1 //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This file defines CallEvent and its subclasses, which represent path- 11 /// sensitive instances of different kinds of function and method calls 12 /// (C, C++, and Objective-C). 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 17 #include "clang/AST/ParentMap.h" 18 #include "clang/Analysis/ProgramPoint.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Support/Debug.h" 25 26 #define DEBUG_TYPE "static-analyzer-call-event" 27 28 using namespace clang; 29 using namespace ento; 30 31 QualType CallEvent::getResultType() const { 32 const Expr *E = getOriginExpr(); 33 assert(E && "Calls without origin expressions do not have results"); 34 QualType ResultTy = E->getType(); 35 36 ASTContext &Ctx = getState()->getStateManager().getContext(); 37 38 // A function that returns a reference to 'int' will have a result type 39 // of simply 'int'. Check the origin expr's value kind to recover the 40 // proper type. 41 switch (E->getValueKind()) { 42 case VK_LValue: 43 ResultTy = Ctx.getLValueReferenceType(ResultTy); 44 break; 45 case VK_XValue: 46 ResultTy = Ctx.getRValueReferenceType(ResultTy); 47 break; 48 case VK_RValue: 49 // No adjustment is necessary. 50 break; 51 } 52 53 return ResultTy; 54 } 55 56 static bool isCallback(QualType T) { 57 // If a parameter is a block or a callback, assume it can modify pointer. 58 if (T->isBlockPointerType() || 59 T->isFunctionPointerType() || 60 T->isObjCSelType()) 61 return true; 62 63 // Check if a callback is passed inside a struct (for both, struct passed by 64 // reference and by value). Dig just one level into the struct for now. 65 66 if (T->isAnyPointerType() || T->isReferenceType()) 67 T = T->getPointeeType(); 68 69 if (const RecordType *RT = T->getAsStructureType()) { 70 const RecordDecl *RD = RT->getDecl(); 71 for (const auto *I : RD->fields()) { 72 QualType FieldT = I->getType(); 73 if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) 74 return true; 75 } 76 } 77 return false; 78 } 79 80 static bool isVoidPointerToNonConst(QualType T) { 81 if (const PointerType *PT = T->getAs<PointerType>()) { 82 QualType PointeeTy = PT->getPointeeType(); 83 if (PointeeTy.isConstQualified()) 84 return false; 85 return PointeeTy->isVoidType(); 86 } else 87 return false; 88 } 89 90 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const { 91 unsigned NumOfArgs = getNumArgs(); 92 93 // If calling using a function pointer, assume the function does not 94 // satisfy the callback. 95 // TODO: We could check the types of the arguments here. 96 if (!getDecl()) 97 return false; 98 99 unsigned Idx = 0; 100 for (CallEvent::param_type_iterator I = param_type_begin(), 101 E = param_type_end(); 102 I != E && Idx < NumOfArgs; ++I, ++Idx) { 103 // If the parameter is 0, it's harmless. 104 if (getArgSVal(Idx).isZeroConstant()) 105 continue; 106 107 if (Condition(*I)) 108 return true; 109 } 110 return false; 111 } 112 113 bool CallEvent::hasNonZeroCallbackArg() const { 114 return hasNonNullArgumentsWithType(isCallback); 115 } 116 117 bool CallEvent::hasVoidPointerToNonConstArg() const { 118 return hasNonNullArgumentsWithType(isVoidPointerToNonConst); 119 } 120 121 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { 122 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 123 if (!FD) 124 return false; 125 126 return CheckerContext::isCLibraryFunction(FD, FunctionName); 127 } 128 129 /// \brief Returns true if a type is a pointer-to-const or reference-to-const 130 /// with no further indirection. 131 static bool isPointerToConst(QualType Ty) { 132 QualType PointeeTy = Ty->getPointeeType(); 133 if (PointeeTy == QualType()) 134 return false; 135 if (!PointeeTy.isConstQualified()) 136 return false; 137 if (PointeeTy->isAnyPointerType()) 138 return false; 139 return true; 140 } 141 142 // Try to retrieve the function declaration and find the function parameter 143 // types which are pointers/references to a non-pointer const. 144 // We will not invalidate the corresponding argument regions. 145 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs, 146 const CallEvent &Call) { 147 unsigned Idx = 0; 148 for (CallEvent::param_type_iterator I = Call.param_type_begin(), 149 E = Call.param_type_end(); 150 I != E; ++I, ++Idx) { 151 if (isPointerToConst(*I)) 152 PreserveArgs.insert(Idx); 153 } 154 } 155 156 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, 157 ProgramStateRef Orig) const { 158 ProgramStateRef Result = (Orig ? Orig : getState()); 159 160 // Don't invalidate anything if the callee is marked pure/const. 161 if (const Decl *callee = getDecl()) 162 if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>()) 163 return Result; 164 165 SmallVector<SVal, 8> ValuesToInvalidate; 166 RegionAndSymbolInvalidationTraits ETraits; 167 168 getExtraInvalidatedValues(ValuesToInvalidate, &ETraits); 169 170 // Indexes of arguments whose values will be preserved by the call. 171 llvm::SmallSet<unsigned, 4> PreserveArgs; 172 if (!argumentsMayEscape()) 173 findPtrToConstParams(PreserveArgs, *this); 174 175 for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { 176 // Mark this region for invalidation. We batch invalidate regions 177 // below for efficiency. 178 if (PreserveArgs.count(Idx)) 179 if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) 180 ETraits.setTrait(MR->getBaseRegion(), 181 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 182 // TODO: Factor this out + handle the lower level const pointers. 183 184 ValuesToInvalidate.push_back(getArgSVal(Idx)); 185 } 186 187 // Invalidate designated regions using the batch invalidation API. 188 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate 189 // global variables. 190 return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(), 191 BlockCount, getLocationContext(), 192 /*CausedByPointerEscape*/ true, 193 /*Symbols=*/nullptr, this, &ETraits); 194 } 195 196 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, 197 const ProgramPointTag *Tag) const { 198 if (const Expr *E = getOriginExpr()) { 199 if (IsPreVisit) 200 return PreStmt(E, getLocationContext(), Tag); 201 return PostStmt(E, getLocationContext(), Tag); 202 } 203 204 const Decl *D = getDecl(); 205 assert(D && "Cannot get a program point without a statement or decl"); 206 207 SourceLocation Loc = getSourceRange().getBegin(); 208 if (IsPreVisit) 209 return PreImplicitCall(D, Loc, getLocationContext(), Tag); 210 return PostImplicitCall(D, Loc, getLocationContext(), Tag); 211 } 212 213 bool CallEvent::isCalled(const CallDescription &CD) const { 214 assert(getKind() != CE_ObjCMessage && "Obj-C methods are not supported"); 215 if (!CD.IsLookupDone) { 216 CD.IsLookupDone = true; 217 CD.II = &getState()->getStateManager().getContext().Idents.get(CD.FuncName); 218 } 219 const IdentifierInfo *II = getCalleeIdentifier(); 220 if (!II || II != CD.II) 221 return false; 222 return (CD.RequiredArgs == CallDescription::NoArgRequirement || 223 CD.RequiredArgs == getNumArgs()); 224 } 225 226 SVal CallEvent::getArgSVal(unsigned Index) const { 227 const Expr *ArgE = getArgExpr(Index); 228 if (!ArgE) 229 return UnknownVal(); 230 return getSVal(ArgE); 231 } 232 233 SourceRange CallEvent::getArgSourceRange(unsigned Index) const { 234 const Expr *ArgE = getArgExpr(Index); 235 if (!ArgE) 236 return SourceRange(); 237 return ArgE->getSourceRange(); 238 } 239 240 SVal CallEvent::getReturnValue() const { 241 const Expr *E = getOriginExpr(); 242 if (!E) 243 return UndefinedVal(); 244 return getSVal(E); 245 } 246 247 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); } 248 249 void CallEvent::dump(raw_ostream &Out) const { 250 ASTContext &Ctx = getState()->getStateManager().getContext(); 251 if (const Expr *E = getOriginExpr()) { 252 E->printPretty(Out, nullptr, Ctx.getPrintingPolicy()); 253 Out << "\n"; 254 return; 255 } 256 257 if (const Decl *D = getDecl()) { 258 Out << "Call to "; 259 D->print(Out, Ctx.getPrintingPolicy()); 260 return; 261 } 262 263 // FIXME: a string representation of the kind would be nice. 264 Out << "Unknown call (type " << getKind() << ")"; 265 } 266 267 268 bool CallEvent::isCallStmt(const Stmt *S) { 269 return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S) 270 || isa<CXXConstructExpr>(S) 271 || isa<CXXNewExpr>(S); 272 } 273 274 QualType CallEvent::getDeclaredResultType(const Decl *D) { 275 assert(D); 276 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) 277 return FD->getReturnType(); 278 if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D)) 279 return MD->getReturnType(); 280 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 281 // Blocks are difficult because the return type may not be stored in the 282 // BlockDecl itself. The AST should probably be enhanced, but for now we 283 // just do what we can. 284 // If the block is declared without an explicit argument list, the 285 // signature-as-written just includes the return type, not the entire 286 // function type. 287 // FIXME: All blocks should have signatures-as-written, even if the return 288 // type is inferred. (That's signified with a dependent result type.) 289 if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) { 290 QualType Ty = TSI->getType(); 291 if (const FunctionType *FT = Ty->getAs<FunctionType>()) 292 Ty = FT->getReturnType(); 293 if (!Ty->isDependentType()) 294 return Ty; 295 } 296 297 return QualType(); 298 } 299 300 llvm_unreachable("unknown callable kind"); 301 } 302 303 bool CallEvent::isVariadic(const Decl *D) { 304 assert(D); 305 306 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 307 return FD->isVariadic(); 308 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) 309 return MD->isVariadic(); 310 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) 311 return BD->isVariadic(); 312 313 llvm_unreachable("unknown callable kind"); 314 } 315 316 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, 317 CallEvent::BindingsTy &Bindings, 318 SValBuilder &SVB, 319 const CallEvent &Call, 320 ArrayRef<ParmVarDecl*> parameters) { 321 MemRegionManager &MRMgr = SVB.getRegionManager(); 322 323 // If the function has fewer parameters than the call has arguments, we simply 324 // do not bind any values to them. 325 unsigned NumArgs = Call.getNumArgs(); 326 unsigned Idx = 0; 327 ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end(); 328 for (; I != E && Idx < NumArgs; ++I, ++Idx) { 329 const ParmVarDecl *ParamDecl = *I; 330 assert(ParamDecl && "Formal parameter has no decl?"); 331 332 SVal ArgVal = Call.getArgSVal(Idx); 333 if (!ArgVal.isUnknown()) { 334 Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx)); 335 Bindings.push_back(std::make_pair(ParamLoc, ArgVal)); 336 } 337 } 338 339 // FIXME: Variadic arguments are not handled at all right now. 340 } 341 342 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const { 343 const FunctionDecl *D = getDecl(); 344 if (!D) 345 return None; 346 return D->parameters(); 347 } 348 349 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const { 350 const FunctionDecl *FD = getDecl(); 351 // Note that the AnalysisDeclContext will have the FunctionDecl with 352 // the definition (if one exists). 353 if (FD) { 354 AnalysisDeclContext *AD = 355 getLocationContext()->getAnalysisDeclContext()-> 356 getManager()->getContext(FD); 357 bool IsAutosynthesized; 358 Stmt* Body = AD->getBody(IsAutosynthesized); 359 DEBUG({ 360 if (IsAutosynthesized) 361 llvm::dbgs() << "Using autosynthesized body for " << FD->getName() 362 << "\n"; 363 }); 364 if (Body) { 365 const Decl* Decl = AD->getDecl(); 366 return RuntimeDefinition(Decl); 367 } 368 } 369 370 return RuntimeDefinition(); 371 } 372 373 void AnyFunctionCall::getInitialStackFrameContents( 374 const StackFrameContext *CalleeCtx, 375 BindingsTy &Bindings) const { 376 const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl()); 377 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 378 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 379 D->parameters()); 380 } 381 382 bool AnyFunctionCall::argumentsMayEscape() const { 383 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg()) 384 return true; 385 386 const FunctionDecl *D = getDecl(); 387 if (!D) 388 return true; 389 390 const IdentifierInfo *II = D->getIdentifier(); 391 if (!II) 392 return false; 393 394 // This set of "escaping" APIs is 395 396 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a 397 // value into thread local storage. The value can later be retrieved with 398 // 'void *ptheread_getspecific(pthread_key)'. So even thought the 399 // parameter is 'const void *', the region escapes through the call. 400 if (II->isStr("pthread_setspecific")) 401 return true; 402 403 // - xpc_connection_set_context stores a value which can be retrieved later 404 // with xpc_connection_get_context. 405 if (II->isStr("xpc_connection_set_context")) 406 return true; 407 408 // - funopen - sets a buffer for future IO calls. 409 if (II->isStr("funopen")) 410 return true; 411 412 // - __cxa_demangle - can reallocate memory and can return the pointer to 413 // the input buffer. 414 if (II->isStr("__cxa_demangle")) 415 return true; 416 417 StringRef FName = II->getName(); 418 419 // - CoreFoundation functions that end with "NoCopy" can free a passed-in 420 // buffer even if it is const. 421 if (FName.endswith("NoCopy")) 422 return true; 423 424 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can 425 // be deallocated by NSMapRemove. 426 if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) 427 return true; 428 429 // - Many CF containers allow objects to escape through custom 430 // allocators/deallocators upon container construction. (PR12101) 431 if (FName.startswith("CF") || FName.startswith("CG")) { 432 return StrInStrNoCase(FName, "InsertValue") != StringRef::npos || 433 StrInStrNoCase(FName, "AddValue") != StringRef::npos || 434 StrInStrNoCase(FName, "SetValue") != StringRef::npos || 435 StrInStrNoCase(FName, "WithData") != StringRef::npos || 436 StrInStrNoCase(FName, "AppendValue") != StringRef::npos || 437 StrInStrNoCase(FName, "SetAttribute") != StringRef::npos; 438 } 439 440 return false; 441 } 442 443 444 const FunctionDecl *SimpleFunctionCall::getDecl() const { 445 const FunctionDecl *D = getOriginExpr()->getDirectCallee(); 446 if (D) 447 return D; 448 449 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl(); 450 } 451 452 453 const FunctionDecl *CXXInstanceCall::getDecl() const { 454 const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr()); 455 if (!CE) 456 return AnyFunctionCall::getDecl(); 457 458 const FunctionDecl *D = CE->getDirectCallee(); 459 if (D) 460 return D; 461 462 return getSVal(CE->getCallee()).getAsFunctionDecl(); 463 } 464 465 void CXXInstanceCall::getExtraInvalidatedValues( 466 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 467 SVal ThisVal = getCXXThisVal(); 468 Values.push_back(ThisVal); 469 470 // Don't invalidate if the method is const and there are no mutable fields. 471 if (const CXXMethodDecl *D = cast_or_null<CXXMethodDecl>(getDecl())) { 472 if (!D->isConst()) 473 return; 474 // Get the record decl for the class of 'This'. D->getParent() may return a 475 // base class decl, rather than the class of the instance which needs to be 476 // checked for mutable fields. 477 const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts(); 478 const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl(); 479 if (!ParentRecord || ParentRecord->hasMutableFields()) 480 return; 481 // Preserve CXXThis. 482 const MemRegion *ThisRegion = ThisVal.getAsRegion(); 483 if (!ThisRegion) 484 return; 485 486 ETraits->setTrait(ThisRegion->getBaseRegion(), 487 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 488 } 489 } 490 491 SVal CXXInstanceCall::getCXXThisVal() const { 492 const Expr *Base = getCXXThisExpr(); 493 // FIXME: This doesn't handle an overloaded ->* operator. 494 if (!Base) 495 return UnknownVal(); 496 497 SVal ThisVal = getSVal(Base); 498 assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()); 499 return ThisVal; 500 } 501 502 503 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { 504 // Do we have a decl at all? 505 const Decl *D = getDecl(); 506 if (!D) 507 return RuntimeDefinition(); 508 509 // If the method is non-virtual, we know we can inline it. 510 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 511 if (!MD->isVirtual()) 512 return AnyFunctionCall::getRuntimeDefinition(); 513 514 // Do we know the implicit 'this' object being called? 515 const MemRegion *R = getCXXThisVal().getAsRegion(); 516 if (!R) 517 return RuntimeDefinition(); 518 519 // Do we know anything about the type of 'this'? 520 DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R); 521 if (!DynType.isValid()) 522 return RuntimeDefinition(); 523 524 // Is the type a C++ class? (This is mostly a defensive check.) 525 QualType RegionType = DynType.getType()->getPointeeType(); 526 assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."); 527 528 const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl(); 529 if (!RD || !RD->hasDefinition()) 530 return RuntimeDefinition(); 531 532 // Find the decl for this method in that class. 533 const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true); 534 if (!Result) { 535 // We might not even get the original statically-resolved method due to 536 // some particularly nasty casting (e.g. casts to sister classes). 537 // However, we should at least be able to search up and down our own class 538 // hierarchy, and some real bugs have been caught by checking this. 539 assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"); 540 541 // FIXME: This is checking that our DynamicTypeInfo is at least as good as 542 // the static type. However, because we currently don't update 543 // DynamicTypeInfo when an object is cast, we can't actually be sure the 544 // DynamicTypeInfo is up to date. This assert should be re-enabled once 545 // this is fixed. <rdar://problem/12287087> 546 //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); 547 548 return RuntimeDefinition(); 549 } 550 551 // Does the decl that we found have an implementation? 552 const FunctionDecl *Definition; 553 if (!Result->hasBody(Definition)) 554 return RuntimeDefinition(); 555 556 // We found a definition. If we're not sure that this devirtualization is 557 // actually what will happen at runtime, make sure to provide the region so 558 // that ExprEngine can decide what to do with it. 559 if (DynType.canBeASubClass()) 560 return RuntimeDefinition(Definition, R->StripCasts()); 561 return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr); 562 } 563 564 void CXXInstanceCall::getInitialStackFrameContents( 565 const StackFrameContext *CalleeCtx, 566 BindingsTy &Bindings) const { 567 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 568 569 // Handle the binding of 'this' in the new stack frame. 570 SVal ThisVal = getCXXThisVal(); 571 if (!ThisVal.isUnknown()) { 572 ProgramStateManager &StateMgr = getState()->getStateManager(); 573 SValBuilder &SVB = StateMgr.getSValBuilder(); 574 575 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 576 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 577 578 // If we devirtualized to a different member function, we need to make sure 579 // we have the proper layering of CXXBaseObjectRegions. 580 if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { 581 ASTContext &Ctx = SVB.getContext(); 582 const CXXRecordDecl *Class = MD->getParent(); 583 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class)); 584 585 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. 586 bool Failed; 587 ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed); 588 assert(!Failed && "Calling an incorrectly devirtualized method"); 589 } 590 591 if (!ThisVal.isUnknown()) 592 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 593 } 594 } 595 596 597 598 const Expr *CXXMemberCall::getCXXThisExpr() const { 599 return getOriginExpr()->getImplicitObjectArgument(); 600 } 601 602 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { 603 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the 604 // id-expression in the class member access expression is a qualified-id, 605 // that function is called. Otherwise, its final overrider in the dynamic type 606 // of the object expression is called. 607 if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee())) 608 if (ME->hasQualifier()) 609 return AnyFunctionCall::getRuntimeDefinition(); 610 611 return CXXInstanceCall::getRuntimeDefinition(); 612 } 613 614 615 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { 616 return getOriginExpr()->getArg(0); 617 } 618 619 620 const BlockDataRegion *BlockCall::getBlockRegion() const { 621 const Expr *Callee = getOriginExpr()->getCallee(); 622 const MemRegion *DataReg = getSVal(Callee).getAsRegion(); 623 624 return dyn_cast_or_null<BlockDataRegion>(DataReg); 625 } 626 627 ArrayRef<ParmVarDecl*> BlockCall::parameters() const { 628 const BlockDecl *D = getDecl(); 629 if (!D) 630 return nullptr; 631 return D->parameters(); 632 } 633 634 void BlockCall::getExtraInvalidatedValues(ValueList &Values, 635 RegionAndSymbolInvalidationTraits *ETraits) const { 636 // FIXME: This also needs to invalidate captured globals. 637 if (const MemRegion *R = getBlockRegion()) 638 Values.push_back(loc::MemRegionVal(R)); 639 } 640 641 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, 642 BindingsTy &Bindings) const { 643 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 644 ArrayRef<ParmVarDecl*> Params; 645 if (isConversionFromLambda()) { 646 auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 647 Params = LambdaOperatorDecl->parameters(); 648 649 // For blocks converted from a C++ lambda, the callee declaration is the 650 // operator() method on the lambda so we bind "this" to 651 // the lambda captured by the block. 652 const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda(); 653 SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion); 654 Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx); 655 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 656 } else { 657 Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters(); 658 } 659 660 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 661 Params); 662 } 663 664 665 SVal CXXConstructorCall::getCXXThisVal() const { 666 if (Data) 667 return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); 668 return UnknownVal(); 669 } 670 671 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values, 672 RegionAndSymbolInvalidationTraits *ETraits) const { 673 if (Data) 674 Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data))); 675 } 676 677 void CXXConstructorCall::getInitialStackFrameContents( 678 const StackFrameContext *CalleeCtx, 679 BindingsTy &Bindings) const { 680 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 681 682 SVal ThisVal = getCXXThisVal(); 683 if (!ThisVal.isUnknown()) { 684 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 685 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 686 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 687 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 688 } 689 } 690 691 SVal CXXDestructorCall::getCXXThisVal() const { 692 if (Data) 693 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer()); 694 return UnknownVal(); 695 } 696 697 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { 698 // Base destructors are always called non-virtually. 699 // Skip CXXInstanceCall's devirtualization logic in this case. 700 if (isBaseDestructor()) 701 return AnyFunctionCall::getRuntimeDefinition(); 702 703 return CXXInstanceCall::getRuntimeDefinition(); 704 } 705 706 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const { 707 const ObjCMethodDecl *D = getDecl(); 708 if (!D) 709 return None; 710 return D->parameters(); 711 } 712 713 void ObjCMethodCall::getExtraInvalidatedValues( 714 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 715 716 // If the method call is a setter for property known to be backed by 717 // an instance variable, don't invalidate the entire receiver, just 718 // the storage for that instance variable. 719 if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) { 720 if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) { 721 SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal()); 722 if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) { 723 ETraits->setTrait( 724 IvarRegion, 725 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 726 ETraits->setTrait( 727 IvarRegion, 728 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 729 Values.push_back(IvarLVal); 730 } 731 return; 732 } 733 } 734 735 Values.push_back(getReceiverSVal()); 736 } 737 738 SVal ObjCMethodCall::getSelfSVal() const { 739 const LocationContext *LCtx = getLocationContext(); 740 const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); 741 if (!SelfDecl) 742 return SVal(); 743 return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx)); 744 } 745 746 SVal ObjCMethodCall::getReceiverSVal() const { 747 // FIXME: Is this the best way to handle class receivers? 748 if (!isInstanceMessage()) 749 return UnknownVal(); 750 751 if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) 752 return getSVal(RecE); 753 754 // An instance message with no expression means we are sending to super. 755 // In this case the object reference is the same as 'self'. 756 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); 757 SVal SelfVal = getSelfSVal(); 758 assert(SelfVal.isValid() && "Calling super but not in ObjC method"); 759 return SelfVal; 760 } 761 762 bool ObjCMethodCall::isReceiverSelfOrSuper() const { 763 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || 764 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) 765 return true; 766 767 if (!isInstanceMessage()) 768 return false; 769 770 SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver()); 771 772 return (RecVal == getSelfSVal()); 773 } 774 775 SourceRange ObjCMethodCall::getSourceRange() const { 776 switch (getMessageKind()) { 777 case OCM_Message: 778 return getOriginExpr()->getSourceRange(); 779 case OCM_PropertyAccess: 780 case OCM_Subscript: 781 return getContainingPseudoObjectExpr()->getSourceRange(); 782 } 783 llvm_unreachable("unknown message kind"); 784 } 785 786 typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy; 787 788 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { 789 assert(Data && "Lazy lookup not yet performed."); 790 assert(getMessageKind() != OCM_Message && "Explicit message send."); 791 return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer(); 792 } 793 794 static const Expr * 795 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) { 796 const Expr *Syntactic = POE->getSyntacticForm(); 797 798 // This handles the funny case of assigning to the result of a getter. 799 // This can happen if the getter returns a non-const reference. 800 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic)) 801 Syntactic = BO->getLHS(); 802 803 return Syntactic; 804 } 805 806 ObjCMessageKind ObjCMethodCall::getMessageKind() const { 807 if (!Data) { 808 809 // Find the parent, ignoring implicit casts. 810 ParentMap &PM = getLocationContext()->getParentMap(); 811 const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr()); 812 813 // Check if parent is a PseudoObjectExpr. 814 if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) { 815 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 816 817 ObjCMessageKind K; 818 switch (Syntactic->getStmtClass()) { 819 case Stmt::ObjCPropertyRefExprClass: 820 K = OCM_PropertyAccess; 821 break; 822 case Stmt::ObjCSubscriptRefExprClass: 823 K = OCM_Subscript; 824 break; 825 default: 826 // FIXME: Can this ever happen? 827 K = OCM_Message; 828 break; 829 } 830 831 if (K != OCM_Message) { 832 const_cast<ObjCMethodCall *>(this)->Data 833 = ObjCMessageDataTy(POE, K).getOpaqueValue(); 834 assert(getMessageKind() == K); 835 return K; 836 } 837 } 838 839 const_cast<ObjCMethodCall *>(this)->Data 840 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue(); 841 assert(getMessageKind() == OCM_Message); 842 return OCM_Message; 843 } 844 845 ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data); 846 if (!Info.getPointer()) 847 return OCM_Message; 848 return static_cast<ObjCMessageKind>(Info.getInt()); 849 } 850 851 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const { 852 // Look for properties accessed with property syntax (foo.bar = ...) 853 if ( getMessageKind() == OCM_PropertyAccess) { 854 const PseudoObjectExpr *POE = getContainingPseudoObjectExpr(); 855 assert(POE && "Property access without PseudoObjectExpr?"); 856 857 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 858 auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic); 859 860 if (RefExpr->isExplicitProperty()) 861 return RefExpr->getExplicitProperty(); 862 } 863 864 // Look for properties accessed with method syntax ([foo setBar:...]). 865 const ObjCMethodDecl *MD = getDecl(); 866 if (!MD || !MD->isPropertyAccessor()) 867 return nullptr; 868 869 // Note: This is potentially quite slow. 870 return MD->findPropertyDecl(); 871 } 872 873 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, 874 Selector Sel) const { 875 assert(IDecl); 876 const SourceManager &SM = 877 getState()->getStateManager().getContext().getSourceManager(); 878 879 // If the class interface is declared inside the main file, assume it is not 880 // subcassed. 881 // TODO: It could actually be subclassed if the subclass is private as well. 882 // This is probably very rare. 883 SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); 884 if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc)) 885 return false; 886 887 // Assume that property accessors are not overridden. 888 if (getMessageKind() == OCM_PropertyAccess) 889 return false; 890 891 // We assume that if the method is public (declared outside of main file) or 892 // has a parent which publicly declares the method, the method could be 893 // overridden in a subclass. 894 895 // Find the first declaration in the class hierarchy that declares 896 // the selector. 897 ObjCMethodDecl *D = nullptr; 898 while (true) { 899 D = IDecl->lookupMethod(Sel, true); 900 901 // Cannot find a public definition. 902 if (!D) 903 return false; 904 905 // If outside the main file, 906 if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation())) 907 return true; 908 909 if (D->isOverriding()) { 910 // Search in the superclass on the next iteration. 911 IDecl = D->getClassInterface(); 912 if (!IDecl) 913 return false; 914 915 IDecl = IDecl->getSuperClass(); 916 if (!IDecl) 917 return false; 918 919 continue; 920 } 921 922 return false; 923 }; 924 925 llvm_unreachable("The while loop should always terminate."); 926 } 927 928 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) { 929 if (!MD) 930 return MD; 931 932 // Find the redeclaration that defines the method. 933 if (!MD->hasBody()) { 934 for (auto I : MD->redecls()) 935 if (I->hasBody()) 936 MD = cast<ObjCMethodDecl>(I); 937 } 938 return MD; 939 } 940 941 static bool isCallToSelfClass(const ObjCMessageExpr *ME) { 942 const Expr* InstRec = ME->getInstanceReceiver(); 943 if (!InstRec) 944 return false; 945 const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts()); 946 947 // Check that receiver is called 'self'. 948 if (!InstRecIg || !InstRecIg->getFoundDecl() || 949 !InstRecIg->getFoundDecl()->getName().equals("self")) 950 return false; 951 952 // Check that the method name is 'class'. 953 if (ME->getSelector().getNumArgs() != 0 || 954 !ME->getSelector().getNameForSlot(0).equals("class")) 955 return false; 956 957 return true; 958 } 959 960 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { 961 const ObjCMessageExpr *E = getOriginExpr(); 962 assert(E); 963 Selector Sel = E->getSelector(); 964 965 if (E->isInstanceMessage()) { 966 967 // Find the receiver type. 968 const ObjCObjectPointerType *ReceiverT = nullptr; 969 bool CanBeSubClassed = false; 970 QualType SupersType = E->getSuperType(); 971 const MemRegion *Receiver = nullptr; 972 973 if (!SupersType.isNull()) { 974 // The receiver is guaranteed to be 'super' in this case. 975 // Super always means the type of immediate predecessor to the method 976 // where the call occurs. 977 ReceiverT = cast<ObjCObjectPointerType>(SupersType); 978 } else { 979 Receiver = getReceiverSVal().getAsRegion(); 980 if (!Receiver) 981 return RuntimeDefinition(); 982 983 DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver); 984 if (!DTI.isValid()) { 985 assert(isa<AllocaRegion>(Receiver) && 986 "Unhandled untyped region class!"); 987 return RuntimeDefinition(); 988 } 989 990 QualType DynType = DTI.getType(); 991 CanBeSubClassed = DTI.canBeASubClass(); 992 ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType()); 993 994 if (ReceiverT && CanBeSubClassed) 995 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) 996 if (!canBeOverridenInSubclass(IDecl, Sel)) 997 CanBeSubClassed = false; 998 } 999 1000 // Handle special cases of '[self classMethod]' and 1001 // '[[self class] classMethod]', which are treated by the compiler as 1002 // instance (not class) messages. We will statically dispatch to those. 1003 if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) { 1004 // For [self classMethod], return the compiler visible declaration. 1005 if (PT->getObjectType()->isObjCClass() && 1006 Receiver == getSelfSVal().getAsRegion()) 1007 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1008 1009 // Similarly, handle [[self class] classMethod]. 1010 // TODO: We are currently doing a syntactic match for this pattern with is 1011 // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m 1012 // shows. A better way would be to associate the meta type with the symbol 1013 // using the dynamic type info tracking and use it here. We can add a new 1014 // SVal for ObjC 'Class' values that know what interface declaration they 1015 // come from. Then 'self' in a class method would be filled in with 1016 // something meaningful in ObjCMethodCall::getReceiverSVal() and we could 1017 // do proper dynamic dispatch for class methods just like we do for 1018 // instance methods now. 1019 if (E->getInstanceReceiver()) 1020 if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver())) 1021 if (isCallToSelfClass(M)) 1022 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1023 } 1024 1025 // Lookup the instance method implementation. 1026 if (ReceiverT) 1027 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) { 1028 // Repeatedly calling lookupPrivateMethod() is expensive, especially 1029 // when in many cases it returns null. We cache the results so 1030 // that repeated queries on the same ObjCIntefaceDecl and Selector 1031 // don't incur the same cost. On some test cases, we can see the 1032 // same query being issued thousands of times. 1033 // 1034 // NOTE: This cache is essentially a "global" variable, but it 1035 // only gets lazily created when we get here. The value of the 1036 // cache probably comes from it being global across ExprEngines, 1037 // where the same queries may get issued. If we are worried about 1038 // concurrency, or possibly loading/unloading ASTs, etc., we may 1039 // need to revisit this someday. In terms of memory, this table 1040 // stays around until clang quits, which also may be bad if we 1041 // need to release memory. 1042 typedef std::pair<const ObjCInterfaceDecl*, Selector> 1043 PrivateMethodKey; 1044 typedef llvm::DenseMap<PrivateMethodKey, 1045 Optional<const ObjCMethodDecl *> > 1046 PrivateMethodCache; 1047 1048 static PrivateMethodCache PMC; 1049 Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)]; 1050 1051 // Query lookupPrivateMethod() if the cache does not hit. 1052 if (!Val.hasValue()) { 1053 Val = IDecl->lookupPrivateMethod(Sel); 1054 1055 // If the method is a property accessor, we should try to "inline" it 1056 // even if we don't actually have an implementation. 1057 if (!*Val) 1058 if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl()) 1059 if (CompileTimeMD->isPropertyAccessor()) { 1060 if (!CompileTimeMD->getSelfDecl() && 1061 isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) { 1062 // If the method is an accessor in a category, and it doesn't 1063 // have a self declaration, first 1064 // try to find the method in a class extension. This 1065 // works around a bug in Sema where multiple accessors 1066 // are synthesized for properties in class 1067 // extensions that are redeclared in a category and the 1068 // the implicit parameters are not filled in for 1069 // the method on the category. 1070 // This ensures we find the accessor in the extension, which 1071 // has the implicit parameters filled in. 1072 auto *ID = CompileTimeMD->getClassInterface(); 1073 for (auto *CatDecl : ID->visible_extensions()) { 1074 Val = CatDecl->getMethod(Sel, 1075 CompileTimeMD->isInstanceMethod()); 1076 if (*Val) 1077 break; 1078 } 1079 } 1080 if (!*Val) 1081 Val = IDecl->lookupInstanceMethod(Sel); 1082 } 1083 } 1084 1085 const ObjCMethodDecl *MD = Val.getValue(); 1086 if (CanBeSubClassed) 1087 return RuntimeDefinition(MD, Receiver); 1088 else 1089 return RuntimeDefinition(MD, nullptr); 1090 } 1091 1092 } else { 1093 // This is a class method. 1094 // If we have type info for the receiver class, we are calling via 1095 // class name. 1096 if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { 1097 // Find/Return the method implementation. 1098 return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); 1099 } 1100 } 1101 1102 return RuntimeDefinition(); 1103 } 1104 1105 bool ObjCMethodCall::argumentsMayEscape() const { 1106 if (isInSystemHeader() && !isInstanceMessage()) { 1107 Selector Sel = getSelector(); 1108 if (Sel.getNumArgs() == 1 && 1109 Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer")) 1110 return true; 1111 } 1112 1113 return CallEvent::argumentsMayEscape(); 1114 } 1115 1116 void ObjCMethodCall::getInitialStackFrameContents( 1117 const StackFrameContext *CalleeCtx, 1118 BindingsTy &Bindings) const { 1119 const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl()); 1120 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 1121 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 1122 D->parameters()); 1123 1124 SVal SelfVal = getReceiverSVal(); 1125 if (!SelfVal.isUnknown()) { 1126 const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); 1127 MemRegionManager &MRMgr = SVB.getRegionManager(); 1128 Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx)); 1129 Bindings.push_back(std::make_pair(SelfLoc, SelfVal)); 1130 } 1131 } 1132 1133 CallEventRef<> 1134 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, 1135 const LocationContext *LCtx) { 1136 if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) 1137 return create<CXXMemberCall>(MCE, State, LCtx); 1138 1139 if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 1140 const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); 1141 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) 1142 if (MD->isInstance()) 1143 return create<CXXMemberOperatorCall>(OpCE, State, LCtx); 1144 1145 } else if (CE->getCallee()->getType()->isBlockPointerType()) { 1146 return create<BlockCall>(CE, State, LCtx); 1147 } 1148 1149 // Otherwise, it's a normal function call, static member function call, or 1150 // something we can't reason about. 1151 return create<SimpleFunctionCall>(CE, State, LCtx); 1152 } 1153 1154 1155 CallEventRef<> 1156 CallEventManager::getCaller(const StackFrameContext *CalleeCtx, 1157 ProgramStateRef State) { 1158 const LocationContext *ParentCtx = CalleeCtx->getParent(); 1159 const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame(); 1160 assert(CallerCtx && "This should not be used for top-level stack frames"); 1161 1162 const Stmt *CallSite = CalleeCtx->getCallSite(); 1163 1164 if (CallSite) { 1165 if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite)) 1166 return getSimpleCall(CE, State, CallerCtx); 1167 1168 switch (CallSite->getStmtClass()) { 1169 case Stmt::CXXConstructExprClass: 1170 case Stmt::CXXTemporaryObjectExprClass: { 1171 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1172 const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 1173 Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx); 1174 SVal ThisVal = State->getSVal(ThisPtr); 1175 1176 return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite), 1177 ThisVal.getAsRegion(), State, CallerCtx); 1178 } 1179 case Stmt::CXXNewExprClass: 1180 return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx); 1181 case Stmt::ObjCMessageExprClass: 1182 return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite), 1183 State, CallerCtx); 1184 default: 1185 llvm_unreachable("This is not an inlineable statement."); 1186 } 1187 } 1188 1189 // Fall back to the CFG. The only thing we haven't handled yet is 1190 // destructors, though this could change in the future. 1191 const CFGBlock *B = CalleeCtx->getCallSiteBlock(); 1192 CFGElement E = (*B)[CalleeCtx->getIndex()]; 1193 assert(E.getAs<CFGImplicitDtor>() && 1194 "All other CFG elements should have exprs"); 1195 assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet"); 1196 1197 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1198 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl()); 1199 Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx); 1200 SVal ThisVal = State->getSVal(ThisPtr); 1201 1202 const Stmt *Trigger; 1203 if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>()) 1204 Trigger = AutoDtor->getTriggerStmt(); 1205 else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>()) 1206 Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr()); 1207 else 1208 Trigger = Dtor->getBody(); 1209 1210 return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(), 1211 E.getAs<CFGBaseDtor>().hasValue(), State, 1212 CallerCtx); 1213 } 1214