1 //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file defines CallEvent and its subclasses, which represent path-
11 /// sensitive instances of different kinds of function and method calls
12 /// (C, C++, and Objective-C).
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/AST/ParentMap.h"
18 #include "clang/Analysis/ProgramPoint.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/Support/raw_ostream.h"
24 
25 using namespace clang;
26 using namespace ento;
27 
28 QualType CallEvent::getResultType() const {
29   const Expr *E = getOriginExpr();
30   assert(E && "Calls without origin expressions do not have results");
31   QualType ResultTy = E->getType();
32 
33   ASTContext &Ctx = getState()->getStateManager().getContext();
34 
35   // A function that returns a reference to 'int' will have a result type
36   // of simply 'int'. Check the origin expr's value kind to recover the
37   // proper type.
38   switch (E->getValueKind()) {
39   case VK_LValue:
40     ResultTy = Ctx.getLValueReferenceType(ResultTy);
41     break;
42   case VK_XValue:
43     ResultTy = Ctx.getRValueReferenceType(ResultTy);
44     break;
45   case VK_RValue:
46     // No adjustment is necessary.
47     break;
48   }
49 
50   return ResultTy;
51 }
52 
53 static bool isCallback(QualType T) {
54   // If a parameter is a block or a callback, assume it can modify pointer.
55   if (T->isBlockPointerType() ||
56       T->isFunctionPointerType() ||
57       T->isObjCSelType())
58     return true;
59 
60   // Check if a callback is passed inside a struct (for both, struct passed by
61   // reference and by value). Dig just one level into the struct for now.
62 
63   if (T->isAnyPointerType() || T->isReferenceType())
64     T = T->getPointeeType();
65 
66   if (const RecordType *RT = T->getAsStructureType()) {
67     const RecordDecl *RD = RT->getDecl();
68     for (const auto *I : RD->fields()) {
69       QualType FieldT = I->getType();
70       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
71         return true;
72     }
73   }
74   return false;
75 }
76 
77 static bool isVoidPointerToNonConst(QualType T) {
78   if (const PointerType *PT = T->getAs<PointerType>()) {
79     QualType PointeeTy = PT->getPointeeType();
80     if (PointeeTy.isConstQualified())
81       return false;
82     return PointeeTy->isVoidType();
83   } else
84     return false;
85 }
86 
87 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
88   unsigned NumOfArgs = getNumArgs();
89 
90   // If calling using a function pointer, assume the function does not
91   // satisfy the callback.
92   // TODO: We could check the types of the arguments here.
93   if (!getDecl())
94     return false;
95 
96   unsigned Idx = 0;
97   for (CallEvent::param_type_iterator I = param_type_begin(),
98                                       E = param_type_end();
99        I != E && Idx < NumOfArgs; ++I, ++Idx) {
100     if (NumOfArgs <= Idx)
101       break;
102 
103     // If the parameter is 0, it's harmless.
104     if (getArgSVal(Idx).isZeroConstant())
105       continue;
106 
107     if (Condition(*I))
108       return true;
109   }
110   return false;
111 }
112 
113 bool CallEvent::hasNonZeroCallbackArg() const {
114   return hasNonNullArgumentsWithType(isCallback);
115 }
116 
117 bool CallEvent::hasVoidPointerToNonConstArg() const {
118   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
119 }
120 
121 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
122   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
123   if (!FD)
124     return false;
125 
126   return CheckerContext::isCLibraryFunction(FD, FunctionName);
127 }
128 
129 /// \brief Returns true if a type is a pointer-to-const or reference-to-const
130 /// with no further indirection.
131 static bool isPointerToConst(QualType Ty) {
132   QualType PointeeTy = Ty->getPointeeType();
133   if (PointeeTy == QualType())
134     return false;
135   if (!PointeeTy.isConstQualified())
136     return false;
137   if (PointeeTy->isAnyPointerType())
138     return false;
139   return true;
140 }
141 
142 // Try to retrieve the function declaration and find the function parameter
143 // types which are pointers/references to a non-pointer const.
144 // We will not invalidate the corresponding argument regions.
145 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
146                                  const CallEvent &Call) {
147   unsigned Idx = 0;
148   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
149                                       E = Call.param_type_end();
150        I != E; ++I, ++Idx) {
151     if (isPointerToConst(*I))
152       PreserveArgs.insert(Idx);
153   }
154 }
155 
156 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
157                                              ProgramStateRef Orig) const {
158   ProgramStateRef Result = (Orig ? Orig : getState());
159 
160   // Don't invalidate anything if the callee is marked pure/const.
161   if (const Decl *callee = getDecl())
162     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
163       return Result;
164 
165   SmallVector<SVal, 8> ValuesToInvalidate;
166   RegionAndSymbolInvalidationTraits ETraits;
167 
168   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
169 
170   // Indexes of arguments whose values will be preserved by the call.
171   llvm::SmallSet<unsigned, 4> PreserveArgs;
172   if (!argumentsMayEscape())
173     findPtrToConstParams(PreserveArgs, *this);
174 
175   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
176     // Mark this region for invalidation.  We batch invalidate regions
177     // below for efficiency.
178     if (PreserveArgs.count(Idx))
179       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
180         ETraits.setTrait(MR->getBaseRegion(),
181                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
182         // TODO: Factor this out + handle the lower level const pointers.
183 
184     ValuesToInvalidate.push_back(getArgSVal(Idx));
185   }
186 
187   // Invalidate designated regions using the batch invalidation API.
188   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
189   //  global variables.
190   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
191                                    BlockCount, getLocationContext(),
192                                    /*CausedByPointerEscape*/ true,
193                                    /*Symbols=*/nullptr, this, &ETraits);
194 }
195 
196 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
197                                         const ProgramPointTag *Tag) const {
198   if (const Expr *E = getOriginExpr()) {
199     if (IsPreVisit)
200       return PreStmt(E, getLocationContext(), Tag);
201     return PostStmt(E, getLocationContext(), Tag);
202   }
203 
204   const Decl *D = getDecl();
205   assert(D && "Cannot get a program point without a statement or decl");
206 
207   SourceLocation Loc = getSourceRange().getBegin();
208   if (IsPreVisit)
209     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
210   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
211 }
212 
213 bool CallEvent::isCalled(const CallDescription &CD) const {
214   assert(getKind() != CE_ObjCMessage && "Obj-C methods are not supported");
215   if (!CD.II)
216     CD.II = &getState()->getStateManager().getContext().Idents.get(CD.FuncName);
217   if (getCalleeIdentifier() != CD.II)
218     return false;
219   return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
220           CD.RequiredArgs == getNumArgs());
221 }
222 
223 SVal CallEvent::getArgSVal(unsigned Index) const {
224   const Expr *ArgE = getArgExpr(Index);
225   if (!ArgE)
226     return UnknownVal();
227   return getSVal(ArgE);
228 }
229 
230 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
231   const Expr *ArgE = getArgExpr(Index);
232   if (!ArgE)
233     return SourceRange();
234   return ArgE->getSourceRange();
235 }
236 
237 SVal CallEvent::getReturnValue() const {
238   const Expr *E = getOriginExpr();
239   if (!E)
240     return UndefinedVal();
241   return getSVal(E);
242 }
243 
244 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
245 
246 void CallEvent::dump(raw_ostream &Out) const {
247   ASTContext &Ctx = getState()->getStateManager().getContext();
248   if (const Expr *E = getOriginExpr()) {
249     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
250     Out << "\n";
251     return;
252   }
253 
254   if (const Decl *D = getDecl()) {
255     Out << "Call to ";
256     D->print(Out, Ctx.getPrintingPolicy());
257     return;
258   }
259 
260   // FIXME: a string representation of the kind would be nice.
261   Out << "Unknown call (type " << getKind() << ")";
262 }
263 
264 
265 bool CallEvent::isCallStmt(const Stmt *S) {
266   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
267                           || isa<CXXConstructExpr>(S)
268                           || isa<CXXNewExpr>(S);
269 }
270 
271 QualType CallEvent::getDeclaredResultType(const Decl *D) {
272   assert(D);
273   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
274     return FD->getReturnType();
275   if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
276     return MD->getReturnType();
277   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
278     // Blocks are difficult because the return type may not be stored in the
279     // BlockDecl itself. The AST should probably be enhanced, but for now we
280     // just do what we can.
281     // If the block is declared without an explicit argument list, the
282     // signature-as-written just includes the return type, not the entire
283     // function type.
284     // FIXME: All blocks should have signatures-as-written, even if the return
285     // type is inferred. (That's signified with a dependent result type.)
286     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
287       QualType Ty = TSI->getType();
288       if (const FunctionType *FT = Ty->getAs<FunctionType>())
289         Ty = FT->getReturnType();
290       if (!Ty->isDependentType())
291         return Ty;
292     }
293 
294     return QualType();
295   }
296 
297   llvm_unreachable("unknown callable kind");
298 }
299 
300 bool CallEvent::isVariadic(const Decl *D) {
301   assert(D);
302 
303   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
304     return FD->isVariadic();
305   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
306     return MD->isVariadic();
307   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
308     return BD->isVariadic();
309 
310   llvm_unreachable("unknown callable kind");
311 }
312 
313 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
314                                          CallEvent::BindingsTy &Bindings,
315                                          SValBuilder &SVB,
316                                          const CallEvent &Call,
317                                          ArrayRef<ParmVarDecl*> parameters) {
318   MemRegionManager &MRMgr = SVB.getRegionManager();
319 
320   // If the function has fewer parameters than the call has arguments, we simply
321   // do not bind any values to them.
322   unsigned NumArgs = Call.getNumArgs();
323   unsigned Idx = 0;
324   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
325   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
326     const ParmVarDecl *ParamDecl = *I;
327     assert(ParamDecl && "Formal parameter has no decl?");
328 
329     SVal ArgVal = Call.getArgSVal(Idx);
330     if (!ArgVal.isUnknown()) {
331       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
332       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
333     }
334   }
335 
336   // FIXME: Variadic arguments are not handled at all right now.
337 }
338 
339 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
340   const FunctionDecl *D = getDecl();
341   if (!D)
342     return None;
343   return D->parameters();
344 }
345 
346 void AnyFunctionCall::getInitialStackFrameContents(
347                                         const StackFrameContext *CalleeCtx,
348                                         BindingsTy &Bindings) const {
349   const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
350   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
351   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
352                                D->parameters());
353 }
354 
355 bool AnyFunctionCall::argumentsMayEscape() const {
356   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
357     return true;
358 
359   const FunctionDecl *D = getDecl();
360   if (!D)
361     return true;
362 
363   const IdentifierInfo *II = D->getIdentifier();
364   if (!II)
365     return false;
366 
367   // This set of "escaping" APIs is
368 
369   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
370   //   value into thread local storage. The value can later be retrieved with
371   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
372   //   parameter is 'const void *', the region escapes through the call.
373   if (II->isStr("pthread_setspecific"))
374     return true;
375 
376   // - xpc_connection_set_context stores a value which can be retrieved later
377   //   with xpc_connection_get_context.
378   if (II->isStr("xpc_connection_set_context"))
379     return true;
380 
381   // - funopen - sets a buffer for future IO calls.
382   if (II->isStr("funopen"))
383     return true;
384 
385   // - __cxa_demangle - can reallocate memory and can return the pointer to
386   // the input buffer.
387   if (II->isStr("__cxa_demangle"))
388     return true;
389 
390   StringRef FName = II->getName();
391 
392   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
393   //   buffer even if it is const.
394   if (FName.endswith("NoCopy"))
395     return true;
396 
397   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
398   //   be deallocated by NSMapRemove.
399   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
400     return true;
401 
402   // - Many CF containers allow objects to escape through custom
403   //   allocators/deallocators upon container construction. (PR12101)
404   if (FName.startswith("CF") || FName.startswith("CG")) {
405     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
406            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
407            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
408            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
409            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
410            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
411   }
412 
413   return false;
414 }
415 
416 
417 const FunctionDecl *SimpleFunctionCall::getDecl() const {
418   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
419   if (D)
420     return D;
421 
422   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
423 }
424 
425 
426 const FunctionDecl *CXXInstanceCall::getDecl() const {
427   const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
428   if (!CE)
429     return AnyFunctionCall::getDecl();
430 
431   const FunctionDecl *D = CE->getDirectCallee();
432   if (D)
433     return D;
434 
435   return getSVal(CE->getCallee()).getAsFunctionDecl();
436 }
437 
438 void CXXInstanceCall::getExtraInvalidatedValues(
439     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
440   SVal ThisVal = getCXXThisVal();
441   Values.push_back(ThisVal);
442 
443   // Don't invalidate if the method is const and there are no mutable fields.
444   if (const CXXMethodDecl *D = cast_or_null<CXXMethodDecl>(getDecl())) {
445     if (!D->isConst())
446       return;
447     // Get the record decl for the class of 'This'. D->getParent() may return a
448     // base class decl, rather than the class of the instance which needs to be
449     // checked for mutable fields.
450     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
451     const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl();
452     if (!ParentRecord || ParentRecord->hasMutableFields())
453       return;
454     // Preserve CXXThis.
455     const MemRegion *ThisRegion = ThisVal.getAsRegion();
456     if (!ThisRegion)
457       return;
458 
459     ETraits->setTrait(ThisRegion->getBaseRegion(),
460                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
461   }
462 }
463 
464 SVal CXXInstanceCall::getCXXThisVal() const {
465   const Expr *Base = getCXXThisExpr();
466   // FIXME: This doesn't handle an overloaded ->* operator.
467   if (!Base)
468     return UnknownVal();
469 
470   SVal ThisVal = getSVal(Base);
471   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
472   return ThisVal;
473 }
474 
475 
476 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
477   // Do we have a decl at all?
478   const Decl *D = getDecl();
479   if (!D)
480     return RuntimeDefinition();
481 
482   // If the method is non-virtual, we know we can inline it.
483   const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
484   if (!MD->isVirtual())
485     return AnyFunctionCall::getRuntimeDefinition();
486 
487   // Do we know the implicit 'this' object being called?
488   const MemRegion *R = getCXXThisVal().getAsRegion();
489   if (!R)
490     return RuntimeDefinition();
491 
492   // Do we know anything about the type of 'this'?
493   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
494   if (!DynType.isValid())
495     return RuntimeDefinition();
496 
497   // Is the type a C++ class? (This is mostly a defensive check.)
498   QualType RegionType = DynType.getType()->getPointeeType();
499   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
500 
501   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
502   if (!RD || !RD->hasDefinition())
503     return RuntimeDefinition();
504 
505   // Find the decl for this method in that class.
506   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
507   if (!Result) {
508     // We might not even get the original statically-resolved method due to
509     // some particularly nasty casting (e.g. casts to sister classes).
510     // However, we should at least be able to search up and down our own class
511     // hierarchy, and some real bugs have been caught by checking this.
512     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
513 
514     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
515     // the static type. However, because we currently don't update
516     // DynamicTypeInfo when an object is cast, we can't actually be sure the
517     // DynamicTypeInfo is up to date. This assert should be re-enabled once
518     // this is fixed. <rdar://problem/12287087>
519     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
520 
521     return RuntimeDefinition();
522   }
523 
524   // Does the decl that we found have an implementation?
525   const FunctionDecl *Definition;
526   if (!Result->hasBody(Definition))
527     return RuntimeDefinition();
528 
529   // We found a definition. If we're not sure that this devirtualization is
530   // actually what will happen at runtime, make sure to provide the region so
531   // that ExprEngine can decide what to do with it.
532   if (DynType.canBeASubClass())
533     return RuntimeDefinition(Definition, R->StripCasts());
534   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
535 }
536 
537 void CXXInstanceCall::getInitialStackFrameContents(
538                                             const StackFrameContext *CalleeCtx,
539                                             BindingsTy &Bindings) const {
540   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
541 
542   // Handle the binding of 'this' in the new stack frame.
543   SVal ThisVal = getCXXThisVal();
544   if (!ThisVal.isUnknown()) {
545     ProgramStateManager &StateMgr = getState()->getStateManager();
546     SValBuilder &SVB = StateMgr.getSValBuilder();
547 
548     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
549     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
550 
551     // If we devirtualized to a different member function, we need to make sure
552     // we have the proper layering of CXXBaseObjectRegions.
553     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
554       ASTContext &Ctx = SVB.getContext();
555       const CXXRecordDecl *Class = MD->getParent();
556       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
557 
558       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
559       bool Failed;
560       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
561       assert(!Failed && "Calling an incorrectly devirtualized method");
562     }
563 
564     if (!ThisVal.isUnknown())
565       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
566   }
567 }
568 
569 
570 
571 const Expr *CXXMemberCall::getCXXThisExpr() const {
572   return getOriginExpr()->getImplicitObjectArgument();
573 }
574 
575 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
576   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
577   // id-expression in the class member access expression is a qualified-id,
578   // that function is called. Otherwise, its final overrider in the dynamic type
579   // of the object expression is called.
580   if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
581     if (ME->hasQualifier())
582       return AnyFunctionCall::getRuntimeDefinition();
583 
584   return CXXInstanceCall::getRuntimeDefinition();
585 }
586 
587 
588 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
589   return getOriginExpr()->getArg(0);
590 }
591 
592 
593 const BlockDataRegion *BlockCall::getBlockRegion() const {
594   const Expr *Callee = getOriginExpr()->getCallee();
595   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
596 
597   return dyn_cast_or_null<BlockDataRegion>(DataReg);
598 }
599 
600 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
601   const BlockDecl *D = getDecl();
602   if (!D)
603     return nullptr;
604   return D->parameters();
605 }
606 
607 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
608                   RegionAndSymbolInvalidationTraits *ETraits) const {
609   // FIXME: This also needs to invalidate captured globals.
610   if (const MemRegion *R = getBlockRegion())
611     Values.push_back(loc::MemRegionVal(R));
612 }
613 
614 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
615                                              BindingsTy &Bindings) const {
616   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
617   ArrayRef<ParmVarDecl*> Params;
618   if (isConversionFromLambda()) {
619     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
620     Params = LambdaOperatorDecl->parameters();
621 
622     // For blocks converted from a C++ lambda, the callee declaration is the
623     // operator() method on the lambda so we bind "this" to
624     // the lambda captured by the block.
625     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
626     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
627     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
628     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
629   } else {
630     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
631   }
632 
633   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
634                                Params);
635 }
636 
637 
638 SVal CXXConstructorCall::getCXXThisVal() const {
639   if (Data)
640     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
641   return UnknownVal();
642 }
643 
644 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
645                            RegionAndSymbolInvalidationTraits *ETraits) const {
646   if (Data)
647     Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
648 }
649 
650 void CXXConstructorCall::getInitialStackFrameContents(
651                                              const StackFrameContext *CalleeCtx,
652                                              BindingsTy &Bindings) const {
653   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
654 
655   SVal ThisVal = getCXXThisVal();
656   if (!ThisVal.isUnknown()) {
657     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
658     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
659     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
660     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
661   }
662 }
663 
664 SVal CXXDestructorCall::getCXXThisVal() const {
665   if (Data)
666     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
667   return UnknownVal();
668 }
669 
670 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
671   // Base destructors are always called non-virtually.
672   // Skip CXXInstanceCall's devirtualization logic in this case.
673   if (isBaseDestructor())
674     return AnyFunctionCall::getRuntimeDefinition();
675 
676   return CXXInstanceCall::getRuntimeDefinition();
677 }
678 
679 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
680   const ObjCMethodDecl *D = getDecl();
681   if (!D)
682     return None;
683   return D->parameters();
684 }
685 
686 void ObjCMethodCall::getExtraInvalidatedValues(
687     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
688 
689   // If the method call is a setter for property known to be backed by
690   // an instance variable, don't invalidate the entire receiver, just
691   // the storage for that instance variable.
692   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
693     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
694       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
695       const MemRegion *IvarRegion = IvarLVal.getAsRegion();
696       ETraits->setTrait(
697           IvarRegion,
698           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
699       ETraits->setTrait(IvarRegion,
700                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
701       Values.push_back(IvarLVal);
702       return;
703     }
704   }
705 
706   Values.push_back(getReceiverSVal());
707 }
708 
709 SVal ObjCMethodCall::getSelfSVal() const {
710   const LocationContext *LCtx = getLocationContext();
711   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
712   if (!SelfDecl)
713     return SVal();
714   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
715 }
716 
717 SVal ObjCMethodCall::getReceiverSVal() const {
718   // FIXME: Is this the best way to handle class receivers?
719   if (!isInstanceMessage())
720     return UnknownVal();
721 
722   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
723     return getSVal(RecE);
724 
725   // An instance message with no expression means we are sending to super.
726   // In this case the object reference is the same as 'self'.
727   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
728   SVal SelfVal = getSelfSVal();
729   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
730   return SelfVal;
731 }
732 
733 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
734   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
735       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
736       return true;
737 
738   if (!isInstanceMessage())
739     return false;
740 
741   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
742 
743   return (RecVal == getSelfSVal());
744 }
745 
746 SourceRange ObjCMethodCall::getSourceRange() const {
747   switch (getMessageKind()) {
748   case OCM_Message:
749     return getOriginExpr()->getSourceRange();
750   case OCM_PropertyAccess:
751   case OCM_Subscript:
752     return getContainingPseudoObjectExpr()->getSourceRange();
753   }
754   llvm_unreachable("unknown message kind");
755 }
756 
757 typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
758 
759 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
760   assert(Data && "Lazy lookup not yet performed.");
761   assert(getMessageKind() != OCM_Message && "Explicit message send.");
762   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
763 }
764 
765 static const Expr *
766 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
767   const Expr *Syntactic = POE->getSyntacticForm();
768 
769   // This handles the funny case of assigning to the result of a getter.
770   // This can happen if the getter returns a non-const reference.
771   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
772     Syntactic = BO->getLHS();
773 
774   return Syntactic;
775 }
776 
777 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
778   if (!Data) {
779 
780     // Find the parent, ignoring implicit casts.
781     ParentMap &PM = getLocationContext()->getParentMap();
782     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
783 
784     // Check if parent is a PseudoObjectExpr.
785     if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
786       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
787 
788       ObjCMessageKind K;
789       switch (Syntactic->getStmtClass()) {
790       case Stmt::ObjCPropertyRefExprClass:
791         K = OCM_PropertyAccess;
792         break;
793       case Stmt::ObjCSubscriptRefExprClass:
794         K = OCM_Subscript;
795         break;
796       default:
797         // FIXME: Can this ever happen?
798         K = OCM_Message;
799         break;
800       }
801 
802       if (K != OCM_Message) {
803         const_cast<ObjCMethodCall *>(this)->Data
804           = ObjCMessageDataTy(POE, K).getOpaqueValue();
805         assert(getMessageKind() == K);
806         return K;
807       }
808     }
809 
810     const_cast<ObjCMethodCall *>(this)->Data
811       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
812     assert(getMessageKind() == OCM_Message);
813     return OCM_Message;
814   }
815 
816   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
817   if (!Info.getPointer())
818     return OCM_Message;
819   return static_cast<ObjCMessageKind>(Info.getInt());
820 }
821 
822 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
823   // Look for properties accessed with property syntax (foo.bar = ...)
824   if ( getMessageKind() == OCM_PropertyAccess) {
825     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
826     assert(POE && "Property access without PseudoObjectExpr?");
827 
828     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
829     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
830 
831     if (RefExpr->isExplicitProperty())
832       return RefExpr->getExplicitProperty();
833   }
834 
835   // Look for properties accessed with method syntax ([foo setBar:...]).
836   const ObjCMethodDecl *MD = getDecl();
837   if (!MD || !MD->isPropertyAccessor())
838     return nullptr;
839 
840   // Note: This is potentially quite slow.
841   return MD->findPropertyDecl();
842 }
843 
844 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
845                                              Selector Sel) const {
846   assert(IDecl);
847   const SourceManager &SM =
848     getState()->getStateManager().getContext().getSourceManager();
849 
850   // If the class interface is declared inside the main file, assume it is not
851   // subcassed.
852   // TODO: It could actually be subclassed if the subclass is private as well.
853   // This is probably very rare.
854   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
855   if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
856     return false;
857 
858   // Assume that property accessors are not overridden.
859   if (getMessageKind() == OCM_PropertyAccess)
860     return false;
861 
862   // We assume that if the method is public (declared outside of main file) or
863   // has a parent which publicly declares the method, the method could be
864   // overridden in a subclass.
865 
866   // Find the first declaration in the class hierarchy that declares
867   // the selector.
868   ObjCMethodDecl *D = nullptr;
869   while (true) {
870     D = IDecl->lookupMethod(Sel, true);
871 
872     // Cannot find a public definition.
873     if (!D)
874       return false;
875 
876     // If outside the main file,
877     if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
878       return true;
879 
880     if (D->isOverriding()) {
881       // Search in the superclass on the next iteration.
882       IDecl = D->getClassInterface();
883       if (!IDecl)
884         return false;
885 
886       IDecl = IDecl->getSuperClass();
887       if (!IDecl)
888         return false;
889 
890       continue;
891     }
892 
893     return false;
894   };
895 
896   llvm_unreachable("The while loop should always terminate.");
897 }
898 
899 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
900   if (!MD)
901     return MD;
902 
903   // Find the redeclaration that defines the method.
904   if (!MD->hasBody()) {
905     for (auto I : MD->redecls())
906       if (I->hasBody())
907         MD = cast<ObjCMethodDecl>(I);
908   }
909   return MD;
910 }
911 
912 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
913   const Expr* InstRec = ME->getInstanceReceiver();
914   if (!InstRec)
915     return false;
916   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
917 
918   // Check that receiver is called 'self'.
919   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
920       !InstRecIg->getFoundDecl()->getName().equals("self"))
921     return false;
922 
923   // Check that the method name is 'class'.
924   if (ME->getSelector().getNumArgs() != 0 ||
925       !ME->getSelector().getNameForSlot(0).equals("class"))
926     return false;
927 
928   return true;
929 }
930 
931 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
932   const ObjCMessageExpr *E = getOriginExpr();
933   assert(E);
934   Selector Sel = E->getSelector();
935 
936   if (E->isInstanceMessage()) {
937 
938     // Find the receiver type.
939     const ObjCObjectPointerType *ReceiverT = nullptr;
940     bool CanBeSubClassed = false;
941     QualType SupersType = E->getSuperType();
942     const MemRegion *Receiver = nullptr;
943 
944     if (!SupersType.isNull()) {
945       // The receiver is guaranteed to be 'super' in this case.
946       // Super always means the type of immediate predecessor to the method
947       // where the call occurs.
948       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
949     } else {
950       Receiver = getReceiverSVal().getAsRegion();
951       if (!Receiver)
952         return RuntimeDefinition();
953 
954       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
955       QualType DynType = DTI.getType();
956       CanBeSubClassed = DTI.canBeASubClass();
957       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
958 
959       if (ReceiverT && CanBeSubClassed)
960         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
961           if (!canBeOverridenInSubclass(IDecl, Sel))
962             CanBeSubClassed = false;
963     }
964 
965     // Handle special cases of '[self classMethod]' and
966     // '[[self class] classMethod]', which are treated by the compiler as
967     // instance (not class) messages. We will statically dispatch to those.
968     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
969       // For [self classMethod], return the compiler visible declaration.
970       if (PT->getObjectType()->isObjCClass() &&
971           Receiver == getSelfSVal().getAsRegion())
972         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
973 
974       // Similarly, handle [[self class] classMethod].
975       // TODO: We are currently doing a syntactic match for this pattern with is
976       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
977       // shows. A better way would be to associate the meta type with the symbol
978       // using the dynamic type info tracking and use it here. We can add a new
979       // SVal for ObjC 'Class' values that know what interface declaration they
980       // come from. Then 'self' in a class method would be filled in with
981       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
982       // do proper dynamic dispatch for class methods just like we do for
983       // instance methods now.
984       if (E->getInstanceReceiver())
985         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
986           if (isCallToSelfClass(M))
987             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
988     }
989 
990     // Lookup the instance method implementation.
991     if (ReceiverT)
992       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
993         // Repeatedly calling lookupPrivateMethod() is expensive, especially
994         // when in many cases it returns null.  We cache the results so
995         // that repeated queries on the same ObjCIntefaceDecl and Selector
996         // don't incur the same cost.  On some test cases, we can see the
997         // same query being issued thousands of times.
998         //
999         // NOTE: This cache is essentially a "global" variable, but it
1000         // only gets lazily created when we get here.  The value of the
1001         // cache probably comes from it being global across ExprEngines,
1002         // where the same queries may get issued.  If we are worried about
1003         // concurrency, or possibly loading/unloading ASTs, etc., we may
1004         // need to revisit this someday.  In terms of memory, this table
1005         // stays around until clang quits, which also may be bad if we
1006         // need to release memory.
1007         typedef std::pair<const ObjCInterfaceDecl*, Selector>
1008                 PrivateMethodKey;
1009         typedef llvm::DenseMap<PrivateMethodKey,
1010                                Optional<const ObjCMethodDecl *> >
1011                 PrivateMethodCache;
1012 
1013         static PrivateMethodCache PMC;
1014         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1015 
1016         // Query lookupPrivateMethod() if the cache does not hit.
1017         if (!Val.hasValue()) {
1018           Val = IDecl->lookupPrivateMethod(Sel);
1019 
1020           // If the method is a property accessor, we should try to "inline" it
1021           // even if we don't actually have an implementation.
1022           if (!*Val)
1023             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1024               if (CompileTimeMD->isPropertyAccessor()) {
1025                 if (!CompileTimeMD->getSelfDecl() &&
1026                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1027                   // If the method is an accessor in a category, and it doesn't
1028                   // have a self declaration, first
1029                   // try to find the method in a class extension. This
1030                   // works around a bug in Sema where multiple accessors
1031                   // are synthesized for properties in class
1032                   // extensions that are redeclared in a category and the
1033                   // the implicit parameters are not filled in for
1034                   // the method on the category.
1035                   // This ensures we find the accessor in the extension, which
1036                   // has the implicit parameters filled in.
1037                   auto *ID = CompileTimeMD->getClassInterface();
1038                   for (auto *CatDecl : ID->visible_extensions()) {
1039                     Val = CatDecl->getMethod(Sel,
1040                                              CompileTimeMD->isInstanceMethod());
1041                     if (*Val)
1042                       break;
1043                   }
1044                 }
1045                 if (!*Val)
1046                   Val = IDecl->lookupInstanceMethod(Sel);
1047               }
1048         }
1049 
1050         const ObjCMethodDecl *MD = Val.getValue();
1051         if (CanBeSubClassed)
1052           return RuntimeDefinition(MD, Receiver);
1053         else
1054           return RuntimeDefinition(MD, nullptr);
1055       }
1056 
1057   } else {
1058     // This is a class method.
1059     // If we have type info for the receiver class, we are calling via
1060     // class name.
1061     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1062       // Find/Return the method implementation.
1063       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1064     }
1065   }
1066 
1067   return RuntimeDefinition();
1068 }
1069 
1070 bool ObjCMethodCall::argumentsMayEscape() const {
1071   if (isInSystemHeader() && !isInstanceMessage()) {
1072     Selector Sel = getSelector();
1073     if (Sel.getNumArgs() == 1 &&
1074         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1075       return true;
1076   }
1077 
1078   return CallEvent::argumentsMayEscape();
1079 }
1080 
1081 void ObjCMethodCall::getInitialStackFrameContents(
1082                                              const StackFrameContext *CalleeCtx,
1083                                              BindingsTy &Bindings) const {
1084   const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1085   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1086   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1087                                D->parameters());
1088 
1089   SVal SelfVal = getReceiverSVal();
1090   if (!SelfVal.isUnknown()) {
1091     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1092     MemRegionManager &MRMgr = SVB.getRegionManager();
1093     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1094     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1095   }
1096 }
1097 
1098 CallEventRef<>
1099 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1100                                 const LocationContext *LCtx) {
1101   if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1102     return create<CXXMemberCall>(MCE, State, LCtx);
1103 
1104   if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1105     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1106     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1107       if (MD->isInstance())
1108         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1109 
1110   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1111     return create<BlockCall>(CE, State, LCtx);
1112   }
1113 
1114   // Otherwise, it's a normal function call, static member function call, or
1115   // something we can't reason about.
1116   return create<SimpleFunctionCall>(CE, State, LCtx);
1117 }
1118 
1119 
1120 CallEventRef<>
1121 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1122                             ProgramStateRef State) {
1123   const LocationContext *ParentCtx = CalleeCtx->getParent();
1124   const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
1125   assert(CallerCtx && "This should not be used for top-level stack frames");
1126 
1127   const Stmt *CallSite = CalleeCtx->getCallSite();
1128 
1129   if (CallSite) {
1130     if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
1131       return getSimpleCall(CE, State, CallerCtx);
1132 
1133     switch (CallSite->getStmtClass()) {
1134     case Stmt::CXXConstructExprClass:
1135     case Stmt::CXXTemporaryObjectExprClass: {
1136       SValBuilder &SVB = State->getStateManager().getSValBuilder();
1137       const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1138       Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1139       SVal ThisVal = State->getSVal(ThisPtr);
1140 
1141       return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1142                                    ThisVal.getAsRegion(), State, CallerCtx);
1143     }
1144     case Stmt::CXXNewExprClass:
1145       return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
1146     case Stmt::ObjCMessageExprClass:
1147       return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
1148                                State, CallerCtx);
1149     default:
1150       llvm_unreachable("This is not an inlineable statement.");
1151     }
1152   }
1153 
1154   // Fall back to the CFG. The only thing we haven't handled yet is
1155   // destructors, though this could change in the future.
1156   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1157   CFGElement E = (*B)[CalleeCtx->getIndex()];
1158   assert(E.getAs<CFGImplicitDtor>() &&
1159          "All other CFG elements should have exprs");
1160   assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
1161 
1162   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1163   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1164   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1165   SVal ThisVal = State->getSVal(ThisPtr);
1166 
1167   const Stmt *Trigger;
1168   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1169     Trigger = AutoDtor->getTriggerStmt();
1170   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1171     Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr());
1172   else
1173     Trigger = Dtor->getBody();
1174 
1175   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1176                               E.getAs<CFGBaseDtor>().hasValue(), State,
1177                               CallerCtx);
1178 }
1179