1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This file defines CallEvent and its subclasses, which represent path- 11 /// sensitive instances of different kinds of function and method calls 12 /// (C, C++, and Objective-C). 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclBase.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/ParentMap.h" 26 #include "clang/AST/Stmt.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Analysis/AnalysisDeclContext.h" 29 #include "clang/Analysis/CFG.h" 30 #include "clang/Analysis/CFGStmtMap.h" 31 #include "clang/Analysis/ProgramPoint.h" 32 #include "clang/CrossTU/CrossTranslationUnit.h" 33 #include "clang/Basic/IdentifierTable.h" 34 #include "clang/Basic/LLVM.h" 35 #include "clang/Basic/SourceLocation.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/Specifiers.h" 38 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 45 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" 48 #include "llvm/ADT/ArrayRef.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/None.h" 51 #include "llvm/ADT/Optional.h" 52 #include "llvm/ADT/PointerIntPair.h" 53 #include "llvm/ADT/SmallSet.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/ADT/StringRef.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <cassert> 63 #include <utility> 64 65 #define DEBUG_TYPE "static-analyzer-call-event" 66 67 using namespace clang; 68 using namespace ento; 69 70 QualType CallEvent::getResultType() const { 71 ASTContext &Ctx = getState()->getStateManager().getContext(); 72 const Expr *E = getOriginExpr(); 73 if (!E) 74 return Ctx.VoidTy; 75 assert(E); 76 77 QualType ResultTy = E->getType(); 78 79 // A function that returns a reference to 'int' will have a result type 80 // of simply 'int'. Check the origin expr's value kind to recover the 81 // proper type. 82 switch (E->getValueKind()) { 83 case VK_LValue: 84 ResultTy = Ctx.getLValueReferenceType(ResultTy); 85 break; 86 case VK_XValue: 87 ResultTy = Ctx.getRValueReferenceType(ResultTy); 88 break; 89 case VK_RValue: 90 // No adjustment is necessary. 91 break; 92 } 93 94 return ResultTy; 95 } 96 97 static bool isCallback(QualType T) { 98 // If a parameter is a block or a callback, assume it can modify pointer. 99 if (T->isBlockPointerType() || 100 T->isFunctionPointerType() || 101 T->isObjCSelType()) 102 return true; 103 104 // Check if a callback is passed inside a struct (for both, struct passed by 105 // reference and by value). Dig just one level into the struct for now. 106 107 if (T->isAnyPointerType() || T->isReferenceType()) 108 T = T->getPointeeType(); 109 110 if (const RecordType *RT = T->getAsStructureType()) { 111 const RecordDecl *RD = RT->getDecl(); 112 for (const auto *I : RD->fields()) { 113 QualType FieldT = I->getType(); 114 if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) 115 return true; 116 } 117 } 118 return false; 119 } 120 121 static bool isVoidPointerToNonConst(QualType T) { 122 if (const auto *PT = T->getAs<PointerType>()) { 123 QualType PointeeTy = PT->getPointeeType(); 124 if (PointeeTy.isConstQualified()) 125 return false; 126 return PointeeTy->isVoidType(); 127 } else 128 return false; 129 } 130 131 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const { 132 unsigned NumOfArgs = getNumArgs(); 133 134 // If calling using a function pointer, assume the function does not 135 // satisfy the callback. 136 // TODO: We could check the types of the arguments here. 137 if (!getDecl()) 138 return false; 139 140 unsigned Idx = 0; 141 for (CallEvent::param_type_iterator I = param_type_begin(), 142 E = param_type_end(); 143 I != E && Idx < NumOfArgs; ++I, ++Idx) { 144 // If the parameter is 0, it's harmless. 145 if (getArgSVal(Idx).isZeroConstant()) 146 continue; 147 148 if (Condition(*I)) 149 return true; 150 } 151 return false; 152 } 153 154 bool CallEvent::hasNonZeroCallbackArg() const { 155 return hasNonNullArgumentsWithType(isCallback); 156 } 157 158 bool CallEvent::hasVoidPointerToNonConstArg() const { 159 return hasNonNullArgumentsWithType(isVoidPointerToNonConst); 160 } 161 162 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { 163 const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 164 if (!FD) 165 return false; 166 167 return CheckerContext::isCLibraryFunction(FD, FunctionName); 168 } 169 170 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const { 171 const Decl *D = getDecl(); 172 if (!D) 173 return nullptr; 174 175 // TODO: For now we skip functions without definitions, even if we have 176 // our own getDecl(), because it's hard to find out which re-declaration 177 // is going to be used, and usually clients don't really care about this 178 // situation because there's a loss of precision anyway because we cannot 179 // inline the call. 180 RuntimeDefinition RD = getRuntimeDefinition(); 181 if (!RD.getDecl()) 182 return nullptr; 183 184 AnalysisDeclContext *ADC = 185 LCtx->getAnalysisDeclContext()->getManager()->getContext(D); 186 187 // TODO: For now we skip virtual functions, because this also rises 188 // the problem of which decl to use, but now it's across different classes. 189 if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl()) 190 return nullptr; 191 192 return ADC; 193 } 194 195 const StackFrameContext *CallEvent::getCalleeStackFrame() const { 196 AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext(); 197 if (!ADC) 198 return nullptr; 199 200 const Expr *E = getOriginExpr(); 201 if (!E) 202 return nullptr; 203 204 // Recover CFG block via reverse lookup. 205 // TODO: If we were to keep CFG element information as part of the CallEvent 206 // instead of doing this reverse lookup, we would be able to build the stack 207 // frame for non-expression-based calls, and also we wouldn't need the reverse 208 // lookup. 209 CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap(); 210 const CFGBlock *B = Map->getBlock(E); 211 assert(B); 212 213 // Also recover CFG index by scanning the CFG block. 214 unsigned Idx = 0, Sz = B->size(); 215 for (; Idx < Sz; ++Idx) 216 if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>()) 217 if (StmtElem->getStmt() == E) 218 break; 219 assert(Idx < Sz); 220 221 return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx); 222 } 223 224 const VarRegion *CallEvent::getParameterLocation(unsigned Index) const { 225 const StackFrameContext *SFC = getCalleeStackFrame(); 226 // We cannot construct a VarRegion without a stack frame. 227 if (!SFC) 228 return nullptr; 229 230 // Retrieve parameters of the definition, which are different from 231 // CallEvent's parameters() because getDecl() isn't necessarily 232 // the definition. SFC contains the definition that would be used 233 // during analysis. 234 const Decl *D = SFC->getDecl(); 235 236 // TODO: Refactor into a virtual method of CallEvent, like parameters(). 237 const ParmVarDecl *PVD = nullptr; 238 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 239 PVD = FD->parameters()[Index]; 240 else if (const auto *BD = dyn_cast<BlockDecl>(D)) 241 PVD = BD->parameters()[Index]; 242 else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 243 PVD = MD->parameters()[Index]; 244 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 245 PVD = CD->parameters()[Index]; 246 assert(PVD && "Unexpected Decl kind!"); 247 248 const VarRegion *VR = 249 State->getStateManager().getRegionManager().getVarRegion(PVD, SFC); 250 251 // This sanity check would fail if our parameter declaration doesn't 252 // correspond to the stack frame's function declaration. 253 assert(VR->getStackFrame() == SFC); 254 255 return VR; 256 } 257 258 /// Returns true if a type is a pointer-to-const or reference-to-const 259 /// with no further indirection. 260 static bool isPointerToConst(QualType Ty) { 261 QualType PointeeTy = Ty->getPointeeType(); 262 if (PointeeTy == QualType()) 263 return false; 264 if (!PointeeTy.isConstQualified()) 265 return false; 266 if (PointeeTy->isAnyPointerType()) 267 return false; 268 return true; 269 } 270 271 // Try to retrieve the function declaration and find the function parameter 272 // types which are pointers/references to a non-pointer const. 273 // We will not invalidate the corresponding argument regions. 274 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs, 275 const CallEvent &Call) { 276 unsigned Idx = 0; 277 for (CallEvent::param_type_iterator I = Call.param_type_begin(), 278 E = Call.param_type_end(); 279 I != E; ++I, ++Idx) { 280 if (isPointerToConst(*I)) 281 PreserveArgs.insert(Idx); 282 } 283 } 284 285 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, 286 ProgramStateRef Orig) const { 287 ProgramStateRef Result = (Orig ? Orig : getState()); 288 289 // Don't invalidate anything if the callee is marked pure/const. 290 if (const Decl *callee = getDecl()) 291 if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>()) 292 return Result; 293 294 SmallVector<SVal, 8> ValuesToInvalidate; 295 RegionAndSymbolInvalidationTraits ETraits; 296 297 getExtraInvalidatedValues(ValuesToInvalidate, &ETraits); 298 299 // Indexes of arguments whose values will be preserved by the call. 300 llvm::SmallSet<unsigned, 4> PreserveArgs; 301 if (!argumentsMayEscape()) 302 findPtrToConstParams(PreserveArgs, *this); 303 304 for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { 305 // Mark this region for invalidation. We batch invalidate regions 306 // below for efficiency. 307 if (PreserveArgs.count(Idx)) 308 if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) 309 ETraits.setTrait(MR->getBaseRegion(), 310 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 311 // TODO: Factor this out + handle the lower level const pointers. 312 313 ValuesToInvalidate.push_back(getArgSVal(Idx)); 314 315 // If a function accepts an object by argument (which would of course be a 316 // temporary that isn't lifetime-extended), invalidate the object itself, 317 // not only other objects reachable from it. This is necessary because the 318 // destructor has access to the temporary object after the call. 319 // TODO: Support placement arguments once we start 320 // constructing them directly. 321 // TODO: This is unnecessary when there's no destructor, but that's 322 // currently hard to figure out. 323 if (getKind() != CE_CXXAllocator) 324 if (isArgumentConstructedDirectly(Idx)) 325 if (auto AdjIdx = getAdjustedParameterIndex(Idx)) 326 if (const VarRegion *VR = getParameterLocation(*AdjIdx)) 327 ValuesToInvalidate.push_back(loc::MemRegionVal(VR)); 328 } 329 330 // Invalidate designated regions using the batch invalidation API. 331 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate 332 // global variables. 333 return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(), 334 BlockCount, getLocationContext(), 335 /*CausedByPointerEscape*/ true, 336 /*Symbols=*/nullptr, this, &ETraits); 337 } 338 339 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, 340 const ProgramPointTag *Tag) const { 341 if (const Expr *E = getOriginExpr()) { 342 if (IsPreVisit) 343 return PreStmt(E, getLocationContext(), Tag); 344 return PostStmt(E, getLocationContext(), Tag); 345 } 346 347 const Decl *D = getDecl(); 348 assert(D && "Cannot get a program point without a statement or decl"); 349 350 SourceLocation Loc = getSourceRange().getBegin(); 351 if (IsPreVisit) 352 return PreImplicitCall(D, Loc, getLocationContext(), Tag); 353 return PostImplicitCall(D, Loc, getLocationContext(), Tag); 354 } 355 356 bool CallEvent::isCalled(const CallDescription &CD) const { 357 // FIXME: Add ObjC Message support. 358 if (getKind() == CE_ObjCMessage) 359 return false; 360 if (!CD.IsLookupDone) { 361 CD.IsLookupDone = true; 362 CD.II = &getState()->getStateManager().getContext().Idents.get( 363 CD.getFunctionName()); 364 } 365 const IdentifierInfo *II = getCalleeIdentifier(); 366 if (!II || II != CD.II) 367 return false; 368 369 const Decl *D = getDecl(); 370 // If CallDescription provides prefix names, use them to improve matching 371 // accuracy. 372 if (CD.QualifiedName.size() > 1 && D) { 373 const DeclContext *Ctx = D->getDeclContext(); 374 std::vector<StringRef> QualifiedName = CD.QualifiedName; 375 QualifiedName.pop_back(); 376 for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) { 377 if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) { 378 if (!QualifiedName.empty() && ND->getName() == QualifiedName.back()) 379 QualifiedName.pop_back(); 380 continue; 381 } 382 383 if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) { 384 if (!QualifiedName.empty() && RD->getName() == QualifiedName.back()) 385 QualifiedName.pop_back(); 386 continue; 387 } 388 } 389 390 if (!QualifiedName.empty()) 391 return false; 392 } 393 394 return (CD.RequiredArgs == CallDescription::NoArgRequirement || 395 CD.RequiredArgs == getNumArgs()); 396 } 397 398 SVal CallEvent::getArgSVal(unsigned Index) const { 399 const Expr *ArgE = getArgExpr(Index); 400 if (!ArgE) 401 return UnknownVal(); 402 return getSVal(ArgE); 403 } 404 405 SourceRange CallEvent::getArgSourceRange(unsigned Index) const { 406 const Expr *ArgE = getArgExpr(Index); 407 if (!ArgE) 408 return {}; 409 return ArgE->getSourceRange(); 410 } 411 412 SVal CallEvent::getReturnValue() const { 413 const Expr *E = getOriginExpr(); 414 if (!E) 415 return UndefinedVal(); 416 return getSVal(E); 417 } 418 419 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); } 420 421 void CallEvent::dump(raw_ostream &Out) const { 422 ASTContext &Ctx = getState()->getStateManager().getContext(); 423 if (const Expr *E = getOriginExpr()) { 424 E->printPretty(Out, nullptr, Ctx.getPrintingPolicy()); 425 Out << "\n"; 426 return; 427 } 428 429 if (const Decl *D = getDecl()) { 430 Out << "Call to "; 431 D->print(Out, Ctx.getPrintingPolicy()); 432 return; 433 } 434 435 // FIXME: a string representation of the kind would be nice. 436 Out << "Unknown call (type " << getKind() << ")"; 437 } 438 439 bool CallEvent::isCallStmt(const Stmt *S) { 440 return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S) 441 || isa<CXXConstructExpr>(S) 442 || isa<CXXNewExpr>(S); 443 } 444 445 QualType CallEvent::getDeclaredResultType(const Decl *D) { 446 assert(D); 447 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 448 return FD->getReturnType(); 449 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 450 return MD->getReturnType(); 451 if (const auto *BD = dyn_cast<BlockDecl>(D)) { 452 // Blocks are difficult because the return type may not be stored in the 453 // BlockDecl itself. The AST should probably be enhanced, but for now we 454 // just do what we can. 455 // If the block is declared without an explicit argument list, the 456 // signature-as-written just includes the return type, not the entire 457 // function type. 458 // FIXME: All blocks should have signatures-as-written, even if the return 459 // type is inferred. (That's signified with a dependent result type.) 460 if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) { 461 QualType Ty = TSI->getType(); 462 if (const FunctionType *FT = Ty->getAs<FunctionType>()) 463 Ty = FT->getReturnType(); 464 if (!Ty->isDependentType()) 465 return Ty; 466 } 467 468 return {}; 469 } 470 471 llvm_unreachable("unknown callable kind"); 472 } 473 474 bool CallEvent::isVariadic(const Decl *D) { 475 assert(D); 476 477 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 478 return FD->isVariadic(); 479 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 480 return MD->isVariadic(); 481 if (const auto *BD = dyn_cast<BlockDecl>(D)) 482 return BD->isVariadic(); 483 484 llvm_unreachable("unknown callable kind"); 485 } 486 487 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, 488 CallEvent::BindingsTy &Bindings, 489 SValBuilder &SVB, 490 const CallEvent &Call, 491 ArrayRef<ParmVarDecl*> parameters) { 492 MemRegionManager &MRMgr = SVB.getRegionManager(); 493 494 // If the function has fewer parameters than the call has arguments, we simply 495 // do not bind any values to them. 496 unsigned NumArgs = Call.getNumArgs(); 497 unsigned Idx = 0; 498 ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end(); 499 for (; I != E && Idx < NumArgs; ++I, ++Idx) { 500 const ParmVarDecl *ParamDecl = *I; 501 assert(ParamDecl && "Formal parameter has no decl?"); 502 503 if (Call.getKind() != CE_CXXAllocator) 504 if (Call.isArgumentConstructedDirectly(Idx)) 505 continue; 506 507 SVal ArgVal = Call.getArgSVal(Idx); 508 if (!ArgVal.isUnknown()) { 509 Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx)); 510 Bindings.push_back(std::make_pair(ParamLoc, ArgVal)); 511 } 512 } 513 514 // FIXME: Variadic arguments are not handled at all right now. 515 } 516 517 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const { 518 const FunctionDecl *D = getDecl(); 519 if (!D) 520 return None; 521 return D->parameters(); 522 } 523 524 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const { 525 const FunctionDecl *FD = getDecl(); 526 if (!FD) 527 return {}; 528 529 // Note that the AnalysisDeclContext will have the FunctionDecl with 530 // the definition (if one exists). 531 AnalysisDeclContext *AD = 532 getLocationContext()->getAnalysisDeclContext()-> 533 getManager()->getContext(FD); 534 bool IsAutosynthesized; 535 Stmt* Body = AD->getBody(IsAutosynthesized); 536 LLVM_DEBUG({ 537 if (IsAutosynthesized) 538 llvm::dbgs() << "Using autosynthesized body for " << FD->getName() 539 << "\n"; 540 }); 541 if (Body) { 542 const Decl* Decl = AD->getDecl(); 543 return RuntimeDefinition(Decl); 544 } 545 546 SubEngine *Engine = getState()->getStateManager().getOwningEngine(); 547 AnalyzerOptions &Opts = Engine->getAnalysisManager().options; 548 549 // Try to get CTU definition only if CTUDir is provided. 550 if (!Opts.naiveCTUEnabled()) 551 return {}; 552 553 cross_tu::CrossTranslationUnitContext &CTUCtx = 554 *Engine->getCrossTranslationUnitContext(); 555 llvm::Expected<const FunctionDecl *> CTUDeclOrError = 556 CTUCtx.getCrossTUDefinition(FD, Opts.getCTUDir(), Opts.getCTUIndexName()); 557 558 if (!CTUDeclOrError) { 559 handleAllErrors(CTUDeclOrError.takeError(), 560 [&](const cross_tu::IndexError &IE) { 561 CTUCtx.emitCrossTUDiagnostics(IE); 562 }); 563 return {}; 564 } 565 566 return RuntimeDefinition(*CTUDeclOrError); 567 } 568 569 void AnyFunctionCall::getInitialStackFrameContents( 570 const StackFrameContext *CalleeCtx, 571 BindingsTy &Bindings) const { 572 const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl()); 573 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 574 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 575 D->parameters()); 576 } 577 578 bool AnyFunctionCall::argumentsMayEscape() const { 579 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg()) 580 return true; 581 582 const FunctionDecl *D = getDecl(); 583 if (!D) 584 return true; 585 586 const IdentifierInfo *II = D->getIdentifier(); 587 if (!II) 588 return false; 589 590 // This set of "escaping" APIs is 591 592 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a 593 // value into thread local storage. The value can later be retrieved with 594 // 'void *ptheread_getspecific(pthread_key)'. So even thought the 595 // parameter is 'const void *', the region escapes through the call. 596 if (II->isStr("pthread_setspecific")) 597 return true; 598 599 // - xpc_connection_set_context stores a value which can be retrieved later 600 // with xpc_connection_get_context. 601 if (II->isStr("xpc_connection_set_context")) 602 return true; 603 604 // - funopen - sets a buffer for future IO calls. 605 if (II->isStr("funopen")) 606 return true; 607 608 // - __cxa_demangle - can reallocate memory and can return the pointer to 609 // the input buffer. 610 if (II->isStr("__cxa_demangle")) 611 return true; 612 613 StringRef FName = II->getName(); 614 615 // - CoreFoundation functions that end with "NoCopy" can free a passed-in 616 // buffer even if it is const. 617 if (FName.endswith("NoCopy")) 618 return true; 619 620 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can 621 // be deallocated by NSMapRemove. 622 if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) 623 return true; 624 625 // - Many CF containers allow objects to escape through custom 626 // allocators/deallocators upon container construction. (PR12101) 627 if (FName.startswith("CF") || FName.startswith("CG")) { 628 return StrInStrNoCase(FName, "InsertValue") != StringRef::npos || 629 StrInStrNoCase(FName, "AddValue") != StringRef::npos || 630 StrInStrNoCase(FName, "SetValue") != StringRef::npos || 631 StrInStrNoCase(FName, "WithData") != StringRef::npos || 632 StrInStrNoCase(FName, "AppendValue") != StringRef::npos || 633 StrInStrNoCase(FName, "SetAttribute") != StringRef::npos; 634 } 635 636 return false; 637 } 638 639 const FunctionDecl *SimpleFunctionCall::getDecl() const { 640 const FunctionDecl *D = getOriginExpr()->getDirectCallee(); 641 if (D) 642 return D; 643 644 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl(); 645 } 646 647 const FunctionDecl *CXXInstanceCall::getDecl() const { 648 const auto *CE = cast_or_null<CallExpr>(getOriginExpr()); 649 if (!CE) 650 return AnyFunctionCall::getDecl(); 651 652 const FunctionDecl *D = CE->getDirectCallee(); 653 if (D) 654 return D; 655 656 return getSVal(CE->getCallee()).getAsFunctionDecl(); 657 } 658 659 void CXXInstanceCall::getExtraInvalidatedValues( 660 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 661 SVal ThisVal = getCXXThisVal(); 662 Values.push_back(ThisVal); 663 664 // Don't invalidate if the method is const and there are no mutable fields. 665 if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) { 666 if (!D->isConst()) 667 return; 668 // Get the record decl for the class of 'This'. D->getParent() may return a 669 // base class decl, rather than the class of the instance which needs to be 670 // checked for mutable fields. 671 // TODO: We might as well look at the dynamic type of the object. 672 const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts(); 673 QualType T = Ex->getType(); 674 if (T->isPointerType()) // Arrow or implicit-this syntax? 675 T = T->getPointeeType(); 676 const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl(); 677 assert(ParentRecord); 678 if (ParentRecord->hasMutableFields()) 679 return; 680 // Preserve CXXThis. 681 const MemRegion *ThisRegion = ThisVal.getAsRegion(); 682 if (!ThisRegion) 683 return; 684 685 ETraits->setTrait(ThisRegion->getBaseRegion(), 686 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 687 } 688 } 689 690 SVal CXXInstanceCall::getCXXThisVal() const { 691 const Expr *Base = getCXXThisExpr(); 692 // FIXME: This doesn't handle an overloaded ->* operator. 693 if (!Base) 694 return UnknownVal(); 695 696 SVal ThisVal = getSVal(Base); 697 assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()); 698 return ThisVal; 699 } 700 701 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { 702 // Do we have a decl at all? 703 const Decl *D = getDecl(); 704 if (!D) 705 return {}; 706 707 // If the method is non-virtual, we know we can inline it. 708 const auto *MD = cast<CXXMethodDecl>(D); 709 if (!MD->isVirtual()) 710 return AnyFunctionCall::getRuntimeDefinition(); 711 712 // Do we know the implicit 'this' object being called? 713 const MemRegion *R = getCXXThisVal().getAsRegion(); 714 if (!R) 715 return {}; 716 717 // Do we know anything about the type of 'this'? 718 DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R); 719 if (!DynType.isValid()) 720 return {}; 721 722 // Is the type a C++ class? (This is mostly a defensive check.) 723 QualType RegionType = DynType.getType()->getPointeeType(); 724 assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."); 725 726 const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl(); 727 if (!RD || !RD->hasDefinition()) 728 return {}; 729 730 // Find the decl for this method in that class. 731 const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true); 732 if (!Result) { 733 // We might not even get the original statically-resolved method due to 734 // some particularly nasty casting (e.g. casts to sister classes). 735 // However, we should at least be able to search up and down our own class 736 // hierarchy, and some real bugs have been caught by checking this. 737 assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"); 738 739 // FIXME: This is checking that our DynamicTypeInfo is at least as good as 740 // the static type. However, because we currently don't update 741 // DynamicTypeInfo when an object is cast, we can't actually be sure the 742 // DynamicTypeInfo is up to date. This assert should be re-enabled once 743 // this is fixed. <rdar://problem/12287087> 744 //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); 745 746 return {}; 747 } 748 749 // Does the decl that we found have an implementation? 750 const FunctionDecl *Definition; 751 if (!Result->hasBody(Definition)) 752 return {}; 753 754 // We found a definition. If we're not sure that this devirtualization is 755 // actually what will happen at runtime, make sure to provide the region so 756 // that ExprEngine can decide what to do with it. 757 if (DynType.canBeASubClass()) 758 return RuntimeDefinition(Definition, R->StripCasts()); 759 return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr); 760 } 761 762 void CXXInstanceCall::getInitialStackFrameContents( 763 const StackFrameContext *CalleeCtx, 764 BindingsTy &Bindings) const { 765 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 766 767 // Handle the binding of 'this' in the new stack frame. 768 SVal ThisVal = getCXXThisVal(); 769 if (!ThisVal.isUnknown()) { 770 ProgramStateManager &StateMgr = getState()->getStateManager(); 771 SValBuilder &SVB = StateMgr.getSValBuilder(); 772 773 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 774 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 775 776 // If we devirtualized to a different member function, we need to make sure 777 // we have the proper layering of CXXBaseObjectRegions. 778 if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { 779 ASTContext &Ctx = SVB.getContext(); 780 const CXXRecordDecl *Class = MD->getParent(); 781 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class)); 782 783 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. 784 bool Failed; 785 ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed); 786 if (Failed) { 787 // We might have suffered some sort of placement new earlier, so 788 // we're constructing in a completely unexpected storage. 789 // Fall back to a generic pointer cast for this-value. 790 const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl()); 791 const CXXRecordDecl *StaticClass = StaticMD->getParent(); 792 QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass)); 793 ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy); 794 } 795 } 796 797 if (!ThisVal.isUnknown()) 798 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 799 } 800 } 801 802 const Expr *CXXMemberCall::getCXXThisExpr() const { 803 return getOriginExpr()->getImplicitObjectArgument(); 804 } 805 806 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { 807 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the 808 // id-expression in the class member access expression is a qualified-id, 809 // that function is called. Otherwise, its final overrider in the dynamic type 810 // of the object expression is called. 811 if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee())) 812 if (ME->hasQualifier()) 813 return AnyFunctionCall::getRuntimeDefinition(); 814 815 return CXXInstanceCall::getRuntimeDefinition(); 816 } 817 818 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { 819 return getOriginExpr()->getArg(0); 820 } 821 822 const BlockDataRegion *BlockCall::getBlockRegion() const { 823 const Expr *Callee = getOriginExpr()->getCallee(); 824 const MemRegion *DataReg = getSVal(Callee).getAsRegion(); 825 826 return dyn_cast_or_null<BlockDataRegion>(DataReg); 827 } 828 829 ArrayRef<ParmVarDecl*> BlockCall::parameters() const { 830 const BlockDecl *D = getDecl(); 831 if (!D) 832 return nullptr; 833 return D->parameters(); 834 } 835 836 void BlockCall::getExtraInvalidatedValues(ValueList &Values, 837 RegionAndSymbolInvalidationTraits *ETraits) const { 838 // FIXME: This also needs to invalidate captured globals. 839 if (const MemRegion *R = getBlockRegion()) 840 Values.push_back(loc::MemRegionVal(R)); 841 } 842 843 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, 844 BindingsTy &Bindings) const { 845 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 846 ArrayRef<ParmVarDecl*> Params; 847 if (isConversionFromLambda()) { 848 auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 849 Params = LambdaOperatorDecl->parameters(); 850 851 // For blocks converted from a C++ lambda, the callee declaration is the 852 // operator() method on the lambda so we bind "this" to 853 // the lambda captured by the block. 854 const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda(); 855 SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion); 856 Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx); 857 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 858 } else { 859 Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters(); 860 } 861 862 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 863 Params); 864 } 865 866 SVal CXXConstructorCall::getCXXThisVal() const { 867 if (Data) 868 return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); 869 return UnknownVal(); 870 } 871 872 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values, 873 RegionAndSymbolInvalidationTraits *ETraits) const { 874 if (Data) { 875 loc::MemRegionVal MV(static_cast<const MemRegion *>(Data)); 876 if (SymbolRef Sym = MV.getAsSymbol(true)) 877 ETraits->setTrait(Sym, 878 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 879 Values.push_back(MV); 880 } 881 } 882 883 void CXXConstructorCall::getInitialStackFrameContents( 884 const StackFrameContext *CalleeCtx, 885 BindingsTy &Bindings) const { 886 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 887 888 SVal ThisVal = getCXXThisVal(); 889 if (!ThisVal.isUnknown()) { 890 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 891 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 892 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 893 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 894 } 895 } 896 897 SVal CXXDestructorCall::getCXXThisVal() const { 898 if (Data) 899 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer()); 900 return UnknownVal(); 901 } 902 903 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { 904 // Base destructors are always called non-virtually. 905 // Skip CXXInstanceCall's devirtualization logic in this case. 906 if (isBaseDestructor()) 907 return AnyFunctionCall::getRuntimeDefinition(); 908 909 return CXXInstanceCall::getRuntimeDefinition(); 910 } 911 912 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const { 913 const ObjCMethodDecl *D = getDecl(); 914 if (!D) 915 return None; 916 return D->parameters(); 917 } 918 919 void ObjCMethodCall::getExtraInvalidatedValues( 920 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 921 922 // If the method call is a setter for property known to be backed by 923 // an instance variable, don't invalidate the entire receiver, just 924 // the storage for that instance variable. 925 if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) { 926 if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) { 927 SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal()); 928 if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) { 929 ETraits->setTrait( 930 IvarRegion, 931 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 932 ETraits->setTrait( 933 IvarRegion, 934 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 935 Values.push_back(IvarLVal); 936 } 937 return; 938 } 939 } 940 941 Values.push_back(getReceiverSVal()); 942 } 943 944 SVal ObjCMethodCall::getSelfSVal() const { 945 const LocationContext *LCtx = getLocationContext(); 946 const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); 947 if (!SelfDecl) 948 return SVal(); 949 return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx)); 950 } 951 952 SVal ObjCMethodCall::getReceiverSVal() const { 953 // FIXME: Is this the best way to handle class receivers? 954 if (!isInstanceMessage()) 955 return UnknownVal(); 956 957 if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) 958 return getSVal(RecE); 959 960 // An instance message with no expression means we are sending to super. 961 // In this case the object reference is the same as 'self'. 962 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); 963 SVal SelfVal = getSelfSVal(); 964 assert(SelfVal.isValid() && "Calling super but not in ObjC method"); 965 return SelfVal; 966 } 967 968 bool ObjCMethodCall::isReceiverSelfOrSuper() const { 969 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || 970 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) 971 return true; 972 973 if (!isInstanceMessage()) 974 return false; 975 976 SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver()); 977 978 return (RecVal == getSelfSVal()); 979 } 980 981 SourceRange ObjCMethodCall::getSourceRange() const { 982 switch (getMessageKind()) { 983 case OCM_Message: 984 return getOriginExpr()->getSourceRange(); 985 case OCM_PropertyAccess: 986 case OCM_Subscript: 987 return getContainingPseudoObjectExpr()->getSourceRange(); 988 } 989 llvm_unreachable("unknown message kind"); 990 } 991 992 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>; 993 994 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { 995 assert(Data && "Lazy lookup not yet performed."); 996 assert(getMessageKind() != OCM_Message && "Explicit message send."); 997 return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer(); 998 } 999 1000 static const Expr * 1001 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) { 1002 const Expr *Syntactic = POE->getSyntacticForm(); 1003 1004 // This handles the funny case of assigning to the result of a getter. 1005 // This can happen if the getter returns a non-const reference. 1006 if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic)) 1007 Syntactic = BO->getLHS(); 1008 1009 return Syntactic; 1010 } 1011 1012 ObjCMessageKind ObjCMethodCall::getMessageKind() const { 1013 if (!Data) { 1014 // Find the parent, ignoring implicit casts. 1015 ParentMap &PM = getLocationContext()->getParentMap(); 1016 const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr()); 1017 1018 // Check if parent is a PseudoObjectExpr. 1019 if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) { 1020 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 1021 1022 ObjCMessageKind K; 1023 switch (Syntactic->getStmtClass()) { 1024 case Stmt::ObjCPropertyRefExprClass: 1025 K = OCM_PropertyAccess; 1026 break; 1027 case Stmt::ObjCSubscriptRefExprClass: 1028 K = OCM_Subscript; 1029 break; 1030 default: 1031 // FIXME: Can this ever happen? 1032 K = OCM_Message; 1033 break; 1034 } 1035 1036 if (K != OCM_Message) { 1037 const_cast<ObjCMethodCall *>(this)->Data 1038 = ObjCMessageDataTy(POE, K).getOpaqueValue(); 1039 assert(getMessageKind() == K); 1040 return K; 1041 } 1042 } 1043 1044 const_cast<ObjCMethodCall *>(this)->Data 1045 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue(); 1046 assert(getMessageKind() == OCM_Message); 1047 return OCM_Message; 1048 } 1049 1050 ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data); 1051 if (!Info.getPointer()) 1052 return OCM_Message; 1053 return static_cast<ObjCMessageKind>(Info.getInt()); 1054 } 1055 1056 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const { 1057 // Look for properties accessed with property syntax (foo.bar = ...) 1058 if ( getMessageKind() == OCM_PropertyAccess) { 1059 const PseudoObjectExpr *POE = getContainingPseudoObjectExpr(); 1060 assert(POE && "Property access without PseudoObjectExpr?"); 1061 1062 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 1063 auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic); 1064 1065 if (RefExpr->isExplicitProperty()) 1066 return RefExpr->getExplicitProperty(); 1067 } 1068 1069 // Look for properties accessed with method syntax ([foo setBar:...]). 1070 const ObjCMethodDecl *MD = getDecl(); 1071 if (!MD || !MD->isPropertyAccessor()) 1072 return nullptr; 1073 1074 // Note: This is potentially quite slow. 1075 return MD->findPropertyDecl(); 1076 } 1077 1078 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, 1079 Selector Sel) const { 1080 assert(IDecl); 1081 AnalysisManager &AMgr = 1082 getState()->getStateManager().getOwningEngine()->getAnalysisManager(); 1083 // If the class interface is declared inside the main file, assume it is not 1084 // subcassed. 1085 // TODO: It could actually be subclassed if the subclass is private as well. 1086 // This is probably very rare. 1087 SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); 1088 if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc)) 1089 return false; 1090 1091 // Assume that property accessors are not overridden. 1092 if (getMessageKind() == OCM_PropertyAccess) 1093 return false; 1094 1095 // We assume that if the method is public (declared outside of main file) or 1096 // has a parent which publicly declares the method, the method could be 1097 // overridden in a subclass. 1098 1099 // Find the first declaration in the class hierarchy that declares 1100 // the selector. 1101 ObjCMethodDecl *D = nullptr; 1102 while (true) { 1103 D = IDecl->lookupMethod(Sel, true); 1104 1105 // Cannot find a public definition. 1106 if (!D) 1107 return false; 1108 1109 // If outside the main file, 1110 if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation())) 1111 return true; 1112 1113 if (D->isOverriding()) { 1114 // Search in the superclass on the next iteration. 1115 IDecl = D->getClassInterface(); 1116 if (!IDecl) 1117 return false; 1118 1119 IDecl = IDecl->getSuperClass(); 1120 if (!IDecl) 1121 return false; 1122 1123 continue; 1124 } 1125 1126 return false; 1127 }; 1128 1129 llvm_unreachable("The while loop should always terminate."); 1130 } 1131 1132 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) { 1133 if (!MD) 1134 return MD; 1135 1136 // Find the redeclaration that defines the method. 1137 if (!MD->hasBody()) { 1138 for (auto I : MD->redecls()) 1139 if (I->hasBody()) 1140 MD = cast<ObjCMethodDecl>(I); 1141 } 1142 return MD; 1143 } 1144 1145 static bool isCallToSelfClass(const ObjCMessageExpr *ME) { 1146 const Expr* InstRec = ME->getInstanceReceiver(); 1147 if (!InstRec) 1148 return false; 1149 const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts()); 1150 1151 // Check that receiver is called 'self'. 1152 if (!InstRecIg || !InstRecIg->getFoundDecl() || 1153 !InstRecIg->getFoundDecl()->getName().equals("self")) 1154 return false; 1155 1156 // Check that the method name is 'class'. 1157 if (ME->getSelector().getNumArgs() != 0 || 1158 !ME->getSelector().getNameForSlot(0).equals("class")) 1159 return false; 1160 1161 return true; 1162 } 1163 1164 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { 1165 const ObjCMessageExpr *E = getOriginExpr(); 1166 assert(E); 1167 Selector Sel = E->getSelector(); 1168 1169 if (E->isInstanceMessage()) { 1170 // Find the receiver type. 1171 const ObjCObjectPointerType *ReceiverT = nullptr; 1172 bool CanBeSubClassed = false; 1173 QualType SupersType = E->getSuperType(); 1174 const MemRegion *Receiver = nullptr; 1175 1176 if (!SupersType.isNull()) { 1177 // The receiver is guaranteed to be 'super' in this case. 1178 // Super always means the type of immediate predecessor to the method 1179 // where the call occurs. 1180 ReceiverT = cast<ObjCObjectPointerType>(SupersType); 1181 } else { 1182 Receiver = getReceiverSVal().getAsRegion(); 1183 if (!Receiver) 1184 return {}; 1185 1186 DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver); 1187 if (!DTI.isValid()) { 1188 assert(isa<AllocaRegion>(Receiver) && 1189 "Unhandled untyped region class!"); 1190 return {}; 1191 } 1192 1193 QualType DynType = DTI.getType(); 1194 CanBeSubClassed = DTI.canBeASubClass(); 1195 ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType()); 1196 1197 if (ReceiverT && CanBeSubClassed) 1198 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) 1199 if (!canBeOverridenInSubclass(IDecl, Sel)) 1200 CanBeSubClassed = false; 1201 } 1202 1203 // Handle special cases of '[self classMethod]' and 1204 // '[[self class] classMethod]', which are treated by the compiler as 1205 // instance (not class) messages. We will statically dispatch to those. 1206 if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) { 1207 // For [self classMethod], return the compiler visible declaration. 1208 if (PT->getObjectType()->isObjCClass() && 1209 Receiver == getSelfSVal().getAsRegion()) 1210 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1211 1212 // Similarly, handle [[self class] classMethod]. 1213 // TODO: We are currently doing a syntactic match for this pattern with is 1214 // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m 1215 // shows. A better way would be to associate the meta type with the symbol 1216 // using the dynamic type info tracking and use it here. We can add a new 1217 // SVal for ObjC 'Class' values that know what interface declaration they 1218 // come from. Then 'self' in a class method would be filled in with 1219 // something meaningful in ObjCMethodCall::getReceiverSVal() and we could 1220 // do proper dynamic dispatch for class methods just like we do for 1221 // instance methods now. 1222 if (E->getInstanceReceiver()) 1223 if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver())) 1224 if (isCallToSelfClass(M)) 1225 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1226 } 1227 1228 // Lookup the instance method implementation. 1229 if (ReceiverT) 1230 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) { 1231 // Repeatedly calling lookupPrivateMethod() is expensive, especially 1232 // when in many cases it returns null. We cache the results so 1233 // that repeated queries on the same ObjCIntefaceDecl and Selector 1234 // don't incur the same cost. On some test cases, we can see the 1235 // same query being issued thousands of times. 1236 // 1237 // NOTE: This cache is essentially a "global" variable, but it 1238 // only gets lazily created when we get here. The value of the 1239 // cache probably comes from it being global across ExprEngines, 1240 // where the same queries may get issued. If we are worried about 1241 // concurrency, or possibly loading/unloading ASTs, etc., we may 1242 // need to revisit this someday. In terms of memory, this table 1243 // stays around until clang quits, which also may be bad if we 1244 // need to release memory. 1245 using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>; 1246 using PrivateMethodCache = 1247 llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>; 1248 1249 static PrivateMethodCache PMC; 1250 Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)]; 1251 1252 // Query lookupPrivateMethod() if the cache does not hit. 1253 if (!Val.hasValue()) { 1254 Val = IDecl->lookupPrivateMethod(Sel); 1255 1256 // If the method is a property accessor, we should try to "inline" it 1257 // even if we don't actually have an implementation. 1258 if (!*Val) 1259 if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl()) 1260 if (CompileTimeMD->isPropertyAccessor()) { 1261 if (!CompileTimeMD->getSelfDecl() && 1262 isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) { 1263 // If the method is an accessor in a category, and it doesn't 1264 // have a self declaration, first 1265 // try to find the method in a class extension. This 1266 // works around a bug in Sema where multiple accessors 1267 // are synthesized for properties in class 1268 // extensions that are redeclared in a category and the 1269 // the implicit parameters are not filled in for 1270 // the method on the category. 1271 // This ensures we find the accessor in the extension, which 1272 // has the implicit parameters filled in. 1273 auto *ID = CompileTimeMD->getClassInterface(); 1274 for (auto *CatDecl : ID->visible_extensions()) { 1275 Val = CatDecl->getMethod(Sel, 1276 CompileTimeMD->isInstanceMethod()); 1277 if (*Val) 1278 break; 1279 } 1280 } 1281 if (!*Val) 1282 Val = IDecl->lookupInstanceMethod(Sel); 1283 } 1284 } 1285 1286 const ObjCMethodDecl *MD = Val.getValue(); 1287 if (CanBeSubClassed) 1288 return RuntimeDefinition(MD, Receiver); 1289 else 1290 return RuntimeDefinition(MD, nullptr); 1291 } 1292 } else { 1293 // This is a class method. 1294 // If we have type info for the receiver class, we are calling via 1295 // class name. 1296 if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { 1297 // Find/Return the method implementation. 1298 return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); 1299 } 1300 } 1301 1302 return {}; 1303 } 1304 1305 bool ObjCMethodCall::argumentsMayEscape() const { 1306 if (isInSystemHeader() && !isInstanceMessage()) { 1307 Selector Sel = getSelector(); 1308 if (Sel.getNumArgs() == 1 && 1309 Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer")) 1310 return true; 1311 } 1312 1313 return CallEvent::argumentsMayEscape(); 1314 } 1315 1316 void ObjCMethodCall::getInitialStackFrameContents( 1317 const StackFrameContext *CalleeCtx, 1318 BindingsTy &Bindings) const { 1319 const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl()); 1320 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 1321 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 1322 D->parameters()); 1323 1324 SVal SelfVal = getReceiverSVal(); 1325 if (!SelfVal.isUnknown()) { 1326 const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); 1327 MemRegionManager &MRMgr = SVB.getRegionManager(); 1328 Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx)); 1329 Bindings.push_back(std::make_pair(SelfLoc, SelfVal)); 1330 } 1331 } 1332 1333 CallEventRef<> 1334 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, 1335 const LocationContext *LCtx) { 1336 if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE)) 1337 return create<CXXMemberCall>(MCE, State, LCtx); 1338 1339 if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 1340 const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); 1341 if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) 1342 if (MD->isInstance()) 1343 return create<CXXMemberOperatorCall>(OpCE, State, LCtx); 1344 1345 } else if (CE->getCallee()->getType()->isBlockPointerType()) { 1346 return create<BlockCall>(CE, State, LCtx); 1347 } 1348 1349 // Otherwise, it's a normal function call, static member function call, or 1350 // something we can't reason about. 1351 return create<SimpleFunctionCall>(CE, State, LCtx); 1352 } 1353 1354 CallEventRef<> 1355 CallEventManager::getCaller(const StackFrameContext *CalleeCtx, 1356 ProgramStateRef State) { 1357 const LocationContext *ParentCtx = CalleeCtx->getParent(); 1358 const LocationContext *CallerCtx = ParentCtx->getStackFrame(); 1359 assert(CallerCtx && "This should not be used for top-level stack frames"); 1360 1361 const Stmt *CallSite = CalleeCtx->getCallSite(); 1362 1363 if (CallSite) { 1364 if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite)) 1365 return getSimpleCall(CE, State, CallerCtx); 1366 1367 switch (CallSite->getStmtClass()) { 1368 case Stmt::CXXConstructExprClass: 1369 case Stmt::CXXTemporaryObjectExprClass: { 1370 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1371 const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 1372 Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx); 1373 SVal ThisVal = State->getSVal(ThisPtr); 1374 1375 return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite), 1376 ThisVal.getAsRegion(), State, CallerCtx); 1377 } 1378 case Stmt::CXXNewExprClass: 1379 return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx); 1380 case Stmt::ObjCMessageExprClass: 1381 return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite), 1382 State, CallerCtx); 1383 default: 1384 llvm_unreachable("This is not an inlineable statement."); 1385 } 1386 } 1387 1388 // Fall back to the CFG. The only thing we haven't handled yet is 1389 // destructors, though this could change in the future. 1390 const CFGBlock *B = CalleeCtx->getCallSiteBlock(); 1391 CFGElement E = (*B)[CalleeCtx->getIndex()]; 1392 assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) && 1393 "All other CFG elements should have exprs"); 1394 1395 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1396 const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl()); 1397 Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx); 1398 SVal ThisVal = State->getSVal(ThisPtr); 1399 1400 const Stmt *Trigger; 1401 if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>()) 1402 Trigger = AutoDtor->getTriggerStmt(); 1403 else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>()) 1404 Trigger = DeleteDtor->getDeleteExpr(); 1405 else 1406 Trigger = Dtor->getBody(); 1407 1408 return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(), 1409 E.getAs<CFGBaseDtor>().hasValue(), State, 1410 CallerCtx); 1411 } 1412