1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file defines CallEvent and its subclasses, which represent path- 10 /// sensitive instances of different kinds of function and method calls 11 /// (C, C++, and Objective-C). 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclBase.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/ParentMap.h" 26 #include "clang/AST/Stmt.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Analysis/AnalysisDeclContext.h" 29 #include "clang/Analysis/CFG.h" 30 #include "clang/Analysis/CFGStmtMap.h" 31 #include "clang/Analysis/PathDiagnostic.h" 32 #include "clang/Analysis/ProgramPoint.h" 33 #include "clang/Basic/IdentifierTable.h" 34 #include "clang/Basic/LLVM.h" 35 #include "clang/Basic/SourceLocation.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/Specifiers.h" 38 #include "clang/CrossTU/CrossTranslationUnit.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" 48 #include "llvm/ADT/ArrayRef.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/ImmutableList.h" 51 #include "llvm/ADT/None.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/PointerIntPair.h" 54 #include "llvm/ADT/SmallSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/ADT/StringRef.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include <cassert> 64 #include <utility> 65 66 #define DEBUG_TYPE "static-analyzer-call-event" 67 68 using namespace clang; 69 using namespace ento; 70 71 QualType CallEvent::getResultType() const { 72 ASTContext &Ctx = getState()->getStateManager().getContext(); 73 const Expr *E = getOriginExpr(); 74 if (!E) 75 return Ctx.VoidTy; 76 return Ctx.getReferenceQualifiedType(E); 77 } 78 79 static bool isCallback(QualType T) { 80 // If a parameter is a block or a callback, assume it can modify pointer. 81 if (T->isBlockPointerType() || 82 T->isFunctionPointerType() || 83 T->isObjCSelType()) 84 return true; 85 86 // Check if a callback is passed inside a struct (for both, struct passed by 87 // reference and by value). Dig just one level into the struct for now. 88 89 if (T->isAnyPointerType() || T->isReferenceType()) 90 T = T->getPointeeType(); 91 92 if (const RecordType *RT = T->getAsStructureType()) { 93 const RecordDecl *RD = RT->getDecl(); 94 for (const auto *I : RD->fields()) { 95 QualType FieldT = I->getType(); 96 if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) 97 return true; 98 } 99 } 100 return false; 101 } 102 103 static bool isVoidPointerToNonConst(QualType T) { 104 if (const auto *PT = T->getAs<PointerType>()) { 105 QualType PointeeTy = PT->getPointeeType(); 106 if (PointeeTy.isConstQualified()) 107 return false; 108 return PointeeTy->isVoidType(); 109 } else 110 return false; 111 } 112 113 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const { 114 unsigned NumOfArgs = getNumArgs(); 115 116 // If calling using a function pointer, assume the function does not 117 // satisfy the callback. 118 // TODO: We could check the types of the arguments here. 119 if (!getDecl()) 120 return false; 121 122 unsigned Idx = 0; 123 for (CallEvent::param_type_iterator I = param_type_begin(), 124 E = param_type_end(); 125 I != E && Idx < NumOfArgs; ++I, ++Idx) { 126 // If the parameter is 0, it's harmless. 127 if (getArgSVal(Idx).isZeroConstant()) 128 continue; 129 130 if (Condition(*I)) 131 return true; 132 } 133 return false; 134 } 135 136 bool CallEvent::hasNonZeroCallbackArg() const { 137 return hasNonNullArgumentsWithType(isCallback); 138 } 139 140 bool CallEvent::hasVoidPointerToNonConstArg() const { 141 return hasNonNullArgumentsWithType(isVoidPointerToNonConst); 142 } 143 144 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { 145 const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 146 if (!FD) 147 return false; 148 149 return CheckerContext::isCLibraryFunction(FD, FunctionName); 150 } 151 152 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const { 153 const Decl *D = getDecl(); 154 if (!D) 155 return nullptr; 156 157 AnalysisDeclContext *ADC = 158 LCtx->getAnalysisDeclContext()->getManager()->getContext(D); 159 160 return ADC; 161 } 162 163 const StackFrameContext * 164 CallEvent::getCalleeStackFrame(unsigned BlockCount) const { 165 AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext(); 166 if (!ADC) 167 return nullptr; 168 169 const Expr *E = getOriginExpr(); 170 if (!E) 171 return nullptr; 172 173 // Recover CFG block via reverse lookup. 174 // TODO: If we were to keep CFG element information as part of the CallEvent 175 // instead of doing this reverse lookup, we would be able to build the stack 176 // frame for non-expression-based calls, and also we wouldn't need the reverse 177 // lookup. 178 CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap(); 179 const CFGBlock *B = Map->getBlock(E); 180 assert(B); 181 182 // Also recover CFG index by scanning the CFG block. 183 unsigned Idx = 0, Sz = B->size(); 184 for (; Idx < Sz; ++Idx) 185 if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>()) 186 if (StmtElem->getStmt() == E) 187 break; 188 assert(Idx < Sz); 189 190 return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx); 191 } 192 193 const ParamVarRegion 194 *CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const { 195 const StackFrameContext *SFC = getCalleeStackFrame(BlockCount); 196 // We cannot construct a VarRegion without a stack frame. 197 if (!SFC) 198 return nullptr; 199 200 const ParamVarRegion *PVR = 201 State->getStateManager().getRegionManager().getParamVarRegion( 202 getOriginExpr(), Index, SFC); 203 return PVR; 204 } 205 206 /// Returns true if a type is a pointer-to-const or reference-to-const 207 /// with no further indirection. 208 static bool isPointerToConst(QualType Ty) { 209 QualType PointeeTy = Ty->getPointeeType(); 210 if (PointeeTy == QualType()) 211 return false; 212 if (!PointeeTy.isConstQualified()) 213 return false; 214 if (PointeeTy->isAnyPointerType()) 215 return false; 216 return true; 217 } 218 219 // Try to retrieve the function declaration and find the function parameter 220 // types which are pointers/references to a non-pointer const. 221 // We will not invalidate the corresponding argument regions. 222 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs, 223 const CallEvent &Call) { 224 unsigned Idx = 0; 225 for (CallEvent::param_type_iterator I = Call.param_type_begin(), 226 E = Call.param_type_end(); 227 I != E; ++I, ++Idx) { 228 if (isPointerToConst(*I)) 229 PreserveArgs.insert(Idx); 230 } 231 } 232 233 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, 234 ProgramStateRef Orig) const { 235 ProgramStateRef Result = (Orig ? Orig : getState()); 236 237 // Don't invalidate anything if the callee is marked pure/const. 238 if (const Decl *callee = getDecl()) 239 if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>()) 240 return Result; 241 242 SmallVector<SVal, 8> ValuesToInvalidate; 243 RegionAndSymbolInvalidationTraits ETraits; 244 245 getExtraInvalidatedValues(ValuesToInvalidate, &ETraits); 246 247 // Indexes of arguments whose values will be preserved by the call. 248 llvm::SmallSet<unsigned, 4> PreserveArgs; 249 if (!argumentsMayEscape()) 250 findPtrToConstParams(PreserveArgs, *this); 251 252 for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { 253 // Mark this region for invalidation. We batch invalidate regions 254 // below for efficiency. 255 if (PreserveArgs.count(Idx)) 256 if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) 257 ETraits.setTrait(MR->getBaseRegion(), 258 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 259 // TODO: Factor this out + handle the lower level const pointers. 260 261 ValuesToInvalidate.push_back(getArgSVal(Idx)); 262 263 // If a function accepts an object by argument (which would of course be a 264 // temporary that isn't lifetime-extended), invalidate the object itself, 265 // not only other objects reachable from it. This is necessary because the 266 // destructor has access to the temporary object after the call. 267 // TODO: Support placement arguments once we start 268 // constructing them directly. 269 // TODO: This is unnecessary when there's no destructor, but that's 270 // currently hard to figure out. 271 if (getKind() != CE_CXXAllocator) 272 if (isArgumentConstructedDirectly(Idx)) 273 if (auto AdjIdx = getAdjustedParameterIndex(Idx)) 274 if (const TypedValueRegion *TVR = 275 getParameterLocation(*AdjIdx, BlockCount)) 276 ValuesToInvalidate.push_back(loc::MemRegionVal(TVR)); 277 } 278 279 // Invalidate designated regions using the batch invalidation API. 280 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate 281 // global variables. 282 return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(), 283 BlockCount, getLocationContext(), 284 /*CausedByPointerEscape*/ true, 285 /*Symbols=*/nullptr, this, &ETraits); 286 } 287 288 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, 289 const ProgramPointTag *Tag) const { 290 if (const Expr *E = getOriginExpr()) { 291 if (IsPreVisit) 292 return PreStmt(E, getLocationContext(), Tag); 293 return PostStmt(E, getLocationContext(), Tag); 294 } 295 296 const Decl *D = getDecl(); 297 assert(D && "Cannot get a program point without a statement or decl"); 298 299 SourceLocation Loc = getSourceRange().getBegin(); 300 if (IsPreVisit) 301 return PreImplicitCall(D, Loc, getLocationContext(), Tag); 302 return PostImplicitCall(D, Loc, getLocationContext(), Tag); 303 } 304 305 bool CallEvent::isCalled(const CallDescription &CD) const { 306 // FIXME: Add ObjC Message support. 307 if (getKind() == CE_ObjCMessage) 308 return false; 309 310 const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 311 if (!FD) 312 return false; 313 314 if (CD.Flags & CDF_MaybeBuiltin) { 315 return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) && 316 (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) && 317 (!CD.RequiredParams || CD.RequiredParams <= parameters().size()); 318 } 319 320 if (!CD.II.hasValue()) { 321 CD.II = &getState()->getStateManager().getContext().Idents.get( 322 CD.getFunctionName()); 323 } 324 325 const auto MatchNameOnly = [](const CallDescription &CD, 326 const NamedDecl *ND) -> bool { 327 DeclarationName Name = ND->getDeclName(); 328 if (const auto *II = Name.getAsIdentifierInfo()) 329 return II == CD.II.getValue(); // Fast case. 330 331 // Fallback to the slow stringification and comparison for: 332 // C++ overloaded operators, constructors, destructors, etc. 333 // FIXME This comparison is way SLOWER than comparing pointers. 334 // At some point in the future, we should compare FunctionDecl pointers. 335 return Name.getAsString() == CD.getFunctionName(); 336 }; 337 338 const auto ExactMatchArgAndParamCounts = 339 [](const CallEvent &Call, const CallDescription &CD) -> bool { 340 const bool ArgsMatch = 341 !CD.RequiredArgs || CD.RequiredArgs == Call.getNumArgs(); 342 const bool ParamsMatch = 343 !CD.RequiredParams || CD.RequiredParams == Call.parameters().size(); 344 return ArgsMatch && ParamsMatch; 345 }; 346 347 const auto MatchQualifiedNameParts = [](const CallDescription &CD, 348 const Decl *D) -> bool { 349 const auto FindNextNamespaceOrRecord = 350 [](const DeclContext *Ctx) -> const DeclContext * { 351 while (Ctx && !isa<NamespaceDecl, RecordDecl>(Ctx)) 352 Ctx = Ctx->getParent(); 353 return Ctx; 354 }; 355 356 auto QualifierPartsIt = CD.begin_qualified_name_parts(); 357 const auto QualifierPartsEndIt = CD.end_qualified_name_parts(); 358 359 // Match namespace and record names. Skip unrelated names if they don't 360 // match. 361 const DeclContext *Ctx = FindNextNamespaceOrRecord(D->getDeclContext()); 362 for (; Ctx && QualifierPartsIt != QualifierPartsEndIt; 363 Ctx = FindNextNamespaceOrRecord(Ctx->getParent())) { 364 // If not matched just continue and try matching for the next one. 365 if (cast<NamedDecl>(Ctx)->getName() != *QualifierPartsIt) 366 continue; 367 ++QualifierPartsIt; 368 } 369 370 // We matched if we consumed all expected qualifier segments. 371 return QualifierPartsIt == QualifierPartsEndIt; 372 }; 373 374 // Let's start matching... 375 if (!ExactMatchArgAndParamCounts(*this, CD)) 376 return false; 377 378 if (!MatchNameOnly(CD, FD)) 379 return false; 380 381 if (!CD.hasQualifiedNameParts()) 382 return true; 383 384 return MatchQualifiedNameParts(CD, FD); 385 } 386 387 SVal CallEvent::getArgSVal(unsigned Index) const { 388 const Expr *ArgE = getArgExpr(Index); 389 if (!ArgE) 390 return UnknownVal(); 391 return getSVal(ArgE); 392 } 393 394 SourceRange CallEvent::getArgSourceRange(unsigned Index) const { 395 const Expr *ArgE = getArgExpr(Index); 396 if (!ArgE) 397 return {}; 398 return ArgE->getSourceRange(); 399 } 400 401 SVal CallEvent::getReturnValue() const { 402 const Expr *E = getOriginExpr(); 403 if (!E) 404 return UndefinedVal(); 405 return getSVal(E); 406 } 407 408 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); } 409 410 void CallEvent::dump(raw_ostream &Out) const { 411 ASTContext &Ctx = getState()->getStateManager().getContext(); 412 if (const Expr *E = getOriginExpr()) { 413 E->printPretty(Out, nullptr, Ctx.getPrintingPolicy()); 414 return; 415 } 416 417 if (const Decl *D = getDecl()) { 418 Out << "Call to "; 419 D->print(Out, Ctx.getPrintingPolicy()); 420 return; 421 } 422 423 Out << "Unknown call (type " << getKindAsString() << ")"; 424 } 425 426 bool CallEvent::isCallStmt(const Stmt *S) { 427 return isa<CallExpr, ObjCMessageExpr, CXXConstructExpr, CXXNewExpr>(S); 428 } 429 430 QualType CallEvent::getDeclaredResultType(const Decl *D) { 431 assert(D); 432 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 433 return FD->getReturnType(); 434 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 435 return MD->getReturnType(); 436 if (const auto *BD = dyn_cast<BlockDecl>(D)) { 437 // Blocks are difficult because the return type may not be stored in the 438 // BlockDecl itself. The AST should probably be enhanced, but for now we 439 // just do what we can. 440 // If the block is declared without an explicit argument list, the 441 // signature-as-written just includes the return type, not the entire 442 // function type. 443 // FIXME: All blocks should have signatures-as-written, even if the return 444 // type is inferred. (That's signified with a dependent result type.) 445 if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) { 446 QualType Ty = TSI->getType(); 447 if (const FunctionType *FT = Ty->getAs<FunctionType>()) 448 Ty = FT->getReturnType(); 449 if (!Ty->isDependentType()) 450 return Ty; 451 } 452 453 return {}; 454 } 455 456 llvm_unreachable("unknown callable kind"); 457 } 458 459 bool CallEvent::isVariadic(const Decl *D) { 460 assert(D); 461 462 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 463 return FD->isVariadic(); 464 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 465 return MD->isVariadic(); 466 if (const auto *BD = dyn_cast<BlockDecl>(D)) 467 return BD->isVariadic(); 468 469 llvm_unreachable("unknown callable kind"); 470 } 471 472 static bool isTransparentUnion(QualType T) { 473 const RecordType *UT = T->getAsUnionType(); 474 return UT && UT->getDecl()->hasAttr<TransparentUnionAttr>(); 475 } 476 477 // In some cases, symbolic cases should be transformed before we associate 478 // them with parameters. This function incapsulates such cases. 479 static SVal processArgument(SVal Value, const Expr *ArgumentExpr, 480 const ParmVarDecl *Parameter, SValBuilder &SVB) { 481 QualType ParamType = Parameter->getType(); 482 QualType ArgumentType = ArgumentExpr->getType(); 483 484 // Transparent unions allow users to easily convert values of union field 485 // types into union-typed objects. 486 // 487 // Also, more importantly, they allow users to define functions with different 488 // different parameter types, substituting types matching transparent union 489 // field types with the union type itself. 490 // 491 // Here, we check specifically for latter cases and prevent binding 492 // field-typed values to union-typed regions. 493 if (isTransparentUnion(ParamType) && 494 // Let's check that we indeed trying to bind different types. 495 !isTransparentUnion(ArgumentType)) { 496 BasicValueFactory &BVF = SVB.getBasicValueFactory(); 497 498 llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList(); 499 CompoundSVals = BVF.prependSVal(Value, CompoundSVals); 500 501 // Wrap it with compound value. 502 return SVB.makeCompoundVal(ParamType, CompoundSVals); 503 } 504 505 return Value; 506 } 507 508 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, 509 CallEvent::BindingsTy &Bindings, 510 SValBuilder &SVB, 511 const CallEvent &Call, 512 ArrayRef<ParmVarDecl*> parameters) { 513 MemRegionManager &MRMgr = SVB.getRegionManager(); 514 515 // If the function has fewer parameters than the call has arguments, we simply 516 // do not bind any values to them. 517 unsigned NumArgs = Call.getNumArgs(); 518 unsigned Idx = 0; 519 ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end(); 520 for (; I != E && Idx < NumArgs; ++I, ++Idx) { 521 assert(*I && "Formal parameter has no decl?"); 522 523 // TODO: Support allocator calls. 524 if (Call.getKind() != CE_CXXAllocator) 525 if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx))) 526 continue; 527 528 // TODO: Allocators should receive the correct size and possibly alignment, 529 // determined in compile-time but not represented as arg-expressions, 530 // which makes getArgSVal() fail and return UnknownVal. 531 SVal ArgVal = Call.getArgSVal(Idx); 532 const Expr *ArgExpr = Call.getArgExpr(Idx); 533 if (!ArgVal.isUnknown()) { 534 Loc ParamLoc = SVB.makeLoc( 535 MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx)); 536 Bindings.push_back( 537 std::make_pair(ParamLoc, processArgument(ArgVal, ArgExpr, *I, SVB))); 538 } 539 } 540 541 // FIXME: Variadic arguments are not handled at all right now. 542 } 543 544 const ConstructionContext *CallEvent::getConstructionContext() const { 545 const StackFrameContext *StackFrame = getCalleeStackFrame(0); 546 if (!StackFrame) 547 return nullptr; 548 549 const CFGElement Element = StackFrame->getCallSiteCFGElement(); 550 if (const auto Ctor = Element.getAs<CFGConstructor>()) { 551 return Ctor->getConstructionContext(); 552 } 553 554 if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) { 555 return RecCall->getConstructionContext(); 556 } 557 558 return nullptr; 559 } 560 561 Optional<SVal> 562 CallEvent::getReturnValueUnderConstruction() const { 563 const auto *CC = getConstructionContext(); 564 if (!CC) 565 return None; 566 567 EvalCallOptions CallOpts; 568 ExprEngine &Engine = getState()->getStateManager().getOwningEngine(); 569 SVal RetVal = 570 Engine.computeObjectUnderConstruction(getOriginExpr(), getState(), 571 getLocationContext(), CC, CallOpts); 572 return RetVal; 573 } 574 575 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const { 576 const FunctionDecl *D = getDecl(); 577 if (!D) 578 return None; 579 return D->parameters(); 580 } 581 582 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const { 583 const FunctionDecl *FD = getDecl(); 584 if (!FD) 585 return {}; 586 587 // Note that the AnalysisDeclContext will have the FunctionDecl with 588 // the definition (if one exists). 589 AnalysisDeclContext *AD = 590 getLocationContext()->getAnalysisDeclContext()-> 591 getManager()->getContext(FD); 592 bool IsAutosynthesized; 593 Stmt* Body = AD->getBody(IsAutosynthesized); 594 LLVM_DEBUG({ 595 if (IsAutosynthesized) 596 llvm::dbgs() << "Using autosynthesized body for " << FD->getName() 597 << "\n"; 598 }); 599 if (Body) { 600 const Decl* Decl = AD->getDecl(); 601 return RuntimeDefinition(Decl); 602 } 603 604 ExprEngine &Engine = getState()->getStateManager().getOwningEngine(); 605 AnalyzerOptions &Opts = Engine.getAnalysisManager().options; 606 607 // Try to get CTU definition only if CTUDir is provided. 608 if (!Opts.IsNaiveCTUEnabled) 609 return {}; 610 611 cross_tu::CrossTranslationUnitContext &CTUCtx = 612 *Engine.getCrossTranslationUnitContext(); 613 llvm::Expected<const FunctionDecl *> CTUDeclOrError = 614 CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName, 615 Opts.DisplayCTUProgress); 616 617 if (!CTUDeclOrError) { 618 handleAllErrors(CTUDeclOrError.takeError(), 619 [&](const cross_tu::IndexError &IE) { 620 CTUCtx.emitCrossTUDiagnostics(IE); 621 }); 622 return {}; 623 } 624 625 return RuntimeDefinition(*CTUDeclOrError); 626 } 627 628 void AnyFunctionCall::getInitialStackFrameContents( 629 const StackFrameContext *CalleeCtx, 630 BindingsTy &Bindings) const { 631 const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl()); 632 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 633 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 634 D->parameters()); 635 } 636 637 bool AnyFunctionCall::argumentsMayEscape() const { 638 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg()) 639 return true; 640 641 const FunctionDecl *D = getDecl(); 642 if (!D) 643 return true; 644 645 const IdentifierInfo *II = D->getIdentifier(); 646 if (!II) 647 return false; 648 649 // This set of "escaping" APIs is 650 651 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a 652 // value into thread local storage. The value can later be retrieved with 653 // 'void *ptheread_getspecific(pthread_key)'. So even thought the 654 // parameter is 'const void *', the region escapes through the call. 655 if (II->isStr("pthread_setspecific")) 656 return true; 657 658 // - xpc_connection_set_context stores a value which can be retrieved later 659 // with xpc_connection_get_context. 660 if (II->isStr("xpc_connection_set_context")) 661 return true; 662 663 // - funopen - sets a buffer for future IO calls. 664 if (II->isStr("funopen")) 665 return true; 666 667 // - __cxa_demangle - can reallocate memory and can return the pointer to 668 // the input buffer. 669 if (II->isStr("__cxa_demangle")) 670 return true; 671 672 StringRef FName = II->getName(); 673 674 // - CoreFoundation functions that end with "NoCopy" can free a passed-in 675 // buffer even if it is const. 676 if (FName.endswith("NoCopy")) 677 return true; 678 679 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can 680 // be deallocated by NSMapRemove. 681 if (FName.startswith("NS") && FName.contains("Insert")) 682 return true; 683 684 // - Many CF containers allow objects to escape through custom 685 // allocators/deallocators upon container construction. (PR12101) 686 if (FName.startswith("CF") || FName.startswith("CG")) { 687 return StrInStrNoCase(FName, "InsertValue") != StringRef::npos || 688 StrInStrNoCase(FName, "AddValue") != StringRef::npos || 689 StrInStrNoCase(FName, "SetValue") != StringRef::npos || 690 StrInStrNoCase(FName, "WithData") != StringRef::npos || 691 StrInStrNoCase(FName, "AppendValue") != StringRef::npos || 692 StrInStrNoCase(FName, "SetAttribute") != StringRef::npos; 693 } 694 695 return false; 696 } 697 698 const FunctionDecl *SimpleFunctionCall::getDecl() const { 699 const FunctionDecl *D = getOriginExpr()->getDirectCallee(); 700 if (D) 701 return D; 702 703 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl(); 704 } 705 706 const FunctionDecl *CXXInstanceCall::getDecl() const { 707 const auto *CE = cast_or_null<CallExpr>(getOriginExpr()); 708 if (!CE) 709 return AnyFunctionCall::getDecl(); 710 711 const FunctionDecl *D = CE->getDirectCallee(); 712 if (D) 713 return D; 714 715 return getSVal(CE->getCallee()).getAsFunctionDecl(); 716 } 717 718 void CXXInstanceCall::getExtraInvalidatedValues( 719 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 720 SVal ThisVal = getCXXThisVal(); 721 Values.push_back(ThisVal); 722 723 // Don't invalidate if the method is const and there are no mutable fields. 724 if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) { 725 if (!D->isConst()) 726 return; 727 // Get the record decl for the class of 'This'. D->getParent() may return a 728 // base class decl, rather than the class of the instance which needs to be 729 // checked for mutable fields. 730 // TODO: We might as well look at the dynamic type of the object. 731 const Expr *Ex = getCXXThisExpr()->IgnoreParenBaseCasts(); 732 QualType T = Ex->getType(); 733 if (T->isPointerType()) // Arrow or implicit-this syntax? 734 T = T->getPointeeType(); 735 const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl(); 736 assert(ParentRecord); 737 if (ParentRecord->hasMutableFields()) 738 return; 739 // Preserve CXXThis. 740 const MemRegion *ThisRegion = ThisVal.getAsRegion(); 741 if (!ThisRegion) 742 return; 743 744 ETraits->setTrait(ThisRegion->getBaseRegion(), 745 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 746 } 747 } 748 749 SVal CXXInstanceCall::getCXXThisVal() const { 750 const Expr *Base = getCXXThisExpr(); 751 // FIXME: This doesn't handle an overloaded ->* operator. 752 if (!Base) 753 return UnknownVal(); 754 755 SVal ThisVal = getSVal(Base); 756 assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()); 757 return ThisVal; 758 } 759 760 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { 761 // Do we have a decl at all? 762 const Decl *D = getDecl(); 763 if (!D) 764 return {}; 765 766 // If the method is non-virtual, we know we can inline it. 767 const auto *MD = cast<CXXMethodDecl>(D); 768 if (!MD->isVirtual()) 769 return AnyFunctionCall::getRuntimeDefinition(); 770 771 // Do we know the implicit 'this' object being called? 772 const MemRegion *R = getCXXThisVal().getAsRegion(); 773 if (!R) 774 return {}; 775 776 // Do we know anything about the type of 'this'? 777 DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R); 778 if (!DynType.isValid()) 779 return {}; 780 781 // Is the type a C++ class? (This is mostly a defensive check.) 782 QualType RegionType = DynType.getType()->getPointeeType(); 783 assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."); 784 785 const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl(); 786 if (!RD || !RD->hasDefinition()) 787 return {}; 788 789 // Find the decl for this method in that class. 790 const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true); 791 if (!Result) { 792 // We might not even get the original statically-resolved method due to 793 // some particularly nasty casting (e.g. casts to sister classes). 794 // However, we should at least be able to search up and down our own class 795 // hierarchy, and some real bugs have been caught by checking this. 796 assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"); 797 798 // FIXME: This is checking that our DynamicTypeInfo is at least as good as 799 // the static type. However, because we currently don't update 800 // DynamicTypeInfo when an object is cast, we can't actually be sure the 801 // DynamicTypeInfo is up to date. This assert should be re-enabled once 802 // this is fixed. <rdar://problem/12287087> 803 //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); 804 805 return {}; 806 } 807 808 // Does the decl that we found have an implementation? 809 const FunctionDecl *Definition; 810 if (!Result->hasBody(Definition)) { 811 if (!DynType.canBeASubClass()) 812 return AnyFunctionCall::getRuntimeDefinition(); 813 return {}; 814 } 815 816 // We found a definition. If we're not sure that this devirtualization is 817 // actually what will happen at runtime, make sure to provide the region so 818 // that ExprEngine can decide what to do with it. 819 if (DynType.canBeASubClass()) 820 return RuntimeDefinition(Definition, R->StripCasts()); 821 return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr); 822 } 823 824 void CXXInstanceCall::getInitialStackFrameContents( 825 const StackFrameContext *CalleeCtx, 826 BindingsTy &Bindings) const { 827 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 828 829 // Handle the binding of 'this' in the new stack frame. 830 SVal ThisVal = getCXXThisVal(); 831 if (!ThisVal.isUnknown()) { 832 ProgramStateManager &StateMgr = getState()->getStateManager(); 833 SValBuilder &SVB = StateMgr.getSValBuilder(); 834 835 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 836 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 837 838 // If we devirtualized to a different member function, we need to make sure 839 // we have the proper layering of CXXBaseObjectRegions. 840 if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { 841 ASTContext &Ctx = SVB.getContext(); 842 const CXXRecordDecl *Class = MD->getParent(); 843 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class)); 844 845 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. 846 bool Failed; 847 ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed); 848 if (Failed) { 849 // We might have suffered some sort of placement new earlier, so 850 // we're constructing in a completely unexpected storage. 851 // Fall back to a generic pointer cast for this-value. 852 const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl()); 853 const CXXRecordDecl *StaticClass = StaticMD->getParent(); 854 QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass)); 855 ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy); 856 } 857 } 858 859 if (!ThisVal.isUnknown()) 860 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 861 } 862 } 863 864 const Expr *CXXMemberCall::getCXXThisExpr() const { 865 return getOriginExpr()->getImplicitObjectArgument(); 866 } 867 868 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { 869 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the 870 // id-expression in the class member access expression is a qualified-id, 871 // that function is called. Otherwise, its final overrider in the dynamic type 872 // of the object expression is called. 873 if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee())) 874 if (ME->hasQualifier()) 875 return AnyFunctionCall::getRuntimeDefinition(); 876 877 return CXXInstanceCall::getRuntimeDefinition(); 878 } 879 880 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { 881 return getOriginExpr()->getArg(0); 882 } 883 884 const BlockDataRegion *BlockCall::getBlockRegion() const { 885 const Expr *Callee = getOriginExpr()->getCallee(); 886 const MemRegion *DataReg = getSVal(Callee).getAsRegion(); 887 888 return dyn_cast_or_null<BlockDataRegion>(DataReg); 889 } 890 891 ArrayRef<ParmVarDecl*> BlockCall::parameters() const { 892 const BlockDecl *D = getDecl(); 893 if (!D) 894 return None; 895 return D->parameters(); 896 } 897 898 void BlockCall::getExtraInvalidatedValues(ValueList &Values, 899 RegionAndSymbolInvalidationTraits *ETraits) const { 900 // FIXME: This also needs to invalidate captured globals. 901 if (const MemRegion *R = getBlockRegion()) 902 Values.push_back(loc::MemRegionVal(R)); 903 } 904 905 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, 906 BindingsTy &Bindings) const { 907 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 908 ArrayRef<ParmVarDecl*> Params; 909 if (isConversionFromLambda()) { 910 auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 911 Params = LambdaOperatorDecl->parameters(); 912 913 // For blocks converted from a C++ lambda, the callee declaration is the 914 // operator() method on the lambda so we bind "this" to 915 // the lambda captured by the block. 916 const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda(); 917 SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion); 918 Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx); 919 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 920 } else { 921 Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters(); 922 } 923 924 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 925 Params); 926 } 927 928 SVal AnyCXXConstructorCall::getCXXThisVal() const { 929 if (Data) 930 return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); 931 return UnknownVal(); 932 } 933 934 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values, 935 RegionAndSymbolInvalidationTraits *ETraits) const { 936 SVal V = getCXXThisVal(); 937 if (SymbolRef Sym = V.getAsSymbol(true)) 938 ETraits->setTrait(Sym, 939 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 940 Values.push_back(V); 941 } 942 943 void AnyCXXConstructorCall::getInitialStackFrameContents( 944 const StackFrameContext *CalleeCtx, 945 BindingsTy &Bindings) const { 946 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 947 948 SVal ThisVal = getCXXThisVal(); 949 if (!ThisVal.isUnknown()) { 950 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 951 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 952 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 953 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 954 } 955 } 956 957 const StackFrameContext * 958 CXXInheritedConstructorCall::getInheritingStackFrame() const { 959 const StackFrameContext *SFC = getLocationContext()->getStackFrame(); 960 while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite())) 961 SFC = SFC->getParent()->getStackFrame(); 962 return SFC; 963 } 964 965 SVal CXXDestructorCall::getCXXThisVal() const { 966 if (Data) 967 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer()); 968 return UnknownVal(); 969 } 970 971 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { 972 // Base destructors are always called non-virtually. 973 // Skip CXXInstanceCall's devirtualization logic in this case. 974 if (isBaseDestructor()) 975 return AnyFunctionCall::getRuntimeDefinition(); 976 977 return CXXInstanceCall::getRuntimeDefinition(); 978 } 979 980 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const { 981 const ObjCMethodDecl *D = getDecl(); 982 if (!D) 983 return None; 984 return D->parameters(); 985 } 986 987 void ObjCMethodCall::getExtraInvalidatedValues( 988 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 989 990 // If the method call is a setter for property known to be backed by 991 // an instance variable, don't invalidate the entire receiver, just 992 // the storage for that instance variable. 993 if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) { 994 if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) { 995 SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal()); 996 if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) { 997 ETraits->setTrait( 998 IvarRegion, 999 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1000 ETraits->setTrait( 1001 IvarRegion, 1002 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 1003 Values.push_back(IvarLVal); 1004 } 1005 return; 1006 } 1007 } 1008 1009 Values.push_back(getReceiverSVal()); 1010 } 1011 1012 SVal ObjCMethodCall::getReceiverSVal() const { 1013 // FIXME: Is this the best way to handle class receivers? 1014 if (!isInstanceMessage()) 1015 return UnknownVal(); 1016 1017 if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) 1018 return getSVal(RecE); 1019 1020 // An instance message with no expression means we are sending to super. 1021 // In this case the object reference is the same as 'self'. 1022 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); 1023 SVal SelfVal = getState()->getSelfSVal(getLocationContext()); 1024 assert(SelfVal.isValid() && "Calling super but not in ObjC method"); 1025 return SelfVal; 1026 } 1027 1028 bool ObjCMethodCall::isReceiverSelfOrSuper() const { 1029 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || 1030 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) 1031 return true; 1032 1033 if (!isInstanceMessage()) 1034 return false; 1035 1036 SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver()); 1037 SVal SelfVal = getState()->getSelfSVal(getLocationContext()); 1038 1039 return (RecVal == SelfVal); 1040 } 1041 1042 SourceRange ObjCMethodCall::getSourceRange() const { 1043 switch (getMessageKind()) { 1044 case OCM_Message: 1045 return getOriginExpr()->getSourceRange(); 1046 case OCM_PropertyAccess: 1047 case OCM_Subscript: 1048 return getContainingPseudoObjectExpr()->getSourceRange(); 1049 } 1050 llvm_unreachable("unknown message kind"); 1051 } 1052 1053 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>; 1054 1055 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { 1056 assert(Data && "Lazy lookup not yet performed."); 1057 assert(getMessageKind() != OCM_Message && "Explicit message send."); 1058 return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer(); 1059 } 1060 1061 static const Expr * 1062 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) { 1063 const Expr *Syntactic = POE->getSyntacticForm()->IgnoreParens(); 1064 1065 // This handles the funny case of assigning to the result of a getter. 1066 // This can happen if the getter returns a non-const reference. 1067 if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic)) 1068 Syntactic = BO->getLHS()->IgnoreParens(); 1069 1070 return Syntactic; 1071 } 1072 1073 ObjCMessageKind ObjCMethodCall::getMessageKind() const { 1074 if (!Data) { 1075 // Find the parent, ignoring implicit casts. 1076 const ParentMap &PM = getLocationContext()->getParentMap(); 1077 const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr()); 1078 1079 // Check if parent is a PseudoObjectExpr. 1080 if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) { 1081 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 1082 1083 ObjCMessageKind K; 1084 switch (Syntactic->getStmtClass()) { 1085 case Stmt::ObjCPropertyRefExprClass: 1086 K = OCM_PropertyAccess; 1087 break; 1088 case Stmt::ObjCSubscriptRefExprClass: 1089 K = OCM_Subscript; 1090 break; 1091 default: 1092 // FIXME: Can this ever happen? 1093 K = OCM_Message; 1094 break; 1095 } 1096 1097 if (K != OCM_Message) { 1098 const_cast<ObjCMethodCall *>(this)->Data 1099 = ObjCMessageDataTy(POE, K).getOpaqueValue(); 1100 assert(getMessageKind() == K); 1101 return K; 1102 } 1103 } 1104 1105 const_cast<ObjCMethodCall *>(this)->Data 1106 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue(); 1107 assert(getMessageKind() == OCM_Message); 1108 return OCM_Message; 1109 } 1110 1111 ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data); 1112 if (!Info.getPointer()) 1113 return OCM_Message; 1114 return static_cast<ObjCMessageKind>(Info.getInt()); 1115 } 1116 1117 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const { 1118 // Look for properties accessed with property syntax (foo.bar = ...) 1119 if (getMessageKind() == OCM_PropertyAccess) { 1120 const PseudoObjectExpr *POE = getContainingPseudoObjectExpr(); 1121 assert(POE && "Property access without PseudoObjectExpr?"); 1122 1123 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 1124 auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic); 1125 1126 if (RefExpr->isExplicitProperty()) 1127 return RefExpr->getExplicitProperty(); 1128 } 1129 1130 // Look for properties accessed with method syntax ([foo setBar:...]). 1131 const ObjCMethodDecl *MD = getDecl(); 1132 if (!MD || !MD->isPropertyAccessor()) 1133 return nullptr; 1134 1135 // Note: This is potentially quite slow. 1136 return MD->findPropertyDecl(); 1137 } 1138 1139 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, 1140 Selector Sel) const { 1141 assert(IDecl); 1142 AnalysisManager &AMgr = 1143 getState()->getStateManager().getOwningEngine().getAnalysisManager(); 1144 // If the class interface is declared inside the main file, assume it is not 1145 // subcassed. 1146 // TODO: It could actually be subclassed if the subclass is private as well. 1147 // This is probably very rare. 1148 SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); 1149 if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc)) 1150 return false; 1151 1152 // Assume that property accessors are not overridden. 1153 if (getMessageKind() == OCM_PropertyAccess) 1154 return false; 1155 1156 // We assume that if the method is public (declared outside of main file) or 1157 // has a parent which publicly declares the method, the method could be 1158 // overridden in a subclass. 1159 1160 // Find the first declaration in the class hierarchy that declares 1161 // the selector. 1162 ObjCMethodDecl *D = nullptr; 1163 while (true) { 1164 D = IDecl->lookupMethod(Sel, true); 1165 1166 // Cannot find a public definition. 1167 if (!D) 1168 return false; 1169 1170 // If outside the main file, 1171 if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation())) 1172 return true; 1173 1174 if (D->isOverriding()) { 1175 // Search in the superclass on the next iteration. 1176 IDecl = D->getClassInterface(); 1177 if (!IDecl) 1178 return false; 1179 1180 IDecl = IDecl->getSuperClass(); 1181 if (!IDecl) 1182 return false; 1183 1184 continue; 1185 } 1186 1187 return false; 1188 }; 1189 1190 llvm_unreachable("The while loop should always terminate."); 1191 } 1192 1193 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) { 1194 if (!MD) 1195 return MD; 1196 1197 // Find the redeclaration that defines the method. 1198 if (!MD->hasBody()) { 1199 for (auto I : MD->redecls()) 1200 if (I->hasBody()) 1201 MD = cast<ObjCMethodDecl>(I); 1202 } 1203 return MD; 1204 } 1205 1206 struct PrivateMethodKey { 1207 const ObjCInterfaceDecl *Interface; 1208 Selector LookupSelector; 1209 bool IsClassMethod; 1210 }; 1211 1212 namespace llvm { 1213 template <> struct DenseMapInfo<PrivateMethodKey> { 1214 using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>; 1215 using SelectorInfo = DenseMapInfo<Selector>; 1216 1217 static inline PrivateMethodKey getEmptyKey() { 1218 return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false}; 1219 } 1220 1221 static inline PrivateMethodKey getTombstoneKey() { 1222 return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(), 1223 true}; 1224 } 1225 1226 static unsigned getHashValue(const PrivateMethodKey &Key) { 1227 return llvm::hash_combine( 1228 llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)), 1229 llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)), 1230 Key.IsClassMethod); 1231 } 1232 1233 static bool isEqual(const PrivateMethodKey &LHS, 1234 const PrivateMethodKey &RHS) { 1235 return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) && 1236 SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) && 1237 LHS.IsClassMethod == RHS.IsClassMethod; 1238 } 1239 }; 1240 } // end namespace llvm 1241 1242 static const ObjCMethodDecl * 1243 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface, 1244 Selector LookupSelector, bool InstanceMethod) { 1245 // Repeatedly calling lookupPrivateMethod() is expensive, especially 1246 // when in many cases it returns null. We cache the results so 1247 // that repeated queries on the same ObjCIntefaceDecl and Selector 1248 // don't incur the same cost. On some test cases, we can see the 1249 // same query being issued thousands of times. 1250 // 1251 // NOTE: This cache is essentially a "global" variable, but it 1252 // only gets lazily created when we get here. The value of the 1253 // cache probably comes from it being global across ExprEngines, 1254 // where the same queries may get issued. If we are worried about 1255 // concurrency, or possibly loading/unloading ASTs, etc., we may 1256 // need to revisit this someday. In terms of memory, this table 1257 // stays around until clang quits, which also may be bad if we 1258 // need to release memory. 1259 using PrivateMethodCache = 1260 llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>; 1261 1262 static PrivateMethodCache PMC; 1263 Optional<const ObjCMethodDecl *> &Val = 1264 PMC[{Interface, LookupSelector, InstanceMethod}]; 1265 1266 // Query lookupPrivateMethod() if the cache does not hit. 1267 if (!Val.hasValue()) { 1268 Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod); 1269 1270 if (!*Val) { 1271 // Query 'lookupMethod' as a backup. 1272 Val = Interface->lookupMethod(LookupSelector, InstanceMethod); 1273 } 1274 } 1275 1276 return Val.getValue(); 1277 } 1278 1279 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { 1280 const ObjCMessageExpr *E = getOriginExpr(); 1281 assert(E); 1282 Selector Sel = E->getSelector(); 1283 1284 if (E->isInstanceMessage()) { 1285 // Find the receiver type. 1286 const ObjCObjectType *ReceiverT = nullptr; 1287 bool CanBeSubClassed = false; 1288 bool LookingForInstanceMethod = true; 1289 QualType SupersType = E->getSuperType(); 1290 const MemRegion *Receiver = nullptr; 1291 1292 if (!SupersType.isNull()) { 1293 // The receiver is guaranteed to be 'super' in this case. 1294 // Super always means the type of immediate predecessor to the method 1295 // where the call occurs. 1296 ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType(); 1297 } else { 1298 Receiver = getReceiverSVal().getAsRegion(); 1299 if (!Receiver) 1300 return {}; 1301 1302 DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver); 1303 if (!DTI.isValid()) { 1304 assert(isa<AllocaRegion>(Receiver) && 1305 "Unhandled untyped region class!"); 1306 return {}; 1307 } 1308 1309 QualType DynType = DTI.getType(); 1310 CanBeSubClassed = DTI.canBeASubClass(); 1311 1312 const auto *ReceiverDynT = 1313 dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType()); 1314 1315 if (ReceiverDynT) { 1316 ReceiverT = ReceiverDynT->getObjectType(); 1317 1318 // It can be actually class methods called with Class object as a 1319 // receiver. This type of messages is treated by the compiler as 1320 // instance (not class). 1321 if (ReceiverT->isObjCClass()) { 1322 1323 SVal SelfVal = getState()->getSelfSVal(getLocationContext()); 1324 // For [self classMethod], return compiler visible declaration. 1325 if (Receiver == SelfVal.getAsRegion()) { 1326 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1327 } 1328 1329 // Otherwise, let's check if we know something about the type 1330 // inside of this class object. 1331 if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) { 1332 DynamicTypeInfo DTI = 1333 getClassObjectDynamicTypeInfo(getState(), ReceiverSym); 1334 if (DTI.isValid()) { 1335 // Let's use this type for lookup. 1336 ReceiverT = 1337 cast<ObjCObjectType>(DTI.getType().getCanonicalType()); 1338 1339 CanBeSubClassed = DTI.canBeASubClass(); 1340 // And it should be a class method instead. 1341 LookingForInstanceMethod = false; 1342 } 1343 } 1344 } 1345 1346 if (CanBeSubClassed) 1347 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) 1348 // Even if `DynamicTypeInfo` told us that it can be 1349 // not necessarily this type, but its descendants, we still want 1350 // to check again if this selector can be actually overridden. 1351 CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel); 1352 } 1353 } 1354 1355 // Lookup the instance method implementation. 1356 if (ReceiverT) 1357 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) { 1358 const ObjCMethodDecl *MD = 1359 lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod); 1360 1361 if (MD && !MD->hasBody()) 1362 MD = MD->getCanonicalDecl(); 1363 1364 if (CanBeSubClassed) 1365 return RuntimeDefinition(MD, Receiver); 1366 else 1367 return RuntimeDefinition(MD, nullptr); 1368 } 1369 } else { 1370 // This is a class method. 1371 // If we have type info for the receiver class, we are calling via 1372 // class name. 1373 if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { 1374 // Find/Return the method implementation. 1375 return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); 1376 } 1377 } 1378 1379 return {}; 1380 } 1381 1382 bool ObjCMethodCall::argumentsMayEscape() const { 1383 if (isInSystemHeader() && !isInstanceMessage()) { 1384 Selector Sel = getSelector(); 1385 if (Sel.getNumArgs() == 1 && 1386 Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer")) 1387 return true; 1388 } 1389 1390 return CallEvent::argumentsMayEscape(); 1391 } 1392 1393 void ObjCMethodCall::getInitialStackFrameContents( 1394 const StackFrameContext *CalleeCtx, 1395 BindingsTy &Bindings) const { 1396 const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl()); 1397 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 1398 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 1399 D->parameters()); 1400 1401 SVal SelfVal = getReceiverSVal(); 1402 if (!SelfVal.isUnknown()) { 1403 const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); 1404 MemRegionManager &MRMgr = SVB.getRegionManager(); 1405 Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx)); 1406 Bindings.push_back(std::make_pair(SelfLoc, SelfVal)); 1407 } 1408 } 1409 1410 CallEventRef<> 1411 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, 1412 const LocationContext *LCtx) { 1413 if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE)) 1414 return create<CXXMemberCall>(MCE, State, LCtx); 1415 1416 if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 1417 const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); 1418 if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) 1419 if (MD->isInstance()) 1420 return create<CXXMemberOperatorCall>(OpCE, State, LCtx); 1421 1422 } else if (CE->getCallee()->getType()->isBlockPointerType()) { 1423 return create<BlockCall>(CE, State, LCtx); 1424 } 1425 1426 // Otherwise, it's a normal function call, static member function call, or 1427 // something we can't reason about. 1428 return create<SimpleFunctionCall>(CE, State, LCtx); 1429 } 1430 1431 CallEventRef<> 1432 CallEventManager::getCaller(const StackFrameContext *CalleeCtx, 1433 ProgramStateRef State) { 1434 const LocationContext *ParentCtx = CalleeCtx->getParent(); 1435 const LocationContext *CallerCtx = ParentCtx->getStackFrame(); 1436 assert(CallerCtx && "This should not be used for top-level stack frames"); 1437 1438 const Stmt *CallSite = CalleeCtx->getCallSite(); 1439 1440 if (CallSite) { 1441 if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx)) 1442 return Out; 1443 1444 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1445 const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 1446 Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx); 1447 SVal ThisVal = State->getSVal(ThisPtr); 1448 1449 if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite)) 1450 return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx); 1451 else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite)) 1452 return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State, 1453 CallerCtx); 1454 else { 1455 // All other cases are handled by getCall. 1456 llvm_unreachable("This is not an inlineable statement"); 1457 } 1458 } 1459 1460 // Fall back to the CFG. The only thing we haven't handled yet is 1461 // destructors, though this could change in the future. 1462 const CFGBlock *B = CalleeCtx->getCallSiteBlock(); 1463 CFGElement E = (*B)[CalleeCtx->getIndex()]; 1464 assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) && 1465 "All other CFG elements should have exprs"); 1466 1467 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1468 const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl()); 1469 Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx); 1470 SVal ThisVal = State->getSVal(ThisPtr); 1471 1472 const Stmt *Trigger; 1473 if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>()) 1474 Trigger = AutoDtor->getTriggerStmt(); 1475 else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>()) 1476 Trigger = DeleteDtor->getDeleteExpr(); 1477 else 1478 Trigger = Dtor->getBody(); 1479 1480 return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(), 1481 E.getAs<CFGBaseDtor>().hasValue(), State, 1482 CallerCtx); 1483 } 1484 1485 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State, 1486 const LocationContext *LC) { 1487 if (const auto *CE = dyn_cast<CallExpr>(S)) { 1488 return getSimpleCall(CE, State, LC); 1489 } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) { 1490 return getCXXAllocatorCall(NE, State, LC); 1491 } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) { 1492 return getObjCMethodCall(ME, State, LC); 1493 } else { 1494 return nullptr; 1495 } 1496 } 1497