1 //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file defines CallEvent and its subclasses, which represent path-
11 /// sensitive instances of different kinds of function and method calls
12 /// (C, C++, and Objective-C).
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/AST/ParentMap.h"
18 #include "clang/Analysis/ProgramPoint.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/raw_ostream.h"
23 
24 using namespace clang;
25 using namespace ento;
26 
27 QualType CallEvent::getResultType() const {
28   const Expr *E = getOriginExpr();
29   assert(E && "Calls without origin expressions do not have results");
30   QualType ResultTy = E->getType();
31 
32   ASTContext &Ctx = getState()->getStateManager().getContext();
33 
34   // A function that returns a reference to 'int' will have a result type
35   // of simply 'int'. Check the origin expr's value kind to recover the
36   // proper type.
37   switch (E->getValueKind()) {
38   case VK_LValue:
39     ResultTy = Ctx.getLValueReferenceType(ResultTy);
40     break;
41   case VK_XValue:
42     ResultTy = Ctx.getRValueReferenceType(ResultTy);
43     break;
44   case VK_RValue:
45     // No adjustment is necessary.
46     break;
47   }
48 
49   return ResultTy;
50 }
51 
52 static bool isCallbackArg(SVal V, QualType T) {
53   // If the parameter is 0, it's harmless.
54   if (V.isZeroConstant())
55     return false;
56 
57   // If a parameter is a block or a callback, assume it can modify pointer.
58   if (T->isBlockPointerType() ||
59       T->isFunctionPointerType() ||
60       T->isObjCSelType())
61     return true;
62 
63   // Check if a callback is passed inside a struct (for both, struct passed by
64   // reference and by value). Dig just one level into the struct for now.
65 
66   if (T->isAnyPointerType() || T->isReferenceType())
67     T = T->getPointeeType();
68 
69   if (const RecordType *RT = T->getAsStructureType()) {
70     const RecordDecl *RD = RT->getDecl();
71     for (const auto *I : RD->fields()) {
72       QualType FieldT = I->getType();
73       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
74         return true;
75     }
76   }
77 
78   return false;
79 }
80 
81 bool CallEvent::hasNonZeroCallbackArg() const {
82   unsigned NumOfArgs = getNumArgs();
83 
84   // If calling using a function pointer, assume the function does not
85   // have a callback. TODO: We could check the types of the arguments here.
86   if (!getDecl())
87     return false;
88 
89   unsigned Idx = 0;
90   for (CallEvent::param_type_iterator I = param_type_begin(),
91                                        E = param_type_end();
92        I != E && Idx < NumOfArgs; ++I, ++Idx) {
93     if (NumOfArgs <= Idx)
94       break;
95 
96     if (isCallbackArg(getArgSVal(Idx), *I))
97       return true;
98   }
99 
100   return false;
101 }
102 
103 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
104   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
105   if (!FD)
106     return false;
107 
108   return CheckerContext::isCLibraryFunction(FD, FunctionName);
109 }
110 
111 /// \brief Returns true if a type is a pointer-to-const or reference-to-const
112 /// with no further indirection.
113 static bool isPointerToConst(QualType Ty) {
114   QualType PointeeTy = Ty->getPointeeType();
115   if (PointeeTy == QualType())
116     return false;
117   if (!PointeeTy.isConstQualified())
118     return false;
119   if (PointeeTy->isAnyPointerType())
120     return false;
121   return true;
122 }
123 
124 // Try to retrieve the function declaration and find the function parameter
125 // types which are pointers/references to a non-pointer const.
126 // We will not invalidate the corresponding argument regions.
127 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
128                                  const CallEvent &Call) {
129   unsigned Idx = 0;
130   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
131                                       E = Call.param_type_end();
132        I != E; ++I, ++Idx) {
133     if (isPointerToConst(*I))
134       PreserveArgs.insert(Idx);
135   }
136 }
137 
138 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
139                                              ProgramStateRef Orig) const {
140   ProgramStateRef Result = (Orig ? Orig : getState());
141 
142   SmallVector<SVal, 8> ValuesToInvalidate;
143   RegionAndSymbolInvalidationTraits ETraits;
144 
145   getExtraInvalidatedValues(ValuesToInvalidate);
146 
147   // Indexes of arguments whose values will be preserved by the call.
148   llvm::SmallSet<unsigned, 4> PreserveArgs;
149   if (!argumentsMayEscape())
150     findPtrToConstParams(PreserveArgs, *this);
151 
152   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
153     // Mark this region for invalidation.  We batch invalidate regions
154     // below for efficiency.
155     if (PreserveArgs.count(Idx))
156       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
157         ETraits.setTrait(MR->StripCasts(),
158                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
159         // TODO: Factor this out + handle the lower level const pointers.
160 
161     ValuesToInvalidate.push_back(getArgSVal(Idx));
162   }
163 
164   // Invalidate designated regions using the batch invalidation API.
165   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
166   //  global variables.
167   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
168                                    BlockCount, getLocationContext(),
169                                    /*CausedByPointerEscape*/ true,
170                                    /*Symbols=*/0, this, &ETraits);
171 }
172 
173 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
174                                         const ProgramPointTag *Tag) const {
175   if (const Expr *E = getOriginExpr()) {
176     if (IsPreVisit)
177       return PreStmt(E, getLocationContext(), Tag);
178     return PostStmt(E, getLocationContext(), Tag);
179   }
180 
181   const Decl *D = getDecl();
182   assert(D && "Cannot get a program point without a statement or decl");
183 
184   SourceLocation Loc = getSourceRange().getBegin();
185   if (IsPreVisit)
186     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
187   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
188 }
189 
190 SVal CallEvent::getArgSVal(unsigned Index) const {
191   const Expr *ArgE = getArgExpr(Index);
192   if (!ArgE)
193     return UnknownVal();
194   return getSVal(ArgE);
195 }
196 
197 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
198   const Expr *ArgE = getArgExpr(Index);
199   if (!ArgE)
200     return SourceRange();
201   return ArgE->getSourceRange();
202 }
203 
204 SVal CallEvent::getReturnValue() const {
205   const Expr *E = getOriginExpr();
206   if (!E)
207     return UndefinedVal();
208   return getSVal(E);
209 }
210 
211 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
212 
213 void CallEvent::dump(raw_ostream &Out) const {
214   ASTContext &Ctx = getState()->getStateManager().getContext();
215   if (const Expr *E = getOriginExpr()) {
216     E->printPretty(Out, 0, Ctx.getPrintingPolicy());
217     Out << "\n";
218     return;
219   }
220 
221   if (const Decl *D = getDecl()) {
222     Out << "Call to ";
223     D->print(Out, Ctx.getPrintingPolicy());
224     return;
225   }
226 
227   // FIXME: a string representation of the kind would be nice.
228   Out << "Unknown call (type " << getKind() << ")";
229 }
230 
231 
232 bool CallEvent::isCallStmt(const Stmt *S) {
233   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
234                           || isa<CXXConstructExpr>(S)
235                           || isa<CXXNewExpr>(S);
236 }
237 
238 QualType CallEvent::getDeclaredResultType(const Decl *D) {
239   assert(D);
240   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
241     return FD->getReturnType();
242   if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
243     return MD->getReturnType();
244   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
245     // Blocks are difficult because the return type may not be stored in the
246     // BlockDecl itself. The AST should probably be enhanced, but for now we
247     // just do what we can.
248     // If the block is declared without an explicit argument list, the
249     // signature-as-written just includes the return type, not the entire
250     // function type.
251     // FIXME: All blocks should have signatures-as-written, even if the return
252     // type is inferred. (That's signified with a dependent result type.)
253     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
254       QualType Ty = TSI->getType();
255       if (const FunctionType *FT = Ty->getAs<FunctionType>())
256         Ty = FT->getReturnType();
257       if (!Ty->isDependentType())
258         return Ty;
259     }
260 
261     return QualType();
262   }
263 
264   llvm_unreachable("unknown callable kind");
265 }
266 
267 bool CallEvent::isVariadic(const Decl *D) {
268   assert(D);
269 
270   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
271     return FD->isVariadic();
272   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
273     return MD->isVariadic();
274   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
275     return BD->isVariadic();
276 
277   llvm_unreachable("unknown callable kind");
278 }
279 
280 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
281                                          CallEvent::BindingsTy &Bindings,
282                                          SValBuilder &SVB,
283                                          const CallEvent &Call,
284                                          ArrayRef<ParmVarDecl*> parameters) {
285   MemRegionManager &MRMgr = SVB.getRegionManager();
286 
287   // If the function has fewer parameters than the call has arguments, we simply
288   // do not bind any values to them.
289   unsigned NumArgs = Call.getNumArgs();
290   unsigned Idx = 0;
291   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
292   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
293     const ParmVarDecl *ParamDecl = *I;
294     assert(ParamDecl && "Formal parameter has no decl?");
295 
296     SVal ArgVal = Call.getArgSVal(Idx);
297     if (!ArgVal.isUnknown()) {
298       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
299       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
300     }
301   }
302 
303   // FIXME: Variadic arguments are not handled at all right now.
304 }
305 
306 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
307   const FunctionDecl *D = getDecl();
308   if (!D)
309     return llvm::ArrayRef<ParmVarDecl*>();
310   return D->parameters();
311 }
312 
313 void AnyFunctionCall::getInitialStackFrameContents(
314                                         const StackFrameContext *CalleeCtx,
315                                         BindingsTy &Bindings) const {
316   const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
317   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
318   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
319                                D->parameters());
320 }
321 
322 bool AnyFunctionCall::argumentsMayEscape() const {
323   if (hasNonZeroCallbackArg())
324     return true;
325 
326   const FunctionDecl *D = getDecl();
327   if (!D)
328     return true;
329 
330   const IdentifierInfo *II = D->getIdentifier();
331   if (!II)
332     return false;
333 
334   // This set of "escaping" APIs is
335 
336   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
337   //   value into thread local storage. The value can later be retrieved with
338   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
339   //   parameter is 'const void *', the region escapes through the call.
340   if (II->isStr("pthread_setspecific"))
341     return true;
342 
343   // - xpc_connection_set_context stores a value which can be retrieved later
344   //   with xpc_connection_get_context.
345   if (II->isStr("xpc_connection_set_context"))
346     return true;
347 
348   // - funopen - sets a buffer for future IO calls.
349   if (II->isStr("funopen"))
350     return true;
351 
352   StringRef FName = II->getName();
353 
354   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
355   //   buffer even if it is const.
356   if (FName.endswith("NoCopy"))
357     return true;
358 
359   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
360   //   be deallocated by NSMapRemove.
361   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
362     return true;
363 
364   // - Many CF containers allow objects to escape through custom
365   //   allocators/deallocators upon container construction. (PR12101)
366   if (FName.startswith("CF") || FName.startswith("CG")) {
367     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
368            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
369            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
370            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
371            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
372            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
373   }
374 
375   return false;
376 }
377 
378 
379 const FunctionDecl *SimpleFunctionCall::getDecl() const {
380   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
381   if (D)
382     return D;
383 
384   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
385 }
386 
387 
388 const FunctionDecl *CXXInstanceCall::getDecl() const {
389   const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
390   if (!CE)
391     return AnyFunctionCall::getDecl();
392 
393   const FunctionDecl *D = CE->getDirectCallee();
394   if (D)
395     return D;
396 
397   return getSVal(CE->getCallee()).getAsFunctionDecl();
398 }
399 
400 void CXXInstanceCall::getExtraInvalidatedValues(ValueList &Values) const {
401   Values.push_back(getCXXThisVal());
402 }
403 
404 SVal CXXInstanceCall::getCXXThisVal() const {
405   const Expr *Base = getCXXThisExpr();
406   // FIXME: This doesn't handle an overloaded ->* operator.
407   if (!Base)
408     return UnknownVal();
409 
410   SVal ThisVal = getSVal(Base);
411   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
412   return ThisVal;
413 }
414 
415 
416 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
417   // Do we have a decl at all?
418   const Decl *D = getDecl();
419   if (!D)
420     return RuntimeDefinition();
421 
422   // If the method is non-virtual, we know we can inline it.
423   const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
424   if (!MD->isVirtual())
425     return AnyFunctionCall::getRuntimeDefinition();
426 
427   // Do we know the implicit 'this' object being called?
428   const MemRegion *R = getCXXThisVal().getAsRegion();
429   if (!R)
430     return RuntimeDefinition();
431 
432   // Do we know anything about the type of 'this'?
433   DynamicTypeInfo DynType = getState()->getDynamicTypeInfo(R);
434   if (!DynType.isValid())
435     return RuntimeDefinition();
436 
437   // Is the type a C++ class? (This is mostly a defensive check.)
438   QualType RegionType = DynType.getType()->getPointeeType();
439   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
440 
441   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
442   if (!RD || !RD->hasDefinition())
443     return RuntimeDefinition();
444 
445   // Find the decl for this method in that class.
446   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
447   if (!Result) {
448     // We might not even get the original statically-resolved method due to
449     // some particularly nasty casting (e.g. casts to sister classes).
450     // However, we should at least be able to search up and down our own class
451     // hierarchy, and some real bugs have been caught by checking this.
452     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
453 
454     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
455     // the static type. However, because we currently don't update
456     // DynamicTypeInfo when an object is cast, we can't actually be sure the
457     // DynamicTypeInfo is up to date. This assert should be re-enabled once
458     // this is fixed. <rdar://problem/12287087>
459     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
460 
461     return RuntimeDefinition();
462   }
463 
464   // Does the decl that we found have an implementation?
465   const FunctionDecl *Definition;
466   if (!Result->hasBody(Definition))
467     return RuntimeDefinition();
468 
469   // We found a definition. If we're not sure that this devirtualization is
470   // actually what will happen at runtime, make sure to provide the region so
471   // that ExprEngine can decide what to do with it.
472   if (DynType.canBeASubClass())
473     return RuntimeDefinition(Definition, R->StripCasts());
474   return RuntimeDefinition(Definition, /*DispatchRegion=*/0);
475 }
476 
477 void CXXInstanceCall::getInitialStackFrameContents(
478                                             const StackFrameContext *CalleeCtx,
479                                             BindingsTy &Bindings) const {
480   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
481 
482   // Handle the binding of 'this' in the new stack frame.
483   SVal ThisVal = getCXXThisVal();
484   if (!ThisVal.isUnknown()) {
485     ProgramStateManager &StateMgr = getState()->getStateManager();
486     SValBuilder &SVB = StateMgr.getSValBuilder();
487 
488     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
489     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
490 
491     // If we devirtualized to a different member function, we need to make sure
492     // we have the proper layering of CXXBaseObjectRegions.
493     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
494       ASTContext &Ctx = SVB.getContext();
495       const CXXRecordDecl *Class = MD->getParent();
496       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
497 
498       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
499       bool Failed;
500       ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
501       assert(!Failed && "Calling an incorrectly devirtualized method");
502     }
503 
504     if (!ThisVal.isUnknown())
505       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
506   }
507 }
508 
509 
510 
511 const Expr *CXXMemberCall::getCXXThisExpr() const {
512   return getOriginExpr()->getImplicitObjectArgument();
513 }
514 
515 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
516   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
517   // id-expression in the class member access expression is a qualified-id,
518   // that function is called. Otherwise, its final overrider in the dynamic type
519   // of the object expression is called.
520   if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
521     if (ME->hasQualifier())
522       return AnyFunctionCall::getRuntimeDefinition();
523 
524   return CXXInstanceCall::getRuntimeDefinition();
525 }
526 
527 
528 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
529   return getOriginExpr()->getArg(0);
530 }
531 
532 
533 const BlockDataRegion *BlockCall::getBlockRegion() const {
534   const Expr *Callee = getOriginExpr()->getCallee();
535   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
536 
537   return dyn_cast_or_null<BlockDataRegion>(DataReg);
538 }
539 
540 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
541   const BlockDecl *D = getDecl();
542   if (!D)
543     return 0;
544   return D->parameters();
545 }
546 
547 void BlockCall::getExtraInvalidatedValues(ValueList &Values) const {
548   // FIXME: This also needs to invalidate captured globals.
549   if (const MemRegion *R = getBlockRegion())
550     Values.push_back(loc::MemRegionVal(R));
551 }
552 
553 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
554                                              BindingsTy &Bindings) const {
555   const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl());
556   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
557   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
558                                D->parameters());
559 }
560 
561 
562 SVal CXXConstructorCall::getCXXThisVal() const {
563   if (Data)
564     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
565   return UnknownVal();
566 }
567 
568 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values) const {
569   if (Data)
570     Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
571 }
572 
573 void CXXConstructorCall::getInitialStackFrameContents(
574                                              const StackFrameContext *CalleeCtx,
575                                              BindingsTy &Bindings) const {
576   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
577 
578   SVal ThisVal = getCXXThisVal();
579   if (!ThisVal.isUnknown()) {
580     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
581     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
582     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
583     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
584   }
585 }
586 
587 SVal CXXDestructorCall::getCXXThisVal() const {
588   if (Data)
589     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
590   return UnknownVal();
591 }
592 
593 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
594   // Base destructors are always called non-virtually.
595   // Skip CXXInstanceCall's devirtualization logic in this case.
596   if (isBaseDestructor())
597     return AnyFunctionCall::getRuntimeDefinition();
598 
599   return CXXInstanceCall::getRuntimeDefinition();
600 }
601 
602 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
603   const ObjCMethodDecl *D = getDecl();
604   if (!D)
605     return ArrayRef<ParmVarDecl*>();
606   return D->parameters();
607 }
608 
609 void
610 ObjCMethodCall::getExtraInvalidatedValues(ValueList &Values) const {
611   Values.push_back(getReceiverSVal());
612 }
613 
614 SVal ObjCMethodCall::getSelfSVal() const {
615   const LocationContext *LCtx = getLocationContext();
616   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
617   if (!SelfDecl)
618     return SVal();
619   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
620 }
621 
622 SVal ObjCMethodCall::getReceiverSVal() const {
623   // FIXME: Is this the best way to handle class receivers?
624   if (!isInstanceMessage())
625     return UnknownVal();
626 
627   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
628     return getSVal(RecE);
629 
630   // An instance message with no expression means we are sending to super.
631   // In this case the object reference is the same as 'self'.
632   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
633   SVal SelfVal = getSelfSVal();
634   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
635   return SelfVal;
636 }
637 
638 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
639   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
640       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
641       return true;
642 
643   if (!isInstanceMessage())
644     return false;
645 
646   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
647 
648   return (RecVal == getSelfSVal());
649 }
650 
651 SourceRange ObjCMethodCall::getSourceRange() const {
652   switch (getMessageKind()) {
653   case OCM_Message:
654     return getOriginExpr()->getSourceRange();
655   case OCM_PropertyAccess:
656   case OCM_Subscript:
657     return getContainingPseudoObjectExpr()->getSourceRange();
658   }
659   llvm_unreachable("unknown message kind");
660 }
661 
662 typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
663 
664 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
665   assert(Data != 0 && "Lazy lookup not yet performed.");
666   assert(getMessageKind() != OCM_Message && "Explicit message send.");
667   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
668 }
669 
670 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
671   if (Data == 0) {
672 
673     // Find the parent, ignoring implicit casts.
674     ParentMap &PM = getLocationContext()->getParentMap();
675     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
676 
677     // Check if parent is a PseudoObjectExpr.
678     if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
679       const Expr *Syntactic = POE->getSyntacticForm();
680 
681       // This handles the funny case of assigning to the result of a getter.
682       // This can happen if the getter returns a non-const reference.
683       if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
684         Syntactic = BO->getLHS();
685 
686       ObjCMessageKind K;
687       switch (Syntactic->getStmtClass()) {
688       case Stmt::ObjCPropertyRefExprClass:
689         K = OCM_PropertyAccess;
690         break;
691       case Stmt::ObjCSubscriptRefExprClass:
692         K = OCM_Subscript;
693         break;
694       default:
695         // FIXME: Can this ever happen?
696         K = OCM_Message;
697         break;
698       }
699 
700       if (K != OCM_Message) {
701         const_cast<ObjCMethodCall *>(this)->Data
702           = ObjCMessageDataTy(POE, K).getOpaqueValue();
703         assert(getMessageKind() == K);
704         return K;
705       }
706     }
707 
708     const_cast<ObjCMethodCall *>(this)->Data
709       = ObjCMessageDataTy(0, 1).getOpaqueValue();
710     assert(getMessageKind() == OCM_Message);
711     return OCM_Message;
712   }
713 
714   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
715   if (!Info.getPointer())
716     return OCM_Message;
717   return static_cast<ObjCMessageKind>(Info.getInt());
718 }
719 
720 
721 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
722                                              Selector Sel) const {
723   assert(IDecl);
724   const SourceManager &SM =
725     getState()->getStateManager().getContext().getSourceManager();
726 
727   // If the class interface is declared inside the main file, assume it is not
728   // subcassed.
729   // TODO: It could actually be subclassed if the subclass is private as well.
730   // This is probably very rare.
731   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
732   if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
733     return false;
734 
735   // Assume that property accessors are not overridden.
736   if (getMessageKind() == OCM_PropertyAccess)
737     return false;
738 
739   // We assume that if the method is public (declared outside of main file) or
740   // has a parent which publicly declares the method, the method could be
741   // overridden in a subclass.
742 
743   // Find the first declaration in the class hierarchy that declares
744   // the selector.
745   ObjCMethodDecl *D = 0;
746   while (true) {
747     D = IDecl->lookupMethod(Sel, true);
748 
749     // Cannot find a public definition.
750     if (!D)
751       return false;
752 
753     // If outside the main file,
754     if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
755       return true;
756 
757     if (D->isOverriding()) {
758       // Search in the superclass on the next iteration.
759       IDecl = D->getClassInterface();
760       if (!IDecl)
761         return false;
762 
763       IDecl = IDecl->getSuperClass();
764       if (!IDecl)
765         return false;
766 
767       continue;
768     }
769 
770     return false;
771   };
772 
773   llvm_unreachable("The while loop should always terminate.");
774 }
775 
776 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
777   const ObjCMessageExpr *E = getOriginExpr();
778   assert(E);
779   Selector Sel = E->getSelector();
780 
781   if (E->isInstanceMessage()) {
782 
783     // Find the the receiver type.
784     const ObjCObjectPointerType *ReceiverT = 0;
785     bool CanBeSubClassed = false;
786     QualType SupersType = E->getSuperType();
787     const MemRegion *Receiver = 0;
788 
789     if (!SupersType.isNull()) {
790       // Super always means the type of immediate predecessor to the method
791       // where the call occurs.
792       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
793     } else {
794       Receiver = getReceiverSVal().getAsRegion();
795       if (!Receiver)
796         return RuntimeDefinition();
797 
798       DynamicTypeInfo DTI = getState()->getDynamicTypeInfo(Receiver);
799       QualType DynType = DTI.getType();
800       CanBeSubClassed = DTI.canBeASubClass();
801       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
802 
803       if (ReceiverT && CanBeSubClassed)
804         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
805           if (!canBeOverridenInSubclass(IDecl, Sel))
806             CanBeSubClassed = false;
807     }
808 
809     // Lookup the method implementation.
810     if (ReceiverT)
811       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
812         // Repeatedly calling lookupPrivateMethod() is expensive, especially
813         // when in many cases it returns null.  We cache the results so
814         // that repeated queries on the same ObjCIntefaceDecl and Selector
815         // don't incur the same cost.  On some test cases, we can see the
816         // same query being issued thousands of times.
817         //
818         // NOTE: This cache is essentially a "global" variable, but it
819         // only gets lazily created when we get here.  The value of the
820         // cache probably comes from it being global across ExprEngines,
821         // where the same queries may get issued.  If we are worried about
822         // concurrency, or possibly loading/unloading ASTs, etc., we may
823         // need to revisit this someday.  In terms of memory, this table
824         // stays around until clang quits, which also may be bad if we
825         // need to release memory.
826         typedef std::pair<const ObjCInterfaceDecl*, Selector>
827                 PrivateMethodKey;
828         typedef llvm::DenseMap<PrivateMethodKey,
829                                Optional<const ObjCMethodDecl *> >
830                 PrivateMethodCache;
831 
832         static PrivateMethodCache PMC;
833         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
834 
835         // Query lookupPrivateMethod() if the cache does not hit.
836         if (!Val.hasValue()) {
837           Val = IDecl->lookupPrivateMethod(Sel);
838 
839           // If the method is a property accessor, we should try to "inline" it
840           // even if we don't actually have an implementation.
841           if (!*Val)
842             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
843               if (CompileTimeMD->isPropertyAccessor())
844                 Val = IDecl->lookupInstanceMethod(Sel);
845         }
846 
847         const ObjCMethodDecl *MD = Val.getValue();
848         if (CanBeSubClassed)
849           return RuntimeDefinition(MD, Receiver);
850         else
851           return RuntimeDefinition(MD, 0);
852       }
853 
854   } else {
855     // This is a class method.
856     // If we have type info for the receiver class, we are calling via
857     // class name.
858     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
859       // Find/Return the method implementation.
860       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
861     }
862   }
863 
864   return RuntimeDefinition();
865 }
866 
867 bool ObjCMethodCall::argumentsMayEscape() const {
868   if (isInSystemHeader() && !isInstanceMessage()) {
869     Selector Sel = getSelector();
870     if (Sel.getNumArgs() == 1 &&
871         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
872       return true;
873   }
874 
875   return CallEvent::argumentsMayEscape();
876 }
877 
878 void ObjCMethodCall::getInitialStackFrameContents(
879                                              const StackFrameContext *CalleeCtx,
880                                              BindingsTy &Bindings) const {
881   const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
882   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
883   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
884                                D->parameters());
885 
886   SVal SelfVal = getReceiverSVal();
887   if (!SelfVal.isUnknown()) {
888     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
889     MemRegionManager &MRMgr = SVB.getRegionManager();
890     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
891     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
892   }
893 }
894 
895 CallEventRef<>
896 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
897                                 const LocationContext *LCtx) {
898   if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
899     return create<CXXMemberCall>(MCE, State, LCtx);
900 
901   if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
902     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
903     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
904       if (MD->isInstance())
905         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
906 
907   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
908     return create<BlockCall>(CE, State, LCtx);
909   }
910 
911   // Otherwise, it's a normal function call, static member function call, or
912   // something we can't reason about.
913   return create<SimpleFunctionCall>(CE, State, LCtx);
914 }
915 
916 
917 CallEventRef<>
918 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
919                             ProgramStateRef State) {
920   const LocationContext *ParentCtx = CalleeCtx->getParent();
921   const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
922   assert(CallerCtx && "This should not be used for top-level stack frames");
923 
924   const Stmt *CallSite = CalleeCtx->getCallSite();
925 
926   if (CallSite) {
927     if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
928       return getSimpleCall(CE, State, CallerCtx);
929 
930     switch (CallSite->getStmtClass()) {
931     case Stmt::CXXConstructExprClass:
932     case Stmt::CXXTemporaryObjectExprClass: {
933       SValBuilder &SVB = State->getStateManager().getSValBuilder();
934       const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
935       Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
936       SVal ThisVal = State->getSVal(ThisPtr);
937 
938       return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
939                                    ThisVal.getAsRegion(), State, CallerCtx);
940     }
941     case Stmt::CXXNewExprClass:
942       return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
943     case Stmt::ObjCMessageExprClass:
944       return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
945                                State, CallerCtx);
946     default:
947       llvm_unreachable("This is not an inlineable statement.");
948     }
949   }
950 
951   // Fall back to the CFG. The only thing we haven't handled yet is
952   // destructors, though this could change in the future.
953   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
954   CFGElement E = (*B)[CalleeCtx->getIndex()];
955   assert(E.getAs<CFGImplicitDtor>() &&
956          "All other CFG elements should have exprs");
957   assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
958 
959   SValBuilder &SVB = State->getStateManager().getSValBuilder();
960   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
961   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
962   SVal ThisVal = State->getSVal(ThisPtr);
963 
964   const Stmt *Trigger;
965   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
966     Trigger = AutoDtor->getTriggerStmt();
967   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
968     Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr());
969   else
970     Trigger = Dtor->getBody();
971 
972   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
973                               E.getAs<CFGBaseDtor>().hasValue(), State,
974                               CallerCtx);
975 }
976