1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file defines CallEvent and its subclasses, which represent path- 10 /// sensitive instances of different kinds of function and method calls 11 /// (C, C++, and Objective-C). 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclBase.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/ParentMap.h" 26 #include "clang/AST/Stmt.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Analysis/AnalysisDeclContext.h" 29 #include "clang/Analysis/CFG.h" 30 #include "clang/Analysis/CFGStmtMap.h" 31 #include "clang/Analysis/PathDiagnostic.h" 32 #include "clang/Analysis/ProgramPoint.h" 33 #include "clang/Basic/IdentifierTable.h" 34 #include "clang/Basic/LLVM.h" 35 #include "clang/Basic/SourceLocation.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/Specifiers.h" 38 #include "clang/CrossTU/CrossTranslationUnit.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" 48 #include "llvm/ADT/ArrayRef.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/None.h" 51 #include "llvm/ADT/Optional.h" 52 #include "llvm/ADT/PointerIntPair.h" 53 #include "llvm/ADT/SmallSet.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/ADT/StringRef.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <cassert> 63 #include <utility> 64 65 #define DEBUG_TYPE "static-analyzer-call-event" 66 67 using namespace clang; 68 using namespace ento; 69 70 QualType CallEvent::getResultType() const { 71 ASTContext &Ctx = getState()->getStateManager().getContext(); 72 const Expr *E = getOriginExpr(); 73 if (!E) 74 return Ctx.VoidTy; 75 assert(E); 76 77 QualType ResultTy = E->getType(); 78 79 // A function that returns a reference to 'int' will have a result type 80 // of simply 'int'. Check the origin expr's value kind to recover the 81 // proper type. 82 switch (E->getValueKind()) { 83 case VK_LValue: 84 ResultTy = Ctx.getLValueReferenceType(ResultTy); 85 break; 86 case VK_XValue: 87 ResultTy = Ctx.getRValueReferenceType(ResultTy); 88 break; 89 case VK_RValue: 90 // No adjustment is necessary. 91 break; 92 } 93 94 return ResultTy; 95 } 96 97 static bool isCallback(QualType T) { 98 // If a parameter is a block or a callback, assume it can modify pointer. 99 if (T->isBlockPointerType() || 100 T->isFunctionPointerType() || 101 T->isObjCSelType()) 102 return true; 103 104 // Check if a callback is passed inside a struct (for both, struct passed by 105 // reference and by value). Dig just one level into the struct for now. 106 107 if (T->isAnyPointerType() || T->isReferenceType()) 108 T = T->getPointeeType(); 109 110 if (const RecordType *RT = T->getAsStructureType()) { 111 const RecordDecl *RD = RT->getDecl(); 112 for (const auto *I : RD->fields()) { 113 QualType FieldT = I->getType(); 114 if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) 115 return true; 116 } 117 } 118 return false; 119 } 120 121 static bool isVoidPointerToNonConst(QualType T) { 122 if (const auto *PT = T->getAs<PointerType>()) { 123 QualType PointeeTy = PT->getPointeeType(); 124 if (PointeeTy.isConstQualified()) 125 return false; 126 return PointeeTy->isVoidType(); 127 } else 128 return false; 129 } 130 131 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const { 132 unsigned NumOfArgs = getNumArgs(); 133 134 // If calling using a function pointer, assume the function does not 135 // satisfy the callback. 136 // TODO: We could check the types of the arguments here. 137 if (!getDecl()) 138 return false; 139 140 unsigned Idx = 0; 141 for (CallEvent::param_type_iterator I = param_type_begin(), 142 E = param_type_end(); 143 I != E && Idx < NumOfArgs; ++I, ++Idx) { 144 // If the parameter is 0, it's harmless. 145 if (getArgSVal(Idx).isZeroConstant()) 146 continue; 147 148 if (Condition(*I)) 149 return true; 150 } 151 return false; 152 } 153 154 bool CallEvent::hasNonZeroCallbackArg() const { 155 return hasNonNullArgumentsWithType(isCallback); 156 } 157 158 bool CallEvent::hasVoidPointerToNonConstArg() const { 159 return hasNonNullArgumentsWithType(isVoidPointerToNonConst); 160 } 161 162 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { 163 const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 164 if (!FD) 165 return false; 166 167 return CheckerContext::isCLibraryFunction(FD, FunctionName); 168 } 169 170 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const { 171 const Decl *D = getDecl(); 172 if (!D) 173 return nullptr; 174 175 // TODO: For now we skip functions without definitions, even if we have 176 // our own getDecl(), because it's hard to find out which re-declaration 177 // is going to be used, and usually clients don't really care about this 178 // situation because there's a loss of precision anyway because we cannot 179 // inline the call. 180 RuntimeDefinition RD = getRuntimeDefinition(); 181 if (!RD.getDecl()) 182 return nullptr; 183 184 AnalysisDeclContext *ADC = 185 LCtx->getAnalysisDeclContext()->getManager()->getContext(D); 186 187 // TODO: For now we skip virtual functions, because this also rises 188 // the problem of which decl to use, but now it's across different classes. 189 if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl()) 190 return nullptr; 191 192 return ADC; 193 } 194 195 const StackFrameContext * 196 CallEvent::getCalleeStackFrame(unsigned BlockCount) const { 197 AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext(); 198 if (!ADC) 199 return nullptr; 200 201 const Expr *E = getOriginExpr(); 202 if (!E) 203 return nullptr; 204 205 // Recover CFG block via reverse lookup. 206 // TODO: If we were to keep CFG element information as part of the CallEvent 207 // instead of doing this reverse lookup, we would be able to build the stack 208 // frame for non-expression-based calls, and also we wouldn't need the reverse 209 // lookup. 210 CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap(); 211 const CFGBlock *B = Map->getBlock(E); 212 assert(B); 213 214 // Also recover CFG index by scanning the CFG block. 215 unsigned Idx = 0, Sz = B->size(); 216 for (; Idx < Sz; ++Idx) 217 if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>()) 218 if (StmtElem->getStmt() == E) 219 break; 220 assert(Idx < Sz); 221 222 return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx); 223 } 224 225 const VarRegion *CallEvent::getParameterLocation(unsigned Index, 226 unsigned BlockCount) const { 227 const StackFrameContext *SFC = getCalleeStackFrame(BlockCount); 228 // We cannot construct a VarRegion without a stack frame. 229 if (!SFC) 230 return nullptr; 231 232 // Retrieve parameters of the definition, which are different from 233 // CallEvent's parameters() because getDecl() isn't necessarily 234 // the definition. SFC contains the definition that would be used 235 // during analysis. 236 const Decl *D = SFC->getDecl(); 237 238 // TODO: Refactor into a virtual method of CallEvent, like parameters(). 239 const ParmVarDecl *PVD = nullptr; 240 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 241 PVD = FD->parameters()[Index]; 242 else if (const auto *BD = dyn_cast<BlockDecl>(D)) 243 PVD = BD->parameters()[Index]; 244 else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 245 PVD = MD->parameters()[Index]; 246 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 247 PVD = CD->parameters()[Index]; 248 assert(PVD && "Unexpected Decl kind!"); 249 250 const VarRegion *VR = 251 State->getStateManager().getRegionManager().getVarRegion(PVD, SFC); 252 253 // This sanity check would fail if our parameter declaration doesn't 254 // correspond to the stack frame's function declaration. 255 assert(VR->getStackFrame() == SFC); 256 257 return VR; 258 } 259 260 /// Returns true if a type is a pointer-to-const or reference-to-const 261 /// with no further indirection. 262 static bool isPointerToConst(QualType Ty) { 263 QualType PointeeTy = Ty->getPointeeType(); 264 if (PointeeTy == QualType()) 265 return false; 266 if (!PointeeTy.isConstQualified()) 267 return false; 268 if (PointeeTy->isAnyPointerType()) 269 return false; 270 return true; 271 } 272 273 // Try to retrieve the function declaration and find the function parameter 274 // types which are pointers/references to a non-pointer const. 275 // We will not invalidate the corresponding argument regions. 276 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs, 277 const CallEvent &Call) { 278 unsigned Idx = 0; 279 for (CallEvent::param_type_iterator I = Call.param_type_begin(), 280 E = Call.param_type_end(); 281 I != E; ++I, ++Idx) { 282 if (isPointerToConst(*I)) 283 PreserveArgs.insert(Idx); 284 } 285 } 286 287 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, 288 ProgramStateRef Orig) const { 289 ProgramStateRef Result = (Orig ? Orig : getState()); 290 291 // Don't invalidate anything if the callee is marked pure/const. 292 if (const Decl *callee = getDecl()) 293 if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>()) 294 return Result; 295 296 SmallVector<SVal, 8> ValuesToInvalidate; 297 RegionAndSymbolInvalidationTraits ETraits; 298 299 getExtraInvalidatedValues(ValuesToInvalidate, &ETraits); 300 301 // Indexes of arguments whose values will be preserved by the call. 302 llvm::SmallSet<unsigned, 4> PreserveArgs; 303 if (!argumentsMayEscape()) 304 findPtrToConstParams(PreserveArgs, *this); 305 306 for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { 307 // Mark this region for invalidation. We batch invalidate regions 308 // below for efficiency. 309 if (PreserveArgs.count(Idx)) 310 if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) 311 ETraits.setTrait(MR->getBaseRegion(), 312 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 313 // TODO: Factor this out + handle the lower level const pointers. 314 315 ValuesToInvalidate.push_back(getArgSVal(Idx)); 316 317 // If a function accepts an object by argument (which would of course be a 318 // temporary that isn't lifetime-extended), invalidate the object itself, 319 // not only other objects reachable from it. This is necessary because the 320 // destructor has access to the temporary object after the call. 321 // TODO: Support placement arguments once we start 322 // constructing them directly. 323 // TODO: This is unnecessary when there's no destructor, but that's 324 // currently hard to figure out. 325 if (getKind() != CE_CXXAllocator) 326 if (isArgumentConstructedDirectly(Idx)) 327 if (auto AdjIdx = getAdjustedParameterIndex(Idx)) 328 if (const VarRegion *VR = getParameterLocation(*AdjIdx, BlockCount)) 329 ValuesToInvalidate.push_back(loc::MemRegionVal(VR)); 330 } 331 332 // Invalidate designated regions using the batch invalidation API. 333 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate 334 // global variables. 335 return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(), 336 BlockCount, getLocationContext(), 337 /*CausedByPointerEscape*/ true, 338 /*Symbols=*/nullptr, this, &ETraits); 339 } 340 341 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, 342 const ProgramPointTag *Tag) const { 343 if (const Expr *E = getOriginExpr()) { 344 if (IsPreVisit) 345 return PreStmt(E, getLocationContext(), Tag); 346 return PostStmt(E, getLocationContext(), Tag); 347 } 348 349 const Decl *D = getDecl(); 350 assert(D && "Cannot get a program point without a statement or decl"); 351 352 SourceLocation Loc = getSourceRange().getBegin(); 353 if (IsPreVisit) 354 return PreImplicitCall(D, Loc, getLocationContext(), Tag); 355 return PostImplicitCall(D, Loc, getLocationContext(), Tag); 356 } 357 358 bool CallEvent::isCalled(const CallDescription &CD) const { 359 // FIXME: Add ObjC Message support. 360 if (getKind() == CE_ObjCMessage) 361 return false; 362 363 const IdentifierInfo *II = getCalleeIdentifier(); 364 if (!II) 365 return false; 366 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 367 if (!FD) 368 return false; 369 370 if (CD.Flags & CDF_MaybeBuiltin) { 371 return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) && 372 (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) && 373 (!CD.RequiredParams || CD.RequiredParams <= parameters().size()); 374 } 375 376 if (!CD.IsLookupDone) { 377 CD.IsLookupDone = true; 378 CD.II = &getState()->getStateManager().getContext().Idents.get( 379 CD.getFunctionName()); 380 } 381 382 if (II != CD.II) 383 return false; 384 385 // If CallDescription provides prefix names, use them to improve matching 386 // accuracy. 387 if (CD.QualifiedName.size() > 1 && FD) { 388 const DeclContext *Ctx = FD->getDeclContext(); 389 // See if we'll be able to match them all. 390 size_t NumUnmatched = CD.QualifiedName.size() - 1; 391 for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) { 392 if (NumUnmatched == 0) 393 break; 394 395 if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) { 396 if (ND->getName() == CD.QualifiedName[NumUnmatched - 1]) 397 --NumUnmatched; 398 continue; 399 } 400 401 if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) { 402 if (RD->getName() == CD.QualifiedName[NumUnmatched - 1]) 403 --NumUnmatched; 404 continue; 405 } 406 } 407 408 if (NumUnmatched > 0) 409 return false; 410 } 411 412 return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) && 413 (!CD.RequiredParams || CD.RequiredParams == parameters().size()); 414 } 415 416 SVal CallEvent::getArgSVal(unsigned Index) const { 417 const Expr *ArgE = getArgExpr(Index); 418 if (!ArgE) 419 return UnknownVal(); 420 return getSVal(ArgE); 421 } 422 423 SourceRange CallEvent::getArgSourceRange(unsigned Index) const { 424 const Expr *ArgE = getArgExpr(Index); 425 if (!ArgE) 426 return {}; 427 return ArgE->getSourceRange(); 428 } 429 430 SVal CallEvent::getReturnValue() const { 431 const Expr *E = getOriginExpr(); 432 if (!E) 433 return UndefinedVal(); 434 return getSVal(E); 435 } 436 437 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); } 438 439 void CallEvent::dump(raw_ostream &Out) const { 440 ASTContext &Ctx = getState()->getStateManager().getContext(); 441 if (const Expr *E = getOriginExpr()) { 442 E->printPretty(Out, nullptr, Ctx.getPrintingPolicy()); 443 Out << "\n"; 444 return; 445 } 446 447 if (const Decl *D = getDecl()) { 448 Out << "Call to "; 449 D->print(Out, Ctx.getPrintingPolicy()); 450 return; 451 } 452 453 Out << "Unknown call (type " << getKindAsString() << ")"; 454 } 455 456 bool CallEvent::isCallStmt(const Stmt *S) { 457 return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S) 458 || isa<CXXConstructExpr>(S) 459 || isa<CXXNewExpr>(S); 460 } 461 462 QualType CallEvent::getDeclaredResultType(const Decl *D) { 463 assert(D); 464 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 465 return FD->getReturnType(); 466 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 467 return MD->getReturnType(); 468 if (const auto *BD = dyn_cast<BlockDecl>(D)) { 469 // Blocks are difficult because the return type may not be stored in the 470 // BlockDecl itself. The AST should probably be enhanced, but for now we 471 // just do what we can. 472 // If the block is declared without an explicit argument list, the 473 // signature-as-written just includes the return type, not the entire 474 // function type. 475 // FIXME: All blocks should have signatures-as-written, even if the return 476 // type is inferred. (That's signified with a dependent result type.) 477 if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) { 478 QualType Ty = TSI->getType(); 479 if (const FunctionType *FT = Ty->getAs<FunctionType>()) 480 Ty = FT->getReturnType(); 481 if (!Ty->isDependentType()) 482 return Ty; 483 } 484 485 return {}; 486 } 487 488 llvm_unreachable("unknown callable kind"); 489 } 490 491 bool CallEvent::isVariadic(const Decl *D) { 492 assert(D); 493 494 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 495 return FD->isVariadic(); 496 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 497 return MD->isVariadic(); 498 if (const auto *BD = dyn_cast<BlockDecl>(D)) 499 return BD->isVariadic(); 500 501 llvm_unreachable("unknown callable kind"); 502 } 503 504 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, 505 CallEvent::BindingsTy &Bindings, 506 SValBuilder &SVB, 507 const CallEvent &Call, 508 ArrayRef<ParmVarDecl*> parameters) { 509 MemRegionManager &MRMgr = SVB.getRegionManager(); 510 511 // If the function has fewer parameters than the call has arguments, we simply 512 // do not bind any values to them. 513 unsigned NumArgs = Call.getNumArgs(); 514 unsigned Idx = 0; 515 ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end(); 516 for (; I != E && Idx < NumArgs; ++I, ++Idx) { 517 const ParmVarDecl *ParamDecl = *I; 518 assert(ParamDecl && "Formal parameter has no decl?"); 519 520 // TODO: Support allocator calls. 521 if (Call.getKind() != CE_CXXAllocator) 522 if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx))) 523 continue; 524 525 // TODO: Allocators should receive the correct size and possibly alignment, 526 // determined in compile-time but not represented as arg-expressions, 527 // which makes getArgSVal() fail and return UnknownVal. 528 SVal ArgVal = Call.getArgSVal(Idx); 529 if (!ArgVal.isUnknown()) { 530 Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx)); 531 Bindings.push_back(std::make_pair(ParamLoc, ArgVal)); 532 } 533 } 534 535 // FIXME: Variadic arguments are not handled at all right now. 536 } 537 538 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const { 539 const FunctionDecl *D = getDecl(); 540 if (!D) 541 return None; 542 return D->parameters(); 543 } 544 545 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const { 546 const FunctionDecl *FD = getDecl(); 547 if (!FD) 548 return {}; 549 550 // Note that the AnalysisDeclContext will have the FunctionDecl with 551 // the definition (if one exists). 552 AnalysisDeclContext *AD = 553 getLocationContext()->getAnalysisDeclContext()-> 554 getManager()->getContext(FD); 555 bool IsAutosynthesized; 556 Stmt* Body = AD->getBody(IsAutosynthesized); 557 LLVM_DEBUG({ 558 if (IsAutosynthesized) 559 llvm::dbgs() << "Using autosynthesized body for " << FD->getName() 560 << "\n"; 561 }); 562 if (Body) { 563 const Decl* Decl = AD->getDecl(); 564 return RuntimeDefinition(Decl); 565 } 566 567 SubEngine &Engine = getState()->getStateManager().getOwningEngine(); 568 AnalyzerOptions &Opts = Engine.getAnalysisManager().options; 569 570 // Try to get CTU definition only if CTUDir is provided. 571 if (!Opts.IsNaiveCTUEnabled) 572 return {}; 573 574 cross_tu::CrossTranslationUnitContext &CTUCtx = 575 *Engine.getCrossTranslationUnitContext(); 576 llvm::Expected<const FunctionDecl *> CTUDeclOrError = 577 CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName, 578 Opts.DisplayCTUProgress); 579 580 if (!CTUDeclOrError) { 581 handleAllErrors(CTUDeclOrError.takeError(), 582 [&](const cross_tu::IndexError &IE) { 583 CTUCtx.emitCrossTUDiagnostics(IE); 584 }); 585 return {}; 586 } 587 588 return RuntimeDefinition(*CTUDeclOrError); 589 } 590 591 void AnyFunctionCall::getInitialStackFrameContents( 592 const StackFrameContext *CalleeCtx, 593 BindingsTy &Bindings) const { 594 const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl()); 595 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 596 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 597 D->parameters()); 598 } 599 600 bool AnyFunctionCall::argumentsMayEscape() const { 601 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg()) 602 return true; 603 604 const FunctionDecl *D = getDecl(); 605 if (!D) 606 return true; 607 608 const IdentifierInfo *II = D->getIdentifier(); 609 if (!II) 610 return false; 611 612 // This set of "escaping" APIs is 613 614 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a 615 // value into thread local storage. The value can later be retrieved with 616 // 'void *ptheread_getspecific(pthread_key)'. So even thought the 617 // parameter is 'const void *', the region escapes through the call. 618 if (II->isStr("pthread_setspecific")) 619 return true; 620 621 // - xpc_connection_set_context stores a value which can be retrieved later 622 // with xpc_connection_get_context. 623 if (II->isStr("xpc_connection_set_context")) 624 return true; 625 626 // - funopen - sets a buffer for future IO calls. 627 if (II->isStr("funopen")) 628 return true; 629 630 // - __cxa_demangle - can reallocate memory and can return the pointer to 631 // the input buffer. 632 if (II->isStr("__cxa_demangle")) 633 return true; 634 635 StringRef FName = II->getName(); 636 637 // - CoreFoundation functions that end with "NoCopy" can free a passed-in 638 // buffer even if it is const. 639 if (FName.endswith("NoCopy")) 640 return true; 641 642 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can 643 // be deallocated by NSMapRemove. 644 if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) 645 return true; 646 647 // - Many CF containers allow objects to escape through custom 648 // allocators/deallocators upon container construction. (PR12101) 649 if (FName.startswith("CF") || FName.startswith("CG")) { 650 return StrInStrNoCase(FName, "InsertValue") != StringRef::npos || 651 StrInStrNoCase(FName, "AddValue") != StringRef::npos || 652 StrInStrNoCase(FName, "SetValue") != StringRef::npos || 653 StrInStrNoCase(FName, "WithData") != StringRef::npos || 654 StrInStrNoCase(FName, "AppendValue") != StringRef::npos || 655 StrInStrNoCase(FName, "SetAttribute") != StringRef::npos; 656 } 657 658 return false; 659 } 660 661 const FunctionDecl *SimpleFunctionCall::getDecl() const { 662 const FunctionDecl *D = getOriginExpr()->getDirectCallee(); 663 if (D) 664 return D; 665 666 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl(); 667 } 668 669 const FunctionDecl *CXXInstanceCall::getDecl() const { 670 const auto *CE = cast_or_null<CallExpr>(getOriginExpr()); 671 if (!CE) 672 return AnyFunctionCall::getDecl(); 673 674 const FunctionDecl *D = CE->getDirectCallee(); 675 if (D) 676 return D; 677 678 return getSVal(CE->getCallee()).getAsFunctionDecl(); 679 } 680 681 void CXXInstanceCall::getExtraInvalidatedValues( 682 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 683 SVal ThisVal = getCXXThisVal(); 684 Values.push_back(ThisVal); 685 686 // Don't invalidate if the method is const and there are no mutable fields. 687 if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) { 688 if (!D->isConst()) 689 return; 690 // Get the record decl for the class of 'This'. D->getParent() may return a 691 // base class decl, rather than the class of the instance which needs to be 692 // checked for mutable fields. 693 // TODO: We might as well look at the dynamic type of the object. 694 const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts(); 695 QualType T = Ex->getType(); 696 if (T->isPointerType()) // Arrow or implicit-this syntax? 697 T = T->getPointeeType(); 698 const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl(); 699 assert(ParentRecord); 700 if (ParentRecord->hasMutableFields()) 701 return; 702 // Preserve CXXThis. 703 const MemRegion *ThisRegion = ThisVal.getAsRegion(); 704 if (!ThisRegion) 705 return; 706 707 ETraits->setTrait(ThisRegion->getBaseRegion(), 708 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 709 } 710 } 711 712 SVal CXXInstanceCall::getCXXThisVal() const { 713 const Expr *Base = getCXXThisExpr(); 714 // FIXME: This doesn't handle an overloaded ->* operator. 715 if (!Base) 716 return UnknownVal(); 717 718 SVal ThisVal = getSVal(Base); 719 assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()); 720 return ThisVal; 721 } 722 723 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { 724 // Do we have a decl at all? 725 const Decl *D = getDecl(); 726 if (!D) 727 return {}; 728 729 // If the method is non-virtual, we know we can inline it. 730 const auto *MD = cast<CXXMethodDecl>(D); 731 if (!MD->isVirtual()) 732 return AnyFunctionCall::getRuntimeDefinition(); 733 734 // Do we know the implicit 'this' object being called? 735 const MemRegion *R = getCXXThisVal().getAsRegion(); 736 if (!R) 737 return {}; 738 739 // Do we know anything about the type of 'this'? 740 DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R); 741 if (!DynType.isValid()) 742 return {}; 743 744 // Is the type a C++ class? (This is mostly a defensive check.) 745 QualType RegionType = DynType.getType()->getPointeeType(); 746 assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."); 747 748 const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl(); 749 if (!RD || !RD->hasDefinition()) 750 return {}; 751 752 // Find the decl for this method in that class. 753 const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true); 754 if (!Result) { 755 // We might not even get the original statically-resolved method due to 756 // some particularly nasty casting (e.g. casts to sister classes). 757 // However, we should at least be able to search up and down our own class 758 // hierarchy, and some real bugs have been caught by checking this. 759 assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"); 760 761 // FIXME: This is checking that our DynamicTypeInfo is at least as good as 762 // the static type. However, because we currently don't update 763 // DynamicTypeInfo when an object is cast, we can't actually be sure the 764 // DynamicTypeInfo is up to date. This assert should be re-enabled once 765 // this is fixed. <rdar://problem/12287087> 766 //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); 767 768 return {}; 769 } 770 771 // Does the decl that we found have an implementation? 772 const FunctionDecl *Definition; 773 if (!Result->hasBody(Definition)) { 774 if (!DynType.canBeASubClass()) 775 return AnyFunctionCall::getRuntimeDefinition(); 776 return {}; 777 } 778 779 // We found a definition. If we're not sure that this devirtualization is 780 // actually what will happen at runtime, make sure to provide the region so 781 // that ExprEngine can decide what to do with it. 782 if (DynType.canBeASubClass()) 783 return RuntimeDefinition(Definition, R->StripCasts()); 784 return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr); 785 } 786 787 void CXXInstanceCall::getInitialStackFrameContents( 788 const StackFrameContext *CalleeCtx, 789 BindingsTy &Bindings) const { 790 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 791 792 // Handle the binding of 'this' in the new stack frame. 793 SVal ThisVal = getCXXThisVal(); 794 if (!ThisVal.isUnknown()) { 795 ProgramStateManager &StateMgr = getState()->getStateManager(); 796 SValBuilder &SVB = StateMgr.getSValBuilder(); 797 798 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 799 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 800 801 // If we devirtualized to a different member function, we need to make sure 802 // we have the proper layering of CXXBaseObjectRegions. 803 if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { 804 ASTContext &Ctx = SVB.getContext(); 805 const CXXRecordDecl *Class = MD->getParent(); 806 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class)); 807 808 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. 809 bool Failed; 810 ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed); 811 if (Failed) { 812 // We might have suffered some sort of placement new earlier, so 813 // we're constructing in a completely unexpected storage. 814 // Fall back to a generic pointer cast for this-value. 815 const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl()); 816 const CXXRecordDecl *StaticClass = StaticMD->getParent(); 817 QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass)); 818 ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy); 819 } 820 } 821 822 if (!ThisVal.isUnknown()) 823 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 824 } 825 } 826 827 const Expr *CXXMemberCall::getCXXThisExpr() const { 828 return getOriginExpr()->getImplicitObjectArgument(); 829 } 830 831 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { 832 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the 833 // id-expression in the class member access expression is a qualified-id, 834 // that function is called. Otherwise, its final overrider in the dynamic type 835 // of the object expression is called. 836 if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee())) 837 if (ME->hasQualifier()) 838 return AnyFunctionCall::getRuntimeDefinition(); 839 840 return CXXInstanceCall::getRuntimeDefinition(); 841 } 842 843 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { 844 return getOriginExpr()->getArg(0); 845 } 846 847 const BlockDataRegion *BlockCall::getBlockRegion() const { 848 const Expr *Callee = getOriginExpr()->getCallee(); 849 const MemRegion *DataReg = getSVal(Callee).getAsRegion(); 850 851 return dyn_cast_or_null<BlockDataRegion>(DataReg); 852 } 853 854 ArrayRef<ParmVarDecl*> BlockCall::parameters() const { 855 const BlockDecl *D = getDecl(); 856 if (!D) 857 return None; 858 return D->parameters(); 859 } 860 861 void BlockCall::getExtraInvalidatedValues(ValueList &Values, 862 RegionAndSymbolInvalidationTraits *ETraits) const { 863 // FIXME: This also needs to invalidate captured globals. 864 if (const MemRegion *R = getBlockRegion()) 865 Values.push_back(loc::MemRegionVal(R)); 866 } 867 868 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, 869 BindingsTy &Bindings) const { 870 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 871 ArrayRef<ParmVarDecl*> Params; 872 if (isConversionFromLambda()) { 873 auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 874 Params = LambdaOperatorDecl->parameters(); 875 876 // For blocks converted from a C++ lambda, the callee declaration is the 877 // operator() method on the lambda so we bind "this" to 878 // the lambda captured by the block. 879 const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda(); 880 SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion); 881 Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx); 882 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 883 } else { 884 Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters(); 885 } 886 887 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 888 Params); 889 } 890 891 SVal AnyCXXConstructorCall::getCXXThisVal() const { 892 if (Data) 893 return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); 894 return UnknownVal(); 895 } 896 897 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values, 898 RegionAndSymbolInvalidationTraits *ETraits) const { 899 SVal V = getCXXThisVal(); 900 if (SymbolRef Sym = V.getAsSymbol(true)) 901 ETraits->setTrait(Sym, 902 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 903 Values.push_back(V); 904 } 905 906 void AnyCXXConstructorCall::getInitialStackFrameContents( 907 const StackFrameContext *CalleeCtx, 908 BindingsTy &Bindings) const { 909 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 910 911 SVal ThisVal = getCXXThisVal(); 912 if (!ThisVal.isUnknown()) { 913 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 914 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 915 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 916 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 917 } 918 } 919 920 const StackFrameContext * 921 CXXInheritedConstructorCall::getInheritingStackFrame() const { 922 const StackFrameContext *SFC = getLocationContext()->getStackFrame(); 923 while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite())) 924 SFC = SFC->getParent()->getStackFrame(); 925 return SFC; 926 } 927 928 SVal CXXDestructorCall::getCXXThisVal() const { 929 if (Data) 930 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer()); 931 return UnknownVal(); 932 } 933 934 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { 935 // Base destructors are always called non-virtually. 936 // Skip CXXInstanceCall's devirtualization logic in this case. 937 if (isBaseDestructor()) 938 return AnyFunctionCall::getRuntimeDefinition(); 939 940 return CXXInstanceCall::getRuntimeDefinition(); 941 } 942 943 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const { 944 const ObjCMethodDecl *D = getDecl(); 945 if (!D) 946 return None; 947 return D->parameters(); 948 } 949 950 void ObjCMethodCall::getExtraInvalidatedValues( 951 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 952 953 // If the method call is a setter for property known to be backed by 954 // an instance variable, don't invalidate the entire receiver, just 955 // the storage for that instance variable. 956 if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) { 957 if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) { 958 SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal()); 959 if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) { 960 ETraits->setTrait( 961 IvarRegion, 962 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 963 ETraits->setTrait( 964 IvarRegion, 965 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 966 Values.push_back(IvarLVal); 967 } 968 return; 969 } 970 } 971 972 Values.push_back(getReceiverSVal()); 973 } 974 975 SVal ObjCMethodCall::getReceiverSVal() const { 976 // FIXME: Is this the best way to handle class receivers? 977 if (!isInstanceMessage()) 978 return UnknownVal(); 979 980 if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) 981 return getSVal(RecE); 982 983 // An instance message with no expression means we are sending to super. 984 // In this case the object reference is the same as 'self'. 985 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); 986 SVal SelfVal = getState()->getSelfSVal(getLocationContext()); 987 assert(SelfVal.isValid() && "Calling super but not in ObjC method"); 988 return SelfVal; 989 } 990 991 bool ObjCMethodCall::isReceiverSelfOrSuper() const { 992 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || 993 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) 994 return true; 995 996 if (!isInstanceMessage()) 997 return false; 998 999 SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver()); 1000 SVal SelfVal = getState()->getSelfSVal(getLocationContext()); 1001 1002 return (RecVal == SelfVal); 1003 } 1004 1005 SourceRange ObjCMethodCall::getSourceRange() const { 1006 switch (getMessageKind()) { 1007 case OCM_Message: 1008 return getOriginExpr()->getSourceRange(); 1009 case OCM_PropertyAccess: 1010 case OCM_Subscript: 1011 return getContainingPseudoObjectExpr()->getSourceRange(); 1012 } 1013 llvm_unreachable("unknown message kind"); 1014 } 1015 1016 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>; 1017 1018 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { 1019 assert(Data && "Lazy lookup not yet performed."); 1020 assert(getMessageKind() != OCM_Message && "Explicit message send."); 1021 return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer(); 1022 } 1023 1024 static const Expr * 1025 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) { 1026 const Expr *Syntactic = POE->getSyntacticForm(); 1027 1028 // This handles the funny case of assigning to the result of a getter. 1029 // This can happen if the getter returns a non-const reference. 1030 if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic)) 1031 Syntactic = BO->getLHS(); 1032 1033 return Syntactic; 1034 } 1035 1036 ObjCMessageKind ObjCMethodCall::getMessageKind() const { 1037 if (!Data) { 1038 // Find the parent, ignoring implicit casts. 1039 const ParentMap &PM = getLocationContext()->getParentMap(); 1040 const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr()); 1041 1042 // Check if parent is a PseudoObjectExpr. 1043 if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) { 1044 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 1045 1046 ObjCMessageKind K; 1047 switch (Syntactic->getStmtClass()) { 1048 case Stmt::ObjCPropertyRefExprClass: 1049 K = OCM_PropertyAccess; 1050 break; 1051 case Stmt::ObjCSubscriptRefExprClass: 1052 K = OCM_Subscript; 1053 break; 1054 default: 1055 // FIXME: Can this ever happen? 1056 K = OCM_Message; 1057 break; 1058 } 1059 1060 if (K != OCM_Message) { 1061 const_cast<ObjCMethodCall *>(this)->Data 1062 = ObjCMessageDataTy(POE, K).getOpaqueValue(); 1063 assert(getMessageKind() == K); 1064 return K; 1065 } 1066 } 1067 1068 const_cast<ObjCMethodCall *>(this)->Data 1069 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue(); 1070 assert(getMessageKind() == OCM_Message); 1071 return OCM_Message; 1072 } 1073 1074 ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data); 1075 if (!Info.getPointer()) 1076 return OCM_Message; 1077 return static_cast<ObjCMessageKind>(Info.getInt()); 1078 } 1079 1080 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const { 1081 // Look for properties accessed with property syntax (foo.bar = ...) 1082 if (getMessageKind() == OCM_PropertyAccess) { 1083 const PseudoObjectExpr *POE = getContainingPseudoObjectExpr(); 1084 assert(POE && "Property access without PseudoObjectExpr?"); 1085 1086 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 1087 auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic); 1088 1089 if (RefExpr->isExplicitProperty()) 1090 return RefExpr->getExplicitProperty(); 1091 } 1092 1093 // Look for properties accessed with method syntax ([foo setBar:...]). 1094 const ObjCMethodDecl *MD = getDecl(); 1095 if (!MD || !MD->isPropertyAccessor()) 1096 return nullptr; 1097 1098 // Note: This is potentially quite slow. 1099 return MD->findPropertyDecl(); 1100 } 1101 1102 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, 1103 Selector Sel) const { 1104 assert(IDecl); 1105 AnalysisManager &AMgr = 1106 getState()->getStateManager().getOwningEngine().getAnalysisManager(); 1107 // If the class interface is declared inside the main file, assume it is not 1108 // subcassed. 1109 // TODO: It could actually be subclassed if the subclass is private as well. 1110 // This is probably very rare. 1111 SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); 1112 if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc)) 1113 return false; 1114 1115 // Assume that property accessors are not overridden. 1116 if (getMessageKind() == OCM_PropertyAccess) 1117 return false; 1118 1119 // We assume that if the method is public (declared outside of main file) or 1120 // has a parent which publicly declares the method, the method could be 1121 // overridden in a subclass. 1122 1123 // Find the first declaration in the class hierarchy that declares 1124 // the selector. 1125 ObjCMethodDecl *D = nullptr; 1126 while (true) { 1127 D = IDecl->lookupMethod(Sel, true); 1128 1129 // Cannot find a public definition. 1130 if (!D) 1131 return false; 1132 1133 // If outside the main file, 1134 if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation())) 1135 return true; 1136 1137 if (D->isOverriding()) { 1138 // Search in the superclass on the next iteration. 1139 IDecl = D->getClassInterface(); 1140 if (!IDecl) 1141 return false; 1142 1143 IDecl = IDecl->getSuperClass(); 1144 if (!IDecl) 1145 return false; 1146 1147 continue; 1148 } 1149 1150 return false; 1151 }; 1152 1153 llvm_unreachable("The while loop should always terminate."); 1154 } 1155 1156 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) { 1157 if (!MD) 1158 return MD; 1159 1160 // Find the redeclaration that defines the method. 1161 if (!MD->hasBody()) { 1162 for (auto I : MD->redecls()) 1163 if (I->hasBody()) 1164 MD = cast<ObjCMethodDecl>(I); 1165 } 1166 return MD; 1167 } 1168 1169 struct PrivateMethodKey { 1170 const ObjCInterfaceDecl *Interface; 1171 Selector LookupSelector; 1172 bool IsClassMethod; 1173 }; 1174 1175 namespace llvm { 1176 template <> struct DenseMapInfo<PrivateMethodKey> { 1177 using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>; 1178 using SelectorInfo = DenseMapInfo<Selector>; 1179 1180 static inline PrivateMethodKey getEmptyKey() { 1181 return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false}; 1182 } 1183 1184 static inline PrivateMethodKey getTombstoneKey() { 1185 return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(), 1186 true}; 1187 } 1188 1189 static unsigned getHashValue(const PrivateMethodKey &Key) { 1190 return llvm::hash_combine( 1191 llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)), 1192 llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)), 1193 Key.IsClassMethod); 1194 } 1195 1196 static bool isEqual(const PrivateMethodKey &LHS, 1197 const PrivateMethodKey &RHS) { 1198 return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) && 1199 SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) && 1200 LHS.IsClassMethod == RHS.IsClassMethod; 1201 } 1202 }; 1203 } // end namespace llvm 1204 1205 static const ObjCMethodDecl * 1206 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface, 1207 Selector LookupSelector, bool InstanceMethod) { 1208 // Repeatedly calling lookupPrivateMethod() is expensive, especially 1209 // when in many cases it returns null. We cache the results so 1210 // that repeated queries on the same ObjCIntefaceDecl and Selector 1211 // don't incur the same cost. On some test cases, we can see the 1212 // same query being issued thousands of times. 1213 // 1214 // NOTE: This cache is essentially a "global" variable, but it 1215 // only gets lazily created when we get here. The value of the 1216 // cache probably comes from it being global across ExprEngines, 1217 // where the same queries may get issued. If we are worried about 1218 // concurrency, or possibly loading/unloading ASTs, etc., we may 1219 // need to revisit this someday. In terms of memory, this table 1220 // stays around until clang quits, which also may be bad if we 1221 // need to release memory. 1222 using PrivateMethodCache = 1223 llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>; 1224 1225 static PrivateMethodCache PMC; 1226 Optional<const ObjCMethodDecl *> &Val = 1227 PMC[{Interface, LookupSelector, InstanceMethod}]; 1228 1229 // Query lookupPrivateMethod() if the cache does not hit. 1230 if (!Val.hasValue()) { 1231 Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod); 1232 1233 if (!*Val) { 1234 // Query 'lookupMethod' as a backup. 1235 Val = Interface->lookupMethod(LookupSelector, InstanceMethod); 1236 } 1237 } 1238 1239 return Val.getValue(); 1240 } 1241 1242 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { 1243 const ObjCMessageExpr *E = getOriginExpr(); 1244 assert(E); 1245 Selector Sel = E->getSelector(); 1246 1247 if (E->isInstanceMessage()) { 1248 // Find the receiver type. 1249 const ObjCObjectType *ReceiverT = nullptr; 1250 bool CanBeSubClassed = false; 1251 bool LookingForInstanceMethod = true; 1252 QualType SupersType = E->getSuperType(); 1253 const MemRegion *Receiver = nullptr; 1254 1255 if (!SupersType.isNull()) { 1256 // The receiver is guaranteed to be 'super' in this case. 1257 // Super always means the type of immediate predecessor to the method 1258 // where the call occurs. 1259 ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType(); 1260 } else { 1261 Receiver = getReceiverSVal().getAsRegion(); 1262 if (!Receiver) 1263 return {}; 1264 1265 DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver); 1266 if (!DTI.isValid()) { 1267 assert(isa<AllocaRegion>(Receiver) && 1268 "Unhandled untyped region class!"); 1269 return {}; 1270 } 1271 1272 QualType DynType = DTI.getType(); 1273 CanBeSubClassed = DTI.canBeASubClass(); 1274 1275 const auto *ReceiverDynT = 1276 dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType()); 1277 1278 if (ReceiverDynT) { 1279 ReceiverT = ReceiverDynT->getObjectType(); 1280 1281 // It can be actually class methods called with Class object as a 1282 // receiver. This type of messages is treated by the compiler as 1283 // instance (not class). 1284 if (ReceiverT->isObjCClass()) { 1285 1286 SVal SelfVal = getState()->getSelfSVal(getLocationContext()); 1287 // For [self classMethod], return compiler visible declaration. 1288 if (Receiver == SelfVal.getAsRegion()) { 1289 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1290 } 1291 1292 // Otherwise, let's check if we know something about the type 1293 // inside of this class object. 1294 if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) { 1295 DynamicTypeInfo DTI = 1296 getClassObjectDynamicTypeInfo(getState(), ReceiverSym); 1297 if (DTI.isValid()) { 1298 // Let's use this type for lookup. 1299 ReceiverT = 1300 cast<ObjCObjectType>(DTI.getType().getCanonicalType()); 1301 1302 CanBeSubClassed = DTI.canBeASubClass(); 1303 // And it should be a class method instead. 1304 LookingForInstanceMethod = false; 1305 } 1306 } 1307 } 1308 1309 if (CanBeSubClassed) 1310 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) 1311 // Even if `DynamicTypeInfo` told us that it can be 1312 // not necessarily this type, but its descendants, we still want 1313 // to check again if this selector can be actually overridden. 1314 CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel); 1315 } 1316 } 1317 1318 // Lookup the instance method implementation. 1319 if (ReceiverT) 1320 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) { 1321 const ObjCMethodDecl *MD = 1322 lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod); 1323 1324 if (MD && !MD->hasBody()) 1325 MD = MD->getCanonicalDecl(); 1326 1327 if (CanBeSubClassed) 1328 return RuntimeDefinition(MD, Receiver); 1329 else 1330 return RuntimeDefinition(MD, nullptr); 1331 } 1332 } else { 1333 // This is a class method. 1334 // If we have type info for the receiver class, we are calling via 1335 // class name. 1336 if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { 1337 // Find/Return the method implementation. 1338 return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); 1339 } 1340 } 1341 1342 return {}; 1343 } 1344 1345 bool ObjCMethodCall::argumentsMayEscape() const { 1346 if (isInSystemHeader() && !isInstanceMessage()) { 1347 Selector Sel = getSelector(); 1348 if (Sel.getNumArgs() == 1 && 1349 Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer")) 1350 return true; 1351 } 1352 1353 return CallEvent::argumentsMayEscape(); 1354 } 1355 1356 void ObjCMethodCall::getInitialStackFrameContents( 1357 const StackFrameContext *CalleeCtx, 1358 BindingsTy &Bindings) const { 1359 const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl()); 1360 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 1361 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 1362 D->parameters()); 1363 1364 SVal SelfVal = getReceiverSVal(); 1365 if (!SelfVal.isUnknown()) { 1366 const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); 1367 MemRegionManager &MRMgr = SVB.getRegionManager(); 1368 Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx)); 1369 Bindings.push_back(std::make_pair(SelfLoc, SelfVal)); 1370 } 1371 } 1372 1373 CallEventRef<> 1374 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, 1375 const LocationContext *LCtx) { 1376 if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE)) 1377 return create<CXXMemberCall>(MCE, State, LCtx); 1378 1379 if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 1380 const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); 1381 if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) 1382 if (MD->isInstance()) 1383 return create<CXXMemberOperatorCall>(OpCE, State, LCtx); 1384 1385 } else if (CE->getCallee()->getType()->isBlockPointerType()) { 1386 return create<BlockCall>(CE, State, LCtx); 1387 } 1388 1389 // Otherwise, it's a normal function call, static member function call, or 1390 // something we can't reason about. 1391 return create<SimpleFunctionCall>(CE, State, LCtx); 1392 } 1393 1394 CallEventRef<> 1395 CallEventManager::getCaller(const StackFrameContext *CalleeCtx, 1396 ProgramStateRef State) { 1397 const LocationContext *ParentCtx = CalleeCtx->getParent(); 1398 const LocationContext *CallerCtx = ParentCtx->getStackFrame(); 1399 assert(CallerCtx && "This should not be used for top-level stack frames"); 1400 1401 const Stmt *CallSite = CalleeCtx->getCallSite(); 1402 1403 if (CallSite) { 1404 if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx)) 1405 return Out; 1406 1407 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1408 const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 1409 Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx); 1410 SVal ThisVal = State->getSVal(ThisPtr); 1411 1412 if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite)) 1413 return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx); 1414 else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite)) 1415 return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State, 1416 CallerCtx); 1417 else { 1418 // All other cases are handled by getCall. 1419 llvm_unreachable("This is not an inlineable statement"); 1420 } 1421 } 1422 1423 // Fall back to the CFG. The only thing we haven't handled yet is 1424 // destructors, though this could change in the future. 1425 const CFGBlock *B = CalleeCtx->getCallSiteBlock(); 1426 CFGElement E = (*B)[CalleeCtx->getIndex()]; 1427 assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) && 1428 "All other CFG elements should have exprs"); 1429 1430 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1431 const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl()); 1432 Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx); 1433 SVal ThisVal = State->getSVal(ThisPtr); 1434 1435 const Stmt *Trigger; 1436 if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>()) 1437 Trigger = AutoDtor->getTriggerStmt(); 1438 else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>()) 1439 Trigger = DeleteDtor->getDeleteExpr(); 1440 else 1441 Trigger = Dtor->getBody(); 1442 1443 return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(), 1444 E.getAs<CFGBaseDtor>().hasValue(), State, 1445 CallerCtx); 1446 } 1447 1448 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State, 1449 const LocationContext *LC) { 1450 if (const auto *CE = dyn_cast<CallExpr>(S)) { 1451 return getSimpleCall(CE, State, LC); 1452 } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) { 1453 return getCXXAllocatorCall(NE, State, LC); 1454 } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) { 1455 return getObjCMethodCall(ME, State, LC); 1456 } else { 1457 return nullptr; 1458 } 1459 } 1460