1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/None.h"
51 #include "llvm/ADT/Optional.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cassert>
63 #include <utility>
64 
65 #define DEBUG_TYPE "static-analyzer-call-event"
66 
67 using namespace clang;
68 using namespace ento;
69 
70 QualType CallEvent::getResultType() const {
71   ASTContext &Ctx = getState()->getStateManager().getContext();
72   const Expr *E = getOriginExpr();
73   if (!E)
74     return Ctx.VoidTy;
75   assert(E);
76 
77   QualType ResultTy = E->getType();
78 
79   // A function that returns a reference to 'int' will have a result type
80   // of simply 'int'. Check the origin expr's value kind to recover the
81   // proper type.
82   switch (E->getValueKind()) {
83   case VK_LValue:
84     ResultTy = Ctx.getLValueReferenceType(ResultTy);
85     break;
86   case VK_XValue:
87     ResultTy = Ctx.getRValueReferenceType(ResultTy);
88     break;
89   case VK_RValue:
90     // No adjustment is necessary.
91     break;
92   }
93 
94   return ResultTy;
95 }
96 
97 static bool isCallback(QualType T) {
98   // If a parameter is a block or a callback, assume it can modify pointer.
99   if (T->isBlockPointerType() ||
100       T->isFunctionPointerType() ||
101       T->isObjCSelType())
102     return true;
103 
104   // Check if a callback is passed inside a struct (for both, struct passed by
105   // reference and by value). Dig just one level into the struct for now.
106 
107   if (T->isAnyPointerType() || T->isReferenceType())
108     T = T->getPointeeType();
109 
110   if (const RecordType *RT = T->getAsStructureType()) {
111     const RecordDecl *RD = RT->getDecl();
112     for (const auto *I : RD->fields()) {
113       QualType FieldT = I->getType();
114       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
115         return true;
116     }
117   }
118   return false;
119 }
120 
121 static bool isVoidPointerToNonConst(QualType T) {
122   if (const auto *PT = T->getAs<PointerType>()) {
123     QualType PointeeTy = PT->getPointeeType();
124     if (PointeeTy.isConstQualified())
125       return false;
126     return PointeeTy->isVoidType();
127   } else
128     return false;
129 }
130 
131 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
132   unsigned NumOfArgs = getNumArgs();
133 
134   // If calling using a function pointer, assume the function does not
135   // satisfy the callback.
136   // TODO: We could check the types of the arguments here.
137   if (!getDecl())
138     return false;
139 
140   unsigned Idx = 0;
141   for (CallEvent::param_type_iterator I = param_type_begin(),
142                                       E = param_type_end();
143        I != E && Idx < NumOfArgs; ++I, ++Idx) {
144     // If the parameter is 0, it's harmless.
145     if (getArgSVal(Idx).isZeroConstant())
146       continue;
147 
148     if (Condition(*I))
149       return true;
150   }
151   return false;
152 }
153 
154 bool CallEvent::hasNonZeroCallbackArg() const {
155   return hasNonNullArgumentsWithType(isCallback);
156 }
157 
158 bool CallEvent::hasVoidPointerToNonConstArg() const {
159   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
160 }
161 
162 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
163   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
164   if (!FD)
165     return false;
166 
167   return CheckerContext::isCLibraryFunction(FD, FunctionName);
168 }
169 
170 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
171   const Decl *D = getDecl();
172   if (!D)
173     return nullptr;
174 
175   // TODO: For now we skip functions without definitions, even if we have
176   // our own getDecl(), because it's hard to find out which re-declaration
177   // is going to be used, and usually clients don't really care about this
178   // situation because there's a loss of precision anyway because we cannot
179   // inline the call.
180   RuntimeDefinition RD = getRuntimeDefinition();
181   if (!RD.getDecl())
182     return nullptr;
183 
184   AnalysisDeclContext *ADC =
185       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
186 
187   // TODO: For now we skip virtual functions, because this also rises
188   // the problem of which decl to use, but now it's across different classes.
189   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
190     return nullptr;
191 
192   return ADC;
193 }
194 
195 const StackFrameContext *
196 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
197   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
198   if (!ADC)
199     return nullptr;
200 
201   const Expr *E = getOriginExpr();
202   if (!E)
203     return nullptr;
204 
205   // Recover CFG block via reverse lookup.
206   // TODO: If we were to keep CFG element information as part of the CallEvent
207   // instead of doing this reverse lookup, we would be able to build the stack
208   // frame for non-expression-based calls, and also we wouldn't need the reverse
209   // lookup.
210   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
211   const CFGBlock *B = Map->getBlock(E);
212   assert(B);
213 
214   // Also recover CFG index by scanning the CFG block.
215   unsigned Idx = 0, Sz = B->size();
216   for (; Idx < Sz; ++Idx)
217     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
218       if (StmtElem->getStmt() == E)
219         break;
220   assert(Idx < Sz);
221 
222   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
223 }
224 
225 const VarRegion *CallEvent::getParameterLocation(unsigned Index,
226                                                  unsigned BlockCount) const {
227   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
228   // We cannot construct a VarRegion without a stack frame.
229   if (!SFC)
230     return nullptr;
231 
232   // Retrieve parameters of the definition, which are different from
233   // CallEvent's parameters() because getDecl() isn't necessarily
234   // the definition. SFC contains the definition that would be used
235   // during analysis.
236   const Decl *D = SFC->getDecl();
237 
238   // TODO: Refactor into a virtual method of CallEvent, like parameters().
239   const ParmVarDecl *PVD = nullptr;
240   if (const auto *FD = dyn_cast<FunctionDecl>(D))
241     PVD = FD->parameters()[Index];
242   else if (const auto *BD = dyn_cast<BlockDecl>(D))
243     PVD = BD->parameters()[Index];
244   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
245     PVD = MD->parameters()[Index];
246   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
247     PVD = CD->parameters()[Index];
248   assert(PVD && "Unexpected Decl kind!");
249 
250   const VarRegion *VR =
251       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
252 
253   // This sanity check would fail if our parameter declaration doesn't
254   // correspond to the stack frame's function declaration.
255   assert(VR->getStackFrame() == SFC);
256 
257   return VR;
258 }
259 
260 /// Returns true if a type is a pointer-to-const or reference-to-const
261 /// with no further indirection.
262 static bool isPointerToConst(QualType Ty) {
263   QualType PointeeTy = Ty->getPointeeType();
264   if (PointeeTy == QualType())
265     return false;
266   if (!PointeeTy.isConstQualified())
267     return false;
268   if (PointeeTy->isAnyPointerType())
269     return false;
270   return true;
271 }
272 
273 // Try to retrieve the function declaration and find the function parameter
274 // types which are pointers/references to a non-pointer const.
275 // We will not invalidate the corresponding argument regions.
276 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
277                                  const CallEvent &Call) {
278   unsigned Idx = 0;
279   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
280                                       E = Call.param_type_end();
281        I != E; ++I, ++Idx) {
282     if (isPointerToConst(*I))
283       PreserveArgs.insert(Idx);
284   }
285 }
286 
287 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
288                                              ProgramStateRef Orig) const {
289   ProgramStateRef Result = (Orig ? Orig : getState());
290 
291   // Don't invalidate anything if the callee is marked pure/const.
292   if (const Decl *callee = getDecl())
293     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
294       return Result;
295 
296   SmallVector<SVal, 8> ValuesToInvalidate;
297   RegionAndSymbolInvalidationTraits ETraits;
298 
299   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
300 
301   // Indexes of arguments whose values will be preserved by the call.
302   llvm::SmallSet<unsigned, 4> PreserveArgs;
303   if (!argumentsMayEscape())
304     findPtrToConstParams(PreserveArgs, *this);
305 
306   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
307     // Mark this region for invalidation.  We batch invalidate regions
308     // below for efficiency.
309     if (PreserveArgs.count(Idx))
310       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
311         ETraits.setTrait(MR->getBaseRegion(),
312                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
313         // TODO: Factor this out + handle the lower level const pointers.
314 
315     ValuesToInvalidate.push_back(getArgSVal(Idx));
316 
317     // If a function accepts an object by argument (which would of course be a
318     // temporary that isn't lifetime-extended), invalidate the object itself,
319     // not only other objects reachable from it. This is necessary because the
320     // destructor has access to the temporary object after the call.
321     // TODO: Support placement arguments once we start
322     // constructing them directly.
323     // TODO: This is unnecessary when there's no destructor, but that's
324     // currently hard to figure out.
325     if (getKind() != CE_CXXAllocator)
326       if (isArgumentConstructedDirectly(Idx))
327         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
328           if (const VarRegion *VR = getParameterLocation(*AdjIdx, BlockCount))
329             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
330   }
331 
332   // Invalidate designated regions using the batch invalidation API.
333   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
334   //  global variables.
335   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
336                                    BlockCount, getLocationContext(),
337                                    /*CausedByPointerEscape*/ true,
338                                    /*Symbols=*/nullptr, this, &ETraits);
339 }
340 
341 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
342                                         const ProgramPointTag *Tag) const {
343   if (const Expr *E = getOriginExpr()) {
344     if (IsPreVisit)
345       return PreStmt(E, getLocationContext(), Tag);
346     return PostStmt(E, getLocationContext(), Tag);
347   }
348 
349   const Decl *D = getDecl();
350   assert(D && "Cannot get a program point without a statement or decl");
351 
352   SourceLocation Loc = getSourceRange().getBegin();
353   if (IsPreVisit)
354     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
355   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
356 }
357 
358 bool CallEvent::isCalled(const CallDescription &CD) const {
359   // FIXME: Add ObjC Message support.
360   if (getKind() == CE_ObjCMessage)
361     return false;
362 
363   const IdentifierInfo *II = getCalleeIdentifier();
364   if (!II)
365     return false;
366   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
367   if (!FD)
368     return false;
369 
370   if (CD.Flags & CDF_MaybeBuiltin) {
371     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
372            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
373            (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
374   }
375 
376   if (!CD.IsLookupDone) {
377     CD.IsLookupDone = true;
378     CD.II = &getState()->getStateManager().getContext().Idents.get(
379         CD.getFunctionName());
380   }
381 
382   if (II != CD.II)
383     return false;
384 
385   // If CallDescription provides prefix names, use them to improve matching
386   // accuracy.
387   if (CD.QualifiedName.size() > 1 && FD) {
388     const DeclContext *Ctx = FD->getDeclContext();
389     // See if we'll be able to match them all.
390     size_t NumUnmatched = CD.QualifiedName.size() - 1;
391     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
392       if (NumUnmatched == 0)
393         break;
394 
395       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
396         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
397           --NumUnmatched;
398         continue;
399       }
400 
401       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
402         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
403           --NumUnmatched;
404         continue;
405       }
406     }
407 
408     if (NumUnmatched > 0)
409       return false;
410   }
411 
412   return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) &&
413          (!CD.RequiredParams || CD.RequiredParams == parameters().size());
414 }
415 
416 SVal CallEvent::getArgSVal(unsigned Index) const {
417   const Expr *ArgE = getArgExpr(Index);
418   if (!ArgE)
419     return UnknownVal();
420   return getSVal(ArgE);
421 }
422 
423 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
424   const Expr *ArgE = getArgExpr(Index);
425   if (!ArgE)
426     return {};
427   return ArgE->getSourceRange();
428 }
429 
430 SVal CallEvent::getReturnValue() const {
431   const Expr *E = getOriginExpr();
432   if (!E)
433     return UndefinedVal();
434   return getSVal(E);
435 }
436 
437 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
438 
439 void CallEvent::dump(raw_ostream &Out) const {
440   ASTContext &Ctx = getState()->getStateManager().getContext();
441   if (const Expr *E = getOriginExpr()) {
442     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
443     Out << "\n";
444     return;
445   }
446 
447   if (const Decl *D = getDecl()) {
448     Out << "Call to ";
449     D->print(Out, Ctx.getPrintingPolicy());
450     return;
451   }
452 
453   Out << "Unknown call (type " << getKindAsString() << ")";
454 }
455 
456 bool CallEvent::isCallStmt(const Stmt *S) {
457   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
458                           || isa<CXXConstructExpr>(S)
459                           || isa<CXXNewExpr>(S);
460 }
461 
462 QualType CallEvent::getDeclaredResultType(const Decl *D) {
463   assert(D);
464   if (const auto *FD = dyn_cast<FunctionDecl>(D))
465     return FD->getReturnType();
466   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
467     return MD->getReturnType();
468   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
469     // Blocks are difficult because the return type may not be stored in the
470     // BlockDecl itself. The AST should probably be enhanced, but for now we
471     // just do what we can.
472     // If the block is declared without an explicit argument list, the
473     // signature-as-written just includes the return type, not the entire
474     // function type.
475     // FIXME: All blocks should have signatures-as-written, even if the return
476     // type is inferred. (That's signified with a dependent result type.)
477     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
478       QualType Ty = TSI->getType();
479       if (const FunctionType *FT = Ty->getAs<FunctionType>())
480         Ty = FT->getReturnType();
481       if (!Ty->isDependentType())
482         return Ty;
483     }
484 
485     return {};
486   }
487 
488   llvm_unreachable("unknown callable kind");
489 }
490 
491 bool CallEvent::isVariadic(const Decl *D) {
492   assert(D);
493 
494   if (const auto *FD = dyn_cast<FunctionDecl>(D))
495     return FD->isVariadic();
496   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
497     return MD->isVariadic();
498   if (const auto *BD = dyn_cast<BlockDecl>(D))
499     return BD->isVariadic();
500 
501   llvm_unreachable("unknown callable kind");
502 }
503 
504 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
505                                          CallEvent::BindingsTy &Bindings,
506                                          SValBuilder &SVB,
507                                          const CallEvent &Call,
508                                          ArrayRef<ParmVarDecl*> parameters) {
509   MemRegionManager &MRMgr = SVB.getRegionManager();
510 
511   // If the function has fewer parameters than the call has arguments, we simply
512   // do not bind any values to them.
513   unsigned NumArgs = Call.getNumArgs();
514   unsigned Idx = 0;
515   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
516   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
517     const ParmVarDecl *ParamDecl = *I;
518     assert(ParamDecl && "Formal parameter has no decl?");
519 
520     // TODO: Support allocator calls.
521     if (Call.getKind() != CE_CXXAllocator)
522       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
523         continue;
524 
525     // TODO: Allocators should receive the correct size and possibly alignment,
526     // determined in compile-time but not represented as arg-expressions,
527     // which makes getArgSVal() fail and return UnknownVal.
528     SVal ArgVal = Call.getArgSVal(Idx);
529     if (!ArgVal.isUnknown()) {
530       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
531       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
532     }
533   }
534 
535   // FIXME: Variadic arguments are not handled at all right now.
536 }
537 
538 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
539   const FunctionDecl *D = getDecl();
540   if (!D)
541     return None;
542   return D->parameters();
543 }
544 
545 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
546   const FunctionDecl *FD = getDecl();
547   if (!FD)
548     return {};
549 
550   // Note that the AnalysisDeclContext will have the FunctionDecl with
551   // the definition (if one exists).
552   AnalysisDeclContext *AD =
553     getLocationContext()->getAnalysisDeclContext()->
554     getManager()->getContext(FD);
555   bool IsAutosynthesized;
556   Stmt* Body = AD->getBody(IsAutosynthesized);
557   LLVM_DEBUG({
558     if (IsAutosynthesized)
559       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
560                    << "\n";
561   });
562   if (Body) {
563     const Decl* Decl = AD->getDecl();
564     return RuntimeDefinition(Decl);
565   }
566 
567   SubEngine &Engine = getState()->getStateManager().getOwningEngine();
568   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
569 
570   // Try to get CTU definition only if CTUDir is provided.
571   if (!Opts.IsNaiveCTUEnabled)
572     return {};
573 
574   cross_tu::CrossTranslationUnitContext &CTUCtx =
575       *Engine.getCrossTranslationUnitContext();
576   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
577       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
578                                   Opts.DisplayCTUProgress);
579 
580   if (!CTUDeclOrError) {
581     handleAllErrors(CTUDeclOrError.takeError(),
582                     [&](const cross_tu::IndexError &IE) {
583                       CTUCtx.emitCrossTUDiagnostics(IE);
584                     });
585     return {};
586   }
587 
588   return RuntimeDefinition(*CTUDeclOrError);
589 }
590 
591 void AnyFunctionCall::getInitialStackFrameContents(
592                                         const StackFrameContext *CalleeCtx,
593                                         BindingsTy &Bindings) const {
594   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
595   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
596   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
597                                D->parameters());
598 }
599 
600 bool AnyFunctionCall::argumentsMayEscape() const {
601   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
602     return true;
603 
604   const FunctionDecl *D = getDecl();
605   if (!D)
606     return true;
607 
608   const IdentifierInfo *II = D->getIdentifier();
609   if (!II)
610     return false;
611 
612   // This set of "escaping" APIs is
613 
614   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
615   //   value into thread local storage. The value can later be retrieved with
616   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
617   //   parameter is 'const void *', the region escapes through the call.
618   if (II->isStr("pthread_setspecific"))
619     return true;
620 
621   // - xpc_connection_set_context stores a value which can be retrieved later
622   //   with xpc_connection_get_context.
623   if (II->isStr("xpc_connection_set_context"))
624     return true;
625 
626   // - funopen - sets a buffer for future IO calls.
627   if (II->isStr("funopen"))
628     return true;
629 
630   // - __cxa_demangle - can reallocate memory and can return the pointer to
631   // the input buffer.
632   if (II->isStr("__cxa_demangle"))
633     return true;
634 
635   StringRef FName = II->getName();
636 
637   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
638   //   buffer even if it is const.
639   if (FName.endswith("NoCopy"))
640     return true;
641 
642   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
643   //   be deallocated by NSMapRemove.
644   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
645     return true;
646 
647   // - Many CF containers allow objects to escape through custom
648   //   allocators/deallocators upon container construction. (PR12101)
649   if (FName.startswith("CF") || FName.startswith("CG")) {
650     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
651            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
652            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
653            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
654            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
655            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
656   }
657 
658   return false;
659 }
660 
661 const FunctionDecl *SimpleFunctionCall::getDecl() const {
662   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
663   if (D)
664     return D;
665 
666   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
667 }
668 
669 const FunctionDecl *CXXInstanceCall::getDecl() const {
670   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
671   if (!CE)
672     return AnyFunctionCall::getDecl();
673 
674   const FunctionDecl *D = CE->getDirectCallee();
675   if (D)
676     return D;
677 
678   return getSVal(CE->getCallee()).getAsFunctionDecl();
679 }
680 
681 void CXXInstanceCall::getExtraInvalidatedValues(
682     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
683   SVal ThisVal = getCXXThisVal();
684   Values.push_back(ThisVal);
685 
686   // Don't invalidate if the method is const and there are no mutable fields.
687   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
688     if (!D->isConst())
689       return;
690     // Get the record decl for the class of 'This'. D->getParent() may return a
691     // base class decl, rather than the class of the instance which needs to be
692     // checked for mutable fields.
693     // TODO: We might as well look at the dynamic type of the object.
694     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
695     QualType T = Ex->getType();
696     if (T->isPointerType()) // Arrow or implicit-this syntax?
697       T = T->getPointeeType();
698     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
699     assert(ParentRecord);
700     if (ParentRecord->hasMutableFields())
701       return;
702     // Preserve CXXThis.
703     const MemRegion *ThisRegion = ThisVal.getAsRegion();
704     if (!ThisRegion)
705       return;
706 
707     ETraits->setTrait(ThisRegion->getBaseRegion(),
708                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
709   }
710 }
711 
712 SVal CXXInstanceCall::getCXXThisVal() const {
713   const Expr *Base = getCXXThisExpr();
714   // FIXME: This doesn't handle an overloaded ->* operator.
715   if (!Base)
716     return UnknownVal();
717 
718   SVal ThisVal = getSVal(Base);
719   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
720   return ThisVal;
721 }
722 
723 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
724   // Do we have a decl at all?
725   const Decl *D = getDecl();
726   if (!D)
727     return {};
728 
729   // If the method is non-virtual, we know we can inline it.
730   const auto *MD = cast<CXXMethodDecl>(D);
731   if (!MD->isVirtual())
732     return AnyFunctionCall::getRuntimeDefinition();
733 
734   // Do we know the implicit 'this' object being called?
735   const MemRegion *R = getCXXThisVal().getAsRegion();
736   if (!R)
737     return {};
738 
739   // Do we know anything about the type of 'this'?
740   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
741   if (!DynType.isValid())
742     return {};
743 
744   // Is the type a C++ class? (This is mostly a defensive check.)
745   QualType RegionType = DynType.getType()->getPointeeType();
746   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
747 
748   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
749   if (!RD || !RD->hasDefinition())
750     return {};
751 
752   // Find the decl for this method in that class.
753   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
754   if (!Result) {
755     // We might not even get the original statically-resolved method due to
756     // some particularly nasty casting (e.g. casts to sister classes).
757     // However, we should at least be able to search up and down our own class
758     // hierarchy, and some real bugs have been caught by checking this.
759     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
760 
761     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
762     // the static type. However, because we currently don't update
763     // DynamicTypeInfo when an object is cast, we can't actually be sure the
764     // DynamicTypeInfo is up to date. This assert should be re-enabled once
765     // this is fixed. <rdar://problem/12287087>
766     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
767 
768     return {};
769   }
770 
771   // Does the decl that we found have an implementation?
772   const FunctionDecl *Definition;
773   if (!Result->hasBody(Definition)) {
774     if (!DynType.canBeASubClass())
775       return AnyFunctionCall::getRuntimeDefinition();
776     return {};
777   }
778 
779   // We found a definition. If we're not sure that this devirtualization is
780   // actually what will happen at runtime, make sure to provide the region so
781   // that ExprEngine can decide what to do with it.
782   if (DynType.canBeASubClass())
783     return RuntimeDefinition(Definition, R->StripCasts());
784   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
785 }
786 
787 void CXXInstanceCall::getInitialStackFrameContents(
788                                             const StackFrameContext *CalleeCtx,
789                                             BindingsTy &Bindings) const {
790   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
791 
792   // Handle the binding of 'this' in the new stack frame.
793   SVal ThisVal = getCXXThisVal();
794   if (!ThisVal.isUnknown()) {
795     ProgramStateManager &StateMgr = getState()->getStateManager();
796     SValBuilder &SVB = StateMgr.getSValBuilder();
797 
798     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
799     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
800 
801     // If we devirtualized to a different member function, we need to make sure
802     // we have the proper layering of CXXBaseObjectRegions.
803     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
804       ASTContext &Ctx = SVB.getContext();
805       const CXXRecordDecl *Class = MD->getParent();
806       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
807 
808       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
809       bool Failed;
810       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
811       if (Failed) {
812         // We might have suffered some sort of placement new earlier, so
813         // we're constructing in a completely unexpected storage.
814         // Fall back to a generic pointer cast for this-value.
815         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
816         const CXXRecordDecl *StaticClass = StaticMD->getParent();
817         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
818         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
819       }
820     }
821 
822     if (!ThisVal.isUnknown())
823       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
824   }
825 }
826 
827 const Expr *CXXMemberCall::getCXXThisExpr() const {
828   return getOriginExpr()->getImplicitObjectArgument();
829 }
830 
831 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
832   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
833   // id-expression in the class member access expression is a qualified-id,
834   // that function is called. Otherwise, its final overrider in the dynamic type
835   // of the object expression is called.
836   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
837     if (ME->hasQualifier())
838       return AnyFunctionCall::getRuntimeDefinition();
839 
840   return CXXInstanceCall::getRuntimeDefinition();
841 }
842 
843 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
844   return getOriginExpr()->getArg(0);
845 }
846 
847 const BlockDataRegion *BlockCall::getBlockRegion() const {
848   const Expr *Callee = getOriginExpr()->getCallee();
849   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
850 
851   return dyn_cast_or_null<BlockDataRegion>(DataReg);
852 }
853 
854 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
855   const BlockDecl *D = getDecl();
856   if (!D)
857     return None;
858   return D->parameters();
859 }
860 
861 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
862                   RegionAndSymbolInvalidationTraits *ETraits) const {
863   // FIXME: This also needs to invalidate captured globals.
864   if (const MemRegion *R = getBlockRegion())
865     Values.push_back(loc::MemRegionVal(R));
866 }
867 
868 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
869                                              BindingsTy &Bindings) const {
870   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
871   ArrayRef<ParmVarDecl*> Params;
872   if (isConversionFromLambda()) {
873     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
874     Params = LambdaOperatorDecl->parameters();
875 
876     // For blocks converted from a C++ lambda, the callee declaration is the
877     // operator() method on the lambda so we bind "this" to
878     // the lambda captured by the block.
879     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
880     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
881     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
882     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
883   } else {
884     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
885   }
886 
887   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
888                                Params);
889 }
890 
891 SVal AnyCXXConstructorCall::getCXXThisVal() const {
892   if (Data)
893     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
894   return UnknownVal();
895 }
896 
897 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
898                            RegionAndSymbolInvalidationTraits *ETraits) const {
899   SVal V = getCXXThisVal();
900   if (SymbolRef Sym = V.getAsSymbol(true))
901     ETraits->setTrait(Sym,
902                       RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
903   Values.push_back(V);
904 }
905 
906 void AnyCXXConstructorCall::getInitialStackFrameContents(
907                                              const StackFrameContext *CalleeCtx,
908                                              BindingsTy &Bindings) const {
909   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
910 
911   SVal ThisVal = getCXXThisVal();
912   if (!ThisVal.isUnknown()) {
913     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
914     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
915     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
916     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
917   }
918 }
919 
920 const StackFrameContext *
921 CXXInheritedConstructorCall::getInheritingStackFrame() const {
922   const StackFrameContext *SFC = getLocationContext()->getStackFrame();
923   while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
924     SFC = SFC->getParent()->getStackFrame();
925   return SFC;
926 }
927 
928 SVal CXXDestructorCall::getCXXThisVal() const {
929   if (Data)
930     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
931   return UnknownVal();
932 }
933 
934 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
935   // Base destructors are always called non-virtually.
936   // Skip CXXInstanceCall's devirtualization logic in this case.
937   if (isBaseDestructor())
938     return AnyFunctionCall::getRuntimeDefinition();
939 
940   return CXXInstanceCall::getRuntimeDefinition();
941 }
942 
943 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
944   const ObjCMethodDecl *D = getDecl();
945   if (!D)
946     return None;
947   return D->parameters();
948 }
949 
950 void ObjCMethodCall::getExtraInvalidatedValues(
951     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
952 
953   // If the method call is a setter for property known to be backed by
954   // an instance variable, don't invalidate the entire receiver, just
955   // the storage for that instance variable.
956   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
957     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
958       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
959       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
960         ETraits->setTrait(
961           IvarRegion,
962           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
963         ETraits->setTrait(
964           IvarRegion,
965           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
966         Values.push_back(IvarLVal);
967       }
968       return;
969     }
970   }
971 
972   Values.push_back(getReceiverSVal());
973 }
974 
975 SVal ObjCMethodCall::getReceiverSVal() const {
976   // FIXME: Is this the best way to handle class receivers?
977   if (!isInstanceMessage())
978     return UnknownVal();
979 
980   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
981     return getSVal(RecE);
982 
983   // An instance message with no expression means we are sending to super.
984   // In this case the object reference is the same as 'self'.
985   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
986   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
987   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
988   return SelfVal;
989 }
990 
991 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
992   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
993       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
994       return true;
995 
996   if (!isInstanceMessage())
997     return false;
998 
999   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1000   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1001 
1002   return (RecVal == SelfVal);
1003 }
1004 
1005 SourceRange ObjCMethodCall::getSourceRange() const {
1006   switch (getMessageKind()) {
1007   case OCM_Message:
1008     return getOriginExpr()->getSourceRange();
1009   case OCM_PropertyAccess:
1010   case OCM_Subscript:
1011     return getContainingPseudoObjectExpr()->getSourceRange();
1012   }
1013   llvm_unreachable("unknown message kind");
1014 }
1015 
1016 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1017 
1018 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1019   assert(Data && "Lazy lookup not yet performed.");
1020   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1021   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1022 }
1023 
1024 static const Expr *
1025 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1026   const Expr *Syntactic = POE->getSyntacticForm();
1027 
1028   // This handles the funny case of assigning to the result of a getter.
1029   // This can happen if the getter returns a non-const reference.
1030   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1031     Syntactic = BO->getLHS();
1032 
1033   return Syntactic;
1034 }
1035 
1036 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1037   if (!Data) {
1038     // Find the parent, ignoring implicit casts.
1039     const ParentMap &PM = getLocationContext()->getParentMap();
1040     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1041 
1042     // Check if parent is a PseudoObjectExpr.
1043     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1044       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1045 
1046       ObjCMessageKind K;
1047       switch (Syntactic->getStmtClass()) {
1048       case Stmt::ObjCPropertyRefExprClass:
1049         K = OCM_PropertyAccess;
1050         break;
1051       case Stmt::ObjCSubscriptRefExprClass:
1052         K = OCM_Subscript;
1053         break;
1054       default:
1055         // FIXME: Can this ever happen?
1056         K = OCM_Message;
1057         break;
1058       }
1059 
1060       if (K != OCM_Message) {
1061         const_cast<ObjCMethodCall *>(this)->Data
1062           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1063         assert(getMessageKind() == K);
1064         return K;
1065       }
1066     }
1067 
1068     const_cast<ObjCMethodCall *>(this)->Data
1069       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1070     assert(getMessageKind() == OCM_Message);
1071     return OCM_Message;
1072   }
1073 
1074   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1075   if (!Info.getPointer())
1076     return OCM_Message;
1077   return static_cast<ObjCMessageKind>(Info.getInt());
1078 }
1079 
1080 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1081   // Look for properties accessed with property syntax (foo.bar = ...)
1082   if (getMessageKind() == OCM_PropertyAccess) {
1083     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1084     assert(POE && "Property access without PseudoObjectExpr?");
1085 
1086     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1087     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1088 
1089     if (RefExpr->isExplicitProperty())
1090       return RefExpr->getExplicitProperty();
1091   }
1092 
1093   // Look for properties accessed with method syntax ([foo setBar:...]).
1094   const ObjCMethodDecl *MD = getDecl();
1095   if (!MD || !MD->isPropertyAccessor())
1096     return nullptr;
1097 
1098   // Note: This is potentially quite slow.
1099   return MD->findPropertyDecl();
1100 }
1101 
1102 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1103                                              Selector Sel) const {
1104   assert(IDecl);
1105   AnalysisManager &AMgr =
1106       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1107   // If the class interface is declared inside the main file, assume it is not
1108   // subcassed.
1109   // TODO: It could actually be subclassed if the subclass is private as well.
1110   // This is probably very rare.
1111   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1112   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1113     return false;
1114 
1115   // Assume that property accessors are not overridden.
1116   if (getMessageKind() == OCM_PropertyAccess)
1117     return false;
1118 
1119   // We assume that if the method is public (declared outside of main file) or
1120   // has a parent which publicly declares the method, the method could be
1121   // overridden in a subclass.
1122 
1123   // Find the first declaration in the class hierarchy that declares
1124   // the selector.
1125   ObjCMethodDecl *D = nullptr;
1126   while (true) {
1127     D = IDecl->lookupMethod(Sel, true);
1128 
1129     // Cannot find a public definition.
1130     if (!D)
1131       return false;
1132 
1133     // If outside the main file,
1134     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1135       return true;
1136 
1137     if (D->isOverriding()) {
1138       // Search in the superclass on the next iteration.
1139       IDecl = D->getClassInterface();
1140       if (!IDecl)
1141         return false;
1142 
1143       IDecl = IDecl->getSuperClass();
1144       if (!IDecl)
1145         return false;
1146 
1147       continue;
1148     }
1149 
1150     return false;
1151   };
1152 
1153   llvm_unreachable("The while loop should always terminate.");
1154 }
1155 
1156 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1157   if (!MD)
1158     return MD;
1159 
1160   // Find the redeclaration that defines the method.
1161   if (!MD->hasBody()) {
1162     for (auto I : MD->redecls())
1163       if (I->hasBody())
1164         MD = cast<ObjCMethodDecl>(I);
1165   }
1166   return MD;
1167 }
1168 
1169 struct PrivateMethodKey {
1170   const ObjCInterfaceDecl *Interface;
1171   Selector LookupSelector;
1172   bool IsClassMethod;
1173 };
1174 
1175 namespace llvm {
1176 template <> struct DenseMapInfo<PrivateMethodKey> {
1177   using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
1178   using SelectorInfo = DenseMapInfo<Selector>;
1179 
1180   static inline PrivateMethodKey getEmptyKey() {
1181     return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1182   }
1183 
1184   static inline PrivateMethodKey getTombstoneKey() {
1185     return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1186             true};
1187   }
1188 
1189   static unsigned getHashValue(const PrivateMethodKey &Key) {
1190     return llvm::hash_combine(
1191         llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
1192         llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
1193         Key.IsClassMethod);
1194   }
1195 
1196   static bool isEqual(const PrivateMethodKey &LHS,
1197                       const PrivateMethodKey &RHS) {
1198     return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
1199            SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
1200            LHS.IsClassMethod == RHS.IsClassMethod;
1201   }
1202 };
1203 } // end namespace llvm
1204 
1205 static const ObjCMethodDecl *
1206 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
1207                         Selector LookupSelector, bool InstanceMethod) {
1208   // Repeatedly calling lookupPrivateMethod() is expensive, especially
1209   // when in many cases it returns null.  We cache the results so
1210   // that repeated queries on the same ObjCIntefaceDecl and Selector
1211   // don't incur the same cost.  On some test cases, we can see the
1212   // same query being issued thousands of times.
1213   //
1214   // NOTE: This cache is essentially a "global" variable, but it
1215   // only gets lazily created when we get here.  The value of the
1216   // cache probably comes from it being global across ExprEngines,
1217   // where the same queries may get issued.  If we are worried about
1218   // concurrency, or possibly loading/unloading ASTs, etc., we may
1219   // need to revisit this someday.  In terms of memory, this table
1220   // stays around until clang quits, which also may be bad if we
1221   // need to release memory.
1222   using PrivateMethodCache =
1223       llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1224 
1225   static PrivateMethodCache PMC;
1226   Optional<const ObjCMethodDecl *> &Val =
1227       PMC[{Interface, LookupSelector, InstanceMethod}];
1228 
1229   // Query lookupPrivateMethod() if the cache does not hit.
1230   if (!Val.hasValue()) {
1231     Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
1232 
1233     if (!*Val) {
1234       // Query 'lookupMethod' as a backup.
1235       Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
1236     }
1237   }
1238 
1239   return Val.getValue();
1240 }
1241 
1242 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1243   const ObjCMessageExpr *E = getOriginExpr();
1244   assert(E);
1245   Selector Sel = E->getSelector();
1246 
1247   if (E->isInstanceMessage()) {
1248     // Find the receiver type.
1249     const ObjCObjectType *ReceiverT = nullptr;
1250     bool CanBeSubClassed = false;
1251     bool LookingForInstanceMethod = true;
1252     QualType SupersType = E->getSuperType();
1253     const MemRegion *Receiver = nullptr;
1254 
1255     if (!SupersType.isNull()) {
1256       // The receiver is guaranteed to be 'super' in this case.
1257       // Super always means the type of immediate predecessor to the method
1258       // where the call occurs.
1259       ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
1260     } else {
1261       Receiver = getReceiverSVal().getAsRegion();
1262       if (!Receiver)
1263         return {};
1264 
1265       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1266       if (!DTI.isValid()) {
1267         assert(isa<AllocaRegion>(Receiver) &&
1268                "Unhandled untyped region class!");
1269         return {};
1270       }
1271 
1272       QualType DynType = DTI.getType();
1273       CanBeSubClassed = DTI.canBeASubClass();
1274 
1275       const auto *ReceiverDynT =
1276           dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1277 
1278       if (ReceiverDynT) {
1279         ReceiverT = ReceiverDynT->getObjectType();
1280 
1281         // It can be actually class methods called with Class object as a
1282         // receiver. This type of messages is treated by the compiler as
1283         // instance (not class).
1284         if (ReceiverT->isObjCClass()) {
1285 
1286           SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1287           // For [self classMethod], return compiler visible declaration.
1288           if (Receiver == SelfVal.getAsRegion()) {
1289             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1290           }
1291 
1292           // Otherwise, let's check if we know something about the type
1293           // inside of this class object.
1294           if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
1295             DynamicTypeInfo DTI =
1296                 getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
1297             if (DTI.isValid()) {
1298               // Let's use this type for lookup.
1299               ReceiverT =
1300                   cast<ObjCObjectType>(DTI.getType().getCanonicalType());
1301 
1302               CanBeSubClassed = DTI.canBeASubClass();
1303               // And it should be a class method instead.
1304               LookingForInstanceMethod = false;
1305             }
1306           }
1307         }
1308 
1309         if (CanBeSubClassed)
1310           if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
1311             // Even if `DynamicTypeInfo` told us that it can be
1312             // not necessarily this type, but its descendants, we still want
1313             // to check again if this selector can be actually overridden.
1314             CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
1315       }
1316     }
1317 
1318     // Lookup the instance method implementation.
1319     if (ReceiverT)
1320       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
1321         const ObjCMethodDecl *MD =
1322             lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
1323 
1324         if (MD && !MD->hasBody())
1325           MD = MD->getCanonicalDecl();
1326 
1327         if (CanBeSubClassed)
1328           return RuntimeDefinition(MD, Receiver);
1329         else
1330           return RuntimeDefinition(MD, nullptr);
1331       }
1332   } else {
1333     // This is a class method.
1334     // If we have type info for the receiver class, we are calling via
1335     // class name.
1336     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1337       // Find/Return the method implementation.
1338       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1339     }
1340   }
1341 
1342   return {};
1343 }
1344 
1345 bool ObjCMethodCall::argumentsMayEscape() const {
1346   if (isInSystemHeader() && !isInstanceMessage()) {
1347     Selector Sel = getSelector();
1348     if (Sel.getNumArgs() == 1 &&
1349         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1350       return true;
1351   }
1352 
1353   return CallEvent::argumentsMayEscape();
1354 }
1355 
1356 void ObjCMethodCall::getInitialStackFrameContents(
1357                                              const StackFrameContext *CalleeCtx,
1358                                              BindingsTy &Bindings) const {
1359   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1360   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1361   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1362                                D->parameters());
1363 
1364   SVal SelfVal = getReceiverSVal();
1365   if (!SelfVal.isUnknown()) {
1366     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1367     MemRegionManager &MRMgr = SVB.getRegionManager();
1368     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1369     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1370   }
1371 }
1372 
1373 CallEventRef<>
1374 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1375                                 const LocationContext *LCtx) {
1376   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1377     return create<CXXMemberCall>(MCE, State, LCtx);
1378 
1379   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1380     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1381     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1382       if (MD->isInstance())
1383         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1384 
1385   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1386     return create<BlockCall>(CE, State, LCtx);
1387   }
1388 
1389   // Otherwise, it's a normal function call, static member function call, or
1390   // something we can't reason about.
1391   return create<SimpleFunctionCall>(CE, State, LCtx);
1392 }
1393 
1394 CallEventRef<>
1395 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1396                             ProgramStateRef State) {
1397   const LocationContext *ParentCtx = CalleeCtx->getParent();
1398   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1399   assert(CallerCtx && "This should not be used for top-level stack frames");
1400 
1401   const Stmt *CallSite = CalleeCtx->getCallSite();
1402 
1403   if (CallSite) {
1404     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1405       return Out;
1406 
1407     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1408     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1409     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1410     SVal ThisVal = State->getSVal(ThisPtr);
1411 
1412     if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1413       return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx);
1414     else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1415       return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1416                                             CallerCtx);
1417     else {
1418       // All other cases are handled by getCall.
1419       llvm_unreachable("This is not an inlineable statement");
1420     }
1421   }
1422 
1423   // Fall back to the CFG. The only thing we haven't handled yet is
1424   // destructors, though this could change in the future.
1425   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1426   CFGElement E = (*B)[CalleeCtx->getIndex()];
1427   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1428          "All other CFG elements should have exprs");
1429 
1430   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1431   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1432   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1433   SVal ThisVal = State->getSVal(ThisPtr);
1434 
1435   const Stmt *Trigger;
1436   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1437     Trigger = AutoDtor->getTriggerStmt();
1438   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1439     Trigger = DeleteDtor->getDeleteExpr();
1440   else
1441     Trigger = Dtor->getBody();
1442 
1443   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1444                               E.getAs<CFGBaseDtor>().hasValue(), State,
1445                               CallerCtx);
1446 }
1447 
1448 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1449                                          const LocationContext *LC) {
1450   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1451     return getSimpleCall(CE, State, LC);
1452   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1453     return getCXXAllocatorCall(NE, State, LC);
1454   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1455     return getObjCMethodCall(ME, State, LC);
1456   } else {
1457     return nullptr;
1458   }
1459 }
1460