1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file defines CallEvent and its subclasses, which represent path-
11 /// sensitive instances of different kinds of function and method calls
12 /// (C, C++, and Objective-C).
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/CrossTU/CrossTranslationUnit.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/PointerIntPair.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <cassert>
62 #include <utility>
63 
64 #define DEBUG_TYPE "static-analyzer-call-event"
65 
66 using namespace clang;
67 using namespace ento;
68 
69 QualType CallEvent::getResultType() const {
70   ASTContext &Ctx = getState()->getStateManager().getContext();
71   const Expr *E = getOriginExpr();
72   if (!E)
73     return Ctx.VoidTy;
74   assert(E);
75 
76   QualType ResultTy = E->getType();
77 
78   // A function that returns a reference to 'int' will have a result type
79   // of simply 'int'. Check the origin expr's value kind to recover the
80   // proper type.
81   switch (E->getValueKind()) {
82   case VK_LValue:
83     ResultTy = Ctx.getLValueReferenceType(ResultTy);
84     break;
85   case VK_XValue:
86     ResultTy = Ctx.getRValueReferenceType(ResultTy);
87     break;
88   case VK_RValue:
89     // No adjustment is necessary.
90     break;
91   }
92 
93   return ResultTy;
94 }
95 
96 static bool isCallback(QualType T) {
97   // If a parameter is a block or a callback, assume it can modify pointer.
98   if (T->isBlockPointerType() ||
99       T->isFunctionPointerType() ||
100       T->isObjCSelType())
101     return true;
102 
103   // Check if a callback is passed inside a struct (for both, struct passed by
104   // reference and by value). Dig just one level into the struct for now.
105 
106   if (T->isAnyPointerType() || T->isReferenceType())
107     T = T->getPointeeType();
108 
109   if (const RecordType *RT = T->getAsStructureType()) {
110     const RecordDecl *RD = RT->getDecl();
111     for (const auto *I : RD->fields()) {
112       QualType FieldT = I->getType();
113       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
114         return true;
115     }
116   }
117   return false;
118 }
119 
120 static bool isVoidPointerToNonConst(QualType T) {
121   if (const auto *PT = T->getAs<PointerType>()) {
122     QualType PointeeTy = PT->getPointeeType();
123     if (PointeeTy.isConstQualified())
124       return false;
125     return PointeeTy->isVoidType();
126   } else
127     return false;
128 }
129 
130 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
131   unsigned NumOfArgs = getNumArgs();
132 
133   // If calling using a function pointer, assume the function does not
134   // satisfy the callback.
135   // TODO: We could check the types of the arguments here.
136   if (!getDecl())
137     return false;
138 
139   unsigned Idx = 0;
140   for (CallEvent::param_type_iterator I = param_type_begin(),
141                                       E = param_type_end();
142        I != E && Idx < NumOfArgs; ++I, ++Idx) {
143     // If the parameter is 0, it's harmless.
144     if (getArgSVal(Idx).isZeroConstant())
145       continue;
146 
147     if (Condition(*I))
148       return true;
149   }
150   return false;
151 }
152 
153 bool CallEvent::hasNonZeroCallbackArg() const {
154   return hasNonNullArgumentsWithType(isCallback);
155 }
156 
157 bool CallEvent::hasVoidPointerToNonConstArg() const {
158   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
159 }
160 
161 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
162   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
163   if (!FD)
164     return false;
165 
166   return CheckerContext::isCLibraryFunction(FD, FunctionName);
167 }
168 
169 /// \brief Returns true if a type is a pointer-to-const or reference-to-const
170 /// with no further indirection.
171 static bool isPointerToConst(QualType Ty) {
172   QualType PointeeTy = Ty->getPointeeType();
173   if (PointeeTy == QualType())
174     return false;
175   if (!PointeeTy.isConstQualified())
176     return false;
177   if (PointeeTy->isAnyPointerType())
178     return false;
179   return true;
180 }
181 
182 // Try to retrieve the function declaration and find the function parameter
183 // types which are pointers/references to a non-pointer const.
184 // We will not invalidate the corresponding argument regions.
185 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
186                                  const CallEvent &Call) {
187   unsigned Idx = 0;
188   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
189                                       E = Call.param_type_end();
190        I != E; ++I, ++Idx) {
191     if (isPointerToConst(*I))
192       PreserveArgs.insert(Idx);
193   }
194 }
195 
196 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
197                                              ProgramStateRef Orig) const {
198   ProgramStateRef Result = (Orig ? Orig : getState());
199 
200   // Don't invalidate anything if the callee is marked pure/const.
201   if (const Decl *callee = getDecl())
202     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
203       return Result;
204 
205   SmallVector<SVal, 8> ValuesToInvalidate;
206   RegionAndSymbolInvalidationTraits ETraits;
207 
208   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
209 
210   // Indexes of arguments whose values will be preserved by the call.
211   llvm::SmallSet<unsigned, 4> PreserveArgs;
212   if (!argumentsMayEscape())
213     findPtrToConstParams(PreserveArgs, *this);
214 
215   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
216     // Mark this region for invalidation.  We batch invalidate regions
217     // below for efficiency.
218     if (PreserveArgs.count(Idx))
219       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
220         ETraits.setTrait(MR->getBaseRegion(),
221                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
222         // TODO: Factor this out + handle the lower level const pointers.
223 
224     ValuesToInvalidate.push_back(getArgSVal(Idx));
225   }
226 
227   // Invalidate designated regions using the batch invalidation API.
228   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
229   //  global variables.
230   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
231                                    BlockCount, getLocationContext(),
232                                    /*CausedByPointerEscape*/ true,
233                                    /*Symbols=*/nullptr, this, &ETraits);
234 }
235 
236 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
237                                         const ProgramPointTag *Tag) const {
238   if (const Expr *E = getOriginExpr()) {
239     if (IsPreVisit)
240       return PreStmt(E, getLocationContext(), Tag);
241     return PostStmt(E, getLocationContext(), Tag);
242   }
243 
244   const Decl *D = getDecl();
245   assert(D && "Cannot get a program point without a statement or decl");
246 
247   SourceLocation Loc = getSourceRange().getBegin();
248   if (IsPreVisit)
249     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
250   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
251 }
252 
253 bool CallEvent::isCalled(const CallDescription &CD) const {
254   // FIXME: Add ObjC Message support.
255   if (getKind() == CE_ObjCMessage)
256     return false;
257   if (!CD.IsLookupDone) {
258     CD.IsLookupDone = true;
259     CD.II = &getState()->getStateManager().getContext().Idents.get(CD.FuncName);
260   }
261   const IdentifierInfo *II = getCalleeIdentifier();
262   if (!II || II != CD.II)
263     return false;
264   return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
265           CD.RequiredArgs == getNumArgs());
266 }
267 
268 SVal CallEvent::getArgSVal(unsigned Index) const {
269   const Expr *ArgE = getArgExpr(Index);
270   if (!ArgE)
271     return UnknownVal();
272   return getSVal(ArgE);
273 }
274 
275 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
276   const Expr *ArgE = getArgExpr(Index);
277   if (!ArgE)
278     return {};
279   return ArgE->getSourceRange();
280 }
281 
282 SVal CallEvent::getReturnValue() const {
283   const Expr *E = getOriginExpr();
284   if (!E)
285     return UndefinedVal();
286   return getSVal(E);
287 }
288 
289 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
290 
291 void CallEvent::dump(raw_ostream &Out) const {
292   ASTContext &Ctx = getState()->getStateManager().getContext();
293   if (const Expr *E = getOriginExpr()) {
294     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
295     Out << "\n";
296     return;
297   }
298 
299   if (const Decl *D = getDecl()) {
300     Out << "Call to ";
301     D->print(Out, Ctx.getPrintingPolicy());
302     return;
303   }
304 
305   // FIXME: a string representation of the kind would be nice.
306   Out << "Unknown call (type " << getKind() << ")";
307 }
308 
309 bool CallEvent::isCallStmt(const Stmt *S) {
310   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
311                           || isa<CXXConstructExpr>(S)
312                           || isa<CXXNewExpr>(S);
313 }
314 
315 QualType CallEvent::getDeclaredResultType(const Decl *D) {
316   assert(D);
317   if (const auto *FD = dyn_cast<FunctionDecl>(D))
318     return FD->getReturnType();
319   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
320     return MD->getReturnType();
321   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
322     // Blocks are difficult because the return type may not be stored in the
323     // BlockDecl itself. The AST should probably be enhanced, but for now we
324     // just do what we can.
325     // If the block is declared without an explicit argument list, the
326     // signature-as-written just includes the return type, not the entire
327     // function type.
328     // FIXME: All blocks should have signatures-as-written, even if the return
329     // type is inferred. (That's signified with a dependent result type.)
330     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
331       QualType Ty = TSI->getType();
332       if (const FunctionType *FT = Ty->getAs<FunctionType>())
333         Ty = FT->getReturnType();
334       if (!Ty->isDependentType())
335         return Ty;
336     }
337 
338     return {};
339   }
340 
341   llvm_unreachable("unknown callable kind");
342 }
343 
344 bool CallEvent::isVariadic(const Decl *D) {
345   assert(D);
346 
347   if (const auto *FD = dyn_cast<FunctionDecl>(D))
348     return FD->isVariadic();
349   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
350     return MD->isVariadic();
351   if (const auto *BD = dyn_cast<BlockDecl>(D))
352     return BD->isVariadic();
353 
354   llvm_unreachable("unknown callable kind");
355 }
356 
357 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
358                                          CallEvent::BindingsTy &Bindings,
359                                          SValBuilder &SVB,
360                                          const CallEvent &Call,
361                                          ArrayRef<ParmVarDecl*> parameters) {
362   MemRegionManager &MRMgr = SVB.getRegionManager();
363 
364   // If the function has fewer parameters than the call has arguments, we simply
365   // do not bind any values to them.
366   unsigned NumArgs = Call.getNumArgs();
367   unsigned Idx = 0;
368   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
369   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
370     const ParmVarDecl *ParamDecl = *I;
371     assert(ParamDecl && "Formal parameter has no decl?");
372 
373     SVal ArgVal = Call.getArgSVal(Idx);
374     if (!ArgVal.isUnknown()) {
375       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
376       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
377     }
378   }
379 
380   // FIXME: Variadic arguments are not handled at all right now.
381 }
382 
383 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
384   const FunctionDecl *D = getDecl();
385   if (!D)
386     return None;
387   return D->parameters();
388 }
389 
390 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
391   const FunctionDecl *FD = getDecl();
392   if (!FD)
393     return {};
394 
395   // Note that the AnalysisDeclContext will have the FunctionDecl with
396   // the definition (if one exists).
397   AnalysisDeclContext *AD =
398     getLocationContext()->getAnalysisDeclContext()->
399     getManager()->getContext(FD);
400   bool IsAutosynthesized;
401   Stmt* Body = AD->getBody(IsAutosynthesized);
402   DEBUG({
403       if (IsAutosynthesized)
404         llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
405                      << "\n";
406   });
407   if (Body) {
408     const Decl* Decl = AD->getDecl();
409     return RuntimeDefinition(Decl);
410   }
411 
412   SubEngine *Engine = getState()->getStateManager().getOwningEngine();
413   AnalyzerOptions &Opts = Engine->getAnalysisManager().options;
414 
415   // Try to get CTU definition only if CTUDir is provided.
416   if (!Opts.naiveCTUEnabled())
417     return {};
418 
419   cross_tu::CrossTranslationUnitContext &CTUCtx =
420       *Engine->getCrossTranslationUnitContext();
421   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
422       CTUCtx.getCrossTUDefinition(FD, Opts.getCTUDir(), Opts.getCTUIndexName());
423 
424   if (!CTUDeclOrError) {
425     handleAllErrors(CTUDeclOrError.takeError(),
426                     [&](const cross_tu::IndexError &IE) {
427                       CTUCtx.emitCrossTUDiagnostics(IE);
428                     });
429     return {};
430   }
431 
432   return RuntimeDefinition(*CTUDeclOrError);
433 }
434 
435 void AnyFunctionCall::getInitialStackFrameContents(
436                                         const StackFrameContext *CalleeCtx,
437                                         BindingsTy &Bindings) const {
438   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
439   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
440   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
441                                D->parameters());
442 }
443 
444 bool AnyFunctionCall::argumentsMayEscape() const {
445   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
446     return true;
447 
448   const FunctionDecl *D = getDecl();
449   if (!D)
450     return true;
451 
452   const IdentifierInfo *II = D->getIdentifier();
453   if (!II)
454     return false;
455 
456   // This set of "escaping" APIs is
457 
458   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
459   //   value into thread local storage. The value can later be retrieved with
460   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
461   //   parameter is 'const void *', the region escapes through the call.
462   if (II->isStr("pthread_setspecific"))
463     return true;
464 
465   // - xpc_connection_set_context stores a value which can be retrieved later
466   //   with xpc_connection_get_context.
467   if (II->isStr("xpc_connection_set_context"))
468     return true;
469 
470   // - funopen - sets a buffer for future IO calls.
471   if (II->isStr("funopen"))
472     return true;
473 
474   // - __cxa_demangle - can reallocate memory and can return the pointer to
475   // the input buffer.
476   if (II->isStr("__cxa_demangle"))
477     return true;
478 
479   StringRef FName = II->getName();
480 
481   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
482   //   buffer even if it is const.
483   if (FName.endswith("NoCopy"))
484     return true;
485 
486   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
487   //   be deallocated by NSMapRemove.
488   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
489     return true;
490 
491   // - Many CF containers allow objects to escape through custom
492   //   allocators/deallocators upon container construction. (PR12101)
493   if (FName.startswith("CF") || FName.startswith("CG")) {
494     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
495            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
496            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
497            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
498            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
499            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
500   }
501 
502   return false;
503 }
504 
505 const FunctionDecl *SimpleFunctionCall::getDecl() const {
506   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
507   if (D)
508     return D;
509 
510   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
511 }
512 
513 const FunctionDecl *CXXInstanceCall::getDecl() const {
514   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
515   if (!CE)
516     return AnyFunctionCall::getDecl();
517 
518   const FunctionDecl *D = CE->getDirectCallee();
519   if (D)
520     return D;
521 
522   return getSVal(CE->getCallee()).getAsFunctionDecl();
523 }
524 
525 void CXXInstanceCall::getExtraInvalidatedValues(
526     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
527   SVal ThisVal = getCXXThisVal();
528   Values.push_back(ThisVal);
529 
530   // Don't invalidate if the method is const and there are no mutable fields.
531   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
532     if (!D->isConst())
533       return;
534     // Get the record decl for the class of 'This'. D->getParent() may return a
535     // base class decl, rather than the class of the instance which needs to be
536     // checked for mutable fields.
537     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
538     const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl();
539     if (!ParentRecord || ParentRecord->hasMutableFields())
540       return;
541     // Preserve CXXThis.
542     const MemRegion *ThisRegion = ThisVal.getAsRegion();
543     if (!ThisRegion)
544       return;
545 
546     ETraits->setTrait(ThisRegion->getBaseRegion(),
547                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
548   }
549 }
550 
551 SVal CXXInstanceCall::getCXXThisVal() const {
552   const Expr *Base = getCXXThisExpr();
553   // FIXME: This doesn't handle an overloaded ->* operator.
554   if (!Base)
555     return UnknownVal();
556 
557   SVal ThisVal = getSVal(Base);
558   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
559   return ThisVal;
560 }
561 
562 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
563   // Do we have a decl at all?
564   const Decl *D = getDecl();
565   if (!D)
566     return {};
567 
568   // If the method is non-virtual, we know we can inline it.
569   const auto *MD = cast<CXXMethodDecl>(D);
570   if (!MD->isVirtual())
571     return AnyFunctionCall::getRuntimeDefinition();
572 
573   // Do we know the implicit 'this' object being called?
574   const MemRegion *R = getCXXThisVal().getAsRegion();
575   if (!R)
576     return {};
577 
578   // Do we know anything about the type of 'this'?
579   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
580   if (!DynType.isValid())
581     return {};
582 
583   // Is the type a C++ class? (This is mostly a defensive check.)
584   QualType RegionType = DynType.getType()->getPointeeType();
585   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
586 
587   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
588   if (!RD || !RD->hasDefinition())
589     return {};
590 
591   // Find the decl for this method in that class.
592   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
593   if (!Result) {
594     // We might not even get the original statically-resolved method due to
595     // some particularly nasty casting (e.g. casts to sister classes).
596     // However, we should at least be able to search up and down our own class
597     // hierarchy, and some real bugs have been caught by checking this.
598     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
599 
600     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
601     // the static type. However, because we currently don't update
602     // DynamicTypeInfo when an object is cast, we can't actually be sure the
603     // DynamicTypeInfo is up to date. This assert should be re-enabled once
604     // this is fixed. <rdar://problem/12287087>
605     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
606 
607     return {};
608   }
609 
610   // Does the decl that we found have an implementation?
611   const FunctionDecl *Definition;
612   if (!Result->hasBody(Definition))
613     return {};
614 
615   // We found a definition. If we're not sure that this devirtualization is
616   // actually what will happen at runtime, make sure to provide the region so
617   // that ExprEngine can decide what to do with it.
618   if (DynType.canBeASubClass())
619     return RuntimeDefinition(Definition, R->StripCasts());
620   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
621 }
622 
623 void CXXInstanceCall::getInitialStackFrameContents(
624                                             const StackFrameContext *CalleeCtx,
625                                             BindingsTy &Bindings) const {
626   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
627 
628   // Handle the binding of 'this' in the new stack frame.
629   SVal ThisVal = getCXXThisVal();
630   if (!ThisVal.isUnknown()) {
631     ProgramStateManager &StateMgr = getState()->getStateManager();
632     SValBuilder &SVB = StateMgr.getSValBuilder();
633 
634     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
635     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
636 
637     // If we devirtualized to a different member function, we need to make sure
638     // we have the proper layering of CXXBaseObjectRegions.
639     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
640       ASTContext &Ctx = SVB.getContext();
641       const CXXRecordDecl *Class = MD->getParent();
642       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
643 
644       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
645       bool Failed;
646       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
647       if (Failed) {
648         // We might have suffered some sort of placement new earlier, so
649         // we're constructing in a completely unexpected storage.
650         // Fall back to a generic pointer cast for this-value.
651         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
652         const CXXRecordDecl *StaticClass = StaticMD->getParent();
653         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
654         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
655       }
656     }
657 
658     if (!ThisVal.isUnknown())
659       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
660   }
661 }
662 
663 const Expr *CXXMemberCall::getCXXThisExpr() const {
664   return getOriginExpr()->getImplicitObjectArgument();
665 }
666 
667 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
668   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
669   // id-expression in the class member access expression is a qualified-id,
670   // that function is called. Otherwise, its final overrider in the dynamic type
671   // of the object expression is called.
672   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
673     if (ME->hasQualifier())
674       return AnyFunctionCall::getRuntimeDefinition();
675 
676   return CXXInstanceCall::getRuntimeDefinition();
677 }
678 
679 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
680   return getOriginExpr()->getArg(0);
681 }
682 
683 const BlockDataRegion *BlockCall::getBlockRegion() const {
684   const Expr *Callee = getOriginExpr()->getCallee();
685   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
686 
687   return dyn_cast_or_null<BlockDataRegion>(DataReg);
688 }
689 
690 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
691   const BlockDecl *D = getDecl();
692   if (!D)
693     return nullptr;
694   return D->parameters();
695 }
696 
697 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
698                   RegionAndSymbolInvalidationTraits *ETraits) const {
699   // FIXME: This also needs to invalidate captured globals.
700   if (const MemRegion *R = getBlockRegion())
701     Values.push_back(loc::MemRegionVal(R));
702 }
703 
704 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
705                                              BindingsTy &Bindings) const {
706   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
707   ArrayRef<ParmVarDecl*> Params;
708   if (isConversionFromLambda()) {
709     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
710     Params = LambdaOperatorDecl->parameters();
711 
712     // For blocks converted from a C++ lambda, the callee declaration is the
713     // operator() method on the lambda so we bind "this" to
714     // the lambda captured by the block.
715     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
716     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
717     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
718     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
719   } else {
720     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
721   }
722 
723   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
724                                Params);
725 }
726 
727 SVal CXXConstructorCall::getCXXThisVal() const {
728   if (Data)
729     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
730   return UnknownVal();
731 }
732 
733 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
734                            RegionAndSymbolInvalidationTraits *ETraits) const {
735   if (Data) {
736     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
737     if (SymbolRef Sym = MV.getAsSymbol(true))
738       ETraits->setTrait(Sym,
739                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
740     Values.push_back(MV);
741   }
742 }
743 
744 void CXXConstructorCall::getInitialStackFrameContents(
745                                              const StackFrameContext *CalleeCtx,
746                                              BindingsTy &Bindings) const {
747   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
748 
749   SVal ThisVal = getCXXThisVal();
750   if (!ThisVal.isUnknown()) {
751     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
752     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
753     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
754     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
755   }
756 }
757 
758 SVal CXXDestructorCall::getCXXThisVal() const {
759   if (Data)
760     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
761   return UnknownVal();
762 }
763 
764 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
765   // Base destructors are always called non-virtually.
766   // Skip CXXInstanceCall's devirtualization logic in this case.
767   if (isBaseDestructor())
768     return AnyFunctionCall::getRuntimeDefinition();
769 
770   return CXXInstanceCall::getRuntimeDefinition();
771 }
772 
773 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
774   const ObjCMethodDecl *D = getDecl();
775   if (!D)
776     return None;
777   return D->parameters();
778 }
779 
780 void ObjCMethodCall::getExtraInvalidatedValues(
781     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
782 
783   // If the method call is a setter for property known to be backed by
784   // an instance variable, don't invalidate the entire receiver, just
785   // the storage for that instance variable.
786   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
787     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
788       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
789       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
790         ETraits->setTrait(
791           IvarRegion,
792           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
793         ETraits->setTrait(
794           IvarRegion,
795           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
796         Values.push_back(IvarLVal);
797       }
798       return;
799     }
800   }
801 
802   Values.push_back(getReceiverSVal());
803 }
804 
805 SVal ObjCMethodCall::getSelfSVal() const {
806   const LocationContext *LCtx = getLocationContext();
807   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
808   if (!SelfDecl)
809     return SVal();
810   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
811 }
812 
813 SVal ObjCMethodCall::getReceiverSVal() const {
814   // FIXME: Is this the best way to handle class receivers?
815   if (!isInstanceMessage())
816     return UnknownVal();
817 
818   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
819     return getSVal(RecE);
820 
821   // An instance message with no expression means we are sending to super.
822   // In this case the object reference is the same as 'self'.
823   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
824   SVal SelfVal = getSelfSVal();
825   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
826   return SelfVal;
827 }
828 
829 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
830   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
831       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
832       return true;
833 
834   if (!isInstanceMessage())
835     return false;
836 
837   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
838 
839   return (RecVal == getSelfSVal());
840 }
841 
842 SourceRange ObjCMethodCall::getSourceRange() const {
843   switch (getMessageKind()) {
844   case OCM_Message:
845     return getOriginExpr()->getSourceRange();
846   case OCM_PropertyAccess:
847   case OCM_Subscript:
848     return getContainingPseudoObjectExpr()->getSourceRange();
849   }
850   llvm_unreachable("unknown message kind");
851 }
852 
853 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
854 
855 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
856   assert(Data && "Lazy lookup not yet performed.");
857   assert(getMessageKind() != OCM_Message && "Explicit message send.");
858   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
859 }
860 
861 static const Expr *
862 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
863   const Expr *Syntactic = POE->getSyntacticForm();
864 
865   // This handles the funny case of assigning to the result of a getter.
866   // This can happen if the getter returns a non-const reference.
867   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
868     Syntactic = BO->getLHS();
869 
870   return Syntactic;
871 }
872 
873 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
874   if (!Data) {
875     // Find the parent, ignoring implicit casts.
876     ParentMap &PM = getLocationContext()->getParentMap();
877     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
878 
879     // Check if parent is a PseudoObjectExpr.
880     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
881       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
882 
883       ObjCMessageKind K;
884       switch (Syntactic->getStmtClass()) {
885       case Stmt::ObjCPropertyRefExprClass:
886         K = OCM_PropertyAccess;
887         break;
888       case Stmt::ObjCSubscriptRefExprClass:
889         K = OCM_Subscript;
890         break;
891       default:
892         // FIXME: Can this ever happen?
893         K = OCM_Message;
894         break;
895       }
896 
897       if (K != OCM_Message) {
898         const_cast<ObjCMethodCall *>(this)->Data
899           = ObjCMessageDataTy(POE, K).getOpaqueValue();
900         assert(getMessageKind() == K);
901         return K;
902       }
903     }
904 
905     const_cast<ObjCMethodCall *>(this)->Data
906       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
907     assert(getMessageKind() == OCM_Message);
908     return OCM_Message;
909   }
910 
911   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
912   if (!Info.getPointer())
913     return OCM_Message;
914   return static_cast<ObjCMessageKind>(Info.getInt());
915 }
916 
917 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
918   // Look for properties accessed with property syntax (foo.bar = ...)
919   if ( getMessageKind() == OCM_PropertyAccess) {
920     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
921     assert(POE && "Property access without PseudoObjectExpr?");
922 
923     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
924     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
925 
926     if (RefExpr->isExplicitProperty())
927       return RefExpr->getExplicitProperty();
928   }
929 
930   // Look for properties accessed with method syntax ([foo setBar:...]).
931   const ObjCMethodDecl *MD = getDecl();
932   if (!MD || !MD->isPropertyAccessor())
933     return nullptr;
934 
935   // Note: This is potentially quite slow.
936   return MD->findPropertyDecl();
937 }
938 
939 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
940                                              Selector Sel) const {
941   assert(IDecl);
942   const SourceManager &SM =
943     getState()->getStateManager().getContext().getSourceManager();
944 
945   // If the class interface is declared inside the main file, assume it is not
946   // subcassed.
947   // TODO: It could actually be subclassed if the subclass is private as well.
948   // This is probably very rare.
949   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
950   if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
951     return false;
952 
953   // Assume that property accessors are not overridden.
954   if (getMessageKind() == OCM_PropertyAccess)
955     return false;
956 
957   // We assume that if the method is public (declared outside of main file) or
958   // has a parent which publicly declares the method, the method could be
959   // overridden in a subclass.
960 
961   // Find the first declaration in the class hierarchy that declares
962   // the selector.
963   ObjCMethodDecl *D = nullptr;
964   while (true) {
965     D = IDecl->lookupMethod(Sel, true);
966 
967     // Cannot find a public definition.
968     if (!D)
969       return false;
970 
971     // If outside the main file,
972     if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
973       return true;
974 
975     if (D->isOverriding()) {
976       // Search in the superclass on the next iteration.
977       IDecl = D->getClassInterface();
978       if (!IDecl)
979         return false;
980 
981       IDecl = IDecl->getSuperClass();
982       if (!IDecl)
983         return false;
984 
985       continue;
986     }
987 
988     return false;
989   };
990 
991   llvm_unreachable("The while loop should always terminate.");
992 }
993 
994 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
995   if (!MD)
996     return MD;
997 
998   // Find the redeclaration that defines the method.
999   if (!MD->hasBody()) {
1000     for (auto I : MD->redecls())
1001       if (I->hasBody())
1002         MD = cast<ObjCMethodDecl>(I);
1003   }
1004   return MD;
1005 }
1006 
1007 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1008   const Expr* InstRec = ME->getInstanceReceiver();
1009   if (!InstRec)
1010     return false;
1011   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1012 
1013   // Check that receiver is called 'self'.
1014   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1015       !InstRecIg->getFoundDecl()->getName().equals("self"))
1016     return false;
1017 
1018   // Check that the method name is 'class'.
1019   if (ME->getSelector().getNumArgs() != 0 ||
1020       !ME->getSelector().getNameForSlot(0).equals("class"))
1021     return false;
1022 
1023   return true;
1024 }
1025 
1026 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1027   const ObjCMessageExpr *E = getOriginExpr();
1028   assert(E);
1029   Selector Sel = E->getSelector();
1030 
1031   if (E->isInstanceMessage()) {
1032     // Find the receiver type.
1033     const ObjCObjectPointerType *ReceiverT = nullptr;
1034     bool CanBeSubClassed = false;
1035     QualType SupersType = E->getSuperType();
1036     const MemRegion *Receiver = nullptr;
1037 
1038     if (!SupersType.isNull()) {
1039       // The receiver is guaranteed to be 'super' in this case.
1040       // Super always means the type of immediate predecessor to the method
1041       // where the call occurs.
1042       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1043     } else {
1044       Receiver = getReceiverSVal().getAsRegion();
1045       if (!Receiver)
1046         return {};
1047 
1048       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1049       if (!DTI.isValid()) {
1050         assert(isa<AllocaRegion>(Receiver) &&
1051                "Unhandled untyped region class!");
1052         return {};
1053       }
1054 
1055       QualType DynType = DTI.getType();
1056       CanBeSubClassed = DTI.canBeASubClass();
1057       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1058 
1059       if (ReceiverT && CanBeSubClassed)
1060         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1061           if (!canBeOverridenInSubclass(IDecl, Sel))
1062             CanBeSubClassed = false;
1063     }
1064 
1065     // Handle special cases of '[self classMethod]' and
1066     // '[[self class] classMethod]', which are treated by the compiler as
1067     // instance (not class) messages. We will statically dispatch to those.
1068     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1069       // For [self classMethod], return the compiler visible declaration.
1070       if (PT->getObjectType()->isObjCClass() &&
1071           Receiver == getSelfSVal().getAsRegion())
1072         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1073 
1074       // Similarly, handle [[self class] classMethod].
1075       // TODO: We are currently doing a syntactic match for this pattern with is
1076       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1077       // shows. A better way would be to associate the meta type with the symbol
1078       // using the dynamic type info tracking and use it here. We can add a new
1079       // SVal for ObjC 'Class' values that know what interface declaration they
1080       // come from. Then 'self' in a class method would be filled in with
1081       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1082       // do proper dynamic dispatch for class methods just like we do for
1083       // instance methods now.
1084       if (E->getInstanceReceiver())
1085         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1086           if (isCallToSelfClass(M))
1087             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1088     }
1089 
1090     // Lookup the instance method implementation.
1091     if (ReceiverT)
1092       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1093         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1094         // when in many cases it returns null.  We cache the results so
1095         // that repeated queries on the same ObjCIntefaceDecl and Selector
1096         // don't incur the same cost.  On some test cases, we can see the
1097         // same query being issued thousands of times.
1098         //
1099         // NOTE: This cache is essentially a "global" variable, but it
1100         // only gets lazily created when we get here.  The value of the
1101         // cache probably comes from it being global across ExprEngines,
1102         // where the same queries may get issued.  If we are worried about
1103         // concurrency, or possibly loading/unloading ASTs, etc., we may
1104         // need to revisit this someday.  In terms of memory, this table
1105         // stays around until clang quits, which also may be bad if we
1106         // need to release memory.
1107         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1108         using PrivateMethodCache =
1109             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1110 
1111         static PrivateMethodCache PMC;
1112         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1113 
1114         // Query lookupPrivateMethod() if the cache does not hit.
1115         if (!Val.hasValue()) {
1116           Val = IDecl->lookupPrivateMethod(Sel);
1117 
1118           // If the method is a property accessor, we should try to "inline" it
1119           // even if we don't actually have an implementation.
1120           if (!*Val)
1121             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1122               if (CompileTimeMD->isPropertyAccessor()) {
1123                 if (!CompileTimeMD->getSelfDecl() &&
1124                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1125                   // If the method is an accessor in a category, and it doesn't
1126                   // have a self declaration, first
1127                   // try to find the method in a class extension. This
1128                   // works around a bug in Sema where multiple accessors
1129                   // are synthesized for properties in class
1130                   // extensions that are redeclared in a category and the
1131                   // the implicit parameters are not filled in for
1132                   // the method on the category.
1133                   // This ensures we find the accessor in the extension, which
1134                   // has the implicit parameters filled in.
1135                   auto *ID = CompileTimeMD->getClassInterface();
1136                   for (auto *CatDecl : ID->visible_extensions()) {
1137                     Val = CatDecl->getMethod(Sel,
1138                                              CompileTimeMD->isInstanceMethod());
1139                     if (*Val)
1140                       break;
1141                   }
1142                 }
1143                 if (!*Val)
1144                   Val = IDecl->lookupInstanceMethod(Sel);
1145               }
1146         }
1147 
1148         const ObjCMethodDecl *MD = Val.getValue();
1149         if (CanBeSubClassed)
1150           return RuntimeDefinition(MD, Receiver);
1151         else
1152           return RuntimeDefinition(MD, nullptr);
1153       }
1154   } else {
1155     // This is a class method.
1156     // If we have type info for the receiver class, we are calling via
1157     // class name.
1158     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1159       // Find/Return the method implementation.
1160       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1161     }
1162   }
1163 
1164   return {};
1165 }
1166 
1167 bool ObjCMethodCall::argumentsMayEscape() const {
1168   if (isInSystemHeader() && !isInstanceMessage()) {
1169     Selector Sel = getSelector();
1170     if (Sel.getNumArgs() == 1 &&
1171         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1172       return true;
1173   }
1174 
1175   return CallEvent::argumentsMayEscape();
1176 }
1177 
1178 void ObjCMethodCall::getInitialStackFrameContents(
1179                                              const StackFrameContext *CalleeCtx,
1180                                              BindingsTy &Bindings) const {
1181   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1182   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1183   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1184                                D->parameters());
1185 
1186   SVal SelfVal = getReceiverSVal();
1187   if (!SelfVal.isUnknown()) {
1188     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1189     MemRegionManager &MRMgr = SVB.getRegionManager();
1190     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1191     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1192   }
1193 }
1194 
1195 CallEventRef<>
1196 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1197                                 const LocationContext *LCtx) {
1198   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1199     return create<CXXMemberCall>(MCE, State, LCtx);
1200 
1201   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1202     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1203     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1204       if (MD->isInstance())
1205         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1206 
1207   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1208     return create<BlockCall>(CE, State, LCtx);
1209   }
1210 
1211   // Otherwise, it's a normal function call, static member function call, or
1212   // something we can't reason about.
1213   return create<SimpleFunctionCall>(CE, State, LCtx);
1214 }
1215 
1216 CallEventRef<>
1217 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1218                             ProgramStateRef State) {
1219   const LocationContext *ParentCtx = CalleeCtx->getParent();
1220   const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
1221   assert(CallerCtx && "This should not be used for top-level stack frames");
1222 
1223   const Stmt *CallSite = CalleeCtx->getCallSite();
1224 
1225   if (CallSite) {
1226     if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
1227       return getSimpleCall(CE, State, CallerCtx);
1228 
1229     switch (CallSite->getStmtClass()) {
1230     case Stmt::CXXConstructExprClass:
1231     case Stmt::CXXTemporaryObjectExprClass: {
1232       SValBuilder &SVB = State->getStateManager().getSValBuilder();
1233       const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1234       Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1235       SVal ThisVal = State->getSVal(ThisPtr);
1236 
1237       return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1238                                    ThisVal.getAsRegion(), State, CallerCtx);
1239     }
1240     case Stmt::CXXNewExprClass:
1241       return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
1242     case Stmt::ObjCMessageExprClass:
1243       return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
1244                                State, CallerCtx);
1245     default:
1246       llvm_unreachable("This is not an inlineable statement.");
1247     }
1248   }
1249 
1250   // Fall back to the CFG. The only thing we haven't handled yet is
1251   // destructors, though this could change in the future.
1252   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1253   CFGElement E = (*B)[CalleeCtx->getIndex()];
1254   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1255          "All other CFG elements should have exprs");
1256 
1257   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1258   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1259   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1260   SVal ThisVal = State->getSVal(ThisPtr);
1261 
1262   const Stmt *Trigger;
1263   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1264     Trigger = AutoDtor->getTriggerStmt();
1265   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1266     Trigger = DeleteDtor->getDeleteExpr();
1267   else
1268     Trigger = Dtor->getBody();
1269 
1270   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1271                               E.getAs<CFGBaseDtor>().hasValue(), State,
1272                               CallerCtx);
1273 }
1274