1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file defines CallEvent and its subclasses, which represent path-
11 /// sensitive instances of different kinds of function and method calls
12 /// (C, C++, and Objective-C).
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/ProgramPoint.h"
32 #include "clang/CrossTU/CrossTranslationUnit.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/None.h"
51 #include "llvm/ADT/Optional.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cassert>
63 #include <utility>
64 
65 #define DEBUG_TYPE "static-analyzer-call-event"
66 
67 using namespace clang;
68 using namespace ento;
69 
70 QualType CallEvent::getResultType() const {
71   ASTContext &Ctx = getState()->getStateManager().getContext();
72   const Expr *E = getOriginExpr();
73   if (!E)
74     return Ctx.VoidTy;
75   assert(E);
76 
77   QualType ResultTy = E->getType();
78 
79   // A function that returns a reference to 'int' will have a result type
80   // of simply 'int'. Check the origin expr's value kind to recover the
81   // proper type.
82   switch (E->getValueKind()) {
83   case VK_LValue:
84     ResultTy = Ctx.getLValueReferenceType(ResultTy);
85     break;
86   case VK_XValue:
87     ResultTy = Ctx.getRValueReferenceType(ResultTy);
88     break;
89   case VK_RValue:
90     // No adjustment is necessary.
91     break;
92   }
93 
94   return ResultTy;
95 }
96 
97 static bool isCallback(QualType T) {
98   // If a parameter is a block or a callback, assume it can modify pointer.
99   if (T->isBlockPointerType() ||
100       T->isFunctionPointerType() ||
101       T->isObjCSelType())
102     return true;
103 
104   // Check if a callback is passed inside a struct (for both, struct passed by
105   // reference and by value). Dig just one level into the struct for now.
106 
107   if (T->isAnyPointerType() || T->isReferenceType())
108     T = T->getPointeeType();
109 
110   if (const RecordType *RT = T->getAsStructureType()) {
111     const RecordDecl *RD = RT->getDecl();
112     for (const auto *I : RD->fields()) {
113       QualType FieldT = I->getType();
114       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
115         return true;
116     }
117   }
118   return false;
119 }
120 
121 static bool isVoidPointerToNonConst(QualType T) {
122   if (const auto *PT = T->getAs<PointerType>()) {
123     QualType PointeeTy = PT->getPointeeType();
124     if (PointeeTy.isConstQualified())
125       return false;
126     return PointeeTy->isVoidType();
127   } else
128     return false;
129 }
130 
131 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
132   unsigned NumOfArgs = getNumArgs();
133 
134   // If calling using a function pointer, assume the function does not
135   // satisfy the callback.
136   // TODO: We could check the types of the arguments here.
137   if (!getDecl())
138     return false;
139 
140   unsigned Idx = 0;
141   for (CallEvent::param_type_iterator I = param_type_begin(),
142                                       E = param_type_end();
143        I != E && Idx < NumOfArgs; ++I, ++Idx) {
144     // If the parameter is 0, it's harmless.
145     if (getArgSVal(Idx).isZeroConstant())
146       continue;
147 
148     if (Condition(*I))
149       return true;
150   }
151   return false;
152 }
153 
154 bool CallEvent::hasNonZeroCallbackArg() const {
155   return hasNonNullArgumentsWithType(isCallback);
156 }
157 
158 bool CallEvent::hasVoidPointerToNonConstArg() const {
159   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
160 }
161 
162 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
163   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
164   if (!FD)
165     return false;
166 
167   return CheckerContext::isCLibraryFunction(FD, FunctionName);
168 }
169 
170 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
171   const Decl *D = getDecl();
172   if (!D)
173     return nullptr;
174 
175   // TODO: For now we skip functions without definitions, even if we have
176   // our own getDecl(), because it's hard to find out which re-declaration
177   // is going to be used, and usually clients don't really care about this
178   // situation because there's a loss of precision anyway because we cannot
179   // inline the call.
180   RuntimeDefinition RD = getRuntimeDefinition();
181   if (!RD.getDecl())
182     return nullptr;
183 
184   AnalysisDeclContext *ADC =
185       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
186 
187   // TODO: For now we skip virtual functions, because this also rises
188   // the problem of which decl to use, but now it's across different classes.
189   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
190     return nullptr;
191 
192   return ADC;
193 }
194 
195 const StackFrameContext *CallEvent::getCalleeStackFrame() const {
196   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
197   if (!ADC)
198     return nullptr;
199 
200   const Expr *E = getOriginExpr();
201   if (!E)
202     return nullptr;
203 
204   // Recover CFG block via reverse lookup.
205   // TODO: If we were to keep CFG element information as part of the CallEvent
206   // instead of doing this reverse lookup, we would be able to build the stack
207   // frame for non-expression-based calls, and also we wouldn't need the reverse
208   // lookup.
209   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
210   const CFGBlock *B = Map->getBlock(E);
211   assert(B);
212 
213   // Also recover CFG index by scanning the CFG block.
214   unsigned Idx = 0, Sz = B->size();
215   for (; Idx < Sz; ++Idx)
216     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
217       if (StmtElem->getStmt() == E)
218         break;
219   assert(Idx < Sz);
220 
221   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx);
222 }
223 
224 const VarRegion *CallEvent::getParameterLocation(unsigned Index) const {
225   const StackFrameContext *SFC = getCalleeStackFrame();
226   // We cannot construct a VarRegion without a stack frame.
227   if (!SFC)
228     return nullptr;
229 
230   // Retrieve parameters of the definition, which are different from
231   // CallEvent's parameters() because getDecl() isn't necessarily
232   // the definition. SFC contains the definition that would be used
233   // during analysis.
234   const Decl *D = SFC->getDecl();
235 
236   // TODO: Refactor into a virtual method of CallEvent, like parameters().
237   const ParmVarDecl *PVD = nullptr;
238   if (const auto *FD = dyn_cast<FunctionDecl>(D))
239     PVD = FD->parameters()[Index];
240   else if (const auto *BD = dyn_cast<BlockDecl>(D))
241     PVD = BD->parameters()[Index];
242   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
243     PVD = MD->parameters()[Index];
244   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
245     PVD = CD->parameters()[Index];
246   assert(PVD && "Unexpected Decl kind!");
247 
248   const VarRegion *VR =
249       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
250 
251   // This sanity check would fail if our parameter declaration doesn't
252   // correspond to the stack frame's function declaration.
253   assert(VR->getStackFrame() == SFC);
254 
255   return VR;
256 }
257 
258 /// Returns true if a type is a pointer-to-const or reference-to-const
259 /// with no further indirection.
260 static bool isPointerToConst(QualType Ty) {
261   QualType PointeeTy = Ty->getPointeeType();
262   if (PointeeTy == QualType())
263     return false;
264   if (!PointeeTy.isConstQualified())
265     return false;
266   if (PointeeTy->isAnyPointerType())
267     return false;
268   return true;
269 }
270 
271 // Try to retrieve the function declaration and find the function parameter
272 // types which are pointers/references to a non-pointer const.
273 // We will not invalidate the corresponding argument regions.
274 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
275                                  const CallEvent &Call) {
276   unsigned Idx = 0;
277   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
278                                       E = Call.param_type_end();
279        I != E; ++I, ++Idx) {
280     if (isPointerToConst(*I))
281       PreserveArgs.insert(Idx);
282   }
283 }
284 
285 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
286                                              ProgramStateRef Orig) const {
287   ProgramStateRef Result = (Orig ? Orig : getState());
288 
289   // Don't invalidate anything if the callee is marked pure/const.
290   if (const Decl *callee = getDecl())
291     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
292       return Result;
293 
294   SmallVector<SVal, 8> ValuesToInvalidate;
295   RegionAndSymbolInvalidationTraits ETraits;
296 
297   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
298 
299   // Indexes of arguments whose values will be preserved by the call.
300   llvm::SmallSet<unsigned, 4> PreserveArgs;
301   if (!argumentsMayEscape())
302     findPtrToConstParams(PreserveArgs, *this);
303 
304   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
305     // Mark this region for invalidation.  We batch invalidate regions
306     // below for efficiency.
307     if (PreserveArgs.count(Idx))
308       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
309         ETraits.setTrait(MR->getBaseRegion(),
310                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
311         // TODO: Factor this out + handle the lower level const pointers.
312 
313     ValuesToInvalidate.push_back(getArgSVal(Idx));
314 
315     // If a function accepts an object by argument (which would of course be a
316     // temporary that isn't lifetime-extended), invalidate the object itself,
317     // not only other objects reachable from it. This is necessary because the
318     // destructor has access to the temporary object after the call.
319     // TODO: Support placement arguments once we start
320     // constructing them directly.
321     // TODO: This is unnecessary when there's no destructor, but that's
322     // currently hard to figure out.
323     if (getKind() != CE_CXXAllocator)
324       if (isArgumentConstructedDirectly(Idx))
325         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
326           if (const VarRegion *VR = getParameterLocation(*AdjIdx))
327             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
328   }
329 
330   // Invalidate designated regions using the batch invalidation API.
331   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
332   //  global variables.
333   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
334                                    BlockCount, getLocationContext(),
335                                    /*CausedByPointerEscape*/ true,
336                                    /*Symbols=*/nullptr, this, &ETraits);
337 }
338 
339 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
340                                         const ProgramPointTag *Tag) const {
341   if (const Expr *E = getOriginExpr()) {
342     if (IsPreVisit)
343       return PreStmt(E, getLocationContext(), Tag);
344     return PostStmt(E, getLocationContext(), Tag);
345   }
346 
347   const Decl *D = getDecl();
348   assert(D && "Cannot get a program point without a statement or decl");
349 
350   SourceLocation Loc = getSourceRange().getBegin();
351   if (IsPreVisit)
352     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
353   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
354 }
355 
356 bool CallEvent::isCalled(const CallDescription &CD) const {
357   // FIXME: Add ObjC Message support.
358   if (getKind() == CE_ObjCMessage)
359     return false;
360   if (!CD.IsLookupDone) {
361     CD.IsLookupDone = true;
362     CD.II = &getState()->getStateManager().getContext().Idents.get(
363         CD.getFunctionName());
364   }
365   const IdentifierInfo *II = getCalleeIdentifier();
366   if (!II || II != CD.II)
367     return false;
368 
369   const Decl *D = getDecl();
370   // If CallDescription provides prefix names, use them to improve matching
371   // accuracy.
372   if (CD.QualifiedName.size() > 1 && D) {
373     const DeclContext *Ctx = D->getDeclContext();
374     // See if we'll be able to match them all.
375     size_t NumUnmatched = CD.QualifiedName.size() - 1;
376     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
377       if (NumUnmatched == 0)
378         break;
379 
380       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
381         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
382           --NumUnmatched;
383         continue;
384       }
385 
386       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
387         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
388           --NumUnmatched;
389         continue;
390       }
391     }
392 
393     if (NumUnmatched > 0)
394       return false;
395   }
396 
397   return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
398           CD.RequiredArgs == getNumArgs());
399 }
400 
401 SVal CallEvent::getArgSVal(unsigned Index) const {
402   const Expr *ArgE = getArgExpr(Index);
403   if (!ArgE)
404     return UnknownVal();
405   return getSVal(ArgE);
406 }
407 
408 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
409   const Expr *ArgE = getArgExpr(Index);
410   if (!ArgE)
411     return {};
412   return ArgE->getSourceRange();
413 }
414 
415 SVal CallEvent::getReturnValue() const {
416   const Expr *E = getOriginExpr();
417   if (!E)
418     return UndefinedVal();
419   return getSVal(E);
420 }
421 
422 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
423 
424 void CallEvent::dump(raw_ostream &Out) const {
425   ASTContext &Ctx = getState()->getStateManager().getContext();
426   if (const Expr *E = getOriginExpr()) {
427     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
428     Out << "\n";
429     return;
430   }
431 
432   if (const Decl *D = getDecl()) {
433     Out << "Call to ";
434     D->print(Out, Ctx.getPrintingPolicy());
435     return;
436   }
437 
438   // FIXME: a string representation of the kind would be nice.
439   Out << "Unknown call (type " << getKind() << ")";
440 }
441 
442 bool CallEvent::isCallStmt(const Stmt *S) {
443   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
444                           || isa<CXXConstructExpr>(S)
445                           || isa<CXXNewExpr>(S);
446 }
447 
448 QualType CallEvent::getDeclaredResultType(const Decl *D) {
449   assert(D);
450   if (const auto *FD = dyn_cast<FunctionDecl>(D))
451     return FD->getReturnType();
452   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
453     return MD->getReturnType();
454   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
455     // Blocks are difficult because the return type may not be stored in the
456     // BlockDecl itself. The AST should probably be enhanced, but for now we
457     // just do what we can.
458     // If the block is declared without an explicit argument list, the
459     // signature-as-written just includes the return type, not the entire
460     // function type.
461     // FIXME: All blocks should have signatures-as-written, even if the return
462     // type is inferred. (That's signified with a dependent result type.)
463     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
464       QualType Ty = TSI->getType();
465       if (const FunctionType *FT = Ty->getAs<FunctionType>())
466         Ty = FT->getReturnType();
467       if (!Ty->isDependentType())
468         return Ty;
469     }
470 
471     return {};
472   }
473 
474   llvm_unreachable("unknown callable kind");
475 }
476 
477 bool CallEvent::isVariadic(const Decl *D) {
478   assert(D);
479 
480   if (const auto *FD = dyn_cast<FunctionDecl>(D))
481     return FD->isVariadic();
482   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
483     return MD->isVariadic();
484   if (const auto *BD = dyn_cast<BlockDecl>(D))
485     return BD->isVariadic();
486 
487   llvm_unreachable("unknown callable kind");
488 }
489 
490 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
491                                          CallEvent::BindingsTy &Bindings,
492                                          SValBuilder &SVB,
493                                          const CallEvent &Call,
494                                          ArrayRef<ParmVarDecl*> parameters) {
495   MemRegionManager &MRMgr = SVB.getRegionManager();
496 
497   // If the function has fewer parameters than the call has arguments, we simply
498   // do not bind any values to them.
499   unsigned NumArgs = Call.getNumArgs();
500   unsigned Idx = 0;
501   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
502   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
503     const ParmVarDecl *ParamDecl = *I;
504     assert(ParamDecl && "Formal parameter has no decl?");
505 
506     // TODO: Support allocator calls.
507     if (Call.getKind() != CE_CXXAllocator)
508       if (Call.isArgumentConstructedDirectly(Idx))
509         continue;
510 
511     // TODO: Allocators should receive the correct size and possibly alignment,
512     // determined in compile-time but not represented as arg-expressions,
513     // which makes getArgSVal() fail and return UnknownVal.
514     SVal ArgVal = Call.getArgSVal(Idx);
515     if (!ArgVal.isUnknown()) {
516       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
517       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
518     }
519   }
520 
521   // FIXME: Variadic arguments are not handled at all right now.
522 }
523 
524 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
525   const FunctionDecl *D = getDecl();
526   if (!D)
527     return None;
528   return D->parameters();
529 }
530 
531 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
532   const FunctionDecl *FD = getDecl();
533   if (!FD)
534     return {};
535 
536   // Note that the AnalysisDeclContext will have the FunctionDecl with
537   // the definition (if one exists).
538   AnalysisDeclContext *AD =
539     getLocationContext()->getAnalysisDeclContext()->
540     getManager()->getContext(FD);
541   bool IsAutosynthesized;
542   Stmt* Body = AD->getBody(IsAutosynthesized);
543   LLVM_DEBUG({
544     if (IsAutosynthesized)
545       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
546                    << "\n";
547   });
548   if (Body) {
549     const Decl* Decl = AD->getDecl();
550     return RuntimeDefinition(Decl);
551   }
552 
553   SubEngine *Engine = getState()->getStateManager().getOwningEngine();
554   AnalyzerOptions &Opts = Engine->getAnalysisManager().options;
555 
556   // Try to get CTU definition only if CTUDir is provided.
557   if (!Opts.naiveCTUEnabled())
558     return {};
559 
560   cross_tu::CrossTranslationUnitContext &CTUCtx =
561       *Engine->getCrossTranslationUnitContext();
562   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
563       CTUCtx.getCrossTUDefinition(FD, Opts.getCTUDir(), Opts.getCTUIndexName());
564 
565   if (!CTUDeclOrError) {
566     handleAllErrors(CTUDeclOrError.takeError(),
567                     [&](const cross_tu::IndexError &IE) {
568                       CTUCtx.emitCrossTUDiagnostics(IE);
569                     });
570     return {};
571   }
572 
573   return RuntimeDefinition(*CTUDeclOrError);
574 }
575 
576 void AnyFunctionCall::getInitialStackFrameContents(
577                                         const StackFrameContext *CalleeCtx,
578                                         BindingsTy &Bindings) const {
579   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
580   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
581   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
582                                D->parameters());
583 }
584 
585 bool AnyFunctionCall::argumentsMayEscape() const {
586   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
587     return true;
588 
589   const FunctionDecl *D = getDecl();
590   if (!D)
591     return true;
592 
593   const IdentifierInfo *II = D->getIdentifier();
594   if (!II)
595     return false;
596 
597   // This set of "escaping" APIs is
598 
599   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
600   //   value into thread local storage. The value can later be retrieved with
601   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
602   //   parameter is 'const void *', the region escapes through the call.
603   if (II->isStr("pthread_setspecific"))
604     return true;
605 
606   // - xpc_connection_set_context stores a value which can be retrieved later
607   //   with xpc_connection_get_context.
608   if (II->isStr("xpc_connection_set_context"))
609     return true;
610 
611   // - funopen - sets a buffer for future IO calls.
612   if (II->isStr("funopen"))
613     return true;
614 
615   // - __cxa_demangle - can reallocate memory and can return the pointer to
616   // the input buffer.
617   if (II->isStr("__cxa_demangle"))
618     return true;
619 
620   StringRef FName = II->getName();
621 
622   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
623   //   buffer even if it is const.
624   if (FName.endswith("NoCopy"))
625     return true;
626 
627   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
628   //   be deallocated by NSMapRemove.
629   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
630     return true;
631 
632   // - Many CF containers allow objects to escape through custom
633   //   allocators/deallocators upon container construction. (PR12101)
634   if (FName.startswith("CF") || FName.startswith("CG")) {
635     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
636            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
637            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
638            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
639            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
640            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
641   }
642 
643   return false;
644 }
645 
646 const FunctionDecl *SimpleFunctionCall::getDecl() const {
647   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
648   if (D)
649     return D;
650 
651   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
652 }
653 
654 const FunctionDecl *CXXInstanceCall::getDecl() const {
655   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
656   if (!CE)
657     return AnyFunctionCall::getDecl();
658 
659   const FunctionDecl *D = CE->getDirectCallee();
660   if (D)
661     return D;
662 
663   return getSVal(CE->getCallee()).getAsFunctionDecl();
664 }
665 
666 void CXXInstanceCall::getExtraInvalidatedValues(
667     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
668   SVal ThisVal = getCXXThisVal();
669   Values.push_back(ThisVal);
670 
671   // Don't invalidate if the method is const and there are no mutable fields.
672   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
673     if (!D->isConst())
674       return;
675     // Get the record decl for the class of 'This'. D->getParent() may return a
676     // base class decl, rather than the class of the instance which needs to be
677     // checked for mutable fields.
678     // TODO: We might as well look at the dynamic type of the object.
679     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
680     QualType T = Ex->getType();
681     if (T->isPointerType()) // Arrow or implicit-this syntax?
682       T = T->getPointeeType();
683     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
684     assert(ParentRecord);
685     if (ParentRecord->hasMutableFields())
686       return;
687     // Preserve CXXThis.
688     const MemRegion *ThisRegion = ThisVal.getAsRegion();
689     if (!ThisRegion)
690       return;
691 
692     ETraits->setTrait(ThisRegion->getBaseRegion(),
693                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
694   }
695 }
696 
697 SVal CXXInstanceCall::getCXXThisVal() const {
698   const Expr *Base = getCXXThisExpr();
699   // FIXME: This doesn't handle an overloaded ->* operator.
700   if (!Base)
701     return UnknownVal();
702 
703   SVal ThisVal = getSVal(Base);
704   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
705   return ThisVal;
706 }
707 
708 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
709   // Do we have a decl at all?
710   const Decl *D = getDecl();
711   if (!D)
712     return {};
713 
714   // If the method is non-virtual, we know we can inline it.
715   const auto *MD = cast<CXXMethodDecl>(D);
716   if (!MD->isVirtual())
717     return AnyFunctionCall::getRuntimeDefinition();
718 
719   // Do we know the implicit 'this' object being called?
720   const MemRegion *R = getCXXThisVal().getAsRegion();
721   if (!R)
722     return {};
723 
724   // Do we know anything about the type of 'this'?
725   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
726   if (!DynType.isValid())
727     return {};
728 
729   // Is the type a C++ class? (This is mostly a defensive check.)
730   QualType RegionType = DynType.getType()->getPointeeType();
731   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
732 
733   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
734   if (!RD || !RD->hasDefinition())
735     return {};
736 
737   // Find the decl for this method in that class.
738   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
739   if (!Result) {
740     // We might not even get the original statically-resolved method due to
741     // some particularly nasty casting (e.g. casts to sister classes).
742     // However, we should at least be able to search up and down our own class
743     // hierarchy, and some real bugs have been caught by checking this.
744     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
745 
746     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
747     // the static type. However, because we currently don't update
748     // DynamicTypeInfo when an object is cast, we can't actually be sure the
749     // DynamicTypeInfo is up to date. This assert should be re-enabled once
750     // this is fixed. <rdar://problem/12287087>
751     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
752 
753     return {};
754   }
755 
756   // Does the decl that we found have an implementation?
757   const FunctionDecl *Definition;
758   if (!Result->hasBody(Definition))
759     return {};
760 
761   // We found a definition. If we're not sure that this devirtualization is
762   // actually what will happen at runtime, make sure to provide the region so
763   // that ExprEngine can decide what to do with it.
764   if (DynType.canBeASubClass())
765     return RuntimeDefinition(Definition, R->StripCasts());
766   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
767 }
768 
769 void CXXInstanceCall::getInitialStackFrameContents(
770                                             const StackFrameContext *CalleeCtx,
771                                             BindingsTy &Bindings) const {
772   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
773 
774   // Handle the binding of 'this' in the new stack frame.
775   SVal ThisVal = getCXXThisVal();
776   if (!ThisVal.isUnknown()) {
777     ProgramStateManager &StateMgr = getState()->getStateManager();
778     SValBuilder &SVB = StateMgr.getSValBuilder();
779 
780     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
781     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
782 
783     // If we devirtualized to a different member function, we need to make sure
784     // we have the proper layering of CXXBaseObjectRegions.
785     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
786       ASTContext &Ctx = SVB.getContext();
787       const CXXRecordDecl *Class = MD->getParent();
788       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
789 
790       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
791       bool Failed;
792       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
793       if (Failed) {
794         // We might have suffered some sort of placement new earlier, so
795         // we're constructing in a completely unexpected storage.
796         // Fall back to a generic pointer cast for this-value.
797         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
798         const CXXRecordDecl *StaticClass = StaticMD->getParent();
799         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
800         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
801       }
802     }
803 
804     if (!ThisVal.isUnknown())
805       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
806   }
807 }
808 
809 const Expr *CXXMemberCall::getCXXThisExpr() const {
810   return getOriginExpr()->getImplicitObjectArgument();
811 }
812 
813 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
814   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
815   // id-expression in the class member access expression is a qualified-id,
816   // that function is called. Otherwise, its final overrider in the dynamic type
817   // of the object expression is called.
818   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
819     if (ME->hasQualifier())
820       return AnyFunctionCall::getRuntimeDefinition();
821 
822   return CXXInstanceCall::getRuntimeDefinition();
823 }
824 
825 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
826   return getOriginExpr()->getArg(0);
827 }
828 
829 const BlockDataRegion *BlockCall::getBlockRegion() const {
830   const Expr *Callee = getOriginExpr()->getCallee();
831   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
832 
833   return dyn_cast_or_null<BlockDataRegion>(DataReg);
834 }
835 
836 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
837   const BlockDecl *D = getDecl();
838   if (!D)
839     return nullptr;
840   return D->parameters();
841 }
842 
843 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
844                   RegionAndSymbolInvalidationTraits *ETraits) const {
845   // FIXME: This also needs to invalidate captured globals.
846   if (const MemRegion *R = getBlockRegion())
847     Values.push_back(loc::MemRegionVal(R));
848 }
849 
850 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
851                                              BindingsTy &Bindings) const {
852   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
853   ArrayRef<ParmVarDecl*> Params;
854   if (isConversionFromLambda()) {
855     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
856     Params = LambdaOperatorDecl->parameters();
857 
858     // For blocks converted from a C++ lambda, the callee declaration is the
859     // operator() method on the lambda so we bind "this" to
860     // the lambda captured by the block.
861     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
862     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
863     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
864     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
865   } else {
866     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
867   }
868 
869   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
870                                Params);
871 }
872 
873 SVal CXXConstructorCall::getCXXThisVal() const {
874   if (Data)
875     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
876   return UnknownVal();
877 }
878 
879 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
880                            RegionAndSymbolInvalidationTraits *ETraits) const {
881   if (Data) {
882     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
883     if (SymbolRef Sym = MV.getAsSymbol(true))
884       ETraits->setTrait(Sym,
885                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
886     Values.push_back(MV);
887   }
888 }
889 
890 void CXXConstructorCall::getInitialStackFrameContents(
891                                              const StackFrameContext *CalleeCtx,
892                                              BindingsTy &Bindings) const {
893   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
894 
895   SVal ThisVal = getCXXThisVal();
896   if (!ThisVal.isUnknown()) {
897     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
898     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
899     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
900     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
901   }
902 }
903 
904 SVal CXXDestructorCall::getCXXThisVal() const {
905   if (Data)
906     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
907   return UnknownVal();
908 }
909 
910 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
911   // Base destructors are always called non-virtually.
912   // Skip CXXInstanceCall's devirtualization logic in this case.
913   if (isBaseDestructor())
914     return AnyFunctionCall::getRuntimeDefinition();
915 
916   return CXXInstanceCall::getRuntimeDefinition();
917 }
918 
919 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
920   const ObjCMethodDecl *D = getDecl();
921   if (!D)
922     return None;
923   return D->parameters();
924 }
925 
926 void ObjCMethodCall::getExtraInvalidatedValues(
927     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
928 
929   // If the method call is a setter for property known to be backed by
930   // an instance variable, don't invalidate the entire receiver, just
931   // the storage for that instance variable.
932   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
933     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
934       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
935       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
936         ETraits->setTrait(
937           IvarRegion,
938           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
939         ETraits->setTrait(
940           IvarRegion,
941           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
942         Values.push_back(IvarLVal);
943       }
944       return;
945     }
946   }
947 
948   Values.push_back(getReceiverSVal());
949 }
950 
951 SVal ObjCMethodCall::getSelfSVal() const {
952   const LocationContext *LCtx = getLocationContext();
953   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
954   if (!SelfDecl)
955     return SVal();
956   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
957 }
958 
959 SVal ObjCMethodCall::getReceiverSVal() const {
960   // FIXME: Is this the best way to handle class receivers?
961   if (!isInstanceMessage())
962     return UnknownVal();
963 
964   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
965     return getSVal(RecE);
966 
967   // An instance message with no expression means we are sending to super.
968   // In this case the object reference is the same as 'self'.
969   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
970   SVal SelfVal = getSelfSVal();
971   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
972   return SelfVal;
973 }
974 
975 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
976   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
977       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
978       return true;
979 
980   if (!isInstanceMessage())
981     return false;
982 
983   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
984 
985   return (RecVal == getSelfSVal());
986 }
987 
988 SourceRange ObjCMethodCall::getSourceRange() const {
989   switch (getMessageKind()) {
990   case OCM_Message:
991     return getOriginExpr()->getSourceRange();
992   case OCM_PropertyAccess:
993   case OCM_Subscript:
994     return getContainingPseudoObjectExpr()->getSourceRange();
995   }
996   llvm_unreachable("unknown message kind");
997 }
998 
999 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1000 
1001 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1002   assert(Data && "Lazy lookup not yet performed.");
1003   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1004   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1005 }
1006 
1007 static const Expr *
1008 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1009   const Expr *Syntactic = POE->getSyntacticForm();
1010 
1011   // This handles the funny case of assigning to the result of a getter.
1012   // This can happen if the getter returns a non-const reference.
1013   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1014     Syntactic = BO->getLHS();
1015 
1016   return Syntactic;
1017 }
1018 
1019 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1020   if (!Data) {
1021     // Find the parent, ignoring implicit casts.
1022     ParentMap &PM = getLocationContext()->getParentMap();
1023     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1024 
1025     // Check if parent is a PseudoObjectExpr.
1026     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1027       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1028 
1029       ObjCMessageKind K;
1030       switch (Syntactic->getStmtClass()) {
1031       case Stmt::ObjCPropertyRefExprClass:
1032         K = OCM_PropertyAccess;
1033         break;
1034       case Stmt::ObjCSubscriptRefExprClass:
1035         K = OCM_Subscript;
1036         break;
1037       default:
1038         // FIXME: Can this ever happen?
1039         K = OCM_Message;
1040         break;
1041       }
1042 
1043       if (K != OCM_Message) {
1044         const_cast<ObjCMethodCall *>(this)->Data
1045           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1046         assert(getMessageKind() == K);
1047         return K;
1048       }
1049     }
1050 
1051     const_cast<ObjCMethodCall *>(this)->Data
1052       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1053     assert(getMessageKind() == OCM_Message);
1054     return OCM_Message;
1055   }
1056 
1057   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1058   if (!Info.getPointer())
1059     return OCM_Message;
1060   return static_cast<ObjCMessageKind>(Info.getInt());
1061 }
1062 
1063 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1064   // Look for properties accessed with property syntax (foo.bar = ...)
1065   if ( getMessageKind() == OCM_PropertyAccess) {
1066     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1067     assert(POE && "Property access without PseudoObjectExpr?");
1068 
1069     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1070     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1071 
1072     if (RefExpr->isExplicitProperty())
1073       return RefExpr->getExplicitProperty();
1074   }
1075 
1076   // Look for properties accessed with method syntax ([foo setBar:...]).
1077   const ObjCMethodDecl *MD = getDecl();
1078   if (!MD || !MD->isPropertyAccessor())
1079     return nullptr;
1080 
1081   // Note: This is potentially quite slow.
1082   return MD->findPropertyDecl();
1083 }
1084 
1085 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1086                                              Selector Sel) const {
1087   assert(IDecl);
1088   AnalysisManager &AMgr =
1089       getState()->getStateManager().getOwningEngine()->getAnalysisManager();
1090   // If the class interface is declared inside the main file, assume it is not
1091   // subcassed.
1092   // TODO: It could actually be subclassed if the subclass is private as well.
1093   // This is probably very rare.
1094   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1095   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1096     return false;
1097 
1098   // Assume that property accessors are not overridden.
1099   if (getMessageKind() == OCM_PropertyAccess)
1100     return false;
1101 
1102   // We assume that if the method is public (declared outside of main file) or
1103   // has a parent which publicly declares the method, the method could be
1104   // overridden in a subclass.
1105 
1106   // Find the first declaration in the class hierarchy that declares
1107   // the selector.
1108   ObjCMethodDecl *D = nullptr;
1109   while (true) {
1110     D = IDecl->lookupMethod(Sel, true);
1111 
1112     // Cannot find a public definition.
1113     if (!D)
1114       return false;
1115 
1116     // If outside the main file,
1117     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1118       return true;
1119 
1120     if (D->isOverriding()) {
1121       // Search in the superclass on the next iteration.
1122       IDecl = D->getClassInterface();
1123       if (!IDecl)
1124         return false;
1125 
1126       IDecl = IDecl->getSuperClass();
1127       if (!IDecl)
1128         return false;
1129 
1130       continue;
1131     }
1132 
1133     return false;
1134   };
1135 
1136   llvm_unreachable("The while loop should always terminate.");
1137 }
1138 
1139 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1140   if (!MD)
1141     return MD;
1142 
1143   // Find the redeclaration that defines the method.
1144   if (!MD->hasBody()) {
1145     for (auto I : MD->redecls())
1146       if (I->hasBody())
1147         MD = cast<ObjCMethodDecl>(I);
1148   }
1149   return MD;
1150 }
1151 
1152 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1153   const Expr* InstRec = ME->getInstanceReceiver();
1154   if (!InstRec)
1155     return false;
1156   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1157 
1158   // Check that receiver is called 'self'.
1159   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1160       !InstRecIg->getFoundDecl()->getName().equals("self"))
1161     return false;
1162 
1163   // Check that the method name is 'class'.
1164   if (ME->getSelector().getNumArgs() != 0 ||
1165       !ME->getSelector().getNameForSlot(0).equals("class"))
1166     return false;
1167 
1168   return true;
1169 }
1170 
1171 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1172   const ObjCMessageExpr *E = getOriginExpr();
1173   assert(E);
1174   Selector Sel = E->getSelector();
1175 
1176   if (E->isInstanceMessage()) {
1177     // Find the receiver type.
1178     const ObjCObjectPointerType *ReceiverT = nullptr;
1179     bool CanBeSubClassed = false;
1180     QualType SupersType = E->getSuperType();
1181     const MemRegion *Receiver = nullptr;
1182 
1183     if (!SupersType.isNull()) {
1184       // The receiver is guaranteed to be 'super' in this case.
1185       // Super always means the type of immediate predecessor to the method
1186       // where the call occurs.
1187       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1188     } else {
1189       Receiver = getReceiverSVal().getAsRegion();
1190       if (!Receiver)
1191         return {};
1192 
1193       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1194       if (!DTI.isValid()) {
1195         assert(isa<AllocaRegion>(Receiver) &&
1196                "Unhandled untyped region class!");
1197         return {};
1198       }
1199 
1200       QualType DynType = DTI.getType();
1201       CanBeSubClassed = DTI.canBeASubClass();
1202       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1203 
1204       if (ReceiverT && CanBeSubClassed)
1205         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1206           if (!canBeOverridenInSubclass(IDecl, Sel))
1207             CanBeSubClassed = false;
1208     }
1209 
1210     // Handle special cases of '[self classMethod]' and
1211     // '[[self class] classMethod]', which are treated by the compiler as
1212     // instance (not class) messages. We will statically dispatch to those.
1213     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1214       // For [self classMethod], return the compiler visible declaration.
1215       if (PT->getObjectType()->isObjCClass() &&
1216           Receiver == getSelfSVal().getAsRegion())
1217         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1218 
1219       // Similarly, handle [[self class] classMethod].
1220       // TODO: We are currently doing a syntactic match for this pattern with is
1221       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1222       // shows. A better way would be to associate the meta type with the symbol
1223       // using the dynamic type info tracking and use it here. We can add a new
1224       // SVal for ObjC 'Class' values that know what interface declaration they
1225       // come from. Then 'self' in a class method would be filled in with
1226       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1227       // do proper dynamic dispatch for class methods just like we do for
1228       // instance methods now.
1229       if (E->getInstanceReceiver())
1230         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1231           if (isCallToSelfClass(M))
1232             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1233     }
1234 
1235     // Lookup the instance method implementation.
1236     if (ReceiverT)
1237       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1238         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1239         // when in many cases it returns null.  We cache the results so
1240         // that repeated queries on the same ObjCIntefaceDecl and Selector
1241         // don't incur the same cost.  On some test cases, we can see the
1242         // same query being issued thousands of times.
1243         //
1244         // NOTE: This cache is essentially a "global" variable, but it
1245         // only gets lazily created when we get here.  The value of the
1246         // cache probably comes from it being global across ExprEngines,
1247         // where the same queries may get issued.  If we are worried about
1248         // concurrency, or possibly loading/unloading ASTs, etc., we may
1249         // need to revisit this someday.  In terms of memory, this table
1250         // stays around until clang quits, which also may be bad if we
1251         // need to release memory.
1252         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1253         using PrivateMethodCache =
1254             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1255 
1256         static PrivateMethodCache PMC;
1257         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1258 
1259         // Query lookupPrivateMethod() if the cache does not hit.
1260         if (!Val.hasValue()) {
1261           Val = IDecl->lookupPrivateMethod(Sel);
1262 
1263           // If the method is a property accessor, we should try to "inline" it
1264           // even if we don't actually have an implementation.
1265           if (!*Val)
1266             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1267               if (CompileTimeMD->isPropertyAccessor()) {
1268                 if (!CompileTimeMD->getSelfDecl() &&
1269                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1270                   // If the method is an accessor in a category, and it doesn't
1271                   // have a self declaration, first
1272                   // try to find the method in a class extension. This
1273                   // works around a bug in Sema where multiple accessors
1274                   // are synthesized for properties in class
1275                   // extensions that are redeclared in a category and the
1276                   // the implicit parameters are not filled in for
1277                   // the method on the category.
1278                   // This ensures we find the accessor in the extension, which
1279                   // has the implicit parameters filled in.
1280                   auto *ID = CompileTimeMD->getClassInterface();
1281                   for (auto *CatDecl : ID->visible_extensions()) {
1282                     Val = CatDecl->getMethod(Sel,
1283                                              CompileTimeMD->isInstanceMethod());
1284                     if (*Val)
1285                       break;
1286                   }
1287                 }
1288                 if (!*Val)
1289                   Val = IDecl->lookupInstanceMethod(Sel);
1290               }
1291         }
1292 
1293         const ObjCMethodDecl *MD = Val.getValue();
1294         if (CanBeSubClassed)
1295           return RuntimeDefinition(MD, Receiver);
1296         else
1297           return RuntimeDefinition(MD, nullptr);
1298       }
1299   } else {
1300     // This is a class method.
1301     // If we have type info for the receiver class, we are calling via
1302     // class name.
1303     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1304       // Find/Return the method implementation.
1305       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1306     }
1307   }
1308 
1309   return {};
1310 }
1311 
1312 bool ObjCMethodCall::argumentsMayEscape() const {
1313   if (isInSystemHeader() && !isInstanceMessage()) {
1314     Selector Sel = getSelector();
1315     if (Sel.getNumArgs() == 1 &&
1316         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1317       return true;
1318   }
1319 
1320   return CallEvent::argumentsMayEscape();
1321 }
1322 
1323 void ObjCMethodCall::getInitialStackFrameContents(
1324                                              const StackFrameContext *CalleeCtx,
1325                                              BindingsTy &Bindings) const {
1326   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1327   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1328   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1329                                D->parameters());
1330 
1331   SVal SelfVal = getReceiverSVal();
1332   if (!SelfVal.isUnknown()) {
1333     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1334     MemRegionManager &MRMgr = SVB.getRegionManager();
1335     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1336     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1337   }
1338 }
1339 
1340 CallEventRef<>
1341 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1342                                 const LocationContext *LCtx) {
1343   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1344     return create<CXXMemberCall>(MCE, State, LCtx);
1345 
1346   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1347     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1348     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1349       if (MD->isInstance())
1350         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1351 
1352   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1353     return create<BlockCall>(CE, State, LCtx);
1354   }
1355 
1356   // Otherwise, it's a normal function call, static member function call, or
1357   // something we can't reason about.
1358   return create<SimpleFunctionCall>(CE, State, LCtx);
1359 }
1360 
1361 CallEventRef<>
1362 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1363                             ProgramStateRef State) {
1364   const LocationContext *ParentCtx = CalleeCtx->getParent();
1365   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1366   assert(CallerCtx && "This should not be used for top-level stack frames");
1367 
1368   const Stmt *CallSite = CalleeCtx->getCallSite();
1369 
1370   if (CallSite) {
1371     if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
1372       return getSimpleCall(CE, State, CallerCtx);
1373 
1374     switch (CallSite->getStmtClass()) {
1375     case Stmt::CXXConstructExprClass:
1376     case Stmt::CXXTemporaryObjectExprClass: {
1377       SValBuilder &SVB = State->getStateManager().getSValBuilder();
1378       const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1379       Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1380       SVal ThisVal = State->getSVal(ThisPtr);
1381 
1382       return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1383                                    ThisVal.getAsRegion(), State, CallerCtx);
1384     }
1385     case Stmt::CXXNewExprClass:
1386       return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
1387     case Stmt::ObjCMessageExprClass:
1388       return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
1389                                State, CallerCtx);
1390     default:
1391       llvm_unreachable("This is not an inlineable statement.");
1392     }
1393   }
1394 
1395   // Fall back to the CFG. The only thing we haven't handled yet is
1396   // destructors, though this could change in the future.
1397   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1398   CFGElement E = (*B)[CalleeCtx->getIndex()];
1399   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1400          "All other CFG elements should have exprs");
1401 
1402   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1403   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1404   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1405   SVal ThisVal = State->getSVal(ThisPtr);
1406 
1407   const Stmt *Trigger;
1408   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1409     Trigger = AutoDtor->getTriggerStmt();
1410   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1411     Trigger = DeleteDtor->getDeleteExpr();
1412   else
1413     Trigger = Dtor->getBody();
1414 
1415   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1416                               E.getAs<CFGBaseDtor>().hasValue(), State,
1417                               CallerCtx);
1418 }
1419