1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/ImmutableList.h"
51 #include "llvm/ADT/None.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/PointerIntPair.h"
54 #include "llvm/ADT/SmallSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <cassert>
64 #include <utility>
65 
66 #define DEBUG_TYPE "static-analyzer-call-event"
67 
68 using namespace clang;
69 using namespace ento;
70 
71 QualType CallEvent::getResultType() const {
72   ASTContext &Ctx = getState()->getStateManager().getContext();
73   const Expr *E = getOriginExpr();
74   if (!E)
75     return Ctx.VoidTy;
76   return Ctx.getReferenceQualifiedType(E);
77 }
78 
79 static bool isCallback(QualType T) {
80   // If a parameter is a block or a callback, assume it can modify pointer.
81   if (T->isBlockPointerType() ||
82       T->isFunctionPointerType() ||
83       T->isObjCSelType())
84     return true;
85 
86   // Check if a callback is passed inside a struct (for both, struct passed by
87   // reference and by value). Dig just one level into the struct for now.
88 
89   if (T->isAnyPointerType() || T->isReferenceType())
90     T = T->getPointeeType();
91 
92   if (const RecordType *RT = T->getAsStructureType()) {
93     const RecordDecl *RD = RT->getDecl();
94     for (const auto *I : RD->fields()) {
95       QualType FieldT = I->getType();
96       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
97         return true;
98     }
99   }
100   return false;
101 }
102 
103 static bool isVoidPointerToNonConst(QualType T) {
104   if (const auto *PT = T->getAs<PointerType>()) {
105     QualType PointeeTy = PT->getPointeeType();
106     if (PointeeTy.isConstQualified())
107       return false;
108     return PointeeTy->isVoidType();
109   } else
110     return false;
111 }
112 
113 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
114   unsigned NumOfArgs = getNumArgs();
115 
116   // If calling using a function pointer, assume the function does not
117   // satisfy the callback.
118   // TODO: We could check the types of the arguments here.
119   if (!getDecl())
120     return false;
121 
122   unsigned Idx = 0;
123   for (CallEvent::param_type_iterator I = param_type_begin(),
124                                       E = param_type_end();
125        I != E && Idx < NumOfArgs; ++I, ++Idx) {
126     // If the parameter is 0, it's harmless.
127     if (getArgSVal(Idx).isZeroConstant())
128       continue;
129 
130     if (Condition(*I))
131       return true;
132   }
133   return false;
134 }
135 
136 bool CallEvent::hasNonZeroCallbackArg() const {
137   return hasNonNullArgumentsWithType(isCallback);
138 }
139 
140 bool CallEvent::hasVoidPointerToNonConstArg() const {
141   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
142 }
143 
144 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
145   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
146   if (!FD)
147     return false;
148 
149   return CheckerContext::isCLibraryFunction(FD, FunctionName);
150 }
151 
152 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
153   const Decl *D = getDecl();
154   if (!D)
155     return nullptr;
156 
157   AnalysisDeclContext *ADC =
158       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
159 
160   return ADC;
161 }
162 
163 const StackFrameContext *
164 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
165   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
166   if (!ADC)
167     return nullptr;
168 
169   const Expr *E = getOriginExpr();
170   if (!E)
171     return nullptr;
172 
173   // Recover CFG block via reverse lookup.
174   // TODO: If we were to keep CFG element information as part of the CallEvent
175   // instead of doing this reverse lookup, we would be able to build the stack
176   // frame for non-expression-based calls, and also we wouldn't need the reverse
177   // lookup.
178   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
179   const CFGBlock *B = Map->getBlock(E);
180   assert(B);
181 
182   // Also recover CFG index by scanning the CFG block.
183   unsigned Idx = 0, Sz = B->size();
184   for (; Idx < Sz; ++Idx)
185     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
186       if (StmtElem->getStmt() == E)
187         break;
188   assert(Idx < Sz);
189 
190   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
191 }
192 
193 const ParamVarRegion
194 *CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
195   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
196   // We cannot construct a VarRegion without a stack frame.
197   if (!SFC)
198     return nullptr;
199 
200   const ParamVarRegion *PVR =
201     State->getStateManager().getRegionManager().getParamVarRegion(
202         getOriginExpr(), Index, SFC);
203   return PVR;
204 }
205 
206 /// Returns true if a type is a pointer-to-const or reference-to-const
207 /// with no further indirection.
208 static bool isPointerToConst(QualType Ty) {
209   QualType PointeeTy = Ty->getPointeeType();
210   if (PointeeTy == QualType())
211     return false;
212   if (!PointeeTy.isConstQualified())
213     return false;
214   if (PointeeTy->isAnyPointerType())
215     return false;
216   return true;
217 }
218 
219 // Try to retrieve the function declaration and find the function parameter
220 // types which are pointers/references to a non-pointer const.
221 // We will not invalidate the corresponding argument regions.
222 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
223                                  const CallEvent &Call) {
224   unsigned Idx = 0;
225   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
226                                       E = Call.param_type_end();
227        I != E; ++I, ++Idx) {
228     if (isPointerToConst(*I))
229       PreserveArgs.insert(Idx);
230   }
231 }
232 
233 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
234                                              ProgramStateRef Orig) const {
235   ProgramStateRef Result = (Orig ? Orig : getState());
236 
237   // Don't invalidate anything if the callee is marked pure/const.
238   if (const Decl *callee = getDecl())
239     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
240       return Result;
241 
242   SmallVector<SVal, 8> ValuesToInvalidate;
243   RegionAndSymbolInvalidationTraits ETraits;
244 
245   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
246 
247   // Indexes of arguments whose values will be preserved by the call.
248   llvm::SmallSet<unsigned, 4> PreserveArgs;
249   if (!argumentsMayEscape())
250     findPtrToConstParams(PreserveArgs, *this);
251 
252   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
253     // Mark this region for invalidation.  We batch invalidate regions
254     // below for efficiency.
255     if (PreserveArgs.count(Idx))
256       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
257         ETraits.setTrait(MR->getBaseRegion(),
258                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
259         // TODO: Factor this out + handle the lower level const pointers.
260 
261     ValuesToInvalidate.push_back(getArgSVal(Idx));
262 
263     // If a function accepts an object by argument (which would of course be a
264     // temporary that isn't lifetime-extended), invalidate the object itself,
265     // not only other objects reachable from it. This is necessary because the
266     // destructor has access to the temporary object after the call.
267     // TODO: Support placement arguments once we start
268     // constructing them directly.
269     // TODO: This is unnecessary when there's no destructor, but that's
270     // currently hard to figure out.
271     if (getKind() != CE_CXXAllocator)
272       if (isArgumentConstructedDirectly(Idx))
273         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
274           if (const TypedValueRegion *TVR =
275                   getParameterLocation(*AdjIdx, BlockCount))
276             ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
277   }
278 
279   // Invalidate designated regions using the batch invalidation API.
280   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
281   //  global variables.
282   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
283                                    BlockCount, getLocationContext(),
284                                    /*CausedByPointerEscape*/ true,
285                                    /*Symbols=*/nullptr, this, &ETraits);
286 }
287 
288 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
289                                         const ProgramPointTag *Tag) const {
290   if (const Expr *E = getOriginExpr()) {
291     if (IsPreVisit)
292       return PreStmt(E, getLocationContext(), Tag);
293     return PostStmt(E, getLocationContext(), Tag);
294   }
295 
296   const Decl *D = getDecl();
297   assert(D && "Cannot get a program point without a statement or decl");
298 
299   SourceLocation Loc = getSourceRange().getBegin();
300   if (IsPreVisit)
301     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
302   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
303 }
304 
305 bool CallEvent::isCalled(const CallDescription &CD) const {
306   // FIXME: Add ObjC Message support.
307   if (getKind() == CE_ObjCMessage)
308     return false;
309 
310   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
311   if (!FD)
312     return false;
313 
314   if (CD.Flags & CDF_MaybeBuiltin) {
315     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
316            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
317            (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
318   }
319 
320   if (!CD.II.hasValue()) {
321     CD.II = &getState()->getStateManager().getContext().Idents.get(
322         CD.getFunctionName());
323   }
324 
325   const auto MatchNameOnly = [](const CallDescription &CD,
326                                 const NamedDecl *ND) -> bool {
327     DeclarationName Name = ND->getDeclName();
328     if (const auto *II = Name.getAsIdentifierInfo())
329       return II == CD.II.getValue(); // Fast case.
330 
331     // Fallback to the slow stringification and comparison for:
332     // C++ overloaded operators, constructors, destructors, etc.
333     // FIXME This comparison is way SLOWER than comparing pointers.
334     // At some point in the future, we should compare FunctionDecl pointers.
335     return Name.getAsString() == CD.getFunctionName();
336   };
337 
338   const auto ExactMatchArgAndParamCounts =
339       [](const CallEvent &Call, const CallDescription &CD) -> bool {
340     const bool ArgsMatch =
341         !CD.RequiredArgs || CD.RequiredArgs == Call.getNumArgs();
342     const bool ParamsMatch =
343         !CD.RequiredParams || CD.RequiredParams == Call.parameters().size();
344     return ArgsMatch && ParamsMatch;
345   };
346 
347   const auto MatchQualifiedNameParts = [](const CallDescription &CD,
348                                           const Decl *D) -> bool {
349     const auto FindNextNamespaceOrRecord =
350         [](const DeclContext *Ctx) -> const DeclContext * {
351       while (Ctx && !isa<NamespaceDecl, RecordDecl>(Ctx))
352         Ctx = Ctx->getParent();
353       return Ctx;
354     };
355 
356     auto QualifierPartsIt = CD.begin_qualified_name_parts();
357     const auto QualifierPartsEndIt = CD.end_qualified_name_parts();
358 
359     // Match namespace and record names. Skip unrelated names if they don't
360     // match.
361     const DeclContext *Ctx = FindNextNamespaceOrRecord(D->getDeclContext());
362     for (; Ctx && QualifierPartsIt != QualifierPartsEndIt;
363          Ctx = FindNextNamespaceOrRecord(Ctx->getParent())) {
364       // If not matched just continue and try matching for the next one.
365       if (cast<NamedDecl>(Ctx)->getName() != *QualifierPartsIt)
366         continue;
367       ++QualifierPartsIt;
368     }
369 
370     // We matched if we consumed all expected qualifier segments.
371     return QualifierPartsIt == QualifierPartsEndIt;
372   };
373 
374   // Let's start matching...
375   if (!ExactMatchArgAndParamCounts(*this, CD))
376     return false;
377 
378   if (!MatchNameOnly(CD, FD))
379     return false;
380 
381   if (!CD.hasQualifiedNameParts())
382     return true;
383 
384   return MatchQualifiedNameParts(CD, FD);
385 }
386 
387 SVal CallEvent::getArgSVal(unsigned Index) const {
388   const Expr *ArgE = getArgExpr(Index);
389   if (!ArgE)
390     return UnknownVal();
391   return getSVal(ArgE);
392 }
393 
394 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
395   const Expr *ArgE = getArgExpr(Index);
396   if (!ArgE)
397     return {};
398   return ArgE->getSourceRange();
399 }
400 
401 SVal CallEvent::getReturnValue() const {
402   const Expr *E = getOriginExpr();
403   if (!E)
404     return UndefinedVal();
405   return getSVal(E);
406 }
407 
408 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
409 
410 void CallEvent::dump(raw_ostream &Out) const {
411   ASTContext &Ctx = getState()->getStateManager().getContext();
412   if (const Expr *E = getOriginExpr()) {
413     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
414     Out << "\n";
415     return;
416   }
417 
418   if (const Decl *D = getDecl()) {
419     Out << "Call to ";
420     D->print(Out, Ctx.getPrintingPolicy());
421     return;
422   }
423 
424   Out << "Unknown call (type " << getKindAsString() << ")";
425 }
426 
427 bool CallEvent::isCallStmt(const Stmt *S) {
428   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
429                           || isa<CXXConstructExpr>(S)
430                           || isa<CXXNewExpr>(S);
431 }
432 
433 QualType CallEvent::getDeclaredResultType(const Decl *D) {
434   assert(D);
435   if (const auto *FD = dyn_cast<FunctionDecl>(D))
436     return FD->getReturnType();
437   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
438     return MD->getReturnType();
439   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
440     // Blocks are difficult because the return type may not be stored in the
441     // BlockDecl itself. The AST should probably be enhanced, but for now we
442     // just do what we can.
443     // If the block is declared without an explicit argument list, the
444     // signature-as-written just includes the return type, not the entire
445     // function type.
446     // FIXME: All blocks should have signatures-as-written, even if the return
447     // type is inferred. (That's signified with a dependent result type.)
448     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
449       QualType Ty = TSI->getType();
450       if (const FunctionType *FT = Ty->getAs<FunctionType>())
451         Ty = FT->getReturnType();
452       if (!Ty->isDependentType())
453         return Ty;
454     }
455 
456     return {};
457   }
458 
459   llvm_unreachable("unknown callable kind");
460 }
461 
462 bool CallEvent::isVariadic(const Decl *D) {
463   assert(D);
464 
465   if (const auto *FD = dyn_cast<FunctionDecl>(D))
466     return FD->isVariadic();
467   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
468     return MD->isVariadic();
469   if (const auto *BD = dyn_cast<BlockDecl>(D))
470     return BD->isVariadic();
471 
472   llvm_unreachable("unknown callable kind");
473 }
474 
475 static bool isTransparentUnion(QualType T) {
476   const RecordType *UT = T->getAsUnionType();
477   return UT && UT->getDecl()->hasAttr<TransparentUnionAttr>();
478 }
479 
480 // In some cases, symbolic cases should be transformed before we associate
481 // them with parameters.  This function incapsulates such cases.
482 static SVal processArgument(SVal Value, const Expr *ArgumentExpr,
483                             const ParmVarDecl *Parameter, SValBuilder &SVB) {
484   QualType ParamType = Parameter->getType();
485   QualType ArgumentType = ArgumentExpr->getType();
486 
487   // Transparent unions allow users to easily convert values of union field
488   // types into union-typed objects.
489   //
490   // Also, more importantly, they allow users to define functions with different
491   // different parameter types, substituting types matching transparent union
492   // field types with the union type itself.
493   //
494   // Here, we check specifically for latter cases and prevent binding
495   // field-typed values to union-typed regions.
496   if (isTransparentUnion(ParamType) &&
497       // Let's check that we indeed trying to bind different types.
498       !isTransparentUnion(ArgumentType)) {
499     BasicValueFactory &BVF = SVB.getBasicValueFactory();
500 
501     llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList();
502     CompoundSVals = BVF.prependSVal(Value, CompoundSVals);
503 
504     // Wrap it with compound value.
505     return SVB.makeCompoundVal(ParamType, CompoundSVals);
506   }
507 
508   return Value;
509 }
510 
511 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
512                                          CallEvent::BindingsTy &Bindings,
513                                          SValBuilder &SVB,
514                                          const CallEvent &Call,
515                                          ArrayRef<ParmVarDecl*> parameters) {
516   MemRegionManager &MRMgr = SVB.getRegionManager();
517 
518   // If the function has fewer parameters than the call has arguments, we simply
519   // do not bind any values to them.
520   unsigned NumArgs = Call.getNumArgs();
521   unsigned Idx = 0;
522   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
523   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
524     assert(*I && "Formal parameter has no decl?");
525 
526     // TODO: Support allocator calls.
527     if (Call.getKind() != CE_CXXAllocator)
528       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
529         continue;
530 
531     // TODO: Allocators should receive the correct size and possibly alignment,
532     // determined in compile-time but not represented as arg-expressions,
533     // which makes getArgSVal() fail and return UnknownVal.
534     SVal ArgVal = Call.getArgSVal(Idx);
535     const Expr *ArgExpr = Call.getArgExpr(Idx);
536     if (!ArgVal.isUnknown()) {
537       Loc ParamLoc = SVB.makeLoc(
538           MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
539       Bindings.push_back(
540           std::make_pair(ParamLoc, processArgument(ArgVal, ArgExpr, *I, SVB)));
541     }
542   }
543 
544   // FIXME: Variadic arguments are not handled at all right now.
545 }
546 
547 const ConstructionContext *CallEvent::getConstructionContext() const {
548   const StackFrameContext *StackFrame = getCalleeStackFrame(0);
549   if (!StackFrame)
550     return nullptr;
551 
552   const CFGElement Element = StackFrame->getCallSiteCFGElement();
553   if (const auto Ctor = Element.getAs<CFGConstructor>()) {
554     return Ctor->getConstructionContext();
555   }
556 
557   if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
558     return RecCall->getConstructionContext();
559   }
560 
561   return nullptr;
562 }
563 
564 Optional<SVal>
565 CallEvent::getReturnValueUnderConstruction() const {
566   const auto *CC = getConstructionContext();
567   if (!CC)
568     return None;
569 
570   EvalCallOptions CallOpts;
571   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
572   SVal RetVal =
573     Engine.computeObjectUnderConstruction(getOriginExpr(), getState(),
574                                           getLocationContext(), CC, CallOpts);
575   return RetVal;
576 }
577 
578 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
579   const FunctionDecl *D = getDecl();
580   if (!D)
581     return None;
582   return D->parameters();
583 }
584 
585 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
586   const FunctionDecl *FD = getDecl();
587   if (!FD)
588     return {};
589 
590   // Note that the AnalysisDeclContext will have the FunctionDecl with
591   // the definition (if one exists).
592   AnalysisDeclContext *AD =
593     getLocationContext()->getAnalysisDeclContext()->
594     getManager()->getContext(FD);
595   bool IsAutosynthesized;
596   Stmt* Body = AD->getBody(IsAutosynthesized);
597   LLVM_DEBUG({
598     if (IsAutosynthesized)
599       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
600                    << "\n";
601   });
602   if (Body) {
603     const Decl* Decl = AD->getDecl();
604     return RuntimeDefinition(Decl);
605   }
606 
607   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
608   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
609 
610   // Try to get CTU definition only if CTUDir is provided.
611   if (!Opts.IsNaiveCTUEnabled)
612     return {};
613 
614   cross_tu::CrossTranslationUnitContext &CTUCtx =
615       *Engine.getCrossTranslationUnitContext();
616   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
617       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
618                                   Opts.DisplayCTUProgress);
619 
620   if (!CTUDeclOrError) {
621     handleAllErrors(CTUDeclOrError.takeError(),
622                     [&](const cross_tu::IndexError &IE) {
623                       CTUCtx.emitCrossTUDiagnostics(IE);
624                     });
625     return {};
626   }
627 
628   return RuntimeDefinition(*CTUDeclOrError);
629 }
630 
631 void AnyFunctionCall::getInitialStackFrameContents(
632                                         const StackFrameContext *CalleeCtx,
633                                         BindingsTy &Bindings) const {
634   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
635   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
636   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
637                                D->parameters());
638 }
639 
640 bool AnyFunctionCall::argumentsMayEscape() const {
641   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
642     return true;
643 
644   const FunctionDecl *D = getDecl();
645   if (!D)
646     return true;
647 
648   const IdentifierInfo *II = D->getIdentifier();
649   if (!II)
650     return false;
651 
652   // This set of "escaping" APIs is
653 
654   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
655   //   value into thread local storage. The value can later be retrieved with
656   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
657   //   parameter is 'const void *', the region escapes through the call.
658   if (II->isStr("pthread_setspecific"))
659     return true;
660 
661   // - xpc_connection_set_context stores a value which can be retrieved later
662   //   with xpc_connection_get_context.
663   if (II->isStr("xpc_connection_set_context"))
664     return true;
665 
666   // - funopen - sets a buffer for future IO calls.
667   if (II->isStr("funopen"))
668     return true;
669 
670   // - __cxa_demangle - can reallocate memory and can return the pointer to
671   // the input buffer.
672   if (II->isStr("__cxa_demangle"))
673     return true;
674 
675   StringRef FName = II->getName();
676 
677   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
678   //   buffer even if it is const.
679   if (FName.endswith("NoCopy"))
680     return true;
681 
682   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
683   //   be deallocated by NSMapRemove.
684   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
685     return true;
686 
687   // - Many CF containers allow objects to escape through custom
688   //   allocators/deallocators upon container construction. (PR12101)
689   if (FName.startswith("CF") || FName.startswith("CG")) {
690     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
691            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
692            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
693            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
694            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
695            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
696   }
697 
698   return false;
699 }
700 
701 const FunctionDecl *SimpleFunctionCall::getDecl() const {
702   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
703   if (D)
704     return D;
705 
706   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
707 }
708 
709 const FunctionDecl *CXXInstanceCall::getDecl() const {
710   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
711   if (!CE)
712     return AnyFunctionCall::getDecl();
713 
714   const FunctionDecl *D = CE->getDirectCallee();
715   if (D)
716     return D;
717 
718   return getSVal(CE->getCallee()).getAsFunctionDecl();
719 }
720 
721 void CXXInstanceCall::getExtraInvalidatedValues(
722     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
723   SVal ThisVal = getCXXThisVal();
724   Values.push_back(ThisVal);
725 
726   // Don't invalidate if the method is const and there are no mutable fields.
727   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
728     if (!D->isConst())
729       return;
730     // Get the record decl for the class of 'This'. D->getParent() may return a
731     // base class decl, rather than the class of the instance which needs to be
732     // checked for mutable fields.
733     // TODO: We might as well look at the dynamic type of the object.
734     const Expr *Ex = getCXXThisExpr()->IgnoreParenBaseCasts();
735     QualType T = Ex->getType();
736     if (T->isPointerType()) // Arrow or implicit-this syntax?
737       T = T->getPointeeType();
738     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
739     assert(ParentRecord);
740     if (ParentRecord->hasMutableFields())
741       return;
742     // Preserve CXXThis.
743     const MemRegion *ThisRegion = ThisVal.getAsRegion();
744     if (!ThisRegion)
745       return;
746 
747     ETraits->setTrait(ThisRegion->getBaseRegion(),
748                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
749   }
750 }
751 
752 SVal CXXInstanceCall::getCXXThisVal() const {
753   const Expr *Base = getCXXThisExpr();
754   // FIXME: This doesn't handle an overloaded ->* operator.
755   if (!Base)
756     return UnknownVal();
757 
758   SVal ThisVal = getSVal(Base);
759   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
760   return ThisVal;
761 }
762 
763 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
764   // Do we have a decl at all?
765   const Decl *D = getDecl();
766   if (!D)
767     return {};
768 
769   // If the method is non-virtual, we know we can inline it.
770   const auto *MD = cast<CXXMethodDecl>(D);
771   if (!MD->isVirtual())
772     return AnyFunctionCall::getRuntimeDefinition();
773 
774   // Do we know the implicit 'this' object being called?
775   const MemRegion *R = getCXXThisVal().getAsRegion();
776   if (!R)
777     return {};
778 
779   // Do we know anything about the type of 'this'?
780   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
781   if (!DynType.isValid())
782     return {};
783 
784   // Is the type a C++ class? (This is mostly a defensive check.)
785   QualType RegionType = DynType.getType()->getPointeeType();
786   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
787 
788   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
789   if (!RD || !RD->hasDefinition())
790     return {};
791 
792   // Find the decl for this method in that class.
793   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
794   if (!Result) {
795     // We might not even get the original statically-resolved method due to
796     // some particularly nasty casting (e.g. casts to sister classes).
797     // However, we should at least be able to search up and down our own class
798     // hierarchy, and some real bugs have been caught by checking this.
799     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
800 
801     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
802     // the static type. However, because we currently don't update
803     // DynamicTypeInfo when an object is cast, we can't actually be sure the
804     // DynamicTypeInfo is up to date. This assert should be re-enabled once
805     // this is fixed. <rdar://problem/12287087>
806     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
807 
808     return {};
809   }
810 
811   // Does the decl that we found have an implementation?
812   const FunctionDecl *Definition;
813   if (!Result->hasBody(Definition)) {
814     if (!DynType.canBeASubClass())
815       return AnyFunctionCall::getRuntimeDefinition();
816     return {};
817   }
818 
819   // We found a definition. If we're not sure that this devirtualization is
820   // actually what will happen at runtime, make sure to provide the region so
821   // that ExprEngine can decide what to do with it.
822   if (DynType.canBeASubClass())
823     return RuntimeDefinition(Definition, R->StripCasts());
824   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
825 }
826 
827 void CXXInstanceCall::getInitialStackFrameContents(
828                                             const StackFrameContext *CalleeCtx,
829                                             BindingsTy &Bindings) const {
830   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
831 
832   // Handle the binding of 'this' in the new stack frame.
833   SVal ThisVal = getCXXThisVal();
834   if (!ThisVal.isUnknown()) {
835     ProgramStateManager &StateMgr = getState()->getStateManager();
836     SValBuilder &SVB = StateMgr.getSValBuilder();
837 
838     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
839     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
840 
841     // If we devirtualized to a different member function, we need to make sure
842     // we have the proper layering of CXXBaseObjectRegions.
843     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
844       ASTContext &Ctx = SVB.getContext();
845       const CXXRecordDecl *Class = MD->getParent();
846       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
847 
848       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
849       bool Failed;
850       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
851       if (Failed) {
852         // We might have suffered some sort of placement new earlier, so
853         // we're constructing in a completely unexpected storage.
854         // Fall back to a generic pointer cast for this-value.
855         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
856         const CXXRecordDecl *StaticClass = StaticMD->getParent();
857         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
858         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
859       }
860     }
861 
862     if (!ThisVal.isUnknown())
863       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
864   }
865 }
866 
867 const Expr *CXXMemberCall::getCXXThisExpr() const {
868   return getOriginExpr()->getImplicitObjectArgument();
869 }
870 
871 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
872   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
873   // id-expression in the class member access expression is a qualified-id,
874   // that function is called. Otherwise, its final overrider in the dynamic type
875   // of the object expression is called.
876   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
877     if (ME->hasQualifier())
878       return AnyFunctionCall::getRuntimeDefinition();
879 
880   return CXXInstanceCall::getRuntimeDefinition();
881 }
882 
883 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
884   return getOriginExpr()->getArg(0);
885 }
886 
887 const BlockDataRegion *BlockCall::getBlockRegion() const {
888   const Expr *Callee = getOriginExpr()->getCallee();
889   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
890 
891   return dyn_cast_or_null<BlockDataRegion>(DataReg);
892 }
893 
894 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
895   const BlockDecl *D = getDecl();
896   if (!D)
897     return None;
898   return D->parameters();
899 }
900 
901 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
902                   RegionAndSymbolInvalidationTraits *ETraits) const {
903   // FIXME: This also needs to invalidate captured globals.
904   if (const MemRegion *R = getBlockRegion())
905     Values.push_back(loc::MemRegionVal(R));
906 }
907 
908 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
909                                              BindingsTy &Bindings) const {
910   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
911   ArrayRef<ParmVarDecl*> Params;
912   if (isConversionFromLambda()) {
913     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
914     Params = LambdaOperatorDecl->parameters();
915 
916     // For blocks converted from a C++ lambda, the callee declaration is the
917     // operator() method on the lambda so we bind "this" to
918     // the lambda captured by the block.
919     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
920     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
921     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
922     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
923   } else {
924     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
925   }
926 
927   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
928                                Params);
929 }
930 
931 SVal AnyCXXConstructorCall::getCXXThisVal() const {
932   if (Data)
933     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
934   return UnknownVal();
935 }
936 
937 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
938                            RegionAndSymbolInvalidationTraits *ETraits) const {
939   SVal V = getCXXThisVal();
940   if (SymbolRef Sym = V.getAsSymbol(true))
941     ETraits->setTrait(Sym,
942                       RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
943   Values.push_back(V);
944 }
945 
946 void AnyCXXConstructorCall::getInitialStackFrameContents(
947                                              const StackFrameContext *CalleeCtx,
948                                              BindingsTy &Bindings) const {
949   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
950 
951   SVal ThisVal = getCXXThisVal();
952   if (!ThisVal.isUnknown()) {
953     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
954     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
955     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
956     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
957   }
958 }
959 
960 const StackFrameContext *
961 CXXInheritedConstructorCall::getInheritingStackFrame() const {
962   const StackFrameContext *SFC = getLocationContext()->getStackFrame();
963   while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
964     SFC = SFC->getParent()->getStackFrame();
965   return SFC;
966 }
967 
968 SVal CXXDestructorCall::getCXXThisVal() const {
969   if (Data)
970     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
971   return UnknownVal();
972 }
973 
974 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
975   // Base destructors are always called non-virtually.
976   // Skip CXXInstanceCall's devirtualization logic in this case.
977   if (isBaseDestructor())
978     return AnyFunctionCall::getRuntimeDefinition();
979 
980   return CXXInstanceCall::getRuntimeDefinition();
981 }
982 
983 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
984   const ObjCMethodDecl *D = getDecl();
985   if (!D)
986     return None;
987   return D->parameters();
988 }
989 
990 void ObjCMethodCall::getExtraInvalidatedValues(
991     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
992 
993   // If the method call is a setter for property known to be backed by
994   // an instance variable, don't invalidate the entire receiver, just
995   // the storage for that instance variable.
996   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
997     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
998       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
999       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
1000         ETraits->setTrait(
1001           IvarRegion,
1002           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1003         ETraits->setTrait(
1004           IvarRegion,
1005           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
1006         Values.push_back(IvarLVal);
1007       }
1008       return;
1009     }
1010   }
1011 
1012   Values.push_back(getReceiverSVal());
1013 }
1014 
1015 SVal ObjCMethodCall::getReceiverSVal() const {
1016   // FIXME: Is this the best way to handle class receivers?
1017   if (!isInstanceMessage())
1018     return UnknownVal();
1019 
1020   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
1021     return getSVal(RecE);
1022 
1023   // An instance message with no expression means we are sending to super.
1024   // In this case the object reference is the same as 'self'.
1025   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
1026   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1027   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
1028   return SelfVal;
1029 }
1030 
1031 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
1032   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
1033       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
1034       return true;
1035 
1036   if (!isInstanceMessage())
1037     return false;
1038 
1039   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1040   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1041 
1042   return (RecVal == SelfVal);
1043 }
1044 
1045 SourceRange ObjCMethodCall::getSourceRange() const {
1046   switch (getMessageKind()) {
1047   case OCM_Message:
1048     return getOriginExpr()->getSourceRange();
1049   case OCM_PropertyAccess:
1050   case OCM_Subscript:
1051     return getContainingPseudoObjectExpr()->getSourceRange();
1052   }
1053   llvm_unreachable("unknown message kind");
1054 }
1055 
1056 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1057 
1058 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1059   assert(Data && "Lazy lookup not yet performed.");
1060   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1061   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1062 }
1063 
1064 static const Expr *
1065 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1066   const Expr *Syntactic = POE->getSyntacticForm()->IgnoreParens();
1067 
1068   // This handles the funny case of assigning to the result of a getter.
1069   // This can happen if the getter returns a non-const reference.
1070   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1071     Syntactic = BO->getLHS()->IgnoreParens();
1072 
1073   return Syntactic;
1074 }
1075 
1076 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1077   if (!Data) {
1078     // Find the parent, ignoring implicit casts.
1079     const ParentMap &PM = getLocationContext()->getParentMap();
1080     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1081 
1082     // Check if parent is a PseudoObjectExpr.
1083     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1084       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1085 
1086       ObjCMessageKind K;
1087       switch (Syntactic->getStmtClass()) {
1088       case Stmt::ObjCPropertyRefExprClass:
1089         K = OCM_PropertyAccess;
1090         break;
1091       case Stmt::ObjCSubscriptRefExprClass:
1092         K = OCM_Subscript;
1093         break;
1094       default:
1095         // FIXME: Can this ever happen?
1096         K = OCM_Message;
1097         break;
1098       }
1099 
1100       if (K != OCM_Message) {
1101         const_cast<ObjCMethodCall *>(this)->Data
1102           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1103         assert(getMessageKind() == K);
1104         return K;
1105       }
1106     }
1107 
1108     const_cast<ObjCMethodCall *>(this)->Data
1109       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1110     assert(getMessageKind() == OCM_Message);
1111     return OCM_Message;
1112   }
1113 
1114   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1115   if (!Info.getPointer())
1116     return OCM_Message;
1117   return static_cast<ObjCMessageKind>(Info.getInt());
1118 }
1119 
1120 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1121   // Look for properties accessed with property syntax (foo.bar = ...)
1122   if (getMessageKind() == OCM_PropertyAccess) {
1123     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1124     assert(POE && "Property access without PseudoObjectExpr?");
1125 
1126     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1127     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1128 
1129     if (RefExpr->isExplicitProperty())
1130       return RefExpr->getExplicitProperty();
1131   }
1132 
1133   // Look for properties accessed with method syntax ([foo setBar:...]).
1134   const ObjCMethodDecl *MD = getDecl();
1135   if (!MD || !MD->isPropertyAccessor())
1136     return nullptr;
1137 
1138   // Note: This is potentially quite slow.
1139   return MD->findPropertyDecl();
1140 }
1141 
1142 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1143                                              Selector Sel) const {
1144   assert(IDecl);
1145   AnalysisManager &AMgr =
1146       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1147   // If the class interface is declared inside the main file, assume it is not
1148   // subcassed.
1149   // TODO: It could actually be subclassed if the subclass is private as well.
1150   // This is probably very rare.
1151   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1152   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1153     return false;
1154 
1155   // Assume that property accessors are not overridden.
1156   if (getMessageKind() == OCM_PropertyAccess)
1157     return false;
1158 
1159   // We assume that if the method is public (declared outside of main file) or
1160   // has a parent which publicly declares the method, the method could be
1161   // overridden in a subclass.
1162 
1163   // Find the first declaration in the class hierarchy that declares
1164   // the selector.
1165   ObjCMethodDecl *D = nullptr;
1166   while (true) {
1167     D = IDecl->lookupMethod(Sel, true);
1168 
1169     // Cannot find a public definition.
1170     if (!D)
1171       return false;
1172 
1173     // If outside the main file,
1174     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1175       return true;
1176 
1177     if (D->isOverriding()) {
1178       // Search in the superclass on the next iteration.
1179       IDecl = D->getClassInterface();
1180       if (!IDecl)
1181         return false;
1182 
1183       IDecl = IDecl->getSuperClass();
1184       if (!IDecl)
1185         return false;
1186 
1187       continue;
1188     }
1189 
1190     return false;
1191   };
1192 
1193   llvm_unreachable("The while loop should always terminate.");
1194 }
1195 
1196 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1197   if (!MD)
1198     return MD;
1199 
1200   // Find the redeclaration that defines the method.
1201   if (!MD->hasBody()) {
1202     for (auto I : MD->redecls())
1203       if (I->hasBody())
1204         MD = cast<ObjCMethodDecl>(I);
1205   }
1206   return MD;
1207 }
1208 
1209 struct PrivateMethodKey {
1210   const ObjCInterfaceDecl *Interface;
1211   Selector LookupSelector;
1212   bool IsClassMethod;
1213 };
1214 
1215 namespace llvm {
1216 template <> struct DenseMapInfo<PrivateMethodKey> {
1217   using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
1218   using SelectorInfo = DenseMapInfo<Selector>;
1219 
1220   static inline PrivateMethodKey getEmptyKey() {
1221     return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1222   }
1223 
1224   static inline PrivateMethodKey getTombstoneKey() {
1225     return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1226             true};
1227   }
1228 
1229   static unsigned getHashValue(const PrivateMethodKey &Key) {
1230     return llvm::hash_combine(
1231         llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
1232         llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
1233         Key.IsClassMethod);
1234   }
1235 
1236   static bool isEqual(const PrivateMethodKey &LHS,
1237                       const PrivateMethodKey &RHS) {
1238     return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
1239            SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
1240            LHS.IsClassMethod == RHS.IsClassMethod;
1241   }
1242 };
1243 } // end namespace llvm
1244 
1245 static const ObjCMethodDecl *
1246 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
1247                         Selector LookupSelector, bool InstanceMethod) {
1248   // Repeatedly calling lookupPrivateMethod() is expensive, especially
1249   // when in many cases it returns null.  We cache the results so
1250   // that repeated queries on the same ObjCIntefaceDecl and Selector
1251   // don't incur the same cost.  On some test cases, we can see the
1252   // same query being issued thousands of times.
1253   //
1254   // NOTE: This cache is essentially a "global" variable, but it
1255   // only gets lazily created when we get here.  The value of the
1256   // cache probably comes from it being global across ExprEngines,
1257   // where the same queries may get issued.  If we are worried about
1258   // concurrency, or possibly loading/unloading ASTs, etc., we may
1259   // need to revisit this someday.  In terms of memory, this table
1260   // stays around until clang quits, which also may be bad if we
1261   // need to release memory.
1262   using PrivateMethodCache =
1263       llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1264 
1265   static PrivateMethodCache PMC;
1266   Optional<const ObjCMethodDecl *> &Val =
1267       PMC[{Interface, LookupSelector, InstanceMethod}];
1268 
1269   // Query lookupPrivateMethod() if the cache does not hit.
1270   if (!Val.hasValue()) {
1271     Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
1272 
1273     if (!*Val) {
1274       // Query 'lookupMethod' as a backup.
1275       Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
1276     }
1277   }
1278 
1279   return Val.getValue();
1280 }
1281 
1282 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1283   const ObjCMessageExpr *E = getOriginExpr();
1284   assert(E);
1285   Selector Sel = E->getSelector();
1286 
1287   if (E->isInstanceMessage()) {
1288     // Find the receiver type.
1289     const ObjCObjectType *ReceiverT = nullptr;
1290     bool CanBeSubClassed = false;
1291     bool LookingForInstanceMethod = true;
1292     QualType SupersType = E->getSuperType();
1293     const MemRegion *Receiver = nullptr;
1294 
1295     if (!SupersType.isNull()) {
1296       // The receiver is guaranteed to be 'super' in this case.
1297       // Super always means the type of immediate predecessor to the method
1298       // where the call occurs.
1299       ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
1300     } else {
1301       Receiver = getReceiverSVal().getAsRegion();
1302       if (!Receiver)
1303         return {};
1304 
1305       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1306       if (!DTI.isValid()) {
1307         assert(isa<AllocaRegion>(Receiver) &&
1308                "Unhandled untyped region class!");
1309         return {};
1310       }
1311 
1312       QualType DynType = DTI.getType();
1313       CanBeSubClassed = DTI.canBeASubClass();
1314 
1315       const auto *ReceiverDynT =
1316           dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1317 
1318       if (ReceiverDynT) {
1319         ReceiverT = ReceiverDynT->getObjectType();
1320 
1321         // It can be actually class methods called with Class object as a
1322         // receiver. This type of messages is treated by the compiler as
1323         // instance (not class).
1324         if (ReceiverT->isObjCClass()) {
1325 
1326           SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1327           // For [self classMethod], return compiler visible declaration.
1328           if (Receiver == SelfVal.getAsRegion()) {
1329             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1330           }
1331 
1332           // Otherwise, let's check if we know something about the type
1333           // inside of this class object.
1334           if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
1335             DynamicTypeInfo DTI =
1336                 getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
1337             if (DTI.isValid()) {
1338               // Let's use this type for lookup.
1339               ReceiverT =
1340                   cast<ObjCObjectType>(DTI.getType().getCanonicalType());
1341 
1342               CanBeSubClassed = DTI.canBeASubClass();
1343               // And it should be a class method instead.
1344               LookingForInstanceMethod = false;
1345             }
1346           }
1347         }
1348 
1349         if (CanBeSubClassed)
1350           if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
1351             // Even if `DynamicTypeInfo` told us that it can be
1352             // not necessarily this type, but its descendants, we still want
1353             // to check again if this selector can be actually overridden.
1354             CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
1355       }
1356     }
1357 
1358     // Lookup the instance method implementation.
1359     if (ReceiverT)
1360       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
1361         const ObjCMethodDecl *MD =
1362             lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
1363 
1364         if (MD && !MD->hasBody())
1365           MD = MD->getCanonicalDecl();
1366 
1367         if (CanBeSubClassed)
1368           return RuntimeDefinition(MD, Receiver);
1369         else
1370           return RuntimeDefinition(MD, nullptr);
1371       }
1372   } else {
1373     // This is a class method.
1374     // If we have type info for the receiver class, we are calling via
1375     // class name.
1376     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1377       // Find/Return the method implementation.
1378       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1379     }
1380   }
1381 
1382   return {};
1383 }
1384 
1385 bool ObjCMethodCall::argumentsMayEscape() const {
1386   if (isInSystemHeader() && !isInstanceMessage()) {
1387     Selector Sel = getSelector();
1388     if (Sel.getNumArgs() == 1 &&
1389         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1390       return true;
1391   }
1392 
1393   return CallEvent::argumentsMayEscape();
1394 }
1395 
1396 void ObjCMethodCall::getInitialStackFrameContents(
1397                                              const StackFrameContext *CalleeCtx,
1398                                              BindingsTy &Bindings) const {
1399   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1400   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1401   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1402                                D->parameters());
1403 
1404   SVal SelfVal = getReceiverSVal();
1405   if (!SelfVal.isUnknown()) {
1406     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1407     MemRegionManager &MRMgr = SVB.getRegionManager();
1408     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1409     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1410   }
1411 }
1412 
1413 CallEventRef<>
1414 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1415                                 const LocationContext *LCtx) {
1416   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1417     return create<CXXMemberCall>(MCE, State, LCtx);
1418 
1419   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1420     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1421     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1422       if (MD->isInstance())
1423         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1424 
1425   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1426     return create<BlockCall>(CE, State, LCtx);
1427   }
1428 
1429   // Otherwise, it's a normal function call, static member function call, or
1430   // something we can't reason about.
1431   return create<SimpleFunctionCall>(CE, State, LCtx);
1432 }
1433 
1434 CallEventRef<>
1435 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1436                             ProgramStateRef State) {
1437   const LocationContext *ParentCtx = CalleeCtx->getParent();
1438   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1439   assert(CallerCtx && "This should not be used for top-level stack frames");
1440 
1441   const Stmt *CallSite = CalleeCtx->getCallSite();
1442 
1443   if (CallSite) {
1444     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1445       return Out;
1446 
1447     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1448     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1449     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1450     SVal ThisVal = State->getSVal(ThisPtr);
1451 
1452     if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1453       return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx);
1454     else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1455       return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1456                                             CallerCtx);
1457     else {
1458       // All other cases are handled by getCall.
1459       llvm_unreachable("This is not an inlineable statement");
1460     }
1461   }
1462 
1463   // Fall back to the CFG. The only thing we haven't handled yet is
1464   // destructors, though this could change in the future.
1465   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1466   CFGElement E = (*B)[CalleeCtx->getIndex()];
1467   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1468          "All other CFG elements should have exprs");
1469 
1470   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1471   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1472   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1473   SVal ThisVal = State->getSVal(ThisPtr);
1474 
1475   const Stmt *Trigger;
1476   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1477     Trigger = AutoDtor->getTriggerStmt();
1478   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1479     Trigger = DeleteDtor->getDeleteExpr();
1480   else
1481     Trigger = Dtor->getBody();
1482 
1483   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1484                               E.getAs<CFGBaseDtor>().hasValue(), State,
1485                               CallerCtx);
1486 }
1487 
1488 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1489                                          const LocationContext *LC) {
1490   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1491     return getSimpleCall(CE, State, LC);
1492   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1493     return getCXXAllocatorCall(NE, State, LC);
1494   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1495     return getObjCMethodCall(ME, State, LC);
1496   } else {
1497     return nullptr;
1498   }
1499 }
1500