1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines a generic engine for intraprocedural, path-sensitive,
11 //  dataflow analysis via graph reachability engine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtCXX.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/Casting.h"
24 
25 using namespace clang;
26 using namespace ento;
27 
28 #define DEBUG_TYPE "CoreEngine"
29 
30 STATISTIC(NumSteps,
31             "The # of steps executed.");
32 STATISTIC(NumReachedMaxSteps,
33             "The # of times we reached the max number of steps.");
34 STATISTIC(NumPathsExplored,
35             "The # of paths explored by the analyzer.");
36 
37 //===----------------------------------------------------------------------===//
38 // Worklist classes for exploration of reachable states.
39 //===----------------------------------------------------------------------===//
40 
41 WorkList::Visitor::~Visitor() {}
42 
43 namespace {
44 class DFS : public WorkList {
45   SmallVector<WorkListUnit,20> Stack;
46 public:
47   bool hasWork() const override {
48     return !Stack.empty();
49   }
50 
51   void enqueue(const WorkListUnit& U) override {
52     Stack.push_back(U);
53   }
54 
55   WorkListUnit dequeue() override {
56     assert (!Stack.empty());
57     const WorkListUnit& U = Stack.back();
58     Stack.pop_back(); // This technically "invalidates" U, but we are fine.
59     return U;
60   }
61 
62   bool visitItemsInWorkList(Visitor &V) override {
63     for (SmallVectorImpl<WorkListUnit>::iterator
64          I = Stack.begin(), E = Stack.end(); I != E; ++I) {
65       if (V.visit(*I))
66         return true;
67     }
68     return false;
69   }
70 };
71 
72 class BFS : public WorkList {
73   std::deque<WorkListUnit> Queue;
74 public:
75   bool hasWork() const override {
76     return !Queue.empty();
77   }
78 
79   void enqueue(const WorkListUnit& U) override {
80     Queue.push_back(U);
81   }
82 
83   WorkListUnit dequeue() override {
84     WorkListUnit U = Queue.front();
85     Queue.pop_front();
86     return U;
87   }
88 
89   bool visitItemsInWorkList(Visitor &V) override {
90     for (std::deque<WorkListUnit>::iterator
91          I = Queue.begin(), E = Queue.end(); I != E; ++I) {
92       if (V.visit(*I))
93         return true;
94     }
95     return false;
96   }
97 };
98 
99 } // end anonymous namespace
100 
101 // Place the dstor for WorkList here because it contains virtual member
102 // functions, and we the code for the dstor generated in one compilation unit.
103 WorkList::~WorkList() {}
104 
105 WorkList *WorkList::makeDFS() { return new DFS(); }
106 WorkList *WorkList::makeBFS() { return new BFS(); }
107 
108 namespace {
109   class BFSBlockDFSContents : public WorkList {
110     std::deque<WorkListUnit> Queue;
111     SmallVector<WorkListUnit,20> Stack;
112   public:
113     bool hasWork() const override {
114       return !Queue.empty() || !Stack.empty();
115     }
116 
117     void enqueue(const WorkListUnit& U) override {
118       if (U.getNode()->getLocation().getAs<BlockEntrance>())
119         Queue.push_front(U);
120       else
121         Stack.push_back(U);
122     }
123 
124     WorkListUnit dequeue() override {
125       // Process all basic blocks to completion.
126       if (!Stack.empty()) {
127         const WorkListUnit& U = Stack.back();
128         Stack.pop_back(); // This technically "invalidates" U, but we are fine.
129         return U;
130       }
131 
132       assert(!Queue.empty());
133       // Don't use const reference.  The subsequent pop_back() might make it
134       // unsafe.
135       WorkListUnit U = Queue.front();
136       Queue.pop_front();
137       return U;
138     }
139     bool visitItemsInWorkList(Visitor &V) override {
140       for (SmallVectorImpl<WorkListUnit>::iterator
141            I = Stack.begin(), E = Stack.end(); I != E; ++I) {
142         if (V.visit(*I))
143           return true;
144       }
145       for (std::deque<WorkListUnit>::iterator
146            I = Queue.begin(), E = Queue.end(); I != E; ++I) {
147         if (V.visit(*I))
148           return true;
149       }
150       return false;
151     }
152 
153   };
154 } // end anonymous namespace
155 
156 WorkList* WorkList::makeBFSBlockDFSContents() {
157   return new BFSBlockDFSContents();
158 }
159 
160 //===----------------------------------------------------------------------===//
161 // Core analysis engine.
162 //===----------------------------------------------------------------------===//
163 
164 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
165 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
166                                    ProgramStateRef InitState) {
167 
168   if (G.num_roots() == 0) { // Initialize the analysis by constructing
169     // the root if none exists.
170 
171     const CFGBlock *Entry = &(L->getCFG()->getEntry());
172 
173     assert (Entry->empty() &&
174             "Entry block must be empty.");
175 
176     assert (Entry->succ_size() == 1 &&
177             "Entry block must have 1 successor.");
178 
179     // Mark the entry block as visited.
180     FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
181                                              L->getDecl(),
182                                              L->getCFG()->getNumBlockIDs());
183 
184     // Get the solitary successor.
185     const CFGBlock *Succ = *(Entry->succ_begin());
186 
187     // Construct an edge representing the
188     // starting location in the function.
189     BlockEdge StartLoc(Entry, Succ, L);
190 
191     // Set the current block counter to being empty.
192     WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
193 
194     if (!InitState)
195       InitState = SubEng.getInitialState(L);
196 
197     bool IsNew;
198     ExplodedNode *Node = G.getNode(StartLoc, InitState, false, &IsNew);
199     assert (IsNew);
200     G.addRoot(Node);
201 
202     NodeBuilderContext BuilderCtx(*this, StartLoc.getDst(), Node);
203     ExplodedNodeSet DstBegin;
204     SubEng.processBeginOfFunction(BuilderCtx, Node, DstBegin, StartLoc);
205 
206     enqueue(DstBegin);
207   }
208 
209   // Check if we have a steps limit
210   bool UnlimitedSteps = Steps == 0;
211 
212   while (WList->hasWork()) {
213     if (!UnlimitedSteps) {
214       if (Steps == 0) {
215         NumReachedMaxSteps++;
216         break;
217       }
218       --Steps;
219     }
220 
221     NumSteps++;
222 
223     const WorkListUnit& WU = WList->dequeue();
224 
225     // Set the current block counter.
226     WList->setBlockCounter(WU.getBlockCounter());
227 
228     // Retrieve the node.
229     ExplodedNode *Node = WU.getNode();
230 
231     dispatchWorkItem(Node, Node->getLocation(), WU);
232   }
233   SubEng.processEndWorklist(hasWorkRemaining());
234   return WList->hasWork();
235 }
236 
237 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
238                                   const WorkListUnit& WU) {
239   // Dispatch on the location type.
240   switch (Loc.getKind()) {
241     case ProgramPoint::BlockEdgeKind:
242       HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred);
243       break;
244 
245     case ProgramPoint::BlockEntranceKind:
246       HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred);
247       break;
248 
249     case ProgramPoint::BlockExitKind:
250       assert (false && "BlockExit location never occur in forward analysis.");
251       break;
252 
253     case ProgramPoint::CallEnterKind: {
254       HandleCallEnter(Loc.castAs<CallEnter>(), Pred);
255       break;
256     }
257 
258     case ProgramPoint::CallExitBeginKind:
259       SubEng.processCallExit(Pred);
260       break;
261 
262     case ProgramPoint::EpsilonKind: {
263       assert(Pred->hasSinglePred() &&
264              "Assume epsilon has exactly one predecessor by construction");
265       ExplodedNode *PNode = Pred->getFirstPred();
266       dispatchWorkItem(Pred, PNode->getLocation(), WU);
267       break;
268     }
269     default:
270       assert(Loc.getAs<PostStmt>() ||
271              Loc.getAs<PostInitializer>() ||
272              Loc.getAs<PostImplicitCall>() ||
273              Loc.getAs<CallExitEnd>());
274       HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
275       break;
276   }
277 }
278 
279 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
280                                                  unsigned Steps,
281                                                  ProgramStateRef InitState,
282                                                  ExplodedNodeSet &Dst) {
283   bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
284   for (ExplodedGraph::eop_iterator I = G.eop_begin(), E = G.eop_end(); I != E;
285        ++I) {
286     Dst.Add(*I);
287   }
288   return DidNotFinish;
289 }
290 
291 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
292 
293   const CFGBlock *Blk = L.getDst();
294   NodeBuilderContext BuilderCtx(*this, Blk, Pred);
295 
296   // Mark this block as visited.
297   const LocationContext *LC = Pred->getLocationContext();
298   FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
299                                            LC->getDecl(),
300                                            LC->getCFG()->getNumBlockIDs());
301 
302   // Check if we are entering the EXIT block.
303   if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
304 
305     assert (L.getLocationContext()->getCFG()->getExit().size() == 0
306             && "EXIT block cannot contain Stmts.");
307 
308     // Process the final state transition.
309     SubEng.processEndOfFunction(BuilderCtx, Pred);
310 
311     // This path is done. Don't enqueue any more nodes.
312     return;
313   }
314 
315   // Call into the SubEngine to process entering the CFGBlock.
316   ExplodedNodeSet dstNodes;
317   BlockEntrance BE(Blk, Pred->getLocationContext());
318   NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
319   SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred);
320 
321   // Auto-generate a node.
322   if (!nodeBuilder.hasGeneratedNodes()) {
323     nodeBuilder.generateNode(Pred->State, Pred);
324   }
325 
326   // Enqueue nodes onto the worklist.
327   enqueue(dstNodes);
328 }
329 
330 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
331                                        ExplodedNode *Pred) {
332 
333   // Increment the block counter.
334   const LocationContext *LC = Pred->getLocationContext();
335   unsigned BlockId = L.getBlock()->getBlockID();
336   BlockCounter Counter = WList->getBlockCounter();
337   Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
338                                            BlockId);
339   WList->setBlockCounter(Counter);
340 
341   // Process the entrance of the block.
342   if (Optional<CFGElement> E = L.getFirstElement()) {
343     NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
344     SubEng.processCFGElement(*E, Pred, 0, &Ctx);
345   }
346   else
347     HandleBlockExit(L.getBlock(), Pred);
348 }
349 
350 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
351 
352   if (const Stmt *Term = B->getTerminator()) {
353     switch (Term->getStmtClass()) {
354       default:
355         llvm_unreachable("Analysis for this terminator not implemented.");
356 
357       case Stmt::CXXBindTemporaryExprClass:
358         HandleCleanupTemporaryBranch(
359             cast<CXXBindTemporaryExpr>(B->getTerminator().getStmt()), B, Pred);
360         return;
361 
362       // Model static initializers.
363       case Stmt::DeclStmtClass:
364         HandleStaticInit(cast<DeclStmt>(Term), B, Pred);
365         return;
366 
367       case Stmt::BinaryOperatorClass: // '&&' and '||'
368         HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
369         return;
370 
371       case Stmt::BinaryConditionalOperatorClass:
372       case Stmt::ConditionalOperatorClass:
373         HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
374                      Term, B, Pred);
375         return;
376 
377         // FIXME: Use constant-folding in CFG construction to simplify this
378         // case.
379 
380       case Stmt::ChooseExprClass:
381         HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
382         return;
383 
384       case Stmt::CXXTryStmtClass: {
385         // Generate a node for each of the successors.
386         // Our logic for EH analysis can certainly be improved.
387         for (CFGBlock::const_succ_iterator it = B->succ_begin(),
388              et = B->succ_end(); it != et; ++it) {
389           if (const CFGBlock *succ = *it) {
390             generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
391                          Pred->State, Pred);
392           }
393         }
394         return;
395       }
396 
397       case Stmt::DoStmtClass:
398         HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
399         return;
400 
401       case Stmt::CXXForRangeStmtClass:
402         HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
403         return;
404 
405       case Stmt::ForStmtClass:
406         HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
407         return;
408 
409       case Stmt::ContinueStmtClass:
410       case Stmt::BreakStmtClass:
411       case Stmt::GotoStmtClass:
412         break;
413 
414       case Stmt::IfStmtClass:
415         HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
416         return;
417 
418       case Stmt::IndirectGotoStmtClass: {
419         // Only 1 successor: the indirect goto dispatch block.
420         assert (B->succ_size() == 1);
421 
422         IndirectGotoNodeBuilder
423            builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
424                    *(B->succ_begin()), this);
425 
426         SubEng.processIndirectGoto(builder);
427         return;
428       }
429 
430       case Stmt::ObjCForCollectionStmtClass: {
431         // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
432         //
433         //  (1) inside a basic block, which represents the binding of the
434         //      'element' variable to a value.
435         //  (2) in a terminator, which represents the branch.
436         //
437         // For (1), subengines will bind a value (i.e., 0 or 1) indicating
438         // whether or not collection contains any more elements.  We cannot
439         // just test to see if the element is nil because a container can
440         // contain nil elements.
441         HandleBranch(Term, Term, B, Pred);
442         return;
443       }
444 
445       case Stmt::SwitchStmtClass: {
446         SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
447                                     this);
448 
449         SubEng.processSwitch(builder);
450         return;
451       }
452 
453       case Stmt::WhileStmtClass:
454         HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
455         return;
456     }
457   }
458 
459   assert (B->succ_size() == 1 &&
460           "Blocks with no terminator should have at most 1 successor.");
461 
462   generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
463                Pred->State, Pred);
464 }
465 
466 void CoreEngine::HandleCallEnter(const CallEnter &CE, ExplodedNode *Pred) {
467   NodeBuilderContext BuilderCtx(*this, CE.getEntry(), Pred);
468   SubEng.processCallEnter(BuilderCtx, CE, Pred);
469 }
470 
471 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
472                                 const CFGBlock * B, ExplodedNode *Pred) {
473   assert(B->succ_size() == 2);
474   NodeBuilderContext Ctx(*this, B, Pred);
475   ExplodedNodeSet Dst;
476   SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
477                        *(B->succ_begin()), *(B->succ_begin()+1));
478   // Enqueue the new frontier onto the worklist.
479   enqueue(Dst);
480 }
481 
482 void CoreEngine::HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
483                                               const CFGBlock *B,
484                                               ExplodedNode *Pred) {
485   assert(B->succ_size() == 2);
486   NodeBuilderContext Ctx(*this, B, Pred);
487   ExplodedNodeSet Dst;
488   SubEng.processCleanupTemporaryBranch(BTE, Ctx, Pred, Dst, *(B->succ_begin()),
489                                        *(B->succ_begin() + 1));
490   // Enqueue the new frontier onto the worklist.
491   enqueue(Dst);
492 }
493 
494 void CoreEngine::HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
495                                   ExplodedNode *Pred) {
496   assert(B->succ_size() == 2);
497   NodeBuilderContext Ctx(*this, B, Pred);
498   ExplodedNodeSet Dst;
499   SubEng.processStaticInitializer(DS, Ctx, Pred, Dst,
500                                   *(B->succ_begin()), *(B->succ_begin()+1));
501   // Enqueue the new frontier onto the worklist.
502   enqueue(Dst);
503 }
504 
505 
506 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
507                                   ExplodedNode *Pred) {
508   assert(B);
509   assert(!B->empty());
510 
511   if (StmtIdx == B->size())
512     HandleBlockExit(B, Pred);
513   else {
514     NodeBuilderContext Ctx(*this, B, Pred);
515     SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
516   }
517 }
518 
519 /// generateNode - Utility method to generate nodes, hook up successors,
520 ///  and add nodes to the worklist.
521 void CoreEngine::generateNode(const ProgramPoint &Loc,
522                               ProgramStateRef State,
523                               ExplodedNode *Pred) {
524 
525   bool IsNew;
526   ExplodedNode *Node = G.getNode(Loc, State, false, &IsNew);
527 
528   if (Pred)
529     Node->addPredecessor(Pred, G); // Link 'Node' with its predecessor.
530   else {
531     assert (IsNew);
532     G.addRoot(Node); // 'Node' has no predecessor.  Make it a root.
533   }
534 
535   // Only add 'Node' to the worklist if it was freshly generated.
536   if (IsNew) WList->enqueue(Node);
537 }
538 
539 void CoreEngine::enqueueStmtNode(ExplodedNode *N,
540                                  const CFGBlock *Block, unsigned Idx) {
541   assert(Block);
542   assert (!N->isSink());
543 
544   // Check if this node entered a callee.
545   if (N->getLocation().getAs<CallEnter>()) {
546     // Still use the index of the CallExpr. It's needed to create the callee
547     // StackFrameContext.
548     WList->enqueue(N, Block, Idx);
549     return;
550   }
551 
552   // Do not create extra nodes. Move to the next CFG element.
553   if (N->getLocation().getAs<PostInitializer>() ||
554       N->getLocation().getAs<PostImplicitCall>()) {
555     WList->enqueue(N, Block, Idx+1);
556     return;
557   }
558 
559   if (N->getLocation().getAs<EpsilonPoint>()) {
560     WList->enqueue(N, Block, Idx);
561     return;
562   }
563 
564   if ((*Block)[Idx].getKind() == CFGElement::NewAllocator) {
565     WList->enqueue(N, Block, Idx+1);
566     return;
567   }
568 
569   // At this point, we know we're processing a normal statement.
570   CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>();
571   PostStmt Loc(CS.getStmt(), N->getLocationContext());
572 
573   if (Loc == N->getLocation().withTag(nullptr)) {
574     // Note: 'N' should be a fresh node because otherwise it shouldn't be
575     // a member of Deferred.
576     WList->enqueue(N, Block, Idx+1);
577     return;
578   }
579 
580   bool IsNew;
581   ExplodedNode *Succ = G.getNode(Loc, N->getState(), false, &IsNew);
582   Succ->addPredecessor(N, G);
583 
584   if (IsNew)
585     WList->enqueue(Succ, Block, Idx+1);
586 }
587 
588 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N) {
589   // Create a CallExitBegin node and enqueue it.
590   const StackFrameContext *LocCtx
591                          = cast<StackFrameContext>(N->getLocationContext());
592 
593   // Use the callee location context.
594   CallExitBegin Loc(LocCtx);
595 
596   bool isNew;
597   ExplodedNode *Node = G.getNode(Loc, N->getState(), false, &isNew);
598   Node->addPredecessor(N, G);
599   return isNew ? Node : nullptr;
600 }
601 
602 
603 void CoreEngine::enqueue(ExplodedNodeSet &Set) {
604   for (ExplodedNodeSet::iterator I = Set.begin(),
605                                  E = Set.end(); I != E; ++I) {
606     WList->enqueue(*I);
607   }
608 }
609 
610 void CoreEngine::enqueue(ExplodedNodeSet &Set,
611                          const CFGBlock *Block, unsigned Idx) {
612   for (ExplodedNodeSet::iterator I = Set.begin(),
613                                  E = Set.end(); I != E; ++I) {
614     enqueueStmtNode(*I, Block, Idx);
615   }
616 }
617 
618 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) {
619   for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
620     ExplodedNode *N = *I;
621     // If we are in an inlined call, generate CallExitBegin node.
622     if (N->getLocationContext()->getParent()) {
623       N = generateCallExitBeginNode(N);
624       if (N)
625         WList->enqueue(N);
626     } else {
627       // TODO: We should run remove dead bindings here.
628       G.addEndOfPath(N);
629       NumPathsExplored++;
630     }
631   }
632 }
633 
634 
635 void NodeBuilder::anchor() { }
636 
637 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
638                                             ProgramStateRef State,
639                                             ExplodedNode *FromN,
640                                             bool MarkAsSink) {
641   HasGeneratedNodes = true;
642   bool IsNew;
643   ExplodedNode *N = C.Eng.G.getNode(Loc, State, MarkAsSink, &IsNew);
644   N->addPredecessor(FromN, C.Eng.G);
645   Frontier.erase(FromN);
646 
647   if (!IsNew)
648     return nullptr;
649 
650   if (!MarkAsSink)
651     Frontier.Add(N);
652 
653   return N;
654 }
655 
656 void NodeBuilderWithSinks::anchor() { }
657 
658 StmtNodeBuilder::~StmtNodeBuilder() {
659   if (EnclosingBldr)
660     for (ExplodedNodeSet::iterator I = Frontier.begin(),
661                                    E = Frontier.end(); I != E; ++I )
662       EnclosingBldr->addNodes(*I);
663 }
664 
665 void BranchNodeBuilder::anchor() { }
666 
667 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
668                                               bool branch,
669                                               ExplodedNode *NodePred) {
670   // If the branch has been marked infeasible we should not generate a node.
671   if (!isFeasible(branch))
672     return nullptr;
673 
674   ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
675                                NodePred->getLocationContext());
676   ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
677   return Succ;
678 }
679 
680 ExplodedNode*
681 IndirectGotoNodeBuilder::generateNode(const iterator &I,
682                                       ProgramStateRef St,
683                                       bool IsSink) {
684   bool IsNew;
685   ExplodedNode *Succ =
686       Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
687                     St, IsSink, &IsNew);
688   Succ->addPredecessor(Pred, Eng.G);
689 
690   if (!IsNew)
691     return nullptr;
692 
693   if (!IsSink)
694     Eng.WList->enqueue(Succ);
695 
696   return Succ;
697 }
698 
699 
700 ExplodedNode*
701 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
702                                         ProgramStateRef St) {
703 
704   bool IsNew;
705   ExplodedNode *Succ =
706       Eng.G.getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()),
707                     St, false, &IsNew);
708   Succ->addPredecessor(Pred, Eng.G);
709   if (!IsNew)
710     return nullptr;
711 
712   Eng.WList->enqueue(Succ);
713   return Succ;
714 }
715 
716 
717 ExplodedNode*
718 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
719                                            bool IsSink) {
720   // Get the block for the default case.
721   assert(Src->succ_rbegin() != Src->succ_rend());
722   CFGBlock *DefaultBlock = *Src->succ_rbegin();
723 
724   // Sanity check for default blocks that are unreachable and not caught
725   // by earlier stages.
726   if (!DefaultBlock)
727     return nullptr;
728 
729   bool IsNew;
730   ExplodedNode *Succ =
731       Eng.G.getNode(BlockEdge(Src, DefaultBlock, Pred->getLocationContext()),
732                     St, IsSink, &IsNew);
733   Succ->addPredecessor(Pred, Eng.G);
734 
735   if (!IsNew)
736     return nullptr;
737 
738   if (!IsSink)
739     Eng.WList->enqueue(Succ);
740 
741   return Succ;
742 }
743