1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/ParentMap.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/Type.h"
27 #include "clang/Analysis/AnalysisDeclContext.h"
28 #include "clang/Analysis/CFG.h"
29 #include "clang/Analysis/CFGStmtMap.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/CrossTU/CrossTranslationUnit.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/PointerIntPair.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <cassert>
62 #include <utility>
63 
64 #define DEBUG_TYPE "static-analyzer-call-event"
65 
66 using namespace clang;
67 using namespace ento;
68 
69 QualType CallEvent::getResultType() const {
70   ASTContext &Ctx = getState()->getStateManager().getContext();
71   const Expr *E = getOriginExpr();
72   if (!E)
73     return Ctx.VoidTy;
74   assert(E);
75 
76   QualType ResultTy = E->getType();
77 
78   // A function that returns a reference to 'int' will have a result type
79   // of simply 'int'. Check the origin expr's value kind to recover the
80   // proper type.
81   switch (E->getValueKind()) {
82   case VK_LValue:
83     ResultTy = Ctx.getLValueReferenceType(ResultTy);
84     break;
85   case VK_XValue:
86     ResultTy = Ctx.getRValueReferenceType(ResultTy);
87     break;
88   case VK_RValue:
89     // No adjustment is necessary.
90     break;
91   }
92 
93   return ResultTy;
94 }
95 
96 static bool isCallback(QualType T) {
97   // If a parameter is a block or a callback, assume it can modify pointer.
98   if (T->isBlockPointerType() ||
99       T->isFunctionPointerType() ||
100       T->isObjCSelType())
101     return true;
102 
103   // Check if a callback is passed inside a struct (for both, struct passed by
104   // reference and by value). Dig just one level into the struct for now.
105 
106   if (T->isAnyPointerType() || T->isReferenceType())
107     T = T->getPointeeType();
108 
109   if (const RecordType *RT = T->getAsStructureType()) {
110     const RecordDecl *RD = RT->getDecl();
111     for (const auto *I : RD->fields()) {
112       QualType FieldT = I->getType();
113       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
114         return true;
115     }
116   }
117   return false;
118 }
119 
120 static bool isVoidPointerToNonConst(QualType T) {
121   if (const auto *PT = T->getAs<PointerType>()) {
122     QualType PointeeTy = PT->getPointeeType();
123     if (PointeeTy.isConstQualified())
124       return false;
125     return PointeeTy->isVoidType();
126   } else
127     return false;
128 }
129 
130 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
131   unsigned NumOfArgs = getNumArgs();
132 
133   // If calling using a function pointer, assume the function does not
134   // satisfy the callback.
135   // TODO: We could check the types of the arguments here.
136   if (!getDecl())
137     return false;
138 
139   unsigned Idx = 0;
140   for (CallEvent::param_type_iterator I = param_type_begin(),
141                                       E = param_type_end();
142        I != E && Idx < NumOfArgs; ++I, ++Idx) {
143     // If the parameter is 0, it's harmless.
144     if (getArgSVal(Idx).isZeroConstant())
145       continue;
146 
147     if (Condition(*I))
148       return true;
149   }
150   return false;
151 }
152 
153 bool CallEvent::hasNonZeroCallbackArg() const {
154   return hasNonNullArgumentsWithType(isCallback);
155 }
156 
157 bool CallEvent::hasVoidPointerToNonConstArg() const {
158   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
159 }
160 
161 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
162   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
163   if (!FD)
164     return false;
165 
166   return CheckerContext::isCLibraryFunction(FD, FunctionName);
167 }
168 
169 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
170   const Decl *D = getDecl();
171   if (!D)
172     return nullptr;
173 
174   // TODO: For now we skip functions without definitions, even if we have
175   // our own getDecl(), because it's hard to find out which re-declaration
176   // is going to be used, and usually clients don't really care about this
177   // situation because there's a loss of precision anyway because we cannot
178   // inline the call.
179   RuntimeDefinition RD = getRuntimeDefinition();
180   if (!RD.getDecl())
181     return nullptr;
182 
183   AnalysisDeclContext *ADC =
184       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
185 
186   // TODO: For now we skip virtual functions, because this also rises
187   // the problem of which decl to use, but now it's across different classes.
188   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
189     return nullptr;
190 
191   return ADC;
192 }
193 
194 const StackFrameContext *CallEvent::getCalleeStackFrame() const {
195   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
196   if (!ADC)
197     return nullptr;
198 
199   const Expr *E = getOriginExpr();
200   if (!E)
201     return nullptr;
202 
203   // Recover CFG block via reverse lookup.
204   // TODO: If we were to keep CFG element information as part of the CallEvent
205   // instead of doing this reverse lookup, we would be able to build the stack
206   // frame for non-expression-based calls, and also we wouldn't need the reverse
207   // lookup.
208   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
209   const CFGBlock *B = Map->getBlock(E);
210   assert(B);
211 
212   // Also recover CFG index by scanning the CFG block.
213   unsigned Idx = 0, Sz = B->size();
214   for (; Idx < Sz; ++Idx)
215     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
216       if (StmtElem->getStmt() == E)
217         break;
218   assert(Idx < Sz);
219 
220   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, Idx);
221 }
222 
223 const VarRegion *CallEvent::getParameterLocation(unsigned Index) const {
224   const StackFrameContext *SFC = getCalleeStackFrame();
225   // We cannot construct a VarRegion without a stack frame.
226   if (!SFC)
227     return nullptr;
228 
229   // Retrieve parameters of the definition, which are different from
230   // CallEvent's parameters() because getDecl() isn't necessarily
231   // the definition. SFC contains the definition that would be used
232   // during analysis.
233   const Decl *D = SFC->getDecl();
234 
235   // TODO: Refactor into a virtual method of CallEvent, like parameters().
236   const ParmVarDecl *PVD = nullptr;
237   if (const auto *FD = dyn_cast<FunctionDecl>(D))
238     PVD = FD->parameters()[Index];
239   else if (const auto *BD = dyn_cast<BlockDecl>(D))
240     PVD = BD->parameters()[Index];
241   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
242     PVD = MD->parameters()[Index];
243   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
244     PVD = CD->parameters()[Index];
245   assert(PVD && "Unexpected Decl kind!");
246 
247   const VarRegion *VR =
248       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
249 
250   // This sanity check would fail if our parameter declaration doesn't
251   // correspond to the stack frame's function declaration.
252   assert(VR->getStackFrame() == SFC);
253 
254   return VR;
255 }
256 
257 /// Returns true if a type is a pointer-to-const or reference-to-const
258 /// with no further indirection.
259 static bool isPointerToConst(QualType Ty) {
260   QualType PointeeTy = Ty->getPointeeType();
261   if (PointeeTy == QualType())
262     return false;
263   if (!PointeeTy.isConstQualified())
264     return false;
265   if (PointeeTy->isAnyPointerType())
266     return false;
267   return true;
268 }
269 
270 // Try to retrieve the function declaration and find the function parameter
271 // types which are pointers/references to a non-pointer const.
272 // We will not invalidate the corresponding argument regions.
273 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
274                                  const CallEvent &Call) {
275   unsigned Idx = 0;
276   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
277                                       E = Call.param_type_end();
278        I != E; ++I, ++Idx) {
279     if (isPointerToConst(*I))
280       PreserveArgs.insert(Idx);
281   }
282 }
283 
284 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
285                                              ProgramStateRef Orig) const {
286   ProgramStateRef Result = (Orig ? Orig : getState());
287 
288   // Don't invalidate anything if the callee is marked pure/const.
289   if (const Decl *callee = getDecl())
290     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
291       return Result;
292 
293   SmallVector<SVal, 8> ValuesToInvalidate;
294   RegionAndSymbolInvalidationTraits ETraits;
295 
296   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
297 
298   // Indexes of arguments whose values will be preserved by the call.
299   llvm::SmallSet<unsigned, 4> PreserveArgs;
300   if (!argumentsMayEscape())
301     findPtrToConstParams(PreserveArgs, *this);
302 
303   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
304     // Mark this region for invalidation.  We batch invalidate regions
305     // below for efficiency.
306     if (const MemRegion *MR = getArgSVal(Idx).getAsRegion()) {
307       bool UseBaseRegion = true;
308       if (const auto *FR = MR->getAs<FieldRegion>()) {
309         if (const auto *TVR = FR->getSuperRegion()->getAs<TypedValueRegion>()) {
310           if (!TVR->getValueType()->isUnionType()) {
311             ETraits.setTrait(MR, RegionAndSymbolInvalidationTraits::
312                                      TK_DoNotInvalidateSuperRegion);
313             UseBaseRegion = false;
314           }
315         }
316       }
317       // todo: factor this out + handle the lower level const pointers.
318       if (PreserveArgs.count(Idx))
319         ETraits.setTrait(
320             UseBaseRegion ? MR->getBaseRegion() : MR,
321             RegionAndSymbolInvalidationTraits::TK_PreserveContents);
322     }
323 
324     ValuesToInvalidate.push_back(getArgSVal(Idx));
325 
326     // If a function accepts an object by argument (which would of course be a
327     // temporary that isn't lifetime-extended), invalidate the object itself,
328     // not only other objects reachable from it. This is necessary because the
329     // destructor has access to the temporary object after the call.
330     // TODO: Support placement arguments once we start
331     // constructing them directly.
332     // TODO: This is unnecessary when there's no destructor, but that's
333     // currently hard to figure out.
334     if (getKind() != CE_CXXAllocator)
335       if (isArgumentConstructedDirectly(Idx))
336         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
337           if (const VarRegion *VR = getParameterLocation(*AdjIdx))
338             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
339   }
340 
341   // Invalidate designated regions using the batch invalidation API.
342   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
343   //  global variables.
344   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
345                                    BlockCount, getLocationContext(),
346                                    /*CausedByPointerEscape*/ true,
347                                    /*Symbols=*/nullptr, this, &ETraits);
348 }
349 
350 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
351                                         const ProgramPointTag *Tag) const {
352   if (const Expr *E = getOriginExpr()) {
353     if (IsPreVisit)
354       return PreStmt(E, getLocationContext(), Tag);
355     return PostStmt(E, getLocationContext(), Tag);
356   }
357 
358   const Decl *D = getDecl();
359   assert(D && "Cannot get a program point without a statement or decl");
360 
361   SourceLocation Loc = getSourceRange().getBegin();
362   if (IsPreVisit)
363     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
364   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
365 }
366 
367 bool CallEvent::isCalled(const CallDescription &CD) const {
368   // FIXME: Add ObjC Message support.
369   if (getKind() == CE_ObjCMessage)
370     return false;
371   if (!CD.IsLookupDone) {
372     CD.IsLookupDone = true;
373     CD.II = &getState()->getStateManager().getContext().Idents.get(
374         CD.getFunctionName());
375   }
376   const IdentifierInfo *II = getCalleeIdentifier();
377   if (!II || II != CD.II)
378     return false;
379 
380   const Decl *D = getDecl();
381   // If CallDescription provides prefix names, use them to improve matching
382   // accuracy.
383   if (CD.QualifiedName.size() > 1 && D) {
384     const DeclContext *Ctx = D->getDeclContext();
385     // See if we'll be able to match them all.
386     size_t NumUnmatched = CD.QualifiedName.size() - 1;
387     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
388       if (NumUnmatched == 0)
389         break;
390 
391       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
392         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
393           --NumUnmatched;
394         continue;
395       }
396 
397       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
398         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
399           --NumUnmatched;
400         continue;
401       }
402     }
403 
404     if (NumUnmatched > 0)
405       return false;
406   }
407 
408   return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
409           CD.RequiredArgs == getNumArgs());
410 }
411 
412 SVal CallEvent::getArgSVal(unsigned Index) const {
413   const Expr *ArgE = getArgExpr(Index);
414   if (!ArgE)
415     return UnknownVal();
416   return getSVal(ArgE);
417 }
418 
419 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
420   const Expr *ArgE = getArgExpr(Index);
421   if (!ArgE)
422     return {};
423   return ArgE->getSourceRange();
424 }
425 
426 SVal CallEvent::getReturnValue() const {
427   const Expr *E = getOriginExpr();
428   if (!E)
429     return UndefinedVal();
430   return getSVal(E);
431 }
432 
433 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
434 
435 void CallEvent::dump(raw_ostream &Out) const {
436   ASTContext &Ctx = getState()->getStateManager().getContext();
437   if (const Expr *E = getOriginExpr()) {
438     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
439     Out << "\n";
440     return;
441   }
442 
443   if (const Decl *D = getDecl()) {
444     Out << "Call to ";
445     D->print(Out, Ctx.getPrintingPolicy());
446     return;
447   }
448 
449   // FIXME: a string representation of the kind would be nice.
450   Out << "Unknown call (type " << getKind() << ")";
451 }
452 
453 bool CallEvent::isCallStmt(const Stmt *S) {
454   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
455                           || isa<CXXConstructExpr>(S)
456                           || isa<CXXNewExpr>(S);
457 }
458 
459 QualType CallEvent::getDeclaredResultType(const Decl *D) {
460   assert(D);
461   if (const auto *FD = dyn_cast<FunctionDecl>(D))
462     return FD->getReturnType();
463   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
464     return MD->getReturnType();
465   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
466     // Blocks are difficult because the return type may not be stored in the
467     // BlockDecl itself. The AST should probably be enhanced, but for now we
468     // just do what we can.
469     // If the block is declared without an explicit argument list, the
470     // signature-as-written just includes the return type, not the entire
471     // function type.
472     // FIXME: All blocks should have signatures-as-written, even if the return
473     // type is inferred. (That's signified with a dependent result type.)
474     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
475       QualType Ty = TSI->getType();
476       if (const FunctionType *FT = Ty->getAs<FunctionType>())
477         Ty = FT->getReturnType();
478       if (!Ty->isDependentType())
479         return Ty;
480     }
481 
482     return {};
483   }
484 
485   llvm_unreachable("unknown callable kind");
486 }
487 
488 bool CallEvent::isVariadic(const Decl *D) {
489   assert(D);
490 
491   if (const auto *FD = dyn_cast<FunctionDecl>(D))
492     return FD->isVariadic();
493   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
494     return MD->isVariadic();
495   if (const auto *BD = dyn_cast<BlockDecl>(D))
496     return BD->isVariadic();
497 
498   llvm_unreachable("unknown callable kind");
499 }
500 
501 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
502                                          CallEvent::BindingsTy &Bindings,
503                                          SValBuilder &SVB,
504                                          const CallEvent &Call,
505                                          ArrayRef<ParmVarDecl*> parameters) {
506   MemRegionManager &MRMgr = SVB.getRegionManager();
507 
508   // If the function has fewer parameters than the call has arguments, we simply
509   // do not bind any values to them.
510   unsigned NumArgs = Call.getNumArgs();
511   unsigned Idx = 0;
512   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
513   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
514     const ParmVarDecl *ParamDecl = *I;
515     assert(ParamDecl && "Formal parameter has no decl?");
516 
517     // TODO: Support allocator calls.
518     if (Call.getKind() != CE_CXXAllocator)
519       if (Call.isArgumentConstructedDirectly(Idx))
520         continue;
521 
522     // TODO: Allocators should receive the correct size and possibly alignment,
523     // determined in compile-time but not represented as arg-expressions,
524     // which makes getArgSVal() fail and return UnknownVal.
525     SVal ArgVal = Call.getArgSVal(Idx);
526     if (!ArgVal.isUnknown()) {
527       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
528       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
529     }
530   }
531 
532   // FIXME: Variadic arguments are not handled at all right now.
533 }
534 
535 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
536   const FunctionDecl *D = getDecl();
537   if (!D)
538     return None;
539   return D->parameters();
540 }
541 
542 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
543   const FunctionDecl *FD = getDecl();
544   if (!FD)
545     return {};
546 
547   // Note that the AnalysisDeclContext will have the FunctionDecl with
548   // the definition (if one exists).
549   AnalysisDeclContext *AD =
550     getLocationContext()->getAnalysisDeclContext()->
551     getManager()->getContext(FD);
552   bool IsAutosynthesized;
553   Stmt* Body = AD->getBody(IsAutosynthesized);
554   LLVM_DEBUG({
555     if (IsAutosynthesized)
556       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
557                    << "\n";
558   });
559   if (Body) {
560     const Decl* Decl = AD->getDecl();
561     return RuntimeDefinition(Decl);
562   }
563 
564   SubEngine &Engine = getState()->getStateManager().getOwningEngine();
565   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
566 
567   // Try to get CTU definition only if CTUDir is provided.
568   if (!Opts.IsNaiveCTUEnabled)
569     return {};
570 
571   cross_tu::CrossTranslationUnitContext &CTUCtx =
572       *Engine.getCrossTranslationUnitContext();
573   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
574       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
575                                   Opts.DisplayCTUProgress);
576 
577   if (!CTUDeclOrError) {
578     handleAllErrors(CTUDeclOrError.takeError(),
579                     [&](const cross_tu::IndexError &IE) {
580                       CTUCtx.emitCrossTUDiagnostics(IE);
581                     });
582     return {};
583   }
584 
585   return RuntimeDefinition(*CTUDeclOrError);
586 }
587 
588 void AnyFunctionCall::getInitialStackFrameContents(
589                                         const StackFrameContext *CalleeCtx,
590                                         BindingsTy &Bindings) const {
591   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
592   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
593   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
594                                D->parameters());
595 }
596 
597 bool AnyFunctionCall::argumentsMayEscape() const {
598   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
599     return true;
600 
601   const FunctionDecl *D = getDecl();
602   if (!D)
603     return true;
604 
605   const IdentifierInfo *II = D->getIdentifier();
606   if (!II)
607     return false;
608 
609   // This set of "escaping" APIs is
610 
611   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
612   //   value into thread local storage. The value can later be retrieved with
613   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
614   //   parameter is 'const void *', the region escapes through the call.
615   if (II->isStr("pthread_setspecific"))
616     return true;
617 
618   // - xpc_connection_set_context stores a value which can be retrieved later
619   //   with xpc_connection_get_context.
620   if (II->isStr("xpc_connection_set_context"))
621     return true;
622 
623   // - funopen - sets a buffer for future IO calls.
624   if (II->isStr("funopen"))
625     return true;
626 
627   // - __cxa_demangle - can reallocate memory and can return the pointer to
628   // the input buffer.
629   if (II->isStr("__cxa_demangle"))
630     return true;
631 
632   StringRef FName = II->getName();
633 
634   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
635   //   buffer even if it is const.
636   if (FName.endswith("NoCopy"))
637     return true;
638 
639   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
640   //   be deallocated by NSMapRemove.
641   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
642     return true;
643 
644   // - Many CF containers allow objects to escape through custom
645   //   allocators/deallocators upon container construction. (PR12101)
646   if (FName.startswith("CF") || FName.startswith("CG")) {
647     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
648            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
649            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
650            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
651            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
652            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
653   }
654 
655   return false;
656 }
657 
658 const FunctionDecl *SimpleFunctionCall::getDecl() const {
659   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
660   if (D)
661     return D;
662 
663   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
664 }
665 
666 const FunctionDecl *CXXInstanceCall::getDecl() const {
667   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
668   if (!CE)
669     return AnyFunctionCall::getDecl();
670 
671   const FunctionDecl *D = CE->getDirectCallee();
672   if (D)
673     return D;
674 
675   return getSVal(CE->getCallee()).getAsFunctionDecl();
676 }
677 
678 void CXXInstanceCall::getExtraInvalidatedValues(
679     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
680   SVal ThisVal = getCXXThisVal();
681   Values.push_back(ThisVal);
682 
683   // Don't invalidate if the method is const and there are no mutable fields.
684   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
685     if (!D->isConst())
686       return;
687     // Get the record decl for the class of 'This'. D->getParent() may return a
688     // base class decl, rather than the class of the instance which needs to be
689     // checked for mutable fields.
690     // TODO: We might as well look at the dynamic type of the object.
691     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
692     QualType T = Ex->getType();
693     if (T->isPointerType()) // Arrow or implicit-this syntax?
694       T = T->getPointeeType();
695     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
696     assert(ParentRecord);
697     if (ParentRecord->hasMutableFields())
698       return;
699     // Preserve CXXThis.
700     const MemRegion *ThisRegion = ThisVal.getAsRegion();
701     if (!ThisRegion)
702       return;
703 
704     ETraits->setTrait(ThisRegion->getBaseRegion(),
705                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
706   }
707 }
708 
709 SVal CXXInstanceCall::getCXXThisVal() const {
710   const Expr *Base = getCXXThisExpr();
711   // FIXME: This doesn't handle an overloaded ->* operator.
712   if (!Base)
713     return UnknownVal();
714 
715   SVal ThisVal = getSVal(Base);
716   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
717   return ThisVal;
718 }
719 
720 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
721   // Do we have a decl at all?
722   const Decl *D = getDecl();
723   if (!D)
724     return {};
725 
726   // If the method is non-virtual, we know we can inline it.
727   const auto *MD = cast<CXXMethodDecl>(D);
728   if (!MD->isVirtual())
729     return AnyFunctionCall::getRuntimeDefinition();
730 
731   // Do we know the implicit 'this' object being called?
732   const MemRegion *R = getCXXThisVal().getAsRegion();
733   if (!R)
734     return {};
735 
736   // Do we know anything about the type of 'this'?
737   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
738   if (!DynType.isValid())
739     return {};
740 
741   // Is the type a C++ class? (This is mostly a defensive check.)
742   QualType RegionType = DynType.getType()->getPointeeType();
743   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
744 
745   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
746   if (!RD || !RD->hasDefinition())
747     return {};
748 
749   // Find the decl for this method in that class.
750   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
751   if (!Result) {
752     // We might not even get the original statically-resolved method due to
753     // some particularly nasty casting (e.g. casts to sister classes).
754     // However, we should at least be able to search up and down our own class
755     // hierarchy, and some real bugs have been caught by checking this.
756     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
757 
758     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
759     // the static type. However, because we currently don't update
760     // DynamicTypeInfo when an object is cast, we can't actually be sure the
761     // DynamicTypeInfo is up to date. This assert should be re-enabled once
762     // this is fixed. <rdar://problem/12287087>
763     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
764 
765     return {};
766   }
767 
768   // Does the decl that we found have an implementation?
769   const FunctionDecl *Definition;
770   if (!Result->hasBody(Definition))
771     return {};
772 
773   // We found a definition. If we're not sure that this devirtualization is
774   // actually what will happen at runtime, make sure to provide the region so
775   // that ExprEngine can decide what to do with it.
776   if (DynType.canBeASubClass())
777     return RuntimeDefinition(Definition, R->StripCasts());
778   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
779 }
780 
781 void CXXInstanceCall::getInitialStackFrameContents(
782                                             const StackFrameContext *CalleeCtx,
783                                             BindingsTy &Bindings) const {
784   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
785 
786   // Handle the binding of 'this' in the new stack frame.
787   SVal ThisVal = getCXXThisVal();
788   if (!ThisVal.isUnknown()) {
789     ProgramStateManager &StateMgr = getState()->getStateManager();
790     SValBuilder &SVB = StateMgr.getSValBuilder();
791 
792     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
793     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
794 
795     // If we devirtualized to a different member function, we need to make sure
796     // we have the proper layering of CXXBaseObjectRegions.
797     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
798       ASTContext &Ctx = SVB.getContext();
799       const CXXRecordDecl *Class = MD->getParent();
800       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
801 
802       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
803       bool Failed;
804       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
805       if (Failed) {
806         // We might have suffered some sort of placement new earlier, so
807         // we're constructing in a completely unexpected storage.
808         // Fall back to a generic pointer cast for this-value.
809         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
810         const CXXRecordDecl *StaticClass = StaticMD->getParent();
811         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
812         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
813       }
814     }
815 
816     if (!ThisVal.isUnknown())
817       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
818   }
819 }
820 
821 const Expr *CXXMemberCall::getCXXThisExpr() const {
822   return getOriginExpr()->getImplicitObjectArgument();
823 }
824 
825 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
826   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
827   // id-expression in the class member access expression is a qualified-id,
828   // that function is called. Otherwise, its final overrider in the dynamic type
829   // of the object expression is called.
830   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
831     if (ME->hasQualifier())
832       return AnyFunctionCall::getRuntimeDefinition();
833 
834   return CXXInstanceCall::getRuntimeDefinition();
835 }
836 
837 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
838   return getOriginExpr()->getArg(0);
839 }
840 
841 const BlockDataRegion *BlockCall::getBlockRegion() const {
842   const Expr *Callee = getOriginExpr()->getCallee();
843   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
844 
845   return dyn_cast_or_null<BlockDataRegion>(DataReg);
846 }
847 
848 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
849   const BlockDecl *D = getDecl();
850   if (!D)
851     return None;
852   return D->parameters();
853 }
854 
855 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
856                   RegionAndSymbolInvalidationTraits *ETraits) const {
857   // FIXME: This also needs to invalidate captured globals.
858   if (const MemRegion *R = getBlockRegion())
859     Values.push_back(loc::MemRegionVal(R));
860 }
861 
862 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
863                                              BindingsTy &Bindings) const {
864   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
865   ArrayRef<ParmVarDecl*> Params;
866   if (isConversionFromLambda()) {
867     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
868     Params = LambdaOperatorDecl->parameters();
869 
870     // For blocks converted from a C++ lambda, the callee declaration is the
871     // operator() method on the lambda so we bind "this" to
872     // the lambda captured by the block.
873     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
874     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
875     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
876     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
877   } else {
878     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
879   }
880 
881   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
882                                Params);
883 }
884 
885 SVal CXXConstructorCall::getCXXThisVal() const {
886   if (Data)
887     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
888   return UnknownVal();
889 }
890 
891 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
892                            RegionAndSymbolInvalidationTraits *ETraits) const {
893   if (Data) {
894     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
895     if (SymbolRef Sym = MV.getAsSymbol(true))
896       ETraits->setTrait(Sym,
897                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
898     Values.push_back(MV);
899   }
900 }
901 
902 void CXXConstructorCall::getInitialStackFrameContents(
903                                              const StackFrameContext *CalleeCtx,
904                                              BindingsTy &Bindings) const {
905   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
906 
907   SVal ThisVal = getCXXThisVal();
908   if (!ThisVal.isUnknown()) {
909     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
910     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
911     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
912     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
913   }
914 }
915 
916 SVal CXXDestructorCall::getCXXThisVal() const {
917   if (Data)
918     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
919   return UnknownVal();
920 }
921 
922 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
923   // Base destructors are always called non-virtually.
924   // Skip CXXInstanceCall's devirtualization logic in this case.
925   if (isBaseDestructor())
926     return AnyFunctionCall::getRuntimeDefinition();
927 
928   return CXXInstanceCall::getRuntimeDefinition();
929 }
930 
931 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
932   const ObjCMethodDecl *D = getDecl();
933   if (!D)
934     return None;
935   return D->parameters();
936 }
937 
938 void ObjCMethodCall::getExtraInvalidatedValues(
939     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
940 
941   // If the method call is a setter for property known to be backed by
942   // an instance variable, don't invalidate the entire receiver, just
943   // the storage for that instance variable.
944   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
945     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
946       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
947       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
948         ETraits->setTrait(
949           IvarRegion,
950           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
951         ETraits->setTrait(
952           IvarRegion,
953           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
954         Values.push_back(IvarLVal);
955       }
956       return;
957     }
958   }
959 
960   Values.push_back(getReceiverSVal());
961 }
962 
963 SVal ObjCMethodCall::getSelfSVal() const {
964   const LocationContext *LCtx = getLocationContext();
965   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
966   if (!SelfDecl)
967     return SVal();
968   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
969 }
970 
971 SVal ObjCMethodCall::getReceiverSVal() const {
972   // FIXME: Is this the best way to handle class receivers?
973   if (!isInstanceMessage())
974     return UnknownVal();
975 
976   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
977     return getSVal(RecE);
978 
979   // An instance message with no expression means we are sending to super.
980   // In this case the object reference is the same as 'self'.
981   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
982   SVal SelfVal = getSelfSVal();
983   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
984   return SelfVal;
985 }
986 
987 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
988   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
989       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
990       return true;
991 
992   if (!isInstanceMessage())
993     return false;
994 
995   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
996 
997   return (RecVal == getSelfSVal());
998 }
999 
1000 SourceRange ObjCMethodCall::getSourceRange() const {
1001   switch (getMessageKind()) {
1002   case OCM_Message:
1003     return getOriginExpr()->getSourceRange();
1004   case OCM_PropertyAccess:
1005   case OCM_Subscript:
1006     return getContainingPseudoObjectExpr()->getSourceRange();
1007   }
1008   llvm_unreachable("unknown message kind");
1009 }
1010 
1011 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1012 
1013 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1014   assert(Data && "Lazy lookup not yet performed.");
1015   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1016   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1017 }
1018 
1019 static const Expr *
1020 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1021   const Expr *Syntactic = POE->getSyntacticForm();
1022 
1023   // This handles the funny case of assigning to the result of a getter.
1024   // This can happen if the getter returns a non-const reference.
1025   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1026     Syntactic = BO->getLHS();
1027 
1028   return Syntactic;
1029 }
1030 
1031 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1032   if (!Data) {
1033     // Find the parent, ignoring implicit casts.
1034     ParentMap &PM = getLocationContext()->getParentMap();
1035     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1036 
1037     // Check if parent is a PseudoObjectExpr.
1038     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1039       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1040 
1041       ObjCMessageKind K;
1042       switch (Syntactic->getStmtClass()) {
1043       case Stmt::ObjCPropertyRefExprClass:
1044         K = OCM_PropertyAccess;
1045         break;
1046       case Stmt::ObjCSubscriptRefExprClass:
1047         K = OCM_Subscript;
1048         break;
1049       default:
1050         // FIXME: Can this ever happen?
1051         K = OCM_Message;
1052         break;
1053       }
1054 
1055       if (K != OCM_Message) {
1056         const_cast<ObjCMethodCall *>(this)->Data
1057           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1058         assert(getMessageKind() == K);
1059         return K;
1060       }
1061     }
1062 
1063     const_cast<ObjCMethodCall *>(this)->Data
1064       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1065     assert(getMessageKind() == OCM_Message);
1066     return OCM_Message;
1067   }
1068 
1069   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1070   if (!Info.getPointer())
1071     return OCM_Message;
1072   return static_cast<ObjCMessageKind>(Info.getInt());
1073 }
1074 
1075 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1076   // Look for properties accessed with property syntax (foo.bar = ...)
1077   if ( getMessageKind() == OCM_PropertyAccess) {
1078     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1079     assert(POE && "Property access without PseudoObjectExpr?");
1080 
1081     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1082     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1083 
1084     if (RefExpr->isExplicitProperty())
1085       return RefExpr->getExplicitProperty();
1086   }
1087 
1088   // Look for properties accessed with method syntax ([foo setBar:...]).
1089   const ObjCMethodDecl *MD = getDecl();
1090   if (!MD || !MD->isPropertyAccessor())
1091     return nullptr;
1092 
1093   // Note: This is potentially quite slow.
1094   return MD->findPropertyDecl();
1095 }
1096 
1097 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1098                                              Selector Sel) const {
1099   assert(IDecl);
1100   AnalysisManager &AMgr =
1101       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1102   // If the class interface is declared inside the main file, assume it is not
1103   // subcassed.
1104   // TODO: It could actually be subclassed if the subclass is private as well.
1105   // This is probably very rare.
1106   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1107   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1108     return false;
1109 
1110   // Assume that property accessors are not overridden.
1111   if (getMessageKind() == OCM_PropertyAccess)
1112     return false;
1113 
1114   // We assume that if the method is public (declared outside of main file) or
1115   // has a parent which publicly declares the method, the method could be
1116   // overridden in a subclass.
1117 
1118   // Find the first declaration in the class hierarchy that declares
1119   // the selector.
1120   ObjCMethodDecl *D = nullptr;
1121   while (true) {
1122     D = IDecl->lookupMethod(Sel, true);
1123 
1124     // Cannot find a public definition.
1125     if (!D)
1126       return false;
1127 
1128     // If outside the main file,
1129     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1130       return true;
1131 
1132     if (D->isOverriding()) {
1133       // Search in the superclass on the next iteration.
1134       IDecl = D->getClassInterface();
1135       if (!IDecl)
1136         return false;
1137 
1138       IDecl = IDecl->getSuperClass();
1139       if (!IDecl)
1140         return false;
1141 
1142       continue;
1143     }
1144 
1145     return false;
1146   };
1147 
1148   llvm_unreachable("The while loop should always terminate.");
1149 }
1150 
1151 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1152   if (!MD)
1153     return MD;
1154 
1155   // Find the redeclaration that defines the method.
1156   if (!MD->hasBody()) {
1157     for (auto I : MD->redecls())
1158       if (I->hasBody())
1159         MD = cast<ObjCMethodDecl>(I);
1160   }
1161   return MD;
1162 }
1163 
1164 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1165   const Expr* InstRec = ME->getInstanceReceiver();
1166   if (!InstRec)
1167     return false;
1168   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1169 
1170   // Check that receiver is called 'self'.
1171   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1172       !InstRecIg->getFoundDecl()->getName().equals("self"))
1173     return false;
1174 
1175   // Check that the method name is 'class'.
1176   if (ME->getSelector().getNumArgs() != 0 ||
1177       !ME->getSelector().getNameForSlot(0).equals("class"))
1178     return false;
1179 
1180   return true;
1181 }
1182 
1183 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1184   const ObjCMessageExpr *E = getOriginExpr();
1185   assert(E);
1186   Selector Sel = E->getSelector();
1187 
1188   if (E->isInstanceMessage()) {
1189     // Find the receiver type.
1190     const ObjCObjectPointerType *ReceiverT = nullptr;
1191     bool CanBeSubClassed = false;
1192     QualType SupersType = E->getSuperType();
1193     const MemRegion *Receiver = nullptr;
1194 
1195     if (!SupersType.isNull()) {
1196       // The receiver is guaranteed to be 'super' in this case.
1197       // Super always means the type of immediate predecessor to the method
1198       // where the call occurs.
1199       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1200     } else {
1201       Receiver = getReceiverSVal().getAsRegion();
1202       if (!Receiver)
1203         return {};
1204 
1205       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1206       if (!DTI.isValid()) {
1207         assert(isa<AllocaRegion>(Receiver) &&
1208                "Unhandled untyped region class!");
1209         return {};
1210       }
1211 
1212       QualType DynType = DTI.getType();
1213       CanBeSubClassed = DTI.canBeASubClass();
1214       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1215 
1216       if (ReceiverT && CanBeSubClassed)
1217         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1218           if (!canBeOverridenInSubclass(IDecl, Sel))
1219             CanBeSubClassed = false;
1220     }
1221 
1222     // Handle special cases of '[self classMethod]' and
1223     // '[[self class] classMethod]', which are treated by the compiler as
1224     // instance (not class) messages. We will statically dispatch to those.
1225     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1226       // For [self classMethod], return the compiler visible declaration.
1227       if (PT->getObjectType()->isObjCClass() &&
1228           Receiver == getSelfSVal().getAsRegion())
1229         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1230 
1231       // Similarly, handle [[self class] classMethod].
1232       // TODO: We are currently doing a syntactic match for this pattern with is
1233       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1234       // shows. A better way would be to associate the meta type with the symbol
1235       // using the dynamic type info tracking and use it here. We can add a new
1236       // SVal for ObjC 'Class' values that know what interface declaration they
1237       // come from. Then 'self' in a class method would be filled in with
1238       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1239       // do proper dynamic dispatch for class methods just like we do for
1240       // instance methods now.
1241       if (E->getInstanceReceiver())
1242         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1243           if (isCallToSelfClass(M))
1244             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1245     }
1246 
1247     // Lookup the instance method implementation.
1248     if (ReceiverT)
1249       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1250         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1251         // when in many cases it returns null.  We cache the results so
1252         // that repeated queries on the same ObjCIntefaceDecl and Selector
1253         // don't incur the same cost.  On some test cases, we can see the
1254         // same query being issued thousands of times.
1255         //
1256         // NOTE: This cache is essentially a "global" variable, but it
1257         // only gets lazily created when we get here.  The value of the
1258         // cache probably comes from it being global across ExprEngines,
1259         // where the same queries may get issued.  If we are worried about
1260         // concurrency, or possibly loading/unloading ASTs, etc., we may
1261         // need to revisit this someday.  In terms of memory, this table
1262         // stays around until clang quits, which also may be bad if we
1263         // need to release memory.
1264         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1265         using PrivateMethodCache =
1266             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1267 
1268         static PrivateMethodCache PMC;
1269         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1270 
1271         // Query lookupPrivateMethod() if the cache does not hit.
1272         if (!Val.hasValue()) {
1273           Val = IDecl->lookupPrivateMethod(Sel);
1274 
1275           // If the method is a property accessor, we should try to "inline" it
1276           // even if we don't actually have an implementation.
1277           if (!*Val)
1278             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1279               if (CompileTimeMD->isPropertyAccessor()) {
1280                 if (!CompileTimeMD->getSelfDecl() &&
1281                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1282                   // If the method is an accessor in a category, and it doesn't
1283                   // have a self declaration, first
1284                   // try to find the method in a class extension. This
1285                   // works around a bug in Sema where multiple accessors
1286                   // are synthesized for properties in class
1287                   // extensions that are redeclared in a category and the
1288                   // the implicit parameters are not filled in for
1289                   // the method on the category.
1290                   // This ensures we find the accessor in the extension, which
1291                   // has the implicit parameters filled in.
1292                   auto *ID = CompileTimeMD->getClassInterface();
1293                   for (auto *CatDecl : ID->visible_extensions()) {
1294                     Val = CatDecl->getMethod(Sel,
1295                                              CompileTimeMD->isInstanceMethod());
1296                     if (*Val)
1297                       break;
1298                   }
1299                 }
1300                 if (!*Val)
1301                   Val = IDecl->lookupInstanceMethod(Sel);
1302               }
1303         }
1304 
1305         const ObjCMethodDecl *MD = Val.getValue();
1306         if (CanBeSubClassed)
1307           return RuntimeDefinition(MD, Receiver);
1308         else
1309           return RuntimeDefinition(MD, nullptr);
1310       }
1311   } else {
1312     // This is a class method.
1313     // If we have type info for the receiver class, we are calling via
1314     // class name.
1315     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1316       // Find/Return the method implementation.
1317       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1318     }
1319   }
1320 
1321   return {};
1322 }
1323 
1324 bool ObjCMethodCall::argumentsMayEscape() const {
1325   if (isInSystemHeader() && !isInstanceMessage()) {
1326     Selector Sel = getSelector();
1327     if (Sel.getNumArgs() == 1 &&
1328         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1329       return true;
1330   }
1331 
1332   return CallEvent::argumentsMayEscape();
1333 }
1334 
1335 void ObjCMethodCall::getInitialStackFrameContents(
1336                                              const StackFrameContext *CalleeCtx,
1337                                              BindingsTy &Bindings) const {
1338   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1339   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1340   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1341                                D->parameters());
1342 
1343   SVal SelfVal = getReceiverSVal();
1344   if (!SelfVal.isUnknown()) {
1345     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1346     MemRegionManager &MRMgr = SVB.getRegionManager();
1347     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1348     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1349   }
1350 }
1351 
1352 CallEventRef<>
1353 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1354                                 const LocationContext *LCtx) {
1355   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1356     return create<CXXMemberCall>(MCE, State, LCtx);
1357 
1358   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1359     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1360     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1361       if (MD->isInstance())
1362         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1363 
1364   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1365     return create<BlockCall>(CE, State, LCtx);
1366   }
1367 
1368   // Otherwise, it's a normal function call, static member function call, or
1369   // something we can't reason about.
1370   return create<SimpleFunctionCall>(CE, State, LCtx);
1371 }
1372 
1373 CallEventRef<>
1374 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1375                             ProgramStateRef State) {
1376   const LocationContext *ParentCtx = CalleeCtx->getParent();
1377   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1378   assert(CallerCtx && "This should not be used for top-level stack frames");
1379 
1380   const Stmt *CallSite = CalleeCtx->getCallSite();
1381 
1382   if (CallSite) {
1383     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1384       return Out;
1385 
1386     // All other cases are handled by getCall.
1387     assert(isa<CXXConstructExpr>(CallSite) &&
1388            "This is not an inlineable statement");
1389 
1390     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1391     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1392     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1393     SVal ThisVal = State->getSVal(ThisPtr);
1394 
1395     return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1396                                  ThisVal.getAsRegion(), State, CallerCtx);
1397   }
1398 
1399   // Fall back to the CFG. The only thing we haven't handled yet is
1400   // destructors, though this could change in the future.
1401   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1402   CFGElement E = (*B)[CalleeCtx->getIndex()];
1403   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1404          "All other CFG elements should have exprs");
1405 
1406   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1407   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1408   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1409   SVal ThisVal = State->getSVal(ThisPtr);
1410 
1411   const Stmt *Trigger;
1412   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1413     Trigger = AutoDtor->getTriggerStmt();
1414   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1415     Trigger = DeleteDtor->getDeleteExpr();
1416   else
1417     Trigger = Dtor->getBody();
1418 
1419   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1420                               E.getAs<CFGBaseDtor>().hasValue(), State,
1421                               CallerCtx);
1422 }
1423 
1424 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1425                                          const LocationContext *LC) {
1426   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1427     return getSimpleCall(CE, State, LC);
1428   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1429     return getCXXAllocatorCall(NE, State, LC);
1430   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1431     return getObjCMethodCall(ME, State, LC);
1432   } else {
1433     return nullptr;
1434   }
1435 }
1436