1 //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This file defines CallEvent and its subclasses, which represent path- 11 /// sensitive instances of different kinds of function and method calls 12 /// (C, C++, and Objective-C). 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 17 #include "clang/AST/ParentMap.h" 18 #include "clang/Analysis/ProgramPoint.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Support/Debug.h" 25 26 #define DEBUG_TYPE "static-analyzer-call-event" 27 28 using namespace clang; 29 using namespace ento; 30 31 QualType CallEvent::getResultType() const { 32 const Expr *E = getOriginExpr(); 33 assert(E && "Calls without origin expressions do not have results"); 34 QualType ResultTy = E->getType(); 35 36 ASTContext &Ctx = getState()->getStateManager().getContext(); 37 38 // A function that returns a reference to 'int' will have a result type 39 // of simply 'int'. Check the origin expr's value kind to recover the 40 // proper type. 41 switch (E->getValueKind()) { 42 case VK_LValue: 43 ResultTy = Ctx.getLValueReferenceType(ResultTy); 44 break; 45 case VK_XValue: 46 ResultTy = Ctx.getRValueReferenceType(ResultTy); 47 break; 48 case VK_RValue: 49 // No adjustment is necessary. 50 break; 51 } 52 53 return ResultTy; 54 } 55 56 static bool isCallback(QualType T) { 57 // If a parameter is a block or a callback, assume it can modify pointer. 58 if (T->isBlockPointerType() || 59 T->isFunctionPointerType() || 60 T->isObjCSelType()) 61 return true; 62 63 // Check if a callback is passed inside a struct (for both, struct passed by 64 // reference and by value). Dig just one level into the struct for now. 65 66 if (T->isAnyPointerType() || T->isReferenceType()) 67 T = T->getPointeeType(); 68 69 if (const RecordType *RT = T->getAsStructureType()) { 70 const RecordDecl *RD = RT->getDecl(); 71 for (const auto *I : RD->fields()) { 72 QualType FieldT = I->getType(); 73 if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) 74 return true; 75 } 76 } 77 return false; 78 } 79 80 static bool isVoidPointerToNonConst(QualType T) { 81 if (const PointerType *PT = T->getAs<PointerType>()) { 82 QualType PointeeTy = PT->getPointeeType(); 83 if (PointeeTy.isConstQualified()) 84 return false; 85 return PointeeTy->isVoidType(); 86 } else 87 return false; 88 } 89 90 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const { 91 unsigned NumOfArgs = getNumArgs(); 92 93 // If calling using a function pointer, assume the function does not 94 // satisfy the callback. 95 // TODO: We could check the types of the arguments here. 96 if (!getDecl()) 97 return false; 98 99 unsigned Idx = 0; 100 for (CallEvent::param_type_iterator I = param_type_begin(), 101 E = param_type_end(); 102 I != E && Idx < NumOfArgs; ++I, ++Idx) { 103 // If the parameter is 0, it's harmless. 104 if (getArgSVal(Idx).isZeroConstant()) 105 continue; 106 107 if (Condition(*I)) 108 return true; 109 } 110 return false; 111 } 112 113 bool CallEvent::hasNonZeroCallbackArg() const { 114 return hasNonNullArgumentsWithType(isCallback); 115 } 116 117 bool CallEvent::hasVoidPointerToNonConstArg() const { 118 return hasNonNullArgumentsWithType(isVoidPointerToNonConst); 119 } 120 121 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { 122 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 123 if (!FD) 124 return false; 125 126 return CheckerContext::isCLibraryFunction(FD, FunctionName); 127 } 128 129 /// \brief Returns true if a type is a pointer-to-const or reference-to-const 130 /// with no further indirection. 131 static bool isPointerToConst(QualType Ty) { 132 QualType PointeeTy = Ty->getPointeeType(); 133 if (PointeeTy == QualType()) 134 return false; 135 if (!PointeeTy.isConstQualified()) 136 return false; 137 if (PointeeTy->isAnyPointerType()) 138 return false; 139 return true; 140 } 141 142 // Try to retrieve the function declaration and find the function parameter 143 // types which are pointers/references to a non-pointer const. 144 // We will not invalidate the corresponding argument regions. 145 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs, 146 const CallEvent &Call) { 147 unsigned Idx = 0; 148 for (CallEvent::param_type_iterator I = Call.param_type_begin(), 149 E = Call.param_type_end(); 150 I != E; ++I, ++Idx) { 151 if (isPointerToConst(*I)) 152 PreserveArgs.insert(Idx); 153 } 154 } 155 156 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, 157 ProgramStateRef Orig) const { 158 ProgramStateRef Result = (Orig ? Orig : getState()); 159 160 // Don't invalidate anything if the callee is marked pure/const. 161 if (const Decl *callee = getDecl()) 162 if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>()) 163 return Result; 164 165 SmallVector<SVal, 8> ValuesToInvalidate; 166 RegionAndSymbolInvalidationTraits ETraits; 167 168 getExtraInvalidatedValues(ValuesToInvalidate, &ETraits); 169 170 // Indexes of arguments whose values will be preserved by the call. 171 llvm::SmallSet<unsigned, 4> PreserveArgs; 172 if (!argumentsMayEscape()) 173 findPtrToConstParams(PreserveArgs, *this); 174 175 for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { 176 // Mark this region for invalidation. We batch invalidate regions 177 // below for efficiency. 178 if (PreserveArgs.count(Idx)) 179 if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) 180 ETraits.setTrait(MR->getBaseRegion(), 181 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 182 // TODO: Factor this out + handle the lower level const pointers. 183 184 ValuesToInvalidate.push_back(getArgSVal(Idx)); 185 } 186 187 // Invalidate designated regions using the batch invalidation API. 188 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate 189 // global variables. 190 return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(), 191 BlockCount, getLocationContext(), 192 /*CausedByPointerEscape*/ true, 193 /*Symbols=*/nullptr, this, &ETraits); 194 } 195 196 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, 197 const ProgramPointTag *Tag) const { 198 if (const Expr *E = getOriginExpr()) { 199 if (IsPreVisit) 200 return PreStmt(E, getLocationContext(), Tag); 201 return PostStmt(E, getLocationContext(), Tag); 202 } 203 204 const Decl *D = getDecl(); 205 assert(D && "Cannot get a program point without a statement or decl"); 206 207 SourceLocation Loc = getSourceRange().getBegin(); 208 if (IsPreVisit) 209 return PreImplicitCall(D, Loc, getLocationContext(), Tag); 210 return PostImplicitCall(D, Loc, getLocationContext(), Tag); 211 } 212 213 bool CallEvent::isCalled(const CallDescription &CD) const { 214 // FIXME: Add ObjC Message support. 215 if (getKind() == CE_ObjCMessage) 216 return false; 217 if (!CD.IsLookupDone) { 218 CD.IsLookupDone = true; 219 CD.II = &getState()->getStateManager().getContext().Idents.get(CD.FuncName); 220 } 221 const IdentifierInfo *II = getCalleeIdentifier(); 222 if (!II || II != CD.II) 223 return false; 224 return (CD.RequiredArgs == CallDescription::NoArgRequirement || 225 CD.RequiredArgs == getNumArgs()); 226 } 227 228 SVal CallEvent::getArgSVal(unsigned Index) const { 229 const Expr *ArgE = getArgExpr(Index); 230 if (!ArgE) 231 return UnknownVal(); 232 return getSVal(ArgE); 233 } 234 235 SourceRange CallEvent::getArgSourceRange(unsigned Index) const { 236 const Expr *ArgE = getArgExpr(Index); 237 if (!ArgE) 238 return SourceRange(); 239 return ArgE->getSourceRange(); 240 } 241 242 SVal CallEvent::getReturnValue() const { 243 const Expr *E = getOriginExpr(); 244 if (!E) 245 return UndefinedVal(); 246 return getSVal(E); 247 } 248 249 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); } 250 251 void CallEvent::dump(raw_ostream &Out) const { 252 ASTContext &Ctx = getState()->getStateManager().getContext(); 253 if (const Expr *E = getOriginExpr()) { 254 E->printPretty(Out, nullptr, Ctx.getPrintingPolicy()); 255 Out << "\n"; 256 return; 257 } 258 259 if (const Decl *D = getDecl()) { 260 Out << "Call to "; 261 D->print(Out, Ctx.getPrintingPolicy()); 262 return; 263 } 264 265 // FIXME: a string representation of the kind would be nice. 266 Out << "Unknown call (type " << getKind() << ")"; 267 } 268 269 270 bool CallEvent::isCallStmt(const Stmt *S) { 271 return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S) 272 || isa<CXXConstructExpr>(S) 273 || isa<CXXNewExpr>(S); 274 } 275 276 QualType CallEvent::getDeclaredResultType(const Decl *D) { 277 assert(D); 278 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) 279 return FD->getReturnType(); 280 if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D)) 281 return MD->getReturnType(); 282 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 283 // Blocks are difficult because the return type may not be stored in the 284 // BlockDecl itself. The AST should probably be enhanced, but for now we 285 // just do what we can. 286 // If the block is declared without an explicit argument list, the 287 // signature-as-written just includes the return type, not the entire 288 // function type. 289 // FIXME: All blocks should have signatures-as-written, even if the return 290 // type is inferred. (That's signified with a dependent result type.) 291 if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) { 292 QualType Ty = TSI->getType(); 293 if (const FunctionType *FT = Ty->getAs<FunctionType>()) 294 Ty = FT->getReturnType(); 295 if (!Ty->isDependentType()) 296 return Ty; 297 } 298 299 return QualType(); 300 } 301 302 llvm_unreachable("unknown callable kind"); 303 } 304 305 bool CallEvent::isVariadic(const Decl *D) { 306 assert(D); 307 308 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 309 return FD->isVariadic(); 310 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) 311 return MD->isVariadic(); 312 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) 313 return BD->isVariadic(); 314 315 llvm_unreachable("unknown callable kind"); 316 } 317 318 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, 319 CallEvent::BindingsTy &Bindings, 320 SValBuilder &SVB, 321 const CallEvent &Call, 322 ArrayRef<ParmVarDecl*> parameters) { 323 MemRegionManager &MRMgr = SVB.getRegionManager(); 324 325 // If the function has fewer parameters than the call has arguments, we simply 326 // do not bind any values to them. 327 unsigned NumArgs = Call.getNumArgs(); 328 unsigned Idx = 0; 329 ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end(); 330 for (; I != E && Idx < NumArgs; ++I, ++Idx) { 331 const ParmVarDecl *ParamDecl = *I; 332 assert(ParamDecl && "Formal parameter has no decl?"); 333 334 SVal ArgVal = Call.getArgSVal(Idx); 335 if (!ArgVal.isUnknown()) { 336 Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx)); 337 Bindings.push_back(std::make_pair(ParamLoc, ArgVal)); 338 } 339 } 340 341 // FIXME: Variadic arguments are not handled at all right now. 342 } 343 344 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const { 345 const FunctionDecl *D = getDecl(); 346 if (!D) 347 return None; 348 return D->parameters(); 349 } 350 351 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const { 352 const FunctionDecl *FD = getDecl(); 353 // Note that the AnalysisDeclContext will have the FunctionDecl with 354 // the definition (if one exists). 355 if (FD) { 356 AnalysisDeclContext *AD = 357 getLocationContext()->getAnalysisDeclContext()-> 358 getManager()->getContext(FD); 359 bool IsAutosynthesized; 360 Stmt* Body = AD->getBody(IsAutosynthesized); 361 DEBUG({ 362 if (IsAutosynthesized) 363 llvm::dbgs() << "Using autosynthesized body for " << FD->getName() 364 << "\n"; 365 }); 366 if (Body) { 367 const Decl* Decl = AD->getDecl(); 368 return RuntimeDefinition(Decl); 369 } 370 } 371 372 return RuntimeDefinition(); 373 } 374 375 void AnyFunctionCall::getInitialStackFrameContents( 376 const StackFrameContext *CalleeCtx, 377 BindingsTy &Bindings) const { 378 const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl()); 379 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 380 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 381 D->parameters()); 382 } 383 384 bool AnyFunctionCall::argumentsMayEscape() const { 385 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg()) 386 return true; 387 388 const FunctionDecl *D = getDecl(); 389 if (!D) 390 return true; 391 392 const IdentifierInfo *II = D->getIdentifier(); 393 if (!II) 394 return false; 395 396 // This set of "escaping" APIs is 397 398 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a 399 // value into thread local storage. The value can later be retrieved with 400 // 'void *ptheread_getspecific(pthread_key)'. So even thought the 401 // parameter is 'const void *', the region escapes through the call. 402 if (II->isStr("pthread_setspecific")) 403 return true; 404 405 // - xpc_connection_set_context stores a value which can be retrieved later 406 // with xpc_connection_get_context. 407 if (II->isStr("xpc_connection_set_context")) 408 return true; 409 410 // - funopen - sets a buffer for future IO calls. 411 if (II->isStr("funopen")) 412 return true; 413 414 // - __cxa_demangle - can reallocate memory and can return the pointer to 415 // the input buffer. 416 if (II->isStr("__cxa_demangle")) 417 return true; 418 419 StringRef FName = II->getName(); 420 421 // - CoreFoundation functions that end with "NoCopy" can free a passed-in 422 // buffer even if it is const. 423 if (FName.endswith("NoCopy")) 424 return true; 425 426 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can 427 // be deallocated by NSMapRemove. 428 if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) 429 return true; 430 431 // - Many CF containers allow objects to escape through custom 432 // allocators/deallocators upon container construction. (PR12101) 433 if (FName.startswith("CF") || FName.startswith("CG")) { 434 return StrInStrNoCase(FName, "InsertValue") != StringRef::npos || 435 StrInStrNoCase(FName, "AddValue") != StringRef::npos || 436 StrInStrNoCase(FName, "SetValue") != StringRef::npos || 437 StrInStrNoCase(FName, "WithData") != StringRef::npos || 438 StrInStrNoCase(FName, "AppendValue") != StringRef::npos || 439 StrInStrNoCase(FName, "SetAttribute") != StringRef::npos; 440 } 441 442 return false; 443 } 444 445 446 const FunctionDecl *SimpleFunctionCall::getDecl() const { 447 const FunctionDecl *D = getOriginExpr()->getDirectCallee(); 448 if (D) 449 return D; 450 451 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl(); 452 } 453 454 455 const FunctionDecl *CXXInstanceCall::getDecl() const { 456 const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr()); 457 if (!CE) 458 return AnyFunctionCall::getDecl(); 459 460 const FunctionDecl *D = CE->getDirectCallee(); 461 if (D) 462 return D; 463 464 return getSVal(CE->getCallee()).getAsFunctionDecl(); 465 } 466 467 void CXXInstanceCall::getExtraInvalidatedValues( 468 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 469 SVal ThisVal = getCXXThisVal(); 470 Values.push_back(ThisVal); 471 472 // Don't invalidate if the method is const and there are no mutable fields. 473 if (const CXXMethodDecl *D = cast_or_null<CXXMethodDecl>(getDecl())) { 474 if (!D->isConst()) 475 return; 476 // Get the record decl for the class of 'This'. D->getParent() may return a 477 // base class decl, rather than the class of the instance which needs to be 478 // checked for mutable fields. 479 const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts(); 480 const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl(); 481 if (!ParentRecord || ParentRecord->hasMutableFields()) 482 return; 483 // Preserve CXXThis. 484 const MemRegion *ThisRegion = ThisVal.getAsRegion(); 485 if (!ThisRegion) 486 return; 487 488 ETraits->setTrait(ThisRegion->getBaseRegion(), 489 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 490 } 491 } 492 493 SVal CXXInstanceCall::getCXXThisVal() const { 494 const Expr *Base = getCXXThisExpr(); 495 // FIXME: This doesn't handle an overloaded ->* operator. 496 if (!Base) 497 return UnknownVal(); 498 499 SVal ThisVal = getSVal(Base); 500 assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()); 501 return ThisVal; 502 } 503 504 505 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { 506 // Do we have a decl at all? 507 const Decl *D = getDecl(); 508 if (!D) 509 return RuntimeDefinition(); 510 511 // If the method is non-virtual, we know we can inline it. 512 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 513 if (!MD->isVirtual()) 514 return AnyFunctionCall::getRuntimeDefinition(); 515 516 // Do we know the implicit 'this' object being called? 517 const MemRegion *R = getCXXThisVal().getAsRegion(); 518 if (!R) 519 return RuntimeDefinition(); 520 521 // Do we know anything about the type of 'this'? 522 DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R); 523 if (!DynType.isValid()) 524 return RuntimeDefinition(); 525 526 // Is the type a C++ class? (This is mostly a defensive check.) 527 QualType RegionType = DynType.getType()->getPointeeType(); 528 assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."); 529 530 const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl(); 531 if (!RD || !RD->hasDefinition()) 532 return RuntimeDefinition(); 533 534 // Find the decl for this method in that class. 535 const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true); 536 if (!Result) { 537 // We might not even get the original statically-resolved method due to 538 // some particularly nasty casting (e.g. casts to sister classes). 539 // However, we should at least be able to search up and down our own class 540 // hierarchy, and some real bugs have been caught by checking this. 541 assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"); 542 543 // FIXME: This is checking that our DynamicTypeInfo is at least as good as 544 // the static type. However, because we currently don't update 545 // DynamicTypeInfo when an object is cast, we can't actually be sure the 546 // DynamicTypeInfo is up to date. This assert should be re-enabled once 547 // this is fixed. <rdar://problem/12287087> 548 //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); 549 550 return RuntimeDefinition(); 551 } 552 553 // Does the decl that we found have an implementation? 554 const FunctionDecl *Definition; 555 if (!Result->hasBody(Definition)) 556 return RuntimeDefinition(); 557 558 // We found a definition. If we're not sure that this devirtualization is 559 // actually what will happen at runtime, make sure to provide the region so 560 // that ExprEngine can decide what to do with it. 561 if (DynType.canBeASubClass()) 562 return RuntimeDefinition(Definition, R->StripCasts()); 563 return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr); 564 } 565 566 void CXXInstanceCall::getInitialStackFrameContents( 567 const StackFrameContext *CalleeCtx, 568 BindingsTy &Bindings) const { 569 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 570 571 // Handle the binding of 'this' in the new stack frame. 572 SVal ThisVal = getCXXThisVal(); 573 if (!ThisVal.isUnknown()) { 574 ProgramStateManager &StateMgr = getState()->getStateManager(); 575 SValBuilder &SVB = StateMgr.getSValBuilder(); 576 577 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 578 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 579 580 // If we devirtualized to a different member function, we need to make sure 581 // we have the proper layering of CXXBaseObjectRegions. 582 if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { 583 ASTContext &Ctx = SVB.getContext(); 584 const CXXRecordDecl *Class = MD->getParent(); 585 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class)); 586 587 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. 588 bool Failed; 589 ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed); 590 assert(!Failed && "Calling an incorrectly devirtualized method"); 591 } 592 593 if (!ThisVal.isUnknown()) 594 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 595 } 596 } 597 598 599 600 const Expr *CXXMemberCall::getCXXThisExpr() const { 601 return getOriginExpr()->getImplicitObjectArgument(); 602 } 603 604 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { 605 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the 606 // id-expression in the class member access expression is a qualified-id, 607 // that function is called. Otherwise, its final overrider in the dynamic type 608 // of the object expression is called. 609 if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee())) 610 if (ME->hasQualifier()) 611 return AnyFunctionCall::getRuntimeDefinition(); 612 613 return CXXInstanceCall::getRuntimeDefinition(); 614 } 615 616 617 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { 618 return getOriginExpr()->getArg(0); 619 } 620 621 622 const BlockDataRegion *BlockCall::getBlockRegion() const { 623 const Expr *Callee = getOriginExpr()->getCallee(); 624 const MemRegion *DataReg = getSVal(Callee).getAsRegion(); 625 626 return dyn_cast_or_null<BlockDataRegion>(DataReg); 627 } 628 629 ArrayRef<ParmVarDecl*> BlockCall::parameters() const { 630 const BlockDecl *D = getDecl(); 631 if (!D) 632 return nullptr; 633 return D->parameters(); 634 } 635 636 void BlockCall::getExtraInvalidatedValues(ValueList &Values, 637 RegionAndSymbolInvalidationTraits *ETraits) const { 638 // FIXME: This also needs to invalidate captured globals. 639 if (const MemRegion *R = getBlockRegion()) 640 Values.push_back(loc::MemRegionVal(R)); 641 } 642 643 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, 644 BindingsTy &Bindings) const { 645 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 646 ArrayRef<ParmVarDecl*> Params; 647 if (isConversionFromLambda()) { 648 auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 649 Params = LambdaOperatorDecl->parameters(); 650 651 // For blocks converted from a C++ lambda, the callee declaration is the 652 // operator() method on the lambda so we bind "this" to 653 // the lambda captured by the block. 654 const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda(); 655 SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion); 656 Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx); 657 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 658 } else { 659 Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters(); 660 } 661 662 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 663 Params); 664 } 665 666 667 SVal CXXConstructorCall::getCXXThisVal() const { 668 if (Data) 669 return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); 670 return UnknownVal(); 671 } 672 673 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values, 674 RegionAndSymbolInvalidationTraits *ETraits) const { 675 if (Data) 676 Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data))); 677 } 678 679 void CXXConstructorCall::getInitialStackFrameContents( 680 const StackFrameContext *CalleeCtx, 681 BindingsTy &Bindings) const { 682 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 683 684 SVal ThisVal = getCXXThisVal(); 685 if (!ThisVal.isUnknown()) { 686 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 687 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 688 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 689 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 690 } 691 } 692 693 SVal CXXDestructorCall::getCXXThisVal() const { 694 if (Data) 695 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer()); 696 return UnknownVal(); 697 } 698 699 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { 700 // Base destructors are always called non-virtually. 701 // Skip CXXInstanceCall's devirtualization logic in this case. 702 if (isBaseDestructor()) 703 return AnyFunctionCall::getRuntimeDefinition(); 704 705 return CXXInstanceCall::getRuntimeDefinition(); 706 } 707 708 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const { 709 const ObjCMethodDecl *D = getDecl(); 710 if (!D) 711 return None; 712 return D->parameters(); 713 } 714 715 void ObjCMethodCall::getExtraInvalidatedValues( 716 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 717 718 // If the method call is a setter for property known to be backed by 719 // an instance variable, don't invalidate the entire receiver, just 720 // the storage for that instance variable. 721 if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) { 722 if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) { 723 SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal()); 724 if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) { 725 ETraits->setTrait( 726 IvarRegion, 727 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 728 ETraits->setTrait( 729 IvarRegion, 730 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 731 Values.push_back(IvarLVal); 732 } 733 return; 734 } 735 } 736 737 Values.push_back(getReceiverSVal()); 738 } 739 740 SVal ObjCMethodCall::getSelfSVal() const { 741 const LocationContext *LCtx = getLocationContext(); 742 const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); 743 if (!SelfDecl) 744 return SVal(); 745 return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx)); 746 } 747 748 SVal ObjCMethodCall::getReceiverSVal() const { 749 // FIXME: Is this the best way to handle class receivers? 750 if (!isInstanceMessage()) 751 return UnknownVal(); 752 753 if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) 754 return getSVal(RecE); 755 756 // An instance message with no expression means we are sending to super. 757 // In this case the object reference is the same as 'self'. 758 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); 759 SVal SelfVal = getSelfSVal(); 760 assert(SelfVal.isValid() && "Calling super but not in ObjC method"); 761 return SelfVal; 762 } 763 764 bool ObjCMethodCall::isReceiverSelfOrSuper() const { 765 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || 766 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) 767 return true; 768 769 if (!isInstanceMessage()) 770 return false; 771 772 SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver()); 773 774 return (RecVal == getSelfSVal()); 775 } 776 777 SourceRange ObjCMethodCall::getSourceRange() const { 778 switch (getMessageKind()) { 779 case OCM_Message: 780 return getOriginExpr()->getSourceRange(); 781 case OCM_PropertyAccess: 782 case OCM_Subscript: 783 return getContainingPseudoObjectExpr()->getSourceRange(); 784 } 785 llvm_unreachable("unknown message kind"); 786 } 787 788 typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy; 789 790 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { 791 assert(Data && "Lazy lookup not yet performed."); 792 assert(getMessageKind() != OCM_Message && "Explicit message send."); 793 return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer(); 794 } 795 796 static const Expr * 797 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) { 798 const Expr *Syntactic = POE->getSyntacticForm(); 799 800 // This handles the funny case of assigning to the result of a getter. 801 // This can happen if the getter returns a non-const reference. 802 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic)) 803 Syntactic = BO->getLHS(); 804 805 return Syntactic; 806 } 807 808 ObjCMessageKind ObjCMethodCall::getMessageKind() const { 809 if (!Data) { 810 811 // Find the parent, ignoring implicit casts. 812 ParentMap &PM = getLocationContext()->getParentMap(); 813 const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr()); 814 815 // Check if parent is a PseudoObjectExpr. 816 if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) { 817 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 818 819 ObjCMessageKind K; 820 switch (Syntactic->getStmtClass()) { 821 case Stmt::ObjCPropertyRefExprClass: 822 K = OCM_PropertyAccess; 823 break; 824 case Stmt::ObjCSubscriptRefExprClass: 825 K = OCM_Subscript; 826 break; 827 default: 828 // FIXME: Can this ever happen? 829 K = OCM_Message; 830 break; 831 } 832 833 if (K != OCM_Message) { 834 const_cast<ObjCMethodCall *>(this)->Data 835 = ObjCMessageDataTy(POE, K).getOpaqueValue(); 836 assert(getMessageKind() == K); 837 return K; 838 } 839 } 840 841 const_cast<ObjCMethodCall *>(this)->Data 842 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue(); 843 assert(getMessageKind() == OCM_Message); 844 return OCM_Message; 845 } 846 847 ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data); 848 if (!Info.getPointer()) 849 return OCM_Message; 850 return static_cast<ObjCMessageKind>(Info.getInt()); 851 } 852 853 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const { 854 // Look for properties accessed with property syntax (foo.bar = ...) 855 if ( getMessageKind() == OCM_PropertyAccess) { 856 const PseudoObjectExpr *POE = getContainingPseudoObjectExpr(); 857 assert(POE && "Property access without PseudoObjectExpr?"); 858 859 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 860 auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic); 861 862 if (RefExpr->isExplicitProperty()) 863 return RefExpr->getExplicitProperty(); 864 } 865 866 // Look for properties accessed with method syntax ([foo setBar:...]). 867 const ObjCMethodDecl *MD = getDecl(); 868 if (!MD || !MD->isPropertyAccessor()) 869 return nullptr; 870 871 // Note: This is potentially quite slow. 872 return MD->findPropertyDecl(); 873 } 874 875 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, 876 Selector Sel) const { 877 assert(IDecl); 878 const SourceManager &SM = 879 getState()->getStateManager().getContext().getSourceManager(); 880 881 // If the class interface is declared inside the main file, assume it is not 882 // subcassed. 883 // TODO: It could actually be subclassed if the subclass is private as well. 884 // This is probably very rare. 885 SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); 886 if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc)) 887 return false; 888 889 // Assume that property accessors are not overridden. 890 if (getMessageKind() == OCM_PropertyAccess) 891 return false; 892 893 // We assume that if the method is public (declared outside of main file) or 894 // has a parent which publicly declares the method, the method could be 895 // overridden in a subclass. 896 897 // Find the first declaration in the class hierarchy that declares 898 // the selector. 899 ObjCMethodDecl *D = nullptr; 900 while (true) { 901 D = IDecl->lookupMethod(Sel, true); 902 903 // Cannot find a public definition. 904 if (!D) 905 return false; 906 907 // If outside the main file, 908 if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation())) 909 return true; 910 911 if (D->isOverriding()) { 912 // Search in the superclass on the next iteration. 913 IDecl = D->getClassInterface(); 914 if (!IDecl) 915 return false; 916 917 IDecl = IDecl->getSuperClass(); 918 if (!IDecl) 919 return false; 920 921 continue; 922 } 923 924 return false; 925 }; 926 927 llvm_unreachable("The while loop should always terminate."); 928 } 929 930 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) { 931 if (!MD) 932 return MD; 933 934 // Find the redeclaration that defines the method. 935 if (!MD->hasBody()) { 936 for (auto I : MD->redecls()) 937 if (I->hasBody()) 938 MD = cast<ObjCMethodDecl>(I); 939 } 940 return MD; 941 } 942 943 static bool isCallToSelfClass(const ObjCMessageExpr *ME) { 944 const Expr* InstRec = ME->getInstanceReceiver(); 945 if (!InstRec) 946 return false; 947 const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts()); 948 949 // Check that receiver is called 'self'. 950 if (!InstRecIg || !InstRecIg->getFoundDecl() || 951 !InstRecIg->getFoundDecl()->getName().equals("self")) 952 return false; 953 954 // Check that the method name is 'class'. 955 if (ME->getSelector().getNumArgs() != 0 || 956 !ME->getSelector().getNameForSlot(0).equals("class")) 957 return false; 958 959 return true; 960 } 961 962 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { 963 const ObjCMessageExpr *E = getOriginExpr(); 964 assert(E); 965 Selector Sel = E->getSelector(); 966 967 if (E->isInstanceMessage()) { 968 969 // Find the receiver type. 970 const ObjCObjectPointerType *ReceiverT = nullptr; 971 bool CanBeSubClassed = false; 972 QualType SupersType = E->getSuperType(); 973 const MemRegion *Receiver = nullptr; 974 975 if (!SupersType.isNull()) { 976 // The receiver is guaranteed to be 'super' in this case. 977 // Super always means the type of immediate predecessor to the method 978 // where the call occurs. 979 ReceiverT = cast<ObjCObjectPointerType>(SupersType); 980 } else { 981 Receiver = getReceiverSVal().getAsRegion(); 982 if (!Receiver) 983 return RuntimeDefinition(); 984 985 DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver); 986 if (!DTI.isValid()) { 987 assert(isa<AllocaRegion>(Receiver) && 988 "Unhandled untyped region class!"); 989 return RuntimeDefinition(); 990 } 991 992 QualType DynType = DTI.getType(); 993 CanBeSubClassed = DTI.canBeASubClass(); 994 ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType()); 995 996 if (ReceiverT && CanBeSubClassed) 997 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) 998 if (!canBeOverridenInSubclass(IDecl, Sel)) 999 CanBeSubClassed = false; 1000 } 1001 1002 // Handle special cases of '[self classMethod]' and 1003 // '[[self class] classMethod]', which are treated by the compiler as 1004 // instance (not class) messages. We will statically dispatch to those. 1005 if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) { 1006 // For [self classMethod], return the compiler visible declaration. 1007 if (PT->getObjectType()->isObjCClass() && 1008 Receiver == getSelfSVal().getAsRegion()) 1009 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1010 1011 // Similarly, handle [[self class] classMethod]. 1012 // TODO: We are currently doing a syntactic match for this pattern with is 1013 // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m 1014 // shows. A better way would be to associate the meta type with the symbol 1015 // using the dynamic type info tracking and use it here. We can add a new 1016 // SVal for ObjC 'Class' values that know what interface declaration they 1017 // come from. Then 'self' in a class method would be filled in with 1018 // something meaningful in ObjCMethodCall::getReceiverSVal() and we could 1019 // do proper dynamic dispatch for class methods just like we do for 1020 // instance methods now. 1021 if (E->getInstanceReceiver()) 1022 if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver())) 1023 if (isCallToSelfClass(M)) 1024 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1025 } 1026 1027 // Lookup the instance method implementation. 1028 if (ReceiverT) 1029 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) { 1030 // Repeatedly calling lookupPrivateMethod() is expensive, especially 1031 // when in many cases it returns null. We cache the results so 1032 // that repeated queries on the same ObjCIntefaceDecl and Selector 1033 // don't incur the same cost. On some test cases, we can see the 1034 // same query being issued thousands of times. 1035 // 1036 // NOTE: This cache is essentially a "global" variable, but it 1037 // only gets lazily created when we get here. The value of the 1038 // cache probably comes from it being global across ExprEngines, 1039 // where the same queries may get issued. If we are worried about 1040 // concurrency, or possibly loading/unloading ASTs, etc., we may 1041 // need to revisit this someday. In terms of memory, this table 1042 // stays around until clang quits, which also may be bad if we 1043 // need to release memory. 1044 typedef std::pair<const ObjCInterfaceDecl*, Selector> 1045 PrivateMethodKey; 1046 typedef llvm::DenseMap<PrivateMethodKey, 1047 Optional<const ObjCMethodDecl *> > 1048 PrivateMethodCache; 1049 1050 static PrivateMethodCache PMC; 1051 Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)]; 1052 1053 // Query lookupPrivateMethod() if the cache does not hit. 1054 if (!Val.hasValue()) { 1055 Val = IDecl->lookupPrivateMethod(Sel); 1056 1057 // If the method is a property accessor, we should try to "inline" it 1058 // even if we don't actually have an implementation. 1059 if (!*Val) 1060 if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl()) 1061 if (CompileTimeMD->isPropertyAccessor()) { 1062 if (!CompileTimeMD->getSelfDecl() && 1063 isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) { 1064 // If the method is an accessor in a category, and it doesn't 1065 // have a self declaration, first 1066 // try to find the method in a class extension. This 1067 // works around a bug in Sema where multiple accessors 1068 // are synthesized for properties in class 1069 // extensions that are redeclared in a category and the 1070 // the implicit parameters are not filled in for 1071 // the method on the category. 1072 // This ensures we find the accessor in the extension, which 1073 // has the implicit parameters filled in. 1074 auto *ID = CompileTimeMD->getClassInterface(); 1075 for (auto *CatDecl : ID->visible_extensions()) { 1076 Val = CatDecl->getMethod(Sel, 1077 CompileTimeMD->isInstanceMethod()); 1078 if (*Val) 1079 break; 1080 } 1081 } 1082 if (!*Val) 1083 Val = IDecl->lookupInstanceMethod(Sel); 1084 } 1085 } 1086 1087 const ObjCMethodDecl *MD = Val.getValue(); 1088 if (CanBeSubClassed) 1089 return RuntimeDefinition(MD, Receiver); 1090 else 1091 return RuntimeDefinition(MD, nullptr); 1092 } 1093 1094 } else { 1095 // This is a class method. 1096 // If we have type info for the receiver class, we are calling via 1097 // class name. 1098 if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { 1099 // Find/Return the method implementation. 1100 return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); 1101 } 1102 } 1103 1104 return RuntimeDefinition(); 1105 } 1106 1107 bool ObjCMethodCall::argumentsMayEscape() const { 1108 if (isInSystemHeader() && !isInstanceMessage()) { 1109 Selector Sel = getSelector(); 1110 if (Sel.getNumArgs() == 1 && 1111 Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer")) 1112 return true; 1113 } 1114 1115 return CallEvent::argumentsMayEscape(); 1116 } 1117 1118 void ObjCMethodCall::getInitialStackFrameContents( 1119 const StackFrameContext *CalleeCtx, 1120 BindingsTy &Bindings) const { 1121 const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl()); 1122 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 1123 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 1124 D->parameters()); 1125 1126 SVal SelfVal = getReceiverSVal(); 1127 if (!SelfVal.isUnknown()) { 1128 const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); 1129 MemRegionManager &MRMgr = SVB.getRegionManager(); 1130 Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx)); 1131 Bindings.push_back(std::make_pair(SelfLoc, SelfVal)); 1132 } 1133 } 1134 1135 CallEventRef<> 1136 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, 1137 const LocationContext *LCtx) { 1138 if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) 1139 return create<CXXMemberCall>(MCE, State, LCtx); 1140 1141 if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 1142 const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); 1143 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) 1144 if (MD->isInstance()) 1145 return create<CXXMemberOperatorCall>(OpCE, State, LCtx); 1146 1147 } else if (CE->getCallee()->getType()->isBlockPointerType()) { 1148 return create<BlockCall>(CE, State, LCtx); 1149 } 1150 1151 // Otherwise, it's a normal function call, static member function call, or 1152 // something we can't reason about. 1153 return create<SimpleFunctionCall>(CE, State, LCtx); 1154 } 1155 1156 1157 CallEventRef<> 1158 CallEventManager::getCaller(const StackFrameContext *CalleeCtx, 1159 ProgramStateRef State) { 1160 const LocationContext *ParentCtx = CalleeCtx->getParent(); 1161 const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame(); 1162 assert(CallerCtx && "This should not be used for top-level stack frames"); 1163 1164 const Stmt *CallSite = CalleeCtx->getCallSite(); 1165 1166 if (CallSite) { 1167 if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite)) 1168 return getSimpleCall(CE, State, CallerCtx); 1169 1170 switch (CallSite->getStmtClass()) { 1171 case Stmt::CXXConstructExprClass: 1172 case Stmt::CXXTemporaryObjectExprClass: { 1173 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1174 const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 1175 Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx); 1176 SVal ThisVal = State->getSVal(ThisPtr); 1177 1178 return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite), 1179 ThisVal.getAsRegion(), State, CallerCtx); 1180 } 1181 case Stmt::CXXNewExprClass: 1182 return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx); 1183 case Stmt::ObjCMessageExprClass: 1184 return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite), 1185 State, CallerCtx); 1186 default: 1187 llvm_unreachable("This is not an inlineable statement."); 1188 } 1189 } 1190 1191 // Fall back to the CFG. The only thing we haven't handled yet is 1192 // destructors, though this could change in the future. 1193 const CFGBlock *B = CalleeCtx->getCallSiteBlock(); 1194 CFGElement E = (*B)[CalleeCtx->getIndex()]; 1195 assert(E.getAs<CFGImplicitDtor>() && 1196 "All other CFG elements should have exprs"); 1197 assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet"); 1198 1199 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1200 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl()); 1201 Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx); 1202 SVal ThisVal = State->getSVal(ThisPtr); 1203 1204 const Stmt *Trigger; 1205 if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>()) 1206 Trigger = AutoDtor->getTriggerStmt(); 1207 else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>()) 1208 Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr()); 1209 else 1210 Trigger = Dtor->getBody(); 1211 1212 return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(), 1213 E.getAs<CFGBaseDtor>().hasValue(), State, 1214 CallerCtx); 1215 } 1216