1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines a generic engine for intraprocedural, path-sensitive,
11 //  dataflow analysis via graph reachability engine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "CoreEngine"
16 
17 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
20 #include "clang/Index/TranslationUnit.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "llvm/Support/Casting.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/Statistic.h"
26 
27 using namespace clang;
28 using namespace ento;
29 
30 STATISTIC(NumReachedMaxSteps,
31             "The # of times we reached the max number of steps.");
32 STATISTIC(NumPathsExplored,
33             "The # of paths explored by the analyzer.");
34 
35 //===----------------------------------------------------------------------===//
36 // Worklist classes for exploration of reachable states.
37 //===----------------------------------------------------------------------===//
38 
39 WorkList::Visitor::~Visitor() {}
40 
41 namespace {
42 class DFS : public WorkList {
43   SmallVector<WorkListUnit,20> Stack;
44 public:
45   virtual bool hasWork() const {
46     return !Stack.empty();
47   }
48 
49   virtual void enqueue(const WorkListUnit& U) {
50     Stack.push_back(U);
51   }
52 
53   virtual WorkListUnit dequeue() {
54     assert (!Stack.empty());
55     const WorkListUnit& U = Stack.back();
56     Stack.pop_back(); // This technically "invalidates" U, but we are fine.
57     return U;
58   }
59 
60   virtual bool visitItemsInWorkList(Visitor &V) {
61     for (SmallVectorImpl<WorkListUnit>::iterator
62          I = Stack.begin(), E = Stack.end(); I != E; ++I) {
63       if (V.visit(*I))
64         return true;
65     }
66     return false;
67   }
68 };
69 
70 class BFS : public WorkList {
71   std::deque<WorkListUnit> Queue;
72 public:
73   virtual bool hasWork() const {
74     return !Queue.empty();
75   }
76 
77   virtual void enqueue(const WorkListUnit& U) {
78     Queue.push_front(U);
79   }
80 
81   virtual WorkListUnit dequeue() {
82     WorkListUnit U = Queue.front();
83     Queue.pop_front();
84     return U;
85   }
86 
87   virtual bool visitItemsInWorkList(Visitor &V) {
88     for (std::deque<WorkListUnit>::iterator
89          I = Queue.begin(), E = Queue.end(); I != E; ++I) {
90       if (V.visit(*I))
91         return true;
92     }
93     return false;
94   }
95 };
96 
97 } // end anonymous namespace
98 
99 // Place the dstor for WorkList here because it contains virtual member
100 // functions, and we the code for the dstor generated in one compilation unit.
101 WorkList::~WorkList() {}
102 
103 WorkList *WorkList::makeDFS() { return new DFS(); }
104 WorkList *WorkList::makeBFS() { return new BFS(); }
105 
106 namespace {
107   class BFSBlockDFSContents : public WorkList {
108     std::deque<WorkListUnit> Queue;
109     SmallVector<WorkListUnit,20> Stack;
110   public:
111     virtual bool hasWork() const {
112       return !Queue.empty() || !Stack.empty();
113     }
114 
115     virtual void enqueue(const WorkListUnit& U) {
116       if (isa<BlockEntrance>(U.getNode()->getLocation()))
117         Queue.push_front(U);
118       else
119         Stack.push_back(U);
120     }
121 
122     virtual WorkListUnit dequeue() {
123       // Process all basic blocks to completion.
124       if (!Stack.empty()) {
125         const WorkListUnit& U = Stack.back();
126         Stack.pop_back(); // This technically "invalidates" U, but we are fine.
127         return U;
128       }
129 
130       assert(!Queue.empty());
131       // Don't use const reference.  The subsequent pop_back() might make it
132       // unsafe.
133       WorkListUnit U = Queue.front();
134       Queue.pop_front();
135       return U;
136     }
137     virtual bool visitItemsInWorkList(Visitor &V) {
138       for (SmallVectorImpl<WorkListUnit>::iterator
139            I = Stack.begin(), E = Stack.end(); I != E; ++I) {
140         if (V.visit(*I))
141           return true;
142       }
143       for (std::deque<WorkListUnit>::iterator
144            I = Queue.begin(), E = Queue.end(); I != E; ++I) {
145         if (V.visit(*I))
146           return true;
147       }
148       return false;
149     }
150 
151   };
152 } // end anonymous namespace
153 
154 WorkList* WorkList::makeBFSBlockDFSContents() {
155   return new BFSBlockDFSContents();
156 }
157 
158 //===----------------------------------------------------------------------===//
159 // Core analysis engine.
160 //===----------------------------------------------------------------------===//
161 
162 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
163 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
164                                    ProgramStateRef InitState) {
165 
166   if (G->num_roots() == 0) { // Initialize the analysis by constructing
167     // the root if none exists.
168 
169     const CFGBlock *Entry = &(L->getCFG()->getEntry());
170 
171     assert (Entry->empty() &&
172             "Entry block must be empty.");
173 
174     assert (Entry->succ_size() == 1 &&
175             "Entry block must have 1 successor.");
176 
177     // Mark the entry block as visited.
178     FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
179                                              L->getDecl(),
180                                              L->getCFG()->getNumBlockIDs());
181 
182     // Get the solitary successor.
183     const CFGBlock *Succ = *(Entry->succ_begin());
184 
185     // Construct an edge representing the
186     // starting location in the function.
187     BlockEdge StartLoc(Entry, Succ, L);
188 
189     // Set the current block counter to being empty.
190     WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
191 
192     if (!InitState)
193       // Generate the root.
194       generateNode(StartLoc, SubEng.getInitialState(L), 0);
195     else
196       generateNode(StartLoc, InitState, 0);
197   }
198 
199   // Check if we have a steps limit
200   bool UnlimitedSteps = Steps == 0;
201 
202   while (WList->hasWork()) {
203     if (!UnlimitedSteps) {
204       if (Steps == 0) {
205         NumReachedMaxSteps++;
206         break;
207       }
208       --Steps;
209     }
210 
211     const WorkListUnit& WU = WList->dequeue();
212 
213     // Set the current block counter.
214     WList->setBlockCounter(WU.getBlockCounter());
215 
216     // Retrieve the node.
217     ExplodedNode *Node = WU.getNode();
218 
219     dispatchWorkItem(Node, Node->getLocation(), WU);
220   }
221   SubEng.processEndWorklist(hasWorkRemaining());
222   return WList->hasWork();
223 }
224 
225 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
226                                   const WorkListUnit& WU) {
227   // Dispatch on the location type.
228   switch (Loc.getKind()) {
229     case ProgramPoint::BlockEdgeKind:
230       HandleBlockEdge(cast<BlockEdge>(Loc), Pred);
231       break;
232 
233     case ProgramPoint::BlockEntranceKind:
234       HandleBlockEntrance(cast<BlockEntrance>(Loc), Pred);
235       break;
236 
237     case ProgramPoint::BlockExitKind:
238       assert (false && "BlockExit location never occur in forward analysis.");
239       break;
240 
241     case ProgramPoint::CallEnterKind: {
242       CallEnter CEnter = cast<CallEnter>(Loc);
243       if (AnalyzedCallees)
244         if (const CallExpr* CE =
245             dyn_cast_or_null<CallExpr>(CEnter.getCallExpr()))
246           if (const Decl *CD = CE->getCalleeDecl())
247             AnalyzedCallees->insert(CD);
248       SubEng.processCallEnter(CEnter, Pred);
249       break;
250     }
251 
252     case ProgramPoint::CallExitKind:
253       SubEng.processCallExit(Pred);
254       break;
255 
256     case ProgramPoint::EpsilonKind: {
257       assert(Pred->hasSinglePred() &&
258              "Assume epsilon has exactly one predecessor by construction");
259       ExplodedNode *PNode = Pred->getFirstPred();
260       dispatchWorkItem(Pred, PNode->getLocation(), WU);
261       break;
262     }
263     default:
264       assert(isa<PostStmt>(Loc) ||
265              isa<PostInitializer>(Loc));
266       HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
267       break;
268   }
269 }
270 
271 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
272                                                  unsigned Steps,
273                                                  ProgramStateRef InitState,
274                                                  ExplodedNodeSet &Dst) {
275   bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
276   for (ExplodedGraph::eop_iterator I = G->eop_begin(),
277                                    E = G->eop_end(); I != E; ++I) {
278     Dst.Add(*I);
279   }
280   return DidNotFinish;
281 }
282 
283 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
284 
285   const CFGBlock *Blk = L.getDst();
286   NodeBuilderContext BuilderCtx(*this, Blk, Pred);
287 
288   // Mark this block as visited.
289   const LocationContext *LC = Pred->getLocationContext();
290   FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
291                                            LC->getDecl(),
292                                            LC->getCFG()->getNumBlockIDs());
293 
294   // Check if we are entering the EXIT block.
295   if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
296 
297     assert (L.getLocationContext()->getCFG()->getExit().size() == 0
298             && "EXIT block cannot contain Stmts.");
299 
300     // Process the final state transition.
301     SubEng.processEndOfFunction(BuilderCtx);
302 
303     // This path is done. Don't enqueue any more nodes.
304     return;
305   }
306 
307   // Call into the SubEngine to process entering the CFGBlock.
308   ExplodedNodeSet dstNodes;
309   BlockEntrance BE(Blk, Pred->getLocationContext());
310   NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
311   SubEng.processCFGBlockEntrance(L, nodeBuilder);
312 
313   // Auto-generate a node.
314   if (!nodeBuilder.hasGeneratedNodes()) {
315     nodeBuilder.generateNode(Pred->State, Pred);
316   }
317 
318   // Enqueue nodes onto the worklist.
319   enqueue(dstNodes);
320 }
321 
322 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
323                                        ExplodedNode *Pred) {
324 
325   // Increment the block counter.
326   const LocationContext *LC = Pred->getLocationContext();
327   unsigned BlockId = L.getBlock()->getBlockID();
328   BlockCounter Counter = WList->getBlockCounter();
329   Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
330                                            BlockId);
331   WList->setBlockCounter(Counter);
332 
333   // Process the entrance of the block.
334   if (CFGElement E = L.getFirstElement()) {
335     NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
336     SubEng.processCFGElement(E, Pred, 0, &Ctx);
337   }
338   else
339     HandleBlockExit(L.getBlock(), Pred);
340 }
341 
342 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
343 
344   if (const Stmt *Term = B->getTerminator()) {
345     switch (Term->getStmtClass()) {
346       default:
347         llvm_unreachable("Analysis for this terminator not implemented.");
348 
349       case Stmt::BinaryOperatorClass: // '&&' and '||'
350         HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
351         return;
352 
353       case Stmt::BinaryConditionalOperatorClass:
354       case Stmt::ConditionalOperatorClass:
355         HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
356                      Term, B, Pred);
357         return;
358 
359         // FIXME: Use constant-folding in CFG construction to simplify this
360         // case.
361 
362       case Stmt::ChooseExprClass:
363         HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
364         return;
365 
366       case Stmt::CXXTryStmtClass: {
367         // Generate a node for each of the successors.
368         // Our logic for EH analysis can certainly be improved.
369         for (CFGBlock::const_succ_iterator it = B->succ_begin(),
370              et = B->succ_end(); it != et; ++it) {
371           if (const CFGBlock *succ = *it) {
372             generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
373                          Pred->State, Pred);
374           }
375         }
376         return;
377       }
378 
379       case Stmt::DoStmtClass:
380         HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
381         return;
382 
383       case Stmt::CXXForRangeStmtClass:
384         HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
385         return;
386 
387       case Stmt::ForStmtClass:
388         HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
389         return;
390 
391       case Stmt::ContinueStmtClass:
392       case Stmt::BreakStmtClass:
393       case Stmt::GotoStmtClass:
394         break;
395 
396       case Stmt::IfStmtClass:
397         HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
398         return;
399 
400       case Stmt::IndirectGotoStmtClass: {
401         // Only 1 successor: the indirect goto dispatch block.
402         assert (B->succ_size() == 1);
403 
404         IndirectGotoNodeBuilder
405            builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
406                    *(B->succ_begin()), this);
407 
408         SubEng.processIndirectGoto(builder);
409         return;
410       }
411 
412       case Stmt::ObjCForCollectionStmtClass: {
413         // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
414         //
415         //  (1) inside a basic block, which represents the binding of the
416         //      'element' variable to a value.
417         //  (2) in a terminator, which represents the branch.
418         //
419         // For (1), subengines will bind a value (i.e., 0 or 1) indicating
420         // whether or not collection contains any more elements.  We cannot
421         // just test to see if the element is nil because a container can
422         // contain nil elements.
423         HandleBranch(Term, Term, B, Pred);
424         return;
425       }
426 
427       case Stmt::SwitchStmtClass: {
428         SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
429                                     this);
430 
431         SubEng.processSwitch(builder);
432         return;
433       }
434 
435       case Stmt::WhileStmtClass:
436         HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
437         return;
438     }
439   }
440 
441   assert (B->succ_size() == 1 &&
442           "Blocks with no terminator should have at most 1 successor.");
443 
444   generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
445                Pred->State, Pred);
446 }
447 
448 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
449                                 const CFGBlock * B, ExplodedNode *Pred) {
450   assert(B->succ_size() == 2);
451   NodeBuilderContext Ctx(*this, B, Pred);
452   ExplodedNodeSet Dst;
453   SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
454                        *(B->succ_begin()), *(B->succ_begin()+1));
455   // Enqueue the new frontier onto the worklist.
456   enqueue(Dst);
457 }
458 
459 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
460                                   ExplodedNode *Pred) {
461   assert(B);
462   assert(!B->empty());
463 
464   if (StmtIdx == B->size())
465     HandleBlockExit(B, Pred);
466   else {
467     NodeBuilderContext Ctx(*this, B, Pred);
468     SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
469   }
470 }
471 
472 /// generateNode - Utility method to generate nodes, hook up successors,
473 ///  and add nodes to the worklist.
474 void CoreEngine::generateNode(const ProgramPoint &Loc,
475                               ProgramStateRef State,
476                               ExplodedNode *Pred) {
477 
478   bool IsNew;
479   ExplodedNode *Node = G->getNode(Loc, State, false, &IsNew);
480 
481   if (Pred)
482     Node->addPredecessor(Pred, *G);  // Link 'Node' with its predecessor.
483   else {
484     assert (IsNew);
485     G->addRoot(Node);  // 'Node' has no predecessor.  Make it a root.
486   }
487 
488   // Only add 'Node' to the worklist if it was freshly generated.
489   if (IsNew) WList->enqueue(Node);
490 }
491 
492 void CoreEngine::enqueueStmtNode(ExplodedNode *N,
493                                  const CFGBlock *Block, unsigned Idx) {
494   assert(Block);
495   assert (!N->isSink());
496 
497   // Check if this node entered a callee.
498   if (isa<CallEnter>(N->getLocation())) {
499     // Still use the index of the CallExpr. It's needed to create the callee
500     // StackFrameContext.
501     WList->enqueue(N, Block, Idx);
502     return;
503   }
504 
505   // Do not create extra nodes. Move to the next CFG element.
506   if (isa<PostInitializer>(N->getLocation())) {
507     WList->enqueue(N, Block, Idx+1);
508     return;
509   }
510 
511   if (isa<EpsilonPoint>(N->getLocation())) {
512     WList->enqueue(N, Block, Idx);
513     return;
514   }
515 
516   const CFGStmt *CS = (*Block)[Idx].getAs<CFGStmt>();
517   const Stmt *St = CS ? CS->getStmt() : 0;
518   PostStmt Loc(St, N->getLocationContext());
519 
520   if (Loc == N->getLocation()) {
521     // Note: 'N' should be a fresh node because otherwise it shouldn't be
522     // a member of Deferred.
523     WList->enqueue(N, Block, Idx+1);
524     return;
525   }
526 
527   bool IsNew;
528   ExplodedNode *Succ = G->getNode(Loc, N->getState(), false, &IsNew);
529   Succ->addPredecessor(N, *G);
530 
531   if (IsNew)
532     WList->enqueue(Succ, Block, Idx+1);
533 }
534 
535 ExplodedNode *CoreEngine::generateCallExitNode(ExplodedNode *N) {
536   // Create a CallExit node and enqueue it.
537   const StackFrameContext *LocCtx
538                          = cast<StackFrameContext>(N->getLocationContext());
539   const Stmt *CE = LocCtx->getCallSite();
540 
541   // Use the the callee location context.
542   CallExit Loc(CE, LocCtx);
543 
544   bool isNew;
545   ExplodedNode *Node = G->getNode(Loc, N->getState(), false, &isNew);
546   Node->addPredecessor(N, *G);
547   return isNew ? Node : 0;
548 }
549 
550 
551 void CoreEngine::enqueue(ExplodedNodeSet &Set) {
552   for (ExplodedNodeSet::iterator I = Set.begin(),
553                                  E = Set.end(); I != E; ++I) {
554     WList->enqueue(*I);
555   }
556 }
557 
558 void CoreEngine::enqueue(ExplodedNodeSet &Set,
559                          const CFGBlock *Block, unsigned Idx) {
560   for (ExplodedNodeSet::iterator I = Set.begin(),
561                                  E = Set.end(); I != E; ++I) {
562     enqueueStmtNode(*I, Block, Idx);
563   }
564 }
565 
566 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) {
567   for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
568     ExplodedNode *N = *I;
569     // If we are in an inlined call, generate CallExit node.
570     if (N->getLocationContext()->getParent()) {
571       N = generateCallExitNode(N);
572       if (N)
573         WList->enqueue(N);
574     } else {
575       G->addEndOfPath(N);
576       NumPathsExplored++;
577     }
578   }
579 }
580 
581 
582 void NodeBuilder::anchor() { }
583 
584 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
585                                             ProgramStateRef State,
586                                             ExplodedNode *FromN,
587                                             bool MarkAsSink) {
588   HasGeneratedNodes = true;
589   bool IsNew;
590   ExplodedNode *N = C.Eng.G->getNode(Loc, State, MarkAsSink, &IsNew);
591   N->addPredecessor(FromN, *C.Eng.G);
592   Frontier.erase(FromN);
593 
594   if (!IsNew)
595     return 0;
596 
597   if (!MarkAsSink)
598     Frontier.Add(N);
599 
600   return N;
601 }
602 
603 void NodeBuilderWithSinks::anchor() { }
604 
605 StmtNodeBuilder::~StmtNodeBuilder() {
606   if (EnclosingBldr)
607     for (ExplodedNodeSet::iterator I = Frontier.begin(),
608                                    E = Frontier.end(); I != E; ++I )
609       EnclosingBldr->addNodes(*I);
610 }
611 
612 void BranchNodeBuilder::anchor() { }
613 
614 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
615                                               bool branch,
616                                               ExplodedNode *NodePred) {
617   // If the branch has been marked infeasible we should not generate a node.
618   if (!isFeasible(branch))
619     return NULL;
620 
621   ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
622                                NodePred->getLocationContext());
623   ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
624   return Succ;
625 }
626 
627 ExplodedNode*
628 IndirectGotoNodeBuilder::generateNode(const iterator &I,
629                                       ProgramStateRef St,
630                                       bool IsSink) {
631   bool IsNew;
632   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
633                                       Pred->getLocationContext()), St,
634                                       IsSink, &IsNew);
635   Succ->addPredecessor(Pred, *Eng.G);
636 
637   if (!IsNew)
638     return 0;
639 
640   if (!IsSink)
641     Eng.WList->enqueue(Succ);
642 
643   return Succ;
644 }
645 
646 
647 ExplodedNode*
648 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
649                                         ProgramStateRef St) {
650 
651   bool IsNew;
652   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
653                                       Pred->getLocationContext()), St,
654                                       false, &IsNew);
655   Succ->addPredecessor(Pred, *Eng.G);
656   if (!IsNew)
657     return 0;
658 
659   Eng.WList->enqueue(Succ);
660   return Succ;
661 }
662 
663 
664 ExplodedNode*
665 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
666                                            bool IsSink) {
667   // Get the block for the default case.
668   assert(Src->succ_rbegin() != Src->succ_rend());
669   CFGBlock *DefaultBlock = *Src->succ_rbegin();
670 
671   // Sanity check for default blocks that are unreachable and not caught
672   // by earlier stages.
673   if (!DefaultBlock)
674     return NULL;
675 
676   bool IsNew;
677   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock,
678                                       Pred->getLocationContext()), St,
679                                       IsSink, &IsNew);
680   Succ->addPredecessor(Pred, *Eng.G);
681 
682   if (!IsNew)
683     return 0;
684 
685   if (!IsSink)
686     Eng.WList->enqueue(Succ);
687 
688   return Succ;
689 }
690