const WorkListUnit& U = Stack.back();
57     Stack.pop_back(); // This technically "invalidates" U, but we are fine.
58     return U;
59   }
60 
61   bool visitItemsInWorkList(Visitor &V) override {
62     for (SmallVectorImpl<WorkListUnit>::iterator
63          I = Stack.begin(), E = Stack.end(); I != E; ++I) {
64       if (V.visit(*I))
65         return true;
66     }
67     return false;
68   }
69 };
70 
71 class BFS : public WorkList {
72   std::deque<WorkListUnit> Queue;
73 public:
74   bool hasWork() const override {
75     return !Queue.empty();
76   }
77 
78   void enqueue(const WorkListUnit& U) override {
79     Queue.push_back(U);
80   }
81 
82   WorkListUnit dequeue() override {
83     WorkListUnit U = Queue.front();
84     Queue.pop_front();
85     return U;
86   }
87 
88   bool visitItemsInWorkList(Visitor &V) override {
89     for (std::deque<WorkListUnit>::iterator
90          I = Queue.begin(), E = Queue.end(); I != E; ++I) {
91       if (V.visit(*I))
92         return true;
93     }
94     return false;
95   }
96 };
97 
98 } // end anonymous namespace
99 
100 // Place the dstor for WorkList here because it contains virtual member
101 // functions, and we the code for the dstor generated in one compilation unit.
102 WorkList::~WorkList() {}
103 
104 WorkList *WorkList::makeDFS() { return new DFS(); }
105 WorkList *WorkList::makeBFS() { return new BFS(); }
106 
107 namespace {
108   class BFSBlockDFSContents : public WorkList {
109     std::deque<WorkListUnit> Queue;
110     SmallVector<WorkListUnit,20> Stack;
111   public:
112     bool hasWork() const override {
113       return !Queue.empty() || !Stack.empty();
114     }
115 
116     void enqueue(const WorkListUnit& U) override {
117       if (U.getNode()->getLocation().getAs<BlockEntrance>())
118         Queue.push_front(U);
119       else
120         Stack.push_back(U);
121     }
122 
123     WorkListUnit dequeue() override {
124       // Process all basic blocks to completion.
125       if (!Stack.empty()) {
126         const WorkListUnit& U = Stack.back();
127         Stack.pop_back(); // This technically "invalidates" U, but we are fine.
128         return U;
129       }
130 
131       assert(!Queue.empty());
132       // Don't use const reference.  The subsequent pop_back() might make it
133       // unsafe.
134       WorkListUnit U = Queue.front();
135       Queue.pop_front();
136       return U;
137     }
138     bool visitItemsInWorkList(Visitor &V) override {
139       for (SmallVectorImpl<WorkListUnit>::iterator
140            I = Stack.begin(), E = Stack.end(); I != E; ++I) {
141         if (V.visit(*I))
142           return true;
143       }
144       for (std::deque<WorkListUnit>::iterator
145            I = Queue.begin(), E = Queue.end(); I != E; ++I) {
146         if (V.visit(*I))
147           return true;
148       }
149       return false;
150     }
151 
152   };
153 } // end anonymous namespace
154 
155 WorkList* WorkList::makeBFSBlockDFSContents() {
156   return new BFSBlockDFSContents();
157 }
158 
159 //===----------------------------------------------------------------------===//
160 // Core analysis engine.
161 //===----------------------------------------------------------------------===//
162 
163 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
164 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
165                                    ProgramStateRef InitState) {
166 
167   if (G.num_roots() == 0) { // Initialize the analysis by constructing
168     // the root if none exists.
169 
170     const CFGBlock *Entry = &(L->getCFG()->getEntry());
171 
172     assert (Entry->empty() &&
173             "Entry block must be empty.");
174 
175     assert (Entry->succ_size() == 1 &&
176             "Entry block must have 1 successor.");
177 
178     // Mark the entry block as visited.
179     FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
180                                              L->getDecl(),
181                                              L->getCFG()->getNumBlockIDs());
182 
183     // Get the solitary successor.
184     const CFGBlock *Succ = *(Entry->succ_begin());
185 
186     // Construct an edge representing the
187     // starting location in the function.
188     BlockEdge StartLoc(Entry, Succ, L);
189 
190     // Set the current block counter to being empty.
191     WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
192 
193     if (!InitState)
194       InitState = SubEng.getInitialState(L);
195 
196     bool IsNew;
197     ExplodedNode *Node = G.getNode(StartLoc, InitState, false, &IsNew);
198     assert (IsNew);
199     G.addRoot(Node);
200 
201     NodeBuilderContext BuilderCtx(*this, StartLoc.getDst(), Node);
202     ExplodedNodeSet DstBegin;
203     SubEng.processBeginOfFunction(BuilderCtx, Node, DstBegin, StartLoc);
204 
205     enqueue(DstBegin);
206   }
207 
208   // Check if we have a steps limit
209   bool UnlimitedSteps = Steps == 0;
210   // Cap our pre-reservation in the event that the user specifies
211   // a very large number of maximum steps.
212   const unsigned PreReservationCap = 4000000;
213   if(!UnlimitedSteps)
214     G.reserve(std::min(Steps,PreReservationCap));
215 
216   while (WList->hasWork()) {
217     if (!UnlimitedSteps) {
218       if (Steps == 0) {
219         NumReachedMaxSteps++;
220         break;
221       }
222       --Steps;
223     }
224 
225     NumSteps++;
226 
227     const WorkListUnit& WU = WList->dequeue();
228 
229     // Set the current block counter.
230     WList->setBlockCounter(WU.getBlockCounter());
231 
232     // Retrieve the node.
233     ExplodedNode *Node = WU.getNode();
234 
235     dispatchWorkItem(Node, Node->getLocation(), WU);
236   }
237   SubEng.processEndWorklist(hasWorkRemaining());
238   return WList->hasWork();
239 }
240 
241 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
242                                   const WorkListUnit& WU) {
243   // Dispatch on the location type.
244   switch (Loc.getKind()) {
245     case ProgramPoint::BlockEdgeKind:
246       HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred);
247       break;
248 
249     case ProgramPoint::BlockEntranceKind:
250       HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred);
251       break;
252 
253     case ProgramPoint::BlockExitKind:
254       assert (false && "BlockExit location never occur in forward analysis.");
255       break;
256 
257     case ProgramPoint::CallEnterKind: {
258       HandleCallEnter(Loc.castAs<CallEnter>(), Pred);
259       break;
260     }
261 
262     case ProgramPoint::CallExitBeginKind:
263       SubEng.processCallExit(Pred);
264       break;
265 
266     case ProgramPoint::EpsilonKind: {
267       assert(Pred->hasSinglePred() &&
268              "Assume epsilon has exactly one predecessor by construction");
269       ExplodedNode *PNode = Pred->getFirstPred();
270       dispatchWorkItem(Pred, PNode->getLocation(), WU);
271       break;
272     }
273     default:
274       assert(Loc.getAs<PostStmt>() ||
275              Loc.getAs<PostInitializer>() ||
276              Loc.getAs<PostImplicitCall>() ||
277              Loc.getAs<CallExitEnd>() ||
278              Loc.getAs<LoopExit>());
279       HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
280       break;
281   }
282 }
283 
284 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
285                                                  unsigned Steps,
286                                                  ProgramStateRef InitState,
287                                                  ExplodedNodeSet &Dst) {
288   bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
289   for (ExplodedGraph::eop_iterator I = G.eop_begin(), E = G.eop_end(); I != E;
290        ++I) {
291     Dst.Add(*I);
292   }
293   return DidNotFinish;
294 }
295 
296 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
297 
298   const CFGBlock *Blk = L.getDst();
299   NodeBuilderContext BuilderCtx(*this, Blk, Pred);
300 
301   // Mark this block as visited.
302   const LocationContext *LC = Pred->getLocationContext();
303   FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
304                                            LC->getDecl(),
305                                            LC->getCFG()->getNumBlockIDs());
306 
307   // Check if we are entering the EXIT block.
308   if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
309 
310     assert (L.getLocationContext()->getCFG()->getExit().size() == 0
311             && "EXIT block cannot contain Stmts.");
312 
313     // Get return statement..
314     const ReturnStmt *RS = nullptr;
315     if (!L.getSrc()->empty()) {
316       if (Optional<CFGStmt> LastStmt = L.getSrc()->back().getAs<CFGStmt>()) {
317         if ((RS = dyn_cast<ReturnStmt>(LastStmt->getStmt()))) {
318           if (!RS->getRetValue())
319             RS = nullptr;
320         }
321       }
322     }
323 
324     // Process the final state transition.
325     SubEng.processEndOfFunction(BuilderCtx, Pred, RS);
326 
327     // This path is done. Don't enqueue any more nodes.
328     return;
329   }
330 
331   // Call into the SubEngine to process entering the CFGBlock.
332   ExplodedNodeSet dstNodes;
333   BlockEntrance BE(Blk, Pred->getLocationContext());
334   NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
335   SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred);
336 
337   // Auto-generate a node.
338   if (!nodeBuilder.hasGeneratedNodes()) {
339     nodeBuilder.generateNode(Pred->State, Pred);
340   }
341 
342   // Enqueue nodes onto the worklist.
343   enqueue(dstNodes);
344 }
345 
346 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
347                                        ExplodedNode *Pred) {
348 
349   // Increment the block counter.
350   const LocationContext *LC = Pred->getLocationContext();
351   unsigned BlockId = L.getBlock()->getBlockID();
352   BlockCounter Counter = WList->getBlockCounter();
353   Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
354                                            BlockId);
355   WList->setBlockCounter(Counter);
356 
357   // Process the entrance of the block.
358   if (Optional<CFGElement> E = L.getFirstElement()) {
359     NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
360     SubEng.processCFGElement(*E, Pred, 0, &Ctx);
361   }
362   else
363     HandleBlockExit(L.getBlock(), Pred);
364 }
365 
366 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
367 
368   if (const Stmt *Term = B->getTerminator()) {
369     switch (Term->getStmtClass()) {
370       default:
371         llvm_unreachable("Analysis for this terminator not implemented.");
372 
373       case Stmt::CXXBindTemporaryExprClass:
374         HandleCleanupTemporaryBranch(
375             cast<CXXBindTemporaryExpr>(B->getTerminator().getStmt()), B, Pred);
376         return;
377 
378       // Model static initializers.
379       case Stmt::DeclStmtClass:
380         HandleStaticInit(cast<DeclStmt>(Term), B, Pred);
381         return;
382 
383       case Stmt::BinaryOperatorClass: // '&&' and '||'
384         HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
385         return;
386 
387       case Stmt::BinaryConditionalOperatorClass:
388       case Stmt::ConditionalOperatorClass:
389         HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
390                      Term, B, Pred);
391         return;
392 
393         // FIXME: Use constant-folding in CFG construction to simplify this
394         // case.
395 
396       case Stmt::ChooseExprClass:
397         HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
398         return;
399 
400       case Stmt::CXXTryStmtClass: {
401         // Generate a node for each of the successors.
402         // Our logic for EH analysis can certainly be improved.
403         for (CFGBlock::const_succ_iterator it = B->succ_begin(),
404              et = B->succ_end(); it != et; ++it) {
405           if (const CFGBlock *succ = *it) {
406             generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
407                          Pred->State, Pred);
408           }
409         }
410         return;
411       }
412 
413       case Stmt::DoStmtClass:
414         HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
415         return;
416 
417       case Stmt::CXXForRangeStmtClass:
418         HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
419         return;
420 
421       case Stmt::ForStmtClass:
422         HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
423         return;
424 
425       case Stmt::ContinueStmtClass:
426       case Stmt::BreakStmtClass:
427       case Stmt::GotoStmtClass:
428         break;
429 
430       case Stmt::IfStmtClass:
431         HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
432         return;
433 
434       case Stmt::IndirectGotoStmtClass: {
435         // Only 1 successor: the indirect goto dispatch block.
436         assert (B->succ_size() == 1);
437 
438         IndirectGotoNodeBuilder
439            builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
440                    *(B->succ_begin()), this);
441 
442         SubEng.processIndirectGoto(builder);
443         return;
444       }
445 
446       case Stmt::ObjCForCollectionStmtClass: {
447         // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
448         //
449         //  (1) inside a basic block, which represents the binding of the
450         //      'element' variable to a value.
451         //  (2) in a terminator, which represents the branch.
452         //
453         // For (1), subengines will bind a value (i.e., 0 or 1) indicating
454         // whether or not collection contains any more elements.  We cannot
455         // just test to see if the element is nil because a container can
456         // contain nil elements.
457         HandleBranch(Term, Term, B, Pred);
458         return;
459       }
460 
461       case Stmt::SwitchStmtClass: {
462         SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
463                                     this);
464 
465         SubEng.processSwitch(builder);
466         return;
467       }
468 
469       case Stmt::WhileStmtClass:
470         HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
471         return;
472     }
473   }
474 
475   assert (B->succ_size() == 1 &&
476           "Blocks with no terminator should have at most 1 successor.");
477 
478   generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
479                Pred->State, Pred);
480 }
481 
482 void CoreEngine::HandleCallEnter(const CallEnter &CE, ExplodedNode *Pred) {
483   NodeBuilderContext BuilderCtx(*this, CE.getEntry(), Pred);
484   SubEng.processCallEnter(BuilderCtx, CE, Pred);
485 }
486 
487 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
488                                 const CFGBlock * B, ExplodedNode *Pred) {
489   assert(B->succ_size() == 2);
490   NodeBuilderContext Ctx(*this, B, Pred);
491   ExplodedNodeSet Dst;
492   SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
493                        *(B->succ_begin()), *(B->succ_begin()+1));
494   // Enqueue the new frontier onto the worklist.
495   enqueue(Dst);
496 }
497 
498 void CoreEngine::HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
499                                               const CFGBlock *B,
500                                               ExplodedNode *Pred) {
501   assert(B->succ_size() == 2);
502   NodeBuilderContext Ctx(*this, B, Pred);
503   ExplodedNodeSet Dst;
504   SubEng.processCleanupTemporaryBranch(BTE, Ctx, Pred, Dst, *(B->succ_begin()),
505                                        *(B->succ_begin() + 1));
506   // Enqueue the new frontier onto the worklist.
507   enqueue(Dst);
508 }
509 
510 void CoreEngine::HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
511                                   ExplodedNode *Pred) {
512   assert(B->succ_size() == 2);
513   NodeBuilderContext Ctx(*this, B, Pred);
514   ExplodedNodeSet Dst;
515   SubEng.processStaticInitializer(DS, Ctx, Pred, Dst,
516                                   *(B->succ_begin()), *(B->succ_begin()+1));
517   // Enqueue the new frontier onto the worklist.
518   enqueue(Dst);
519 }
520 
521 
522 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
523                                   ExplodedNode *Pred) {
524   assert(B);
525   assert(!B->empty());
526 
527   if (StmtIdx == B->size())
528     HandleBlockExit(B, Pred);
529   else {
530     NodeBuilderContext Ctx(*this, B, Pred);
531     SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
532   }
533 }
534 
535 /// generateNode - Utility method to generate nodes, hook up successors,
536 ///  and add nodes to the worklist.
537 void CoreEngine::generateNode(const ProgramPoint &Loc,
538                               ProgramStateRef State,
539                               ExplodedNode *Pred) {
540 
541   bool IsNew;
542   ExplodedNode *Node = G.getNode(Loc, State, false, &IsNew);
543 
544   if (Pred)
545     Node->addPredecessor(Pred, G); // Link 'Node' with its predecessor.
546   else {
547     assert (IsNew);
548     G.addRoot(Node); // 'Node' has no predecessor.  Make it a root.
549   }
550 
551   // Only add 'Node' to the worklist if it was freshly generated.
552   if (IsNew) WList->enqueue(Node);
553 }
554 
555 void CoreEngine::enqueueStmtNode(ExplodedNode *N,
556                                  const CFGBlock *Block, unsigned Idx) {
557   assert(Block);
558   assert (!N->isSink());
559 
560   // Check if this node entered a callee.
561   if (N->getLocation().getAs<CallEnter>()) {
562     // Still use the index of the CallExpr. It's needed to create the callee
563     // StackFrameContext.
564     WList->enqueue(N, Block, Idx);
565     return;
566   }
567 
568   // Do not create extra nodes. Move to the next CFG element.
569   if (N->getLocation().getAs<PostInitializer>() ||
570       N->getLocation().getAs<PostImplicitCall>()||
571       N->getLocation().getAs<LoopExit>()) {
572     WList->enqueue(N, Block, Idx+1);
573     return;
574   }
575 
576   if (N->getLocation().getAs<EpsilonPoint>()) {
577     WList->enqueue(N, Block, Idx);
578     return;
579   }
580 
581   if ((*Block)[Idx].getKind() == CFGElement::NewAllocator) {
582     WList->enqueue(N, Block, Idx+1);
583     return;
584   }
585 
586   // At this point, we know we're processing a normal statement.
587   CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>();
588   PostStmt Loc(CS.getStmt(), N->getLocationContext());
589 
590   if (Loc == N->getLocation().withTag(nullptr)) {
591     // Note: 'N' should be a fresh node because otherwise it shouldn't be
592     // a member of Deferred.
593     WList->enqueue(N, Block, Idx+1);
594     return;
595   }
596 
597   bool IsNew;
598   ExplodedNode *Succ = G.getNode(Loc, N->getState(), false, &IsNew);
599   Succ->addPredecessor(N, G);
600 
601   if (IsNew)
602     WList->enqueue(Succ, Block, Idx+1);
603 }
604 
605 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N,
606                                                     const ReturnStmt *RS) {
607   // Create a CallExitBegin node and enqueue it.
608   const StackFrameContext *LocCtx
609                          = cast<StackFrameContext>(N->getLocationContext());
610 
611   // Use the callee location context.
612   CallExitBegin Loc(LocCtx, RS);
613 
614   bool isNew;
615   ExplodedNode *Node = G.getNode(Loc, N->getState(), false, &isNew);
616   Node->addPredecessor(N, G);
617   return isNew ? Node : nullptr;
618 }
619 
620 
621 void CoreEngine::enqueue(ExplodedNodeSet &Set) {
622   for (ExplodedNodeSet::iterator I = Set.begin(),
623                                  E = Set.end(); I != E; ++I) {
624     WList->enqueue(*I);
625   }
626 }
627 
628 void CoreEngine::enqueue(ExplodedNodeSet &Set,
629                          const CFGBlock *Block, unsigned Idx) {
630   for (ExplodedNodeSet::iterator I = Set.begin(),
631                                  E = Set.end(); I != E; ++I) {
632     enqueueStmtNode(*I, Block, Idx);
633   }
634 }
635 
636 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set, const ReturnStmt *RS) {
637   for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
638     ExplodedNode *N = *I;
639     // If we are in an inlined call, generate CallExitBegin node.
640     if (N->getLocationContext()->getParent()) {
641       N = generateCallExitBeginNode(N, RS);
642       if (N)
643         WList->enqueue(N);
644     } else {
645       // TODO: We should run remove dead bindings here.
646       G.addEndOfPath(N);
647       NumPathsExplored++;
648     }
649   }
650 }
651 
652 
653 void NodeBuilder::anchor() { }
654 
655 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
656                                             ProgramStateRef State,
657                                             ExplodedNode *FromN,
658                                             bool MarkAsSink) {
659   HasGeneratedNodes = true;
660   bool IsNew;
661   ExplodedNode *N = C.Eng.G.getNode(Loc, State, MarkAsSink, &IsNew);
662   N->addPredecessor(FromN, C.Eng.G);
663   Frontier.erase(FromN);
664 
665   if (!IsNew)
666     return nullptr;
667 
668   if (!MarkAsSink)
669     Frontier.Add(N);
670 
671   return N;
672 }
673 
674 void NodeBuilderWithSinks::anchor() { }
675 
676 StmtNodeBuilder::~StmtNodeBuilder() {
677   if (EnclosingBldr)
678     for (ExplodedNodeSet::iterator I = Frontier.begin(),
679                                    E = Frontier.end(); I != E; ++I )
680       EnclosingBldr->addNodes(*I);
681 }
682 
683 void BranchNodeBuilder::anchor() { }
684 
685 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
686                                               bool branch,
687                                               ExplodedNode *NodePred) {
688   // If the branch has been marked infeasible we should not generate a node.
689   if (!isFeasible(branch))
690     return nullptr;
691 
692   ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
693                                NodePred->getLocationContext());
694   ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
695   return Succ;
696 }
697 
698 ExplodedNode*
699 IndirectGotoNodeBuilder::generateNode(const iterator &I,
700                                       ProgramStateRef St,
701                                       bool IsSink) {
702   bool IsNew;
703   ExplodedNode *Succ =
704       Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
705                     St, IsSink, &IsNew);
706   Succ->addPredecessor(Pred, Eng.G);
707 
708   if (!IsNew)
709     return nullptr;
710 
711   if (!IsSink)
712     Eng.WList->enqueue(Succ);
713 
714   return Succ;
715 }
716 
717 
718 ExplodedNode*
719 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
720                                         ProgramStateRef St) {
721 
722   bool IsNew;
723   ExplodedNode *Succ =
724       Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
725                     St, false, &IsNew);
726   Succ->addPredecessor(Pred, Eng.G);
727   if (!IsNew)
728     return nullptr;
729 
730   Eng.WList->enqueue(Succ);
731   return Succ;
732 }
733 
734 
735 ExplodedNode*
736 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
737                                            bool IsSink) {
738   // Get the block for the default case.
739   assert(Src->succ_rbegin() != Src->succ_rend());
740   CFGBlock *DefaultBlock = *Src->succ_rbegin();
741 
742   // Sanity check for default blocks that are unreachable and not caught
743   // by earlier stages.
744   if (!DefaultBlock)
745     return nullptr;
746 
747   bool IsNew;
748   ExplodedNode *Succ =
749       Eng.G.getNode(BlockEdge(Src, DefaultBlock, Pred->getLocationContext()),
750                     St, IsSink, &IsNew);
751   Succ->addPredecessor(Pred, Eng.G);
752 
753   if (!IsNew)
754     return nullptr;
755 
756   if (!IsSink)
757     Eng.WList->enqueue(Succ);
758 
759   return Succ;
760 }
761