1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file defines CallEvent and its subclasses, which represent path-
11 /// sensitive instances of different kinds of function and method calls
12 /// (C, C++, and Objective-C).
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/ProgramPoint.h"
32 #include "clang/CrossTU/CrossTranslationUnit.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/None.h"
51 #include "llvm/ADT/Optional.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cassert>
63 #include <utility>
64 
65 #define DEBUG_TYPE "static-analyzer-call-event"
66 
67 using namespace clang;
68 using namespace ento;
69 
70 QualType CallEvent::getResultType() const {
71   ASTContext &Ctx = getState()->getStateManager().getContext();
72   const Expr *E = getOriginExpr();
73   if (!E)
74     return Ctx.VoidTy;
75   assert(E);
76 
77   QualType ResultTy = E->getType();
78 
79   // A function that returns a reference to 'int' will have a result type
80   // of simply 'int'. Check the origin expr's value kind to recover the
81   // proper type.
82   switch (E->getValueKind()) {
83   case VK_LValue:
84     ResultTy = Ctx.getLValueReferenceType(ResultTy);
85     break;
86   case VK_XValue:
87     ResultTy = Ctx.getRValueReferenceType(ResultTy);
88     break;
89   case VK_RValue:
90     // No adjustment is necessary.
91     break;
92   }
93 
94   return ResultTy;
95 }
96 
97 static bool isCallback(QualType T) {
98   // If a parameter is a block or a callback, assume it can modify pointer.
99   if (T->isBlockPointerType() ||
100       T->isFunctionPointerType() ||
101       T->isObjCSelType())
102     return true;
103 
104   // Check if a callback is passed inside a struct (for both, struct passed by
105   // reference and by value). Dig just one level into the struct for now.
106 
107   if (T->isAnyPointerType() || T->isReferenceType())
108     T = T->getPointeeType();
109 
110   if (const RecordType *RT = T->getAsStructureType()) {
111     const RecordDecl *RD = RT->getDecl();
112     for (const auto *I : RD->fields()) {
113       QualType FieldT = I->getType();
114       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
115         return true;
116     }
117   }
118   return false;
119 }
120 
121 static bool isVoidPointerToNonConst(QualType T) {
122   if (const auto *PT = T->getAs<PointerType>()) {
123     QualType PointeeTy = PT->getPointeeType();
124     if (PointeeTy.isConstQualified())
125       return false;
126     return PointeeTy->isVoidType();
127   } else
128     return false;
129 }
130 
131 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
132   unsigned NumOfArgs = getNumArgs();
133 
134   // If calling using a function pointer, assume the function does not
135   // satisfy the callback.
136   // TODO: We could check the types of the arguments here.
137   if (!getDecl())
138     return false;
139 
140   unsigned Idx = 0;
141   for (CallEvent::param_type_iterator I = param_type_begin(),
142                                       E = param_type_end();
143        I != E && Idx < NumOfArgs; ++I, ++Idx) {
144     // If the parameter is 0, it's harmless.
145     if (getArgSVal(Idx).isZeroConstant())
146       continue;
147 
148     if (Condition(*I))
149       return true;
150   }
151   return false;
152 }
153 
154 bool CallEvent::hasNonZeroCallbackArg() const {
155   return hasNonNullArgumentsWithType(isCallback);
156 }
157 
158 bool CallEvent::hasVoidPointerToNonConstArg() const {
159   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
160 }
161 
162 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
163   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
164   if (!FD)
165     return false;
166 
167   return CheckerContext::isCLibraryFunction(FD, FunctionName);
168 }
169 
170 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
171   const Decl *D = getDecl();
172   if (!D)
173     return nullptr;
174 
175   // TODO: For now we skip functions without definitions, even if we have
176   // our own getDecl(), because it's hard to find out which re-declaration
177   // is going to be used, and usually clients don't really care about this
178   // situation because there's a loss of precision anyway because we cannot
179   // inline the call.
180   RuntimeDefinition RD = getRuntimeDefinition();
181   if (!RD.getDecl())
182     return nullptr;
183 
184   AnalysisDeclContext *ADC =
185       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
186 
187   // TODO: For now we skip virtual functions, because this also rises
188   // the problem of which decl to use, but now it's across different classes.
189   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
190     return nullptr;
191 
192   return ADC;
193 }
194 
195 const StackFrameContext *CallEvent::getCalleeStackFrame() const {
196   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
197   if (!ADC)
198     return nullptr;
199 
200   const Expr *E = getOriginExpr();
201   if (!E)
202     return nullptr;
203 
204   // Recover CFG block via reverse lookup.
205   // TODO: If we were to keep CFG element information as part of the CallEvent
206   // instead of doing this reverse lookup, we would be able to build the stack
207   // frame for non-expression-based calls, and also we wouldn't need the reverse
208   // lookup.
209   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
210   const CFGBlock *B = Map->getBlock(E);
211   assert(B);
212 
213   // Also recover CFG index by scanning the CFG block.
214   unsigned Idx = 0, Sz = B->size();
215   for (; Idx < Sz; ++Idx)
216     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
217       if (StmtElem->getStmt() == E)
218         break;
219   assert(Idx < Sz);
220 
221   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx);
222 }
223 
224 const VarRegion *CallEvent::getParameterLocation(unsigned Index) const {
225   const StackFrameContext *SFC = getCalleeStackFrame();
226   // We cannot construct a VarRegion without a stack frame.
227   if (!SFC)
228     return nullptr;
229 
230   // Retrieve parameters of the definition, which are different from
231   // CallEvent's parameters() because getDecl() isn't necessarily
232   // the definition. SFC contains the definition that would be used
233   // during analysis.
234   const Decl *D = SFC->getDecl();
235 
236   // TODO: Refactor into a virtual method of CallEvent, like parameters().
237   const ParmVarDecl *PVD = nullptr;
238   if (const auto *FD = dyn_cast<FunctionDecl>(D))
239     PVD = FD->parameters()[Index];
240   else if (const auto *BD = dyn_cast<BlockDecl>(D))
241     PVD = BD->parameters()[Index];
242   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
243     PVD = MD->parameters()[Index];
244   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
245     PVD = CD->parameters()[Index];
246   assert(PVD && "Unexpected Decl kind!");
247 
248   const VarRegion *VR =
249       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
250 
251   // This sanity check would fail if our parameter declaration doesn't
252   // correspond to the stack frame's function declaration.
253   assert(VR->getStackFrame() == SFC);
254 
255   return VR;
256 }
257 
258 /// Returns true if a type is a pointer-to-const or reference-to-const
259 /// with no further indirection.
260 static bool isPointerToConst(QualType Ty) {
261   QualType PointeeTy = Ty->getPointeeType();
262   if (PointeeTy == QualType())
263     return false;
264   if (!PointeeTy.isConstQualified())
265     return false;
266   if (PointeeTy->isAnyPointerType())
267     return false;
268   return true;
269 }
270 
271 // Try to retrieve the function declaration and find the function parameter
272 // types which are pointers/references to a non-pointer const.
273 // We will not invalidate the corresponding argument regions.
274 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
275                                  const CallEvent &Call) {
276   unsigned Idx = 0;
277   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
278                                       E = Call.param_type_end();
279        I != E; ++I, ++Idx) {
280     if (isPointerToConst(*I))
281       PreserveArgs.insert(Idx);
282   }
283 }
284 
285 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
286                                              ProgramStateRef Orig) const {
287   ProgramStateRef Result = (Orig ? Orig : getState());
288 
289   // Don't invalidate anything if the callee is marked pure/const.
290   if (const Decl *callee = getDecl())
291     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
292       return Result;
293 
294   SmallVector<SVal, 8> ValuesToInvalidate;
295   RegionAndSymbolInvalidationTraits ETraits;
296 
297   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
298 
299   // Indexes of arguments whose values will be preserved by the call.
300   llvm::SmallSet<unsigned, 4> PreserveArgs;
301   if (!argumentsMayEscape())
302     findPtrToConstParams(PreserveArgs, *this);
303 
304   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
305     // Mark this region for invalidation.  We batch invalidate regions
306     // below for efficiency.
307     if (PreserveArgs.count(Idx))
308       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
309         ETraits.setTrait(MR->getBaseRegion(),
310                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
311         // TODO: Factor this out + handle the lower level const pointers.
312 
313     ValuesToInvalidate.push_back(getArgSVal(Idx));
314 
315     // If a function accepts an object by argument (which would of course be a
316     // temporary that isn't lifetime-extended), invalidate the object itself,
317     // not only other objects reachable from it. This is necessary because the
318     // destructor has access to the temporary object after the call.
319     // TODO: Support placement arguments once we start
320     // constructing them directly.
321     // TODO: This is unnecessary when there's no destructor, but that's
322     // currently hard to figure out.
323     if (getKind() != CE_CXXAllocator)
324       if (isArgumentConstructedDirectly(Idx))
325         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
326           if (const VarRegion *VR = getParameterLocation(*AdjIdx))
327             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
328   }
329 
330   // Invalidate designated regions using the batch invalidation API.
331   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
332   //  global variables.
333   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
334                                    BlockCount, getLocationContext(),
335                                    /*CausedByPointerEscape*/ true,
336                                    /*Symbols=*/nullptr, this, &ETraits);
337 }
338 
339 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
340                                         const ProgramPointTag *Tag) const {
341   if (const Expr *E = getOriginExpr()) {
342     if (IsPreVisit)
343       return PreStmt(E, getLocationContext(), Tag);
344     return PostStmt(E, getLocationContext(), Tag);
345   }
346 
347   const Decl *D = getDecl();
348   assert(D && "Cannot get a program point without a statement or decl");
349 
350   SourceLocation Loc = getSourceRange().getBegin();
351   if (IsPreVisit)
352     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
353   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
354 }
355 
356 bool CallEvent::isCalled(const CallDescription &CD) const {
357   // FIXME: Add ObjC Message support.
358   if (getKind() == CE_ObjCMessage)
359     return false;
360   if (!CD.IsLookupDone) {
361     CD.IsLookupDone = true;
362     CD.II = &getState()->getStateManager().getContext().Idents.get(
363         CD.getFunctionName());
364   }
365   const IdentifierInfo *II = getCalleeIdentifier();
366   if (!II || II != CD.II)
367     return false;
368 
369   const Decl *D = getDecl();
370   // If CallDescription provides prefix names, use them to improve matching
371   // accuracy.
372   if (CD.QualifiedName.size() > 1 && D) {
373     const DeclContext *Ctx = D->getDeclContext();
374     std::vector<StringRef> QualifiedName = CD.QualifiedName;
375     QualifiedName.pop_back();
376     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
377       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
378         if (!QualifiedName.empty() && ND->getName() == QualifiedName.back())
379           QualifiedName.pop_back();
380         continue;
381       }
382 
383       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
384         if (!QualifiedName.empty() && RD->getName() == QualifiedName.back())
385           QualifiedName.pop_back();
386         continue;
387       }
388     }
389 
390     if (!QualifiedName.empty())
391       return false;
392   }
393 
394   return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
395           CD.RequiredArgs == getNumArgs());
396 }
397 
398 SVal CallEvent::getArgSVal(unsigned Index) const {
399   const Expr *ArgE = getArgExpr(Index);
400   if (!ArgE)
401     return UnknownVal();
402   return getSVal(ArgE);
403 }
404 
405 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
406   const Expr *ArgE = getArgExpr(Index);
407   if (!ArgE)
408     return {};
409   return ArgE->getSourceRange();
410 }
411 
412 SVal CallEvent::getReturnValue() const {
413   const Expr *E = getOriginExpr();
414   if (!E)
415     return UndefinedVal();
416   return getSVal(E);
417 }
418 
419 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
420 
421 void CallEvent::dump(raw_ostream &Out) const {
422   ASTContext &Ctx = getState()->getStateManager().getContext();
423   if (const Expr *E = getOriginExpr()) {
424     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
425     Out << "\n";
426     return;
427   }
428 
429   if (const Decl *D = getDecl()) {
430     Out << "Call to ";
431     D->print(Out, Ctx.getPrintingPolicy());
432     return;
433   }
434 
435   // FIXME: a string representation of the kind would be nice.
436   Out << "Unknown call (type " << getKind() << ")";
437 }
438 
439 bool CallEvent::isCallStmt(const Stmt *S) {
440   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
441                           || isa<CXXConstructExpr>(S)
442                           || isa<CXXNewExpr>(S);
443 }
444 
445 QualType CallEvent::getDeclaredResultType(const Decl *D) {
446   assert(D);
447   if (const auto *FD = dyn_cast<FunctionDecl>(D))
448     return FD->getReturnType();
449   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
450     return MD->getReturnType();
451   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
452     // Blocks are difficult because the return type may not be stored in the
453     // BlockDecl itself. The AST should probably be enhanced, but for now we
454     // just do what we can.
455     // If the block is declared without an explicit argument list, the
456     // signature-as-written just includes the return type, not the entire
457     // function type.
458     // FIXME: All blocks should have signatures-as-written, even if the return
459     // type is inferred. (That's signified with a dependent result type.)
460     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
461       QualType Ty = TSI->getType();
462       if (const FunctionType *FT = Ty->getAs<FunctionType>())
463         Ty = FT->getReturnType();
464       if (!Ty->isDependentType())
465         return Ty;
466     }
467 
468     return {};
469   }
470 
471   llvm_unreachable("unknown callable kind");
472 }
473 
474 bool CallEvent::isVariadic(const Decl *D) {
475   assert(D);
476 
477   if (const auto *FD = dyn_cast<FunctionDecl>(D))
478     return FD->isVariadic();
479   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
480     return MD->isVariadic();
481   if (const auto *BD = dyn_cast<BlockDecl>(D))
482     return BD->isVariadic();
483 
484   llvm_unreachable("unknown callable kind");
485 }
486 
487 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
488                                          CallEvent::BindingsTy &Bindings,
489                                          SValBuilder &SVB,
490                                          const CallEvent &Call,
491                                          ArrayRef<ParmVarDecl*> parameters) {
492   MemRegionManager &MRMgr = SVB.getRegionManager();
493 
494   // If the function has fewer parameters than the call has arguments, we simply
495   // do not bind any values to them.
496   unsigned NumArgs = Call.getNumArgs();
497   unsigned Idx = 0;
498   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
499   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
500     const ParmVarDecl *ParamDecl = *I;
501     assert(ParamDecl && "Formal parameter has no decl?");
502 
503     if (Call.getKind() != CE_CXXAllocator)
504       if (Call.isArgumentConstructedDirectly(Idx))
505         continue;
506 
507     SVal ArgVal = Call.getArgSVal(Idx);
508     if (!ArgVal.isUnknown()) {
509       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
510       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
511     }
512   }
513 
514   // FIXME: Variadic arguments are not handled at all right now.
515 }
516 
517 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
518   const FunctionDecl *D = getDecl();
519   if (!D)
520     return None;
521   return D->parameters();
522 }
523 
524 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
525   const FunctionDecl *FD = getDecl();
526   if (!FD)
527     return {};
528 
529   // Note that the AnalysisDeclContext will have the FunctionDecl with
530   // the definition (if one exists).
531   AnalysisDeclContext *AD =
532     getLocationContext()->getAnalysisDeclContext()->
533     getManager()->getContext(FD);
534   bool IsAutosynthesized;
535   Stmt* Body = AD->getBody(IsAutosynthesized);
536   LLVM_DEBUG({
537     if (IsAutosynthesized)
538       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
539                    << "\n";
540   });
541   if (Body) {
542     const Decl* Decl = AD->getDecl();
543     return RuntimeDefinition(Decl);
544   }
545 
546   SubEngine *Engine = getState()->getStateManager().getOwningEngine();
547   AnalyzerOptions &Opts = Engine->getAnalysisManager().options;
548 
549   // Try to get CTU definition only if CTUDir is provided.
550   if (!Opts.naiveCTUEnabled())
551     return {};
552 
553   cross_tu::CrossTranslationUnitContext &CTUCtx =
554       *Engine->getCrossTranslationUnitContext();
555   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
556       CTUCtx.getCrossTUDefinition(FD, Opts.getCTUDir(), Opts.getCTUIndexName());
557 
558   if (!CTUDeclOrError) {
559     handleAllErrors(CTUDeclOrError.takeError(),
560                     [&](const cross_tu::IndexError &IE) {
561                       CTUCtx.emitCrossTUDiagnostics(IE);
562                     });
563     return {};
564   }
565 
566   return RuntimeDefinition(*CTUDeclOrError);
567 }
568 
569 void AnyFunctionCall::getInitialStackFrameContents(
570                                         const StackFrameContext *CalleeCtx,
571                                         BindingsTy &Bindings) const {
572   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
573   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
574   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
575                                D->parameters());
576 }
577 
578 bool AnyFunctionCall::argumentsMayEscape() const {
579   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
580     return true;
581 
582   const FunctionDecl *D = getDecl();
583   if (!D)
584     return true;
585 
586   const IdentifierInfo *II = D->getIdentifier();
587   if (!II)
588     return false;
589 
590   // This set of "escaping" APIs is
591 
592   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
593   //   value into thread local storage. The value can later be retrieved with
594   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
595   //   parameter is 'const void *', the region escapes through the call.
596   if (II->isStr("pthread_setspecific"))
597     return true;
598 
599   // - xpc_connection_set_context stores a value which can be retrieved later
600   //   with xpc_connection_get_context.
601   if (II->isStr("xpc_connection_set_context"))
602     return true;
603 
604   // - funopen - sets a buffer for future IO calls.
605   if (II->isStr("funopen"))
606     return true;
607 
608   // - __cxa_demangle - can reallocate memory and can return the pointer to
609   // the input buffer.
610   if (II->isStr("__cxa_demangle"))
611     return true;
612 
613   StringRef FName = II->getName();
614 
615   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
616   //   buffer even if it is const.
617   if (FName.endswith("NoCopy"))
618     return true;
619 
620   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
621   //   be deallocated by NSMapRemove.
622   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
623     return true;
624 
625   // - Many CF containers allow objects to escape through custom
626   //   allocators/deallocators upon container construction. (PR12101)
627   if (FName.startswith("CF") || FName.startswith("CG")) {
628     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
629            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
630            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
631            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
632            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
633            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
634   }
635 
636   return false;
637 }
638 
639 const FunctionDecl *SimpleFunctionCall::getDecl() const {
640   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
641   if (D)
642     return D;
643 
644   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
645 }
646 
647 const FunctionDecl *CXXInstanceCall::getDecl() const {
648   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
649   if (!CE)
650     return AnyFunctionCall::getDecl();
651 
652   const FunctionDecl *D = CE->getDirectCallee();
653   if (D)
654     return D;
655 
656   return getSVal(CE->getCallee()).getAsFunctionDecl();
657 }
658 
659 void CXXInstanceCall::getExtraInvalidatedValues(
660     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
661   SVal ThisVal = getCXXThisVal();
662   Values.push_back(ThisVal);
663 
664   // Don't invalidate if the method is const and there are no mutable fields.
665   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
666     if (!D->isConst())
667       return;
668     // Get the record decl for the class of 'This'. D->getParent() may return a
669     // base class decl, rather than the class of the instance which needs to be
670     // checked for mutable fields.
671     // TODO: We might as well look at the dynamic type of the object.
672     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
673     QualType T = Ex->getType();
674     if (T->isPointerType()) // Arrow or implicit-this syntax?
675       T = T->getPointeeType();
676     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
677     assert(ParentRecord);
678     if (ParentRecord->hasMutableFields())
679       return;
680     // Preserve CXXThis.
681     const MemRegion *ThisRegion = ThisVal.getAsRegion();
682     if (!ThisRegion)
683       return;
684 
685     ETraits->setTrait(ThisRegion->getBaseRegion(),
686                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
687   }
688 }
689 
690 SVal CXXInstanceCall::getCXXThisVal() const {
691   const Expr *Base = getCXXThisExpr();
692   // FIXME: This doesn't handle an overloaded ->* operator.
693   if (!Base)
694     return UnknownVal();
695 
696   SVal ThisVal = getSVal(Base);
697   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
698   return ThisVal;
699 }
700 
701 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
702   // Do we have a decl at all?
703   const Decl *D = getDecl();
704   if (!D)
705     return {};
706 
707   // If the method is non-virtual, we know we can inline it.
708   const auto *MD = cast<CXXMethodDecl>(D);
709   if (!MD->isVirtual())
710     return AnyFunctionCall::getRuntimeDefinition();
711 
712   // Do we know the implicit 'this' object being called?
713   const MemRegion *R = getCXXThisVal().getAsRegion();
714   if (!R)
715     return {};
716 
717   // Do we know anything about the type of 'this'?
718   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
719   if (!DynType.isValid())
720     return {};
721 
722   // Is the type a C++ class? (This is mostly a defensive check.)
723   QualType RegionType = DynType.getType()->getPointeeType();
724   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
725 
726   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
727   if (!RD || !RD->hasDefinition())
728     return {};
729 
730   // Find the decl for this method in that class.
731   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
732   if (!Result) {
733     // We might not even get the original statically-resolved method due to
734     // some particularly nasty casting (e.g. casts to sister classes).
735     // However, we should at least be able to search up and down our own class
736     // hierarchy, and some real bugs have been caught by checking this.
737     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
738 
739     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
740     // the static type. However, because we currently don't update
741     // DynamicTypeInfo when an object is cast, we can't actually be sure the
742     // DynamicTypeInfo is up to date. This assert should be re-enabled once
743     // this is fixed. <rdar://problem/12287087>
744     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
745 
746     return {};
747   }
748 
749   // Does the decl that we found have an implementation?
750   const FunctionDecl *Definition;
751   if (!Result->hasBody(Definition))
752     return {};
753 
754   // We found a definition. If we're not sure that this devirtualization is
755   // actually what will happen at runtime, make sure to provide the region so
756   // that ExprEngine can decide what to do with it.
757   if (DynType.canBeASubClass())
758     return RuntimeDefinition(Definition, R->StripCasts());
759   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
760 }
761 
762 void CXXInstanceCall::getInitialStackFrameContents(
763                                             const StackFrameContext *CalleeCtx,
764                                             BindingsTy &Bindings) const {
765   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
766 
767   // Handle the binding of 'this' in the new stack frame.
768   SVal ThisVal = getCXXThisVal();
769   if (!ThisVal.isUnknown()) {
770     ProgramStateManager &StateMgr = getState()->getStateManager();
771     SValBuilder &SVB = StateMgr.getSValBuilder();
772 
773     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
774     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
775 
776     // If we devirtualized to a different member function, we need to make sure
777     // we have the proper layering of CXXBaseObjectRegions.
778     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
779       ASTContext &Ctx = SVB.getContext();
780       const CXXRecordDecl *Class = MD->getParent();
781       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
782 
783       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
784       bool Failed;
785       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
786       if (Failed) {
787         // We might have suffered some sort of placement new earlier, so
788         // we're constructing in a completely unexpected storage.
789         // Fall back to a generic pointer cast for this-value.
790         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
791         const CXXRecordDecl *StaticClass = StaticMD->getParent();
792         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
793         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
794       }
795     }
796 
797     if (!ThisVal.isUnknown())
798       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
799   }
800 }
801 
802 const Expr *CXXMemberCall::getCXXThisExpr() const {
803   return getOriginExpr()->getImplicitObjectArgument();
804 }
805 
806 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
807   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
808   // id-expression in the class member access expression is a qualified-id,
809   // that function is called. Otherwise, its final overrider in the dynamic type
810   // of the object expression is called.
811   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
812     if (ME->hasQualifier())
813       return AnyFunctionCall::getRuntimeDefinition();
814 
815   return CXXInstanceCall::getRuntimeDefinition();
816 }
817 
818 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
819   return getOriginExpr()->getArg(0);
820 }
821 
822 const BlockDataRegion *BlockCall::getBlockRegion() const {
823   const Expr *Callee = getOriginExpr()->getCallee();
824   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
825 
826   return dyn_cast_or_null<BlockDataRegion>(DataReg);
827 }
828 
829 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
830   const BlockDecl *D = getDecl();
831   if (!D)
832     return nullptr;
833   return D->parameters();
834 }
835 
836 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
837                   RegionAndSymbolInvalidationTraits *ETraits) const {
838   // FIXME: This also needs to invalidate captured globals.
839   if (const MemRegion *R = getBlockRegion())
840     Values.push_back(loc::MemRegionVal(R));
841 }
842 
843 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
844                                              BindingsTy &Bindings) const {
845   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
846   ArrayRef<ParmVarDecl*> Params;
847   if (isConversionFromLambda()) {
848     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
849     Params = LambdaOperatorDecl->parameters();
850 
851     // For blocks converted from a C++ lambda, the callee declaration is the
852     // operator() method on the lambda so we bind "this" to
853     // the lambda captured by the block.
854     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
855     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
856     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
857     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
858   } else {
859     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
860   }
861 
862   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
863                                Params);
864 }
865 
866 SVal CXXConstructorCall::getCXXThisVal() const {
867   if (Data)
868     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
869   return UnknownVal();
870 }
871 
872 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
873                            RegionAndSymbolInvalidationTraits *ETraits) const {
874   if (Data) {
875     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
876     if (SymbolRef Sym = MV.getAsSymbol(true))
877       ETraits->setTrait(Sym,
878                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
879     Values.push_back(MV);
880   }
881 }
882 
883 void CXXConstructorCall::getInitialStackFrameContents(
884                                              const StackFrameContext *CalleeCtx,
885                                              BindingsTy &Bindings) const {
886   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
887 
888   SVal ThisVal = getCXXThisVal();
889   if (!ThisVal.isUnknown()) {
890     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
891     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
892     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
893     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
894   }
895 }
896 
897 SVal CXXDestructorCall::getCXXThisVal() const {
898   if (Data)
899     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
900   return UnknownVal();
901 }
902 
903 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
904   // Base destructors are always called non-virtually.
905   // Skip CXXInstanceCall's devirtualization logic in this case.
906   if (isBaseDestructor())
907     return AnyFunctionCall::getRuntimeDefinition();
908 
909   return CXXInstanceCall::getRuntimeDefinition();
910 }
911 
912 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
913   const ObjCMethodDecl *D = getDecl();
914   if (!D)
915     return None;
916   return D->parameters();
917 }
918 
919 void ObjCMethodCall::getExtraInvalidatedValues(
920     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
921 
922   // If the method call is a setter for property known to be backed by
923   // an instance variable, don't invalidate the entire receiver, just
924   // the storage for that instance variable.
925   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
926     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
927       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
928       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
929         ETraits->setTrait(
930           IvarRegion,
931           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
932         ETraits->setTrait(
933           IvarRegion,
934           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
935         Values.push_back(IvarLVal);
936       }
937       return;
938     }
939   }
940 
941   Values.push_back(getReceiverSVal());
942 }
943 
944 SVal ObjCMethodCall::getSelfSVal() const {
945   const LocationContext *LCtx = getLocationContext();
946   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
947   if (!SelfDecl)
948     return SVal();
949   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
950 }
951 
952 SVal ObjCMethodCall::getReceiverSVal() const {
953   // FIXME: Is this the best way to handle class receivers?
954   if (!isInstanceMessage())
955     return UnknownVal();
956 
957   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
958     return getSVal(RecE);
959 
960   // An instance message with no expression means we are sending to super.
961   // In this case the object reference is the same as 'self'.
962   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
963   SVal SelfVal = getSelfSVal();
964   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
965   return SelfVal;
966 }
967 
968 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
969   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
970       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
971       return true;
972 
973   if (!isInstanceMessage())
974     return false;
975 
976   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
977 
978   return (RecVal == getSelfSVal());
979 }
980 
981 SourceRange ObjCMethodCall::getSourceRange() const {
982   switch (getMessageKind()) {
983   case OCM_Message:
984     return getOriginExpr()->getSourceRange();
985   case OCM_PropertyAccess:
986   case OCM_Subscript:
987     return getContainingPseudoObjectExpr()->getSourceRange();
988   }
989   llvm_unreachable("unknown message kind");
990 }
991 
992 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
993 
994 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
995   assert(Data && "Lazy lookup not yet performed.");
996   assert(getMessageKind() != OCM_Message && "Explicit message send.");
997   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
998 }
999 
1000 static const Expr *
1001 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1002   const Expr *Syntactic = POE->getSyntacticForm();
1003 
1004   // This handles the funny case of assigning to the result of a getter.
1005   // This can happen if the getter returns a non-const reference.
1006   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1007     Syntactic = BO->getLHS();
1008 
1009   return Syntactic;
1010 }
1011 
1012 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1013   if (!Data) {
1014     // Find the parent, ignoring implicit casts.
1015     ParentMap &PM = getLocationContext()->getParentMap();
1016     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1017 
1018     // Check if parent is a PseudoObjectExpr.
1019     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1020       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1021 
1022       ObjCMessageKind K;
1023       switch (Syntactic->getStmtClass()) {
1024       case Stmt::ObjCPropertyRefExprClass:
1025         K = OCM_PropertyAccess;
1026         break;
1027       case Stmt::ObjCSubscriptRefExprClass:
1028         K = OCM_Subscript;
1029         break;
1030       default:
1031         // FIXME: Can this ever happen?
1032         K = OCM_Message;
1033         break;
1034       }
1035 
1036       if (K != OCM_Message) {
1037         const_cast<ObjCMethodCall *>(this)->Data
1038           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1039         assert(getMessageKind() == K);
1040         return K;
1041       }
1042     }
1043 
1044     const_cast<ObjCMethodCall *>(this)->Data
1045       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1046     assert(getMessageKind() == OCM_Message);
1047     return OCM_Message;
1048   }
1049 
1050   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1051   if (!Info.getPointer())
1052     return OCM_Message;
1053   return static_cast<ObjCMessageKind>(Info.getInt());
1054 }
1055 
1056 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1057   // Look for properties accessed with property syntax (foo.bar = ...)
1058   if ( getMessageKind() == OCM_PropertyAccess) {
1059     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1060     assert(POE && "Property access without PseudoObjectExpr?");
1061 
1062     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1063     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1064 
1065     if (RefExpr->isExplicitProperty())
1066       return RefExpr->getExplicitProperty();
1067   }
1068 
1069   // Look for properties accessed with method syntax ([foo setBar:...]).
1070   const ObjCMethodDecl *MD = getDecl();
1071   if (!MD || !MD->isPropertyAccessor())
1072     return nullptr;
1073 
1074   // Note: This is potentially quite slow.
1075   return MD->findPropertyDecl();
1076 }
1077 
1078 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1079                                              Selector Sel) const {
1080   assert(IDecl);
1081   AnalysisManager &AMgr =
1082       getState()->getStateManager().getOwningEngine()->getAnalysisManager();
1083   // If the class interface is declared inside the main file, assume it is not
1084   // subcassed.
1085   // TODO: It could actually be subclassed if the subclass is private as well.
1086   // This is probably very rare.
1087   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1088   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1089     return false;
1090 
1091   // Assume that property accessors are not overridden.
1092   if (getMessageKind() == OCM_PropertyAccess)
1093     return false;
1094 
1095   // We assume that if the method is public (declared outside of main file) or
1096   // has a parent which publicly declares the method, the method could be
1097   // overridden in a subclass.
1098 
1099   // Find the first declaration in the class hierarchy that declares
1100   // the selector.
1101   ObjCMethodDecl *D = nullptr;
1102   while (true) {
1103     D = IDecl->lookupMethod(Sel, true);
1104 
1105     // Cannot find a public definition.
1106     if (!D)
1107       return false;
1108 
1109     // If outside the main file,
1110     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1111       return true;
1112 
1113     if (D->isOverriding()) {
1114       // Search in the superclass on the next iteration.
1115       IDecl = D->getClassInterface();
1116       if (!IDecl)
1117         return false;
1118 
1119       IDecl = IDecl->getSuperClass();
1120       if (!IDecl)
1121         return false;
1122 
1123       continue;
1124     }
1125 
1126     return false;
1127   };
1128 
1129   llvm_unreachable("The while loop should always terminate.");
1130 }
1131 
1132 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1133   if (!MD)
1134     return MD;
1135 
1136   // Find the redeclaration that defines the method.
1137   if (!MD->hasBody()) {
1138     for (auto I : MD->redecls())
1139       if (I->hasBody())
1140         MD = cast<ObjCMethodDecl>(I);
1141   }
1142   return MD;
1143 }
1144 
1145 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1146   const Expr* InstRec = ME->getInstanceReceiver();
1147   if (!InstRec)
1148     return false;
1149   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1150 
1151   // Check that receiver is called 'self'.
1152   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1153       !InstRecIg->getFoundDecl()->getName().equals("self"))
1154     return false;
1155 
1156   // Check that the method name is 'class'.
1157   if (ME->getSelector().getNumArgs() != 0 ||
1158       !ME->getSelector().getNameForSlot(0).equals("class"))
1159     return false;
1160 
1161   return true;
1162 }
1163 
1164 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1165   const ObjCMessageExpr *E = getOriginExpr();
1166   assert(E);
1167   Selector Sel = E->getSelector();
1168 
1169   if (E->isInstanceMessage()) {
1170     // Find the receiver type.
1171     const ObjCObjectPointerType *ReceiverT = nullptr;
1172     bool CanBeSubClassed = false;
1173     QualType SupersType = E->getSuperType();
1174     const MemRegion *Receiver = nullptr;
1175 
1176     if (!SupersType.isNull()) {
1177       // The receiver is guaranteed to be 'super' in this case.
1178       // Super always means the type of immediate predecessor to the method
1179       // where the call occurs.
1180       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1181     } else {
1182       Receiver = getReceiverSVal().getAsRegion();
1183       if (!Receiver)
1184         return {};
1185 
1186       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1187       if (!DTI.isValid()) {
1188         assert(isa<AllocaRegion>(Receiver) &&
1189                "Unhandled untyped region class!");
1190         return {};
1191       }
1192 
1193       QualType DynType = DTI.getType();
1194       CanBeSubClassed = DTI.canBeASubClass();
1195       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1196 
1197       if (ReceiverT && CanBeSubClassed)
1198         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1199           if (!canBeOverridenInSubclass(IDecl, Sel))
1200             CanBeSubClassed = false;
1201     }
1202 
1203     // Handle special cases of '[self classMethod]' and
1204     // '[[self class] classMethod]', which are treated by the compiler as
1205     // instance (not class) messages. We will statically dispatch to those.
1206     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1207       // For [self classMethod], return the compiler visible declaration.
1208       if (PT->getObjectType()->isObjCClass() &&
1209           Receiver == getSelfSVal().getAsRegion())
1210         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1211 
1212       // Similarly, handle [[self class] classMethod].
1213       // TODO: We are currently doing a syntactic match for this pattern with is
1214       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1215       // shows. A better way would be to associate the meta type with the symbol
1216       // using the dynamic type info tracking and use it here. We can add a new
1217       // SVal for ObjC 'Class' values that know what interface declaration they
1218       // come from. Then 'self' in a class method would be filled in with
1219       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1220       // do proper dynamic dispatch for class methods just like we do for
1221       // instance methods now.
1222       if (E->getInstanceReceiver())
1223         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1224           if (isCallToSelfClass(M))
1225             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1226     }
1227 
1228     // Lookup the instance method implementation.
1229     if (ReceiverT)
1230       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1231         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1232         // when in many cases it returns null.  We cache the results so
1233         // that repeated queries on the same ObjCIntefaceDecl and Selector
1234         // don't incur the same cost.  On some test cases, we can see the
1235         // same query being issued thousands of times.
1236         //
1237         // NOTE: This cache is essentially a "global" variable, but it
1238         // only gets lazily created when we get here.  The value of the
1239         // cache probably comes from it being global across ExprEngines,
1240         // where the same queries may get issued.  If we are worried about
1241         // concurrency, or possibly loading/unloading ASTs, etc., we may
1242         // need to revisit this someday.  In terms of memory, this table
1243         // stays around until clang quits, which also may be bad if we
1244         // need to release memory.
1245         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1246         using PrivateMethodCache =
1247             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1248 
1249         static PrivateMethodCache PMC;
1250         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1251 
1252         // Query lookupPrivateMethod() if the cache does not hit.
1253         if (!Val.hasValue()) {
1254           Val = IDecl->lookupPrivateMethod(Sel);
1255 
1256           // If the method is a property accessor, we should try to "inline" it
1257           // even if we don't actually have an implementation.
1258           if (!*Val)
1259             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1260               if (CompileTimeMD->isPropertyAccessor()) {
1261                 if (!CompileTimeMD->getSelfDecl() &&
1262                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1263                   // If the method is an accessor in a category, and it doesn't
1264                   // have a self declaration, first
1265                   // try to find the method in a class extension. This
1266                   // works around a bug in Sema where multiple accessors
1267                   // are synthesized for properties in class
1268                   // extensions that are redeclared in a category and the
1269                   // the implicit parameters are not filled in for
1270                   // the method on the category.
1271                   // This ensures we find the accessor in the extension, which
1272                   // has the implicit parameters filled in.
1273                   auto *ID = CompileTimeMD->getClassInterface();
1274                   for (auto *CatDecl : ID->visible_extensions()) {
1275                     Val = CatDecl->getMethod(Sel,
1276                                              CompileTimeMD->isInstanceMethod());
1277                     if (*Val)
1278                       break;
1279                   }
1280                 }
1281                 if (!*Val)
1282                   Val = IDecl->lookupInstanceMethod(Sel);
1283               }
1284         }
1285 
1286         const ObjCMethodDecl *MD = Val.getValue();
1287         if (CanBeSubClassed)
1288           return RuntimeDefinition(MD, Receiver);
1289         else
1290           return RuntimeDefinition(MD, nullptr);
1291       }
1292   } else {
1293     // This is a class method.
1294     // If we have type info for the receiver class, we are calling via
1295     // class name.
1296     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1297       // Find/Return the method implementation.
1298       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1299     }
1300   }
1301 
1302   return {};
1303 }
1304 
1305 bool ObjCMethodCall::argumentsMayEscape() const {
1306   if (isInSystemHeader() && !isInstanceMessage()) {
1307     Selector Sel = getSelector();
1308     if (Sel.getNumArgs() == 1 &&
1309         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1310       return true;
1311   }
1312 
1313   return CallEvent::argumentsMayEscape();
1314 }
1315 
1316 void ObjCMethodCall::getInitialStackFrameContents(
1317                                              const StackFrameContext *CalleeCtx,
1318                                              BindingsTy &Bindings) const {
1319   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1320   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1321   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1322                                D->parameters());
1323 
1324   SVal SelfVal = getReceiverSVal();
1325   if (!SelfVal.isUnknown()) {
1326     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1327     MemRegionManager &MRMgr = SVB.getRegionManager();
1328     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1329     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1330   }
1331 }
1332 
1333 CallEventRef<>
1334 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1335                                 const LocationContext *LCtx) {
1336   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1337     return create<CXXMemberCall>(MCE, State, LCtx);
1338 
1339   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1340     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1341     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1342       if (MD->isInstance())
1343         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1344 
1345   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1346     return create<BlockCall>(CE, State, LCtx);
1347   }
1348 
1349   // Otherwise, it's a normal function call, static member function call, or
1350   // something we can't reason about.
1351   return create<SimpleFunctionCall>(CE, State, LCtx);
1352 }
1353 
1354 CallEventRef<>
1355 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1356                             ProgramStateRef State) {
1357   const LocationContext *ParentCtx = CalleeCtx->getParent();
1358   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1359   assert(CallerCtx && "This should not be used for top-level stack frames");
1360 
1361   const Stmt *CallSite = CalleeCtx->getCallSite();
1362 
1363   if (CallSite) {
1364     if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
1365       return getSimpleCall(CE, State, CallerCtx);
1366 
1367     switch (CallSite->getStmtClass()) {
1368     case Stmt::CXXConstructExprClass:
1369     case Stmt::CXXTemporaryObjectExprClass: {
1370       SValBuilder &SVB = State->getStateManager().getSValBuilder();
1371       const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1372       Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1373       SVal ThisVal = State->getSVal(ThisPtr);
1374 
1375       return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1376                                    ThisVal.getAsRegion(), State, CallerCtx);
1377     }
1378     case Stmt::CXXNewExprClass:
1379       return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
1380     case Stmt::ObjCMessageExprClass:
1381       return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
1382                                State, CallerCtx);
1383     default:
1384       llvm_unreachable("This is not an inlineable statement.");
1385     }
1386   }
1387 
1388   // Fall back to the CFG. The only thing we haven't handled yet is
1389   // destructors, though this could change in the future.
1390   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1391   CFGElement E = (*B)[CalleeCtx->getIndex()];
1392   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1393          "All other CFG elements should have exprs");
1394 
1395   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1396   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1397   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1398   SVal ThisVal = State->getSVal(ThisPtr);
1399 
1400   const Stmt *Trigger;
1401   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1402     Trigger = AutoDtor->getTriggerStmt();
1403   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1404     Trigger = DeleteDtor->getDeleteExpr();
1405   else
1406     Trigger = Dtor->getBody();
1407 
1408   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1409                               E.getAs<CFGBaseDtor>().hasValue(), State,
1410                               CallerCtx);
1411 }
1412