1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/ParentMap.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/Type.h"
27 #include "clang/Analysis/AnalysisDeclContext.h"
28 #include "clang/Analysis/CFG.h"
29 #include "clang/Analysis/CFGStmtMap.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/CrossTU/CrossTranslationUnit.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/PointerIntPair.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <cassert>
62 #include <utility>
63 
64 #define DEBUG_TYPE "static-analyzer-call-event"
65 
66 using namespace clang;
67 using namespace ento;
68 
69 QualType CallEvent::getResultType() const {
70   ASTContext &Ctx = getState()->getStateManager().getContext();
71   const Expr *E = getOriginExpr();
72   if (!E)
73     return Ctx.VoidTy;
74   assert(E);
75 
76   QualType ResultTy = E->getType();
77 
78   // A function that returns a reference to 'int' will have a result type
79   // of simply 'int'. Check the origin expr's value kind to recover the
80   // proper type.
81   switch (E->getValueKind()) {
82   case VK_LValue:
83     ResultTy = Ctx.getLValueReferenceType(ResultTy);
84     break;
85   case VK_XValue:
86     ResultTy = Ctx.getRValueReferenceType(ResultTy);
87     break;
88   case VK_RValue:
89     // No adjustment is necessary.
90     break;
91   }
92 
93   return ResultTy;
94 }
95 
96 static bool isCallback(QualType T) {
97   // If a parameter is a block or a callback, assume it can modify pointer.
98   if (T->isBlockPointerType() ||
99       T->isFunctionPointerType() ||
100       T->isObjCSelType())
101     return true;
102 
103   // Check if a callback is passed inside a struct (for both, struct passed by
104   // reference and by value). Dig just one level into the struct for now.
105 
106   if (T->isAnyPointerType() || T->isReferenceType())
107     T = T->getPointeeType();
108 
109   if (const RecordType *RT = T->getAsStructureType()) {
110     const RecordDecl *RD = RT->getDecl();
111     for (const auto *I : RD->fields()) {
112       QualType FieldT = I->getType();
113       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
114         return true;
115     }
116   }
117   return false;
118 }
119 
120 static bool isVoidPointerToNonConst(QualType T) {
121   if (const auto *PT = T->getAs<PointerType>()) {
122     QualType PointeeTy = PT->getPointeeType();
123     if (PointeeTy.isConstQualified())
124       return false;
125     return PointeeTy->isVoidType();
126   } else
127     return false;
128 }
129 
130 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
131   unsigned NumOfArgs = getNumArgs();
132 
133   // If calling using a function pointer, assume the function does not
134   // satisfy the callback.
135   // TODO: We could check the types of the arguments here.
136   if (!getDecl())
137     return false;
138 
139   unsigned Idx = 0;
140   for (CallEvent::param_type_iterator I = param_type_begin(),
141                                       E = param_type_end();
142        I != E && Idx < NumOfArgs; ++I, ++Idx) {
143     // If the parameter is 0, it's harmless.
144     if (getArgSVal(Idx).isZeroConstant())
145       continue;
146 
147     if (Condition(*I))
148       return true;
149   }
150   return false;
151 }
152 
153 bool CallEvent::hasNonZeroCallbackArg() const {
154   return hasNonNullArgumentsWithType(isCallback);
155 }
156 
157 bool CallEvent::hasVoidPointerToNonConstArg() const {
158   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
159 }
160 
161 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
162   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
163   if (!FD)
164     return false;
165 
166   return CheckerContext::isCLibraryFunction(FD, FunctionName);
167 }
168 
169 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
170   const Decl *D = getDecl();
171   if (!D)
172     return nullptr;
173 
174   // TODO: For now we skip functions without definitions, even if we have
175   // our own getDecl(), because it's hard to find out which re-declaration
176   // is going to be used, and usually clients don't really care about this
177   // situation because there's a loss of precision anyway because we cannot
178   // inline the call.
179   RuntimeDefinition RD = getRuntimeDefinition();
180   if (!RD.getDecl())
181     return nullptr;
182 
183   AnalysisDeclContext *ADC =
184       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
185 
186   // TODO: For now we skip virtual functions, because this also rises
187   // the problem of which decl to use, but now it's across different classes.
188   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
189     return nullptr;
190 
191   return ADC;
192 }
193 
194 const StackFrameContext *
195 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
196   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
197   if (!ADC)
198     return nullptr;
199 
200   const Expr *E = getOriginExpr();
201   if (!E)
202     return nullptr;
203 
204   // Recover CFG block via reverse lookup.
205   // TODO: If we were to keep CFG element information as part of the CallEvent
206   // instead of doing this reverse lookup, we would be able to build the stack
207   // frame for non-expression-based calls, and also we wouldn't need the reverse
208   // lookup.
209   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
210   const CFGBlock *B = Map->getBlock(E);
211   assert(B);
212 
213   // Also recover CFG index by scanning the CFG block.
214   unsigned Idx = 0, Sz = B->size();
215   for (; Idx < Sz; ++Idx)
216     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
217       if (StmtElem->getStmt() == E)
218         break;
219   assert(Idx < Sz);
220 
221   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
222 }
223 
224 const VarRegion *CallEvent::getParameterLocation(unsigned Index,
225                                                  unsigned BlockCount) const {
226   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
227   // We cannot construct a VarRegion without a stack frame.
228   if (!SFC)
229     return nullptr;
230 
231   // Retrieve parameters of the definition, which are different from
232   // CallEvent's parameters() because getDecl() isn't necessarily
233   // the definition. SFC contains the definition that would be used
234   // during analysis.
235   const Decl *D = SFC->getDecl();
236 
237   // TODO: Refactor into a virtual method of CallEvent, like parameters().
238   const ParmVarDecl *PVD = nullptr;
239   if (const auto *FD = dyn_cast<FunctionDecl>(D))
240     PVD = FD->parameters()[Index];
241   else if (const auto *BD = dyn_cast<BlockDecl>(D))
242     PVD = BD->parameters()[Index];
243   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
244     PVD = MD->parameters()[Index];
245   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
246     PVD = CD->parameters()[Index];
247   assert(PVD && "Unexpected Decl kind!");
248 
249   const VarRegion *VR =
250       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
251 
252   // This sanity check would fail if our parameter declaration doesn't
253   // correspond to the stack frame's function declaration.
254   assert(VR->getStackFrame() == SFC);
255 
256   return VR;
257 }
258 
259 /// Returns true if a type is a pointer-to-const or reference-to-const
260 /// with no further indirection.
261 static bool isPointerToConst(QualType Ty) {
262   QualType PointeeTy = Ty->getPointeeType();
263   if (PointeeTy == QualType())
264     return false;
265   if (!PointeeTy.isConstQualified())
266     return false;
267   if (PointeeTy->isAnyPointerType())
268     return false;
269   return true;
270 }
271 
272 // Try to retrieve the function declaration and find the function parameter
273 // types which are pointers/references to a non-pointer const.
274 // We will not invalidate the corresponding argument regions.
275 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
276                                  const CallEvent &Call) {
277   unsigned Idx = 0;
278   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
279                                       E = Call.param_type_end();
280        I != E; ++I, ++Idx) {
281     if (isPointerToConst(*I))
282       PreserveArgs.insert(Idx);
283   }
284 }
285 
286 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
287                                              ProgramStateRef Orig) const {
288   ProgramStateRef Result = (Orig ? Orig : getState());
289 
290   // Don't invalidate anything if the callee is marked pure/const.
291   if (const Decl *callee = getDecl())
292     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
293       return Result;
294 
295   SmallVector<SVal, 8> ValuesToInvalidate;
296   RegionAndSymbolInvalidationTraits ETraits;
297 
298   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
299 
300   // Indexes of arguments whose values will be preserved by the call.
301   llvm::SmallSet<unsigned, 4> PreserveArgs;
302   if (!argumentsMayEscape())
303     findPtrToConstParams(PreserveArgs, *this);
304 
305   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
306     // Mark this region for invalidation.  We batch invalidate regions
307     // below for efficiency.
308     if (PreserveArgs.count(Idx))
309       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
310         ETraits.setTrait(MR->getBaseRegion(),
311                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
312         // TODO: Factor this out + handle the lower level const pointers.
313 
314     ValuesToInvalidate.push_back(getArgSVal(Idx));
315 
316     // If a function accepts an object by argument (which would of course be a
317     // temporary that isn't lifetime-extended), invalidate the object itself,
318     // not only other objects reachable from it. This is necessary because the
319     // destructor has access to the temporary object after the call.
320     // TODO: Support placement arguments once we start
321     // constructing them directly.
322     // TODO: This is unnecessary when there's no destructor, but that's
323     // currently hard to figure out.
324     if (getKind() != CE_CXXAllocator)
325       if (isArgumentConstructedDirectly(Idx))
326         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
327           if (const VarRegion *VR = getParameterLocation(*AdjIdx, BlockCount))
328             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
329   }
330 
331   // Invalidate designated regions using the batch invalidation API.
332   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
333   //  global variables.
334   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
335                                    BlockCount, getLocationContext(),
336                                    /*CausedByPointerEscape*/ true,
337                                    /*Symbols=*/nullptr, this, &ETraits);
338 }
339 
340 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
341                                         const ProgramPointTag *Tag) const {
342   if (const Expr *E = getOriginExpr()) {
343     if (IsPreVisit)
344       return PreStmt(E, getLocationContext(), Tag);
345     return PostStmt(E, getLocationContext(), Tag);
346   }
347 
348   const Decl *D = getDecl();
349   assert(D && "Cannot get a program point without a statement or decl");
350 
351   SourceLocation Loc = getSourceRange().getBegin();
352   if (IsPreVisit)
353     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
354   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
355 }
356 
357 bool CallEvent::isCalled(const CallDescription &CD) const {
358   // FIXME: Add ObjC Message support.
359   if (getKind() == CE_ObjCMessage)
360     return false;
361 
362   const IdentifierInfo *II = getCalleeIdentifier();
363   if (!II)
364     return false;
365   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
366   if (!FD)
367     return false;
368 
369   if (CD.Flags & CDF_MaybeBuiltin) {
370     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
371            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs());
372   }
373 
374   if (!CD.IsLookupDone) {
375     CD.IsLookupDone = true;
376     CD.II = &getState()->getStateManager().getContext().Idents.get(
377         CD.getFunctionName());
378   }
379 
380   if (II != CD.II)
381     return false;
382 
383   // If CallDescription provides prefix names, use them to improve matching
384   // accuracy.
385   if (CD.QualifiedName.size() > 1 && FD) {
386     const DeclContext *Ctx = FD->getDeclContext();
387     // See if we'll be able to match them all.
388     size_t NumUnmatched = CD.QualifiedName.size() - 1;
389     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
390       if (NumUnmatched == 0)
391         break;
392 
393       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
394         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
395           --NumUnmatched;
396         continue;
397       }
398 
399       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
400         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
401           --NumUnmatched;
402         continue;
403       }
404     }
405 
406     if (NumUnmatched > 0)
407       return false;
408   }
409 
410   return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs());
411 }
412 
413 SVal CallEvent::getArgSVal(unsigned Index) const {
414   const Expr *ArgE = getArgExpr(Index);
415   if (!ArgE)
416     return UnknownVal();
417   return getSVal(ArgE);
418 }
419 
420 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
421   const Expr *ArgE = getArgExpr(Index);
422   if (!ArgE)
423     return {};
424   return ArgE->getSourceRange();
425 }
426 
427 SVal CallEvent::getReturnValue() const {
428   const Expr *E = getOriginExpr();
429   if (!E)
430     return UndefinedVal();
431   return getSVal(E);
432 }
433 
434 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
435 
436 void CallEvent::dump(raw_ostream &Out) const {
437   ASTContext &Ctx = getState()->getStateManager().getContext();
438   if (const Expr *E = getOriginExpr()) {
439     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
440     Out << "\n";
441     return;
442   }
443 
444   if (const Decl *D = getDecl()) {
445     Out << "Call to ";
446     D->print(Out, Ctx.getPrintingPolicy());
447     return;
448   }
449 
450   // FIXME: a string representation of the kind would be nice.
451   Out << "Unknown call (type " << getKind() << ")";
452 }
453 
454 bool CallEvent::isCallStmt(const Stmt *S) {
455   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
456                           || isa<CXXConstructExpr>(S)
457                           || isa<CXXNewExpr>(S);
458 }
459 
460 QualType CallEvent::getDeclaredResultType(const Decl *D) {
461   assert(D);
462   if (const auto *FD = dyn_cast<FunctionDecl>(D))
463     return FD->getReturnType();
464   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
465     return MD->getReturnType();
466   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
467     // Blocks are difficult because the return type may not be stored in the
468     // BlockDecl itself. The AST should probably be enhanced, but for now we
469     // just do what we can.
470     // If the block is declared without an explicit argument list, the
471     // signature-as-written just includes the return type, not the entire
472     // function type.
473     // FIXME: All blocks should have signatures-as-written, even if the return
474     // type is inferred. (That's signified with a dependent result type.)
475     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
476       QualType Ty = TSI->getType();
477       if (const FunctionType *FT = Ty->getAs<FunctionType>())
478         Ty = FT->getReturnType();
479       if (!Ty->isDependentType())
480         return Ty;
481     }
482 
483     return {};
484   }
485 
486   llvm_unreachable("unknown callable kind");
487 }
488 
489 bool CallEvent::isVariadic(const Decl *D) {
490   assert(D);
491 
492   if (const auto *FD = dyn_cast<FunctionDecl>(D))
493     return FD->isVariadic();
494   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
495     return MD->isVariadic();
496   if (const auto *BD = dyn_cast<BlockDecl>(D))
497     return BD->isVariadic();
498 
499   llvm_unreachable("unknown callable kind");
500 }
501 
502 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
503                                          CallEvent::BindingsTy &Bindings,
504                                          SValBuilder &SVB,
505                                          const CallEvent &Call,
506                                          ArrayRef<ParmVarDecl*> parameters) {
507   MemRegionManager &MRMgr = SVB.getRegionManager();
508 
509   // If the function has fewer parameters than the call has arguments, we simply
510   // do not bind any values to them.
511   unsigned NumArgs = Call.getNumArgs();
512   unsigned Idx = 0;
513   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
514   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
515     const ParmVarDecl *ParamDecl = *I;
516     assert(ParamDecl && "Formal parameter has no decl?");
517 
518     // TODO: Support allocator calls.
519     if (Call.getKind() != CE_CXXAllocator)
520       if (Call.isArgumentConstructedDirectly(Idx))
521         continue;
522 
523     // TODO: Allocators should receive the correct size and possibly alignment,
524     // determined in compile-time but not represented as arg-expressions,
525     // which makes getArgSVal() fail and return UnknownVal.
526     SVal ArgVal = Call.getArgSVal(Idx);
527     if (!ArgVal.isUnknown()) {
528       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
529       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
530     }
531   }
532 
533   // FIXME: Variadic arguments are not handled at all right now.
534 }
535 
536 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
537   const FunctionDecl *D = getDecl();
538   if (!D)
539     return None;
540   return D->parameters();
541 }
542 
543 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
544   const FunctionDecl *FD = getDecl();
545   if (!FD)
546     return {};
547 
548   // Note that the AnalysisDeclContext will have the FunctionDecl with
549   // the definition (if one exists).
550   AnalysisDeclContext *AD =
551     getLocationContext()->getAnalysisDeclContext()->
552     getManager()->getContext(FD);
553   bool IsAutosynthesized;
554   Stmt* Body = AD->getBody(IsAutosynthesized);
555   LLVM_DEBUG({
556     if (IsAutosynthesized)
557       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
558                    << "\n";
559   });
560   if (Body) {
561     const Decl* Decl = AD->getDecl();
562     return RuntimeDefinition(Decl);
563   }
564 
565   SubEngine &Engine = getState()->getStateManager().getOwningEngine();
566   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
567 
568   // Try to get CTU definition only if CTUDir is provided.
569   if (!Opts.IsNaiveCTUEnabled)
570     return {};
571 
572   cross_tu::CrossTranslationUnitContext &CTUCtx =
573       *Engine.getCrossTranslationUnitContext();
574   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
575       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
576                                   Opts.DisplayCTUProgress);
577 
578   if (!CTUDeclOrError) {
579     handleAllErrors(CTUDeclOrError.takeError(),
580                     [&](const cross_tu::IndexError &IE) {
581                       CTUCtx.emitCrossTUDiagnostics(IE);
582                     });
583     return {};
584   }
585 
586   return RuntimeDefinition(*CTUDeclOrError);
587 }
588 
589 void AnyFunctionCall::getInitialStackFrameContents(
590                                         const StackFrameContext *CalleeCtx,
591                                         BindingsTy &Bindings) const {
592   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
593   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
594   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
595                                D->parameters());
596 }
597 
598 bool AnyFunctionCall::argumentsMayEscape() const {
599   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
600     return true;
601 
602   const FunctionDecl *D = getDecl();
603   if (!D)
604     return true;
605 
606   const IdentifierInfo *II = D->getIdentifier();
607   if (!II)
608     return false;
609 
610   // This set of "escaping" APIs is
611 
612   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
613   //   value into thread local storage. The value can later be retrieved with
614   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
615   //   parameter is 'const void *', the region escapes through the call.
616   if (II->isStr("pthread_setspecific"))
617     return true;
618 
619   // - xpc_connection_set_context stores a value which can be retrieved later
620   //   with xpc_connection_get_context.
621   if (II->isStr("xpc_connection_set_context"))
622     return true;
623 
624   // - funopen - sets a buffer for future IO calls.
625   if (II->isStr("funopen"))
626     return true;
627 
628   // - __cxa_demangle - can reallocate memory and can return the pointer to
629   // the input buffer.
630   if (II->isStr("__cxa_demangle"))
631     return true;
632 
633   StringRef FName = II->getName();
634 
635   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
636   //   buffer even if it is const.
637   if (FName.endswith("NoCopy"))
638     return true;
639 
640   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
641   //   be deallocated by NSMapRemove.
642   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
643     return true;
644 
645   // - Many CF containers allow objects to escape through custom
646   //   allocators/deallocators upon container construction. (PR12101)
647   if (FName.startswith("CF") || FName.startswith("CG")) {
648     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
649            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
650            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
651            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
652            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
653            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
654   }
655 
656   return false;
657 }
658 
659 const FunctionDecl *SimpleFunctionCall::getDecl() const {
660   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
661   if (D)
662     return D;
663 
664   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
665 }
666 
667 const FunctionDecl *CXXInstanceCall::getDecl() const {
668   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
669   if (!CE)
670     return AnyFunctionCall::getDecl();
671 
672   const FunctionDecl *D = CE->getDirectCallee();
673   if (D)
674     return D;
675 
676   return getSVal(CE->getCallee()).getAsFunctionDecl();
677 }
678 
679 void CXXInstanceCall::getExtraInvalidatedValues(
680     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
681   SVal ThisVal = getCXXThisVal();
682   Values.push_back(ThisVal);
683 
684   // Don't invalidate if the method is const and there are no mutable fields.
685   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
686     if (!D->isConst())
687       return;
688     // Get the record decl for the class of 'This'. D->getParent() may return a
689     // base class decl, rather than the class of the instance which needs to be
690     // checked for mutable fields.
691     // TODO: We might as well look at the dynamic type of the object.
692     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
693     QualType T = Ex->getType();
694     if (T->isPointerType()) // Arrow or implicit-this syntax?
695       T = T->getPointeeType();
696     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
697     assert(ParentRecord);
698     if (ParentRecord->hasMutableFields())
699       return;
700     // Preserve CXXThis.
701     const MemRegion *ThisRegion = ThisVal.getAsRegion();
702     if (!ThisRegion)
703       return;
704 
705     ETraits->setTrait(ThisRegion->getBaseRegion(),
706                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
707   }
708 }
709 
710 SVal CXXInstanceCall::getCXXThisVal() const {
711   const Expr *Base = getCXXThisExpr();
712   // FIXME: This doesn't handle an overloaded ->* operator.
713   if (!Base)
714     return UnknownVal();
715 
716   SVal ThisVal = getSVal(Base);
717   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
718   return ThisVal;
719 }
720 
721 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
722   // Do we have a decl at all?
723   const Decl *D = getDecl();
724   if (!D)
725     return {};
726 
727   // If the method is non-virtual, we know we can inline it.
728   const auto *MD = cast<CXXMethodDecl>(D);
729   if (!MD->isVirtual())
730     return AnyFunctionCall::getRuntimeDefinition();
731 
732   // Do we know the implicit 'this' object being called?
733   const MemRegion *R = getCXXThisVal().getAsRegion();
734   if (!R)
735     return {};
736 
737   // Do we know anything about the type of 'this'?
738   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
739   if (!DynType.isValid())
740     return {};
741 
742   // Is the type a C++ class? (This is mostly a defensive check.)
743   QualType RegionType = DynType.getType()->getPointeeType();
744   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
745 
746   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
747   if (!RD || !RD->hasDefinition())
748     return {};
749 
750   // Find the decl for this method in that class.
751   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
752   if (!Result) {
753     // We might not even get the original statically-resolved method due to
754     // some particularly nasty casting (e.g. casts to sister classes).
755     // However, we should at least be able to search up and down our own class
756     // hierarchy, and some real bugs have been caught by checking this.
757     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
758 
759     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
760     // the static type. However, because we currently don't update
761     // DynamicTypeInfo when an object is cast, we can't actually be sure the
762     // DynamicTypeInfo is up to date. This assert should be re-enabled once
763     // this is fixed. <rdar://problem/12287087>
764     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
765 
766     return {};
767   }
768 
769   // Does the decl that we found have an implementation?
770   const FunctionDecl *Definition;
771   if (!Result->hasBody(Definition)) {
772     if (!DynType.canBeASubClass())
773       return AnyFunctionCall::getRuntimeDefinition();
774     return {};
775   }
776 
777   // We found a definition. If we're not sure that this devirtualization is
778   // actually what will happen at runtime, make sure to provide the region so
779   // that ExprEngine can decide what to do with it.
780   if (DynType.canBeASubClass())
781     return RuntimeDefinition(Definition, R->StripCasts());
782   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
783 }
784 
785 void CXXInstanceCall::getInitialStackFrameContents(
786                                             const StackFrameContext *CalleeCtx,
787                                             BindingsTy &Bindings) const {
788   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
789 
790   // Handle the binding of 'this' in the new stack frame.
791   SVal ThisVal = getCXXThisVal();
792   if (!ThisVal.isUnknown()) {
793     ProgramStateManager &StateMgr = getState()->getStateManager();
794     SValBuilder &SVB = StateMgr.getSValBuilder();
795 
796     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
797     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
798 
799     // If we devirtualized to a different member function, we need to make sure
800     // we have the proper layering of CXXBaseObjectRegions.
801     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
802       ASTContext &Ctx = SVB.getContext();
803       const CXXRecordDecl *Class = MD->getParent();
804       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
805 
806       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
807       bool Failed;
808       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
809       if (Failed) {
810         // We might have suffered some sort of placement new earlier, so
811         // we're constructing in a completely unexpected storage.
812         // Fall back to a generic pointer cast for this-value.
813         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
814         const CXXRecordDecl *StaticClass = StaticMD->getParent();
815         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
816         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
817       }
818     }
819 
820     if (!ThisVal.isUnknown())
821       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
822   }
823 }
824 
825 const Expr *CXXMemberCall::getCXXThisExpr() const {
826   return getOriginExpr()->getImplicitObjectArgument();
827 }
828 
829 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
830   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
831   // id-expression in the class member access expression is a qualified-id,
832   // that function is called. Otherwise, its final overrider in the dynamic type
833   // of the object expression is called.
834   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
835     if (ME->hasQualifier())
836       return AnyFunctionCall::getRuntimeDefinition();
837 
838   return CXXInstanceCall::getRuntimeDefinition();
839 }
840 
841 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
842   return getOriginExpr()->getArg(0);
843 }
844 
845 const BlockDataRegion *BlockCall::getBlockRegion() const {
846   const Expr *Callee = getOriginExpr()->getCallee();
847   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
848 
849   return dyn_cast_or_null<BlockDataRegion>(DataReg);
850 }
851 
852 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
853   const BlockDecl *D = getDecl();
854   if (!D)
855     return None;
856   return D->parameters();
857 }
858 
859 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
860                   RegionAndSymbolInvalidationTraits *ETraits) const {
861   // FIXME: This also needs to invalidate captured globals.
862   if (const MemRegion *R = getBlockRegion())
863     Values.push_back(loc::MemRegionVal(R));
864 }
865 
866 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
867                                              BindingsTy &Bindings) const {
868   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
869   ArrayRef<ParmVarDecl*> Params;
870   if (isConversionFromLambda()) {
871     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
872     Params = LambdaOperatorDecl->parameters();
873 
874     // For blocks converted from a C++ lambda, the callee declaration is the
875     // operator() method on the lambda so we bind "this" to
876     // the lambda captured by the block.
877     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
878     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
879     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
880     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
881   } else {
882     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
883   }
884 
885   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
886                                Params);
887 }
888 
889 SVal CXXConstructorCall::getCXXThisVal() const {
890   if (Data)
891     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
892   return UnknownVal();
893 }
894 
895 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
896                            RegionAndSymbolInvalidationTraits *ETraits) const {
897   if (Data) {
898     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
899     if (SymbolRef Sym = MV.getAsSymbol(true))
900       ETraits->setTrait(Sym,
901                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
902     Values.push_back(MV);
903   }
904 }
905 
906 void CXXConstructorCall::getInitialStackFrameContents(
907                                              const StackFrameContext *CalleeCtx,
908                                              BindingsTy &Bindings) const {
909   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
910 
911   SVal ThisVal = getCXXThisVal();
912   if (!ThisVal.isUnknown()) {
913     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
914     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
915     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
916     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
917   }
918 }
919 
920 SVal CXXDestructorCall::getCXXThisVal() const {
921   if (Data)
922     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
923   return UnknownVal();
924 }
925 
926 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
927   // Base destructors are always called non-virtually.
928   // Skip CXXInstanceCall's devirtualization logic in this case.
929   if (isBaseDestructor())
930     return AnyFunctionCall::getRuntimeDefinition();
931 
932   return CXXInstanceCall::getRuntimeDefinition();
933 }
934 
935 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
936   const ObjCMethodDecl *D = getDecl();
937   if (!D)
938     return None;
939   return D->parameters();
940 }
941 
942 void ObjCMethodCall::getExtraInvalidatedValues(
943     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
944 
945   // If the method call is a setter for property known to be backed by
946   // an instance variable, don't invalidate the entire receiver, just
947   // the storage for that instance variable.
948   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
949     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
950       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
951       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
952         ETraits->setTrait(
953           IvarRegion,
954           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
955         ETraits->setTrait(
956           IvarRegion,
957           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
958         Values.push_back(IvarLVal);
959       }
960       return;
961     }
962   }
963 
964   Values.push_back(getReceiverSVal());
965 }
966 
967 SVal ObjCMethodCall::getSelfSVal() const {
968   const LocationContext *LCtx = getLocationContext();
969   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
970   if (!SelfDecl)
971     return SVal();
972   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
973 }
974 
975 SVal ObjCMethodCall::getReceiverSVal() const {
976   // FIXME: Is this the best way to handle class receivers?
977   if (!isInstanceMessage())
978     return UnknownVal();
979 
980   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
981     return getSVal(RecE);
982 
983   // An instance message with no expression means we are sending to super.
984   // In this case the object reference is the same as 'self'.
985   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
986   SVal SelfVal = getSelfSVal();
987   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
988   return SelfVal;
989 }
990 
991 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
992   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
993       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
994       return true;
995 
996   if (!isInstanceMessage())
997     return false;
998 
999   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1000 
1001   return (RecVal == getSelfSVal());
1002 }
1003 
1004 SourceRange ObjCMethodCall::getSourceRange() const {
1005   switch (getMessageKind()) {
1006   case OCM_Message:
1007     return getOriginExpr()->getSourceRange();
1008   case OCM_PropertyAccess:
1009   case OCM_Subscript:
1010     return getContainingPseudoObjectExpr()->getSourceRange();
1011   }
1012   llvm_unreachable("unknown message kind");
1013 }
1014 
1015 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1016 
1017 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1018   assert(Data && "Lazy lookup not yet performed.");
1019   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1020   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1021 }
1022 
1023 static const Expr *
1024 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1025   const Expr *Syntactic = POE->getSyntacticForm();
1026 
1027   // This handles the funny case of assigning to the result of a getter.
1028   // This can happen if the getter returns a non-const reference.
1029   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1030     Syntactic = BO->getLHS();
1031 
1032   return Syntactic;
1033 }
1034 
1035 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1036   if (!Data) {
1037     // Find the parent, ignoring implicit casts.
1038     ParentMap &PM = getLocationContext()->getParentMap();
1039     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1040 
1041     // Check if parent is a PseudoObjectExpr.
1042     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1043       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1044 
1045       ObjCMessageKind K;
1046       switch (Syntactic->getStmtClass()) {
1047       case Stmt::ObjCPropertyRefExprClass:
1048         K = OCM_PropertyAccess;
1049         break;
1050       case Stmt::ObjCSubscriptRefExprClass:
1051         K = OCM_Subscript;
1052         break;
1053       default:
1054         // FIXME: Can this ever happen?
1055         K = OCM_Message;
1056         break;
1057       }
1058 
1059       if (K != OCM_Message) {
1060         const_cast<ObjCMethodCall *>(this)->Data
1061           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1062         assert(getMessageKind() == K);
1063         return K;
1064       }
1065     }
1066 
1067     const_cast<ObjCMethodCall *>(this)->Data
1068       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1069     assert(getMessageKind() == OCM_Message);
1070     return OCM_Message;
1071   }
1072 
1073   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1074   if (!Info.getPointer())
1075     return OCM_Message;
1076   return static_cast<ObjCMessageKind>(Info.getInt());
1077 }
1078 
1079 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1080   // Look for properties accessed with property syntax (foo.bar = ...)
1081   if ( getMessageKind() == OCM_PropertyAccess) {
1082     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1083     assert(POE && "Property access without PseudoObjectExpr?");
1084 
1085     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1086     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1087 
1088     if (RefExpr->isExplicitProperty())
1089       return RefExpr->getExplicitProperty();
1090   }
1091 
1092   // Look for properties accessed with method syntax ([foo setBar:...]).
1093   const ObjCMethodDecl *MD = getDecl();
1094   if (!MD || !MD->isPropertyAccessor())
1095     return nullptr;
1096 
1097   // Note: This is potentially quite slow.
1098   return MD->findPropertyDecl();
1099 }
1100 
1101 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1102                                              Selector Sel) const {
1103   assert(IDecl);
1104   AnalysisManager &AMgr =
1105       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1106   // If the class interface is declared inside the main file, assume it is not
1107   // subcassed.
1108   // TODO: It could actually be subclassed if the subclass is private as well.
1109   // This is probably very rare.
1110   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1111   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1112     return false;
1113 
1114   // Assume that property accessors are not overridden.
1115   if (getMessageKind() == OCM_PropertyAccess)
1116     return false;
1117 
1118   // We assume that if the method is public (declared outside of main file) or
1119   // has a parent which publicly declares the method, the method could be
1120   // overridden in a subclass.
1121 
1122   // Find the first declaration in the class hierarchy that declares
1123   // the selector.
1124   ObjCMethodDecl *D = nullptr;
1125   while (true) {
1126     D = IDecl->lookupMethod(Sel, true);
1127 
1128     // Cannot find a public definition.
1129     if (!D)
1130       return false;
1131 
1132     // If outside the main file,
1133     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1134       return true;
1135 
1136     if (D->isOverriding()) {
1137       // Search in the superclass on the next iteration.
1138       IDecl = D->getClassInterface();
1139       if (!IDecl)
1140         return false;
1141 
1142       IDecl = IDecl->getSuperClass();
1143       if (!IDecl)
1144         return false;
1145 
1146       continue;
1147     }
1148 
1149     return false;
1150   };
1151 
1152   llvm_unreachable("The while loop should always terminate.");
1153 }
1154 
1155 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1156   if (!MD)
1157     return MD;
1158 
1159   // Find the redeclaration that defines the method.
1160   if (!MD->hasBody()) {
1161     for (auto I : MD->redecls())
1162       if (I->hasBody())
1163         MD = cast<ObjCMethodDecl>(I);
1164   }
1165   return MD;
1166 }
1167 
1168 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1169   const Expr* InstRec = ME->getInstanceReceiver();
1170   if (!InstRec)
1171     return false;
1172   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1173 
1174   // Check that receiver is called 'self'.
1175   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1176       !InstRecIg->getFoundDecl()->getName().equals("self"))
1177     return false;
1178 
1179   // Check that the method name is 'class'.
1180   if (ME->getSelector().getNumArgs() != 0 ||
1181       !ME->getSelector().getNameForSlot(0).equals("class"))
1182     return false;
1183 
1184   return true;
1185 }
1186 
1187 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1188   const ObjCMessageExpr *E = getOriginExpr();
1189   assert(E);
1190   Selector Sel = E->getSelector();
1191 
1192   if (E->isInstanceMessage()) {
1193     // Find the receiver type.
1194     const ObjCObjectPointerType *ReceiverT = nullptr;
1195     bool CanBeSubClassed = false;
1196     QualType SupersType = E->getSuperType();
1197     const MemRegion *Receiver = nullptr;
1198 
1199     if (!SupersType.isNull()) {
1200       // The receiver is guaranteed to be 'super' in this case.
1201       // Super always means the type of immediate predecessor to the method
1202       // where the call occurs.
1203       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1204     } else {
1205       Receiver = getReceiverSVal().getAsRegion();
1206       if (!Receiver)
1207         return {};
1208 
1209       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1210       if (!DTI.isValid()) {
1211         assert(isa<AllocaRegion>(Receiver) &&
1212                "Unhandled untyped region class!");
1213         return {};
1214       }
1215 
1216       QualType DynType = DTI.getType();
1217       CanBeSubClassed = DTI.canBeASubClass();
1218       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1219 
1220       if (ReceiverT && CanBeSubClassed)
1221         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1222           if (!canBeOverridenInSubclass(IDecl, Sel))
1223             CanBeSubClassed = false;
1224     }
1225 
1226     // Handle special cases of '[self classMethod]' and
1227     // '[[self class] classMethod]', which are treated by the compiler as
1228     // instance (not class) messages. We will statically dispatch to those.
1229     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1230       // For [self classMethod], return the compiler visible declaration.
1231       if (PT->getObjectType()->isObjCClass() &&
1232           Receiver == getSelfSVal().getAsRegion())
1233         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1234 
1235       // Similarly, handle [[self class] classMethod].
1236       // TODO: We are currently doing a syntactic match for this pattern with is
1237       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1238       // shows. A better way would be to associate the meta type with the symbol
1239       // using the dynamic type info tracking and use it here. We can add a new
1240       // SVal for ObjC 'Class' values that know what interface declaration they
1241       // come from. Then 'self' in a class method would be filled in with
1242       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1243       // do proper dynamic dispatch for class methods just like we do for
1244       // instance methods now.
1245       if (E->getInstanceReceiver())
1246         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1247           if (isCallToSelfClass(M))
1248             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1249     }
1250 
1251     // Lookup the instance method implementation.
1252     if (ReceiverT)
1253       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1254         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1255         // when in many cases it returns null.  We cache the results so
1256         // that repeated queries on the same ObjCIntefaceDecl and Selector
1257         // don't incur the same cost.  On some test cases, we can see the
1258         // same query being issued thousands of times.
1259         //
1260         // NOTE: This cache is essentially a "global" variable, but it
1261         // only gets lazily created when we get here.  The value of the
1262         // cache probably comes from it being global across ExprEngines,
1263         // where the same queries may get issued.  If we are worried about
1264         // concurrency, or possibly loading/unloading ASTs, etc., we may
1265         // need to revisit this someday.  In terms of memory, this table
1266         // stays around until clang quits, which also may be bad if we
1267         // need to release memory.
1268         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1269         using PrivateMethodCache =
1270             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1271 
1272         static PrivateMethodCache PMC;
1273         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1274 
1275         // Query lookupPrivateMethod() if the cache does not hit.
1276         if (!Val.hasValue()) {
1277           Val = IDecl->lookupPrivateMethod(Sel);
1278 
1279           // If the method is a property accessor, we should try to "inline" it
1280           // even if we don't actually have an implementation.
1281           if (!*Val)
1282             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1283               if (CompileTimeMD->isPropertyAccessor()) {
1284                 if (!CompileTimeMD->getSelfDecl() &&
1285                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1286                   // If the method is an accessor in a category, and it doesn't
1287                   // have a self declaration, first
1288                   // try to find the method in a class extension. This
1289                   // works around a bug in Sema where multiple accessors
1290                   // are synthesized for properties in class
1291                   // extensions that are redeclared in a category and the
1292                   // the implicit parameters are not filled in for
1293                   // the method on the category.
1294                   // This ensures we find the accessor in the extension, which
1295                   // has the implicit parameters filled in.
1296                   auto *ID = CompileTimeMD->getClassInterface();
1297                   for (auto *CatDecl : ID->visible_extensions()) {
1298                     Val = CatDecl->getMethod(Sel,
1299                                              CompileTimeMD->isInstanceMethod());
1300                     if (*Val)
1301                       break;
1302                   }
1303                 }
1304                 if (!*Val)
1305                   Val = IDecl->lookupInstanceMethod(Sel);
1306               }
1307         }
1308 
1309         const ObjCMethodDecl *MD = Val.getValue();
1310         if (CanBeSubClassed)
1311           return RuntimeDefinition(MD, Receiver);
1312         else
1313           return RuntimeDefinition(MD, nullptr);
1314       }
1315   } else {
1316     // This is a class method.
1317     // If we have type info for the receiver class, we are calling via
1318     // class name.
1319     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1320       // Find/Return the method implementation.
1321       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1322     }
1323   }
1324 
1325   return {};
1326 }
1327 
1328 bool ObjCMethodCall::argumentsMayEscape() const {
1329   if (isInSystemHeader() && !isInstanceMessage()) {
1330     Selector Sel = getSelector();
1331     if (Sel.getNumArgs() == 1 &&
1332         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1333       return true;
1334   }
1335 
1336   return CallEvent::argumentsMayEscape();
1337 }
1338 
1339 void ObjCMethodCall::getInitialStackFrameContents(
1340                                              const StackFrameContext *CalleeCtx,
1341                                              BindingsTy &Bindings) const {
1342   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1343   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1344   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1345                                D->parameters());
1346 
1347   SVal SelfVal = getReceiverSVal();
1348   if (!SelfVal.isUnknown()) {
1349     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1350     MemRegionManager &MRMgr = SVB.getRegionManager();
1351     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1352     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1353   }
1354 }
1355 
1356 CallEventRef<>
1357 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1358                                 const LocationContext *LCtx) {
1359   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1360     return create<CXXMemberCall>(MCE, State, LCtx);
1361 
1362   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1363     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1364     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1365       if (MD->isInstance())
1366         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1367 
1368   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1369     return create<BlockCall>(CE, State, LCtx);
1370   }
1371 
1372   // Otherwise, it's a normal function call, static member function call, or
1373   // something we can't reason about.
1374   return create<SimpleFunctionCall>(CE, State, LCtx);
1375 }
1376 
1377 CallEventRef<>
1378 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1379                             ProgramStateRef State) {
1380   const LocationContext *ParentCtx = CalleeCtx->getParent();
1381   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1382   assert(CallerCtx && "This should not be used for top-level stack frames");
1383 
1384   const Stmt *CallSite = CalleeCtx->getCallSite();
1385 
1386   if (CallSite) {
1387     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1388       return Out;
1389 
1390     // All other cases are handled by getCall.
1391     assert(isa<CXXConstructExpr>(CallSite) &&
1392            "This is not an inlineable statement");
1393 
1394     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1395     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1396     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1397     SVal ThisVal = State->getSVal(ThisPtr);
1398 
1399     return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1400                                  ThisVal.getAsRegion(), State, CallerCtx);
1401   }
1402 
1403   // Fall back to the CFG. The only thing we haven't handled yet is
1404   // destructors, though this could change in the future.
1405   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1406   CFGElement E = (*B)[CalleeCtx->getIndex()];
1407   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1408          "All other CFG elements should have exprs");
1409 
1410   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1411   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1412   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1413   SVal ThisVal = State->getSVal(ThisPtr);
1414 
1415   const Stmt *Trigger;
1416   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1417     Trigger = AutoDtor->getTriggerStmt();
1418   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1419     Trigger = DeleteDtor->getDeleteExpr();
1420   else
1421     Trigger = Dtor->getBody();
1422 
1423   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1424                               E.getAs<CFGBaseDtor>().hasValue(), State,
1425                               CallerCtx);
1426 }
1427 
1428 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1429                                          const LocationContext *LC) {
1430   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1431     return getSimpleCall(CE, State, LC);
1432   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1433     return getCXXAllocatorCall(NE, State, LC);
1434   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1435     return getObjCMethodCall(ME, State, LC);
1436   } else {
1437     return nullptr;
1438   }
1439 }
1440