1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/ParentMap.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/Type.h"
27 #include "clang/Analysis/AnalysisDeclContext.h"
28 #include "clang/Analysis/CFG.h"
29 #include "clang/Analysis/CFGStmtMap.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/CrossTU/CrossTranslationUnit.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/PointerIntPair.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <cassert>
62 #include <utility>
63 
64 #define DEBUG_TYPE "static-analyzer-call-event"
65 
66 using namespace clang;
67 using namespace ento;
68 
69 QualType CallEvent::getResultType() const {
70   ASTContext &Ctx = getState()->getStateManager().getContext();
71   const Expr *E = getOriginExpr();
72   if (!E)
73     return Ctx.VoidTy;
74   assert(E);
75 
76   QualType ResultTy = E->getType();
77 
78   // A function that returns a reference to 'int' will have a result type
79   // of simply 'int'. Check the origin expr's value kind to recover the
80   // proper type.
81   switch (E->getValueKind()) {
82   case VK_LValue:
83     ResultTy = Ctx.getLValueReferenceType(ResultTy);
84     break;
85   case VK_XValue:
86     ResultTy = Ctx.getRValueReferenceType(ResultTy);
87     break;
88   case VK_RValue:
89     // No adjustment is necessary.
90     break;
91   }
92 
93   return ResultTy;
94 }
95 
96 static bool isCallback(QualType T) {
97   // If a parameter is a block or a callback, assume it can modify pointer.
98   if (T->isBlockPointerType() ||
99       T->isFunctionPointerType() ||
100       T->isObjCSelType())
101     return true;
102 
103   // Check if a callback is passed inside a struct (for both, struct passed by
104   // reference and by value). Dig just one level into the struct for now.
105 
106   if (T->isAnyPointerType() || T->isReferenceType())
107     T = T->getPointeeType();
108 
109   if (const RecordType *RT = T->getAsStructureType()) {
110     const RecordDecl *RD = RT->getDecl();
111     for (const auto *I : RD->fields()) {
112       QualType FieldT = I->getType();
113       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
114         return true;
115     }
116   }
117   return false;
118 }
119 
120 static bool isVoidPointerToNonConst(QualType T) {
121   if (const auto *PT = T->getAs<PointerType>()) {
122     QualType PointeeTy = PT->getPointeeType();
123     if (PointeeTy.isConstQualified())
124       return false;
125     return PointeeTy->isVoidType();
126   } else
127     return false;
128 }
129 
130 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
131   unsigned NumOfArgs = getNumArgs();
132 
133   // If calling using a function pointer, assume the function does not
134   // satisfy the callback.
135   // TODO: We could check the types of the arguments here.
136   if (!getDecl())
137     return false;
138 
139   unsigned Idx = 0;
140   for (CallEvent::param_type_iterator I = param_type_begin(),
141                                       E = param_type_end();
142        I != E && Idx < NumOfArgs; ++I, ++Idx) {
143     // If the parameter is 0, it's harmless.
144     if (getArgSVal(Idx).isZeroConstant())
145       continue;
146 
147     if (Condition(*I))
148       return true;
149   }
150   return false;
151 }
152 
153 bool CallEvent::hasNonZeroCallbackArg() const {
154   return hasNonNullArgumentsWithType(isCallback);
155 }
156 
157 bool CallEvent::hasVoidPointerToNonConstArg() const {
158   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
159 }
160 
161 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
162   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
163   if (!FD)
164     return false;
165 
166   return CheckerContext::isCLibraryFunction(FD, FunctionName);
167 }
168 
169 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
170   const Decl *D = getDecl();
171   if (!D)
172     return nullptr;
173 
174   // TODO: For now we skip functions without definitions, even if we have
175   // our own getDecl(), because it's hard to find out which re-declaration
176   // is going to be used, and usually clients don't really care about this
177   // situation because there's a loss of precision anyway because we cannot
178   // inline the call.
179   RuntimeDefinition RD = getRuntimeDefinition();
180   if (!RD.getDecl())
181     return nullptr;
182 
183   AnalysisDeclContext *ADC =
184       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
185 
186   // TODO: For now we skip virtual functions, because this also rises
187   // the problem of which decl to use, but now it's across different classes.
188   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
189     return nullptr;
190 
191   return ADC;
192 }
193 
194 const StackFrameContext *CallEvent::getCalleeStackFrame() const {
195   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
196   if (!ADC)
197     return nullptr;
198 
199   const Expr *E = getOriginExpr();
200   if (!E)
201     return nullptr;
202 
203   // Recover CFG block via reverse lookup.
204   // TODO: If we were to keep CFG element information as part of the CallEvent
205   // instead of doing this reverse lookup, we would be able to build the stack
206   // frame for non-expression-based calls, and also we wouldn't need the reverse
207   // lookup.
208   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
209   const CFGBlock *B = Map->getBlock(E);
210   assert(B);
211 
212   // Also recover CFG index by scanning the CFG block.
213   unsigned Idx = 0, Sz = B->size();
214   for (; Idx < Sz; ++Idx)
215     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
216       if (StmtElem->getStmt() == E)
217         break;
218   assert(Idx < Sz);
219 
220   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx);
221 }
222 
223 const VarRegion *CallEvent::getParameterLocation(unsigned Index) const {
224   const StackFrameContext *SFC = getCalleeStackFrame();
225   // We cannot construct a VarRegion without a stack frame.
226   if (!SFC)
227     return nullptr;
228 
229   // Retrieve parameters of the definition, which are different from
230   // CallEvent's parameters() because getDecl() isn't necessarily
231   // the definition. SFC contains the definition that would be used
232   // during analysis.
233   const Decl *D = SFC->getDecl();
234 
235   // TODO: Refactor into a virtual method of CallEvent, like parameters().
236   const ParmVarDecl *PVD = nullptr;
237   if (const auto *FD = dyn_cast<FunctionDecl>(D))
238     PVD = FD->parameters()[Index];
239   else if (const auto *BD = dyn_cast<BlockDecl>(D))
240     PVD = BD->parameters()[Index];
241   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
242     PVD = MD->parameters()[Index];
243   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
244     PVD = CD->parameters()[Index];
245   assert(PVD && "Unexpected Decl kind!");
246 
247   const VarRegion *VR =
248       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
249 
250   // This sanity check would fail if our parameter declaration doesn't
251   // correspond to the stack frame's function declaration.
252   assert(VR->getStackFrame() == SFC);
253 
254   return VR;
255 }
256 
257 /// Returns true if a type is a pointer-to-const or reference-to-const
258 /// with no further indirection.
259 static bool isPointerToConst(QualType Ty) {
260   QualType PointeeTy = Ty->getPointeeType();
261   if (PointeeTy == QualType())
262     return false;
263   if (!PointeeTy.isConstQualified())
264     return false;
265   if (PointeeTy->isAnyPointerType())
266     return false;
267   return true;
268 }
269 
270 // Try to retrieve the function declaration and find the function parameter
271 // types which are pointers/references to a non-pointer const.
272 // We will not invalidate the corresponding argument regions.
273 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
274                                  const CallEvent &Call) {
275   unsigned Idx = 0;
276   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
277                                       E = Call.param_type_end();
278        I != E; ++I, ++Idx) {
279     if (isPointerToConst(*I))
280       PreserveArgs.insert(Idx);
281   }
282 }
283 
284 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
285                                              ProgramStateRef Orig) const {
286   ProgramStateRef Result = (Orig ? Orig : getState());
287 
288   // Don't invalidate anything if the callee is marked pure/const.
289   if (const Decl *callee = getDecl())
290     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
291       return Result;
292 
293   SmallVector<SVal, 8> ValuesToInvalidate;
294   RegionAndSymbolInvalidationTraits ETraits;
295 
296   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
297 
298   // Indexes of arguments whose values will be preserved by the call.
299   llvm::SmallSet<unsigned, 4> PreserveArgs;
300   if (!argumentsMayEscape())
301     findPtrToConstParams(PreserveArgs, *this);
302 
303   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
304     // Mark this region for invalidation.  We batch invalidate regions
305     // below for efficiency.
306     if (PreserveArgs.count(Idx))
307       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
308         ETraits.setTrait(MR->getBaseRegion(),
309                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
310         // TODO: Factor this out + handle the lower level const pointers.
311 
312     ValuesToInvalidate.push_back(getArgSVal(Idx));
313 
314     // If a function accepts an object by argument (which would of course be a
315     // temporary that isn't lifetime-extended), invalidate the object itself,
316     // not only other objects reachable from it. This is necessary because the
317     // destructor has access to the temporary object after the call.
318     // TODO: Support placement arguments once we start
319     // constructing them directly.
320     // TODO: This is unnecessary when there's no destructor, but that's
321     // currently hard to figure out.
322     if (getKind() != CE_CXXAllocator)
323       if (isArgumentConstructedDirectly(Idx))
324         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
325           if (const VarRegion *VR = getParameterLocation(*AdjIdx))
326             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
327   }
328 
329   // Invalidate designated regions using the batch invalidation API.
330   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
331   //  global variables.
332   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
333                                    BlockCount, getLocationContext(),
334                                    /*CausedByPointerEscape*/ true,
335                                    /*Symbols=*/nullptr, this, &ETraits);
336 }
337 
338 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
339                                         const ProgramPointTag *Tag) const {
340   if (const Expr *E = getOriginExpr()) {
341     if (IsPreVisit)
342       return PreStmt(E, getLocationContext(), Tag);
343     return PostStmt(E, getLocationContext(), Tag);
344   }
345 
346   const Decl *D = getDecl();
347   assert(D && "Cannot get a program point without a statement or decl");
348 
349   SourceLocation Loc = getSourceRange().getBegin();
350   if (IsPreVisit)
351     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
352   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
353 }
354 
355 bool CallEvent::isCalled(const CallDescription &CD) const {
356   // FIXME: Add ObjC Message support.
357   if (getKind() == CE_ObjCMessage)
358     return false;
359   if (!CD.IsLookupDone) {
360     CD.IsLookupDone = true;
361     CD.II = &getState()->getStateManager().getContext().Idents.get(
362         CD.getFunctionName());
363   }
364   const IdentifierInfo *II = getCalleeIdentifier();
365   if (!II || II != CD.II)
366     return false;
367 
368   const Decl *D = getDecl();
369   // If CallDescription provides prefix names, use them to improve matching
370   // accuracy.
371   if (CD.QualifiedName.size() > 1 && D) {
372     const DeclContext *Ctx = D->getDeclContext();
373     // See if we'll be able to match them all.
374     size_t NumUnmatched = CD.QualifiedName.size() - 1;
375     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
376       if (NumUnmatched == 0)
377         break;
378 
379       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
380         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
381           --NumUnmatched;
382         continue;
383       }
384 
385       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
386         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
387           --NumUnmatched;
388         continue;
389       }
390     }
391 
392     if (NumUnmatched > 0)
393       return false;
394   }
395 
396   return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
397           CD.RequiredArgs == getNumArgs());
398 }
399 
400 SVal CallEvent::getArgSVal(unsigned Index) const {
401   const Expr *ArgE = getArgExpr(Index);
402   if (!ArgE)
403     return UnknownVal();
404   return getSVal(ArgE);
405 }
406 
407 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
408   const Expr *ArgE = getArgExpr(Index);
409   if (!ArgE)
410     return {};
411   return ArgE->getSourceRange();
412 }
413 
414 SVal CallEvent::getReturnValue() const {
415   const Expr *E = getOriginExpr();
416   if (!E)
417     return UndefinedVal();
418   return getSVal(E);
419 }
420 
421 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
422 
423 void CallEvent::dump(raw_ostream &Out) const {
424   ASTContext &Ctx = getState()->getStateManager().getContext();
425   if (const Expr *E = getOriginExpr()) {
426     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
427     Out << "\n";
428     return;
429   }
430 
431   if (const Decl *D = getDecl()) {
432     Out << "Call to ";
433     D->print(Out, Ctx.getPrintingPolicy());
434     return;
435   }
436 
437   // FIXME: a string representation of the kind would be nice.
438   Out << "Unknown call (type " << getKind() << ")";
439 }
440 
441 bool CallEvent::isCallStmt(const Stmt *S) {
442   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
443                           || isa<CXXConstructExpr>(S)
444                           || isa<CXXNewExpr>(S);
445 }
446 
447 QualType CallEvent::getDeclaredResultType(const Decl *D) {
448   assert(D);
449   if (const auto *FD = dyn_cast<FunctionDecl>(D))
450     return FD->getReturnType();
451   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
452     return MD->getReturnType();
453   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
454     // Blocks are difficult because the return type may not be stored in the
455     // BlockDecl itself. The AST should probably be enhanced, but for now we
456     // just do what we can.
457     // If the block is declared without an explicit argument list, the
458     // signature-as-written just includes the return type, not the entire
459     // function type.
460     // FIXME: All blocks should have signatures-as-written, even if the return
461     // type is inferred. (That's signified with a dependent result type.)
462     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
463       QualType Ty = TSI->getType();
464       if (const FunctionType *FT = Ty->getAs<FunctionType>())
465         Ty = FT->getReturnType();
466       if (!Ty->isDependentType())
467         return Ty;
468     }
469 
470     return {};
471   }
472 
473   llvm_unreachable("unknown callable kind");
474 }
475 
476 bool CallEvent::isVariadic(const Decl *D) {
477   assert(D);
478 
479   if (const auto *FD = dyn_cast<FunctionDecl>(D))
480     return FD->isVariadic();
481   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
482     return MD->isVariadic();
483   if (const auto *BD = dyn_cast<BlockDecl>(D))
484     return BD->isVariadic();
485 
486   llvm_unreachable("unknown callable kind");
487 }
488 
489 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
490                                          CallEvent::BindingsTy &Bindings,
491                                          SValBuilder &SVB,
492                                          const CallEvent &Call,
493                                          ArrayRef<ParmVarDecl*> parameters) {
494   MemRegionManager &MRMgr = SVB.getRegionManager();
495 
496   // If the function has fewer parameters than the call has arguments, we simply
497   // do not bind any values to them.
498   unsigned NumArgs = Call.getNumArgs();
499   unsigned Idx = 0;
500   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
501   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
502     const ParmVarDecl *ParamDecl = *I;
503     assert(ParamDecl && "Formal parameter has no decl?");
504 
505     // TODO: Support allocator calls.
506     if (Call.getKind() != CE_CXXAllocator)
507       if (Call.isArgumentConstructedDirectly(Idx))
508         continue;
509 
510     // TODO: Allocators should receive the correct size and possibly alignment,
511     // determined in compile-time but not represented as arg-expressions,
512     // which makes getArgSVal() fail and return UnknownVal.
513     SVal ArgVal = Call.getArgSVal(Idx);
514     if (!ArgVal.isUnknown()) {
515       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
516       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
517     }
518   }
519 
520   // FIXME: Variadic arguments are not handled at all right now.
521 }
522 
523 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
524   const FunctionDecl *D = getDecl();
525   if (!D)
526     return None;
527   return D->parameters();
528 }
529 
530 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
531   const FunctionDecl *FD = getDecl();
532   if (!FD)
533     return {};
534 
535   // Note that the AnalysisDeclContext will have the FunctionDecl with
536   // the definition (if one exists).
537   AnalysisDeclContext *AD =
538     getLocationContext()->getAnalysisDeclContext()->
539     getManager()->getContext(FD);
540   bool IsAutosynthesized;
541   Stmt* Body = AD->getBody(IsAutosynthesized);
542   LLVM_DEBUG({
543     if (IsAutosynthesized)
544       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
545                    << "\n";
546   });
547   if (Body) {
548     const Decl* Decl = AD->getDecl();
549     return RuntimeDefinition(Decl);
550   }
551 
552   SubEngine &Engine = getState()->getStateManager().getOwningEngine();
553   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
554 
555   // Try to get CTU definition only if CTUDir is provided.
556   if (!Opts.IsNaiveCTUEnabled)
557     return {};
558 
559   cross_tu::CrossTranslationUnitContext &CTUCtx =
560       *Engine.getCrossTranslationUnitContext();
561   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
562       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
563                                   Opts.DisplayCTUProgress);
564 
565   if (!CTUDeclOrError) {
566     handleAllErrors(CTUDeclOrError.takeError(),
567                     [&](const cross_tu::IndexError &IE) {
568                       CTUCtx.emitCrossTUDiagnostics(IE);
569                     });
570     return {};
571   }
572 
573   return RuntimeDefinition(*CTUDeclOrError);
574 }
575 
576 void AnyFunctionCall::getInitialStackFrameContents(
577                                         const StackFrameContext *CalleeCtx,
578                                         BindingsTy &Bindings) const {
579   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
580   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
581   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
582                                D->parameters());
583 }
584 
585 bool AnyFunctionCall::argumentsMayEscape() const {
586   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
587     return true;
588 
589   const FunctionDecl *D = getDecl();
590   if (!D)
591     return true;
592 
593   const IdentifierInfo *II = D->getIdentifier();
594   if (!II)
595     return false;
596 
597   // This set of "escaping" APIs is
598 
599   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
600   //   value into thread local storage. The value can later be retrieved with
601   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
602   //   parameter is 'const void *', the region escapes through the call.
603   if (II->isStr("pthread_setspecific"))
604     return true;
605 
606   // - xpc_connection_set_context stores a value which can be retrieved later
607   //   with xpc_connection_get_context.
608   if (II->isStr("xpc_connection_set_context"))
609     return true;
610 
611   // - funopen - sets a buffer for future IO calls.
612   if (II->isStr("funopen"))
613     return true;
614 
615   // - __cxa_demangle - can reallocate memory and can return the pointer to
616   // the input buffer.
617   if (II->isStr("__cxa_demangle"))
618     return true;
619 
620   StringRef FName = II->getName();
621 
622   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
623   //   buffer even if it is const.
624   if (FName.endswith("NoCopy"))
625     return true;
626 
627   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
628   //   be deallocated by NSMapRemove.
629   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
630     return true;
631 
632   // - Many CF containers allow objects to escape through custom
633   //   allocators/deallocators upon container construction. (PR12101)
634   if (FName.startswith("CF") || FName.startswith("CG")) {
635     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
636            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
637            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
638            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
639            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
640            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
641   }
642 
643   return false;
644 }
645 
646 const FunctionDecl *SimpleFunctionCall::getDecl() const {
647   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
648   if (D)
649     return D;
650 
651   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
652 }
653 
654 const FunctionDecl *CXXInstanceCall::getDecl() const {
655   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
656   if (!CE)
657     return AnyFunctionCall::getDecl();
658 
659   const FunctionDecl *D = CE->getDirectCallee();
660   if (D)
661     return D;
662 
663   return getSVal(CE->getCallee()).getAsFunctionDecl();
664 }
665 
666 void CXXInstanceCall::getExtraInvalidatedValues(
667     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
668   SVal ThisVal = getCXXThisVal();
669   Values.push_back(ThisVal);
670 
671   // Don't invalidate if the method is const and there are no mutable fields.
672   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
673     if (!D->isConst())
674       return;
675     // Get the record decl for the class of 'This'. D->getParent() may return a
676     // base class decl, rather than the class of the instance which needs to be
677     // checked for mutable fields.
678     // TODO: We might as well look at the dynamic type of the object.
679     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
680     QualType T = Ex->getType();
681     if (T->isPointerType()) // Arrow or implicit-this syntax?
682       T = T->getPointeeType();
683     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
684     assert(ParentRecord);
685     if (ParentRecord->hasMutableFields())
686       return;
687     // Preserve CXXThis.
688     const MemRegion *ThisRegion = ThisVal.getAsRegion();
689     if (!ThisRegion)
690       return;
691 
692     ETraits->setTrait(ThisRegion->getBaseRegion(),
693                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
694   }
695 }
696 
697 SVal CXXInstanceCall::getCXXThisVal() const {
698   const Expr *Base = getCXXThisExpr();
699   // FIXME: This doesn't handle an overloaded ->* operator.
700   if (!Base)
701     return UnknownVal();
702 
703   SVal ThisVal = getSVal(Base);
704   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
705   return ThisVal;
706 }
707 
708 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
709   // Do we have a decl at all?
710   const Decl *D = getDecl();
711   if (!D)
712     return {};
713 
714   // If the method is non-virtual, we know we can inline it.
715   const auto *MD = cast<CXXMethodDecl>(D);
716   if (!MD->isVirtual())
717     return AnyFunctionCall::getRuntimeDefinition();
718 
719   // Do we know the implicit 'this' object being called?
720   const MemRegion *R = getCXXThisVal().getAsRegion();
721   if (!R)
722     return {};
723 
724   // Do we know anything about the type of 'this'?
725   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
726   if (!DynType.isValid())
727     return {};
728 
729   // Is the type a C++ class? (This is mostly a defensive check.)
730   QualType RegionType = DynType.getType()->getPointeeType();
731   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
732 
733   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
734   if (!RD || !RD->hasDefinition())
735     return {};
736 
737   // Find the decl for this method in that class.
738   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
739   if (!Result) {
740     // We might not even get the original statically-resolved method due to
741     // some particularly nasty casting (e.g. casts to sister classes).
742     // However, we should at least be able to search up and down our own class
743     // hierarchy, and some real bugs have been caught by checking this.
744     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
745 
746     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
747     // the static type. However, because we currently don't update
748     // DynamicTypeInfo when an object is cast, we can't actually be sure the
749     // DynamicTypeInfo is up to date. This assert should be re-enabled once
750     // this is fixed. <rdar://problem/12287087>
751     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
752 
753     return {};
754   }
755 
756   // Does the decl that we found have an implementation?
757   const FunctionDecl *Definition;
758   if (!Result->hasBody(Definition))
759     return {};
760 
761   // We found a definition. If we're not sure that this devirtualization is
762   // actually what will happen at runtime, make sure to provide the region so
763   // that ExprEngine can decide what to do with it.
764   if (DynType.canBeASubClass())
765     return RuntimeDefinition(Definition, R->StripCasts());
766   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
767 }
768 
769 void CXXInstanceCall::getInitialStackFrameContents(
770                                             const StackFrameContext *CalleeCtx,
771                                             BindingsTy &Bindings) const {
772   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
773 
774   // Handle the binding of 'this' in the new stack frame.
775   SVal ThisVal = getCXXThisVal();
776   if (!ThisVal.isUnknown()) {
777     ProgramStateManager &StateMgr = getState()->getStateManager();
778     SValBuilder &SVB = StateMgr.getSValBuilder();
779 
780     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
781     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
782 
783     // If we devirtualized to a different member function, we need to make sure
784     // we have the proper layering of CXXBaseObjectRegions.
785     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
786       ASTContext &Ctx = SVB.getContext();
787       const CXXRecordDecl *Class = MD->getParent();
788       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
789 
790       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
791       bool Failed;
792       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
793       if (Failed) {
794         // We might have suffered some sort of placement new earlier, so
795         // we're constructing in a completely unexpected storage.
796         // Fall back to a generic pointer cast for this-value.
797         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
798         const CXXRecordDecl *StaticClass = StaticMD->getParent();
799         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
800         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
801       }
802     }
803 
804     if (!ThisVal.isUnknown())
805       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
806   }
807 }
808 
809 const Expr *CXXMemberCall::getCXXThisExpr() const {
810   return getOriginExpr()->getImplicitObjectArgument();
811 }
812 
813 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
814   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
815   // id-expression in the class member access expression is a qualified-id,
816   // that function is called. Otherwise, its final overrider in the dynamic type
817   // of the object expression is called.
818   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
819     if (ME->hasQualifier())
820       return AnyFunctionCall::getRuntimeDefinition();
821 
822   return CXXInstanceCall::getRuntimeDefinition();
823 }
824 
825 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
826   return getOriginExpr()->getArg(0);
827 }
828 
829 const BlockDataRegion *BlockCall::getBlockRegion() const {
830   const Expr *Callee = getOriginExpr()->getCallee();
831   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
832 
833   return dyn_cast_or_null<BlockDataRegion>(DataReg);
834 }
835 
836 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
837   const BlockDecl *D = getDecl();
838   if (!D)
839     return None;
840   return D->parameters();
841 }
842 
843 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
844                   RegionAndSymbolInvalidationTraits *ETraits) const {
845   // FIXME: This also needs to invalidate captured globals.
846   if (const MemRegion *R = getBlockRegion())
847     Values.push_back(loc::MemRegionVal(R));
848 }
849 
850 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
851                                              BindingsTy &Bindings) const {
852   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
853   ArrayRef<ParmVarDecl*> Params;
854   if (isConversionFromLambda()) {
855     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
856     Params = LambdaOperatorDecl->parameters();
857 
858     // For blocks converted from a C++ lambda, the callee declaration is the
859     // operator() method on the lambda so we bind "this" to
860     // the lambda captured by the block.
861     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
862     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
863     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
864     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
865   } else {
866     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
867   }
868 
869   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
870                                Params);
871 }
872 
873 SVal CXXConstructorCall::getCXXThisVal() const {
874   if (Data)
875     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
876   return UnknownVal();
877 }
878 
879 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
880                            RegionAndSymbolInvalidationTraits *ETraits) const {
881   if (Data) {
882     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
883     if (SymbolRef Sym = MV.getAsSymbol(true))
884       ETraits->setTrait(Sym,
885                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
886     Values.push_back(MV);
887   }
888 }
889 
890 void CXXConstructorCall::getInitialStackFrameContents(
891                                              const StackFrameContext *CalleeCtx,
892                                              BindingsTy &Bindings) const {
893   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
894 
895   SVal ThisVal = getCXXThisVal();
896   if (!ThisVal.isUnknown()) {
897     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
898     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
899     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
900     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
901   }
902 }
903 
904 SVal CXXDestructorCall::getCXXThisVal() const {
905   if (Data)
906     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
907   return UnknownVal();
908 }
909 
910 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
911   // Base destructors are always called non-virtually.
912   // Skip CXXInstanceCall's devirtualization logic in this case.
913   if (isBaseDestructor())
914     return AnyFunctionCall::getRuntimeDefinition();
915 
916   return CXXInstanceCall::getRuntimeDefinition();
917 }
918 
919 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
920   const ObjCMethodDecl *D = getDecl();
921   if (!D)
922     return None;
923   return D->parameters();
924 }
925 
926 void ObjCMethodCall::getExtraInvalidatedValues(
927     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
928 
929   // If the method call is a setter for property known to be backed by
930   // an instance variable, don't invalidate the entire receiver, just
931   // the storage for that instance variable.
932   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
933     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
934       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
935       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
936         ETraits->setTrait(
937           IvarRegion,
938           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
939         ETraits->setTrait(
940           IvarRegion,
941           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
942         Values.push_back(IvarLVal);
943       }
944       return;
945     }
946   }
947 
948   Values.push_back(getReceiverSVal());
949 }
950 
951 SVal ObjCMethodCall::getSelfSVal() const {
952   const LocationContext *LCtx = getLocationContext();
953   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
954   if (!SelfDecl)
955     return SVal();
956   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
957 }
958 
959 SVal ObjCMethodCall::getReceiverSVal() const {
960   // FIXME: Is this the best way to handle class receivers?
961   if (!isInstanceMessage())
962     return UnknownVal();
963 
964   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
965     return getSVal(RecE);
966 
967   // An instance message with no expression means we are sending to super.
968   // In this case the object reference is the same as 'self'.
969   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
970   SVal SelfVal = getSelfSVal();
971   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
972   return SelfVal;
973 }
974 
975 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
976   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
977       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
978       return true;
979 
980   if (!isInstanceMessage())
981     return false;
982 
983   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
984 
985   return (RecVal == getSelfSVal());
986 }
987 
988 SourceRange ObjCMethodCall::getSourceRange() const {
989   switch (getMessageKind()) {
990   case OCM_Message:
991     return getOriginExpr()->getSourceRange();
992   case OCM_PropertyAccess:
993   case OCM_Subscript:
994     return getContainingPseudoObjectExpr()->getSourceRange();
995   }
996   llvm_unreachable("unknown message kind");
997 }
998 
999 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1000 
1001 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1002   assert(Data && "Lazy lookup not yet performed.");
1003   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1004   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1005 }
1006 
1007 static const Expr *
1008 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1009   const Expr *Syntactic = POE->getSyntacticForm();
1010 
1011   // This handles the funny case of assigning to the result of a getter.
1012   // This can happen if the getter returns a non-const reference.
1013   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1014     Syntactic = BO->getLHS();
1015 
1016   return Syntactic;
1017 }
1018 
1019 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1020   if (!Data) {
1021     // Find the parent, ignoring implicit casts.
1022     ParentMap &PM = getLocationContext()->getParentMap();
1023     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1024 
1025     // Check if parent is a PseudoObjectExpr.
1026     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1027       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1028 
1029       ObjCMessageKind K;
1030       switch (Syntactic->getStmtClass()) {
1031       case Stmt::ObjCPropertyRefExprClass:
1032         K = OCM_PropertyAccess;
1033         break;
1034       case Stmt::ObjCSubscriptRefExprClass:
1035         K = OCM_Subscript;
1036         break;
1037       default:
1038         // FIXME: Can this ever happen?
1039         K = OCM_Message;
1040         break;
1041       }
1042 
1043       if (K != OCM_Message) {
1044         const_cast<ObjCMethodCall *>(this)->Data
1045           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1046         assert(getMessageKind() == K);
1047         return K;
1048       }
1049     }
1050 
1051     const_cast<ObjCMethodCall *>(this)->Data
1052       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1053     assert(getMessageKind() == OCM_Message);
1054     return OCM_Message;
1055   }
1056 
1057   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1058   if (!Info.getPointer())
1059     return OCM_Message;
1060   return static_cast<ObjCMessageKind>(Info.getInt());
1061 }
1062 
1063 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1064   // Look for properties accessed with property syntax (foo.bar = ...)
1065   if ( getMessageKind() == OCM_PropertyAccess) {
1066     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1067     assert(POE && "Property access without PseudoObjectExpr?");
1068 
1069     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1070     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1071 
1072     if (RefExpr->isExplicitProperty())
1073       return RefExpr->getExplicitProperty();
1074   }
1075 
1076   // Look for properties accessed with method syntax ([foo setBar:...]).
1077   const ObjCMethodDecl *MD = getDecl();
1078   if (!MD || !MD->isPropertyAccessor())
1079     return nullptr;
1080 
1081   // Note: This is potentially quite slow.
1082   return MD->findPropertyDecl();
1083 }
1084 
1085 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1086                                              Selector Sel) const {
1087   assert(IDecl);
1088   AnalysisManager &AMgr =
1089       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1090   // If the class interface is declared inside the main file, assume it is not
1091   // subcassed.
1092   // TODO: It could actually be subclassed if the subclass is private as well.
1093   // This is probably very rare.
1094   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1095   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1096     return false;
1097 
1098   // Assume that property accessors are not overridden.
1099   if (getMessageKind() == OCM_PropertyAccess)
1100     return false;
1101 
1102   // We assume that if the method is public (declared outside of main file) or
1103   // has a parent which publicly declares the method, the method could be
1104   // overridden in a subclass.
1105 
1106   // Find the first declaration in the class hierarchy that declares
1107   // the selector.
1108   ObjCMethodDecl *D = nullptr;
1109   while (true) {
1110     D = IDecl->lookupMethod(Sel, true);
1111 
1112     // Cannot find a public definition.
1113     if (!D)
1114       return false;
1115 
1116     // If outside the main file,
1117     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1118       return true;
1119 
1120     if (D->isOverriding()) {
1121       // Search in the superclass on the next iteration.
1122       IDecl = D->getClassInterface();
1123       if (!IDecl)
1124         return false;
1125 
1126       IDecl = IDecl->getSuperClass();
1127       if (!IDecl)
1128         return false;
1129 
1130       continue;
1131     }
1132 
1133     return false;
1134   };
1135 
1136   llvm_unreachable("The while loop should always terminate.");
1137 }
1138 
1139 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1140   if (!MD)
1141     return MD;
1142 
1143   // Find the redeclaration that defines the method.
1144   if (!MD->hasBody()) {
1145     for (auto I : MD->redecls())
1146       if (I->hasBody())
1147         MD = cast<ObjCMethodDecl>(I);
1148   }
1149   return MD;
1150 }
1151 
1152 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1153   const Expr* InstRec = ME->getInstanceReceiver();
1154   if (!InstRec)
1155     return false;
1156   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1157 
1158   // Check that receiver is called 'self'.
1159   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1160       !InstRecIg->getFoundDecl()->getName().equals("self"))
1161     return false;
1162 
1163   // Check that the method name is 'class'.
1164   if (ME->getSelector().getNumArgs() != 0 ||
1165       !ME->getSelector().getNameForSlot(0).equals("class"))
1166     return false;
1167 
1168   return true;
1169 }
1170 
1171 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1172   const ObjCMessageExpr *E = getOriginExpr();
1173   assert(E);
1174   Selector Sel = E->getSelector();
1175 
1176   if (E->isInstanceMessage()) {
1177     // Find the receiver type.
1178     const ObjCObjectPointerType *ReceiverT = nullptr;
1179     bool CanBeSubClassed = false;
1180     QualType SupersType = E->getSuperType();
1181     const MemRegion *Receiver = nullptr;
1182 
1183     if (!SupersType.isNull()) {
1184       // The receiver is guaranteed to be 'super' in this case.
1185       // Super always means the type of immediate predecessor to the method
1186       // where the call occurs.
1187       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1188     } else {
1189       Receiver = getReceiverSVal().getAsRegion();
1190       if (!Receiver)
1191         return {};
1192 
1193       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1194       if (!DTI.isValid()) {
1195         assert(isa<AllocaRegion>(Receiver) &&
1196                "Unhandled untyped region class!");
1197         return {};
1198       }
1199 
1200       QualType DynType = DTI.getType();
1201       CanBeSubClassed = DTI.canBeASubClass();
1202       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1203 
1204       if (ReceiverT && CanBeSubClassed)
1205         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1206           if (!canBeOverridenInSubclass(IDecl, Sel))
1207             CanBeSubClassed = false;
1208     }
1209 
1210     // Handle special cases of '[self classMethod]' and
1211     // '[[self class] classMethod]', which are treated by the compiler as
1212     // instance (not class) messages. We will statically dispatch to those.
1213     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1214       // For [self classMethod], return the compiler visible declaration.
1215       if (PT->getObjectType()->isObjCClass() &&
1216           Receiver == getSelfSVal().getAsRegion())
1217         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1218 
1219       // Similarly, handle [[self class] classMethod].
1220       // TODO: We are currently doing a syntactic match for this pattern with is
1221       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1222       // shows. A better way would be to associate the meta type with the symbol
1223       // using the dynamic type info tracking and use it here. We can add a new
1224       // SVal for ObjC 'Class' values that know what interface declaration they
1225       // come from. Then 'self' in a class method would be filled in with
1226       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1227       // do proper dynamic dispatch for class methods just like we do for
1228       // instance methods now.
1229       if (E->getInstanceReceiver())
1230         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1231           if (isCallToSelfClass(M))
1232             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1233     }
1234 
1235     // Lookup the instance method implementation.
1236     if (ReceiverT)
1237       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1238         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1239         // when in many cases it returns null.  We cache the results so
1240         // that repeated queries on the same ObjCIntefaceDecl and Selector
1241         // don't incur the same cost.  On some test cases, we can see the
1242         // same query being issued thousands of times.
1243         //
1244         // NOTE: This cache is essentially a "global" variable, but it
1245         // only gets lazily created when we get here.  The value of the
1246         // cache probably comes from it being global across ExprEngines,
1247         // where the same queries may get issued.  If we are worried about
1248         // concurrency, or possibly loading/unloading ASTs, etc., we may
1249         // need to revisit this someday.  In terms of memory, this table
1250         // stays around until clang quits, which also may be bad if we
1251         // need to release memory.
1252         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1253         using PrivateMethodCache =
1254             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1255 
1256         static PrivateMethodCache PMC;
1257         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1258 
1259         // Query lookupPrivateMethod() if the cache does not hit.
1260         if (!Val.hasValue()) {
1261           Val = IDecl->lookupPrivateMethod(Sel);
1262 
1263           // If the method is a property accessor, we should try to "inline" it
1264           // even if we don't actually have an implementation.
1265           if (!*Val)
1266             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1267               if (CompileTimeMD->isPropertyAccessor()) {
1268                 if (!CompileTimeMD->getSelfDecl() &&
1269                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1270                   // If the method is an accessor in a category, and it doesn't
1271                   // have a self declaration, first
1272                   // try to find the method in a class extension. This
1273                   // works around a bug in Sema where multiple accessors
1274                   // are synthesized for properties in class
1275                   // extensions that are redeclared in a category and the
1276                   // the implicit parameters are not filled in for
1277                   // the method on the category.
1278                   // This ensures we find the accessor in the extension, which
1279                   // has the implicit parameters filled in.
1280                   auto *ID = CompileTimeMD->getClassInterface();
1281                   for (auto *CatDecl : ID->visible_extensions()) {
1282                     Val = CatDecl->getMethod(Sel,
1283                                              CompileTimeMD->isInstanceMethod());
1284                     if (*Val)
1285                       break;
1286                   }
1287                 }
1288                 if (!*Val)
1289                   Val = IDecl->lookupInstanceMethod(Sel);
1290               }
1291         }
1292 
1293         const ObjCMethodDecl *MD = Val.getValue();
1294         if (CanBeSubClassed)
1295           return RuntimeDefinition(MD, Receiver);
1296         else
1297           return RuntimeDefinition(MD, nullptr);
1298       }
1299   } else {
1300     // This is a class method.
1301     // If we have type info for the receiver class, we are calling via
1302     // class name.
1303     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1304       // Find/Return the method implementation.
1305       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1306     }
1307   }
1308 
1309   return {};
1310 }
1311 
1312 bool ObjCMethodCall::argumentsMayEscape() const {
1313   if (isInSystemHeader() && !isInstanceMessage()) {
1314     Selector Sel = getSelector();
1315     if (Sel.getNumArgs() == 1 &&
1316         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1317       return true;
1318   }
1319 
1320   return CallEvent::argumentsMayEscape();
1321 }
1322 
1323 void ObjCMethodCall::getInitialStackFrameContents(
1324                                              const StackFrameContext *CalleeCtx,
1325                                              BindingsTy &Bindings) const {
1326   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1327   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1328   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1329                                D->parameters());
1330 
1331   SVal SelfVal = getReceiverSVal();
1332   if (!SelfVal.isUnknown()) {
1333     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1334     MemRegionManager &MRMgr = SVB.getRegionManager();
1335     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1336     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1337   }
1338 }
1339 
1340 CallEventRef<>
1341 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1342                                 const LocationContext *LCtx) {
1343   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1344     return create<CXXMemberCall>(MCE, State, LCtx);
1345 
1346   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1347     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1348     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1349       if (MD->isInstance())
1350         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1351 
1352   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1353     return create<BlockCall>(CE, State, LCtx);
1354   }
1355 
1356   // Otherwise, it's a normal function call, static member function call, or
1357   // something we can't reason about.
1358   return create<SimpleFunctionCall>(CE, State, LCtx);
1359 }
1360 
1361 CallEventRef<>
1362 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1363                             ProgramStateRef State) {
1364   const LocationContext *ParentCtx = CalleeCtx->getParent();
1365   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1366   assert(CallerCtx && "This should not be used for top-level stack frames");
1367 
1368   const Stmt *CallSite = CalleeCtx->getCallSite();
1369 
1370   if (CallSite) {
1371     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1372       return Out;
1373 
1374     // All other cases are handled by getCall.
1375     assert(isa<CXXConstructExpr>(CallSite) &&
1376            "This is not an inlineable statement");
1377 
1378     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1379     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1380     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1381     SVal ThisVal = State->getSVal(ThisPtr);
1382 
1383     return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1384                                  ThisVal.getAsRegion(), State, CallerCtx);
1385   }
1386 
1387   // Fall back to the CFG. The only thing we haven't handled yet is
1388   // destructors, though this could change in the future.
1389   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1390   CFGElement E = (*B)[CalleeCtx->getIndex()];
1391   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1392          "All other CFG elements should have exprs");
1393 
1394   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1395   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1396   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1397   SVal ThisVal = State->getSVal(ThisPtr);
1398 
1399   const Stmt *Trigger;
1400   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1401     Trigger = AutoDtor->getTriggerStmt();
1402   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1403     Trigger = DeleteDtor->getDeleteExpr();
1404   else
1405     Trigger = Dtor->getBody();
1406 
1407   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1408                               E.getAs<CFGBaseDtor>().hasValue(), State,
1409                               CallerCtx);
1410 }
1411 
1412 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1413                                          const LocationContext *LC) {
1414   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1415     return getSimpleCall(CE, State, LC);
1416   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1417     return getCXXAllocatorCall(NE, State, LC);
1418   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1419     return getObjCMethodCall(ME, State, LC);
1420   } else {
1421     return nullptr;
1422   }
1423 }
1424