1 //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This file defines CallEvent and its subclasses, which represent path- 11 /// sensitive instances of different kinds of function and method calls 12 /// (C, C++, and Objective-C). 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 17 #include "clang/AST/ParentMap.h" 18 #include "clang/Analysis/ProgramPoint.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/Support/raw_ostream.h" 24 25 using namespace clang; 26 using namespace ento; 27 28 QualType CallEvent::getResultType() const { 29 const Expr *E = getOriginExpr(); 30 assert(E && "Calls without origin expressions do not have results"); 31 QualType ResultTy = E->getType(); 32 33 ASTContext &Ctx = getState()->getStateManager().getContext(); 34 35 // A function that returns a reference to 'int' will have a result type 36 // of simply 'int'. Check the origin expr's value kind to recover the 37 // proper type. 38 switch (E->getValueKind()) { 39 case VK_LValue: 40 ResultTy = Ctx.getLValueReferenceType(ResultTy); 41 break; 42 case VK_XValue: 43 ResultTy = Ctx.getRValueReferenceType(ResultTy); 44 break; 45 case VK_RValue: 46 // No adjustment is necessary. 47 break; 48 } 49 50 return ResultTy; 51 } 52 53 static bool isCallback(QualType T) { 54 // If a parameter is a block or a callback, assume it can modify pointer. 55 if (T->isBlockPointerType() || 56 T->isFunctionPointerType() || 57 T->isObjCSelType()) 58 return true; 59 60 // Check if a callback is passed inside a struct (for both, struct passed by 61 // reference and by value). Dig just one level into the struct for now. 62 63 if (T->isAnyPointerType() || T->isReferenceType()) 64 T = T->getPointeeType(); 65 66 if (const RecordType *RT = T->getAsStructureType()) { 67 const RecordDecl *RD = RT->getDecl(); 68 for (const auto *I : RD->fields()) { 69 QualType FieldT = I->getType(); 70 if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) 71 return true; 72 } 73 } 74 return false; 75 } 76 77 static bool isVoidPointerToNonConst(QualType T) { 78 if (const PointerType *PT = T->getAs<PointerType>()) { 79 QualType PointeeTy = PT->getPointeeType(); 80 if (PointeeTy.isConstQualified()) 81 return false; 82 return PointeeTy->isVoidType(); 83 } else 84 return false; 85 } 86 87 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const { 88 unsigned NumOfArgs = getNumArgs(); 89 90 // If calling using a function pointer, assume the function does not 91 // satisfy the callback. 92 // TODO: We could check the types of the arguments here. 93 if (!getDecl()) 94 return false; 95 96 unsigned Idx = 0; 97 for (CallEvent::param_type_iterator I = param_type_begin(), 98 E = param_type_end(); 99 I != E && Idx < NumOfArgs; ++I, ++Idx) { 100 if (NumOfArgs <= Idx) 101 break; 102 103 // If the parameter is 0, it's harmless. 104 if (getArgSVal(Idx).isZeroConstant()) 105 continue; 106 107 if (Condition(*I)) 108 return true; 109 } 110 return false; 111 } 112 113 bool CallEvent::hasNonZeroCallbackArg() const { 114 return hasNonNullArgumentsWithType(isCallback); 115 } 116 117 bool CallEvent::hasVoidPointerToNonConstArg() const { 118 return hasNonNullArgumentsWithType(isVoidPointerToNonConst); 119 } 120 121 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { 122 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 123 if (!FD) 124 return false; 125 126 return CheckerContext::isCLibraryFunction(FD, FunctionName); 127 } 128 129 /// \brief Returns true if a type is a pointer-to-const or reference-to-const 130 /// with no further indirection. 131 static bool isPointerToConst(QualType Ty) { 132 QualType PointeeTy = Ty->getPointeeType(); 133 if (PointeeTy == QualType()) 134 return false; 135 if (!PointeeTy.isConstQualified()) 136 return false; 137 if (PointeeTy->isAnyPointerType()) 138 return false; 139 return true; 140 } 141 142 // Try to retrieve the function declaration and find the function parameter 143 // types which are pointers/references to a non-pointer const. 144 // We will not invalidate the corresponding argument regions. 145 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs, 146 const CallEvent &Call) { 147 unsigned Idx = 0; 148 for (CallEvent::param_type_iterator I = Call.param_type_begin(), 149 E = Call.param_type_end(); 150 I != E; ++I, ++Idx) { 151 if (isPointerToConst(*I)) 152 PreserveArgs.insert(Idx); 153 } 154 } 155 156 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, 157 ProgramStateRef Orig) const { 158 ProgramStateRef Result = (Orig ? Orig : getState()); 159 160 // Don't invalidate anything if the callee is marked pure/const. 161 if (const Decl *callee = getDecl()) 162 if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>()) 163 return Result; 164 165 SmallVector<SVal, 8> ValuesToInvalidate; 166 RegionAndSymbolInvalidationTraits ETraits; 167 168 getExtraInvalidatedValues(ValuesToInvalidate, &ETraits); 169 170 // Indexes of arguments whose values will be preserved by the call. 171 llvm::SmallSet<unsigned, 4> PreserveArgs; 172 if (!argumentsMayEscape()) 173 findPtrToConstParams(PreserveArgs, *this); 174 175 for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { 176 // Mark this region for invalidation. We batch invalidate regions 177 // below for efficiency. 178 if (PreserveArgs.count(Idx)) 179 if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) 180 ETraits.setTrait(MR->StripCasts(), 181 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 182 // TODO: Factor this out + handle the lower level const pointers. 183 184 ValuesToInvalidate.push_back(getArgSVal(Idx)); 185 } 186 187 // Invalidate designated regions using the batch invalidation API. 188 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate 189 // global variables. 190 return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(), 191 BlockCount, getLocationContext(), 192 /*CausedByPointerEscape*/ true, 193 /*Symbols=*/nullptr, this, &ETraits); 194 } 195 196 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, 197 const ProgramPointTag *Tag) const { 198 if (const Expr *E = getOriginExpr()) { 199 if (IsPreVisit) 200 return PreStmt(E, getLocationContext(), Tag); 201 return PostStmt(E, getLocationContext(), Tag); 202 } 203 204 const Decl *D = getDecl(); 205 assert(D && "Cannot get a program point without a statement or decl"); 206 207 SourceLocation Loc = getSourceRange().getBegin(); 208 if (IsPreVisit) 209 return PreImplicitCall(D, Loc, getLocationContext(), Tag); 210 return PostImplicitCall(D, Loc, getLocationContext(), Tag); 211 } 212 213 SVal CallEvent::getArgSVal(unsigned Index) const { 214 const Expr *ArgE = getArgExpr(Index); 215 if (!ArgE) 216 return UnknownVal(); 217 return getSVal(ArgE); 218 } 219 220 SourceRange CallEvent::getArgSourceRange(unsigned Index) const { 221 const Expr *ArgE = getArgExpr(Index); 222 if (!ArgE) 223 return SourceRange(); 224 return ArgE->getSourceRange(); 225 } 226 227 SVal CallEvent::getReturnValue() const { 228 const Expr *E = getOriginExpr(); 229 if (!E) 230 return UndefinedVal(); 231 return getSVal(E); 232 } 233 234 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); } 235 236 void CallEvent::dump(raw_ostream &Out) const { 237 ASTContext &Ctx = getState()->getStateManager().getContext(); 238 if (const Expr *E = getOriginExpr()) { 239 E->printPretty(Out, nullptr, Ctx.getPrintingPolicy()); 240 Out << "\n"; 241 return; 242 } 243 244 if (const Decl *D = getDecl()) { 245 Out << "Call to "; 246 D->print(Out, Ctx.getPrintingPolicy()); 247 return; 248 } 249 250 // FIXME: a string representation of the kind would be nice. 251 Out << "Unknown call (type " << getKind() << ")"; 252 } 253 254 255 bool CallEvent::isCallStmt(const Stmt *S) { 256 return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S) 257 || isa<CXXConstructExpr>(S) 258 || isa<CXXNewExpr>(S); 259 } 260 261 QualType CallEvent::getDeclaredResultType(const Decl *D) { 262 assert(D); 263 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) 264 return FD->getReturnType(); 265 if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D)) 266 return MD->getReturnType(); 267 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 268 // Blocks are difficult because the return type may not be stored in the 269 // BlockDecl itself. The AST should probably be enhanced, but for now we 270 // just do what we can. 271 // If the block is declared without an explicit argument list, the 272 // signature-as-written just includes the return type, not the entire 273 // function type. 274 // FIXME: All blocks should have signatures-as-written, even if the return 275 // type is inferred. (That's signified with a dependent result type.) 276 if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) { 277 QualType Ty = TSI->getType(); 278 if (const FunctionType *FT = Ty->getAs<FunctionType>()) 279 Ty = FT->getReturnType(); 280 if (!Ty->isDependentType()) 281 return Ty; 282 } 283 284 return QualType(); 285 } 286 287 llvm_unreachable("unknown callable kind"); 288 } 289 290 bool CallEvent::isVariadic(const Decl *D) { 291 assert(D); 292 293 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 294 return FD->isVariadic(); 295 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) 296 return MD->isVariadic(); 297 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) 298 return BD->isVariadic(); 299 300 llvm_unreachable("unknown callable kind"); 301 } 302 303 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, 304 CallEvent::BindingsTy &Bindings, 305 SValBuilder &SVB, 306 const CallEvent &Call, 307 ArrayRef<ParmVarDecl*> parameters) { 308 MemRegionManager &MRMgr = SVB.getRegionManager(); 309 310 // If the function has fewer parameters than the call has arguments, we simply 311 // do not bind any values to them. 312 unsigned NumArgs = Call.getNumArgs(); 313 unsigned Idx = 0; 314 ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end(); 315 for (; I != E && Idx < NumArgs; ++I, ++Idx) { 316 const ParmVarDecl *ParamDecl = *I; 317 assert(ParamDecl && "Formal parameter has no decl?"); 318 319 SVal ArgVal = Call.getArgSVal(Idx); 320 if (!ArgVal.isUnknown()) { 321 Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx)); 322 Bindings.push_back(std::make_pair(ParamLoc, ArgVal)); 323 } 324 } 325 326 // FIXME: Variadic arguments are not handled at all right now. 327 } 328 329 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const { 330 const FunctionDecl *D = getDecl(); 331 if (!D) 332 return None; 333 return D->parameters(); 334 } 335 336 void AnyFunctionCall::getInitialStackFrameContents( 337 const StackFrameContext *CalleeCtx, 338 BindingsTy &Bindings) const { 339 const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl()); 340 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 341 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 342 D->parameters()); 343 } 344 345 bool AnyFunctionCall::argumentsMayEscape() const { 346 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg()) 347 return true; 348 349 const FunctionDecl *D = getDecl(); 350 if (!D) 351 return true; 352 353 const IdentifierInfo *II = D->getIdentifier(); 354 if (!II) 355 return false; 356 357 // This set of "escaping" APIs is 358 359 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a 360 // value into thread local storage. The value can later be retrieved with 361 // 'void *ptheread_getspecific(pthread_key)'. So even thought the 362 // parameter is 'const void *', the region escapes through the call. 363 if (II->isStr("pthread_setspecific")) 364 return true; 365 366 // - xpc_connection_set_context stores a value which can be retrieved later 367 // with xpc_connection_get_context. 368 if (II->isStr("xpc_connection_set_context")) 369 return true; 370 371 // - funopen - sets a buffer for future IO calls. 372 if (II->isStr("funopen")) 373 return true; 374 375 StringRef FName = II->getName(); 376 377 // - CoreFoundation functions that end with "NoCopy" can free a passed-in 378 // buffer even if it is const. 379 if (FName.endswith("NoCopy")) 380 return true; 381 382 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can 383 // be deallocated by NSMapRemove. 384 if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) 385 return true; 386 387 // - Many CF containers allow objects to escape through custom 388 // allocators/deallocators upon container construction. (PR12101) 389 if (FName.startswith("CF") || FName.startswith("CG")) { 390 return StrInStrNoCase(FName, "InsertValue") != StringRef::npos || 391 StrInStrNoCase(FName, "AddValue") != StringRef::npos || 392 StrInStrNoCase(FName, "SetValue") != StringRef::npos || 393 StrInStrNoCase(FName, "WithData") != StringRef::npos || 394 StrInStrNoCase(FName, "AppendValue") != StringRef::npos || 395 StrInStrNoCase(FName, "SetAttribute") != StringRef::npos; 396 } 397 398 return false; 399 } 400 401 402 const FunctionDecl *SimpleFunctionCall::getDecl() const { 403 const FunctionDecl *D = getOriginExpr()->getDirectCallee(); 404 if (D) 405 return D; 406 407 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl(); 408 } 409 410 411 const FunctionDecl *CXXInstanceCall::getDecl() const { 412 const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr()); 413 if (!CE) 414 return AnyFunctionCall::getDecl(); 415 416 const FunctionDecl *D = CE->getDirectCallee(); 417 if (D) 418 return D; 419 420 return getSVal(CE->getCallee()).getAsFunctionDecl(); 421 } 422 423 void CXXInstanceCall::getExtraInvalidatedValues(ValueList &Values, 424 RegionAndSymbolInvalidationTraits *ETraits) const { 425 SVal ThisVal = getCXXThisVal(); 426 Values.push_back(ThisVal); 427 428 // Don't invalidate if the method is const and there are no mutable fields. 429 if (const CXXMethodDecl *D = cast_or_null<CXXMethodDecl>(getDecl())) { 430 if (!D->isConst()) 431 return; 432 // Get the record decl for the class of 'This'. D->getParent() may return a 433 // base class decl, rather than the class of the instance which needs to be 434 // checked for mutable fields. 435 const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts(); 436 const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl(); 437 if (!ParentRecord || ParentRecord->hasMutableFields()) 438 return; 439 // Preserve CXXThis. 440 const MemRegion *ThisRegion = ThisVal.getAsRegion(); 441 assert(ThisRegion && "ThisValue was not a memory region"); 442 ETraits->setTrait(ThisRegion->getBaseRegion(), 443 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 444 } 445 } 446 447 SVal CXXInstanceCall::getCXXThisVal() const { 448 const Expr *Base = getCXXThisExpr(); 449 // FIXME: This doesn't handle an overloaded ->* operator. 450 if (!Base) 451 return UnknownVal(); 452 453 SVal ThisVal = getSVal(Base); 454 assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()); 455 return ThisVal; 456 } 457 458 459 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { 460 // Do we have a decl at all? 461 const Decl *D = getDecl(); 462 if (!D) 463 return RuntimeDefinition(); 464 465 // If the method is non-virtual, we know we can inline it. 466 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 467 if (!MD->isVirtual()) 468 return AnyFunctionCall::getRuntimeDefinition(); 469 470 // Do we know the implicit 'this' object being called? 471 const MemRegion *R = getCXXThisVal().getAsRegion(); 472 if (!R) 473 return RuntimeDefinition(); 474 475 // Do we know anything about the type of 'this'? 476 DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R); 477 if (!DynType.isValid()) 478 return RuntimeDefinition(); 479 480 // Is the type a C++ class? (This is mostly a defensive check.) 481 QualType RegionType = DynType.getType()->getPointeeType(); 482 assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."); 483 484 const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl(); 485 if (!RD || !RD->hasDefinition()) 486 return RuntimeDefinition(); 487 488 // Find the decl for this method in that class. 489 const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true); 490 if (!Result) { 491 // We might not even get the original statically-resolved method due to 492 // some particularly nasty casting (e.g. casts to sister classes). 493 // However, we should at least be able to search up and down our own class 494 // hierarchy, and some real bugs have been caught by checking this. 495 assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"); 496 497 // FIXME: This is checking that our DynamicTypeInfo is at least as good as 498 // the static type. However, because we currently don't update 499 // DynamicTypeInfo when an object is cast, we can't actually be sure the 500 // DynamicTypeInfo is up to date. This assert should be re-enabled once 501 // this is fixed. <rdar://problem/12287087> 502 //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); 503 504 return RuntimeDefinition(); 505 } 506 507 // Does the decl that we found have an implementation? 508 const FunctionDecl *Definition; 509 if (!Result->hasBody(Definition)) 510 return RuntimeDefinition(); 511 512 // We found a definition. If we're not sure that this devirtualization is 513 // actually what will happen at runtime, make sure to provide the region so 514 // that ExprEngine can decide what to do with it. 515 if (DynType.canBeASubClass()) 516 return RuntimeDefinition(Definition, R->StripCasts()); 517 return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr); 518 } 519 520 void CXXInstanceCall::getInitialStackFrameContents( 521 const StackFrameContext *CalleeCtx, 522 BindingsTy &Bindings) const { 523 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 524 525 // Handle the binding of 'this' in the new stack frame. 526 SVal ThisVal = getCXXThisVal(); 527 if (!ThisVal.isUnknown()) { 528 ProgramStateManager &StateMgr = getState()->getStateManager(); 529 SValBuilder &SVB = StateMgr.getSValBuilder(); 530 531 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 532 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 533 534 // If we devirtualized to a different member function, we need to make sure 535 // we have the proper layering of CXXBaseObjectRegions. 536 if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { 537 ASTContext &Ctx = SVB.getContext(); 538 const CXXRecordDecl *Class = MD->getParent(); 539 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class)); 540 541 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. 542 bool Failed; 543 ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed); 544 assert(!Failed && "Calling an incorrectly devirtualized method"); 545 } 546 547 if (!ThisVal.isUnknown()) 548 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 549 } 550 } 551 552 553 554 const Expr *CXXMemberCall::getCXXThisExpr() const { 555 return getOriginExpr()->getImplicitObjectArgument(); 556 } 557 558 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { 559 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the 560 // id-expression in the class member access expression is a qualified-id, 561 // that function is called. Otherwise, its final overrider in the dynamic type 562 // of the object expression is called. 563 if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee())) 564 if (ME->hasQualifier()) 565 return AnyFunctionCall::getRuntimeDefinition(); 566 567 return CXXInstanceCall::getRuntimeDefinition(); 568 } 569 570 571 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { 572 return getOriginExpr()->getArg(0); 573 } 574 575 576 const BlockDataRegion *BlockCall::getBlockRegion() const { 577 const Expr *Callee = getOriginExpr()->getCallee(); 578 const MemRegion *DataReg = getSVal(Callee).getAsRegion(); 579 580 return dyn_cast_or_null<BlockDataRegion>(DataReg); 581 } 582 583 ArrayRef<ParmVarDecl*> BlockCall::parameters() const { 584 const BlockDecl *D = getDecl(); 585 if (!D) 586 return nullptr; 587 return D->parameters(); 588 } 589 590 void BlockCall::getExtraInvalidatedValues(ValueList &Values, 591 RegionAndSymbolInvalidationTraits *ETraits) const { 592 // FIXME: This also needs to invalidate captured globals. 593 if (const MemRegion *R = getBlockRegion()) 594 Values.push_back(loc::MemRegionVal(R)); 595 } 596 597 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, 598 BindingsTy &Bindings) const { 599 const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl()); 600 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 601 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 602 D->parameters()); 603 } 604 605 606 SVal CXXConstructorCall::getCXXThisVal() const { 607 if (Data) 608 return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); 609 return UnknownVal(); 610 } 611 612 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values, 613 RegionAndSymbolInvalidationTraits *ETraits) const { 614 if (Data) 615 Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data))); 616 } 617 618 void CXXConstructorCall::getInitialStackFrameContents( 619 const StackFrameContext *CalleeCtx, 620 BindingsTy &Bindings) const { 621 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 622 623 SVal ThisVal = getCXXThisVal(); 624 if (!ThisVal.isUnknown()) { 625 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 626 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 627 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 628 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 629 } 630 } 631 632 SVal CXXDestructorCall::getCXXThisVal() const { 633 if (Data) 634 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer()); 635 return UnknownVal(); 636 } 637 638 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { 639 // Base destructors are always called non-virtually. 640 // Skip CXXInstanceCall's devirtualization logic in this case. 641 if (isBaseDestructor()) 642 return AnyFunctionCall::getRuntimeDefinition(); 643 644 return CXXInstanceCall::getRuntimeDefinition(); 645 } 646 647 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const { 648 const ObjCMethodDecl *D = getDecl(); 649 if (!D) 650 return None; 651 return D->parameters(); 652 } 653 654 void 655 ObjCMethodCall::getExtraInvalidatedValues(ValueList &Values, 656 RegionAndSymbolInvalidationTraits *ETraits) const { 657 Values.push_back(getReceiverSVal()); 658 } 659 660 SVal ObjCMethodCall::getSelfSVal() const { 661 const LocationContext *LCtx = getLocationContext(); 662 const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); 663 if (!SelfDecl) 664 return SVal(); 665 return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx)); 666 } 667 668 SVal ObjCMethodCall::getReceiverSVal() const { 669 // FIXME: Is this the best way to handle class receivers? 670 if (!isInstanceMessage()) 671 return UnknownVal(); 672 673 if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) 674 return getSVal(RecE); 675 676 // An instance message with no expression means we are sending to super. 677 // In this case the object reference is the same as 'self'. 678 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); 679 SVal SelfVal = getSelfSVal(); 680 assert(SelfVal.isValid() && "Calling super but not in ObjC method"); 681 return SelfVal; 682 } 683 684 bool ObjCMethodCall::isReceiverSelfOrSuper() const { 685 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || 686 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) 687 return true; 688 689 if (!isInstanceMessage()) 690 return false; 691 692 SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver()); 693 694 return (RecVal == getSelfSVal()); 695 } 696 697 SourceRange ObjCMethodCall::getSourceRange() const { 698 switch (getMessageKind()) { 699 case OCM_Message: 700 return getOriginExpr()->getSourceRange(); 701 case OCM_PropertyAccess: 702 case OCM_Subscript: 703 return getContainingPseudoObjectExpr()->getSourceRange(); 704 } 705 llvm_unreachable("unknown message kind"); 706 } 707 708 typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy; 709 710 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { 711 assert(Data && "Lazy lookup not yet performed."); 712 assert(getMessageKind() != OCM_Message && "Explicit message send."); 713 return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer(); 714 } 715 716 ObjCMessageKind ObjCMethodCall::getMessageKind() const { 717 if (!Data) { 718 719 // Find the parent, ignoring implicit casts. 720 ParentMap &PM = getLocationContext()->getParentMap(); 721 const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr()); 722 723 // Check if parent is a PseudoObjectExpr. 724 if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) { 725 const Expr *Syntactic = POE->getSyntacticForm(); 726 727 // This handles the funny case of assigning to the result of a getter. 728 // This can happen if the getter returns a non-const reference. 729 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic)) 730 Syntactic = BO->getLHS(); 731 732 ObjCMessageKind K; 733 switch (Syntactic->getStmtClass()) { 734 case Stmt::ObjCPropertyRefExprClass: 735 K = OCM_PropertyAccess; 736 break; 737 case Stmt::ObjCSubscriptRefExprClass: 738 K = OCM_Subscript; 739 break; 740 default: 741 // FIXME: Can this ever happen? 742 K = OCM_Message; 743 break; 744 } 745 746 if (K != OCM_Message) { 747 const_cast<ObjCMethodCall *>(this)->Data 748 = ObjCMessageDataTy(POE, K).getOpaqueValue(); 749 assert(getMessageKind() == K); 750 return K; 751 } 752 } 753 754 const_cast<ObjCMethodCall *>(this)->Data 755 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue(); 756 assert(getMessageKind() == OCM_Message); 757 return OCM_Message; 758 } 759 760 ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data); 761 if (!Info.getPointer()) 762 return OCM_Message; 763 return static_cast<ObjCMessageKind>(Info.getInt()); 764 } 765 766 767 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, 768 Selector Sel) const { 769 assert(IDecl); 770 const SourceManager &SM = 771 getState()->getStateManager().getContext().getSourceManager(); 772 773 // If the class interface is declared inside the main file, assume it is not 774 // subcassed. 775 // TODO: It could actually be subclassed if the subclass is private as well. 776 // This is probably very rare. 777 SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); 778 if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc)) 779 return false; 780 781 // Assume that property accessors are not overridden. 782 if (getMessageKind() == OCM_PropertyAccess) 783 return false; 784 785 // We assume that if the method is public (declared outside of main file) or 786 // has a parent which publicly declares the method, the method could be 787 // overridden in a subclass. 788 789 // Find the first declaration in the class hierarchy that declares 790 // the selector. 791 ObjCMethodDecl *D = nullptr; 792 while (true) { 793 D = IDecl->lookupMethod(Sel, true); 794 795 // Cannot find a public definition. 796 if (!D) 797 return false; 798 799 // If outside the main file, 800 if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation())) 801 return true; 802 803 if (D->isOverriding()) { 804 // Search in the superclass on the next iteration. 805 IDecl = D->getClassInterface(); 806 if (!IDecl) 807 return false; 808 809 IDecl = IDecl->getSuperClass(); 810 if (!IDecl) 811 return false; 812 813 continue; 814 } 815 816 return false; 817 }; 818 819 llvm_unreachable("The while loop should always terminate."); 820 } 821 822 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { 823 const ObjCMessageExpr *E = getOriginExpr(); 824 assert(E); 825 Selector Sel = E->getSelector(); 826 827 if (E->isInstanceMessage()) { 828 829 // Find the receiver type. 830 const ObjCObjectPointerType *ReceiverT = nullptr; 831 bool CanBeSubClassed = false; 832 QualType SupersType = E->getSuperType(); 833 const MemRegion *Receiver = nullptr; 834 835 if (!SupersType.isNull()) { 836 // Super always means the type of immediate predecessor to the method 837 // where the call occurs. 838 ReceiverT = cast<ObjCObjectPointerType>(SupersType); 839 } else { 840 Receiver = getReceiverSVal().getAsRegion(); 841 if (!Receiver) 842 return RuntimeDefinition(); 843 844 DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver); 845 QualType DynType = DTI.getType(); 846 CanBeSubClassed = DTI.canBeASubClass(); 847 ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType); 848 849 if (ReceiverT && CanBeSubClassed) 850 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) 851 if (!canBeOverridenInSubclass(IDecl, Sel)) 852 CanBeSubClassed = false; 853 } 854 855 // Lookup the method implementation. 856 if (ReceiverT) 857 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) { 858 // Repeatedly calling lookupPrivateMethod() is expensive, especially 859 // when in many cases it returns null. We cache the results so 860 // that repeated queries on the same ObjCIntefaceDecl and Selector 861 // don't incur the same cost. On some test cases, we can see the 862 // same query being issued thousands of times. 863 // 864 // NOTE: This cache is essentially a "global" variable, but it 865 // only gets lazily created when we get here. The value of the 866 // cache probably comes from it being global across ExprEngines, 867 // where the same queries may get issued. If we are worried about 868 // concurrency, or possibly loading/unloading ASTs, etc., we may 869 // need to revisit this someday. In terms of memory, this table 870 // stays around until clang quits, which also may be bad if we 871 // need to release memory. 872 typedef std::pair<const ObjCInterfaceDecl*, Selector> 873 PrivateMethodKey; 874 typedef llvm::DenseMap<PrivateMethodKey, 875 Optional<const ObjCMethodDecl *> > 876 PrivateMethodCache; 877 878 static PrivateMethodCache PMC; 879 Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)]; 880 881 // Query lookupPrivateMethod() if the cache does not hit. 882 if (!Val.hasValue()) { 883 Val = IDecl->lookupPrivateMethod(Sel); 884 885 // If the method is a property accessor, we should try to "inline" it 886 // even if we don't actually have an implementation. 887 if (!*Val) 888 if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl()) 889 if (CompileTimeMD->isPropertyAccessor()) 890 Val = IDecl->lookupInstanceMethod(Sel); 891 } 892 893 const ObjCMethodDecl *MD = Val.getValue(); 894 if (CanBeSubClassed) 895 return RuntimeDefinition(MD, Receiver); 896 else 897 return RuntimeDefinition(MD, nullptr); 898 } 899 900 } else { 901 // This is a class method. 902 // If we have type info for the receiver class, we are calling via 903 // class name. 904 if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { 905 // Find/Return the method implementation. 906 return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); 907 } 908 } 909 910 return RuntimeDefinition(); 911 } 912 913 bool ObjCMethodCall::argumentsMayEscape() const { 914 if (isInSystemHeader() && !isInstanceMessage()) { 915 Selector Sel = getSelector(); 916 if (Sel.getNumArgs() == 1 && 917 Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer")) 918 return true; 919 } 920 921 return CallEvent::argumentsMayEscape(); 922 } 923 924 void ObjCMethodCall::getInitialStackFrameContents( 925 const StackFrameContext *CalleeCtx, 926 BindingsTy &Bindings) const { 927 const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl()); 928 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 929 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 930 D->parameters()); 931 932 SVal SelfVal = getReceiverSVal(); 933 if (!SelfVal.isUnknown()) { 934 const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); 935 MemRegionManager &MRMgr = SVB.getRegionManager(); 936 Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx)); 937 Bindings.push_back(std::make_pair(SelfLoc, SelfVal)); 938 } 939 } 940 941 CallEventRef<> 942 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, 943 const LocationContext *LCtx) { 944 if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) 945 return create<CXXMemberCall>(MCE, State, LCtx); 946 947 if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 948 const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); 949 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) 950 if (MD->isInstance()) 951 return create<CXXMemberOperatorCall>(OpCE, State, LCtx); 952 953 } else if (CE->getCallee()->getType()->isBlockPointerType()) { 954 return create<BlockCall>(CE, State, LCtx); 955 } 956 957 // Otherwise, it's a normal function call, static member function call, or 958 // something we can't reason about. 959 return create<SimpleFunctionCall>(CE, State, LCtx); 960 } 961 962 963 CallEventRef<> 964 CallEventManager::getCaller(const StackFrameContext *CalleeCtx, 965 ProgramStateRef State) { 966 const LocationContext *ParentCtx = CalleeCtx->getParent(); 967 const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame(); 968 assert(CallerCtx && "This should not be used for top-level stack frames"); 969 970 const Stmt *CallSite = CalleeCtx->getCallSite(); 971 972 if (CallSite) { 973 if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite)) 974 return getSimpleCall(CE, State, CallerCtx); 975 976 switch (CallSite->getStmtClass()) { 977 case Stmt::CXXConstructExprClass: 978 case Stmt::CXXTemporaryObjectExprClass: { 979 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 980 const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 981 Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx); 982 SVal ThisVal = State->getSVal(ThisPtr); 983 984 return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite), 985 ThisVal.getAsRegion(), State, CallerCtx); 986 } 987 case Stmt::CXXNewExprClass: 988 return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx); 989 case Stmt::ObjCMessageExprClass: 990 return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite), 991 State, CallerCtx); 992 default: 993 llvm_unreachable("This is not an inlineable statement."); 994 } 995 } 996 997 // Fall back to the CFG. The only thing we haven't handled yet is 998 // destructors, though this could change in the future. 999 const CFGBlock *B = CalleeCtx->getCallSiteBlock(); 1000 CFGElement E = (*B)[CalleeCtx->getIndex()]; 1001 assert(E.getAs<CFGImplicitDtor>() && 1002 "All other CFG elements should have exprs"); 1003 assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet"); 1004 1005 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1006 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl()); 1007 Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx); 1008 SVal ThisVal = State->getSVal(ThisPtr); 1009 1010 const Stmt *Trigger; 1011 if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>()) 1012 Trigger = AutoDtor->getTriggerStmt(); 1013 else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>()) 1014 Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr()); 1015 else 1016 Trigger = Dtor->getBody(); 1017 1018 return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(), 1019 E.getAs<CFGBaseDtor>().hasValue(), State, 1020 CallerCtx); 1021 } 1022