1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/ImmutableList.h"
51 #include "llvm/ADT/None.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/PointerIntPair.h"
54 #include "llvm/ADT/SmallSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <cassert>
64 #include <utility>
65 
66 #define DEBUG_TYPE "static-analyzer-call-event"
67 
68 using namespace clang;
69 using namespace ento;
70 
71 QualType CallEvent::getResultType() const {
72   ASTContext &Ctx = getState()->getStateManager().getContext();
73   const Expr *E = getOriginExpr();
74   if (!E)
75     return Ctx.VoidTy;
76   return Ctx.getReferenceQualifiedType(E);
77 }
78 
79 static bool isCallback(QualType T) {
80   // If a parameter is a block or a callback, assume it can modify pointer.
81   if (T->isBlockPointerType() ||
82       T->isFunctionPointerType() ||
83       T->isObjCSelType())
84     return true;
85 
86   // Check if a callback is passed inside a struct (for both, struct passed by
87   // reference and by value). Dig just one level into the struct for now.
88 
89   if (T->isAnyPointerType() || T->isReferenceType())
90     T = T->getPointeeType();
91 
92   if (const RecordType *RT = T->getAsStructureType()) {
93     const RecordDecl *RD = RT->getDecl();
94     for (const auto *I : RD->fields()) {
95       QualType FieldT = I->getType();
96       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
97         return true;
98     }
99   }
100   return false;
101 }
102 
103 static bool isVoidPointerToNonConst(QualType T) {
104   if (const auto *PT = T->getAs<PointerType>()) {
105     QualType PointeeTy = PT->getPointeeType();
106     if (PointeeTy.isConstQualified())
107       return false;
108     return PointeeTy->isVoidType();
109   } else
110     return false;
111 }
112 
113 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
114   unsigned NumOfArgs = getNumArgs();
115 
116   // If calling using a function pointer, assume the function does not
117   // satisfy the callback.
118   // TODO: We could check the types of the arguments here.
119   if (!getDecl())
120     return false;
121 
122   unsigned Idx = 0;
123   for (CallEvent::param_type_iterator I = param_type_begin(),
124                                       E = param_type_end();
125        I != E && Idx < NumOfArgs; ++I, ++Idx) {
126     // If the parameter is 0, it's harmless.
127     if (getArgSVal(Idx).isZeroConstant())
128       continue;
129 
130     if (Condition(*I))
131       return true;
132   }
133   return false;
134 }
135 
136 bool CallEvent::hasNonZeroCallbackArg() const {
137   return hasNonNullArgumentsWithType(isCallback);
138 }
139 
140 bool CallEvent::hasVoidPointerToNonConstArg() const {
141   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
142 }
143 
144 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
145   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
146   if (!FD)
147     return false;
148 
149   return CheckerContext::isCLibraryFunction(FD, FunctionName);
150 }
151 
152 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
153   const Decl *D = getDecl();
154   if (!D)
155     return nullptr;
156 
157   AnalysisDeclContext *ADC =
158       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
159 
160   return ADC;
161 }
162 
163 const StackFrameContext *
164 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
165   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
166   if (!ADC)
167     return nullptr;
168 
169   const Expr *E = getOriginExpr();
170   if (!E)
171     return nullptr;
172 
173   // Recover CFG block via reverse lookup.
174   // TODO: If we were to keep CFG element information as part of the CallEvent
175   // instead of doing this reverse lookup, we would be able to build the stack
176   // frame for non-expression-based calls, and also we wouldn't need the reverse
177   // lookup.
178   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
179   const CFGBlock *B = Map->getBlock(E);
180   assert(B);
181 
182   // Also recover CFG index by scanning the CFG block.
183   unsigned Idx = 0, Sz = B->size();
184   for (; Idx < Sz; ++Idx)
185     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
186       if (StmtElem->getStmt() == E)
187         break;
188   assert(Idx < Sz);
189 
190   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
191 }
192 
193 const ParamVarRegion
194 *CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
195   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
196   // We cannot construct a VarRegion without a stack frame.
197   if (!SFC)
198     return nullptr;
199 
200   const ParamVarRegion *PVR =
201     State->getStateManager().getRegionManager().getParamVarRegion(
202         getOriginExpr(), Index, SFC);
203   return PVR;
204 }
205 
206 /// Returns true if a type is a pointer-to-const or reference-to-const
207 /// with no further indirection.
208 static bool isPointerToConst(QualType Ty) {
209   QualType PointeeTy = Ty->getPointeeType();
210   if (PointeeTy == QualType())
211     return false;
212   if (!PointeeTy.isConstQualified())
213     return false;
214   if (PointeeTy->isAnyPointerType())
215     return false;
216   return true;
217 }
218 
219 // Try to retrieve the function declaration and find the function parameter
220 // types which are pointers/references to a non-pointer const.
221 // We will not invalidate the corresponding argument regions.
222 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
223                                  const CallEvent &Call) {
224   unsigned Idx = 0;
225   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
226                                       E = Call.param_type_end();
227        I != E; ++I, ++Idx) {
228     if (isPointerToConst(*I))
229       PreserveArgs.insert(Idx);
230   }
231 }
232 
233 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
234                                              ProgramStateRef Orig) const {
235   ProgramStateRef Result = (Orig ? Orig : getState());
236 
237   // Don't invalidate anything if the callee is marked pure/const.
238   if (const Decl *callee = getDecl())
239     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
240       return Result;
241 
242   SmallVector<SVal, 8> ValuesToInvalidate;
243   RegionAndSymbolInvalidationTraits ETraits;
244 
245   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
246 
247   // Indexes of arguments whose values will be preserved by the call.
248   llvm::SmallSet<unsigned, 4> PreserveArgs;
249   if (!argumentsMayEscape())
250     findPtrToConstParams(PreserveArgs, *this);
251 
252   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
253     // Mark this region for invalidation.  We batch invalidate regions
254     // below for efficiency.
255     if (PreserveArgs.count(Idx))
256       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
257         ETraits.setTrait(MR->getBaseRegion(),
258                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
259         // TODO: Factor this out + handle the lower level const pointers.
260 
261     ValuesToInvalidate.push_back(getArgSVal(Idx));
262 
263     // If a function accepts an object by argument (which would of course be a
264     // temporary that isn't lifetime-extended), invalidate the object itself,
265     // not only other objects reachable from it. This is necessary because the
266     // destructor has access to the temporary object after the call.
267     // TODO: Support placement arguments once we start
268     // constructing them directly.
269     // TODO: This is unnecessary when there's no destructor, but that's
270     // currently hard to figure out.
271     if (getKind() != CE_CXXAllocator)
272       if (isArgumentConstructedDirectly(Idx))
273         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
274           if (const TypedValueRegion *TVR =
275                   getParameterLocation(*AdjIdx, BlockCount))
276             ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
277   }
278 
279   // Invalidate designated regions using the batch invalidation API.
280   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
281   //  global variables.
282   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
283                                    BlockCount, getLocationContext(),
284                                    /*CausedByPointerEscape*/ true,
285                                    /*Symbols=*/nullptr, this, &ETraits);
286 }
287 
288 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
289                                         const ProgramPointTag *Tag) const {
290   if (const Expr *E = getOriginExpr()) {
291     if (IsPreVisit)
292       return PreStmt(E, getLocationContext(), Tag);
293     return PostStmt(E, getLocationContext(), Tag);
294   }
295 
296   const Decl *D = getDecl();
297   assert(D && "Cannot get a program point without a statement or decl");
298 
299   SourceLocation Loc = getSourceRange().getBegin();
300   if (IsPreVisit)
301     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
302   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
303 }
304 
305 bool CallEvent::isCalled(const CallDescription &CD) const {
306   // FIXME: Add ObjC Message support.
307   if (getKind() == CE_ObjCMessage)
308     return false;
309 
310   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
311   if (!FD)
312     return false;
313 
314   if (CD.Flags & CDF_MaybeBuiltin) {
315     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
316            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
317            (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
318   }
319 
320   if (!CD.II.hasValue()) {
321     CD.II = &getState()->getStateManager().getContext().Idents.get(
322         CD.getFunctionName());
323   }
324 
325   const auto MatchNameOnly = [](const CallDescription &CD,
326                                 const NamedDecl *ND) -> bool {
327     DeclarationName Name = ND->getDeclName();
328     if (const auto *II = Name.getAsIdentifierInfo())
329       return II == CD.II.getValue(); // Fast case.
330 
331     // Fallback to the slow stringification and comparison for:
332     // C++ overloaded operators, constructors, destructors, etc.
333     // FIXME This comparison is way SLOWER than comparing pointers.
334     // At some point in the future, we should compare FunctionDecl pointers.
335     return Name.getAsString() == CD.getFunctionName();
336   };
337 
338   const auto ExactMatchArgAndParamCounts =
339       [](const CallEvent &Call, const CallDescription &CD) -> bool {
340     const bool ArgsMatch =
341         !CD.RequiredArgs || CD.RequiredArgs == Call.getNumArgs();
342     const bool ParamsMatch =
343         !CD.RequiredParams || CD.RequiredParams == Call.parameters().size();
344     return ArgsMatch && ParamsMatch;
345   };
346 
347   const auto MatchQualifiedNameParts = [](const CallDescription &CD,
348                                           const Decl *D) -> bool {
349     const auto FindNextNamespaceOrRecord =
350         [](const DeclContext *Ctx) -> const DeclContext * {
351       while (Ctx && !isa<NamespaceDecl, RecordDecl>(Ctx))
352         Ctx = Ctx->getParent();
353       return Ctx;
354     };
355 
356     auto QualifierPartsIt = CD.begin_qualified_name_parts();
357     const auto QualifierPartsEndIt = CD.end_qualified_name_parts();
358 
359     // Match namespace and record names. Skip unrelated names if they don't
360     // match.
361     const DeclContext *Ctx = FindNextNamespaceOrRecord(D->getDeclContext());
362     for (; Ctx && QualifierPartsIt != QualifierPartsEndIt;
363          Ctx = FindNextNamespaceOrRecord(Ctx->getParent())) {
364       // If not matched just continue and try matching for the next one.
365       if (cast<NamedDecl>(Ctx)->getName() != *QualifierPartsIt)
366         continue;
367       ++QualifierPartsIt;
368     }
369 
370     // We matched if we consumed all expected qualifier segments.
371     return QualifierPartsIt == QualifierPartsEndIt;
372   };
373 
374   // Let's start matching...
375   if (!ExactMatchArgAndParamCounts(*this, CD))
376     return false;
377 
378   if (!MatchNameOnly(CD, FD))
379     return false;
380 
381   if (!CD.hasQualifiedNameParts())
382     return true;
383 
384   return MatchQualifiedNameParts(CD, FD);
385 }
386 
387 SVal CallEvent::getArgSVal(unsigned Index) const {
388   const Expr *ArgE = getArgExpr(Index);
389   if (!ArgE)
390     return UnknownVal();
391   return getSVal(ArgE);
392 }
393 
394 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
395   const Expr *ArgE = getArgExpr(Index);
396   if (!ArgE)
397     return {};
398   return ArgE->getSourceRange();
399 }
400 
401 SVal CallEvent::getReturnValue() const {
402   const Expr *E = getOriginExpr();
403   if (!E)
404     return UndefinedVal();
405   return getSVal(E);
406 }
407 
408 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
409 
410 void CallEvent::dump(raw_ostream &Out) const {
411   ASTContext &Ctx = getState()->getStateManager().getContext();
412   if (const Expr *E = getOriginExpr()) {
413     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
414     Out << "\n";
415     return;
416   }
417 
418   if (const Decl *D = getDecl()) {
419     Out << "Call to ";
420     D->print(Out, Ctx.getPrintingPolicy());
421     return;
422   }
423 
424   Out << "Unknown call (type " << getKindAsString() << ")";
425 }
426 
427 bool CallEvent::isCallStmt(const Stmt *S) {
428   return isa<CallExpr, ObjCMessageExpr, CXXConstructExpr, CXXNewExpr>(S);
429 }
430 
431 QualType CallEvent::getDeclaredResultType(const Decl *D) {
432   assert(D);
433   if (const auto *FD = dyn_cast<FunctionDecl>(D))
434     return FD->getReturnType();
435   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
436     return MD->getReturnType();
437   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
438     // Blocks are difficult because the return type may not be stored in the
439     // BlockDecl itself. The AST should probably be enhanced, but for now we
440     // just do what we can.
441     // If the block is declared without an explicit argument list, the
442     // signature-as-written just includes the return type, not the entire
443     // function type.
444     // FIXME: All blocks should have signatures-as-written, even if the return
445     // type is inferred. (That's signified with a dependent result type.)
446     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
447       QualType Ty = TSI->getType();
448       if (const FunctionType *FT = Ty->getAs<FunctionType>())
449         Ty = FT->getReturnType();
450       if (!Ty->isDependentType())
451         return Ty;
452     }
453 
454     return {};
455   }
456 
457   llvm_unreachable("unknown callable kind");
458 }
459 
460 bool CallEvent::isVariadic(const Decl *D) {
461   assert(D);
462 
463   if (const auto *FD = dyn_cast<FunctionDecl>(D))
464     return FD->isVariadic();
465   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
466     return MD->isVariadic();
467   if (const auto *BD = dyn_cast<BlockDecl>(D))
468     return BD->isVariadic();
469 
470   llvm_unreachable("unknown callable kind");
471 }
472 
473 static bool isTransparentUnion(QualType T) {
474   const RecordType *UT = T->getAsUnionType();
475   return UT && UT->getDecl()->hasAttr<TransparentUnionAttr>();
476 }
477 
478 // In some cases, symbolic cases should be transformed before we associate
479 // them with parameters.  This function incapsulates such cases.
480 static SVal processArgument(SVal Value, const Expr *ArgumentExpr,
481                             const ParmVarDecl *Parameter, SValBuilder &SVB) {
482   QualType ParamType = Parameter->getType();
483   QualType ArgumentType = ArgumentExpr->getType();
484 
485   // Transparent unions allow users to easily convert values of union field
486   // types into union-typed objects.
487   //
488   // Also, more importantly, they allow users to define functions with different
489   // different parameter types, substituting types matching transparent union
490   // field types with the union type itself.
491   //
492   // Here, we check specifically for latter cases and prevent binding
493   // field-typed values to union-typed regions.
494   if (isTransparentUnion(ParamType) &&
495       // Let's check that we indeed trying to bind different types.
496       !isTransparentUnion(ArgumentType)) {
497     BasicValueFactory &BVF = SVB.getBasicValueFactory();
498 
499     llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList();
500     CompoundSVals = BVF.prependSVal(Value, CompoundSVals);
501 
502     // Wrap it with compound value.
503     return SVB.makeCompoundVal(ParamType, CompoundSVals);
504   }
505 
506   return Value;
507 }
508 
509 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
510                                          CallEvent::BindingsTy &Bindings,
511                                          SValBuilder &SVB,
512                                          const CallEvent &Call,
513                                          ArrayRef<ParmVarDecl*> parameters) {
514   MemRegionManager &MRMgr = SVB.getRegionManager();
515 
516   // If the function has fewer parameters than the call has arguments, we simply
517   // do not bind any values to them.
518   unsigned NumArgs = Call.getNumArgs();
519   unsigned Idx = 0;
520   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
521   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
522     assert(*I && "Formal parameter has no decl?");
523 
524     // TODO: Support allocator calls.
525     if (Call.getKind() != CE_CXXAllocator)
526       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
527         continue;
528 
529     // TODO: Allocators should receive the correct size and possibly alignment,
530     // determined in compile-time but not represented as arg-expressions,
531     // which makes getArgSVal() fail and return UnknownVal.
532     SVal ArgVal = Call.getArgSVal(Idx);
533     const Expr *ArgExpr = Call.getArgExpr(Idx);
534     if (!ArgVal.isUnknown()) {
535       Loc ParamLoc = SVB.makeLoc(
536           MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
537       Bindings.push_back(
538           std::make_pair(ParamLoc, processArgument(ArgVal, ArgExpr, *I, SVB)));
539     }
540   }
541 
542   // FIXME: Variadic arguments are not handled at all right now.
543 }
544 
545 const ConstructionContext *CallEvent::getConstructionContext() const {
546   const StackFrameContext *StackFrame = getCalleeStackFrame(0);
547   if (!StackFrame)
548     return nullptr;
549 
550   const CFGElement Element = StackFrame->getCallSiteCFGElement();
551   if (const auto Ctor = Element.getAs<CFGConstructor>()) {
552     return Ctor->getConstructionContext();
553   }
554 
555   if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
556     return RecCall->getConstructionContext();
557   }
558 
559   return nullptr;
560 }
561 
562 Optional<SVal>
563 CallEvent::getReturnValueUnderConstruction() const {
564   const auto *CC = getConstructionContext();
565   if (!CC)
566     return None;
567 
568   EvalCallOptions CallOpts;
569   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
570   SVal RetVal =
571     Engine.computeObjectUnderConstruction(getOriginExpr(), getState(),
572                                           getLocationContext(), CC, CallOpts);
573   return RetVal;
574 }
575 
576 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
577   const FunctionDecl *D = getDecl();
578   if (!D)
579     return None;
580   return D->parameters();
581 }
582 
583 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
584   const FunctionDecl *FD = getDecl();
585   if (!FD)
586     return {};
587 
588   // Note that the AnalysisDeclContext will have the FunctionDecl with
589   // the definition (if one exists).
590   AnalysisDeclContext *AD =
591     getLocationContext()->getAnalysisDeclContext()->
592     getManager()->getContext(FD);
593   bool IsAutosynthesized;
594   Stmt* Body = AD->getBody(IsAutosynthesized);
595   LLVM_DEBUG({
596     if (IsAutosynthesized)
597       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
598                    << "\n";
599   });
600   if (Body) {
601     const Decl* Decl = AD->getDecl();
602     return RuntimeDefinition(Decl);
603   }
604 
605   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
606   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
607 
608   // Try to get CTU definition only if CTUDir is provided.
609   if (!Opts.IsNaiveCTUEnabled)
610     return {};
611 
612   cross_tu::CrossTranslationUnitContext &CTUCtx =
613       *Engine.getCrossTranslationUnitContext();
614   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
615       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
616                                   Opts.DisplayCTUProgress);
617 
618   if (!CTUDeclOrError) {
619     handleAllErrors(CTUDeclOrError.takeError(),
620                     [&](const cross_tu::IndexError &IE) {
621                       CTUCtx.emitCrossTUDiagnostics(IE);
622                     });
623     return {};
624   }
625 
626   return RuntimeDefinition(*CTUDeclOrError);
627 }
628 
629 void AnyFunctionCall::getInitialStackFrameContents(
630                                         const StackFrameContext *CalleeCtx,
631                                         BindingsTy &Bindings) const {
632   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
633   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
634   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
635                                D->parameters());
636 }
637 
638 bool AnyFunctionCall::argumentsMayEscape() const {
639   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
640     return true;
641 
642   const FunctionDecl *D = getDecl();
643   if (!D)
644     return true;
645 
646   const IdentifierInfo *II = D->getIdentifier();
647   if (!II)
648     return false;
649 
650   // This set of "escaping" APIs is
651 
652   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
653   //   value into thread local storage. The value can later be retrieved with
654   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
655   //   parameter is 'const void *', the region escapes through the call.
656   if (II->isStr("pthread_setspecific"))
657     return true;
658 
659   // - xpc_connection_set_context stores a value which can be retrieved later
660   //   with xpc_connection_get_context.
661   if (II->isStr("xpc_connection_set_context"))
662     return true;
663 
664   // - funopen - sets a buffer for future IO calls.
665   if (II->isStr("funopen"))
666     return true;
667 
668   // - __cxa_demangle - can reallocate memory and can return the pointer to
669   // the input buffer.
670   if (II->isStr("__cxa_demangle"))
671     return true;
672 
673   StringRef FName = II->getName();
674 
675   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
676   //   buffer even if it is const.
677   if (FName.endswith("NoCopy"))
678     return true;
679 
680   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
681   //   be deallocated by NSMapRemove.
682   if (FName.startswith("NS") && FName.contains("Insert"))
683     return true;
684 
685   // - Many CF containers allow objects to escape through custom
686   //   allocators/deallocators upon container construction. (PR12101)
687   if (FName.startswith("CF") || FName.startswith("CG")) {
688     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
689            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
690            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
691            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
692            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
693            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
694   }
695 
696   return false;
697 }
698 
699 const FunctionDecl *SimpleFunctionCall::getDecl() const {
700   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
701   if (D)
702     return D;
703 
704   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
705 }
706 
707 const FunctionDecl *CXXInstanceCall::getDecl() const {
708   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
709   if (!CE)
710     return AnyFunctionCall::getDecl();
711 
712   const FunctionDecl *D = CE->getDirectCallee();
713   if (D)
714     return D;
715 
716   return getSVal(CE->getCallee()).getAsFunctionDecl();
717 }
718 
719 void CXXInstanceCall::getExtraInvalidatedValues(
720     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
721   SVal ThisVal = getCXXThisVal();
722   Values.push_back(ThisVal);
723 
724   // Don't invalidate if the method is const and there are no mutable fields.
725   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
726     if (!D->isConst())
727       return;
728     // Get the record decl for the class of 'This'. D->getParent() may return a
729     // base class decl, rather than the class of the instance which needs to be
730     // checked for mutable fields.
731     // TODO: We might as well look at the dynamic type of the object.
732     const Expr *Ex = getCXXThisExpr()->IgnoreParenBaseCasts();
733     QualType T = Ex->getType();
734     if (T->isPointerType()) // Arrow or implicit-this syntax?
735       T = T->getPointeeType();
736     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
737     assert(ParentRecord);
738     if (ParentRecord->hasMutableFields())
739       return;
740     // Preserve CXXThis.
741     const MemRegion *ThisRegion = ThisVal.getAsRegion();
742     if (!ThisRegion)
743       return;
744 
745     ETraits->setTrait(ThisRegion->getBaseRegion(),
746                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
747   }
748 }
749 
750 SVal CXXInstanceCall::getCXXThisVal() const {
751   const Expr *Base = getCXXThisExpr();
752   // FIXME: This doesn't handle an overloaded ->* operator.
753   if (!Base)
754     return UnknownVal();
755 
756   SVal ThisVal = getSVal(Base);
757   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
758   return ThisVal;
759 }
760 
761 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
762   // Do we have a decl at all?
763   const Decl *D = getDecl();
764   if (!D)
765     return {};
766 
767   // If the method is non-virtual, we know we can inline it.
768   const auto *MD = cast<CXXMethodDecl>(D);
769   if (!MD->isVirtual())
770     return AnyFunctionCall::getRuntimeDefinition();
771 
772   // Do we know the implicit 'this' object being called?
773   const MemRegion *R = getCXXThisVal().getAsRegion();
774   if (!R)
775     return {};
776 
777   // Do we know anything about the type of 'this'?
778   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
779   if (!DynType.isValid())
780     return {};
781 
782   // Is the type a C++ class? (This is mostly a defensive check.)
783   QualType RegionType = DynType.getType()->getPointeeType();
784   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
785 
786   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
787   if (!RD || !RD->hasDefinition())
788     return {};
789 
790   // Find the decl for this method in that class.
791   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
792   if (!Result) {
793     // We might not even get the original statically-resolved method due to
794     // some particularly nasty casting (e.g. casts to sister classes).
795     // However, we should at least be able to search up and down our own class
796     // hierarchy, and some real bugs have been caught by checking this.
797     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
798 
799     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
800     // the static type. However, because we currently don't update
801     // DynamicTypeInfo when an object is cast, we can't actually be sure the
802     // DynamicTypeInfo is up to date. This assert should be re-enabled once
803     // this is fixed. <rdar://problem/12287087>
804     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
805 
806     return {};
807   }
808 
809   // Does the decl that we found have an implementation?
810   const FunctionDecl *Definition;
811   if (!Result->hasBody(Definition)) {
812     if (!DynType.canBeASubClass())
813       return AnyFunctionCall::getRuntimeDefinition();
814     return {};
815   }
816 
817   // We found a definition. If we're not sure that this devirtualization is
818   // actually what will happen at runtime, make sure to provide the region so
819   // that ExprEngine can decide what to do with it.
820   if (DynType.canBeASubClass())
821     return RuntimeDefinition(Definition, R->StripCasts());
822   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
823 }
824 
825 void CXXInstanceCall::getInitialStackFrameContents(
826                                             const StackFrameContext *CalleeCtx,
827                                             BindingsTy &Bindings) const {
828   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
829 
830   // Handle the binding of 'this' in the new stack frame.
831   SVal ThisVal = getCXXThisVal();
832   if (!ThisVal.isUnknown()) {
833     ProgramStateManager &StateMgr = getState()->getStateManager();
834     SValBuilder &SVB = StateMgr.getSValBuilder();
835 
836     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
837     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
838 
839     // If we devirtualized to a different member function, we need to make sure
840     // we have the proper layering of CXXBaseObjectRegions.
841     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
842       ASTContext &Ctx = SVB.getContext();
843       const CXXRecordDecl *Class = MD->getParent();
844       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
845 
846       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
847       bool Failed;
848       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
849       if (Failed) {
850         // We might have suffered some sort of placement new earlier, so
851         // we're constructing in a completely unexpected storage.
852         // Fall back to a generic pointer cast for this-value.
853         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
854         const CXXRecordDecl *StaticClass = StaticMD->getParent();
855         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
856         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
857       }
858     }
859 
860     if (!ThisVal.isUnknown())
861       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
862   }
863 }
864 
865 const Expr *CXXMemberCall::getCXXThisExpr() const {
866   return getOriginExpr()->getImplicitObjectArgument();
867 }
868 
869 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
870   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
871   // id-expression in the class member access expression is a qualified-id,
872   // that function is called. Otherwise, its final overrider in the dynamic type
873   // of the object expression is called.
874   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
875     if (ME->hasQualifier())
876       return AnyFunctionCall::getRuntimeDefinition();
877 
878   return CXXInstanceCall::getRuntimeDefinition();
879 }
880 
881 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
882   return getOriginExpr()->getArg(0);
883 }
884 
885 const BlockDataRegion *BlockCall::getBlockRegion() const {
886   const Expr *Callee = getOriginExpr()->getCallee();
887   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
888 
889   return dyn_cast_or_null<BlockDataRegion>(DataReg);
890 }
891 
892 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
893   const BlockDecl *D = getDecl();
894   if (!D)
895     return None;
896   return D->parameters();
897 }
898 
899 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
900                   RegionAndSymbolInvalidationTraits *ETraits) const {
901   // FIXME: This also needs to invalidate captured globals.
902   if (const MemRegion *R = getBlockRegion())
903     Values.push_back(loc::MemRegionVal(R));
904 }
905 
906 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
907                                              BindingsTy &Bindings) const {
908   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
909   ArrayRef<ParmVarDecl*> Params;
910   if (isConversionFromLambda()) {
911     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
912     Params = LambdaOperatorDecl->parameters();
913 
914     // For blocks converted from a C++ lambda, the callee declaration is the
915     // operator() method on the lambda so we bind "this" to
916     // the lambda captured by the block.
917     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
918     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
919     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
920     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
921   } else {
922     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
923   }
924 
925   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
926                                Params);
927 }
928 
929 SVal AnyCXXConstructorCall::getCXXThisVal() const {
930   if (Data)
931     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
932   return UnknownVal();
933 }
934 
935 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
936                            RegionAndSymbolInvalidationTraits *ETraits) const {
937   SVal V = getCXXThisVal();
938   if (SymbolRef Sym = V.getAsSymbol(true))
939     ETraits->setTrait(Sym,
940                       RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
941   Values.push_back(V);
942 }
943 
944 void AnyCXXConstructorCall::getInitialStackFrameContents(
945                                              const StackFrameContext *CalleeCtx,
946                                              BindingsTy &Bindings) const {
947   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
948 
949   SVal ThisVal = getCXXThisVal();
950   if (!ThisVal.isUnknown()) {
951     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
952     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
953     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
954     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
955   }
956 }
957 
958 const StackFrameContext *
959 CXXInheritedConstructorCall::getInheritingStackFrame() const {
960   const StackFrameContext *SFC = getLocationContext()->getStackFrame();
961   while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
962     SFC = SFC->getParent()->getStackFrame();
963   return SFC;
964 }
965 
966 SVal CXXDestructorCall::getCXXThisVal() const {
967   if (Data)
968     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
969   return UnknownVal();
970 }
971 
972 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
973   // Base destructors are always called non-virtually.
974   // Skip CXXInstanceCall's devirtualization logic in this case.
975   if (isBaseDestructor())
976     return AnyFunctionCall::getRuntimeDefinition();
977 
978   return CXXInstanceCall::getRuntimeDefinition();
979 }
980 
981 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
982   const ObjCMethodDecl *D = getDecl();
983   if (!D)
984     return None;
985   return D->parameters();
986 }
987 
988 void ObjCMethodCall::getExtraInvalidatedValues(
989     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
990 
991   // If the method call is a setter for property known to be backed by
992   // an instance variable, don't invalidate the entire receiver, just
993   // the storage for that instance variable.
994   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
995     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
996       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
997       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
998         ETraits->setTrait(
999           IvarRegion,
1000           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1001         ETraits->setTrait(
1002           IvarRegion,
1003           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
1004         Values.push_back(IvarLVal);
1005       }
1006       return;
1007     }
1008   }
1009 
1010   Values.push_back(getReceiverSVal());
1011 }
1012 
1013 SVal ObjCMethodCall::getReceiverSVal() const {
1014   // FIXME: Is this the best way to handle class receivers?
1015   if (!isInstanceMessage())
1016     return UnknownVal();
1017 
1018   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
1019     return getSVal(RecE);
1020 
1021   // An instance message with no expression means we are sending to super.
1022   // In this case the object reference is the same as 'self'.
1023   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
1024   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1025   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
1026   return SelfVal;
1027 }
1028 
1029 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
1030   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
1031       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
1032       return true;
1033 
1034   if (!isInstanceMessage())
1035     return false;
1036 
1037   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1038   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1039 
1040   return (RecVal == SelfVal);
1041 }
1042 
1043 SourceRange ObjCMethodCall::getSourceRange() const {
1044   switch (getMessageKind()) {
1045   case OCM_Message:
1046     return getOriginExpr()->getSourceRange();
1047   case OCM_PropertyAccess:
1048   case OCM_Subscript:
1049     return getContainingPseudoObjectExpr()->getSourceRange();
1050   }
1051   llvm_unreachable("unknown message kind");
1052 }
1053 
1054 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1055 
1056 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1057   assert(Data && "Lazy lookup not yet performed.");
1058   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1059   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1060 }
1061 
1062 static const Expr *
1063 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1064   const Expr *Syntactic = POE->getSyntacticForm()->IgnoreParens();
1065 
1066   // This handles the funny case of assigning to the result of a getter.
1067   // This can happen if the getter returns a non-const reference.
1068   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1069     Syntactic = BO->getLHS()->IgnoreParens();
1070 
1071   return Syntactic;
1072 }
1073 
1074 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1075   if (!Data) {
1076     // Find the parent, ignoring implicit casts.
1077     const ParentMap &PM = getLocationContext()->getParentMap();
1078     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1079 
1080     // Check if parent is a PseudoObjectExpr.
1081     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1082       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1083 
1084       ObjCMessageKind K;
1085       switch (Syntactic->getStmtClass()) {
1086       case Stmt::ObjCPropertyRefExprClass:
1087         K = OCM_PropertyAccess;
1088         break;
1089       case Stmt::ObjCSubscriptRefExprClass:
1090         K = OCM_Subscript;
1091         break;
1092       default:
1093         // FIXME: Can this ever happen?
1094         K = OCM_Message;
1095         break;
1096       }
1097 
1098       if (K != OCM_Message) {
1099         const_cast<ObjCMethodCall *>(this)->Data
1100           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1101         assert(getMessageKind() == K);
1102         return K;
1103       }
1104     }
1105 
1106     const_cast<ObjCMethodCall *>(this)->Data
1107       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1108     assert(getMessageKind() == OCM_Message);
1109     return OCM_Message;
1110   }
1111 
1112   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1113   if (!Info.getPointer())
1114     return OCM_Message;
1115   return static_cast<ObjCMessageKind>(Info.getInt());
1116 }
1117 
1118 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1119   // Look for properties accessed with property syntax (foo.bar = ...)
1120   if (getMessageKind() == OCM_PropertyAccess) {
1121     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1122     assert(POE && "Property access without PseudoObjectExpr?");
1123 
1124     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1125     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1126 
1127     if (RefExpr->isExplicitProperty())
1128       return RefExpr->getExplicitProperty();
1129   }
1130 
1131   // Look for properties accessed with method syntax ([foo setBar:...]).
1132   const ObjCMethodDecl *MD = getDecl();
1133   if (!MD || !MD->isPropertyAccessor())
1134     return nullptr;
1135 
1136   // Note: This is potentially quite slow.
1137   return MD->findPropertyDecl();
1138 }
1139 
1140 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1141                                              Selector Sel) const {
1142   assert(IDecl);
1143   AnalysisManager &AMgr =
1144       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1145   // If the class interface is declared inside the main file, assume it is not
1146   // subcassed.
1147   // TODO: It could actually be subclassed if the subclass is private as well.
1148   // This is probably very rare.
1149   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1150   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1151     return false;
1152 
1153   // Assume that property accessors are not overridden.
1154   if (getMessageKind() == OCM_PropertyAccess)
1155     return false;
1156 
1157   // We assume that if the method is public (declared outside of main file) or
1158   // has a parent which publicly declares the method, the method could be
1159   // overridden in a subclass.
1160 
1161   // Find the first declaration in the class hierarchy that declares
1162   // the selector.
1163   ObjCMethodDecl *D = nullptr;
1164   while (true) {
1165     D = IDecl->lookupMethod(Sel, true);
1166 
1167     // Cannot find a public definition.
1168     if (!D)
1169       return false;
1170 
1171     // If outside the main file,
1172     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1173       return true;
1174 
1175     if (D->isOverriding()) {
1176       // Search in the superclass on the next iteration.
1177       IDecl = D->getClassInterface();
1178       if (!IDecl)
1179         return false;
1180 
1181       IDecl = IDecl->getSuperClass();
1182       if (!IDecl)
1183         return false;
1184 
1185       continue;
1186     }
1187 
1188     return false;
1189   };
1190 
1191   llvm_unreachable("The while loop should always terminate.");
1192 }
1193 
1194 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1195   if (!MD)
1196     return MD;
1197 
1198   // Find the redeclaration that defines the method.
1199   if (!MD->hasBody()) {
1200     for (auto I : MD->redecls())
1201       if (I->hasBody())
1202         MD = cast<ObjCMethodDecl>(I);
1203   }
1204   return MD;
1205 }
1206 
1207 struct PrivateMethodKey {
1208   const ObjCInterfaceDecl *Interface;
1209   Selector LookupSelector;
1210   bool IsClassMethod;
1211 };
1212 
1213 namespace llvm {
1214 template <> struct DenseMapInfo<PrivateMethodKey> {
1215   using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
1216   using SelectorInfo = DenseMapInfo<Selector>;
1217 
1218   static inline PrivateMethodKey getEmptyKey() {
1219     return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1220   }
1221 
1222   static inline PrivateMethodKey getTombstoneKey() {
1223     return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1224             true};
1225   }
1226 
1227   static unsigned getHashValue(const PrivateMethodKey &Key) {
1228     return llvm::hash_combine(
1229         llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
1230         llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
1231         Key.IsClassMethod);
1232   }
1233 
1234   static bool isEqual(const PrivateMethodKey &LHS,
1235                       const PrivateMethodKey &RHS) {
1236     return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
1237            SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
1238            LHS.IsClassMethod == RHS.IsClassMethod;
1239   }
1240 };
1241 } // end namespace llvm
1242 
1243 static const ObjCMethodDecl *
1244 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
1245                         Selector LookupSelector, bool InstanceMethod) {
1246   // Repeatedly calling lookupPrivateMethod() is expensive, especially
1247   // when in many cases it returns null.  We cache the results so
1248   // that repeated queries on the same ObjCIntefaceDecl and Selector
1249   // don't incur the same cost.  On some test cases, we can see the
1250   // same query being issued thousands of times.
1251   //
1252   // NOTE: This cache is essentially a "global" variable, but it
1253   // only gets lazily created when we get here.  The value of the
1254   // cache probably comes from it being global across ExprEngines,
1255   // where the same queries may get issued.  If we are worried about
1256   // concurrency, or possibly loading/unloading ASTs, etc., we may
1257   // need to revisit this someday.  In terms of memory, this table
1258   // stays around until clang quits, which also may be bad if we
1259   // need to release memory.
1260   using PrivateMethodCache =
1261       llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1262 
1263   static PrivateMethodCache PMC;
1264   Optional<const ObjCMethodDecl *> &Val =
1265       PMC[{Interface, LookupSelector, InstanceMethod}];
1266 
1267   // Query lookupPrivateMethod() if the cache does not hit.
1268   if (!Val.hasValue()) {
1269     Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
1270 
1271     if (!*Val) {
1272       // Query 'lookupMethod' as a backup.
1273       Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
1274     }
1275   }
1276 
1277   return Val.getValue();
1278 }
1279 
1280 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1281   const ObjCMessageExpr *E = getOriginExpr();
1282   assert(E);
1283   Selector Sel = E->getSelector();
1284 
1285   if (E->isInstanceMessage()) {
1286     // Find the receiver type.
1287     const ObjCObjectType *ReceiverT = nullptr;
1288     bool CanBeSubClassed = false;
1289     bool LookingForInstanceMethod = true;
1290     QualType SupersType = E->getSuperType();
1291     const MemRegion *Receiver = nullptr;
1292 
1293     if (!SupersType.isNull()) {
1294       // The receiver is guaranteed to be 'super' in this case.
1295       // Super always means the type of immediate predecessor to the method
1296       // where the call occurs.
1297       ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
1298     } else {
1299       Receiver = getReceiverSVal().getAsRegion();
1300       if (!Receiver)
1301         return {};
1302 
1303       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1304       if (!DTI.isValid()) {
1305         assert(isa<AllocaRegion>(Receiver) &&
1306                "Unhandled untyped region class!");
1307         return {};
1308       }
1309 
1310       QualType DynType = DTI.getType();
1311       CanBeSubClassed = DTI.canBeASubClass();
1312 
1313       const auto *ReceiverDynT =
1314           dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1315 
1316       if (ReceiverDynT) {
1317         ReceiverT = ReceiverDynT->getObjectType();
1318 
1319         // It can be actually class methods called with Class object as a
1320         // receiver. This type of messages is treated by the compiler as
1321         // instance (not class).
1322         if (ReceiverT->isObjCClass()) {
1323 
1324           SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1325           // For [self classMethod], return compiler visible declaration.
1326           if (Receiver == SelfVal.getAsRegion()) {
1327             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1328           }
1329 
1330           // Otherwise, let's check if we know something about the type
1331           // inside of this class object.
1332           if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
1333             DynamicTypeInfo DTI =
1334                 getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
1335             if (DTI.isValid()) {
1336               // Let's use this type for lookup.
1337               ReceiverT =
1338                   cast<ObjCObjectType>(DTI.getType().getCanonicalType());
1339 
1340               CanBeSubClassed = DTI.canBeASubClass();
1341               // And it should be a class method instead.
1342               LookingForInstanceMethod = false;
1343             }
1344           }
1345         }
1346 
1347         if (CanBeSubClassed)
1348           if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
1349             // Even if `DynamicTypeInfo` told us that it can be
1350             // not necessarily this type, but its descendants, we still want
1351             // to check again if this selector can be actually overridden.
1352             CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
1353       }
1354     }
1355 
1356     // Lookup the instance method implementation.
1357     if (ReceiverT)
1358       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
1359         const ObjCMethodDecl *MD =
1360             lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
1361 
1362         if (MD && !MD->hasBody())
1363           MD = MD->getCanonicalDecl();
1364 
1365         if (CanBeSubClassed)
1366           return RuntimeDefinition(MD, Receiver);
1367         else
1368           return RuntimeDefinition(MD, nullptr);
1369       }
1370   } else {
1371     // This is a class method.
1372     // If we have type info for the receiver class, we are calling via
1373     // class name.
1374     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1375       // Find/Return the method implementation.
1376       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1377     }
1378   }
1379 
1380   return {};
1381 }
1382 
1383 bool ObjCMethodCall::argumentsMayEscape() const {
1384   if (isInSystemHeader() && !isInstanceMessage()) {
1385     Selector Sel = getSelector();
1386     if (Sel.getNumArgs() == 1 &&
1387         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1388       return true;
1389   }
1390 
1391   return CallEvent::argumentsMayEscape();
1392 }
1393 
1394 void ObjCMethodCall::getInitialStackFrameContents(
1395                                              const StackFrameContext *CalleeCtx,
1396                                              BindingsTy &Bindings) const {
1397   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1398   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1399   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1400                                D->parameters());
1401 
1402   SVal SelfVal = getReceiverSVal();
1403   if (!SelfVal.isUnknown()) {
1404     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1405     MemRegionManager &MRMgr = SVB.getRegionManager();
1406     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1407     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1408   }
1409 }
1410 
1411 CallEventRef<>
1412 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1413                                 const LocationContext *LCtx) {
1414   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1415     return create<CXXMemberCall>(MCE, State, LCtx);
1416 
1417   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1418     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1419     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1420       if (MD->isInstance())
1421         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1422 
1423   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1424     return create<BlockCall>(CE, State, LCtx);
1425   }
1426 
1427   // Otherwise, it's a normal function call, static member function call, or
1428   // something we can't reason about.
1429   return create<SimpleFunctionCall>(CE, State, LCtx);
1430 }
1431 
1432 CallEventRef<>
1433 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1434                             ProgramStateRef State) {
1435   const LocationContext *ParentCtx = CalleeCtx->getParent();
1436   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1437   assert(CallerCtx && "This should not be used for top-level stack frames");
1438 
1439   const Stmt *CallSite = CalleeCtx->getCallSite();
1440 
1441   if (CallSite) {
1442     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1443       return Out;
1444 
1445     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1446     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1447     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1448     SVal ThisVal = State->getSVal(ThisPtr);
1449 
1450     if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1451       return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx);
1452     else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1453       return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1454                                             CallerCtx);
1455     else {
1456       // All other cases are handled by getCall.
1457       llvm_unreachable("This is not an inlineable statement");
1458     }
1459   }
1460 
1461   // Fall back to the CFG. The only thing we haven't handled yet is
1462   // destructors, though this could change in the future.
1463   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1464   CFGElement E = (*B)[CalleeCtx->getIndex()];
1465   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1466          "All other CFG elements should have exprs");
1467 
1468   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1469   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1470   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1471   SVal ThisVal = State->getSVal(ThisPtr);
1472 
1473   const Stmt *Trigger;
1474   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1475     Trigger = AutoDtor->getTriggerStmt();
1476   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1477     Trigger = DeleteDtor->getDeleteExpr();
1478   else
1479     Trigger = Dtor->getBody();
1480 
1481   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1482                               E.getAs<CFGBaseDtor>().hasValue(), State,
1483                               CallerCtx);
1484 }
1485 
1486 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1487                                          const LocationContext *LC) {
1488   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1489     return getSimpleCall(CE, State, LC);
1490   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1491     return getCXXAllocatorCall(NE, State, LC);
1492   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1493     return getObjCMethodCall(ME, State, LC);
1494   } else {
1495     return nullptr;
1496   }
1497 }
1498