1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/ParentMap.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/Type.h"
27 #include "clang/Analysis/AnalysisDeclContext.h"
28 #include "clang/Analysis/CFG.h"
29 #include "clang/Analysis/CFGStmtMap.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/CrossTU/CrossTranslationUnit.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/PointerIntPair.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <cassert>
62 #include <utility>
63 
64 #define DEBUG_TYPE "static-analyzer-call-event"
65 
66 using namespace clang;
67 using namespace ento;
68 
69 QualType CallEvent::getResultType() const {
70   ASTContext &Ctx = getState()->getStateManager().getContext();
71   const Expr *E = getOriginExpr();
72   if (!E)
73     return Ctx.VoidTy;
74   assert(E);
75 
76   QualType ResultTy = E->getType();
77 
78   // A function that returns a reference to 'int' will have a result type
79   // of simply 'int'. Check the origin expr's value kind to recover the
80   // proper type.
81   switch (E->getValueKind()) {
82   case VK_LValue:
83     ResultTy = Ctx.getLValueReferenceType(ResultTy);
84     break;
85   case VK_XValue:
86     ResultTy = Ctx.getRValueReferenceType(ResultTy);
87     break;
88   case VK_RValue:
89     // No adjustment is necessary.
90     break;
91   }
92 
93   return ResultTy;
94 }
95 
96 static bool isCallback(QualType T) {
97   // If a parameter is a block or a callback, assume it can modify pointer.
98   if (T->isBlockPointerType() ||
99       T->isFunctionPointerType() ||
100       T->isObjCSelType())
101     return true;
102 
103   // Check if a callback is passed inside a struct (for both, struct passed by
104   // reference and by value). Dig just one level into the struct for now.
105 
106   if (T->isAnyPointerType() || T->isReferenceType())
107     T = T->getPointeeType();
108 
109   if (const RecordType *RT = T->getAsStructureType()) {
110     const RecordDecl *RD = RT->getDecl();
111     for (const auto *I : RD->fields()) {
112       QualType FieldT = I->getType();
113       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
114         return true;
115     }
116   }
117   return false;
118 }
119 
120 static bool isVoidPointerToNonConst(QualType T) {
121   if (const auto *PT = T->getAs<PointerType>()) {
122     QualType PointeeTy = PT->getPointeeType();
123     if (PointeeTy.isConstQualified())
124       return false;
125     return PointeeTy->isVoidType();
126   } else
127     return false;
128 }
129 
130 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
131   unsigned NumOfArgs = getNumArgs();
132 
133   // If calling using a function pointer, assume the function does not
134   // satisfy the callback.
135   // TODO: We could check the types of the arguments here.
136   if (!getDecl())
137     return false;
138 
139   unsigned Idx = 0;
140   for (CallEvent::param_type_iterator I = param_type_begin(),
141                                       E = param_type_end();
142        I != E && Idx < NumOfArgs; ++I, ++Idx) {
143     // If the parameter is 0, it's harmless.
144     if (getArgSVal(Idx).isZeroConstant())
145       continue;
146 
147     if (Condition(*I))
148       return true;
149   }
150   return false;
151 }
152 
153 bool CallEvent::hasNonZeroCallbackArg() const {
154   return hasNonNullArgumentsWithType(isCallback);
155 }
156 
157 bool CallEvent::hasVoidPointerToNonConstArg() const {
158   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
159 }
160 
161 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
162   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
163   if (!FD)
164     return false;
165 
166   return CheckerContext::isCLibraryFunction(FD, FunctionName);
167 }
168 
169 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
170   const Decl *D = getDecl();
171   if (!D)
172     return nullptr;
173 
174   // TODO: For now we skip functions without definitions, even if we have
175   // our own getDecl(), because it's hard to find out which re-declaration
176   // is going to be used, and usually clients don't really care about this
177   // situation because there's a loss of precision anyway because we cannot
178   // inline the call.
179   RuntimeDefinition RD = getRuntimeDefinition();
180   if (!RD.getDecl())
181     return nullptr;
182 
183   AnalysisDeclContext *ADC =
184       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
185 
186   // TODO: For now we skip virtual functions, because this also rises
187   // the problem of which decl to use, but now it's across different classes.
188   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
189     return nullptr;
190 
191   return ADC;
192 }
193 
194 const StackFrameContext *CallEvent::getCalleeStackFrame() const {
195   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
196   if (!ADC)
197     return nullptr;
198 
199   const Expr *E = getOriginExpr();
200   if (!E)
201     return nullptr;
202 
203   // Recover CFG block via reverse lookup.
204   // TODO: If we were to keep CFG element information as part of the CallEvent
205   // instead of doing this reverse lookup, we would be able to build the stack
206   // frame for non-expression-based calls, and also we wouldn't need the reverse
207   // lookup.
208   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
209   const CFGBlock *B = Map->getBlock(E);
210   assert(B);
211 
212   // Also recover CFG index by scanning the CFG block.
213   unsigned Idx = 0, Sz = B->size();
214   for (; Idx < Sz; ++Idx)
215     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
216       if (StmtElem->getStmt() == E)
217         break;
218   assert(Idx < Sz);
219 
220   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx);
221 }
222 
223 const VarRegion *CallEvent::getParameterLocation(unsigned Index) const {
224   const StackFrameContext *SFC = getCalleeStackFrame();
225   // We cannot construct a VarRegion without a stack frame.
226   if (!SFC)
227     return nullptr;
228 
229   // Retrieve parameters of the definition, which are different from
230   // CallEvent's parameters() because getDecl() isn't necessarily
231   // the definition. SFC contains the definition that would be used
232   // during analysis.
233   const Decl *D = SFC->getDecl();
234 
235   // TODO: Refactor into a virtual method of CallEvent, like parameters().
236   const ParmVarDecl *PVD = nullptr;
237   if (const auto *FD = dyn_cast<FunctionDecl>(D))
238     PVD = FD->parameters()[Index];
239   else if (const auto *BD = dyn_cast<BlockDecl>(D))
240     PVD = BD->parameters()[Index];
241   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
242     PVD = MD->parameters()[Index];
243   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
244     PVD = CD->parameters()[Index];
245   assert(PVD && "Unexpected Decl kind!");
246 
247   const VarRegion *VR =
248       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
249 
250   // This sanity check would fail if our parameter declaration doesn't
251   // correspond to the stack frame's function declaration.
252   assert(VR->getStackFrame() == SFC);
253 
254   return VR;
255 }
256 
257 /// Returns true if a type is a pointer-to-const or reference-to-const
258 /// with no further indirection.
259 static bool isPointerToConst(QualType Ty) {
260   QualType PointeeTy = Ty->getPointeeType();
261   if (PointeeTy == QualType())
262     return false;
263   if (!PointeeTy.isConstQualified())
264     return false;
265   if (PointeeTy->isAnyPointerType())
266     return false;
267   return true;
268 }
269 
270 // Try to retrieve the function declaration and find the function parameter
271 // types which are pointers/references to a non-pointer const.
272 // We will not invalidate the corresponding argument regions.
273 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
274                                  const CallEvent &Call) {
275   unsigned Idx = 0;
276   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
277                                       E = Call.param_type_end();
278        I != E; ++I, ++Idx) {
279     if (isPointerToConst(*I))
280       PreserveArgs.insert(Idx);
281   }
282 }
283 
284 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
285                                              ProgramStateRef Orig) const {
286   ProgramStateRef Result = (Orig ? Orig : getState());
287 
288   // Don't invalidate anything if the callee is marked pure/const.
289   if (const Decl *callee = getDecl())
290     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
291       return Result;
292 
293   SmallVector<SVal, 8> ValuesToInvalidate;
294   RegionAndSymbolInvalidationTraits ETraits;
295 
296   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
297 
298   // Indexes of arguments whose values will be preserved by the call.
299   llvm::SmallSet<unsigned, 4> PreserveArgs;
300   if (!argumentsMayEscape())
301     findPtrToConstParams(PreserveArgs, *this);
302 
303   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
304     // Mark this region for invalidation.  We batch invalidate regions
305     // below for efficiency.
306     if (PreserveArgs.count(Idx))
307       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
308         ETraits.setTrait(MR->getBaseRegion(),
309                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
310         // TODO: Factor this out + handle the lower level const pointers.
311 
312     ValuesToInvalidate.push_back(getArgSVal(Idx));
313 
314     // If a function accepts an object by argument (which would of course be a
315     // temporary that isn't lifetime-extended), invalidate the object itself,
316     // not only other objects reachable from it. This is necessary because the
317     // destructor has access to the temporary object after the call.
318     // TODO: Support placement arguments once we start
319     // constructing them directly.
320     // TODO: This is unnecessary when there's no destructor, but that's
321     // currently hard to figure out.
322     if (getKind() != CE_CXXAllocator)
323       if (isArgumentConstructedDirectly(Idx))
324         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
325           if (const VarRegion *VR = getParameterLocation(*AdjIdx))
326             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
327   }
328 
329   // Invalidate designated regions using the batch invalidation API.
330   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
331   //  global variables.
332   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
333                                    BlockCount, getLocationContext(),
334                                    /*CausedByPointerEscape*/ true,
335                                    /*Symbols=*/nullptr, this, &ETraits);
336 }
337 
338 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
339                                         const ProgramPointTag *Tag) const {
340   if (const Expr *E = getOriginExpr()) {
341     if (IsPreVisit)
342       return PreStmt(E, getLocationContext(), Tag);
343     return PostStmt(E, getLocationContext(), Tag);
344   }
345 
346   const Decl *D = getDecl();
347   assert(D && "Cannot get a program point without a statement or decl");
348 
349   SourceLocation Loc = getSourceRange().getBegin();
350   if (IsPreVisit)
351     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
352   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
353 }
354 
355 bool CallEvent::isCalled(const CallDescription &CD) const {
356   // FIXME: Add ObjC Message support.
357   if (getKind() == CE_ObjCMessage)
358     return false;
359 
360   const IdentifierInfo *II = getCalleeIdentifier();
361   if (!II)
362     return false;
363   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
364   if (!FD)
365     return false;
366 
367   if (CD.Flags & CDF_MaybeBuiltin) {
368     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
369            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs());
370   }
371 
372   if (!CD.IsLookupDone) {
373     CD.IsLookupDone = true;
374     CD.II = &getState()->getStateManager().getContext().Idents.get(
375         CD.getFunctionName());
376   }
377 
378   if (II != CD.II)
379     return false;
380 
381   // If CallDescription provides prefix names, use them to improve matching
382   // accuracy.
383   if (CD.QualifiedName.size() > 1 && FD) {
384     const DeclContext *Ctx = FD->getDeclContext();
385     // See if we'll be able to match them all.
386     size_t NumUnmatched = CD.QualifiedName.size() - 1;
387     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
388       if (NumUnmatched == 0)
389         break;
390 
391       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
392         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
393           --NumUnmatched;
394         continue;
395       }
396 
397       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
398         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
399           --NumUnmatched;
400         continue;
401       }
402     }
403 
404     if (NumUnmatched > 0)
405       return false;
406   }
407 
408   return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs());
409 }
410 
411 SVal CallEvent::getArgSVal(unsigned Index) const {
412   const Expr *ArgE = getArgExpr(Index);
413   if (!ArgE)
414     return UnknownVal();
415   return getSVal(ArgE);
416 }
417 
418 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
419   const Expr *ArgE = getArgExpr(Index);
420   if (!ArgE)
421     return {};
422   return ArgE->getSourceRange();
423 }
424 
425 SVal CallEvent::getReturnValue() const {
426   const Expr *E = getOriginExpr();
427   if (!E)
428     return UndefinedVal();
429   return getSVal(E);
430 }
431 
432 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
433 
434 void CallEvent::dump(raw_ostream &Out) const {
435   ASTContext &Ctx = getState()->getStateManager().getContext();
436   if (const Expr *E = getOriginExpr()) {
437     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
438     Out << "\n";
439     return;
440   }
441 
442   if (const Decl *D = getDecl()) {
443     Out << "Call to ";
444     D->print(Out, Ctx.getPrintingPolicy());
445     return;
446   }
447 
448   // FIXME: a string representation of the kind would be nice.
449   Out << "Unknown call (type " << getKind() << ")";
450 }
451 
452 bool CallEvent::isCallStmt(const Stmt *S) {
453   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
454                           || isa<CXXConstructExpr>(S)
455                           || isa<CXXNewExpr>(S);
456 }
457 
458 QualType CallEvent::getDeclaredResultType(const Decl *D) {
459   assert(D);
460   if (const auto *FD = dyn_cast<FunctionDecl>(D))
461     return FD->getReturnType();
462   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
463     return MD->getReturnType();
464   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
465     // Blocks are difficult because the return type may not be stored in the
466     // BlockDecl itself. The AST should probably be enhanced, but for now we
467     // just do what we can.
468     // If the block is declared without an explicit argument list, the
469     // signature-as-written just includes the return type, not the entire
470     // function type.
471     // FIXME: All blocks should have signatures-as-written, even if the return
472     // type is inferred. (That's signified with a dependent result type.)
473     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
474       QualType Ty = TSI->getType();
475       if (const FunctionType *FT = Ty->getAs<FunctionType>())
476         Ty = FT->getReturnType();
477       if (!Ty->isDependentType())
478         return Ty;
479     }
480 
481     return {};
482   }
483 
484   llvm_unreachable("unknown callable kind");
485 }
486 
487 bool CallEvent::isVariadic(const Decl *D) {
488   assert(D);
489 
490   if (const auto *FD = dyn_cast<FunctionDecl>(D))
491     return FD->isVariadic();
492   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
493     return MD->isVariadic();
494   if (const auto *BD = dyn_cast<BlockDecl>(D))
495     return BD->isVariadic();
496 
497   llvm_unreachable("unknown callable kind");
498 }
499 
500 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
501                                          CallEvent::BindingsTy &Bindings,
502                                          SValBuilder &SVB,
503                                          const CallEvent &Call,
504                                          ArrayRef<ParmVarDecl*> parameters) {
505   MemRegionManager &MRMgr = SVB.getRegionManager();
506 
507   // If the function has fewer parameters than the call has arguments, we simply
508   // do not bind any values to them.
509   unsigned NumArgs = Call.getNumArgs();
510   unsigned Idx = 0;
511   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
512   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
513     const ParmVarDecl *ParamDecl = *I;
514     assert(ParamDecl && "Formal parameter has no decl?");
515 
516     // TODO: Support allocator calls.
517     if (Call.getKind() != CE_CXXAllocator)
518       if (Call.isArgumentConstructedDirectly(Idx))
519         continue;
520 
521     // TODO: Allocators should receive the correct size and possibly alignment,
522     // determined in compile-time but not represented as arg-expressions,
523     // which makes getArgSVal() fail and return UnknownVal.
524     SVal ArgVal = Call.getArgSVal(Idx);
525     if (!ArgVal.isUnknown()) {
526       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
527       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
528     }
529   }
530 
531   // FIXME: Variadic arguments are not handled at all right now.
532 }
533 
534 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
535   const FunctionDecl *D = getDecl();
536   if (!D)
537     return None;
538   return D->parameters();
539 }
540 
541 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
542   const FunctionDecl *FD = getDecl();
543   if (!FD)
544     return {};
545 
546   // Note that the AnalysisDeclContext will have the FunctionDecl with
547   // the definition (if one exists).
548   AnalysisDeclContext *AD =
549     getLocationContext()->getAnalysisDeclContext()->
550     getManager()->getContext(FD);
551   bool IsAutosynthesized;
552   Stmt* Body = AD->getBody(IsAutosynthesized);
553   LLVM_DEBUG({
554     if (IsAutosynthesized)
555       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
556                    << "\n";
557   });
558   if (Body) {
559     const Decl* Decl = AD->getDecl();
560     return RuntimeDefinition(Decl);
561   }
562 
563   SubEngine &Engine = getState()->getStateManager().getOwningEngine();
564   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
565 
566   // Try to get CTU definition only if CTUDir is provided.
567   if (!Opts.IsNaiveCTUEnabled)
568     return {};
569 
570   cross_tu::CrossTranslationUnitContext &CTUCtx =
571       *Engine.getCrossTranslationUnitContext();
572   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
573       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
574                                   Opts.DisplayCTUProgress);
575 
576   if (!CTUDeclOrError) {
577     handleAllErrors(CTUDeclOrError.takeError(),
578                     [&](const cross_tu::IndexError &IE) {
579                       CTUCtx.emitCrossTUDiagnostics(IE);
580                     });
581     return {};
582   }
583 
584   return RuntimeDefinition(*CTUDeclOrError);
585 }
586 
587 void AnyFunctionCall::getInitialStackFrameContents(
588                                         const StackFrameContext *CalleeCtx,
589                                         BindingsTy &Bindings) const {
590   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
591   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
592   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
593                                D->parameters());
594 }
595 
596 bool AnyFunctionCall::argumentsMayEscape() const {
597   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
598     return true;
599 
600   const FunctionDecl *D = getDecl();
601   if (!D)
602     return true;
603 
604   const IdentifierInfo *II = D->getIdentifier();
605   if (!II)
606     return false;
607 
608   // This set of "escaping" APIs is
609 
610   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
611   //   value into thread local storage. The value can later be retrieved with
612   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
613   //   parameter is 'const void *', the region escapes through the call.
614   if (II->isStr("pthread_setspecific"))
615     return true;
616 
617   // - xpc_connection_set_context stores a value which can be retrieved later
618   //   with xpc_connection_get_context.
619   if (II->isStr("xpc_connection_set_context"))
620     return true;
621 
622   // - funopen - sets a buffer for future IO calls.
623   if (II->isStr("funopen"))
624     return true;
625 
626   // - __cxa_demangle - can reallocate memory and can return the pointer to
627   // the input buffer.
628   if (II->isStr("__cxa_demangle"))
629     return true;
630 
631   StringRef FName = II->getName();
632 
633   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
634   //   buffer even if it is const.
635   if (FName.endswith("NoCopy"))
636     return true;
637 
638   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
639   //   be deallocated by NSMapRemove.
640   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
641     return true;
642 
643   // - Many CF containers allow objects to escape through custom
644   //   allocators/deallocators upon container construction. (PR12101)
645   if (FName.startswith("CF") || FName.startswith("CG")) {
646     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
647            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
648            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
649            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
650            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
651            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
652   }
653 
654   return false;
655 }
656 
657 const FunctionDecl *SimpleFunctionCall::getDecl() const {
658   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
659   if (D)
660     return D;
661 
662   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
663 }
664 
665 const FunctionDecl *CXXInstanceCall::getDecl() const {
666   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
667   if (!CE)
668     return AnyFunctionCall::getDecl();
669 
670   const FunctionDecl *D = CE->getDirectCallee();
671   if (D)
672     return D;
673 
674   return getSVal(CE->getCallee()).getAsFunctionDecl();
675 }
676 
677 void CXXInstanceCall::getExtraInvalidatedValues(
678     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
679   SVal ThisVal = getCXXThisVal();
680   Values.push_back(ThisVal);
681 
682   // Don't invalidate if the method is const and there are no mutable fields.
683   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
684     if (!D->isConst())
685       return;
686     // Get the record decl for the class of 'This'. D->getParent() may return a
687     // base class decl, rather than the class of the instance which needs to be
688     // checked for mutable fields.
689     // TODO: We might as well look at the dynamic type of the object.
690     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
691     QualType T = Ex->getType();
692     if (T->isPointerType()) // Arrow or implicit-this syntax?
693       T = T->getPointeeType();
694     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
695     assert(ParentRecord);
696     if (ParentRecord->hasMutableFields())
697       return;
698     // Preserve CXXThis.
699     const MemRegion *ThisRegion = ThisVal.getAsRegion();
700     if (!ThisRegion)
701       return;
702 
703     ETraits->setTrait(ThisRegion->getBaseRegion(),
704                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
705   }
706 }
707 
708 SVal CXXInstanceCall::getCXXThisVal() const {
709   const Expr *Base = getCXXThisExpr();
710   // FIXME: This doesn't handle an overloaded ->* operator.
711   if (!Base)
712     return UnknownVal();
713 
714   SVal ThisVal = getSVal(Base);
715   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
716   return ThisVal;
717 }
718 
719 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
720   // Do we have a decl at all?
721   const Decl *D = getDecl();
722   if (!D)
723     return {};
724 
725   // If the method is non-virtual, we know we can inline it.
726   const auto *MD = cast<CXXMethodDecl>(D);
727   if (!MD->isVirtual())
728     return AnyFunctionCall::getRuntimeDefinition();
729 
730   // Do we know the implicit 'this' object being called?
731   const MemRegion *R = getCXXThisVal().getAsRegion();
732   if (!R)
733     return {};
734 
735   // Do we know anything about the type of 'this'?
736   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
737   if (!DynType.isValid())
738     return {};
739 
740   // Is the type a C++ class? (This is mostly a defensive check.)
741   QualType RegionType = DynType.getType()->getPointeeType();
742   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
743 
744   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
745   if (!RD || !RD->hasDefinition())
746     return {};
747 
748   // Find the decl for this method in that class.
749   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
750   if (!Result) {
751     // We might not even get the original statically-resolved method due to
752     // some particularly nasty casting (e.g. casts to sister classes).
753     // However, we should at least be able to search up and down our own class
754     // hierarchy, and some real bugs have been caught by checking this.
755     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
756 
757     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
758     // the static type. However, because we currently don't update
759     // DynamicTypeInfo when an object is cast, we can't actually be sure the
760     // DynamicTypeInfo is up to date. This assert should be re-enabled once
761     // this is fixed. <rdar://problem/12287087>
762     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
763 
764     return {};
765   }
766 
767   // Does the decl that we found have an implementation?
768   const FunctionDecl *Definition;
769   if (!Result->hasBody(Definition))
770     return {};
771 
772   // We found a definition. If we're not sure that this devirtualization is
773   // actually what will happen at runtime, make sure to provide the region so
774   // that ExprEngine can decide what to do with it.
775   if (DynType.canBeASubClass())
776     return RuntimeDefinition(Definition, R->StripCasts());
777   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
778 }
779 
780 void CXXInstanceCall::getInitialStackFrameContents(
781                                             const StackFrameContext *CalleeCtx,
782                                             BindingsTy &Bindings) const {
783   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
784 
785   // Handle the binding of 'this' in the new stack frame.
786   SVal ThisVal = getCXXThisVal();
787   if (!ThisVal.isUnknown()) {
788     ProgramStateManager &StateMgr = getState()->getStateManager();
789     SValBuilder &SVB = StateMgr.getSValBuilder();
790 
791     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
792     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
793 
794     // If we devirtualized to a different member function, we need to make sure
795     // we have the proper layering of CXXBaseObjectRegions.
796     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
797       ASTContext &Ctx = SVB.getContext();
798       const CXXRecordDecl *Class = MD->getParent();
799       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
800 
801       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
802       bool Failed;
803       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
804       if (Failed) {
805         // We might have suffered some sort of placement new earlier, so
806         // we're constructing in a completely unexpected storage.
807         // Fall back to a generic pointer cast for this-value.
808         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
809         const CXXRecordDecl *StaticClass = StaticMD->getParent();
810         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
811         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
812       }
813     }
814 
815     if (!ThisVal.isUnknown())
816       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
817   }
818 }
819 
820 const Expr *CXXMemberCall::getCXXThisExpr() const {
821   return getOriginExpr()->getImplicitObjectArgument();
822 }
823 
824 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
825   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
826   // id-expression in the class member access expression is a qualified-id,
827   // that function is called. Otherwise, its final overrider in the dynamic type
828   // of the object expression is called.
829   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
830     if (ME->hasQualifier())
831       return AnyFunctionCall::getRuntimeDefinition();
832 
833   return CXXInstanceCall::getRuntimeDefinition();
834 }
835 
836 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
837   return getOriginExpr()->getArg(0);
838 }
839 
840 const BlockDataRegion *BlockCall::getBlockRegion() const {
841   const Expr *Callee = getOriginExpr()->getCallee();
842   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
843 
844   return dyn_cast_or_null<BlockDataRegion>(DataReg);
845 }
846 
847 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
848   const BlockDecl *D = getDecl();
849   if (!D)
850     return None;
851   return D->parameters();
852 }
853 
854 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
855                   RegionAndSymbolInvalidationTraits *ETraits) const {
856   // FIXME: This also needs to invalidate captured globals.
857   if (const MemRegion *R = getBlockRegion())
858     Values.push_back(loc::MemRegionVal(R));
859 }
860 
861 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
862                                              BindingsTy &Bindings) const {
863   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
864   ArrayRef<ParmVarDecl*> Params;
865   if (isConversionFromLambda()) {
866     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
867     Params = LambdaOperatorDecl->parameters();
868 
869     // For blocks converted from a C++ lambda, the callee declaration is the
870     // operator() method on the lambda so we bind "this" to
871     // the lambda captured by the block.
872     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
873     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
874     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
875     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
876   } else {
877     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
878   }
879 
880   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
881                                Params);
882 }
883 
884 SVal CXXConstructorCall::getCXXThisVal() const {
885   if (Data)
886     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
887   return UnknownVal();
888 }
889 
890 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
891                            RegionAndSymbolInvalidationTraits *ETraits) const {
892   if (Data) {
893     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
894     if (SymbolRef Sym = MV.getAsSymbol(true))
895       ETraits->setTrait(Sym,
896                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
897     Values.push_back(MV);
898   }
899 }
900 
901 void CXXConstructorCall::getInitialStackFrameContents(
902                                              const StackFrameContext *CalleeCtx,
903                                              BindingsTy &Bindings) const {
904   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
905 
906   SVal ThisVal = getCXXThisVal();
907   if (!ThisVal.isUnknown()) {
908     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
909     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
910     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
911     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
912   }
913 }
914 
915 SVal CXXDestructorCall::getCXXThisVal() const {
916   if (Data)
917     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
918   return UnknownVal();
919 }
920 
921 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
922   // Base destructors are always called non-virtually.
923   // Skip CXXInstanceCall's devirtualization logic in this case.
924   if (isBaseDestructor())
925     return AnyFunctionCall::getRuntimeDefinition();
926 
927   return CXXInstanceCall::getRuntimeDefinition();
928 }
929 
930 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
931   const ObjCMethodDecl *D = getDecl();
932   if (!D)
933     return None;
934   return D->parameters();
935 }
936 
937 void ObjCMethodCall::getExtraInvalidatedValues(
938     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
939 
940   // If the method call is a setter for property known to be backed by
941   // an instance variable, don't invalidate the entire receiver, just
942   // the storage for that instance variable.
943   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
944     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
945       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
946       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
947         ETraits->setTrait(
948           IvarRegion,
949           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
950         ETraits->setTrait(
951           IvarRegion,
952           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
953         Values.push_back(IvarLVal);
954       }
955       return;
956     }
957   }
958 
959   Values.push_back(getReceiverSVal());
960 }
961 
962 SVal ObjCMethodCall::getSelfSVal() const {
963   const LocationContext *LCtx = getLocationContext();
964   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
965   if (!SelfDecl)
966     return SVal();
967   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
968 }
969 
970 SVal ObjCMethodCall::getReceiverSVal() const {
971   // FIXME: Is this the best way to handle class receivers?
972   if (!isInstanceMessage())
973     return UnknownVal();
974 
975   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
976     return getSVal(RecE);
977 
978   // An instance message with no expression means we are sending to super.
979   // In this case the object reference is the same as 'self'.
980   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
981   SVal SelfVal = getSelfSVal();
982   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
983   return SelfVal;
984 }
985 
986 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
987   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
988       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
989       return true;
990 
991   if (!isInstanceMessage())
992     return false;
993 
994   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
995 
996   return (RecVal == getSelfSVal());
997 }
998 
999 SourceRange ObjCMethodCall::getSourceRange() const {
1000   switch (getMessageKind()) {
1001   case OCM_Message:
1002     return getOriginExpr()->getSourceRange();
1003   case OCM_PropertyAccess:
1004   case OCM_Subscript:
1005     return getContainingPseudoObjectExpr()->getSourceRange();
1006   }
1007   llvm_unreachable("unknown message kind");
1008 }
1009 
1010 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1011 
1012 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1013   assert(Data && "Lazy lookup not yet performed.");
1014   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1015   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1016 }
1017 
1018 static const Expr *
1019 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1020   const Expr *Syntactic = POE->getSyntacticForm();
1021 
1022   // This handles the funny case of assigning to the result of a getter.
1023   // This can happen if the getter returns a non-const reference.
1024   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1025     Syntactic = BO->getLHS();
1026 
1027   return Syntactic;
1028 }
1029 
1030 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1031   if (!Data) {
1032     // Find the parent, ignoring implicit casts.
1033     ParentMap &PM = getLocationContext()->getParentMap();
1034     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1035 
1036     // Check if parent is a PseudoObjectExpr.
1037     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1038       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1039 
1040       ObjCMessageKind K;
1041       switch (Syntactic->getStmtClass()) {
1042       case Stmt::ObjCPropertyRefExprClass:
1043         K = OCM_PropertyAccess;
1044         break;
1045       case Stmt::ObjCSubscriptRefExprClass:
1046         K = OCM_Subscript;
1047         break;
1048       default:
1049         // FIXME: Can this ever happen?
1050         K = OCM_Message;
1051         break;
1052       }
1053 
1054       if (K != OCM_Message) {
1055         const_cast<ObjCMethodCall *>(this)->Data
1056           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1057         assert(getMessageKind() == K);
1058         return K;
1059       }
1060     }
1061 
1062     const_cast<ObjCMethodCall *>(this)->Data
1063       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1064     assert(getMessageKind() == OCM_Message);
1065     return OCM_Message;
1066   }
1067 
1068   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1069   if (!Info.getPointer())
1070     return OCM_Message;
1071   return static_cast<ObjCMessageKind>(Info.getInt());
1072 }
1073 
1074 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1075   // Look for properties accessed with property syntax (foo.bar = ...)
1076   if ( getMessageKind() == OCM_PropertyAccess) {
1077     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1078     assert(POE && "Property access without PseudoObjectExpr?");
1079 
1080     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1081     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1082 
1083     if (RefExpr->isExplicitProperty())
1084       return RefExpr->getExplicitProperty();
1085   }
1086 
1087   // Look for properties accessed with method syntax ([foo setBar:...]).
1088   const ObjCMethodDecl *MD = getDecl();
1089   if (!MD || !MD->isPropertyAccessor())
1090     return nullptr;
1091 
1092   // Note: This is potentially quite slow.
1093   return MD->findPropertyDecl();
1094 }
1095 
1096 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1097                                              Selector Sel) const {
1098   assert(IDecl);
1099   AnalysisManager &AMgr =
1100       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1101   // If the class interface is declared inside the main file, assume it is not
1102   // subcassed.
1103   // TODO: It could actually be subclassed if the subclass is private as well.
1104   // This is probably very rare.
1105   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1106   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1107     return false;
1108 
1109   // Assume that property accessors are not overridden.
1110   if (getMessageKind() == OCM_PropertyAccess)
1111     return false;
1112 
1113   // We assume that if the method is public (declared outside of main file) or
1114   // has a parent which publicly declares the method, the method could be
1115   // overridden in a subclass.
1116 
1117   // Find the first declaration in the class hierarchy that declares
1118   // the selector.
1119   ObjCMethodDecl *D = nullptr;
1120   while (true) {
1121     D = IDecl->lookupMethod(Sel, true);
1122 
1123     // Cannot find a public definition.
1124     if (!D)
1125       return false;
1126 
1127     // If outside the main file,
1128     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1129       return true;
1130 
1131     if (D->isOverriding()) {
1132       // Search in the superclass on the next iteration.
1133       IDecl = D->getClassInterface();
1134       if (!IDecl)
1135         return false;
1136 
1137       IDecl = IDecl->getSuperClass();
1138       if (!IDecl)
1139         return false;
1140 
1141       continue;
1142     }
1143 
1144     return false;
1145   };
1146 
1147   llvm_unreachable("The while loop should always terminate.");
1148 }
1149 
1150 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1151   if (!MD)
1152     return MD;
1153 
1154   // Find the redeclaration that defines the method.
1155   if (!MD->hasBody()) {
1156     for (auto I : MD->redecls())
1157       if (I->hasBody())
1158         MD = cast<ObjCMethodDecl>(I);
1159   }
1160   return MD;
1161 }
1162 
1163 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1164   const Expr* InstRec = ME->getInstanceReceiver();
1165   if (!InstRec)
1166     return false;
1167   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1168 
1169   // Check that receiver is called 'self'.
1170   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1171       !InstRecIg->getFoundDecl()->getName().equals("self"))
1172     return false;
1173 
1174   // Check that the method name is 'class'.
1175   if (ME->getSelector().getNumArgs() != 0 ||
1176       !ME->getSelector().getNameForSlot(0).equals("class"))
1177     return false;
1178 
1179   return true;
1180 }
1181 
1182 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1183   const ObjCMessageExpr *E = getOriginExpr();
1184   assert(E);
1185   Selector Sel = E->getSelector();
1186 
1187   if (E->isInstanceMessage()) {
1188     // Find the receiver type.
1189     const ObjCObjectPointerType *ReceiverT = nullptr;
1190     bool CanBeSubClassed = false;
1191     QualType SupersType = E->getSuperType();
1192     const MemRegion *Receiver = nullptr;
1193 
1194     if (!SupersType.isNull()) {
1195       // The receiver is guaranteed to be 'super' in this case.
1196       // Super always means the type of immediate predecessor to the method
1197       // where the call occurs.
1198       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1199     } else {
1200       Receiver = getReceiverSVal().getAsRegion();
1201       if (!Receiver)
1202         return {};
1203 
1204       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1205       if (!DTI.isValid()) {
1206         assert(isa<AllocaRegion>(Receiver) &&
1207                "Unhandled untyped region class!");
1208         return {};
1209       }
1210 
1211       QualType DynType = DTI.getType();
1212       CanBeSubClassed = DTI.canBeASubClass();
1213       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1214 
1215       if (ReceiverT && CanBeSubClassed)
1216         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1217           if (!canBeOverridenInSubclass(IDecl, Sel))
1218             CanBeSubClassed = false;
1219     }
1220 
1221     // Handle special cases of '[self classMethod]' and
1222     // '[[self class] classMethod]', which are treated by the compiler as
1223     // instance (not class) messages. We will statically dispatch to those.
1224     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1225       // For [self classMethod], return the compiler visible declaration.
1226       if (PT->getObjectType()->isObjCClass() &&
1227           Receiver == getSelfSVal().getAsRegion())
1228         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1229 
1230       // Similarly, handle [[self class] classMethod].
1231       // TODO: We are currently doing a syntactic match for this pattern with is
1232       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1233       // shows. A better way would be to associate the meta type with the symbol
1234       // using the dynamic type info tracking and use it here. We can add a new
1235       // SVal for ObjC 'Class' values that know what interface declaration they
1236       // come from. Then 'self' in a class method would be filled in with
1237       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1238       // do proper dynamic dispatch for class methods just like we do for
1239       // instance methods now.
1240       if (E->getInstanceReceiver())
1241         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1242           if (isCallToSelfClass(M))
1243             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1244     }
1245 
1246     // Lookup the instance method implementation.
1247     if (ReceiverT)
1248       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1249         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1250         // when in many cases it returns null.  We cache the results so
1251         // that repeated queries on the same ObjCIntefaceDecl and Selector
1252         // don't incur the same cost.  On some test cases, we can see the
1253         // same query being issued thousands of times.
1254         //
1255         // NOTE: This cache is essentially a "global" variable, but it
1256         // only gets lazily created when we get here.  The value of the
1257         // cache probably comes from it being global across ExprEngines,
1258         // where the same queries may get issued.  If we are worried about
1259         // concurrency, or possibly loading/unloading ASTs, etc., we may
1260         // need to revisit this someday.  In terms of memory, this table
1261         // stays around until clang quits, which also may be bad if we
1262         // need to release memory.
1263         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1264         using PrivateMethodCache =
1265             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1266 
1267         static PrivateMethodCache PMC;
1268         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1269 
1270         // Query lookupPrivateMethod() if the cache does not hit.
1271         if (!Val.hasValue()) {
1272           Val = IDecl->lookupPrivateMethod(Sel);
1273 
1274           // If the method is a property accessor, we should try to "inline" it
1275           // even if we don't actually have an implementation.
1276           if (!*Val)
1277             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1278               if (CompileTimeMD->isPropertyAccessor()) {
1279                 if (!CompileTimeMD->getSelfDecl() &&
1280                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1281                   // If the method is an accessor in a category, and it doesn't
1282                   // have a self declaration, first
1283                   // try to find the method in a class extension. This
1284                   // works around a bug in Sema where multiple accessors
1285                   // are synthesized for properties in class
1286                   // extensions that are redeclared in a category and the
1287                   // the implicit parameters are not filled in for
1288                   // the method on the category.
1289                   // This ensures we find the accessor in the extension, which
1290                   // has the implicit parameters filled in.
1291                   auto *ID = CompileTimeMD->getClassInterface();
1292                   for (auto *CatDecl : ID->visible_extensions()) {
1293                     Val = CatDecl->getMethod(Sel,
1294                                              CompileTimeMD->isInstanceMethod());
1295                     if (*Val)
1296                       break;
1297                   }
1298                 }
1299                 if (!*Val)
1300                   Val = IDecl->lookupInstanceMethod(Sel);
1301               }
1302         }
1303 
1304         const ObjCMethodDecl *MD = Val.getValue();
1305         if (CanBeSubClassed)
1306           return RuntimeDefinition(MD, Receiver);
1307         else
1308           return RuntimeDefinition(MD, nullptr);
1309       }
1310   } else {
1311     // This is a class method.
1312     // If we have type info for the receiver class, we are calling via
1313     // class name.
1314     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1315       // Find/Return the method implementation.
1316       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1317     }
1318   }
1319 
1320   return {};
1321 }
1322 
1323 bool ObjCMethodCall::argumentsMayEscape() const {
1324   if (isInSystemHeader() && !isInstanceMessage()) {
1325     Selector Sel = getSelector();
1326     if (Sel.getNumArgs() == 1 &&
1327         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1328       return true;
1329   }
1330 
1331   return CallEvent::argumentsMayEscape();
1332 }
1333 
1334 void ObjCMethodCall::getInitialStackFrameContents(
1335                                              const StackFrameContext *CalleeCtx,
1336                                              BindingsTy &Bindings) const {
1337   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1338   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1339   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1340                                D->parameters());
1341 
1342   SVal SelfVal = getReceiverSVal();
1343   if (!SelfVal.isUnknown()) {
1344     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1345     MemRegionManager &MRMgr = SVB.getRegionManager();
1346     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1347     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1348   }
1349 }
1350 
1351 CallEventRef<>
1352 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1353                                 const LocationContext *LCtx) {
1354   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1355     return create<CXXMemberCall>(MCE, State, LCtx);
1356 
1357   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1358     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1359     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1360       if (MD->isInstance())
1361         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1362 
1363   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1364     return create<BlockCall>(CE, State, LCtx);
1365   }
1366 
1367   // Otherwise, it's a normal function call, static member function call, or
1368   // something we can't reason about.
1369   return create<SimpleFunctionCall>(CE, State, LCtx);
1370 }
1371 
1372 CallEventRef<>
1373 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1374                             ProgramStateRef State) {
1375   const LocationContext *ParentCtx = CalleeCtx->getParent();
1376   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1377   assert(CallerCtx && "This should not be used for top-level stack frames");
1378 
1379   const Stmt *CallSite = CalleeCtx->getCallSite();
1380 
1381   if (CallSite) {
1382     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1383       return Out;
1384 
1385     // All other cases are handled by getCall.
1386     assert(isa<CXXConstructExpr>(CallSite) &&
1387            "This is not an inlineable statement");
1388 
1389     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1390     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1391     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1392     SVal ThisVal = State->getSVal(ThisPtr);
1393 
1394     return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1395                                  ThisVal.getAsRegion(), State, CallerCtx);
1396   }
1397 
1398   // Fall back to the CFG. The only thing we haven't handled yet is
1399   // destructors, though this could change in the future.
1400   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1401   CFGElement E = (*B)[CalleeCtx->getIndex()];
1402   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1403          "All other CFG elements should have exprs");
1404 
1405   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1406   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1407   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1408   SVal ThisVal = State->getSVal(ThisPtr);
1409 
1410   const Stmt *Trigger;
1411   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1412     Trigger = AutoDtor->getTriggerStmt();
1413   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1414     Trigger = DeleteDtor->getDeleteExpr();
1415   else
1416     Trigger = Dtor->getBody();
1417 
1418   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1419                               E.getAs<CFGBaseDtor>().hasValue(), State,
1420                               CallerCtx);
1421 }
1422 
1423 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1424                                          const LocationContext *LC) {
1425   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1426     return getSimpleCall(CE, State, LC);
1427   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1428     return getCXXAllocatorCall(NE, State, LC);
1429   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1430     return getObjCMethodCall(ME, State, LC);
1431   } else {
1432     return nullptr;
1433   }
1434 }
1435