1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/None.h"
51 #include "llvm/ADT/Optional.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cassert>
63 #include <utility>
64 
65 #define DEBUG_TYPE "static-analyzer-call-event"
66 
67 using namespace clang;
68 using namespace ento;
69 
70 QualType CallEvent::getResultType() const {
71   ASTContext &Ctx = getState()->getStateManager().getContext();
72   const Expr *E = getOriginExpr();
73   if (!E)
74     return Ctx.VoidTy;
75   assert(E);
76 
77   QualType ResultTy = E->getType();
78 
79   // A function that returns a reference to 'int' will have a result type
80   // of simply 'int'. Check the origin expr's value kind to recover the
81   // proper type.
82   switch (E->getValueKind()) {
83   case VK_LValue:
84     ResultTy = Ctx.getLValueReferenceType(ResultTy);
85     break;
86   case VK_XValue:
87     ResultTy = Ctx.getRValueReferenceType(ResultTy);
88     break;
89   case VK_RValue:
90     // No adjustment is necessary.
91     break;
92   }
93 
94   return ResultTy;
95 }
96 
97 static bool isCallback(QualType T) {
98   // If a parameter is a block or a callback, assume it can modify pointer.
99   if (T->isBlockPointerType() ||
100       T->isFunctionPointerType() ||
101       T->isObjCSelType())
102     return true;
103 
104   // Check if a callback is passed inside a struct (for both, struct passed by
105   // reference and by value). Dig just one level into the struct for now.
106 
107   if (T->isAnyPointerType() || T->isReferenceType())
108     T = T->getPointeeType();
109 
110   if (const RecordType *RT = T->getAsStructureType()) {
111     const RecordDecl *RD = RT->getDecl();
112     for (const auto *I : RD->fields()) {
113       QualType FieldT = I->getType();
114       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
115         return true;
116     }
117   }
118   return false;
119 }
120 
121 static bool isVoidPointerToNonConst(QualType T) {
122   if (const auto *PT = T->getAs<PointerType>()) {
123     QualType PointeeTy = PT->getPointeeType();
124     if (PointeeTy.isConstQualified())
125       return false;
126     return PointeeTy->isVoidType();
127   } else
128     return false;
129 }
130 
131 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
132   unsigned NumOfArgs = getNumArgs();
133 
134   // If calling using a function pointer, assume the function does not
135   // satisfy the callback.
136   // TODO: We could check the types of the arguments here.
137   if (!getDecl())
138     return false;
139 
140   unsigned Idx = 0;
141   for (CallEvent::param_type_iterator I = param_type_begin(),
142                                       E = param_type_end();
143        I != E && Idx < NumOfArgs; ++I, ++Idx) {
144     // If the parameter is 0, it's harmless.
145     if (getArgSVal(Idx).isZeroConstant())
146       continue;
147 
148     if (Condition(*I))
149       return true;
150   }
151   return false;
152 }
153 
154 bool CallEvent::hasNonZeroCallbackArg() const {
155   return hasNonNullArgumentsWithType(isCallback);
156 }
157 
158 bool CallEvent::hasVoidPointerToNonConstArg() const {
159   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
160 }
161 
162 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
163   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
164   if (!FD)
165     return false;
166 
167   return CheckerContext::isCLibraryFunction(FD, FunctionName);
168 }
169 
170 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
171   const Decl *D = getDecl();
172   if (!D)
173     return nullptr;
174 
175   // TODO: For now we skip functions without definitions, even if we have
176   // our own getDecl(), because it's hard to find out which re-declaration
177   // is going to be used, and usually clients don't really care about this
178   // situation because there's a loss of precision anyway because we cannot
179   // inline the call.
180   RuntimeDefinition RD = getRuntimeDefinition();
181   if (!RD.getDecl())
182     return nullptr;
183 
184   AnalysisDeclContext *ADC =
185       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
186 
187   // TODO: For now we skip virtual functions, because this also rises
188   // the problem of which decl to use, but now it's across different classes.
189   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
190     return nullptr;
191 
192   return ADC;
193 }
194 
195 const StackFrameContext *
196 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
197   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
198   if (!ADC)
199     return nullptr;
200 
201   const Expr *E = getOriginExpr();
202   if (!E)
203     return nullptr;
204 
205   // Recover CFG block via reverse lookup.
206   // TODO: If we were to keep CFG element information as part of the CallEvent
207   // instead of doing this reverse lookup, we would be able to build the stack
208   // frame for non-expression-based calls, and also we wouldn't need the reverse
209   // lookup.
210   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
211   const CFGBlock *B = Map->getBlock(E);
212   assert(B);
213 
214   // Also recover CFG index by scanning the CFG block.
215   unsigned Idx = 0, Sz = B->size();
216   for (; Idx < Sz; ++Idx)
217     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
218       if (StmtElem->getStmt() == E)
219         break;
220   assert(Idx < Sz);
221 
222   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
223 }
224 
225 const VarRegion *CallEvent::getParameterLocation(unsigned Index,
226                                                  unsigned BlockCount) const {
227   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
228   // We cannot construct a VarRegion without a stack frame.
229   if (!SFC)
230     return nullptr;
231 
232   // Retrieve parameters of the definition, which are different from
233   // CallEvent's parameters() because getDecl() isn't necessarily
234   // the definition. SFC contains the definition that would be used
235   // during analysis.
236   const Decl *D = SFC->getDecl();
237 
238   // TODO: Refactor into a virtual method of CallEvent, like parameters().
239   const ParmVarDecl *PVD = nullptr;
240   if (const auto *FD = dyn_cast<FunctionDecl>(D))
241     PVD = FD->parameters()[Index];
242   else if (const auto *BD = dyn_cast<BlockDecl>(D))
243     PVD = BD->parameters()[Index];
244   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
245     PVD = MD->parameters()[Index];
246   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
247     PVD = CD->parameters()[Index];
248   assert(PVD && "Unexpected Decl kind!");
249 
250   const VarRegion *VR =
251       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
252 
253   // This sanity check would fail if our parameter declaration doesn't
254   // correspond to the stack frame's function declaration.
255   assert(VR->getStackFrame() == SFC);
256 
257   return VR;
258 }
259 
260 /// Returns true if a type is a pointer-to-const or reference-to-const
261 /// with no further indirection.
262 static bool isPointerToConst(QualType Ty) {
263   QualType PointeeTy = Ty->getPointeeType();
264   if (PointeeTy == QualType())
265     return false;
266   if (!PointeeTy.isConstQualified())
267     return false;
268   if (PointeeTy->isAnyPointerType())
269     return false;
270   return true;
271 }
272 
273 // Try to retrieve the function declaration and find the function parameter
274 // types which are pointers/references to a non-pointer const.
275 // We will not invalidate the corresponding argument regions.
276 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
277                                  const CallEvent &Call) {
278   unsigned Idx = 0;
279   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
280                                       E = Call.param_type_end();
281        I != E; ++I, ++Idx) {
282     if (isPointerToConst(*I))
283       PreserveArgs.insert(Idx);
284   }
285 }
286 
287 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
288                                              ProgramStateRef Orig) const {
289   ProgramStateRef Result = (Orig ? Orig : getState());
290 
291   // Don't invalidate anything if the callee is marked pure/const.
292   if (const Decl *callee = getDecl())
293     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
294       return Result;
295 
296   SmallVector<SVal, 8> ValuesToInvalidate;
297   RegionAndSymbolInvalidationTraits ETraits;
298 
299   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
300 
301   // Indexes of arguments whose values will be preserved by the call.
302   llvm::SmallSet<unsigned, 4> PreserveArgs;
303   if (!argumentsMayEscape())
304     findPtrToConstParams(PreserveArgs, *this);
305 
306   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
307     // Mark this region for invalidation.  We batch invalidate regions
308     // below for efficiency.
309     if (PreserveArgs.count(Idx))
310       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
311         ETraits.setTrait(MR->getBaseRegion(),
312                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
313         // TODO: Factor this out + handle the lower level const pointers.
314 
315     ValuesToInvalidate.push_back(getArgSVal(Idx));
316 
317     // If a function accepts an object by argument (which would of course be a
318     // temporary that isn't lifetime-extended), invalidate the object itself,
319     // not only other objects reachable from it. This is necessary because the
320     // destructor has access to the temporary object after the call.
321     // TODO: Support placement arguments once we start
322     // constructing them directly.
323     // TODO: This is unnecessary when there's no destructor, but that's
324     // currently hard to figure out.
325     if (getKind() != CE_CXXAllocator)
326       if (isArgumentConstructedDirectly(Idx))
327         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
328           if (const VarRegion *VR = getParameterLocation(*AdjIdx, BlockCount))
329             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
330   }
331 
332   // Invalidate designated regions using the batch invalidation API.
333   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
334   //  global variables.
335   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
336                                    BlockCount, getLocationContext(),
337                                    /*CausedByPointerEscape*/ true,
338                                    /*Symbols=*/nullptr, this, &ETraits);
339 }
340 
341 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
342                                         const ProgramPointTag *Tag) const {
343   if (const Expr *E = getOriginExpr()) {
344     if (IsPreVisit)
345       return PreStmt(E, getLocationContext(), Tag);
346     return PostStmt(E, getLocationContext(), Tag);
347   }
348 
349   const Decl *D = getDecl();
350   assert(D && "Cannot get a program point without a statement or decl");
351 
352   SourceLocation Loc = getSourceRange().getBegin();
353   if (IsPreVisit)
354     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
355   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
356 }
357 
358 bool CallEvent::isCalled(const CallDescription &CD) const {
359   // FIXME: Add ObjC Message support.
360   if (getKind() == CE_ObjCMessage)
361     return false;
362 
363   const IdentifierInfo *II = getCalleeIdentifier();
364   if (!II)
365     return false;
366   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
367   if (!FD)
368     return false;
369 
370   if (CD.Flags & CDF_MaybeBuiltin) {
371     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
372            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
373            (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
374   }
375 
376   if (!CD.IsLookupDone) {
377     CD.IsLookupDone = true;
378     CD.II = &getState()->getStateManager().getContext().Idents.get(
379         CD.getFunctionName());
380   }
381 
382   if (II != CD.II)
383     return false;
384 
385   // If CallDescription provides prefix names, use them to improve matching
386   // accuracy.
387   if (CD.QualifiedName.size() > 1 && FD) {
388     const DeclContext *Ctx = FD->getDeclContext();
389     // See if we'll be able to match them all.
390     size_t NumUnmatched = CD.QualifiedName.size() - 1;
391     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
392       if (NumUnmatched == 0)
393         break;
394 
395       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
396         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
397           --NumUnmatched;
398         continue;
399       }
400 
401       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
402         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
403           --NumUnmatched;
404         continue;
405       }
406     }
407 
408     if (NumUnmatched > 0)
409       return false;
410   }
411 
412   return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) &&
413          (!CD.RequiredParams || CD.RequiredParams == parameters().size());
414 }
415 
416 SVal CallEvent::getArgSVal(unsigned Index) const {
417   const Expr *ArgE = getArgExpr(Index);
418   if (!ArgE)
419     return UnknownVal();
420   return getSVal(ArgE);
421 }
422 
423 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
424   const Expr *ArgE = getArgExpr(Index);
425   if (!ArgE)
426     return {};
427   return ArgE->getSourceRange();
428 }
429 
430 SVal CallEvent::getReturnValue() const {
431   const Expr *E = getOriginExpr();
432   if (!E)
433     return UndefinedVal();
434   return getSVal(E);
435 }
436 
437 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
438 
439 void CallEvent::dump(raw_ostream &Out) const {
440   ASTContext &Ctx = getState()->getStateManager().getContext();
441   if (const Expr *E = getOriginExpr()) {
442     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
443     Out << "\n";
444     return;
445   }
446 
447   if (const Decl *D = getDecl()) {
448     Out << "Call to ";
449     D->print(Out, Ctx.getPrintingPolicy());
450     return;
451   }
452 
453   Out << "Unknown call (type " << getKindAsString() << ")";
454 }
455 
456 bool CallEvent::isCallStmt(const Stmt *S) {
457   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
458                           || isa<CXXConstructExpr>(S)
459                           || isa<CXXNewExpr>(S);
460 }
461 
462 QualType CallEvent::getDeclaredResultType(const Decl *D) {
463   assert(D);
464   if (const auto *FD = dyn_cast<FunctionDecl>(D))
465     return FD->getReturnType();
466   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
467     return MD->getReturnType();
468   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
469     // Blocks are difficult because the return type may not be stored in the
470     // BlockDecl itself. The AST should probably be enhanced, but for now we
471     // just do what we can.
472     // If the block is declared without an explicit argument list, the
473     // signature-as-written just includes the return type, not the entire
474     // function type.
475     // FIXME: All blocks should have signatures-as-written, even if the return
476     // type is inferred. (That's signified with a dependent result type.)
477     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
478       QualType Ty = TSI->getType();
479       if (const FunctionType *FT = Ty->getAs<FunctionType>())
480         Ty = FT->getReturnType();
481       if (!Ty->isDependentType())
482         return Ty;
483     }
484 
485     return {};
486   }
487 
488   llvm_unreachable("unknown callable kind");
489 }
490 
491 bool CallEvent::isVariadic(const Decl *D) {
492   assert(D);
493 
494   if (const auto *FD = dyn_cast<FunctionDecl>(D))
495     return FD->isVariadic();
496   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
497     return MD->isVariadic();
498   if (const auto *BD = dyn_cast<BlockDecl>(D))
499     return BD->isVariadic();
500 
501   llvm_unreachable("unknown callable kind");
502 }
503 
504 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
505                                          CallEvent::BindingsTy &Bindings,
506                                          SValBuilder &SVB,
507                                          const CallEvent &Call,
508                                          ArrayRef<ParmVarDecl*> parameters) {
509   MemRegionManager &MRMgr = SVB.getRegionManager();
510 
511   // If the function has fewer parameters than the call has arguments, we simply
512   // do not bind any values to them.
513   unsigned NumArgs = Call.getNumArgs();
514   unsigned Idx = 0;
515   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
516   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
517     const ParmVarDecl *ParamDecl = *I;
518     assert(ParamDecl && "Formal parameter has no decl?");
519 
520     // TODO: Support allocator calls.
521     if (Call.getKind() != CE_CXXAllocator)
522       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
523         continue;
524 
525     // TODO: Allocators should receive the correct size and possibly alignment,
526     // determined in compile-time but not represented as arg-expressions,
527     // which makes getArgSVal() fail and return UnknownVal.
528     SVal ArgVal = Call.getArgSVal(Idx);
529     if (!ArgVal.isUnknown()) {
530       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
531       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
532     }
533   }
534 
535   // FIXME: Variadic arguments are not handled at all right now.
536 }
537 
538 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
539   const FunctionDecl *D = getDecl();
540   if (!D)
541     return None;
542   return D->parameters();
543 }
544 
545 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
546   const FunctionDecl *FD = getDecl();
547   if (!FD)
548     return {};
549 
550   // Note that the AnalysisDeclContext will have the FunctionDecl with
551   // the definition (if one exists).
552   AnalysisDeclContext *AD =
553     getLocationContext()->getAnalysisDeclContext()->
554     getManager()->getContext(FD);
555   bool IsAutosynthesized;
556   Stmt* Body = AD->getBody(IsAutosynthesized);
557   LLVM_DEBUG({
558     if (IsAutosynthesized)
559       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
560                    << "\n";
561   });
562   if (Body) {
563     const Decl* Decl = AD->getDecl();
564     return RuntimeDefinition(Decl);
565   }
566 
567   SubEngine &Engine = getState()->getStateManager().getOwningEngine();
568   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
569 
570   // Try to get CTU definition only if CTUDir is provided.
571   if (!Opts.IsNaiveCTUEnabled)
572     return {};
573 
574   cross_tu::CrossTranslationUnitContext &CTUCtx =
575       *Engine.getCrossTranslationUnitContext();
576   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
577       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
578                                   Opts.DisplayCTUProgress);
579 
580   if (!CTUDeclOrError) {
581     handleAllErrors(CTUDeclOrError.takeError(),
582                     [&](const cross_tu::IndexError &IE) {
583                       CTUCtx.emitCrossTUDiagnostics(IE);
584                     });
585     return {};
586   }
587 
588   return RuntimeDefinition(*CTUDeclOrError);
589 }
590 
591 void AnyFunctionCall::getInitialStackFrameContents(
592                                         const StackFrameContext *CalleeCtx,
593                                         BindingsTy &Bindings) const {
594   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
595   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
596   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
597                                D->parameters());
598 }
599 
600 bool AnyFunctionCall::argumentsMayEscape() const {
601   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
602     return true;
603 
604   const FunctionDecl *D = getDecl();
605   if (!D)
606     return true;
607 
608   const IdentifierInfo *II = D->getIdentifier();
609   if (!II)
610     return false;
611 
612   // This set of "escaping" APIs is
613 
614   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
615   //   value into thread local storage. The value can later be retrieved with
616   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
617   //   parameter is 'const void *', the region escapes through the call.
618   if (II->isStr("pthread_setspecific"))
619     return true;
620 
621   // - xpc_connection_set_context stores a value which can be retrieved later
622   //   with xpc_connection_get_context.
623   if (II->isStr("xpc_connection_set_context"))
624     return true;
625 
626   // - funopen - sets a buffer for future IO calls.
627   if (II->isStr("funopen"))
628     return true;
629 
630   // - __cxa_demangle - can reallocate memory and can return the pointer to
631   // the input buffer.
632   if (II->isStr("__cxa_demangle"))
633     return true;
634 
635   StringRef FName = II->getName();
636 
637   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
638   //   buffer even if it is const.
639   if (FName.endswith("NoCopy"))
640     return true;
641 
642   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
643   //   be deallocated by NSMapRemove.
644   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
645     return true;
646 
647   // - Many CF containers allow objects to escape through custom
648   //   allocators/deallocators upon container construction. (PR12101)
649   if (FName.startswith("CF") || FName.startswith("CG")) {
650     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
651            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
652            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
653            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
654            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
655            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
656   }
657 
658   return false;
659 }
660 
661 const FunctionDecl *SimpleFunctionCall::getDecl() const {
662   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
663   if (D)
664     return D;
665 
666   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
667 }
668 
669 const FunctionDecl *CXXInstanceCall::getDecl() const {
670   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
671   if (!CE)
672     return AnyFunctionCall::getDecl();
673 
674   const FunctionDecl *D = CE->getDirectCallee();
675   if (D)
676     return D;
677 
678   return getSVal(CE->getCallee()).getAsFunctionDecl();
679 }
680 
681 void CXXInstanceCall::getExtraInvalidatedValues(
682     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
683   SVal ThisVal = getCXXThisVal();
684   Values.push_back(ThisVal);
685 
686   // Don't invalidate if the method is const and there are no mutable fields.
687   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
688     if (!D->isConst())
689       return;
690     // Get the record decl for the class of 'This'. D->getParent() may return a
691     // base class decl, rather than the class of the instance which needs to be
692     // checked for mutable fields.
693     // TODO: We might as well look at the dynamic type of the object.
694     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
695     QualType T = Ex->getType();
696     if (T->isPointerType()) // Arrow or implicit-this syntax?
697       T = T->getPointeeType();
698     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
699     assert(ParentRecord);
700     if (ParentRecord->hasMutableFields())
701       return;
702     // Preserve CXXThis.
703     const MemRegion *ThisRegion = ThisVal.getAsRegion();
704     if (!ThisRegion)
705       return;
706 
707     ETraits->setTrait(ThisRegion->getBaseRegion(),
708                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
709   }
710 }
711 
712 SVal CXXInstanceCall::getCXXThisVal() const {
713   const Expr *Base = getCXXThisExpr();
714   // FIXME: This doesn't handle an overloaded ->* operator.
715   if (!Base)
716     return UnknownVal();
717 
718   SVal ThisVal = getSVal(Base);
719   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
720   return ThisVal;
721 }
722 
723 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
724   // Do we have a decl at all?
725   const Decl *D = getDecl();
726   if (!D)
727     return {};
728 
729   // If the method is non-virtual, we know we can inline it.
730   const auto *MD = cast<CXXMethodDecl>(D);
731   if (!MD->isVirtual())
732     return AnyFunctionCall::getRuntimeDefinition();
733 
734   // Do we know the implicit 'this' object being called?
735   const MemRegion *R = getCXXThisVal().getAsRegion();
736   if (!R)
737     return {};
738 
739   // Do we know anything about the type of 'this'?
740   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
741   if (!DynType.isValid())
742     return {};
743 
744   // Is the type a C++ class? (This is mostly a defensive check.)
745   QualType RegionType = DynType.getType()->getPointeeType();
746   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
747 
748   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
749   if (!RD || !RD->hasDefinition())
750     return {};
751 
752   // Find the decl for this method in that class.
753   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
754   if (!Result) {
755     // We might not even get the original statically-resolved method due to
756     // some particularly nasty casting (e.g. casts to sister classes).
757     // However, we should at least be able to search up and down our own class
758     // hierarchy, and some real bugs have been caught by checking this.
759     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
760 
761     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
762     // the static type. However, because we currently don't update
763     // DynamicTypeInfo when an object is cast, we can't actually be sure the
764     // DynamicTypeInfo is up to date. This assert should be re-enabled once
765     // this is fixed. <rdar://problem/12287087>
766     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
767 
768     return {};
769   }
770 
771   // Does the decl that we found have an implementation?
772   const FunctionDecl *Definition;
773   if (!Result->hasBody(Definition)) {
774     if (!DynType.canBeASubClass())
775       return AnyFunctionCall::getRuntimeDefinition();
776     return {};
777   }
778 
779   // We found a definition. If we're not sure that this devirtualization is
780   // actually what will happen at runtime, make sure to provide the region so
781   // that ExprEngine can decide what to do with it.
782   if (DynType.canBeASubClass())
783     return RuntimeDefinition(Definition, R->StripCasts());
784   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
785 }
786 
787 void CXXInstanceCall::getInitialStackFrameContents(
788                                             const StackFrameContext *CalleeCtx,
789                                             BindingsTy &Bindings) const {
790   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
791 
792   // Handle the binding of 'this' in the new stack frame.
793   SVal ThisVal = getCXXThisVal();
794   if (!ThisVal.isUnknown()) {
795     ProgramStateManager &StateMgr = getState()->getStateManager();
796     SValBuilder &SVB = StateMgr.getSValBuilder();
797 
798     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
799     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
800 
801     // If we devirtualized to a different member function, we need to make sure
802     // we have the proper layering of CXXBaseObjectRegions.
803     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
804       ASTContext &Ctx = SVB.getContext();
805       const CXXRecordDecl *Class = MD->getParent();
806       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
807 
808       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
809       bool Failed;
810       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
811       if (Failed) {
812         // We might have suffered some sort of placement new earlier, so
813         // we're constructing in a completely unexpected storage.
814         // Fall back to a generic pointer cast for this-value.
815         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
816         const CXXRecordDecl *StaticClass = StaticMD->getParent();
817         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
818         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
819       }
820     }
821 
822     if (!ThisVal.isUnknown())
823       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
824   }
825 }
826 
827 const Expr *CXXMemberCall::getCXXThisExpr() const {
828   return getOriginExpr()->getImplicitObjectArgument();
829 }
830 
831 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
832   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
833   // id-expression in the class member access expression is a qualified-id,
834   // that function is called. Otherwise, its final overrider in the dynamic type
835   // of the object expression is called.
836   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
837     if (ME->hasQualifier())
838       return AnyFunctionCall::getRuntimeDefinition();
839 
840   return CXXInstanceCall::getRuntimeDefinition();
841 }
842 
843 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
844   return getOriginExpr()->getArg(0);
845 }
846 
847 const BlockDataRegion *BlockCall::getBlockRegion() const {
848   const Expr *Callee = getOriginExpr()->getCallee();
849   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
850 
851   return dyn_cast_or_null<BlockDataRegion>(DataReg);
852 }
853 
854 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
855   const BlockDecl *D = getDecl();
856   if (!D)
857     return None;
858   return D->parameters();
859 }
860 
861 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
862                   RegionAndSymbolInvalidationTraits *ETraits) const {
863   // FIXME: This also needs to invalidate captured globals.
864   if (const MemRegion *R = getBlockRegion())
865     Values.push_back(loc::MemRegionVal(R));
866 }
867 
868 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
869                                              BindingsTy &Bindings) const {
870   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
871   ArrayRef<ParmVarDecl*> Params;
872   if (isConversionFromLambda()) {
873     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
874     Params = LambdaOperatorDecl->parameters();
875 
876     // For blocks converted from a C++ lambda, the callee declaration is the
877     // operator() method on the lambda so we bind "this" to
878     // the lambda captured by the block.
879     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
880     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
881     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
882     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
883   } else {
884     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
885   }
886 
887   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
888                                Params);
889 }
890 
891 SVal AnyCXXConstructorCall::getCXXThisVal() const {
892   if (Data)
893     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
894   return UnknownVal();
895 }
896 
897 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
898                            RegionAndSymbolInvalidationTraits *ETraits) const {
899   SVal V = getCXXThisVal();
900   if (SymbolRef Sym = V.getAsSymbol(true))
901     ETraits->setTrait(Sym,
902                       RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
903   Values.push_back(V);
904 }
905 
906 void AnyCXXConstructorCall::getInitialStackFrameContents(
907                                              const StackFrameContext *CalleeCtx,
908                                              BindingsTy &Bindings) const {
909   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
910 
911   SVal ThisVal = getCXXThisVal();
912   if (!ThisVal.isUnknown()) {
913     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
914     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
915     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
916     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
917   }
918 }
919 
920 const StackFrameContext *
921 CXXInheritedConstructorCall::getInheritingStackFrame() const {
922   const StackFrameContext *SFC = getLocationContext()->getStackFrame();
923   while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
924     SFC = SFC->getParent()->getStackFrame();
925   return SFC;
926 }
927 
928 SVal CXXDestructorCall::getCXXThisVal() const {
929   if (Data)
930     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
931   return UnknownVal();
932 }
933 
934 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
935   // Base destructors are always called non-virtually.
936   // Skip CXXInstanceCall's devirtualization logic in this case.
937   if (isBaseDestructor())
938     return AnyFunctionCall::getRuntimeDefinition();
939 
940   return CXXInstanceCall::getRuntimeDefinition();
941 }
942 
943 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
944   const ObjCMethodDecl *D = getDecl();
945   if (!D)
946     return None;
947   return D->parameters();
948 }
949 
950 void ObjCMethodCall::getExtraInvalidatedValues(
951     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
952 
953   // If the method call is a setter for property known to be backed by
954   // an instance variable, don't invalidate the entire receiver, just
955   // the storage for that instance variable.
956   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
957     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
958       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
959       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
960         ETraits->setTrait(
961           IvarRegion,
962           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
963         ETraits->setTrait(
964           IvarRegion,
965           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
966         Values.push_back(IvarLVal);
967       }
968       return;
969     }
970   }
971 
972   Values.push_back(getReceiverSVal());
973 }
974 
975 SVal ObjCMethodCall::getSelfSVal() const {
976   const LocationContext *LCtx = getLocationContext();
977   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
978   if (!SelfDecl)
979     return SVal();
980   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
981 }
982 
983 SVal ObjCMethodCall::getReceiverSVal() const {
984   // FIXME: Is this the best way to handle class receivers?
985   if (!isInstanceMessage())
986     return UnknownVal();
987 
988   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
989     return getSVal(RecE);
990 
991   // An instance message with no expression means we are sending to super.
992   // In this case the object reference is the same as 'self'.
993   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
994   SVal SelfVal = getSelfSVal();
995   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
996   return SelfVal;
997 }
998 
999 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
1000   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
1001       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
1002       return true;
1003 
1004   if (!isInstanceMessage())
1005     return false;
1006 
1007   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1008 
1009   return (RecVal == getSelfSVal());
1010 }
1011 
1012 SourceRange ObjCMethodCall::getSourceRange() const {
1013   switch (getMessageKind()) {
1014   case OCM_Message:
1015     return getOriginExpr()->getSourceRange();
1016   case OCM_PropertyAccess:
1017   case OCM_Subscript:
1018     return getContainingPseudoObjectExpr()->getSourceRange();
1019   }
1020   llvm_unreachable("unknown message kind");
1021 }
1022 
1023 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1024 
1025 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1026   assert(Data && "Lazy lookup not yet performed.");
1027   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1028   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1029 }
1030 
1031 static const Expr *
1032 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1033   const Expr *Syntactic = POE->getSyntacticForm();
1034 
1035   // This handles the funny case of assigning to the result of a getter.
1036   // This can happen if the getter returns a non-const reference.
1037   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1038     Syntactic = BO->getLHS();
1039 
1040   return Syntactic;
1041 }
1042 
1043 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1044   if (!Data) {
1045     // Find the parent, ignoring implicit casts.
1046     const ParentMap &PM = getLocationContext()->getParentMap();
1047     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1048 
1049     // Check if parent is a PseudoObjectExpr.
1050     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1051       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1052 
1053       ObjCMessageKind K;
1054       switch (Syntactic->getStmtClass()) {
1055       case Stmt::ObjCPropertyRefExprClass:
1056         K = OCM_PropertyAccess;
1057         break;
1058       case Stmt::ObjCSubscriptRefExprClass:
1059         K = OCM_Subscript;
1060         break;
1061       default:
1062         // FIXME: Can this ever happen?
1063         K = OCM_Message;
1064         break;
1065       }
1066 
1067       if (K != OCM_Message) {
1068         const_cast<ObjCMethodCall *>(this)->Data
1069           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1070         assert(getMessageKind() == K);
1071         return K;
1072       }
1073     }
1074 
1075     const_cast<ObjCMethodCall *>(this)->Data
1076       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1077     assert(getMessageKind() == OCM_Message);
1078     return OCM_Message;
1079   }
1080 
1081   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1082   if (!Info.getPointer())
1083     return OCM_Message;
1084   return static_cast<ObjCMessageKind>(Info.getInt());
1085 }
1086 
1087 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1088   // Look for properties accessed with property syntax (foo.bar = ...)
1089   if (getMessageKind() == OCM_PropertyAccess) {
1090     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1091     assert(POE && "Property access without PseudoObjectExpr?");
1092 
1093     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1094     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1095 
1096     if (RefExpr->isExplicitProperty())
1097       return RefExpr->getExplicitProperty();
1098   }
1099 
1100   // Look for properties accessed with method syntax ([foo setBar:...]).
1101   const ObjCMethodDecl *MD = getDecl();
1102   if (!MD || !MD->isPropertyAccessor())
1103     return nullptr;
1104 
1105   // Note: This is potentially quite slow.
1106   return MD->findPropertyDecl();
1107 }
1108 
1109 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1110                                              Selector Sel) const {
1111   assert(IDecl);
1112   AnalysisManager &AMgr =
1113       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1114   // If the class interface is declared inside the main file, assume it is not
1115   // subcassed.
1116   // TODO: It could actually be subclassed if the subclass is private as well.
1117   // This is probably very rare.
1118   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1119   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1120     return false;
1121 
1122   // Assume that property accessors are not overridden.
1123   if (getMessageKind() == OCM_PropertyAccess)
1124     return false;
1125 
1126   // We assume that if the method is public (declared outside of main file) or
1127   // has a parent which publicly declares the method, the method could be
1128   // overridden in a subclass.
1129 
1130   // Find the first declaration in the class hierarchy that declares
1131   // the selector.
1132   ObjCMethodDecl *D = nullptr;
1133   while (true) {
1134     D = IDecl->lookupMethod(Sel, true);
1135 
1136     // Cannot find a public definition.
1137     if (!D)
1138       return false;
1139 
1140     // If outside the main file,
1141     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1142       return true;
1143 
1144     if (D->isOverriding()) {
1145       // Search in the superclass on the next iteration.
1146       IDecl = D->getClassInterface();
1147       if (!IDecl)
1148         return false;
1149 
1150       IDecl = IDecl->getSuperClass();
1151       if (!IDecl)
1152         return false;
1153 
1154       continue;
1155     }
1156 
1157     return false;
1158   };
1159 
1160   llvm_unreachable("The while loop should always terminate.");
1161 }
1162 
1163 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1164   if (!MD)
1165     return MD;
1166 
1167   // Find the redeclaration that defines the method.
1168   if (!MD->hasBody()) {
1169     for (auto I : MD->redecls())
1170       if (I->hasBody())
1171         MD = cast<ObjCMethodDecl>(I);
1172   }
1173   return MD;
1174 }
1175 
1176 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1177   const Expr* InstRec = ME->getInstanceReceiver();
1178   if (!InstRec)
1179     return false;
1180   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1181 
1182   // Check that receiver is called 'self'.
1183   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1184       !InstRecIg->getFoundDecl()->getName().equals("self"))
1185     return false;
1186 
1187   // Check that the method name is 'class'.
1188   if (ME->getSelector().getNumArgs() != 0 ||
1189       !ME->getSelector().getNameForSlot(0).equals("class"))
1190     return false;
1191 
1192   return true;
1193 }
1194 
1195 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1196   const ObjCMessageExpr *E = getOriginExpr();
1197   assert(E);
1198   Selector Sel = E->getSelector();
1199 
1200   if (E->isInstanceMessage()) {
1201     // Find the receiver type.
1202     const ObjCObjectPointerType *ReceiverT = nullptr;
1203     bool CanBeSubClassed = false;
1204     QualType SupersType = E->getSuperType();
1205     const MemRegion *Receiver = nullptr;
1206 
1207     if (!SupersType.isNull()) {
1208       // The receiver is guaranteed to be 'super' in this case.
1209       // Super always means the type of immediate predecessor to the method
1210       // where the call occurs.
1211       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1212     } else {
1213       Receiver = getReceiverSVal().getAsRegion();
1214       if (!Receiver)
1215         return {};
1216 
1217       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1218       if (!DTI.isValid()) {
1219         assert(isa<AllocaRegion>(Receiver) &&
1220                "Unhandled untyped region class!");
1221         return {};
1222       }
1223 
1224       QualType DynType = DTI.getType();
1225       CanBeSubClassed = DTI.canBeASubClass();
1226       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1227 
1228       if (ReceiverT && CanBeSubClassed)
1229         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1230           if (!canBeOverridenInSubclass(IDecl, Sel))
1231             CanBeSubClassed = false;
1232     }
1233 
1234     // Handle special cases of '[self classMethod]' and
1235     // '[[self class] classMethod]', which are treated by the compiler as
1236     // instance (not class) messages. We will statically dispatch to those.
1237     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1238       // For [self classMethod], return the compiler visible declaration.
1239       if (PT->getObjectType()->isObjCClass() &&
1240           Receiver == getSelfSVal().getAsRegion())
1241         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1242 
1243       // Similarly, handle [[self class] classMethod].
1244       // TODO: We are currently doing a syntactic match for this pattern with is
1245       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1246       // shows. A better way would be to associate the meta type with the symbol
1247       // using the dynamic type info tracking and use it here. We can add a new
1248       // SVal for ObjC 'Class' values that know what interface declaration they
1249       // come from. Then 'self' in a class method would be filled in with
1250       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1251       // do proper dynamic dispatch for class methods just like we do for
1252       // instance methods now.
1253       if (E->getInstanceReceiver())
1254         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1255           if (isCallToSelfClass(M))
1256             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1257     }
1258 
1259     // Lookup the instance method implementation.
1260     if (ReceiverT)
1261       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1262         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1263         // when in many cases it returns null.  We cache the results so
1264         // that repeated queries on the same ObjCIntefaceDecl and Selector
1265         // don't incur the same cost.  On some test cases, we can see the
1266         // same query being issued thousands of times.
1267         //
1268         // NOTE: This cache is essentially a "global" variable, but it
1269         // only gets lazily created when we get here.  The value of the
1270         // cache probably comes from it being global across ExprEngines,
1271         // where the same queries may get issued.  If we are worried about
1272         // concurrency, or possibly loading/unloading ASTs, etc., we may
1273         // need to revisit this someday.  In terms of memory, this table
1274         // stays around until clang quits, which also may be bad if we
1275         // need to release memory.
1276         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1277         using PrivateMethodCache =
1278             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1279 
1280         static PrivateMethodCache PMC;
1281         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1282 
1283         // Query lookupPrivateMethod() if the cache does not hit.
1284         if (!Val.hasValue()) {
1285           Val = IDecl->lookupPrivateMethod(Sel);
1286 
1287           // If the method is a property accessor, we should try to "inline" it
1288           // even if we don't actually have an implementation.
1289           if (!*Val)
1290             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1291               if (CompileTimeMD->isPropertyAccessor()) {
1292                 if (!CompileTimeMD->getSelfDecl() &&
1293                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1294                   // If the method is an accessor in a category, and it doesn't
1295                   // have a self declaration, first
1296                   // try to find the method in a class extension. This
1297                   // works around a bug in Sema where multiple accessors
1298                   // are synthesized for properties in class
1299                   // extensions that are redeclared in a category and the
1300                   // the implicit parameters are not filled in for
1301                   // the method on the category.
1302                   // This ensures we find the accessor in the extension, which
1303                   // has the implicit parameters filled in.
1304                   auto *ID = CompileTimeMD->getClassInterface();
1305                   for (auto *CatDecl : ID->visible_extensions()) {
1306                     Val = CatDecl->getMethod(Sel,
1307                                              CompileTimeMD->isInstanceMethod());
1308                     if (*Val)
1309                       break;
1310                   }
1311                 }
1312                 if (!*Val)
1313                   Val = IDecl->lookupInstanceMethod(Sel);
1314               }
1315         }
1316 
1317         const ObjCMethodDecl *MD = Val.getValue();
1318         if (MD && !MD->hasBody())
1319           MD = MD->getCanonicalDecl();
1320         if (CanBeSubClassed)
1321           return RuntimeDefinition(MD, Receiver);
1322         else
1323           return RuntimeDefinition(MD, nullptr);
1324       }
1325   } else {
1326     // This is a class method.
1327     // If we have type info for the receiver class, we are calling via
1328     // class name.
1329     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1330       // Find/Return the method implementation.
1331       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1332     }
1333   }
1334 
1335   return {};
1336 }
1337 
1338 bool ObjCMethodCall::argumentsMayEscape() const {
1339   if (isInSystemHeader() && !isInstanceMessage()) {
1340     Selector Sel = getSelector();
1341     if (Sel.getNumArgs() == 1 &&
1342         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1343       return true;
1344   }
1345 
1346   return CallEvent::argumentsMayEscape();
1347 }
1348 
1349 void ObjCMethodCall::getInitialStackFrameContents(
1350                                              const StackFrameContext *CalleeCtx,
1351                                              BindingsTy &Bindings) const {
1352   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1353   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1354   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1355                                D->parameters());
1356 
1357   SVal SelfVal = getReceiverSVal();
1358   if (!SelfVal.isUnknown()) {
1359     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1360     MemRegionManager &MRMgr = SVB.getRegionManager();
1361     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1362     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1363   }
1364 }
1365 
1366 CallEventRef<>
1367 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1368                                 const LocationContext *LCtx) {
1369   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1370     return create<CXXMemberCall>(MCE, State, LCtx);
1371 
1372   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1373     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1374     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1375       if (MD->isInstance())
1376         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1377 
1378   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1379     return create<BlockCall>(CE, State, LCtx);
1380   }
1381 
1382   // Otherwise, it's a normal function call, static member function call, or
1383   // something we can't reason about.
1384   return create<SimpleFunctionCall>(CE, State, LCtx);
1385 }
1386 
1387 CallEventRef<>
1388 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1389                             ProgramStateRef State) {
1390   const LocationContext *ParentCtx = CalleeCtx->getParent();
1391   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1392   assert(CallerCtx && "This should not be used for top-level stack frames");
1393 
1394   const Stmt *CallSite = CalleeCtx->getCallSite();
1395 
1396   if (CallSite) {
1397     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1398       return Out;
1399 
1400     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1401     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1402     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1403     SVal ThisVal = State->getSVal(ThisPtr);
1404 
1405     if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1406       return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx);
1407     else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1408       return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1409                                             CallerCtx);
1410     else {
1411       // All other cases are handled by getCall.
1412       llvm_unreachable("This is not an inlineable statement");
1413     }
1414   }
1415 
1416   // Fall back to the CFG. The only thing we haven't handled yet is
1417   // destructors, though this could change in the future.
1418   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1419   CFGElement E = (*B)[CalleeCtx->getIndex()];
1420   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1421          "All other CFG elements should have exprs");
1422 
1423   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1424   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1425   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1426   SVal ThisVal = State->getSVal(ThisPtr);
1427 
1428   const Stmt *Trigger;
1429   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1430     Trigger = AutoDtor->getTriggerStmt();
1431   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1432     Trigger = DeleteDtor->getDeleteExpr();
1433   else
1434     Trigger = Dtor->getBody();
1435 
1436   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1437                               E.getAs<CFGBaseDtor>().hasValue(), State,
1438                               CallerCtx);
1439 }
1440 
1441 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1442                                          const LocationContext *LC) {
1443   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1444     return getSimpleCall(CE, State, LC);
1445   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1446     return getCXXAllocatorCall(NE, State, LC);
1447   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1448     return getObjCMethodCall(ME, State, LC);
1449   } else {
1450     return nullptr;
1451   }
1452 }
1453