1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file defines CallEvent and its subclasses, which represent path- 10 /// sensitive instances of different kinds of function and method calls 11 /// (C, C++, and Objective-C). 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclBase.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/AST/ExprObjC.h" 24 #include "clang/AST/ParentMap.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/Type.h" 27 #include "clang/Analysis/AnalysisDeclContext.h" 28 #include "clang/Analysis/CFG.h" 29 #include "clang/Analysis/CFGStmtMap.h" 30 #include "clang/Analysis/ProgramPoint.h" 31 #include "clang/CrossTU/CrossTranslationUnit.h" 32 #include "clang/Basic/IdentifierTable.h" 33 #include "clang/Basic/LLVM.h" 34 #include "clang/Basic/SourceLocation.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/Specifiers.h" 37 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 38 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 44 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 46 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/None.h" 50 #include "llvm/ADT/Optional.h" 51 #include "llvm/ADT/PointerIntPair.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/StringExtras.h" 55 #include "llvm/ADT/StringRef.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <cassert> 62 #include <utility> 63 64 #define DEBUG_TYPE "static-analyzer-call-event" 65 66 using namespace clang; 67 using namespace ento; 68 69 QualType CallEvent::getResultType() const { 70 ASTContext &Ctx = getState()->getStateManager().getContext(); 71 const Expr *E = getOriginExpr(); 72 if (!E) 73 return Ctx.VoidTy; 74 assert(E); 75 76 QualType ResultTy = E->getType(); 77 78 // A function that returns a reference to 'int' will have a result type 79 // of simply 'int'. Check the origin expr's value kind to recover the 80 // proper type. 81 switch (E->getValueKind()) { 82 case VK_LValue: 83 ResultTy = Ctx.getLValueReferenceType(ResultTy); 84 break; 85 case VK_XValue: 86 ResultTy = Ctx.getRValueReferenceType(ResultTy); 87 break; 88 case VK_RValue: 89 // No adjustment is necessary. 90 break; 91 } 92 93 return ResultTy; 94 } 95 96 static bool isCallback(QualType T) { 97 // If a parameter is a block or a callback, assume it can modify pointer. 98 if (T->isBlockPointerType() || 99 T->isFunctionPointerType() || 100 T->isObjCSelType()) 101 return true; 102 103 // Check if a callback is passed inside a struct (for both, struct passed by 104 // reference and by value). Dig just one level into the struct for now. 105 106 if (T->isAnyPointerType() || T->isReferenceType()) 107 T = T->getPointeeType(); 108 109 if (const RecordType *RT = T->getAsStructureType()) { 110 const RecordDecl *RD = RT->getDecl(); 111 for (const auto *I : RD->fields()) { 112 QualType FieldT = I->getType(); 113 if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) 114 return true; 115 } 116 } 117 return false; 118 } 119 120 static bool isVoidPointerToNonConst(QualType T) { 121 if (const auto *PT = T->getAs<PointerType>()) { 122 QualType PointeeTy = PT->getPointeeType(); 123 if (PointeeTy.isConstQualified()) 124 return false; 125 return PointeeTy->isVoidType(); 126 } else 127 return false; 128 } 129 130 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const { 131 unsigned NumOfArgs = getNumArgs(); 132 133 // If calling using a function pointer, assume the function does not 134 // satisfy the callback. 135 // TODO: We could check the types of the arguments here. 136 if (!getDecl()) 137 return false; 138 139 unsigned Idx = 0; 140 for (CallEvent::param_type_iterator I = param_type_begin(), 141 E = param_type_end(); 142 I != E && Idx < NumOfArgs; ++I, ++Idx) { 143 // If the parameter is 0, it's harmless. 144 if (getArgSVal(Idx).isZeroConstant()) 145 continue; 146 147 if (Condition(*I)) 148 return true; 149 } 150 return false; 151 } 152 153 bool CallEvent::hasNonZeroCallbackArg() const { 154 return hasNonNullArgumentsWithType(isCallback); 155 } 156 157 bool CallEvent::hasVoidPointerToNonConstArg() const { 158 return hasNonNullArgumentsWithType(isVoidPointerToNonConst); 159 } 160 161 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { 162 const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl()); 163 if (!FD) 164 return false; 165 166 return CheckerContext::isCLibraryFunction(FD, FunctionName); 167 } 168 169 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const { 170 const Decl *D = getDecl(); 171 if (!D) 172 return nullptr; 173 174 // TODO: For now we skip functions without definitions, even if we have 175 // our own getDecl(), because it's hard to find out which re-declaration 176 // is going to be used, and usually clients don't really care about this 177 // situation because there's a loss of precision anyway because we cannot 178 // inline the call. 179 RuntimeDefinition RD = getRuntimeDefinition(); 180 if (!RD.getDecl()) 181 return nullptr; 182 183 AnalysisDeclContext *ADC = 184 LCtx->getAnalysisDeclContext()->getManager()->getContext(D); 185 186 // TODO: For now we skip virtual functions, because this also rises 187 // the problem of which decl to use, but now it's across different classes. 188 if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl()) 189 return nullptr; 190 191 return ADC; 192 } 193 194 const StackFrameContext *CallEvent::getCalleeStackFrame() const { 195 AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext(); 196 if (!ADC) 197 return nullptr; 198 199 const Expr *E = getOriginExpr(); 200 if (!E) 201 return nullptr; 202 203 // Recover CFG block via reverse lookup. 204 // TODO: If we were to keep CFG element information as part of the CallEvent 205 // instead of doing this reverse lookup, we would be able to build the stack 206 // frame for non-expression-based calls, and also we wouldn't need the reverse 207 // lookup. 208 CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap(); 209 const CFGBlock *B = Map->getBlock(E); 210 assert(B); 211 212 // Also recover CFG index by scanning the CFG block. 213 unsigned Idx = 0, Sz = B->size(); 214 for (; Idx < Sz; ++Idx) 215 if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>()) 216 if (StmtElem->getStmt() == E) 217 break; 218 assert(Idx < Sz); 219 220 return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx); 221 } 222 223 const VarRegion *CallEvent::getParameterLocation(unsigned Index) const { 224 const StackFrameContext *SFC = getCalleeStackFrame(); 225 // We cannot construct a VarRegion without a stack frame. 226 if (!SFC) 227 return nullptr; 228 229 // Retrieve parameters of the definition, which are different from 230 // CallEvent's parameters() because getDecl() isn't necessarily 231 // the definition. SFC contains the definition that would be used 232 // during analysis. 233 const Decl *D = SFC->getDecl(); 234 235 // TODO: Refactor into a virtual method of CallEvent, like parameters(). 236 const ParmVarDecl *PVD = nullptr; 237 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 238 PVD = FD->parameters()[Index]; 239 else if (const auto *BD = dyn_cast<BlockDecl>(D)) 240 PVD = BD->parameters()[Index]; 241 else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 242 PVD = MD->parameters()[Index]; 243 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 244 PVD = CD->parameters()[Index]; 245 assert(PVD && "Unexpected Decl kind!"); 246 247 const VarRegion *VR = 248 State->getStateManager().getRegionManager().getVarRegion(PVD, SFC); 249 250 // This sanity check would fail if our parameter declaration doesn't 251 // correspond to the stack frame's function declaration. 252 assert(VR->getStackFrame() == SFC); 253 254 return VR; 255 } 256 257 /// Returns true if a type is a pointer-to-const or reference-to-const 258 /// with no further indirection. 259 static bool isPointerToConst(QualType Ty) { 260 QualType PointeeTy = Ty->getPointeeType(); 261 if (PointeeTy == QualType()) 262 return false; 263 if (!PointeeTy.isConstQualified()) 264 return false; 265 if (PointeeTy->isAnyPointerType()) 266 return false; 267 return true; 268 } 269 270 // Try to retrieve the function declaration and find the function parameter 271 // types which are pointers/references to a non-pointer const. 272 // We will not invalidate the corresponding argument regions. 273 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs, 274 const CallEvent &Call) { 275 unsigned Idx = 0; 276 for (CallEvent::param_type_iterator I = Call.param_type_begin(), 277 E = Call.param_type_end(); 278 I != E; ++I, ++Idx) { 279 if (isPointerToConst(*I)) 280 PreserveArgs.insert(Idx); 281 } 282 } 283 284 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, 285 ProgramStateRef Orig) const { 286 ProgramStateRef Result = (Orig ? Orig : getState()); 287 288 // Don't invalidate anything if the callee is marked pure/const. 289 if (const Decl *callee = getDecl()) 290 if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>()) 291 return Result; 292 293 SmallVector<SVal, 8> ValuesToInvalidate; 294 RegionAndSymbolInvalidationTraits ETraits; 295 296 getExtraInvalidatedValues(ValuesToInvalidate, &ETraits); 297 298 // Indexes of arguments whose values will be preserved by the call. 299 llvm::SmallSet<unsigned, 4> PreserveArgs; 300 if (!argumentsMayEscape()) 301 findPtrToConstParams(PreserveArgs, *this); 302 303 for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { 304 // Mark this region for invalidation. We batch invalidate regions 305 // below for efficiency. 306 if (PreserveArgs.count(Idx)) 307 if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) 308 ETraits.setTrait(MR->getBaseRegion(), 309 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 310 // TODO: Factor this out + handle the lower level const pointers. 311 312 ValuesToInvalidate.push_back(getArgSVal(Idx)); 313 314 // If a function accepts an object by argument (which would of course be a 315 // temporary that isn't lifetime-extended), invalidate the object itself, 316 // not only other objects reachable from it. This is necessary because the 317 // destructor has access to the temporary object after the call. 318 // TODO: Support placement arguments once we start 319 // constructing them directly. 320 // TODO: This is unnecessary when there's no destructor, but that's 321 // currently hard to figure out. 322 if (getKind() != CE_CXXAllocator) 323 if (isArgumentConstructedDirectly(Idx)) 324 if (auto AdjIdx = getAdjustedParameterIndex(Idx)) 325 if (const VarRegion *VR = getParameterLocation(*AdjIdx)) 326 ValuesToInvalidate.push_back(loc::MemRegionVal(VR)); 327 } 328 329 // Invalidate designated regions using the batch invalidation API. 330 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate 331 // global variables. 332 return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(), 333 BlockCount, getLocationContext(), 334 /*CausedByPointerEscape*/ true, 335 /*Symbols=*/nullptr, this, &ETraits); 336 } 337 338 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, 339 const ProgramPointTag *Tag) const { 340 if (const Expr *E = getOriginExpr()) { 341 if (IsPreVisit) 342 return PreStmt(E, getLocationContext(), Tag); 343 return PostStmt(E, getLocationContext(), Tag); 344 } 345 346 const Decl *D = getDecl(); 347 assert(D && "Cannot get a program point without a statement or decl"); 348 349 SourceLocation Loc = getSourceRange().getBegin(); 350 if (IsPreVisit) 351 return PreImplicitCall(D, Loc, getLocationContext(), Tag); 352 return PostImplicitCall(D, Loc, getLocationContext(), Tag); 353 } 354 355 bool CallEvent::isCalled(const CallDescription &CD) const { 356 // FIXME: Add ObjC Message support. 357 if (getKind() == CE_ObjCMessage) 358 return false; 359 if (!CD.IsLookupDone) { 360 CD.IsLookupDone = true; 361 CD.II = &getState()->getStateManager().getContext().Idents.get( 362 CD.getFunctionName()); 363 } 364 const IdentifierInfo *II = getCalleeIdentifier(); 365 if (!II || II != CD.II) 366 return false; 367 368 const Decl *D = getDecl(); 369 // If CallDescription provides prefix names, use them to improve matching 370 // accuracy. 371 if (CD.QualifiedName.size() > 1 && D) { 372 const DeclContext *Ctx = D->getDeclContext(); 373 // See if we'll be able to match them all. 374 size_t NumUnmatched = CD.QualifiedName.size() - 1; 375 for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) { 376 if (NumUnmatched == 0) 377 break; 378 379 if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) { 380 if (ND->getName() == CD.QualifiedName[NumUnmatched - 1]) 381 --NumUnmatched; 382 continue; 383 } 384 385 if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) { 386 if (RD->getName() == CD.QualifiedName[NumUnmatched - 1]) 387 --NumUnmatched; 388 continue; 389 } 390 } 391 392 if (NumUnmatched > 0) 393 return false; 394 } 395 396 return (CD.RequiredArgs == CallDescription::NoArgRequirement || 397 CD.RequiredArgs == getNumArgs()); 398 } 399 400 SVal CallEvent::getArgSVal(unsigned Index) const { 401 const Expr *ArgE = getArgExpr(Index); 402 if (!ArgE) 403 return UnknownVal(); 404 return getSVal(ArgE); 405 } 406 407 SourceRange CallEvent::getArgSourceRange(unsigned Index) const { 408 const Expr *ArgE = getArgExpr(Index); 409 if (!ArgE) 410 return {}; 411 return ArgE->getSourceRange(); 412 } 413 414 SVal CallEvent::getReturnValue() const { 415 const Expr *E = getOriginExpr(); 416 if (!E) 417 return UndefinedVal(); 418 return getSVal(E); 419 } 420 421 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); } 422 423 void CallEvent::dump(raw_ostream &Out) const { 424 ASTContext &Ctx = getState()->getStateManager().getContext(); 425 if (const Expr *E = getOriginExpr()) { 426 E->printPretty(Out, nullptr, Ctx.getPrintingPolicy()); 427 Out << "\n"; 428 return; 429 } 430 431 if (const Decl *D = getDecl()) { 432 Out << "Call to "; 433 D->print(Out, Ctx.getPrintingPolicy()); 434 return; 435 } 436 437 // FIXME: a string representation of the kind would be nice. 438 Out << "Unknown call (type " << getKind() << ")"; 439 } 440 441 bool CallEvent::isCallStmt(const Stmt *S) { 442 return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S) 443 || isa<CXXConstructExpr>(S) 444 || isa<CXXNewExpr>(S); 445 } 446 447 QualType CallEvent::getDeclaredResultType(const Decl *D) { 448 assert(D); 449 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 450 return FD->getReturnType(); 451 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 452 return MD->getReturnType(); 453 if (const auto *BD = dyn_cast<BlockDecl>(D)) { 454 // Blocks are difficult because the return type may not be stored in the 455 // BlockDecl itself. The AST should probably be enhanced, but for now we 456 // just do what we can. 457 // If the block is declared without an explicit argument list, the 458 // signature-as-written just includes the return type, not the entire 459 // function type. 460 // FIXME: All blocks should have signatures-as-written, even if the return 461 // type is inferred. (That's signified with a dependent result type.) 462 if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) { 463 QualType Ty = TSI->getType(); 464 if (const FunctionType *FT = Ty->getAs<FunctionType>()) 465 Ty = FT->getReturnType(); 466 if (!Ty->isDependentType()) 467 return Ty; 468 } 469 470 return {}; 471 } 472 473 llvm_unreachable("unknown callable kind"); 474 } 475 476 bool CallEvent::isVariadic(const Decl *D) { 477 assert(D); 478 479 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 480 return FD->isVariadic(); 481 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 482 return MD->isVariadic(); 483 if (const auto *BD = dyn_cast<BlockDecl>(D)) 484 return BD->isVariadic(); 485 486 llvm_unreachable("unknown callable kind"); 487 } 488 489 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, 490 CallEvent::BindingsTy &Bindings, 491 SValBuilder &SVB, 492 const CallEvent &Call, 493 ArrayRef<ParmVarDecl*> parameters) { 494 MemRegionManager &MRMgr = SVB.getRegionManager(); 495 496 // If the function has fewer parameters than the call has arguments, we simply 497 // do not bind any values to them. 498 unsigned NumArgs = Call.getNumArgs(); 499 unsigned Idx = 0; 500 ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end(); 501 for (; I != E && Idx < NumArgs; ++I, ++Idx) { 502 const ParmVarDecl *ParamDecl = *I; 503 assert(ParamDecl && "Formal parameter has no decl?"); 504 505 // TODO: Support allocator calls. 506 if (Call.getKind() != CE_CXXAllocator) 507 if (Call.isArgumentConstructedDirectly(Idx)) 508 continue; 509 510 // TODO: Allocators should receive the correct size and possibly alignment, 511 // determined in compile-time but not represented as arg-expressions, 512 // which makes getArgSVal() fail and return UnknownVal. 513 SVal ArgVal = Call.getArgSVal(Idx); 514 if (!ArgVal.isUnknown()) { 515 Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx)); 516 Bindings.push_back(std::make_pair(ParamLoc, ArgVal)); 517 } 518 } 519 520 // FIXME: Variadic arguments are not handled at all right now. 521 } 522 523 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const { 524 const FunctionDecl *D = getDecl(); 525 if (!D) 526 return None; 527 return D->parameters(); 528 } 529 530 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const { 531 const FunctionDecl *FD = getDecl(); 532 if (!FD) 533 return {}; 534 535 // Note that the AnalysisDeclContext will have the FunctionDecl with 536 // the definition (if one exists). 537 AnalysisDeclContext *AD = 538 getLocationContext()->getAnalysisDeclContext()-> 539 getManager()->getContext(FD); 540 bool IsAutosynthesized; 541 Stmt* Body = AD->getBody(IsAutosynthesized); 542 LLVM_DEBUG({ 543 if (IsAutosynthesized) 544 llvm::dbgs() << "Using autosynthesized body for " << FD->getName() 545 << "\n"; 546 }); 547 if (Body) { 548 const Decl* Decl = AD->getDecl(); 549 return RuntimeDefinition(Decl); 550 } 551 552 SubEngine &Engine = getState()->getStateManager().getOwningEngine(); 553 AnalyzerOptions &Opts = Engine.getAnalysisManager().options; 554 555 // Try to get CTU definition only if CTUDir is provided. 556 if (!Opts.IsNaiveCTUEnabled) 557 return {}; 558 559 cross_tu::CrossTranslationUnitContext &CTUCtx = 560 *Engine.getCrossTranslationUnitContext(); 561 llvm::Expected<const FunctionDecl *> CTUDeclOrError = 562 CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName, 563 Opts.DisplayCTUProgress); 564 565 if (!CTUDeclOrError) { 566 handleAllErrors(CTUDeclOrError.takeError(), 567 [&](const cross_tu::IndexError &IE) { 568 CTUCtx.emitCrossTUDiagnostics(IE); 569 }); 570 return {}; 571 } 572 573 return RuntimeDefinition(*CTUDeclOrError); 574 } 575 576 void AnyFunctionCall::getInitialStackFrameContents( 577 const StackFrameContext *CalleeCtx, 578 BindingsTy &Bindings) const { 579 const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl()); 580 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 581 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 582 D->parameters()); 583 } 584 585 bool AnyFunctionCall::argumentsMayEscape() const { 586 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg()) 587 return true; 588 589 const FunctionDecl *D = getDecl(); 590 if (!D) 591 return true; 592 593 const IdentifierInfo *II = D->getIdentifier(); 594 if (!II) 595 return false; 596 597 // This set of "escaping" APIs is 598 599 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a 600 // value into thread local storage. The value can later be retrieved with 601 // 'void *ptheread_getspecific(pthread_key)'. So even thought the 602 // parameter is 'const void *', the region escapes through the call. 603 if (II->isStr("pthread_setspecific")) 604 return true; 605 606 // - xpc_connection_set_context stores a value which can be retrieved later 607 // with xpc_connection_get_context. 608 if (II->isStr("xpc_connection_set_context")) 609 return true; 610 611 // - funopen - sets a buffer for future IO calls. 612 if (II->isStr("funopen")) 613 return true; 614 615 // - __cxa_demangle - can reallocate memory and can return the pointer to 616 // the input buffer. 617 if (II->isStr("__cxa_demangle")) 618 return true; 619 620 StringRef FName = II->getName(); 621 622 // - CoreFoundation functions that end with "NoCopy" can free a passed-in 623 // buffer even if it is const. 624 if (FName.endswith("NoCopy")) 625 return true; 626 627 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can 628 // be deallocated by NSMapRemove. 629 if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos)) 630 return true; 631 632 // - Many CF containers allow objects to escape through custom 633 // allocators/deallocators upon container construction. (PR12101) 634 if (FName.startswith("CF") || FName.startswith("CG")) { 635 return StrInStrNoCase(FName, "InsertValue") != StringRef::npos || 636 StrInStrNoCase(FName, "AddValue") != StringRef::npos || 637 StrInStrNoCase(FName, "SetValue") != StringRef::npos || 638 StrInStrNoCase(FName, "WithData") != StringRef::npos || 639 StrInStrNoCase(FName, "AppendValue") != StringRef::npos || 640 StrInStrNoCase(FName, "SetAttribute") != StringRef::npos; 641 } 642 643 return false; 644 } 645 646 const FunctionDecl *SimpleFunctionCall::getDecl() const { 647 const FunctionDecl *D = getOriginExpr()->getDirectCallee(); 648 if (D) 649 return D; 650 651 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl(); 652 } 653 654 const FunctionDecl *CXXInstanceCall::getDecl() const { 655 const auto *CE = cast_or_null<CallExpr>(getOriginExpr()); 656 if (!CE) 657 return AnyFunctionCall::getDecl(); 658 659 const FunctionDecl *D = CE->getDirectCallee(); 660 if (D) 661 return D; 662 663 return getSVal(CE->getCallee()).getAsFunctionDecl(); 664 } 665 666 void CXXInstanceCall::getExtraInvalidatedValues( 667 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 668 SVal ThisVal = getCXXThisVal(); 669 Values.push_back(ThisVal); 670 671 // Don't invalidate if the method is const and there are no mutable fields. 672 if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) { 673 if (!D->isConst()) 674 return; 675 // Get the record decl for the class of 'This'. D->getParent() may return a 676 // base class decl, rather than the class of the instance which needs to be 677 // checked for mutable fields. 678 // TODO: We might as well look at the dynamic type of the object. 679 const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts(); 680 QualType T = Ex->getType(); 681 if (T->isPointerType()) // Arrow or implicit-this syntax? 682 T = T->getPointeeType(); 683 const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl(); 684 assert(ParentRecord); 685 if (ParentRecord->hasMutableFields()) 686 return; 687 // Preserve CXXThis. 688 const MemRegion *ThisRegion = ThisVal.getAsRegion(); 689 if (!ThisRegion) 690 return; 691 692 ETraits->setTrait(ThisRegion->getBaseRegion(), 693 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 694 } 695 } 696 697 SVal CXXInstanceCall::getCXXThisVal() const { 698 const Expr *Base = getCXXThisExpr(); 699 // FIXME: This doesn't handle an overloaded ->* operator. 700 if (!Base) 701 return UnknownVal(); 702 703 SVal ThisVal = getSVal(Base); 704 assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>()); 705 return ThisVal; 706 } 707 708 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { 709 // Do we have a decl at all? 710 const Decl *D = getDecl(); 711 if (!D) 712 return {}; 713 714 // If the method is non-virtual, we know we can inline it. 715 const auto *MD = cast<CXXMethodDecl>(D); 716 if (!MD->isVirtual()) 717 return AnyFunctionCall::getRuntimeDefinition(); 718 719 // Do we know the implicit 'this' object being called? 720 const MemRegion *R = getCXXThisVal().getAsRegion(); 721 if (!R) 722 return {}; 723 724 // Do we know anything about the type of 'this'? 725 DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R); 726 if (!DynType.isValid()) 727 return {}; 728 729 // Is the type a C++ class? (This is mostly a defensive check.) 730 QualType RegionType = DynType.getType()->getPointeeType(); 731 assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer."); 732 733 const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl(); 734 if (!RD || !RD->hasDefinition()) 735 return {}; 736 737 // Find the decl for this method in that class. 738 const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true); 739 if (!Result) { 740 // We might not even get the original statically-resolved method due to 741 // some particularly nasty casting (e.g. casts to sister classes). 742 // However, we should at least be able to search up and down our own class 743 // hierarchy, and some real bugs have been caught by checking this. 744 assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method"); 745 746 // FIXME: This is checking that our DynamicTypeInfo is at least as good as 747 // the static type. However, because we currently don't update 748 // DynamicTypeInfo when an object is cast, we can't actually be sure the 749 // DynamicTypeInfo is up to date. This assert should be re-enabled once 750 // this is fixed. <rdar://problem/12287087> 751 //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); 752 753 return {}; 754 } 755 756 // Does the decl that we found have an implementation? 757 const FunctionDecl *Definition; 758 if (!Result->hasBody(Definition)) 759 return {}; 760 761 // We found a definition. If we're not sure that this devirtualization is 762 // actually what will happen at runtime, make sure to provide the region so 763 // that ExprEngine can decide what to do with it. 764 if (DynType.canBeASubClass()) 765 return RuntimeDefinition(Definition, R->StripCasts()); 766 return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr); 767 } 768 769 void CXXInstanceCall::getInitialStackFrameContents( 770 const StackFrameContext *CalleeCtx, 771 BindingsTy &Bindings) const { 772 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 773 774 // Handle the binding of 'this' in the new stack frame. 775 SVal ThisVal = getCXXThisVal(); 776 if (!ThisVal.isUnknown()) { 777 ProgramStateManager &StateMgr = getState()->getStateManager(); 778 SValBuilder &SVB = StateMgr.getSValBuilder(); 779 780 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 781 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 782 783 // If we devirtualized to a different member function, we need to make sure 784 // we have the proper layering of CXXBaseObjectRegions. 785 if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { 786 ASTContext &Ctx = SVB.getContext(); 787 const CXXRecordDecl *Class = MD->getParent(); 788 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class)); 789 790 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. 791 bool Failed; 792 ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed); 793 if (Failed) { 794 // We might have suffered some sort of placement new earlier, so 795 // we're constructing in a completely unexpected storage. 796 // Fall back to a generic pointer cast for this-value. 797 const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl()); 798 const CXXRecordDecl *StaticClass = StaticMD->getParent(); 799 QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass)); 800 ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy); 801 } 802 } 803 804 if (!ThisVal.isUnknown()) 805 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 806 } 807 } 808 809 const Expr *CXXMemberCall::getCXXThisExpr() const { 810 return getOriginExpr()->getImplicitObjectArgument(); 811 } 812 813 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { 814 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the 815 // id-expression in the class member access expression is a qualified-id, 816 // that function is called. Otherwise, its final overrider in the dynamic type 817 // of the object expression is called. 818 if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee())) 819 if (ME->hasQualifier()) 820 return AnyFunctionCall::getRuntimeDefinition(); 821 822 return CXXInstanceCall::getRuntimeDefinition(); 823 } 824 825 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { 826 return getOriginExpr()->getArg(0); 827 } 828 829 const BlockDataRegion *BlockCall::getBlockRegion() const { 830 const Expr *Callee = getOriginExpr()->getCallee(); 831 const MemRegion *DataReg = getSVal(Callee).getAsRegion(); 832 833 return dyn_cast_or_null<BlockDataRegion>(DataReg); 834 } 835 836 ArrayRef<ParmVarDecl*> BlockCall::parameters() const { 837 const BlockDecl *D = getDecl(); 838 if (!D) 839 return None; 840 return D->parameters(); 841 } 842 843 void BlockCall::getExtraInvalidatedValues(ValueList &Values, 844 RegionAndSymbolInvalidationTraits *ETraits) const { 845 // FIXME: This also needs to invalidate captured globals. 846 if (const MemRegion *R = getBlockRegion()) 847 Values.push_back(loc::MemRegionVal(R)); 848 } 849 850 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, 851 BindingsTy &Bindings) const { 852 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 853 ArrayRef<ParmVarDecl*> Params; 854 if (isConversionFromLambda()) { 855 auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 856 Params = LambdaOperatorDecl->parameters(); 857 858 // For blocks converted from a C++ lambda, the callee declaration is the 859 // operator() method on the lambda so we bind "this" to 860 // the lambda captured by the block. 861 const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda(); 862 SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion); 863 Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx); 864 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 865 } else { 866 Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters(); 867 } 868 869 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 870 Params); 871 } 872 873 SVal CXXConstructorCall::getCXXThisVal() const { 874 if (Data) 875 return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); 876 return UnknownVal(); 877 } 878 879 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values, 880 RegionAndSymbolInvalidationTraits *ETraits) const { 881 if (Data) { 882 loc::MemRegionVal MV(static_cast<const MemRegion *>(Data)); 883 if (SymbolRef Sym = MV.getAsSymbol(true)) 884 ETraits->setTrait(Sym, 885 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 886 Values.push_back(MV); 887 } 888 } 889 890 void CXXConstructorCall::getInitialStackFrameContents( 891 const StackFrameContext *CalleeCtx, 892 BindingsTy &Bindings) const { 893 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); 894 895 SVal ThisVal = getCXXThisVal(); 896 if (!ThisVal.isUnknown()) { 897 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 898 const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 899 Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx); 900 Bindings.push_back(std::make_pair(ThisLoc, ThisVal)); 901 } 902 } 903 904 SVal CXXDestructorCall::getCXXThisVal() const { 905 if (Data) 906 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer()); 907 return UnknownVal(); 908 } 909 910 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { 911 // Base destructors are always called non-virtually. 912 // Skip CXXInstanceCall's devirtualization logic in this case. 913 if (isBaseDestructor()) 914 return AnyFunctionCall::getRuntimeDefinition(); 915 916 return CXXInstanceCall::getRuntimeDefinition(); 917 } 918 919 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const { 920 const ObjCMethodDecl *D = getDecl(); 921 if (!D) 922 return None; 923 return D->parameters(); 924 } 925 926 void ObjCMethodCall::getExtraInvalidatedValues( 927 ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { 928 929 // If the method call is a setter for property known to be backed by 930 // an instance variable, don't invalidate the entire receiver, just 931 // the storage for that instance variable. 932 if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) { 933 if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) { 934 SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal()); 935 if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) { 936 ETraits->setTrait( 937 IvarRegion, 938 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 939 ETraits->setTrait( 940 IvarRegion, 941 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 942 Values.push_back(IvarLVal); 943 } 944 return; 945 } 946 } 947 948 Values.push_back(getReceiverSVal()); 949 } 950 951 SVal ObjCMethodCall::getSelfSVal() const { 952 const LocationContext *LCtx = getLocationContext(); 953 const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); 954 if (!SelfDecl) 955 return SVal(); 956 return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx)); 957 } 958 959 SVal ObjCMethodCall::getReceiverSVal() const { 960 // FIXME: Is this the best way to handle class receivers? 961 if (!isInstanceMessage()) 962 return UnknownVal(); 963 964 if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) 965 return getSVal(RecE); 966 967 // An instance message with no expression means we are sending to super. 968 // In this case the object reference is the same as 'self'. 969 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); 970 SVal SelfVal = getSelfSVal(); 971 assert(SelfVal.isValid() && "Calling super but not in ObjC method"); 972 return SelfVal; 973 } 974 975 bool ObjCMethodCall::isReceiverSelfOrSuper() const { 976 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || 977 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) 978 return true; 979 980 if (!isInstanceMessage()) 981 return false; 982 983 SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver()); 984 985 return (RecVal == getSelfSVal()); 986 } 987 988 SourceRange ObjCMethodCall::getSourceRange() const { 989 switch (getMessageKind()) { 990 case OCM_Message: 991 return getOriginExpr()->getSourceRange(); 992 case OCM_PropertyAccess: 993 case OCM_Subscript: 994 return getContainingPseudoObjectExpr()->getSourceRange(); 995 } 996 llvm_unreachable("unknown message kind"); 997 } 998 999 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>; 1000 1001 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { 1002 assert(Data && "Lazy lookup not yet performed."); 1003 assert(getMessageKind() != OCM_Message && "Explicit message send."); 1004 return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer(); 1005 } 1006 1007 static const Expr * 1008 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) { 1009 const Expr *Syntactic = POE->getSyntacticForm(); 1010 1011 // This handles the funny case of assigning to the result of a getter. 1012 // This can happen if the getter returns a non-const reference. 1013 if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic)) 1014 Syntactic = BO->getLHS(); 1015 1016 return Syntactic; 1017 } 1018 1019 ObjCMessageKind ObjCMethodCall::getMessageKind() const { 1020 if (!Data) { 1021 // Find the parent, ignoring implicit casts. 1022 ParentMap &PM = getLocationContext()->getParentMap(); 1023 const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr()); 1024 1025 // Check if parent is a PseudoObjectExpr. 1026 if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) { 1027 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 1028 1029 ObjCMessageKind K; 1030 switch (Syntactic->getStmtClass()) { 1031 case Stmt::ObjCPropertyRefExprClass: 1032 K = OCM_PropertyAccess; 1033 break; 1034 case Stmt::ObjCSubscriptRefExprClass: 1035 K = OCM_Subscript; 1036 break; 1037 default: 1038 // FIXME: Can this ever happen? 1039 K = OCM_Message; 1040 break; 1041 } 1042 1043 if (K != OCM_Message) { 1044 const_cast<ObjCMethodCall *>(this)->Data 1045 = ObjCMessageDataTy(POE, K).getOpaqueValue(); 1046 assert(getMessageKind() == K); 1047 return K; 1048 } 1049 } 1050 1051 const_cast<ObjCMethodCall *>(this)->Data 1052 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue(); 1053 assert(getMessageKind() == OCM_Message); 1054 return OCM_Message; 1055 } 1056 1057 ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data); 1058 if (!Info.getPointer()) 1059 return OCM_Message; 1060 return static_cast<ObjCMessageKind>(Info.getInt()); 1061 } 1062 1063 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const { 1064 // Look for properties accessed with property syntax (foo.bar = ...) 1065 if ( getMessageKind() == OCM_PropertyAccess) { 1066 const PseudoObjectExpr *POE = getContainingPseudoObjectExpr(); 1067 assert(POE && "Property access without PseudoObjectExpr?"); 1068 1069 const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); 1070 auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic); 1071 1072 if (RefExpr->isExplicitProperty()) 1073 return RefExpr->getExplicitProperty(); 1074 } 1075 1076 // Look for properties accessed with method syntax ([foo setBar:...]). 1077 const ObjCMethodDecl *MD = getDecl(); 1078 if (!MD || !MD->isPropertyAccessor()) 1079 return nullptr; 1080 1081 // Note: This is potentially quite slow. 1082 return MD->findPropertyDecl(); 1083 } 1084 1085 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, 1086 Selector Sel) const { 1087 assert(IDecl); 1088 AnalysisManager &AMgr = 1089 getState()->getStateManager().getOwningEngine().getAnalysisManager(); 1090 // If the class interface is declared inside the main file, assume it is not 1091 // subcassed. 1092 // TODO: It could actually be subclassed if the subclass is private as well. 1093 // This is probably very rare. 1094 SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); 1095 if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc)) 1096 return false; 1097 1098 // Assume that property accessors are not overridden. 1099 if (getMessageKind() == OCM_PropertyAccess) 1100 return false; 1101 1102 // We assume that if the method is public (declared outside of main file) or 1103 // has a parent which publicly declares the method, the method could be 1104 // overridden in a subclass. 1105 1106 // Find the first declaration in the class hierarchy that declares 1107 // the selector. 1108 ObjCMethodDecl *D = nullptr; 1109 while (true) { 1110 D = IDecl->lookupMethod(Sel, true); 1111 1112 // Cannot find a public definition. 1113 if (!D) 1114 return false; 1115 1116 // If outside the main file, 1117 if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation())) 1118 return true; 1119 1120 if (D->isOverriding()) { 1121 // Search in the superclass on the next iteration. 1122 IDecl = D->getClassInterface(); 1123 if (!IDecl) 1124 return false; 1125 1126 IDecl = IDecl->getSuperClass(); 1127 if (!IDecl) 1128 return false; 1129 1130 continue; 1131 } 1132 1133 return false; 1134 }; 1135 1136 llvm_unreachable("The while loop should always terminate."); 1137 } 1138 1139 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) { 1140 if (!MD) 1141 return MD; 1142 1143 // Find the redeclaration that defines the method. 1144 if (!MD->hasBody()) { 1145 for (auto I : MD->redecls()) 1146 if (I->hasBody()) 1147 MD = cast<ObjCMethodDecl>(I); 1148 } 1149 return MD; 1150 } 1151 1152 static bool isCallToSelfClass(const ObjCMessageExpr *ME) { 1153 const Expr* InstRec = ME->getInstanceReceiver(); 1154 if (!InstRec) 1155 return false; 1156 const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts()); 1157 1158 // Check that receiver is called 'self'. 1159 if (!InstRecIg || !InstRecIg->getFoundDecl() || 1160 !InstRecIg->getFoundDecl()->getName().equals("self")) 1161 return false; 1162 1163 // Check that the method name is 'class'. 1164 if (ME->getSelector().getNumArgs() != 0 || 1165 !ME->getSelector().getNameForSlot(0).equals("class")) 1166 return false; 1167 1168 return true; 1169 } 1170 1171 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { 1172 const ObjCMessageExpr *E = getOriginExpr(); 1173 assert(E); 1174 Selector Sel = E->getSelector(); 1175 1176 if (E->isInstanceMessage()) { 1177 // Find the receiver type. 1178 const ObjCObjectPointerType *ReceiverT = nullptr; 1179 bool CanBeSubClassed = false; 1180 QualType SupersType = E->getSuperType(); 1181 const MemRegion *Receiver = nullptr; 1182 1183 if (!SupersType.isNull()) { 1184 // The receiver is guaranteed to be 'super' in this case. 1185 // Super always means the type of immediate predecessor to the method 1186 // where the call occurs. 1187 ReceiverT = cast<ObjCObjectPointerType>(SupersType); 1188 } else { 1189 Receiver = getReceiverSVal().getAsRegion(); 1190 if (!Receiver) 1191 return {}; 1192 1193 DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver); 1194 if (!DTI.isValid()) { 1195 assert(isa<AllocaRegion>(Receiver) && 1196 "Unhandled untyped region class!"); 1197 return {}; 1198 } 1199 1200 QualType DynType = DTI.getType(); 1201 CanBeSubClassed = DTI.canBeASubClass(); 1202 ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType()); 1203 1204 if (ReceiverT && CanBeSubClassed) 1205 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) 1206 if (!canBeOverridenInSubclass(IDecl, Sel)) 1207 CanBeSubClassed = false; 1208 } 1209 1210 // Handle special cases of '[self classMethod]' and 1211 // '[[self class] classMethod]', which are treated by the compiler as 1212 // instance (not class) messages. We will statically dispatch to those. 1213 if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) { 1214 // For [self classMethod], return the compiler visible declaration. 1215 if (PT->getObjectType()->isObjCClass() && 1216 Receiver == getSelfSVal().getAsRegion()) 1217 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1218 1219 // Similarly, handle [[self class] classMethod]. 1220 // TODO: We are currently doing a syntactic match for this pattern with is 1221 // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m 1222 // shows. A better way would be to associate the meta type with the symbol 1223 // using the dynamic type info tracking and use it here. We can add a new 1224 // SVal for ObjC 'Class' values that know what interface declaration they 1225 // come from. Then 'self' in a class method would be filled in with 1226 // something meaningful in ObjCMethodCall::getReceiverSVal() and we could 1227 // do proper dynamic dispatch for class methods just like we do for 1228 // instance methods now. 1229 if (E->getInstanceReceiver()) 1230 if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver())) 1231 if (isCallToSelfClass(M)) 1232 return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl())); 1233 } 1234 1235 // Lookup the instance method implementation. 1236 if (ReceiverT) 1237 if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) { 1238 // Repeatedly calling lookupPrivateMethod() is expensive, especially 1239 // when in many cases it returns null. We cache the results so 1240 // that repeated queries on the same ObjCIntefaceDecl and Selector 1241 // don't incur the same cost. On some test cases, we can see the 1242 // same query being issued thousands of times. 1243 // 1244 // NOTE: This cache is essentially a "global" variable, but it 1245 // only gets lazily created when we get here. The value of the 1246 // cache probably comes from it being global across ExprEngines, 1247 // where the same queries may get issued. If we are worried about 1248 // concurrency, or possibly loading/unloading ASTs, etc., we may 1249 // need to revisit this someday. In terms of memory, this table 1250 // stays around until clang quits, which also may be bad if we 1251 // need to release memory. 1252 using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>; 1253 using PrivateMethodCache = 1254 llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>; 1255 1256 static PrivateMethodCache PMC; 1257 Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)]; 1258 1259 // Query lookupPrivateMethod() if the cache does not hit. 1260 if (!Val.hasValue()) { 1261 Val = IDecl->lookupPrivateMethod(Sel); 1262 1263 // If the method is a property accessor, we should try to "inline" it 1264 // even if we don't actually have an implementation. 1265 if (!*Val) 1266 if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl()) 1267 if (CompileTimeMD->isPropertyAccessor()) { 1268 if (!CompileTimeMD->getSelfDecl() && 1269 isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) { 1270 // If the method is an accessor in a category, and it doesn't 1271 // have a self declaration, first 1272 // try to find the method in a class extension. This 1273 // works around a bug in Sema where multiple accessors 1274 // are synthesized for properties in class 1275 // extensions that are redeclared in a category and the 1276 // the implicit parameters are not filled in for 1277 // the method on the category. 1278 // This ensures we find the accessor in the extension, which 1279 // has the implicit parameters filled in. 1280 auto *ID = CompileTimeMD->getClassInterface(); 1281 for (auto *CatDecl : ID->visible_extensions()) { 1282 Val = CatDecl->getMethod(Sel, 1283 CompileTimeMD->isInstanceMethod()); 1284 if (*Val) 1285 break; 1286 } 1287 } 1288 if (!*Val) 1289 Val = IDecl->lookupInstanceMethod(Sel); 1290 } 1291 } 1292 1293 const ObjCMethodDecl *MD = Val.getValue(); 1294 if (CanBeSubClassed) 1295 return RuntimeDefinition(MD, Receiver); 1296 else 1297 return RuntimeDefinition(MD, nullptr); 1298 } 1299 } else { 1300 // This is a class method. 1301 // If we have type info for the receiver class, we are calling via 1302 // class name. 1303 if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { 1304 // Find/Return the method implementation. 1305 return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); 1306 } 1307 } 1308 1309 return {}; 1310 } 1311 1312 bool ObjCMethodCall::argumentsMayEscape() const { 1313 if (isInSystemHeader() && !isInstanceMessage()) { 1314 Selector Sel = getSelector(); 1315 if (Sel.getNumArgs() == 1 && 1316 Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer")) 1317 return true; 1318 } 1319 1320 return CallEvent::argumentsMayEscape(); 1321 } 1322 1323 void ObjCMethodCall::getInitialStackFrameContents( 1324 const StackFrameContext *CalleeCtx, 1325 BindingsTy &Bindings) const { 1326 const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl()); 1327 SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); 1328 addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this, 1329 D->parameters()); 1330 1331 SVal SelfVal = getReceiverSVal(); 1332 if (!SelfVal.isUnknown()) { 1333 const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); 1334 MemRegionManager &MRMgr = SVB.getRegionManager(); 1335 Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx)); 1336 Bindings.push_back(std::make_pair(SelfLoc, SelfVal)); 1337 } 1338 } 1339 1340 CallEventRef<> 1341 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, 1342 const LocationContext *LCtx) { 1343 if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE)) 1344 return create<CXXMemberCall>(MCE, State, LCtx); 1345 1346 if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 1347 const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); 1348 if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) 1349 if (MD->isInstance()) 1350 return create<CXXMemberOperatorCall>(OpCE, State, LCtx); 1351 1352 } else if (CE->getCallee()->getType()->isBlockPointerType()) { 1353 return create<BlockCall>(CE, State, LCtx); 1354 } 1355 1356 // Otherwise, it's a normal function call, static member function call, or 1357 // something we can't reason about. 1358 return create<SimpleFunctionCall>(CE, State, LCtx); 1359 } 1360 1361 CallEventRef<> 1362 CallEventManager::getCaller(const StackFrameContext *CalleeCtx, 1363 ProgramStateRef State) { 1364 const LocationContext *ParentCtx = CalleeCtx->getParent(); 1365 const LocationContext *CallerCtx = ParentCtx->getStackFrame(); 1366 assert(CallerCtx && "This should not be used for top-level stack frames"); 1367 1368 const Stmt *CallSite = CalleeCtx->getCallSite(); 1369 1370 if (CallSite) { 1371 if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx)) 1372 return Out; 1373 1374 // All other cases are handled by getCall. 1375 assert(isa<CXXConstructExpr>(CallSite) && 1376 "This is not an inlineable statement"); 1377 1378 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1379 const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl()); 1380 Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx); 1381 SVal ThisVal = State->getSVal(ThisPtr); 1382 1383 return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite), 1384 ThisVal.getAsRegion(), State, CallerCtx); 1385 } 1386 1387 // Fall back to the CFG. The only thing we haven't handled yet is 1388 // destructors, though this could change in the future. 1389 const CFGBlock *B = CalleeCtx->getCallSiteBlock(); 1390 CFGElement E = (*B)[CalleeCtx->getIndex()]; 1391 assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) && 1392 "All other CFG elements should have exprs"); 1393 1394 SValBuilder &SVB = State->getStateManager().getSValBuilder(); 1395 const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl()); 1396 Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx); 1397 SVal ThisVal = State->getSVal(ThisPtr); 1398 1399 const Stmt *Trigger; 1400 if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>()) 1401 Trigger = AutoDtor->getTriggerStmt(); 1402 else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>()) 1403 Trigger = DeleteDtor->getDeleteExpr(); 1404 else 1405 Trigger = Dtor->getBody(); 1406 1407 return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(), 1408 E.getAs<CFGBaseDtor>().hasValue(), State, 1409 CallerCtx); 1410 } 1411 1412 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State, 1413 const LocationContext *LC) { 1414 if (const auto *CE = dyn_cast<CallExpr>(S)) { 1415 return getSimpleCall(CE, State, LC); 1416 } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) { 1417 return getCXXAllocatorCall(NE, State, LC); 1418 } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) { 1419 return getObjCMethodCall(ME, State, LC); 1420 } else { 1421 return nullptr; 1422 } 1423 } 1424