1 //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file defines CallEvent and its subclasses, which represent path-
11 /// sensitive instances of different kinds of function and method calls
12 /// (C, C++, and Objective-C).
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/AST/ParentMap.h"
18 #include "clang/Analysis/ProgramPoint.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/Support/raw_ostream.h"
24 
25 using namespace clang;
26 using namespace ento;
27 
28 QualType CallEvent::getResultType() const {
29   const Expr *E = getOriginExpr();
30   assert(E && "Calls without origin expressions do not have results");
31   QualType ResultTy = E->getType();
32 
33   ASTContext &Ctx = getState()->getStateManager().getContext();
34 
35   // A function that returns a reference to 'int' will have a result type
36   // of simply 'int'. Check the origin expr's value kind to recover the
37   // proper type.
38   switch (E->getValueKind()) {
39   case VK_LValue:
40     ResultTy = Ctx.getLValueReferenceType(ResultTy);
41     break;
42   case VK_XValue:
43     ResultTy = Ctx.getRValueReferenceType(ResultTy);
44     break;
45   case VK_RValue:
46     // No adjustment is necessary.
47     break;
48   }
49 
50   return ResultTy;
51 }
52 
53 static bool isCallback(QualType T) {
54   // If a parameter is a block or a callback, assume it can modify pointer.
55   if (T->isBlockPointerType() ||
56       T->isFunctionPointerType() ||
57       T->isObjCSelType())
58     return true;
59 
60   // Check if a callback is passed inside a struct (for both, struct passed by
61   // reference and by value). Dig just one level into the struct for now.
62 
63   if (T->isAnyPointerType() || T->isReferenceType())
64     T = T->getPointeeType();
65 
66   if (const RecordType *RT = T->getAsStructureType()) {
67     const RecordDecl *RD = RT->getDecl();
68     for (const auto *I : RD->fields()) {
69       QualType FieldT = I->getType();
70       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
71         return true;
72     }
73   }
74   return false;
75 }
76 
77 static bool isVoidPointerToNonConst(QualType T) {
78   if (const PointerType *PT = T->getAs<PointerType>()) {
79     QualType PointeeTy = PT->getPointeeType();
80     if (PointeeTy.isConstQualified())
81       return false;
82     return PointeeTy->isVoidType();
83   } else
84     return false;
85 }
86 
87 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
88   unsigned NumOfArgs = getNumArgs();
89 
90   // If calling using a function pointer, assume the function does not
91   // satisfy the callback.
92   // TODO: We could check the types of the arguments here.
93   if (!getDecl())
94     return false;
95 
96   unsigned Idx = 0;
97   for (CallEvent::param_type_iterator I = param_type_begin(),
98                                       E = param_type_end();
99        I != E && Idx < NumOfArgs; ++I, ++Idx) {
100     if (NumOfArgs <= Idx)
101       break;
102 
103     // If the parameter is 0, it's harmless.
104     if (getArgSVal(Idx).isZeroConstant())
105       continue;
106 
107     if (Condition(*I))
108       return true;
109   }
110   return false;
111 }
112 
113 bool CallEvent::hasNonZeroCallbackArg() const {
114   return hasNonNullArgumentsWithType(isCallback);
115 }
116 
117 bool CallEvent::hasVoidPointerToNonConstArg() const {
118   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
119 }
120 
121 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
122   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
123   if (!FD)
124     return false;
125 
126   return CheckerContext::isCLibraryFunction(FD, FunctionName);
127 }
128 
129 /// \brief Returns true if a type is a pointer-to-const or reference-to-const
130 /// with no further indirection.
131 static bool isPointerToConst(QualType Ty) {
132   QualType PointeeTy = Ty->getPointeeType();
133   if (PointeeTy == QualType())
134     return false;
135   if (!PointeeTy.isConstQualified())
136     return false;
137   if (PointeeTy->isAnyPointerType())
138     return false;
139   return true;
140 }
141 
142 // Try to retrieve the function declaration and find the function parameter
143 // types which are pointers/references to a non-pointer const.
144 // We will not invalidate the corresponding argument regions.
145 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
146                                  const CallEvent &Call) {
147   unsigned Idx = 0;
148   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
149                                       E = Call.param_type_end();
150        I != E; ++I, ++Idx) {
151     if (isPointerToConst(*I))
152       PreserveArgs.insert(Idx);
153   }
154 }
155 
156 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
157                                              ProgramStateRef Orig) const {
158   ProgramStateRef Result = (Orig ? Orig : getState());
159 
160   // Don't invalidate anything if the callee is marked pure/const.
161   if (const Decl *callee = getDecl())
162     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
163       return Result;
164 
165   SmallVector<SVal, 8> ValuesToInvalidate;
166   RegionAndSymbolInvalidationTraits ETraits;
167 
168   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
169 
170   // Indexes of arguments whose values will be preserved by the call.
171   llvm::SmallSet<unsigned, 4> PreserveArgs;
172   if (!argumentsMayEscape())
173     findPtrToConstParams(PreserveArgs, *this);
174 
175   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
176     // Mark this region for invalidation.  We batch invalidate regions
177     // below for efficiency.
178     if (PreserveArgs.count(Idx))
179       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
180         ETraits.setTrait(MR->StripCasts(),
181                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
182         // TODO: Factor this out + handle the lower level const pointers.
183 
184     ValuesToInvalidate.push_back(getArgSVal(Idx));
185   }
186 
187   // Invalidate designated regions using the batch invalidation API.
188   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
189   //  global variables.
190   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
191                                    BlockCount, getLocationContext(),
192                                    /*CausedByPointerEscape*/ true,
193                                    /*Symbols=*/nullptr, this, &ETraits);
194 }
195 
196 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
197                                         const ProgramPointTag *Tag) const {
198   if (const Expr *E = getOriginExpr()) {
199     if (IsPreVisit)
200       return PreStmt(E, getLocationContext(), Tag);
201     return PostStmt(E, getLocationContext(), Tag);
202   }
203 
204   const Decl *D = getDecl();
205   assert(D && "Cannot get a program point without a statement or decl");
206 
207   SourceLocation Loc = getSourceRange().getBegin();
208   if (IsPreVisit)
209     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
210   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
211 }
212 
213 SVal CallEvent::getArgSVal(unsigned Index) const {
214   const Expr *ArgE = getArgExpr(Index);
215   if (!ArgE)
216     return UnknownVal();
217   return getSVal(ArgE);
218 }
219 
220 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
221   const Expr *ArgE = getArgExpr(Index);
222   if (!ArgE)
223     return SourceRange();
224   return ArgE->getSourceRange();
225 }
226 
227 SVal CallEvent::getReturnValue() const {
228   const Expr *E = getOriginExpr();
229   if (!E)
230     return UndefinedVal();
231   return getSVal(E);
232 }
233 
234 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
235 
236 void CallEvent::dump(raw_ostream &Out) const {
237   ASTContext &Ctx = getState()->getStateManager().getContext();
238   if (const Expr *E = getOriginExpr()) {
239     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
240     Out << "\n";
241     return;
242   }
243 
244   if (const Decl *D = getDecl()) {
245     Out << "Call to ";
246     D->print(Out, Ctx.getPrintingPolicy());
247     return;
248   }
249 
250   // FIXME: a string representation of the kind would be nice.
251   Out << "Unknown call (type " << getKind() << ")";
252 }
253 
254 
255 bool CallEvent::isCallStmt(const Stmt *S) {
256   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
257                           || isa<CXXConstructExpr>(S)
258                           || isa<CXXNewExpr>(S);
259 }
260 
261 QualType CallEvent::getDeclaredResultType(const Decl *D) {
262   assert(D);
263   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
264     return FD->getReturnType();
265   if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
266     return MD->getReturnType();
267   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
268     // Blocks are difficult because the return type may not be stored in the
269     // BlockDecl itself. The AST should probably be enhanced, but for now we
270     // just do what we can.
271     // If the block is declared without an explicit argument list, the
272     // signature-as-written just includes the return type, not the entire
273     // function type.
274     // FIXME: All blocks should have signatures-as-written, even if the return
275     // type is inferred. (That's signified with a dependent result type.)
276     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
277       QualType Ty = TSI->getType();
278       if (const FunctionType *FT = Ty->getAs<FunctionType>())
279         Ty = FT->getReturnType();
280       if (!Ty->isDependentType())
281         return Ty;
282     }
283 
284     return QualType();
285   }
286 
287   llvm_unreachable("unknown callable kind");
288 }
289 
290 bool CallEvent::isVariadic(const Decl *D) {
291   assert(D);
292 
293   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
294     return FD->isVariadic();
295   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
296     return MD->isVariadic();
297   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
298     return BD->isVariadic();
299 
300   llvm_unreachable("unknown callable kind");
301 }
302 
303 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
304                                          CallEvent::BindingsTy &Bindings,
305                                          SValBuilder &SVB,
306                                          const CallEvent &Call,
307                                          ArrayRef<ParmVarDecl*> parameters) {
308   MemRegionManager &MRMgr = SVB.getRegionManager();
309 
310   // If the function has fewer parameters than the call has arguments, we simply
311   // do not bind any values to them.
312   unsigned NumArgs = Call.getNumArgs();
313   unsigned Idx = 0;
314   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
315   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
316     const ParmVarDecl *ParamDecl = *I;
317     assert(ParamDecl && "Formal parameter has no decl?");
318 
319     SVal ArgVal = Call.getArgSVal(Idx);
320     if (!ArgVal.isUnknown()) {
321       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
322       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
323     }
324   }
325 
326   // FIXME: Variadic arguments are not handled at all right now.
327 }
328 
329 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
330   const FunctionDecl *D = getDecl();
331   if (!D)
332     return None;
333   return D->parameters();
334 }
335 
336 void AnyFunctionCall::getInitialStackFrameContents(
337                                         const StackFrameContext *CalleeCtx,
338                                         BindingsTy &Bindings) const {
339   const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
340   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
341   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
342                                D->parameters());
343 }
344 
345 bool AnyFunctionCall::argumentsMayEscape() const {
346   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
347     return true;
348 
349   const FunctionDecl *D = getDecl();
350   if (!D)
351     return true;
352 
353   const IdentifierInfo *II = D->getIdentifier();
354   if (!II)
355     return false;
356 
357   // This set of "escaping" APIs is
358 
359   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
360   //   value into thread local storage. The value can later be retrieved with
361   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
362   //   parameter is 'const void *', the region escapes through the call.
363   if (II->isStr("pthread_setspecific"))
364     return true;
365 
366   // - xpc_connection_set_context stores a value which can be retrieved later
367   //   with xpc_connection_get_context.
368   if (II->isStr("xpc_connection_set_context"))
369     return true;
370 
371   // - funopen - sets a buffer for future IO calls.
372   if (II->isStr("funopen"))
373     return true;
374 
375   StringRef FName = II->getName();
376 
377   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
378   //   buffer even if it is const.
379   if (FName.endswith("NoCopy"))
380     return true;
381 
382   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
383   //   be deallocated by NSMapRemove.
384   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
385     return true;
386 
387   // - Many CF containers allow objects to escape through custom
388   //   allocators/deallocators upon container construction. (PR12101)
389   if (FName.startswith("CF") || FName.startswith("CG")) {
390     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
391            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
392            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
393            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
394            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
395            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
396   }
397 
398   return false;
399 }
400 
401 
402 const FunctionDecl *SimpleFunctionCall::getDecl() const {
403   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
404   if (D)
405     return D;
406 
407   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
408 }
409 
410 
411 const FunctionDecl *CXXInstanceCall::getDecl() const {
412   const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
413   if (!CE)
414     return AnyFunctionCall::getDecl();
415 
416   const FunctionDecl *D = CE->getDirectCallee();
417   if (D)
418     return D;
419 
420   return getSVal(CE->getCallee()).getAsFunctionDecl();
421 }
422 
423 void CXXInstanceCall::getExtraInvalidatedValues(ValueList &Values,
424                         RegionAndSymbolInvalidationTraits *ETraits) const {
425   SVal ThisVal = getCXXThisVal();
426   Values.push_back(ThisVal);
427 
428   // Don't invalidate if the method is const and there are no mutable fields.
429   if (const CXXMethodDecl *D = cast_or_null<CXXMethodDecl>(getDecl())) {
430     if (!D->isConst())
431       return;
432     // Get the record decl for the class of 'This'. D->getParent() may return a
433     // base class decl, rather than the class of the instance which needs to be
434     // checked for mutable fields.
435     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
436     const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl();
437     if (!ParentRecord || ParentRecord->hasMutableFields())
438       return;
439     // Preserve CXXThis.
440     const MemRegion *ThisRegion = ThisVal.getAsRegion();
441     assert(ThisRegion && "ThisValue was not a memory region");
442     ETraits->setTrait(ThisRegion->getBaseRegion(),
443       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
444   }
445 }
446 
447 SVal CXXInstanceCall::getCXXThisVal() const {
448   const Expr *Base = getCXXThisExpr();
449   // FIXME: This doesn't handle an overloaded ->* operator.
450   if (!Base)
451     return UnknownVal();
452 
453   SVal ThisVal = getSVal(Base);
454   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
455   return ThisVal;
456 }
457 
458 
459 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
460   // Do we have a decl at all?
461   const Decl *D = getDecl();
462   if (!D)
463     return RuntimeDefinition();
464 
465   // If the method is non-virtual, we know we can inline it.
466   const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
467   if (!MD->isVirtual())
468     return AnyFunctionCall::getRuntimeDefinition();
469 
470   // Do we know the implicit 'this' object being called?
471   const MemRegion *R = getCXXThisVal().getAsRegion();
472   if (!R)
473     return RuntimeDefinition();
474 
475   // Do we know anything about the type of 'this'?
476   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
477   if (!DynType.isValid())
478     return RuntimeDefinition();
479 
480   // Is the type a C++ class? (This is mostly a defensive check.)
481   QualType RegionType = DynType.getType()->getPointeeType();
482   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
483 
484   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
485   if (!RD || !RD->hasDefinition())
486     return RuntimeDefinition();
487 
488   // Find the decl for this method in that class.
489   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
490   if (!Result) {
491     // We might not even get the original statically-resolved method due to
492     // some particularly nasty casting (e.g. casts to sister classes).
493     // However, we should at least be able to search up and down our own class
494     // hierarchy, and some real bugs have been caught by checking this.
495     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
496 
497     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
498     // the static type. However, because we currently don't update
499     // DynamicTypeInfo when an object is cast, we can't actually be sure the
500     // DynamicTypeInfo is up to date. This assert should be re-enabled once
501     // this is fixed. <rdar://problem/12287087>
502     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
503 
504     return RuntimeDefinition();
505   }
506 
507   // Does the decl that we found have an implementation?
508   const FunctionDecl *Definition;
509   if (!Result->hasBody(Definition))
510     return RuntimeDefinition();
511 
512   // We found a definition. If we're not sure that this devirtualization is
513   // actually what will happen at runtime, make sure to provide the region so
514   // that ExprEngine can decide what to do with it.
515   if (DynType.canBeASubClass())
516     return RuntimeDefinition(Definition, R->StripCasts());
517   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
518 }
519 
520 void CXXInstanceCall::getInitialStackFrameContents(
521                                             const StackFrameContext *CalleeCtx,
522                                             BindingsTy &Bindings) const {
523   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
524 
525   // Handle the binding of 'this' in the new stack frame.
526   SVal ThisVal = getCXXThisVal();
527   if (!ThisVal.isUnknown()) {
528     ProgramStateManager &StateMgr = getState()->getStateManager();
529     SValBuilder &SVB = StateMgr.getSValBuilder();
530 
531     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
532     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
533 
534     // If we devirtualized to a different member function, we need to make sure
535     // we have the proper layering of CXXBaseObjectRegions.
536     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
537       ASTContext &Ctx = SVB.getContext();
538       const CXXRecordDecl *Class = MD->getParent();
539       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
540 
541       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
542       bool Failed;
543       ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
544       assert(!Failed && "Calling an incorrectly devirtualized method");
545     }
546 
547     if (!ThisVal.isUnknown())
548       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
549   }
550 }
551 
552 
553 
554 const Expr *CXXMemberCall::getCXXThisExpr() const {
555   return getOriginExpr()->getImplicitObjectArgument();
556 }
557 
558 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
559   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
560   // id-expression in the class member access expression is a qualified-id,
561   // that function is called. Otherwise, its final overrider in the dynamic type
562   // of the object expression is called.
563   if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
564     if (ME->hasQualifier())
565       return AnyFunctionCall::getRuntimeDefinition();
566 
567   return CXXInstanceCall::getRuntimeDefinition();
568 }
569 
570 
571 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
572   return getOriginExpr()->getArg(0);
573 }
574 
575 
576 const BlockDataRegion *BlockCall::getBlockRegion() const {
577   const Expr *Callee = getOriginExpr()->getCallee();
578   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
579 
580   return dyn_cast_or_null<BlockDataRegion>(DataReg);
581 }
582 
583 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
584   const BlockDecl *D = getDecl();
585   if (!D)
586     return nullptr;
587   return D->parameters();
588 }
589 
590 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
591                   RegionAndSymbolInvalidationTraits *ETraits) const {
592   // FIXME: This also needs to invalidate captured globals.
593   if (const MemRegion *R = getBlockRegion())
594     Values.push_back(loc::MemRegionVal(R));
595 }
596 
597 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
598                                              BindingsTy &Bindings) const {
599   const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl());
600   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
601   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
602                                D->parameters());
603 }
604 
605 
606 SVal CXXConstructorCall::getCXXThisVal() const {
607   if (Data)
608     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
609   return UnknownVal();
610 }
611 
612 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
613                            RegionAndSymbolInvalidationTraits *ETraits) const {
614   if (Data)
615     Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
616 }
617 
618 void CXXConstructorCall::getInitialStackFrameContents(
619                                              const StackFrameContext *CalleeCtx,
620                                              BindingsTy &Bindings) const {
621   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
622 
623   SVal ThisVal = getCXXThisVal();
624   if (!ThisVal.isUnknown()) {
625     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
626     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
627     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
628     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
629   }
630 }
631 
632 SVal CXXDestructorCall::getCXXThisVal() const {
633   if (Data)
634     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
635   return UnknownVal();
636 }
637 
638 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
639   // Base destructors are always called non-virtually.
640   // Skip CXXInstanceCall's devirtualization logic in this case.
641   if (isBaseDestructor())
642     return AnyFunctionCall::getRuntimeDefinition();
643 
644   return CXXInstanceCall::getRuntimeDefinition();
645 }
646 
647 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
648   const ObjCMethodDecl *D = getDecl();
649   if (!D)
650     return None;
651   return D->parameters();
652 }
653 
654 void
655 ObjCMethodCall::getExtraInvalidatedValues(ValueList &Values,
656                   RegionAndSymbolInvalidationTraits *ETraits) const {
657   Values.push_back(getReceiverSVal());
658 }
659 
660 SVal ObjCMethodCall::getSelfSVal() const {
661   const LocationContext *LCtx = getLocationContext();
662   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
663   if (!SelfDecl)
664     return SVal();
665   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
666 }
667 
668 SVal ObjCMethodCall::getReceiverSVal() const {
669   // FIXME: Is this the best way to handle class receivers?
670   if (!isInstanceMessage())
671     return UnknownVal();
672 
673   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
674     return getSVal(RecE);
675 
676   // An instance message with no expression means we are sending to super.
677   // In this case the object reference is the same as 'self'.
678   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
679   SVal SelfVal = getSelfSVal();
680   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
681   return SelfVal;
682 }
683 
684 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
685   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
686       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
687       return true;
688 
689   if (!isInstanceMessage())
690     return false;
691 
692   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
693 
694   return (RecVal == getSelfSVal());
695 }
696 
697 SourceRange ObjCMethodCall::getSourceRange() const {
698   switch (getMessageKind()) {
699   case OCM_Message:
700     return getOriginExpr()->getSourceRange();
701   case OCM_PropertyAccess:
702   case OCM_Subscript:
703     return getContainingPseudoObjectExpr()->getSourceRange();
704   }
705   llvm_unreachable("unknown message kind");
706 }
707 
708 typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
709 
710 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
711   assert(Data && "Lazy lookup not yet performed.");
712   assert(getMessageKind() != OCM_Message && "Explicit message send.");
713   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
714 }
715 
716 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
717   if (!Data) {
718 
719     // Find the parent, ignoring implicit casts.
720     ParentMap &PM = getLocationContext()->getParentMap();
721     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
722 
723     // Check if parent is a PseudoObjectExpr.
724     if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
725       const Expr *Syntactic = POE->getSyntacticForm();
726 
727       // This handles the funny case of assigning to the result of a getter.
728       // This can happen if the getter returns a non-const reference.
729       if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
730         Syntactic = BO->getLHS();
731 
732       ObjCMessageKind K;
733       switch (Syntactic->getStmtClass()) {
734       case Stmt::ObjCPropertyRefExprClass:
735         K = OCM_PropertyAccess;
736         break;
737       case Stmt::ObjCSubscriptRefExprClass:
738         K = OCM_Subscript;
739         break;
740       default:
741         // FIXME: Can this ever happen?
742         K = OCM_Message;
743         break;
744       }
745 
746       if (K != OCM_Message) {
747         const_cast<ObjCMethodCall *>(this)->Data
748           = ObjCMessageDataTy(POE, K).getOpaqueValue();
749         assert(getMessageKind() == K);
750         return K;
751       }
752     }
753 
754     const_cast<ObjCMethodCall *>(this)->Data
755       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
756     assert(getMessageKind() == OCM_Message);
757     return OCM_Message;
758   }
759 
760   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
761   if (!Info.getPointer())
762     return OCM_Message;
763   return static_cast<ObjCMessageKind>(Info.getInt());
764 }
765 
766 
767 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
768                                              Selector Sel) const {
769   assert(IDecl);
770   const SourceManager &SM =
771     getState()->getStateManager().getContext().getSourceManager();
772 
773   // If the class interface is declared inside the main file, assume it is not
774   // subcassed.
775   // TODO: It could actually be subclassed if the subclass is private as well.
776   // This is probably very rare.
777   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
778   if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
779     return false;
780 
781   // Assume that property accessors are not overridden.
782   if (getMessageKind() == OCM_PropertyAccess)
783     return false;
784 
785   // We assume that if the method is public (declared outside of main file) or
786   // has a parent which publicly declares the method, the method could be
787   // overridden in a subclass.
788 
789   // Find the first declaration in the class hierarchy that declares
790   // the selector.
791   ObjCMethodDecl *D = nullptr;
792   while (true) {
793     D = IDecl->lookupMethod(Sel, true);
794 
795     // Cannot find a public definition.
796     if (!D)
797       return false;
798 
799     // If outside the main file,
800     if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
801       return true;
802 
803     if (D->isOverriding()) {
804       // Search in the superclass on the next iteration.
805       IDecl = D->getClassInterface();
806       if (!IDecl)
807         return false;
808 
809       IDecl = IDecl->getSuperClass();
810       if (!IDecl)
811         return false;
812 
813       continue;
814     }
815 
816     return false;
817   };
818 
819   llvm_unreachable("The while loop should always terminate.");
820 }
821 
822 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
823   const ObjCMessageExpr *E = getOriginExpr();
824   assert(E);
825   Selector Sel = E->getSelector();
826 
827   if (E->isInstanceMessage()) {
828 
829     // Find the receiver type.
830     const ObjCObjectPointerType *ReceiverT = nullptr;
831     bool CanBeSubClassed = false;
832     QualType SupersType = E->getSuperType();
833     const MemRegion *Receiver = nullptr;
834 
835     if (!SupersType.isNull()) {
836       // Super always means the type of immediate predecessor to the method
837       // where the call occurs.
838       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
839     } else {
840       Receiver = getReceiverSVal().getAsRegion();
841       if (!Receiver)
842         return RuntimeDefinition();
843 
844       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
845       QualType DynType = DTI.getType();
846       CanBeSubClassed = DTI.canBeASubClass();
847       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
848 
849       if (ReceiverT && CanBeSubClassed)
850         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
851           if (!canBeOverridenInSubclass(IDecl, Sel))
852             CanBeSubClassed = false;
853     }
854 
855     // Lookup the method implementation.
856     if (ReceiverT)
857       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
858         // Repeatedly calling lookupPrivateMethod() is expensive, especially
859         // when in many cases it returns null.  We cache the results so
860         // that repeated queries on the same ObjCIntefaceDecl and Selector
861         // don't incur the same cost.  On some test cases, we can see the
862         // same query being issued thousands of times.
863         //
864         // NOTE: This cache is essentially a "global" variable, but it
865         // only gets lazily created when we get here.  The value of the
866         // cache probably comes from it being global across ExprEngines,
867         // where the same queries may get issued.  If we are worried about
868         // concurrency, or possibly loading/unloading ASTs, etc., we may
869         // need to revisit this someday.  In terms of memory, this table
870         // stays around until clang quits, which also may be bad if we
871         // need to release memory.
872         typedef std::pair<const ObjCInterfaceDecl*, Selector>
873                 PrivateMethodKey;
874         typedef llvm::DenseMap<PrivateMethodKey,
875                                Optional<const ObjCMethodDecl *> >
876                 PrivateMethodCache;
877 
878         static PrivateMethodCache PMC;
879         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
880 
881         // Query lookupPrivateMethod() if the cache does not hit.
882         if (!Val.hasValue()) {
883           Val = IDecl->lookupPrivateMethod(Sel);
884 
885           // If the method is a property accessor, we should try to "inline" it
886           // even if we don't actually have an implementation.
887           if (!*Val)
888             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
889               if (CompileTimeMD->isPropertyAccessor())
890                 Val = IDecl->lookupInstanceMethod(Sel);
891         }
892 
893         const ObjCMethodDecl *MD = Val.getValue();
894         if (CanBeSubClassed)
895           return RuntimeDefinition(MD, Receiver);
896         else
897           return RuntimeDefinition(MD, nullptr);
898       }
899 
900   } else {
901     // This is a class method.
902     // If we have type info for the receiver class, we are calling via
903     // class name.
904     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
905       // Find/Return the method implementation.
906       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
907     }
908   }
909 
910   return RuntimeDefinition();
911 }
912 
913 bool ObjCMethodCall::argumentsMayEscape() const {
914   if (isInSystemHeader() && !isInstanceMessage()) {
915     Selector Sel = getSelector();
916     if (Sel.getNumArgs() == 1 &&
917         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
918       return true;
919   }
920 
921   return CallEvent::argumentsMayEscape();
922 }
923 
924 void ObjCMethodCall::getInitialStackFrameContents(
925                                              const StackFrameContext *CalleeCtx,
926                                              BindingsTy &Bindings) const {
927   const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
928   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
929   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
930                                D->parameters());
931 
932   SVal SelfVal = getReceiverSVal();
933   if (!SelfVal.isUnknown()) {
934     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
935     MemRegionManager &MRMgr = SVB.getRegionManager();
936     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
937     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
938   }
939 }
940 
941 CallEventRef<>
942 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
943                                 const LocationContext *LCtx) {
944   if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
945     return create<CXXMemberCall>(MCE, State, LCtx);
946 
947   if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
948     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
949     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
950       if (MD->isInstance())
951         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
952 
953   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
954     return create<BlockCall>(CE, State, LCtx);
955   }
956 
957   // Otherwise, it's a normal function call, static member function call, or
958   // something we can't reason about.
959   return create<SimpleFunctionCall>(CE, State, LCtx);
960 }
961 
962 
963 CallEventRef<>
964 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
965                             ProgramStateRef State) {
966   const LocationContext *ParentCtx = CalleeCtx->getParent();
967   const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
968   assert(CallerCtx && "This should not be used for top-level stack frames");
969 
970   const Stmt *CallSite = CalleeCtx->getCallSite();
971 
972   if (CallSite) {
973     if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
974       return getSimpleCall(CE, State, CallerCtx);
975 
976     switch (CallSite->getStmtClass()) {
977     case Stmt::CXXConstructExprClass:
978     case Stmt::CXXTemporaryObjectExprClass: {
979       SValBuilder &SVB = State->getStateManager().getSValBuilder();
980       const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
981       Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
982       SVal ThisVal = State->getSVal(ThisPtr);
983 
984       return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
985                                    ThisVal.getAsRegion(), State, CallerCtx);
986     }
987     case Stmt::CXXNewExprClass:
988       return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
989     case Stmt::ObjCMessageExprClass:
990       return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
991                                State, CallerCtx);
992     default:
993       llvm_unreachable("This is not an inlineable statement.");
994     }
995   }
996 
997   // Fall back to the CFG. The only thing we haven't handled yet is
998   // destructors, though this could change in the future.
999   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1000   CFGElement E = (*B)[CalleeCtx->getIndex()];
1001   assert(E.getAs<CFGImplicitDtor>() &&
1002          "All other CFG elements should have exprs");
1003   assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
1004 
1005   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1006   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1007   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1008   SVal ThisVal = State->getSVal(ThisPtr);
1009 
1010   const Stmt *Trigger;
1011   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1012     Trigger = AutoDtor->getTriggerStmt();
1013   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1014     Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr());
1015   else
1016     Trigger = Dtor->getBody();
1017 
1018   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1019                               E.getAs<CFGBaseDtor>().hasValue(), State,
1020                               CallerCtx);
1021 }
1022