1 //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This file defines CallEvent and its subclasses, which represent path- 11 /// sensitive instances of different kinds of function and method calls 12 /// (C, C++, and Objective-C). 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 17 #include "clang/AST/ParentMap.h" 18 #include "clang/Analysis/ProgramPoint.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/Support/raw_ostream.h" 24 25 using namespace clang; 26 using namespace ento; 27 28 QualType CallEvent::getResultType() const { 29 const Expr *E = getOriginExpr(); 30 assert(E && "Calls without origin expressions do not have results"); 31 QualType ResultTy = E->getType(); 32 33 ASTContext &Ctx = getState()->getStateManager().getContext(); 34 35 // A function that returns a reference to 'int' will have a result type 36 // of simply 'int'. Check the origin expr's value kind to recover the 37 // proper type. 38 switch (E->getValueKind()) { 39 case VK_LValue: 40 ResultTy = Ctx.getLValueReferenceType(ResultTy); 41 break; 42 case VK_XValue: 43 ResultTy = Ctx.getRValueReferenceType(ResultTy); 44 break; 45 case VK_RValue: 46 // No adjustment is necessary. 47 break; 48 } 49 50 return ResultTy; 51 } 52 53 static bool isCallback(QualType T) { 54 // If a parameter is a block or a callback, assume it can modify pointer. 55 if (T->isBlockPointerType() || 56 T->isFunctionPointerType() || 57 T->isObjCSelType()) 58 return true; 59 60 // Check if a callback is passed inside a struct (for both, struct passed by 61 // reference and by value). Dig just one level into the struct for now. 62 63 if (T->isAnyPointerType() || T->isReferenceType()) 64 T = T->getPointeeType(); 65 66 if (const RecordType *RT = T->getAsStructureType()) { 67 const RecordDecl *RD = RT->getDecl(); 68 for (const auto *I : RD->fields()) { 69 QualType FieldT = I->getType(); 70 if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) 71 return true; 72 } 73 } 74 return false; 75 } 76 77 static bool isVoidPointerToNonConst(QualType T) { 78 if (const PointerType *PT = T->getAs<PointerType>()) { 79 QualType PointeeTy = PT->getPointeeType(); 80 if (PointeeTy.isConstQualified()) 81 return false; 82 return PointeeTy->isVoidType(); 83 } else 84 return false; 85 } 86 87 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const { 88 unsigned NumOfArgs = getNumArgs(); 89 90 // If calling using a function pointer, assume the function does not 91 // satisfy the callback. 92 // TODO: We could check the types of the arguments here. 93 if (!getDecl()) 94 return false; 95 96 unsigned Idx = 0; 97 for (CallEvent::param_type_iterator I = param_type_begin(), 98 E = param_type_end(); 99 I != E && Idx < NumOfArgs; ++I, ++Idx) { 100 if (NumOfArgs <= Idx) 101 break; 102 103 // If the parameter is 0, it's harmless. 104 if (getArgSVal(Idx).isZeroConstant()) 105 continue; 106 107 if (Condition(*I)) 108 return true; 109 } 110 return false; 111 } 112 113 bool CallEvent::hasNonZeroCallbackArg() const { 114 return hasNonNullArgumentsWithType(isCallback); 115 } 116 117 bool CallEvent::hasVoidPointerToNonConstArg() const { 118 return hasNonNullArgumentsWithType(isVoidPointerToNonConst); 119 } 120 121 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { 122 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 123 if (!FD) 124 return false; 125 126 return CheckerContext::isCLibraryFunction(FD, FunctionName); 127 } 128 129 /// \brief Returns true if a type is a pointer-to-const or reference-to-const 130 /// with no further indirection. 131 static bool isPointerToConst(QualType Ty) { 132 QualType PointeeTy = Ty->getPointeeType(); 133 if (PointeeTy == QualType()) 134 return false; 135 if (!PointeeTy.isConstQualified()) 136 return false; 137 if (PointeeTy->isAnyPointerType()) 138 return false; 139 return true; 140 } 141 142 // Try to retrieve the function declaration and find the function parameter 143 // types which are pointers/references to a non-pointer const. 144 // We will not invalidate the corresponding argument regions. 145 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs, 146 const CallEvent &Call) { 147 unsigned Idx = 0; 148 for (CallEvent::param_type_iterator I = Call.param_type_begin(), 149 E = Call.param_type_end(); 150 I != E; ++I, ++Idx) { 151 if (isPointerToConst(*I)) 152 PreserveArgs.insert(Idx); 153 } 154 } 155 156 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, 157 ProgramStateRef Orig) const { 158 ProgramStateRef Result = (Orig ? Orig : getState()); 159 160 // Don't invalidate anything if the callee is marked pure/const. 161 if (const Decl *callee = getDecl()) 162 if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>()) 163 return Result; 164 165 SmallVector<SVal, 8> ValuesToInvalidate; 166 RegionAndSymbolInvalidationTraits ETraits; 167 168 getExtraInvalidatedValues(ValuesToInvalidate, &ETraits); 169 170 // Indexes of arguments whose values will be preserved by the call. 171 llvm::SmallSet<unsigned, 4> PreserveArgs; 172 if (!argumentsMayEscape()) 173 findPtrToConstParams(PreserveArgs, *this); 174 175 for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { 176 // Mark this region for invalidation. We batch invalidate regions 177 // below for efficiency. 178 if (PreserveArgs.count(Idx)) 179 if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) 180 ETraits.setTrait(MR->getBaseRegion(), 181 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 182 // TODO: Factor this out + handle the lower level const pointers. 183 184 ValuesToInvalidate.push_back(getArgSVal(Idx)); 185 } 186 187 // Invalidate designated regions using the batch invalidation API. 188 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate 189 // global variables. 190 return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(), 191 BlockCount, getLocationContext(), 192 /*CausedByPointerEscape*/ true, 193 /*Symbols=*/nullptr, this, &ETraits); 194 } 195 196 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, 197 const ProgramPointTag *Tag) const { 198 if (const Expr *E = getOriginExpr()) { 199 if (IsPreVisit) 200 return PreStmt(E, getLocationContext(), Tag); 201 return PostStmt(E, getLocationContext(), Tag); 202 } 203 204 const Decl *D = getDecl(); 205 assert(D && "Cannot get a program point without a statement or decl"); 206 207 SourceLocation Loc = getSourceRange().getBegin(); 208 if (IsPreVisit) 209 return PreImplicitCall(D, Loc, getLocationContext(), Tag); 210 return PostImplicitCall(D, Loc, getLocationContext(), Tag); 211 } 212 213 bool CallEvent::isCalled(const CallDescription &CD) const { 214 assert(getKind() != CE_ObjCMessage && "Obj-C methods are not supported"); 215 if (!CD.II) 216 CD.II = &getState()->getStateManager().getContext().Idents.get(CD.FuncName); 217 if (getCalleeIdentifier() != CD.II) 218 return false; 219 return (CD.RequiredArgs == CallDescription::NoArgRequirement || 220 CD.RequiredArgs == getNumArgs()); 221 } 222 223 SVal CallEvent::getArgSVal(unsigned Index) const { 224 const Expr *ArgE = getArgExpr(Index); 225 if (!ArgE) 226 return UnknownVal(); 227 return getSVal(ArgE); 228 } 229 230 SourceRange CallEvent::getArgSourceRange(unsigned Index) const { 231 const Expr *ArgE = getArgExpr(Index); 232 if (!ArgE) 233 return SourceRange(); 234 return ArgE->getSourceRange(); 235 } 236 237 SVal CallEvent::getReturnValue() const { 238 const Expr *E = getOriginExpr(); 239 if (!E) 240 return UndefinedVal(); 241 return getSVal(E); 242 } 243 244 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); } 245 246 void CallEvent::dump(raw_ostream &Out) const { 247 ASTContext &Ctx = getState()->getStateManager().getContext(); 248 if (const Expr *E = getOriginExpr()) { 249 E->printPretty(Out, nullptr, Ctx.getPrintingPolicy()); 250 Out << "\n"; 251 return; 252 } 253 254 if (const Decl *D = getDecl()) { 255 Out << "Call to "; 256 D->print(Out, Ctx.getPrintingPolicy()); 257 return; 258 } 259 260 // FIXME: a string representation of the kind would be nice. 261 Out << "Unknown call (type " << getKind() << ")"; 262 } 263 264 265 bool CallEvent::isCallStmt(const Stmt *S) { 266 return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S) 267 || isa<CXXConstructExpr>(S) 268 || isa<CXXNewExpr>(S); 269 } 270 271 QualType CallEvent::getDeclaredResultType(const Decl *D) { 272 assert(D); 273 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) 274 return FD->getReturnType(); 275 if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D)) 276 return MD->getReturnType(); 277 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 278 // Blocks are difficult because the return type may not be stored in the 279 // BlockDecl itself. The AST should probably be enhanced, but for now we 280 // just do what we can. 281 // If the block is declared without an explicit argument list, the 282 // signature-as-written just includes the return type, not the entire 283 // function type. 284 // FIXME: All blocks should have signatures-as-written, even if the return 285 // type is inferred. (That's signified with a dependent result type.) 286 if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) { 287 QualType Ty = TSI->getType(); 288 if (const FunctionType *FT = Ty->getAs<FunctionType>()) 289 Ty = FT->getReturnType(); 290 if (!Ty->isDependentType()) 291 return Ty; 292 } 293 294 return QualType(); 295 } 296 297 llvm_unreachable("unknown callable kind"); 298 } 299 300 bool CallEvent::isVariadic(const Decl *D) { 301 assert(D); 302 303 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 304 return FD->isVariadic(); 305 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) 306 return MD->isVariadic(); 307 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) 308 return BD->isVariadic(); 309 310 llvm_unreachable("unknown callable kind"); 311 } 312 313 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, 314 CallEvent::BindingsTy &Bindings, 315 SValBuilder &SVB, 316 const CallEvent &Call, 317 ArrayRef<ParmVarDecl*> parameters) { 318 MemRegionManager &MRMgr = SVB.getRegionManager(); 319 320 // If the function has fewer parameters than the call has arguments, we simply 321 // do not bind any values to them. 322 unsigned NumArgs = Call.getNumArgs(); 323 unsigned Idx = 0; 324 ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end(); 325 for (; I != E && Idx < NumArgs; ++I, ++Idx) { 326 const ParmVarDecl *ParamDecl = *I; 327 assert(ParamDecl && "Formal parameter has no decl?"); 328 329 SVal ArgVal = Call.getArgSVal(Idx); 330 if (!ArgVal.isUnknown()) { 331 Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx)); 332 Bindings.push_back(std::make_pair(ParamLoc, ArgVal)); 333 } 334 } 335 336 // FIXME: Variadic arguments are not handled at all right now. 337 } 338 339 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const { 340 const FunctionDecl *D = getDecl(); 341 if (!D) 342 return None; 343 return D->parameters(); 344 } 345 346 void AnyFunctionCall::getInitialStackFrameContents( 347 const StackFrameContext *CalleeCtx, 348 BindingsTy &Bindings) const { 349 const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl()); 350 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 351 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 352 D->parameters()); 353 } 354 355 bool AnyFunctionCall::argumentsMayEscape() const { 356 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg()) 357 return true; 358 359 const FunctionDecl *D = getDecl(); 360 if (!D) 361 return true; 362 363 const IdentifierInfo *II = D->getIdentifier(); 364 if (!II) 365 return false; 366 367 // This set of "escaping" APIs is 368 369 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a 370 // value into thread local storage. The value can later be retrieved with 371 // 'void *ptheread_getspecific(pthread_key)'. So even thought the 372 // parameter is 'const void *', the region escapes through the call. 373 if (II->isStr("pthread_setspecific")) 374 return true; 375 376 // - xpc_connection_set_context stores a value which can be retrieved later 377 // with xpc_connection_get_context. 378 if (II->isStr("xpc_connection_set_context")) 379 return true; 380 381 // - funopen - sets a buffer for future IO calls. 382 if (II->isStr("funopen")) 383 return true; 384 385 // - __cxa_demangle - can reallocate memory and can return the pointer to 386 // the input buffer. 387 if (II->isStr("__cxa_demangle")) 388 return true; 389 390 StringRef FName = II->getName(); 391 392 // - CoreFoundation functions that end with "NoCopy" can free a passed-in 393 // buffer even if it is const. 394 if (FName.endswith("NoCopy")) 395 return true; 396 397 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can 398 // be deallocated by NSMapRemove. 399 if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) 400 return true; 401 402 // - Many CF containers allow objects to escape through custom 403 // allocators/deallocators upon container construction. (PR12101) 404 if (FName.startswith("CF") || FName.startswith("CG")) { 405 return StrInStrNoCase(FName, "InsertValue") != StringRef::npos || 406 StrInStrNoCase(FName, "AddValue") != StringRef::npos || 407 StrInStrNoCase(FName, "SetValue") != StringRef::npos || 408 StrInStrNoCase(FName, "WithData") != StringRef::npos || 409 StrInStrNoCase(FName, "AppendValue") != StringRef::npos || 410 StrInStrNoCase(FName, "SetAttribute") != StringRef::npos; 411 } 412 413 return false; 414 } 415 416 417 const FunctionDecl *SimpleFunctionCall::getDecl() const { 418 const FunctionDecl *D = getOriginExpr()->getDirectCallee(); 419 if (D) 420 return D; 421 422 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl(); 423 } 424 425 426 const FunctionDecl *CXXInstanceCall::getDecl() const { 427 const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr()); 428 if (!CE) 429 return AnyFunctionCall::getDecl(); 430 431 const FunctionDecl *D = CE->getDirectCallee(); 432 if (D) 433 return D; 434 435 return getSVal(CE->getCallee()).getAsFunctionDecl(); 436 } 437 438 void CXXInstanceCall::getExtraInvalidatedValues( 439 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 440 SVal ThisVal = getCXXThisVal(); 441 Values.push_back(ThisVal); 442 443 // Don't invalidate if the method is const and there are no mutable fields. 444 if (const CXXMethodDecl *D = cast_or_null<CXXMethodDecl>(getDecl())) { 445 if (!D->isConst()) 446 return; 447 // Get the record decl for the class of 'This'. D->getParent() may return a 448 // base class decl, rather than the class of the instance which needs to be 449 // checked for mutable fields. 450 const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts(); 451 const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl(); 452 if (!ParentRecord || ParentRecord->hasMutableFields()) 453 return; 454 // Preserve CXXThis. 455 const MemRegion *ThisRegion = ThisVal.getAsRegion(); 456 if (!ThisRegion) 457 return; 458 459 ETraits->setTrait(ThisRegion->getBaseRegion(), 460 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 461 } 462 } 463 464 SVal CXXInstanceCall::getCXXThisVal() const { 465 const Expr *Base = getCXXThisExpr(); 466 // FIXME: This doesn't handle an overloaded ->* operator. 467 if (!Base) 468 return UnknownVal(); 469 470 SVal ThisVal = getSVal(Base); 471 assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()); 472 return ThisVal; 473 } 474 475 476 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { 477 // Do we have a decl at all? 478 const Decl *D = getDecl(); 479 if (!D) 480 return RuntimeDefinition(); 481 482 // If the method is non-virtual, we know we can inline it. 483 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 484 if (!MD->isVirtual()) 485 return AnyFunctionCall::getRuntimeDefinition(); 486 487 // Do we know the implicit 'this' object being called? 488 const MemRegion *R = getCXXThisVal().getAsRegion(); 489 if (!R) 490 return RuntimeDefinition(); 491 492 // Do we know anything about the type of 'this'? 493 DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R); 494 if (!DynType.isValid()) 495 return RuntimeDefinition(); 496 497 // Is the type a C++ class? (This is mostly a defensive check.) 498 QualType RegionType = DynType.getType()->getPointeeType(); 499 assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."); 500 501 const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl(); 502 if (!RD || !RD->hasDefinition()) 503 return RuntimeDefinition(); 504 505 // Find the decl for this method in that class. 506 const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true); 507 if (!Result) { 508 // We might not even get the original statically-resolved method due to 509 // some particularly nasty casting (e.g. casts to sister classes). 510 // However, we should at least be able to search up and down our own class 511 // hierarchy, and some real bugs have been caught by checking this. 512 assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"); 513 514 // FIXME: This is checking that our DynamicTypeInfo is at least as good as 515 // the static type. However, because we currently don't update 516 // DynamicTypeInfo when an object is cast, we can't actually be sure the 517 // DynamicTypeInfo is up to date. This assert should be re-enabled once 518 // this is fixed. <rdar://problem/12287087> 519 //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); 520 521 return RuntimeDefinition(); 522 } 523 524 // Does the decl that we found have an implementation? 525 const FunctionDecl *Definition; 526 if (!Result->hasBody(Definition)) 527 return RuntimeDefinition(); 528 529 // We found a definition. If we're not sure that this devirtualization is 530 // actually what will happen at runtime, make sure to provide the region so 531 // that ExprEngine can decide what to do with it. 532 if (DynType.canBeASubClass()) 533 return RuntimeDefinition(Definition, R->StripCasts()); 534 return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr); 535 } 536 537 void CXXInstanceCall::getInitialStackFrameContents( 538 const StackFrameContext *CalleeCtx, 539 BindingsTy &Bindings) const { 540 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 541 542 // Handle the binding of 'this' in the new stack frame. 543 SVal ThisVal = getCXXThisVal(); 544 if (!ThisVal.isUnknown()) { 545 ProgramStateManager &StateMgr = getState()->getStateManager(); 546 SValBuilder &SVB = StateMgr.getSValBuilder(); 547 548 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 549 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 550 551 // If we devirtualized to a different member function, we need to make sure 552 // we have the proper layering of CXXBaseObjectRegions. 553 if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { 554 ASTContext &Ctx = SVB.getContext(); 555 const CXXRecordDecl *Class = MD->getParent(); 556 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class)); 557 558 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. 559 bool Failed; 560 ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed); 561 assert(!Failed && "Calling an incorrectly devirtualized method"); 562 } 563 564 if (!ThisVal.isUnknown()) 565 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 566 } 567 } 568 569 570 571 const Expr *CXXMemberCall::getCXXThisExpr() const { 572 return getOriginExpr()->getImplicitObjectArgument(); 573 } 574 575 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { 576 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the 577 // id-expression in the class member access expression is a qualified-id, 578 // that function is called. Otherwise, its final overrider in the dynamic type 579 // of the object expression is called. 580 if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee())) 581 if (ME->hasQualifier()) 582 return AnyFunctionCall::getRuntimeDefinition(); 583 584 return CXXInstanceCall::getRuntimeDefinition(); 585 } 586 587 588 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { 589 return getOriginExpr()->getArg(0); 590 } 591 592 593 const BlockDataRegion *BlockCall::getBlockRegion() const { 594 const Expr *Callee = getOriginExpr()->getCallee(); 595 const MemRegion *DataReg = getSVal(Callee).getAsRegion(); 596 597 return dyn_cast_or_null<BlockDataRegion>(DataReg); 598 } 599 600 ArrayRef<ParmVarDecl*> BlockCall::parameters() const { 601 const BlockDecl *D = getDecl(); 602 if (!D) 603 return nullptr; 604 return D->parameters(); 605 } 606 607 void BlockCall::getExtraInvalidatedValues(ValueList &Values, 608 RegionAndSymbolInvalidationTraits *ETraits) const { 609 // FIXME: This also needs to invalidate captured globals. 610 if (const MemRegion *R = getBlockRegion()) 611 Values.push_back(loc::MemRegionVal(R)); 612 } 613 614 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, 615 BindingsTy &Bindings) const { 616 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 617 ArrayRef<ParmVarDecl*> Params; 618 if (isConversionFromLambda()) { 619 auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 620 Params = LambdaOperatorDecl->parameters(); 621 622 // For blocks converted from a C++ lambda, the callee declaration is the 623 // operator() method on the lambda so we bind "this" to 624 // the lambda captured by the block. 625 const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda(); 626 SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion); 627 Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx); 628 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 629 } else { 630 Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters(); 631 } 632 633 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 634 Params); 635 } 636 637 638 SVal CXXConstructorCall::getCXXThisVal() const { 639 if (Data) 640 return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); 641 return UnknownVal(); 642 } 643 644 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values, 645 RegionAndSymbolInvalidationTraits *ETraits) const { 646 if (Data) 647 Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data))); 648 } 649 650 void CXXConstructorCall::getInitialStackFrameContents( 651 const StackFrameContext *CalleeCtx, 652 BindingsTy &Bindings) const { 653 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 654 655 SVal ThisVal = getCXXThisVal(); 656 if (!ThisVal.isUnknown()) { 657 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 658 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 659 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 660 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 661 } 662 } 663 664 SVal CXXDestructorCall::getCXXThisVal() const { 665 if (Data) 666 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer()); 667 return UnknownVal(); 668 } 669 670 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { 671 // Base destructors are always called non-virtually. 672 // Skip CXXInstanceCall's devirtualization logic in this case. 673 if (isBaseDestructor()) 674 return AnyFunctionCall::getRuntimeDefinition(); 675 676 return CXXInstanceCall::getRuntimeDefinition(); 677 } 678 679 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const { 680 const ObjCMethodDecl *D = getDecl(); 681 if (!D) 682 return None; 683 return D->parameters(); 684 } 685 686 void ObjCMethodCall::getExtraInvalidatedValues( 687 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 688 689 // If the method call is a setter for property known to be backed by 690 // an instance variable, don't invalidate the entire receiver, just 691 // the storage for that instance variable. 692 if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) { 693 if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) { 694 SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal()); 695 const MemRegion *IvarRegion = IvarLVal.getAsRegion(); 696 ETraits->setTrait( 697 IvarRegion, 698 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 699 ETraits->setTrait(IvarRegion, 700 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 701 Values.push_back(IvarLVal); 702 return; 703 } 704 } 705 706 Values.push_back(getReceiverSVal()); 707 } 708 709 SVal ObjCMethodCall::getSelfSVal() const { 710 const LocationContext *LCtx = getLocationContext(); 711 const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); 712 if (!SelfDecl) 713 return SVal(); 714 return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx)); 715 } 716 717 SVal ObjCMethodCall::getReceiverSVal() const { 718 // FIXME: Is this the best way to handle class receivers? 719 if (!isInstanceMessage()) 720 return UnknownVal(); 721 722 if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) 723 return getSVal(RecE); 724 725 // An instance message with no expression means we are sending to super. 726 // In this case the object reference is the same as 'self'. 727 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); 728 SVal SelfVal = getSelfSVal(); 729 assert(SelfVal.isValid() && "Calling super but not in ObjC method"); 730 return SelfVal; 731 } 732 733 bool ObjCMethodCall::isReceiverSelfOrSuper() const { 734 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || 735 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) 736 return true; 737 738 if (!isInstanceMessage()) 739 return false; 740 741 SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver()); 742 743 return (RecVal == getSelfSVal()); 744 } 745 746 SourceRange ObjCMethodCall::getSourceRange() const { 747 switch (getMessageKind()) { 748 case OCM_Message: 749 return getOriginExpr()->getSourceRange(); 750 case OCM_PropertyAccess: 751 case OCM_Subscript: 752 return getContainingPseudoObjectExpr()->getSourceRange(); 753 } 754 llvm_unreachable("unknown message kind"); 755 } 756 757 typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy; 758 759 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { 760 assert(Data && "Lazy lookup not yet performed."); 761 assert(getMessageKind() != OCM_Message && "Explicit message send."); 762 return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer(); 763 } 764 765 static const Expr * 766 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) { 767 const Expr *Syntactic = POE->getSyntacticForm(); 768 769 // This handles the funny case of assigning to the result of a getter. 770 // This can happen if the getter returns a non-const reference. 771 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic)) 772 Syntactic = BO->getLHS(); 773 774 return Syntactic; 775 } 776 777 ObjCMessageKind ObjCMethodCall::getMessageKind() const { 778 if (!Data) { 779 780 // Find the parent, ignoring implicit casts. 781 ParentMap &PM = getLocationContext()->getParentMap(); 782 const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr()); 783 784 // Check if parent is a PseudoObjectExpr. 785 if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) { 786 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 787 788 ObjCMessageKind K; 789 switch (Syntactic->getStmtClass()) { 790 case Stmt::ObjCPropertyRefExprClass: 791 K = OCM_PropertyAccess; 792 break; 793 case Stmt::ObjCSubscriptRefExprClass: 794 K = OCM_Subscript; 795 break; 796 default: 797 // FIXME: Can this ever happen? 798 K = OCM_Message; 799 break; 800 } 801 802 if (K != OCM_Message) { 803 const_cast<ObjCMethodCall *>(this)->Data 804 = ObjCMessageDataTy(POE, K).getOpaqueValue(); 805 assert(getMessageKind() == K); 806 return K; 807 } 808 } 809 810 const_cast<ObjCMethodCall *>(this)->Data 811 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue(); 812 assert(getMessageKind() == OCM_Message); 813 return OCM_Message; 814 } 815 816 ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data); 817 if (!Info.getPointer()) 818 return OCM_Message; 819 return static_cast<ObjCMessageKind>(Info.getInt()); 820 } 821 822 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const { 823 // Look for properties accessed with property syntax (foo.bar = ...) 824 if ( getMessageKind() == OCM_PropertyAccess) { 825 const PseudoObjectExpr *POE = getContainingPseudoObjectExpr(); 826 assert(POE && "Property access without PseudoObjectExpr?"); 827 828 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 829 auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic); 830 831 if (RefExpr->isExplicitProperty()) 832 return RefExpr->getExplicitProperty(); 833 } 834 835 // Look for properties accessed with method syntax ([foo setBar:...]). 836 const ObjCMethodDecl *MD = getDecl(); 837 if (!MD || !MD->isPropertyAccessor()) 838 return nullptr; 839 840 // Note: This is potentially quite slow. 841 return MD->findPropertyDecl(); 842 } 843 844 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, 845 Selector Sel) const { 846 assert(IDecl); 847 const SourceManager &SM = 848 getState()->getStateManager().getContext().getSourceManager(); 849 850 // If the class interface is declared inside the main file, assume it is not 851 // subcassed. 852 // TODO: It could actually be subclassed if the subclass is private as well. 853 // This is probably very rare. 854 SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); 855 if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc)) 856 return false; 857 858 // Assume that property accessors are not overridden. 859 if (getMessageKind() == OCM_PropertyAccess) 860 return false; 861 862 // We assume that if the method is public (declared outside of main file) or 863 // has a parent which publicly declares the method, the method could be 864 // overridden in a subclass. 865 866 // Find the first declaration in the class hierarchy that declares 867 // the selector. 868 ObjCMethodDecl *D = nullptr; 869 while (true) { 870 D = IDecl->lookupMethod(Sel, true); 871 872 // Cannot find a public definition. 873 if (!D) 874 return false; 875 876 // If outside the main file, 877 if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation())) 878 return true; 879 880 if (D->isOverriding()) { 881 // Search in the superclass on the next iteration. 882 IDecl = D->getClassInterface(); 883 if (!IDecl) 884 return false; 885 886 IDecl = IDecl->getSuperClass(); 887 if (!IDecl) 888 return false; 889 890 continue; 891 } 892 893 return false; 894 }; 895 896 llvm_unreachable("The while loop should always terminate."); 897 } 898 899 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) { 900 if (!MD) 901 return MD; 902 903 // Find the redeclaration that defines the method. 904 if (!MD->hasBody()) { 905 for (auto I : MD->redecls()) 906 if (I->hasBody()) 907 MD = cast<ObjCMethodDecl>(I); 908 } 909 return MD; 910 } 911 912 static bool isCallToSelfClass(const ObjCMessageExpr *ME) { 913 const Expr* InstRec = ME->getInstanceReceiver(); 914 if (!InstRec) 915 return false; 916 const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts()); 917 918 // Check that receiver is called 'self'. 919 if (!InstRecIg || !InstRecIg->getFoundDecl() || 920 !InstRecIg->getFoundDecl()->getName().equals("self")) 921 return false; 922 923 // Check that the method name is 'class'. 924 if (ME->getSelector().getNumArgs() != 0 || 925 !ME->getSelector().getNameForSlot(0).equals("class")) 926 return false; 927 928 return true; 929 } 930 931 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { 932 const ObjCMessageExpr *E = getOriginExpr(); 933 assert(E); 934 Selector Sel = E->getSelector(); 935 936 if (E->isInstanceMessage()) { 937 938 // Find the receiver type. 939 const ObjCObjectPointerType *ReceiverT = nullptr; 940 bool CanBeSubClassed = false; 941 QualType SupersType = E->getSuperType(); 942 const MemRegion *Receiver = nullptr; 943 944 if (!SupersType.isNull()) { 945 // The receiver is guaranteed to be 'super' in this case. 946 // Super always means the type of immediate predecessor to the method 947 // where the call occurs. 948 ReceiverT = cast<ObjCObjectPointerType>(SupersType); 949 } else { 950 Receiver = getReceiverSVal().getAsRegion(); 951 if (!Receiver) 952 return RuntimeDefinition(); 953 954 DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver); 955 QualType DynType = DTI.getType(); 956 CanBeSubClassed = DTI.canBeASubClass(); 957 ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType()); 958 959 if (ReceiverT && CanBeSubClassed) 960 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) 961 if (!canBeOverridenInSubclass(IDecl, Sel)) 962 CanBeSubClassed = false; 963 } 964 965 // Handle special cases of '[self classMethod]' and 966 // '[[self class] classMethod]', which are treated by the compiler as 967 // instance (not class) messages. We will statically dispatch to those. 968 if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) { 969 // For [self classMethod], return the compiler visible declaration. 970 if (PT->getObjectType()->isObjCClass() && 971 Receiver == getSelfSVal().getAsRegion()) 972 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 973 974 // Similarly, handle [[self class] classMethod]. 975 // TODO: We are currently doing a syntactic match for this pattern with is 976 // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m 977 // shows. A better way would be to associate the meta type with the symbol 978 // using the dynamic type info tracking and use it here. We can add a new 979 // SVal for ObjC 'Class' values that know what interface declaration they 980 // come from. Then 'self' in a class method would be filled in with 981 // something meaningful in ObjCMethodCall::getReceiverSVal() and we could 982 // do proper dynamic dispatch for class methods just like we do for 983 // instance methods now. 984 if (E->getInstanceReceiver()) 985 if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver())) 986 if (isCallToSelfClass(M)) 987 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 988 } 989 990 // Lookup the instance method implementation. 991 if (ReceiverT) 992 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) { 993 // Repeatedly calling lookupPrivateMethod() is expensive, especially 994 // when in many cases it returns null. We cache the results so 995 // that repeated queries on the same ObjCIntefaceDecl and Selector 996 // don't incur the same cost. On some test cases, we can see the 997 // same query being issued thousands of times. 998 // 999 // NOTE: This cache is essentially a "global" variable, but it 1000 // only gets lazily created when we get here. The value of the 1001 // cache probably comes from it being global across ExprEngines, 1002 // where the same queries may get issued. If we are worried about 1003 // concurrency, or possibly loading/unloading ASTs, etc., we may 1004 // need to revisit this someday. In terms of memory, this table 1005 // stays around until clang quits, which also may be bad if we 1006 // need to release memory. 1007 typedef std::pair<const ObjCInterfaceDecl*, Selector> 1008 PrivateMethodKey; 1009 typedef llvm::DenseMap<PrivateMethodKey, 1010 Optional<const ObjCMethodDecl *> > 1011 PrivateMethodCache; 1012 1013 static PrivateMethodCache PMC; 1014 Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)]; 1015 1016 // Query lookupPrivateMethod() if the cache does not hit. 1017 if (!Val.hasValue()) { 1018 Val = IDecl->lookupPrivateMethod(Sel); 1019 1020 // If the method is a property accessor, we should try to "inline" it 1021 // even if we don't actually have an implementation. 1022 if (!*Val) 1023 if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl()) 1024 if (CompileTimeMD->isPropertyAccessor()) { 1025 if (!CompileTimeMD->getSelfDecl() && 1026 isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) { 1027 // If the method is an accessor in a category, and it doesn't 1028 // have a self declaration, first 1029 // try to find the method in a class extension. This 1030 // works around a bug in Sema where multiple accessors 1031 // are synthesized for properties in class 1032 // extensions that are redeclared in a category and the 1033 // the implicit parameters are not filled in for 1034 // the method on the category. 1035 // This ensures we find the accessor in the extension, which 1036 // has the implicit parameters filled in. 1037 auto *ID = CompileTimeMD->getClassInterface(); 1038 for (auto *CatDecl : ID->visible_extensions()) { 1039 Val = CatDecl->getMethod(Sel, 1040 CompileTimeMD->isInstanceMethod()); 1041 if (*Val) 1042 break; 1043 } 1044 } 1045 if (!*Val) 1046 Val = IDecl->lookupInstanceMethod(Sel); 1047 } 1048 } 1049 1050 const ObjCMethodDecl *MD = Val.getValue(); 1051 if (CanBeSubClassed) 1052 return RuntimeDefinition(MD, Receiver); 1053 else 1054 return RuntimeDefinition(MD, nullptr); 1055 } 1056 1057 } else { 1058 // This is a class method. 1059 // If we have type info for the receiver class, we are calling via 1060 // class name. 1061 if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { 1062 // Find/Return the method implementation. 1063 return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); 1064 } 1065 } 1066 1067 return RuntimeDefinition(); 1068 } 1069 1070 bool ObjCMethodCall::argumentsMayEscape() const { 1071 if (isInSystemHeader() && !isInstanceMessage()) { 1072 Selector Sel = getSelector(); 1073 if (Sel.getNumArgs() == 1 && 1074 Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer")) 1075 return true; 1076 } 1077 1078 return CallEvent::argumentsMayEscape(); 1079 } 1080 1081 void ObjCMethodCall::getInitialStackFrameContents( 1082 const StackFrameContext *CalleeCtx, 1083 BindingsTy &Bindings) const { 1084 const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl()); 1085 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 1086 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 1087 D->parameters()); 1088 1089 SVal SelfVal = getReceiverSVal(); 1090 if (!SelfVal.isUnknown()) { 1091 const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); 1092 MemRegionManager &MRMgr = SVB.getRegionManager(); 1093 Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx)); 1094 Bindings.push_back(std::make_pair(SelfLoc, SelfVal)); 1095 } 1096 } 1097 1098 CallEventRef<> 1099 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, 1100 const LocationContext *LCtx) { 1101 if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) 1102 return create<CXXMemberCall>(MCE, State, LCtx); 1103 1104 if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 1105 const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); 1106 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) 1107 if (MD->isInstance()) 1108 return create<CXXMemberOperatorCall>(OpCE, State, LCtx); 1109 1110 } else if (CE->getCallee()->getType()->isBlockPointerType()) { 1111 return create<BlockCall>(CE, State, LCtx); 1112 } 1113 1114 // Otherwise, it's a normal function call, static member function call, or 1115 // something we can't reason about. 1116 return create<SimpleFunctionCall>(CE, State, LCtx); 1117 } 1118 1119 1120 CallEventRef<> 1121 CallEventManager::getCaller(const StackFrameContext *CalleeCtx, 1122 ProgramStateRef State) { 1123 const LocationContext *ParentCtx = CalleeCtx->getParent(); 1124 const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame(); 1125 assert(CallerCtx && "This should not be used for top-level stack frames"); 1126 1127 const Stmt *CallSite = CalleeCtx->getCallSite(); 1128 1129 if (CallSite) { 1130 if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite)) 1131 return getSimpleCall(CE, State, CallerCtx); 1132 1133 switch (CallSite->getStmtClass()) { 1134 case Stmt::CXXConstructExprClass: 1135 case Stmt::CXXTemporaryObjectExprClass: { 1136 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1137 const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 1138 Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx); 1139 SVal ThisVal = State->getSVal(ThisPtr); 1140 1141 return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite), 1142 ThisVal.getAsRegion(), State, CallerCtx); 1143 } 1144 case Stmt::CXXNewExprClass: 1145 return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx); 1146 case Stmt::ObjCMessageExprClass: 1147 return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite), 1148 State, CallerCtx); 1149 default: 1150 llvm_unreachable("This is not an inlineable statement."); 1151 } 1152 } 1153 1154 // Fall back to the CFG. The only thing we haven't handled yet is 1155 // destructors, though this could change in the future. 1156 const CFGBlock *B = CalleeCtx->getCallSiteBlock(); 1157 CFGElement E = (*B)[CalleeCtx->getIndex()]; 1158 assert(E.getAs<CFGImplicitDtor>() && 1159 "All other CFG elements should have exprs"); 1160 assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet"); 1161 1162 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1163 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl()); 1164 Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx); 1165 SVal ThisVal = State->getSVal(ThisPtr); 1166 1167 const Stmt *Trigger; 1168 if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>()) 1169 Trigger = AutoDtor->getTriggerStmt(); 1170 else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>()) 1171 Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr()); 1172 else 1173 Trigger = Dtor->getBody(); 1174 1175 return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(), 1176 E.getAs<CFGBaseDtor>().hasValue(), State, 1177 CallerCtx); 1178 } 1179