1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file defines CallEvent and its subclasses, which represent path-
11 /// sensitive instances of different kinds of function and method calls
12 /// (C, C++, and Objective-C).
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/CrossTU/CrossTranslationUnit.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/PointerIntPair.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <cassert>
62 #include <utility>
63 
64 #define DEBUG_TYPE "static-analyzer-call-event"
65 
66 using namespace clang;
67 using namespace ento;
68 
69 QualType CallEvent::getResultType() const {
70   ASTContext &Ctx = getState()->getStateManager().getContext();
71   const Expr *E = getOriginExpr();
72   if (!E)
73     return Ctx.VoidTy;
74   assert(E);
75 
76   QualType ResultTy = E->getType();
77 
78   // A function that returns a reference to 'int' will have a result type
79   // of simply 'int'. Check the origin expr's value kind to recover the
80   // proper type.
81   switch (E->getValueKind()) {
82   case VK_LValue:
83     ResultTy = Ctx.getLValueReferenceType(ResultTy);
84     break;
85   case VK_XValue:
86     ResultTy = Ctx.getRValueReferenceType(ResultTy);
87     break;
88   case VK_RValue:
89     // No adjustment is necessary.
90     break;
91   }
92 
93   return ResultTy;
94 }
95 
96 static bool isCallback(QualType T) {
97   // If a parameter is a block or a callback, assume it can modify pointer.
98   if (T->isBlockPointerType() ||
99       T->isFunctionPointerType() ||
100       T->isObjCSelType())
101     return true;
102 
103   // Check if a callback is passed inside a struct (for both, struct passed by
104   // reference and by value). Dig just one level into the struct for now.
105 
106   if (T->isAnyPointerType() || T->isReferenceType())
107     T = T->getPointeeType();
108 
109   if (const RecordType *RT = T->getAsStructureType()) {
110     const RecordDecl *RD = RT->getDecl();
111     for (const auto *I : RD->fields()) {
112       QualType FieldT = I->getType();
113       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
114         return true;
115     }
116   }
117   return false;
118 }
119 
120 static bool isVoidPointerToNonConst(QualType T) {
121   if (const auto *PT = T->getAs<PointerType>()) {
122     QualType PointeeTy = PT->getPointeeType();
123     if (PointeeTy.isConstQualified())
124       return false;
125     return PointeeTy->isVoidType();
126   } else
127     return false;
128 }
129 
130 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
131   unsigned NumOfArgs = getNumArgs();
132 
133   // If calling using a function pointer, assume the function does not
134   // satisfy the callback.
135   // TODO: We could check the types of the arguments here.
136   if (!getDecl())
137     return false;
138 
139   unsigned Idx = 0;
140   for (CallEvent::param_type_iterator I = param_type_begin(),
141                                       E = param_type_end();
142        I != E && Idx < NumOfArgs; ++I, ++Idx) {
143     // If the parameter is 0, it's harmless.
144     if (getArgSVal(Idx).isZeroConstant())
145       continue;
146 
147     if (Condition(*I))
148       return true;
149   }
150   return false;
151 }
152 
153 bool CallEvent::hasNonZeroCallbackArg() const {
154   return hasNonNullArgumentsWithType(isCallback);
155 }
156 
157 bool CallEvent::hasVoidPointerToNonConstArg() const {
158   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
159 }
160 
161 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
162   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
163   if (!FD)
164     return false;
165 
166   return CheckerContext::isCLibraryFunction(FD, FunctionName);
167 }
168 
169 /// \brief Returns true if a type is a pointer-to-const or reference-to-const
170 /// with no further indirection.
171 static bool isPointerToConst(QualType Ty) {
172   QualType PointeeTy = Ty->getPointeeType();
173   if (PointeeTy == QualType())
174     return false;
175   if (!PointeeTy.isConstQualified())
176     return false;
177   if (PointeeTy->isAnyPointerType())
178     return false;
179   return true;
180 }
181 
182 // Try to retrieve the function declaration and find the function parameter
183 // types which are pointers/references to a non-pointer const.
184 // We will not invalidate the corresponding argument regions.
185 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
186                                  const CallEvent &Call) {
187   unsigned Idx = 0;
188   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
189                                       E = Call.param_type_end();
190        I != E; ++I, ++Idx) {
191     if (isPointerToConst(*I))
192       PreserveArgs.insert(Idx);
193   }
194 }
195 
196 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
197                                              ProgramStateRef Orig) const {
198   ProgramStateRef Result = (Orig ? Orig : getState());
199 
200   // Don't invalidate anything if the callee is marked pure/const.
201   if (const Decl *callee = getDecl())
202     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
203       return Result;
204 
205   SmallVector<SVal, 8> ValuesToInvalidate;
206   RegionAndSymbolInvalidationTraits ETraits;
207 
208   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
209 
210   // Indexes of arguments whose values will be preserved by the call.
211   llvm::SmallSet<unsigned, 4> PreserveArgs;
212   if (!argumentsMayEscape())
213     findPtrToConstParams(PreserveArgs, *this);
214 
215   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
216     // Mark this region for invalidation.  We batch invalidate regions
217     // below for efficiency.
218     if (PreserveArgs.count(Idx))
219       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
220         ETraits.setTrait(MR->getBaseRegion(),
221                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
222         // TODO: Factor this out + handle the lower level const pointers.
223 
224     ValuesToInvalidate.push_back(getArgSVal(Idx));
225   }
226 
227   // Invalidate designated regions using the batch invalidation API.
228   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
229   //  global variables.
230   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
231                                    BlockCount, getLocationContext(),
232                                    /*CausedByPointerEscape*/ true,
233                                    /*Symbols=*/nullptr, this, &ETraits);
234 }
235 
236 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
237                                         const ProgramPointTag *Tag) const {
238   if (const Expr *E = getOriginExpr()) {
239     if (IsPreVisit)
240       return PreStmt(E, getLocationContext(), Tag);
241     return PostStmt(E, getLocationContext(), Tag);
242   }
243 
244   const Decl *D = getDecl();
245   assert(D && "Cannot get a program point without a statement or decl");
246 
247   SourceLocation Loc = getSourceRange().getBegin();
248   if (IsPreVisit)
249     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
250   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
251 }
252 
253 bool CallEvent::isCalled(const CallDescription &CD) const {
254   // FIXME: Add ObjC Message support.
255   if (getKind() == CE_ObjCMessage)
256     return false;
257   if (!CD.IsLookupDone) {
258     CD.IsLookupDone = true;
259     CD.II = &getState()->getStateManager().getContext().Idents.get(CD.FuncName);
260   }
261   const IdentifierInfo *II = getCalleeIdentifier();
262   if (!II || II != CD.II)
263     return false;
264   return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
265           CD.RequiredArgs == getNumArgs());
266 }
267 
268 SVal CallEvent::getArgSVal(unsigned Index) const {
269   const Expr *ArgE = getArgExpr(Index);
270   if (!ArgE)
271     return UnknownVal();
272   return getSVal(ArgE);
273 }
274 
275 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
276   const Expr *ArgE = getArgExpr(Index);
277   if (!ArgE)
278     return {};
279   return ArgE->getSourceRange();
280 }
281 
282 SVal CallEvent::getReturnValue() const {
283   const Expr *E = getOriginExpr();
284   if (!E)
285     return UndefinedVal();
286   return getSVal(E);
287 }
288 
289 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
290 
291 void CallEvent::dump(raw_ostream &Out) const {
292   ASTContext &Ctx = getState()->getStateManager().getContext();
293   if (const Expr *E = getOriginExpr()) {
294     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
295     Out << "\n";
296     return;
297   }
298 
299   if (const Decl *D = getDecl()) {
300     Out << "Call to ";
301     D->print(Out, Ctx.getPrintingPolicy());
302     return;
303   }
304 
305   // FIXME: a string representation of the kind would be nice.
306   Out << "Unknown call (type " << getKind() << ")";
307 }
308 
309 bool CallEvent::isCallStmt(const Stmt *S) {
310   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
311                           || isa<CXXConstructExpr>(S)
312                           || isa<CXXNewExpr>(S);
313 }
314 
315 QualType CallEvent::getDeclaredResultType(const Decl *D) {
316   assert(D);
317   if (const auto *FD = dyn_cast<FunctionDecl>(D))
318     return FD->getReturnType();
319   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
320     return MD->getReturnType();
321   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
322     // Blocks are difficult because the return type may not be stored in the
323     // BlockDecl itself. The AST should probably be enhanced, but for now we
324     // just do what we can.
325     // If the block is declared without an explicit argument list, the
326     // signature-as-written just includes the return type, not the entire
327     // function type.
328     // FIXME: All blocks should have signatures-as-written, even if the return
329     // type is inferred. (That's signified with a dependent result type.)
330     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
331       QualType Ty = TSI->getType();
332       if (const FunctionType *FT = Ty->getAs<FunctionType>())
333         Ty = FT->getReturnType();
334       if (!Ty->isDependentType())
335         return Ty;
336     }
337 
338     return {};
339   }
340 
341   llvm_unreachable("unknown callable kind");
342 }
343 
344 bool CallEvent::isVariadic(const Decl *D) {
345   assert(D);
346 
347   if (const auto *FD = dyn_cast<FunctionDecl>(D))
348     return FD->isVariadic();
349   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
350     return MD->isVariadic();
351   if (const auto *BD = dyn_cast<BlockDecl>(D))
352     return BD->isVariadic();
353 
354   llvm_unreachable("unknown callable kind");
355 }
356 
357 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
358                                          CallEvent::BindingsTy &Bindings,
359                                          SValBuilder &SVB,
360                                          const CallEvent &Call,
361                                          ArrayRef<ParmVarDecl*> parameters) {
362   MemRegionManager &MRMgr = SVB.getRegionManager();
363 
364   // If the function has fewer parameters than the call has arguments, we simply
365   // do not bind any values to them.
366   unsigned NumArgs = Call.getNumArgs();
367   unsigned Idx = 0;
368   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
369   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
370     const ParmVarDecl *ParamDecl = *I;
371     assert(ParamDecl && "Formal parameter has no decl?");
372 
373     SVal ArgVal = Call.getArgSVal(Idx);
374     if (!ArgVal.isUnknown()) {
375       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
376       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
377     }
378   }
379 
380   // FIXME: Variadic arguments are not handled at all right now.
381 }
382 
383 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
384   const FunctionDecl *D = getDecl();
385   if (!D)
386     return None;
387   return D->parameters();
388 }
389 
390 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
391   const FunctionDecl *FD = getDecl();
392   // Note that the AnalysisDeclContext will have the FunctionDecl with
393   // the definition (if one exists).
394   if (FD) {
395     AnalysisDeclContext *AD =
396       getLocationContext()->getAnalysisDeclContext()->
397       getManager()->getContext(FD);
398     bool IsAutosynthesized;
399     Stmt* Body = AD->getBody(IsAutosynthesized);
400     DEBUG({
401         if (IsAutosynthesized)
402           llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
403                        << "\n";
404     });
405     if (Body) {
406       const Decl* Decl = AD->getDecl();
407       return RuntimeDefinition(Decl);
408     }
409   }
410 
411   SubEngine *Engine = getState()->getStateManager().getOwningEngine();
412   AnalyzerOptions &Opts = Engine->getAnalysisManager().options;
413 
414   // Try to get CTU definition only if CTUDir is provided.
415   if (!Opts.naiveCTUEnabled())
416     return RuntimeDefinition();
417 
418   cross_tu::CrossTranslationUnitContext &CTUCtx =
419       *Engine->getCrossTranslationUnitContext();
420   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
421       CTUCtx.getCrossTUDefinition(FD, Opts.getCTUDir(), Opts.getCTUIndexName());
422 
423   if (!CTUDeclOrError) {
424     handleAllErrors(CTUDeclOrError.takeError(),
425                     [&](const cross_tu::IndexError &IE) {
426                       CTUCtx.emitCrossTUDiagnostics(IE);
427                     });
428     return {};
429   }
430 
431   return RuntimeDefinition(*CTUDeclOrError);
432 }
433 
434 void AnyFunctionCall::getInitialStackFrameContents(
435                                         const StackFrameContext *CalleeCtx,
436                                         BindingsTy &Bindings) const {
437   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
438   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
439   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
440                                D->parameters());
441 }
442 
443 bool AnyFunctionCall::argumentsMayEscape() const {
444   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
445     return true;
446 
447   const FunctionDecl *D = getDecl();
448   if (!D)
449     return true;
450 
451   const IdentifierInfo *II = D->getIdentifier();
452   if (!II)
453     return false;
454 
455   // This set of "escaping" APIs is
456 
457   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
458   //   value into thread local storage. The value can later be retrieved with
459   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
460   //   parameter is 'const void *', the region escapes through the call.
461   if (II->isStr("pthread_setspecific"))
462     return true;
463 
464   // - xpc_connection_set_context stores a value which can be retrieved later
465   //   with xpc_connection_get_context.
466   if (II->isStr("xpc_connection_set_context"))
467     return true;
468 
469   // - funopen - sets a buffer for future IO calls.
470   if (II->isStr("funopen"))
471     return true;
472 
473   // - __cxa_demangle - can reallocate memory and can return the pointer to
474   // the input buffer.
475   if (II->isStr("__cxa_demangle"))
476     return true;
477 
478   StringRef FName = II->getName();
479 
480   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
481   //   buffer even if it is const.
482   if (FName.endswith("NoCopy"))
483     return true;
484 
485   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
486   //   be deallocated by NSMapRemove.
487   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
488     return true;
489 
490   // - Many CF containers allow objects to escape through custom
491   //   allocators/deallocators upon container construction. (PR12101)
492   if (FName.startswith("CF") || FName.startswith("CG")) {
493     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
494            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
495            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
496            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
497            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
498            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
499   }
500 
501   return false;
502 }
503 
504 const FunctionDecl *SimpleFunctionCall::getDecl() const {
505   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
506   if (D)
507     return D;
508 
509   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
510 }
511 
512 const FunctionDecl *CXXInstanceCall::getDecl() const {
513   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
514   if (!CE)
515     return AnyFunctionCall::getDecl();
516 
517   const FunctionDecl *D = CE->getDirectCallee();
518   if (D)
519     return D;
520 
521   return getSVal(CE->getCallee()).getAsFunctionDecl();
522 }
523 
524 void CXXInstanceCall::getExtraInvalidatedValues(
525     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
526   SVal ThisVal = getCXXThisVal();
527   Values.push_back(ThisVal);
528 
529   // Don't invalidate if the method is const and there are no mutable fields.
530   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
531     if (!D->isConst())
532       return;
533     // Get the record decl for the class of 'This'. D->getParent() may return a
534     // base class decl, rather than the class of the instance which needs to be
535     // checked for mutable fields.
536     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
537     const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl();
538     if (!ParentRecord || ParentRecord->hasMutableFields())
539       return;
540     // Preserve CXXThis.
541     const MemRegion *ThisRegion = ThisVal.getAsRegion();
542     if (!ThisRegion)
543       return;
544 
545     ETraits->setTrait(ThisRegion->getBaseRegion(),
546                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
547   }
548 }
549 
550 SVal CXXInstanceCall::getCXXThisVal() const {
551   const Expr *Base = getCXXThisExpr();
552   // FIXME: This doesn't handle an overloaded ->* operator.
553   if (!Base)
554     return UnknownVal();
555 
556   SVal ThisVal = getSVal(Base);
557   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
558   return ThisVal;
559 }
560 
561 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
562   // Do we have a decl at all?
563   const Decl *D = getDecl();
564   if (!D)
565     return {};
566 
567   // If the method is non-virtual, we know we can inline it.
568   const auto *MD = cast<CXXMethodDecl>(D);
569   if (!MD->isVirtual())
570     return AnyFunctionCall::getRuntimeDefinition();
571 
572   // Do we know the implicit 'this' object being called?
573   const MemRegion *R = getCXXThisVal().getAsRegion();
574   if (!R)
575     return {};
576 
577   // Do we know anything about the type of 'this'?
578   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
579   if (!DynType.isValid())
580     return {};
581 
582   // Is the type a C++ class? (This is mostly a defensive check.)
583   QualType RegionType = DynType.getType()->getPointeeType();
584   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
585 
586   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
587   if (!RD || !RD->hasDefinition())
588     return {};
589 
590   // Find the decl for this method in that class.
591   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
592   if (!Result) {
593     // We might not even get the original statically-resolved method due to
594     // some particularly nasty casting (e.g. casts to sister classes).
595     // However, we should at least be able to search up and down our own class
596     // hierarchy, and some real bugs have been caught by checking this.
597     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
598 
599     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
600     // the static type. However, because we currently don't update
601     // DynamicTypeInfo when an object is cast, we can't actually be sure the
602     // DynamicTypeInfo is up to date. This assert should be re-enabled once
603     // this is fixed. <rdar://problem/12287087>
604     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
605 
606     return {};
607   }
608 
609   // Does the decl that we found have an implementation?
610   const FunctionDecl *Definition;
611   if (!Result->hasBody(Definition))
612     return {};
613 
614   // We found a definition. If we're not sure that this devirtualization is
615   // actually what will happen at runtime, make sure to provide the region so
616   // that ExprEngine can decide what to do with it.
617   if (DynType.canBeASubClass())
618     return RuntimeDefinition(Definition, R->StripCasts());
619   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
620 }
621 
622 void CXXInstanceCall::getInitialStackFrameContents(
623                                             const StackFrameContext *CalleeCtx,
624                                             BindingsTy &Bindings) const {
625   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
626 
627   // Handle the binding of 'this' in the new stack frame.
628   SVal ThisVal = getCXXThisVal();
629   if (!ThisVal.isUnknown()) {
630     ProgramStateManager &StateMgr = getState()->getStateManager();
631     SValBuilder &SVB = StateMgr.getSValBuilder();
632 
633     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
634     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
635 
636     // If we devirtualized to a different member function, we need to make sure
637     // we have the proper layering of CXXBaseObjectRegions.
638     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
639       ASTContext &Ctx = SVB.getContext();
640       const CXXRecordDecl *Class = MD->getParent();
641       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
642 
643       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
644       bool Failed;
645       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
646       if (Failed) {
647         // We might have suffered some sort of placement new earlier, so
648         // we're constructing in a completely unexpected storage.
649         // Fall back to a generic pointer cast for this-value.
650         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
651         const CXXRecordDecl *StaticClass = StaticMD->getParent();
652         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
653         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
654       }
655     }
656 
657     if (!ThisVal.isUnknown())
658       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
659   }
660 }
661 
662 const Expr *CXXMemberCall::getCXXThisExpr() const {
663   return getOriginExpr()->getImplicitObjectArgument();
664 }
665 
666 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
667   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
668   // id-expression in the class member access expression is a qualified-id,
669   // that function is called. Otherwise, its final overrider in the dynamic type
670   // of the object expression is called.
671   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
672     if (ME->hasQualifier())
673       return AnyFunctionCall::getRuntimeDefinition();
674 
675   return CXXInstanceCall::getRuntimeDefinition();
676 }
677 
678 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
679   return getOriginExpr()->getArg(0);
680 }
681 
682 const BlockDataRegion *BlockCall::getBlockRegion() const {
683   const Expr *Callee = getOriginExpr()->getCallee();
684   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
685 
686   return dyn_cast_or_null<BlockDataRegion>(DataReg);
687 }
688 
689 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
690   const BlockDecl *D = getDecl();
691   if (!D)
692     return nullptr;
693   return D->parameters();
694 }
695 
696 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
697                   RegionAndSymbolInvalidationTraits *ETraits) const {
698   // FIXME: This also needs to invalidate captured globals.
699   if (const MemRegion *R = getBlockRegion())
700     Values.push_back(loc::MemRegionVal(R));
701 }
702 
703 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
704                                              BindingsTy &Bindings) const {
705   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
706   ArrayRef<ParmVarDecl*> Params;
707   if (isConversionFromLambda()) {
708     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
709     Params = LambdaOperatorDecl->parameters();
710 
711     // For blocks converted from a C++ lambda, the callee declaration is the
712     // operator() method on the lambda so we bind "this" to
713     // the lambda captured by the block.
714     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
715     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
716     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
717     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
718   } else {
719     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
720   }
721 
722   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
723                                Params);
724 }
725 
726 SVal CXXConstructorCall::getCXXThisVal() const {
727   if (Data)
728     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
729   return UnknownVal();
730 }
731 
732 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
733                            RegionAndSymbolInvalidationTraits *ETraits) const {
734   if (Data) {
735     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
736     if (SymbolRef Sym = MV.getAsSymbol(true))
737       ETraits->setTrait(Sym,
738                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
739     Values.push_back(MV);
740   }
741 }
742 
743 void CXXConstructorCall::getInitialStackFrameContents(
744                                              const StackFrameContext *CalleeCtx,
745                                              BindingsTy &Bindings) const {
746   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
747 
748   SVal ThisVal = getCXXThisVal();
749   if (!ThisVal.isUnknown()) {
750     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
751     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
752     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
753     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
754   }
755 }
756 
757 SVal CXXDestructorCall::getCXXThisVal() const {
758   if (Data)
759     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
760   return UnknownVal();
761 }
762 
763 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
764   // Base destructors are always called non-virtually.
765   // Skip CXXInstanceCall's devirtualization logic in this case.
766   if (isBaseDestructor())
767     return AnyFunctionCall::getRuntimeDefinition();
768 
769   return CXXInstanceCall::getRuntimeDefinition();
770 }
771 
772 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
773   const ObjCMethodDecl *D = getDecl();
774   if (!D)
775     return None;
776   return D->parameters();
777 }
778 
779 void ObjCMethodCall::getExtraInvalidatedValues(
780     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
781 
782   // If the method call is a setter for property known to be backed by
783   // an instance variable, don't invalidate the entire receiver, just
784   // the storage for that instance variable.
785   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
786     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
787       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
788       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
789         ETraits->setTrait(
790           IvarRegion,
791           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
792         ETraits->setTrait(
793           IvarRegion,
794           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
795         Values.push_back(IvarLVal);
796       }
797       return;
798     }
799   }
800 
801   Values.push_back(getReceiverSVal());
802 }
803 
804 SVal ObjCMethodCall::getSelfSVal() const {
805   const LocationContext *LCtx = getLocationContext();
806   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
807   if (!SelfDecl)
808     return SVal();
809   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
810 }
811 
812 SVal ObjCMethodCall::getReceiverSVal() const {
813   // FIXME: Is this the best way to handle class receivers?
814   if (!isInstanceMessage())
815     return UnknownVal();
816 
817   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
818     return getSVal(RecE);
819 
820   // An instance message with no expression means we are sending to super.
821   // In this case the object reference is the same as 'self'.
822   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
823   SVal SelfVal = getSelfSVal();
824   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
825   return SelfVal;
826 }
827 
828 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
829   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
830       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
831       return true;
832 
833   if (!isInstanceMessage())
834     return false;
835 
836   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
837 
838   return (RecVal == getSelfSVal());
839 }
840 
841 SourceRange ObjCMethodCall::getSourceRange() const {
842   switch (getMessageKind()) {
843   case OCM_Message:
844     return getOriginExpr()->getSourceRange();
845   case OCM_PropertyAccess:
846   case OCM_Subscript:
847     return getContainingPseudoObjectExpr()->getSourceRange();
848   }
849   llvm_unreachable("unknown message kind");
850 }
851 
852 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
853 
854 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
855   assert(Data && "Lazy lookup not yet performed.");
856   assert(getMessageKind() != OCM_Message && "Explicit message send.");
857   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
858 }
859 
860 static const Expr *
861 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
862   const Expr *Syntactic = POE->getSyntacticForm();
863 
864   // This handles the funny case of assigning to the result of a getter.
865   // This can happen if the getter returns a non-const reference.
866   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
867     Syntactic = BO->getLHS();
868 
869   return Syntactic;
870 }
871 
872 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
873   if (!Data) {
874     // Find the parent, ignoring implicit casts.
875     ParentMap &PM = getLocationContext()->getParentMap();
876     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
877 
878     // Check if parent is a PseudoObjectExpr.
879     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
880       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
881 
882       ObjCMessageKind K;
883       switch (Syntactic->getStmtClass()) {
884       case Stmt::ObjCPropertyRefExprClass:
885         K = OCM_PropertyAccess;
886         break;
887       case Stmt::ObjCSubscriptRefExprClass:
888         K = OCM_Subscript;
889         break;
890       default:
891         // FIXME: Can this ever happen?
892         K = OCM_Message;
893         break;
894       }
895 
896       if (K != OCM_Message) {
897         const_cast<ObjCMethodCall *>(this)->Data
898           = ObjCMessageDataTy(POE, K).getOpaqueValue();
899         assert(getMessageKind() == K);
900         return K;
901       }
902     }
903 
904     const_cast<ObjCMethodCall *>(this)->Data
905       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
906     assert(getMessageKind() == OCM_Message);
907     return OCM_Message;
908   }
909 
910   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
911   if (!Info.getPointer())
912     return OCM_Message;
913   return static_cast<ObjCMessageKind>(Info.getInt());
914 }
915 
916 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
917   // Look for properties accessed with property syntax (foo.bar = ...)
918   if ( getMessageKind() == OCM_PropertyAccess) {
919     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
920     assert(POE && "Property access without PseudoObjectExpr?");
921 
922     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
923     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
924 
925     if (RefExpr->isExplicitProperty())
926       return RefExpr->getExplicitProperty();
927   }
928 
929   // Look for properties accessed with method syntax ([foo setBar:...]).
930   const ObjCMethodDecl *MD = getDecl();
931   if (!MD || !MD->isPropertyAccessor())
932     return nullptr;
933 
934   // Note: This is potentially quite slow.
935   return MD->findPropertyDecl();
936 }
937 
938 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
939                                              Selector Sel) const {
940   assert(IDecl);
941   const SourceManager &SM =
942     getState()->getStateManager().getContext().getSourceManager();
943 
944   // If the class interface is declared inside the main file, assume it is not
945   // subcassed.
946   // TODO: It could actually be subclassed if the subclass is private as well.
947   // This is probably very rare.
948   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
949   if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
950     return false;
951 
952   // Assume that property accessors are not overridden.
953   if (getMessageKind() == OCM_PropertyAccess)
954     return false;
955 
956   // We assume that if the method is public (declared outside of main file) or
957   // has a parent which publicly declares the method, the method could be
958   // overridden in a subclass.
959 
960   // Find the first declaration in the class hierarchy that declares
961   // the selector.
962   ObjCMethodDecl *D = nullptr;
963   while (true) {
964     D = IDecl->lookupMethod(Sel, true);
965 
966     // Cannot find a public definition.
967     if (!D)
968       return false;
969 
970     // If outside the main file,
971     if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
972       return true;
973 
974     if (D->isOverriding()) {
975       // Search in the superclass on the next iteration.
976       IDecl = D->getClassInterface();
977       if (!IDecl)
978         return false;
979 
980       IDecl = IDecl->getSuperClass();
981       if (!IDecl)
982         return false;
983 
984       continue;
985     }
986 
987     return false;
988   };
989 
990   llvm_unreachable("The while loop should always terminate.");
991 }
992 
993 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
994   if (!MD)
995     return MD;
996 
997   // Find the redeclaration that defines the method.
998   if (!MD->hasBody()) {
999     for (auto I : MD->redecls())
1000       if (I->hasBody())
1001         MD = cast<ObjCMethodDecl>(I);
1002   }
1003   return MD;
1004 }
1005 
1006 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1007   const Expr* InstRec = ME->getInstanceReceiver();
1008   if (!InstRec)
1009     return false;
1010   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1011 
1012   // Check that receiver is called 'self'.
1013   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1014       !InstRecIg->getFoundDecl()->getName().equals("self"))
1015     return false;
1016 
1017   // Check that the method name is 'class'.
1018   if (ME->getSelector().getNumArgs() != 0 ||
1019       !ME->getSelector().getNameForSlot(0).equals("class"))
1020     return false;
1021 
1022   return true;
1023 }
1024 
1025 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1026   const ObjCMessageExpr *E = getOriginExpr();
1027   assert(E);
1028   Selector Sel = E->getSelector();
1029 
1030   if (E->isInstanceMessage()) {
1031     // Find the receiver type.
1032     const ObjCObjectPointerType *ReceiverT = nullptr;
1033     bool CanBeSubClassed = false;
1034     QualType SupersType = E->getSuperType();
1035     const MemRegion *Receiver = nullptr;
1036 
1037     if (!SupersType.isNull()) {
1038       // The receiver is guaranteed to be 'super' in this case.
1039       // Super always means the type of immediate predecessor to the method
1040       // where the call occurs.
1041       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1042     } else {
1043       Receiver = getReceiverSVal().getAsRegion();
1044       if (!Receiver)
1045         return {};
1046 
1047       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1048       if (!DTI.isValid()) {
1049         assert(isa<AllocaRegion>(Receiver) &&
1050                "Unhandled untyped region class!");
1051         return {};
1052       }
1053 
1054       QualType DynType = DTI.getType();
1055       CanBeSubClassed = DTI.canBeASubClass();
1056       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1057 
1058       if (ReceiverT && CanBeSubClassed)
1059         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1060           if (!canBeOverridenInSubclass(IDecl, Sel))
1061             CanBeSubClassed = false;
1062     }
1063 
1064     // Handle special cases of '[self classMethod]' and
1065     // '[[self class] classMethod]', which are treated by the compiler as
1066     // instance (not class) messages. We will statically dispatch to those.
1067     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1068       // For [self classMethod], return the compiler visible declaration.
1069       if (PT->getObjectType()->isObjCClass() &&
1070           Receiver == getSelfSVal().getAsRegion())
1071         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1072 
1073       // Similarly, handle [[self class] classMethod].
1074       // TODO: We are currently doing a syntactic match for this pattern with is
1075       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1076       // shows. A better way would be to associate the meta type with the symbol
1077       // using the dynamic type info tracking and use it here. We can add a new
1078       // SVal for ObjC 'Class' values that know what interface declaration they
1079       // come from. Then 'self' in a class method would be filled in with
1080       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1081       // do proper dynamic dispatch for class methods just like we do for
1082       // instance methods now.
1083       if (E->getInstanceReceiver())
1084         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1085           if (isCallToSelfClass(M))
1086             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1087     }
1088 
1089     // Lookup the instance method implementation.
1090     if (ReceiverT)
1091       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1092         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1093         // when in many cases it returns null.  We cache the results so
1094         // that repeated queries on the same ObjCIntefaceDecl and Selector
1095         // don't incur the same cost.  On some test cases, we can see the
1096         // same query being issued thousands of times.
1097         //
1098         // NOTE: This cache is essentially a "global" variable, but it
1099         // only gets lazily created when we get here.  The value of the
1100         // cache probably comes from it being global across ExprEngines,
1101         // where the same queries may get issued.  If we are worried about
1102         // concurrency, or possibly loading/unloading ASTs, etc., we may
1103         // need to revisit this someday.  In terms of memory, this table
1104         // stays around until clang quits, which also may be bad if we
1105         // need to release memory.
1106         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1107         using PrivateMethodCache =
1108             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1109 
1110         static PrivateMethodCache PMC;
1111         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1112 
1113         // Query lookupPrivateMethod() if the cache does not hit.
1114         if (!Val.hasValue()) {
1115           Val = IDecl->lookupPrivateMethod(Sel);
1116 
1117           // If the method is a property accessor, we should try to "inline" it
1118           // even if we don't actually have an implementation.
1119           if (!*Val)
1120             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1121               if (CompileTimeMD->isPropertyAccessor()) {
1122                 if (!CompileTimeMD->getSelfDecl() &&
1123                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1124                   // If the method is an accessor in a category, and it doesn't
1125                   // have a self declaration, first
1126                   // try to find the method in a class extension. This
1127                   // works around a bug in Sema where multiple accessors
1128                   // are synthesized for properties in class
1129                   // extensions that are redeclared in a category and the
1130                   // the implicit parameters are not filled in for
1131                   // the method on the category.
1132                   // This ensures we find the accessor in the extension, which
1133                   // has the implicit parameters filled in.
1134                   auto *ID = CompileTimeMD->getClassInterface();
1135                   for (auto *CatDecl : ID->visible_extensions()) {
1136                     Val = CatDecl->getMethod(Sel,
1137                                              CompileTimeMD->isInstanceMethod());
1138                     if (*Val)
1139                       break;
1140                   }
1141                 }
1142                 if (!*Val)
1143                   Val = IDecl->lookupInstanceMethod(Sel);
1144               }
1145         }
1146 
1147         const ObjCMethodDecl *MD = Val.getValue();
1148         if (CanBeSubClassed)
1149           return RuntimeDefinition(MD, Receiver);
1150         else
1151           return RuntimeDefinition(MD, nullptr);
1152       }
1153   } else {
1154     // This is a class method.
1155     // If we have type info for the receiver class, we are calling via
1156     // class name.
1157     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1158       // Find/Return the method implementation.
1159       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1160     }
1161   }
1162 
1163   return {};
1164 }
1165 
1166 bool ObjCMethodCall::argumentsMayEscape() const {
1167   if (isInSystemHeader() && !isInstanceMessage()) {
1168     Selector Sel = getSelector();
1169     if (Sel.getNumArgs() == 1 &&
1170         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1171       return true;
1172   }
1173 
1174   return CallEvent::argumentsMayEscape();
1175 }
1176 
1177 void ObjCMethodCall::getInitialStackFrameContents(
1178                                              const StackFrameContext *CalleeCtx,
1179                                              BindingsTy &Bindings) const {
1180   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1181   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1182   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1183                                D->parameters());
1184 
1185   SVal SelfVal = getReceiverSVal();
1186   if (!SelfVal.isUnknown()) {
1187     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1188     MemRegionManager &MRMgr = SVB.getRegionManager();
1189     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1190     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1191   }
1192 }
1193 
1194 CallEventRef<>
1195 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1196                                 const LocationContext *LCtx) {
1197   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1198     return create<CXXMemberCall>(MCE, State, LCtx);
1199 
1200   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1201     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1202     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1203       if (MD->isInstance())
1204         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1205 
1206   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1207     return create<BlockCall>(CE, State, LCtx);
1208   }
1209 
1210   // Otherwise, it's a normal function call, static member function call, or
1211   // something we can't reason about.
1212   return create<SimpleFunctionCall>(CE, State, LCtx);
1213 }
1214 
1215 CallEventRef<>
1216 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1217                             ProgramStateRef State) {
1218   const LocationContext *ParentCtx = CalleeCtx->getParent();
1219   const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
1220   assert(CallerCtx && "This should not be used for top-level stack frames");
1221 
1222   const Stmt *CallSite = CalleeCtx->getCallSite();
1223 
1224   if (CallSite) {
1225     if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
1226       return getSimpleCall(CE, State, CallerCtx);
1227 
1228     switch (CallSite->getStmtClass()) {
1229     case Stmt::CXXConstructExprClass:
1230     case Stmt::CXXTemporaryObjectExprClass: {
1231       SValBuilder &SVB = State->getStateManager().getSValBuilder();
1232       const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1233       Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1234       SVal ThisVal = State->getSVal(ThisPtr);
1235 
1236       return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1237                                    ThisVal.getAsRegion(), State, CallerCtx);
1238     }
1239     case Stmt::CXXNewExprClass:
1240       return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
1241     case Stmt::ObjCMessageExprClass:
1242       return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
1243                                State, CallerCtx);
1244     default:
1245       llvm_unreachable("This is not an inlineable statement.");
1246     }
1247   }
1248 
1249   // Fall back to the CFG. The only thing we haven't handled yet is
1250   // destructors, though this could change in the future.
1251   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1252   CFGElement E = (*B)[CalleeCtx->getIndex()];
1253   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1254          "All other CFG elements should have exprs");
1255 
1256   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1257   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1258   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1259   SVal ThisVal = State->getSVal(ThisPtr);
1260 
1261   const Stmt *Trigger;
1262   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1263     Trigger = AutoDtor->getTriggerStmt();
1264   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1265     Trigger = DeleteDtor->getDeleteExpr();
1266   else
1267     Trigger = Dtor->getBody();
1268 
1269   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1270                               E.getAs<CFGBaseDtor>().hasValue(), State,
1271                               CallerCtx);
1272 }
1273