1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines a set of BugReporter "visitors" which can be used to
10 //  enhance the diagnostics reported for a bug.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclBase.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/ASTMatchers/ASTMatchFinder.h"
25 #include "clang/Analysis/Analyses/Dominators.h"
26 #include "clang/Analysis/AnalysisDeclContext.h"
27 #include "clang/Analysis/CFG.h"
28 #include "clang/Analysis/CFGStmtMap.h"
29 #include "clang/Analysis/PathDiagnostic.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/Basic/IdentifierTable.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Lex/Lexer.h"
36 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/STLExtras.h"
52 #include "llvm/ADT/SmallPtrSet.h"
53 #include "llvm/ADT/SmallString.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cassert>
61 #include <deque>
62 #include <memory>
63 #include <string>
64 #include <utility>
65 
66 using namespace clang;
67 using namespace ento;
68 using namespace bugreporter;
69 
70 //===----------------------------------------------------------------------===//
71 // Utility functions.
72 //===----------------------------------------------------------------------===//
73 
74 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) {
75   if (B->isAdditiveOp() && B->getType()->isPointerType()) {
76     if (B->getLHS()->getType()->isPointerType()) {
77       return B->getLHS();
78     } else if (B->getRHS()->getType()->isPointerType()) {
79       return B->getRHS();
80     }
81   }
82   return nullptr;
83 }
84 
85 /// \return A subexpression of @c Ex which represents the
86 /// expression-of-interest.
87 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N);
88 
89 /// Given that expression S represents a pointer that would be dereferenced,
90 /// try to find a sub-expression from which the pointer came from.
91 /// This is used for tracking down origins of a null or undefined value:
92 /// "this is null because that is null because that is null" etc.
93 /// We wipe away field and element offsets because they merely add offsets.
94 /// We also wipe away all casts except lvalue-to-rvalue casts, because the
95 /// latter represent an actual pointer dereference; however, we remove
96 /// the final lvalue-to-rvalue cast before returning from this function
97 /// because it demonstrates more clearly from where the pointer rvalue was
98 /// loaded. Examples:
99 ///   x->y.z      ==>  x (lvalue)
100 ///   foo()->y.z  ==>  foo() (rvalue)
101 const Expr *bugreporter::getDerefExpr(const Stmt *S) {
102   const auto *E = dyn_cast<Expr>(S);
103   if (!E)
104     return nullptr;
105 
106   while (true) {
107     if (const auto *CE = dyn_cast<CastExpr>(E)) {
108       if (CE->getCastKind() == CK_LValueToRValue) {
109         // This cast represents the load we're looking for.
110         break;
111       }
112       E = CE->getSubExpr();
113     } else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
114       // Pointer arithmetic: '*(x + 2)' -> 'x') etc.
115       if (const Expr *Inner = peelOffPointerArithmetic(B)) {
116         E = Inner;
117       } else {
118         // Probably more arithmetic can be pattern-matched here,
119         // but for now give up.
120         break;
121       }
122     } else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
123       if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
124           (U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
125         // Operators '*' and '&' don't actually mean anything.
126         // We look at casts instead.
127         E = U->getSubExpr();
128       } else {
129         // Probably more arithmetic can be pattern-matched here,
130         // but for now give up.
131         break;
132       }
133     }
134     // Pattern match for a few useful cases: a[0], p->f, *p etc.
135     else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
136       E = ME->getBase();
137     } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
138       E = IvarRef->getBase();
139     } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
140       E = AE->getBase();
141     } else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
142       E = PE->getSubExpr();
143     } else if (const auto *FE = dyn_cast<FullExpr>(E)) {
144       E = FE->getSubExpr();
145     } else {
146       // Other arbitrary stuff.
147       break;
148     }
149   }
150 
151   // Special case: remove the final lvalue-to-rvalue cast, but do not recurse
152   // deeper into the sub-expression. This way we return the lvalue from which
153   // our pointer rvalue was loaded.
154   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
155     if (CE->getCastKind() == CK_LValueToRValue)
156       E = CE->getSubExpr();
157 
158   return E;
159 }
160 
161 static const MemRegion *
162 getLocationRegionIfReference(const Expr *E, const ExplodedNode *N,
163                              bool LookingForReference = true) {
164   if (const auto *DR = dyn_cast<DeclRefExpr>(E)) {
165     if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) {
166       if (LookingForReference && !VD->getType()->isReferenceType())
167         return nullptr;
168       return N->getState()
169           ->getLValue(VD, N->getLocationContext())
170           .getAsRegion();
171     }
172   }
173 
174   // FIXME: This does not handle other kinds of null references,
175   // for example, references from FieldRegions:
176   //   struct Wrapper { int &ref; };
177   //   Wrapper w = { *(int *)0 };
178   //   w.ref = 1;
179 
180   return nullptr;
181 }
182 
183 /// Comparing internal representations of symbolic values (via
184 /// SVal::operator==()) is a valid way to check if the value was updated,
185 /// unless it's a LazyCompoundVal that may have a different internal
186 /// representation every time it is loaded from the state. In this function we
187 /// do an approximate comparison for lazy compound values, checking that they
188 /// are the immediate snapshots of the tracked region's bindings within the
189 /// node's respective states but not really checking that these snapshots
190 /// actually contain the same set of bindings.
191 static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal,
192                              const ExplodedNode *RightNode, SVal RightVal) {
193   if (LeftVal == RightVal)
194     return true;
195 
196   const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>();
197   if (!LLCV)
198     return false;
199 
200   const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>();
201   if (!RLCV)
202     return false;
203 
204   return LLCV->getRegion() == RLCV->getRegion() &&
205     LLCV->getStore() == LeftNode->getState()->getStore() &&
206     RLCV->getStore() == RightNode->getState()->getStore();
207 }
208 
209 static Optional<SVal> getSValForVar(const Expr *CondVarExpr,
210                                     const ExplodedNode *N) {
211   ProgramStateRef State = N->getState();
212   const LocationContext *LCtx = N->getLocationContext();
213 
214   assert(CondVarExpr);
215   CondVarExpr = CondVarExpr->IgnoreImpCasts();
216 
217   // The declaration of the value may rely on a pointer so take its l-value.
218   // FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may
219   // evaluate to a FieldRegion when it refers to a declaration of a lambda
220   // capture variable. We most likely need to duplicate that logic here.
221   if (const auto *DRE = dyn_cast<DeclRefExpr>(CondVarExpr))
222     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
223       return State->getSVal(State->getLValue(VD, LCtx));
224 
225   if (const auto *ME = dyn_cast<MemberExpr>(CondVarExpr))
226     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
227       if (auto FieldL = State->getSVal(ME, LCtx).getAs<Loc>())
228         return State->getRawSVal(*FieldL, FD->getType());
229 
230   return None;
231 }
232 
233 static Optional<const llvm::APSInt *>
234 getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) {
235 
236   if (Optional<SVal> V = getSValForVar(CondVarExpr, N))
237     if (auto CI = V->getAs<nonloc::ConcreteInt>())
238       return &CI->getValue();
239   return None;
240 }
241 
242 static bool isVarAnInterestingCondition(const Expr *CondVarExpr,
243                                         const ExplodedNode *N,
244                                         const PathSensitiveBugReport *B) {
245   // Even if this condition is marked as interesting, it isn't *that*
246   // interesting if it didn't happen in a nested stackframe, the user could just
247   // follow the arrows.
248   if (!B->getErrorNode()->getStackFrame()->isParentOf(N->getStackFrame()))
249     return false;
250 
251   if (Optional<SVal> V = getSValForVar(CondVarExpr, N))
252     if (Optional<bugreporter::TrackingKind> K = B->getInterestingnessKind(*V))
253       return *K == bugreporter::TrackingKind::Condition;
254 
255   return false;
256 }
257 
258 static bool isInterestingExpr(const Expr *E, const ExplodedNode *N,
259                               const PathSensitiveBugReport *B) {
260   if (Optional<SVal> V = getSValForVar(E, N))
261     return B->getInterestingnessKind(*V).hasValue();
262   return false;
263 }
264 
265 /// \return name of the macro inside the location \p Loc.
266 static StringRef getMacroName(SourceLocation Loc,
267     BugReporterContext &BRC) {
268   return Lexer::getImmediateMacroName(
269       Loc,
270       BRC.getSourceManager(),
271       BRC.getASTContext().getLangOpts());
272 }
273 
274 /// \return Whether given spelling location corresponds to an expansion
275 /// of a function-like macro.
276 static bool isFunctionMacroExpansion(SourceLocation Loc,
277                                 const SourceManager &SM) {
278   if (!Loc.isMacroID())
279     return false;
280   while (SM.isMacroArgExpansion(Loc))
281     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
282   std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
283   SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
284   const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
285   return EInfo.isFunctionMacroExpansion();
286 }
287 
288 /// \return Whether \c RegionOfInterest was modified at \p N,
289 /// where \p ValueAfter is \c RegionOfInterest's value at the end of the
290 /// stack frame.
291 static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest,
292                                           const ExplodedNode *N,
293                                           SVal ValueAfter) {
294   ProgramStateRef State = N->getState();
295   ProgramStateManager &Mgr = N->getState()->getStateManager();
296 
297   if (!N->getLocationAs<PostStore>() && !N->getLocationAs<PostInitializer>() &&
298       !N->getLocationAs<PostStmt>())
299     return false;
300 
301   // Writing into region of interest.
302   if (auto PS = N->getLocationAs<PostStmt>())
303     if (auto *BO = PS->getStmtAs<BinaryOperator>())
304       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
305                                       N->getSVal(BO->getLHS()).getAsRegion()))
306         return true;
307 
308   // SVal after the state is possibly different.
309   SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
310   if (!Mgr.getSValBuilder()
311            .areEqual(State, ValueAtN, ValueAfter)
312            .isConstrainedTrue() &&
313       (!ValueAtN.isUndef() || !ValueAfter.isUndef()))
314     return true;
315 
316   return false;
317 }
318 
319 //===----------------------------------------------------------------------===//
320 // Implementation of BugReporterVisitor.
321 //===----------------------------------------------------------------------===//
322 
323 PathDiagnosticPieceRef BugReporterVisitor::getEndPath(BugReporterContext &,
324                                                       const ExplodedNode *,
325                                                       PathSensitiveBugReport &) {
326   return nullptr;
327 }
328 
329 void BugReporterVisitor::finalizeVisitor(BugReporterContext &,
330                                          const ExplodedNode *,
331                                          PathSensitiveBugReport &) {}
332 
333 PathDiagnosticPieceRef
334 BugReporterVisitor::getDefaultEndPath(const BugReporterContext &BRC,
335                                       const ExplodedNode *EndPathNode,
336                                       const PathSensitiveBugReport &BR) {
337   PathDiagnosticLocation L = BR.getLocation();
338   const auto &Ranges = BR.getRanges();
339 
340   // Only add the statement itself as a range if we didn't specify any
341   // special ranges for this report.
342   auto P = std::make_shared<PathDiagnosticEventPiece>(
343       L, BR.getDescription(), Ranges.begin() == Ranges.end());
344   for (SourceRange Range : Ranges)
345     P->addRange(Range);
346 
347   return P;
348 }
349 
350 //===----------------------------------------------------------------------===//
351 // Implementation of NoStateChangeFuncVisitor.
352 //===----------------------------------------------------------------------===//
353 
354 bool NoStateChangeFuncVisitor::isModifiedInFrame(const ExplodedNode *N) {
355   const LocationContext *Ctx = N->getLocationContext();
356   const StackFrameContext *SCtx = Ctx->getStackFrame();
357   if (!FramesModifyingCalculated.count(SCtx))
358     findModifyingFrames(N);
359   return FramesModifying.count(SCtx);
360 }
361 
362 void NoStateChangeFuncVisitor::markFrameAsModifying(
363     const StackFrameContext *SCtx) {
364   while (!SCtx->inTopFrame()) {
365     auto p = FramesModifying.insert(SCtx);
366     if (!p.second)
367       break; // Frame and all its parents already inserted.
368 
369     SCtx = SCtx->getParent()->getStackFrame();
370   }
371 }
372 
373 static const ExplodedNode *getMatchingCallExitEnd(const ExplodedNode *N) {
374   assert(N->getLocationAs<CallEnter>());
375   // The stackframe of the callee is only found in the nodes succeeding
376   // the CallEnter node. CallEnter's stack frame refers to the caller.
377   const StackFrameContext *OrigSCtx = N->getFirstSucc()->getStackFrame();
378 
379   // Similarly, the nodes preceding CallExitEnd refer to the callee's stack
380   // frame.
381   auto IsMatchingCallExitEnd = [OrigSCtx](const ExplodedNode *N) {
382     return N->getLocationAs<CallExitEnd>() &&
383            OrigSCtx == N->getFirstPred()->getStackFrame();
384   };
385   while (N && !IsMatchingCallExitEnd(N)) {
386     assert(N->succ_size() <= 1 &&
387            "This function is to be used on the trimmed ExplodedGraph!");
388     N = N->getFirstSucc();
389   }
390   return N;
391 }
392 
393 void NoStateChangeFuncVisitor::findModifyingFrames(
394     const ExplodedNode *const CallExitBeginN) {
395 
396   assert(CallExitBeginN->getLocationAs<CallExitBegin>());
397 
398   const StackFrameContext *const OriginalSCtx =
399       CallExitBeginN->getLocationContext()->getStackFrame();
400 
401   const ExplodedNode *CurrCallExitBeginN = CallExitBeginN;
402   const StackFrameContext *CurrentSCtx = OriginalSCtx;
403 
404   for (const ExplodedNode *CurrN = CallExitBeginN; CurrN;
405        CurrN = CurrN->getFirstPred()) {
406     // Found a new inlined call.
407     if (CurrN->getLocationAs<CallExitBegin>()) {
408       CurrCallExitBeginN = CurrN;
409       CurrentSCtx = CurrN->getStackFrame();
410       FramesModifyingCalculated.insert(CurrentSCtx);
411       // We won't see a change in between two identical exploded nodes: skip.
412       continue;
413     }
414 
415     if (auto CE = CurrN->getLocationAs<CallEnter>()) {
416       if (const ExplodedNode *CallExitEndN = getMatchingCallExitEnd(CurrN))
417         if (wasModifiedInFunction(CurrN, CallExitEndN))
418           markFrameAsModifying(CurrentSCtx);
419 
420       // We exited this inlined call, lets actualize the stack frame.
421       CurrentSCtx = CurrN->getStackFrame();
422 
423       // Stop calculating at the current function, but always regard it as
424       // modifying, so we can avoid notes like this:
425       //   void f(Foo &F) {
426       //     F.field = 0; // note: 0 assigned to 'F.field'
427       //                  // note: returning without writing to 'F.field'
428       //   }
429       if (CE->getCalleeContext() == OriginalSCtx) {
430         markFrameAsModifying(CurrentSCtx);
431         break;
432       }
433     }
434 
435     if (wasModifiedBeforeCallExit(CurrN, CurrCallExitBeginN))
436       markFrameAsModifying(CurrentSCtx);
437   }
438 }
439 
440 PathDiagnosticPieceRef NoStateChangeFuncVisitor::VisitNode(
441     const ExplodedNode *N, BugReporterContext &BR, PathSensitiveBugReport &R) {
442 
443   const LocationContext *Ctx = N->getLocationContext();
444   const StackFrameContext *SCtx = Ctx->getStackFrame();
445   ProgramStateRef State = N->getState();
446   auto CallExitLoc = N->getLocationAs<CallExitBegin>();
447 
448   // No diagnostic if region was modified inside the frame.
449   if (!CallExitLoc || isModifiedInFrame(N))
450     return nullptr;
451 
452   CallEventRef<> Call =
453       BR.getStateManager().getCallEventManager().getCaller(SCtx, State);
454 
455   // Optimistically suppress uninitialized value bugs that result
456   // from system headers having a chance to initialize the value
457   // but failing to do so. It's too unlikely a system header's fault.
458   // It's much more likely a situation in which the function has a failure
459   // mode that the user decided not to check. If we want to hunt such
460   // omitted checks, we should provide an explicit function-specific note
461   // describing the precondition under which the function isn't supposed to
462   // initialize its out-parameter, and additionally check that such
463   // precondition can actually be fulfilled on the current path.
464   if (Call->isInSystemHeader()) {
465     // We make an exception for system header functions that have no branches.
466     // Such functions unconditionally fail to initialize the variable.
467     // If they call other functions that have more paths within them,
468     // this suppression would still apply when we visit these inner functions.
469     // One common example of a standard function that doesn't ever initialize
470     // its out parameter is operator placement new; it's up to the follow-up
471     // constructor (if any) to initialize the memory.
472     if (!N->getStackFrame()->getCFG()->isLinear()) {
473       static int i = 0;
474       R.markInvalid(&i, nullptr);
475     }
476     return nullptr;
477   }
478 
479   if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
480     // If we failed to construct a piece for self, we still want to check
481     // whether the entity of interest is in a parameter.
482     if (PathDiagnosticPieceRef Piece = maybeEmitNoteForObjCSelf(R, *MC, N))
483       return Piece;
484   }
485 
486   if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
487     // Do not generate diagnostics for not modified parameters in
488     // constructors.
489     return maybeEmitNoteForCXXThis(R, *CCall, N);
490   }
491 
492   return maybeEmitNoteForParameters(R, *Call, N);
493 }
494 
495 //===----------------------------------------------------------------------===//
496 // Implementation of NoStoreFuncVisitor.
497 //===----------------------------------------------------------------------===//
498 
499 namespace {
500 /// Put a diagnostic on return statement of all inlined functions
501 /// for which  the region of interest \p RegionOfInterest was passed into,
502 /// but not written inside, and it has caused an undefined read or a null
503 /// pointer dereference outside.
504 class NoStoreFuncVisitor final : public NoStateChangeFuncVisitor {
505   const SubRegion *RegionOfInterest;
506   MemRegionManager &MmrMgr;
507   const SourceManager &SM;
508   const PrintingPolicy &PP;
509 
510   /// Recursion limit for dereferencing fields when looking for the
511   /// region of interest.
512   /// The limit of two indicates that we will dereference fields only once.
513   static const unsigned DEREFERENCE_LIMIT = 2;
514 
515   using RegionVector = SmallVector<const MemRegion *, 5>;
516 
517 public:
518   NoStoreFuncVisitor(const SubRegion *R, bugreporter::TrackingKind TKind)
519       : NoStateChangeFuncVisitor(TKind), RegionOfInterest(R),
520         MmrMgr(R->getMemRegionManager()),
521         SM(MmrMgr.getContext().getSourceManager()),
522         PP(MmrMgr.getContext().getPrintingPolicy()) {}
523 
524   void Profile(llvm::FoldingSetNodeID &ID) const override {
525     static int Tag = 0;
526     ID.AddPointer(&Tag);
527     ID.AddPointer(RegionOfInterest);
528   }
529 
530   void *getTag() const {
531     static int Tag = 0;
532     return static_cast<void *>(&Tag);
533   }
534 
535 private:
536   /// \return Whether \c RegionOfInterest was modified at \p CurrN compared to
537   /// the value it holds in \p CallExitBeginN.
538   virtual bool
539   wasModifiedBeforeCallExit(const ExplodedNode *CurrN,
540                             const ExplodedNode *CallExitBeginN) override;
541 
542   /// Attempts to find the region of interest in a given record decl,
543   /// by either following the base classes or fields.
544   /// Dereferences fields up to a given recursion limit.
545   /// Note that \p Vec is passed by value, leading to quadratic copying cost,
546   /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
547   /// \return A chain fields leading to the region of interest or None.
548   const Optional<RegionVector>
549   findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State,
550                                const MemRegion *R, const RegionVector &Vec = {},
551                                int depth = 0);
552 
553   // Region of interest corresponds to an IVar, exiting a method
554   // which could have written into that IVar, but did not.
555   virtual PathDiagnosticPieceRef
556   maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
557                            const ObjCMethodCall &Call,
558                            const ExplodedNode *N) override final;
559 
560   virtual PathDiagnosticPieceRef
561   maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
562                           const CXXConstructorCall &Call,
563                           const ExplodedNode *N) override final;
564 
565   virtual PathDiagnosticPieceRef
566   maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call,
567                              const ExplodedNode *N) override final;
568 
569   /// Consume the information on the no-store stack frame in order to
570   /// either emit a note or suppress the report enirely.
571   /// \return Diagnostics piece for region not modified in the current function,
572   /// if it decides to emit one.
573   PathDiagnosticPieceRef
574   maybeEmitNote(PathSensitiveBugReport &R, const CallEvent &Call,
575                 const ExplodedNode *N, const RegionVector &FieldChain,
576                 const MemRegion *MatchedRegion, StringRef FirstElement,
577                 bool FirstIsReferenceType, unsigned IndirectionLevel);
578 
579   bool prettyPrintRegionName(const RegionVector &FieldChain,
580                              const MemRegion *MatchedRegion,
581                              StringRef FirstElement, bool FirstIsReferenceType,
582                              unsigned IndirectionLevel,
583                              llvm::raw_svector_ostream &os);
584 
585   StringRef prettyPrintFirstElement(StringRef FirstElement,
586                                     bool MoreItemsExpected,
587                                     int IndirectionLevel,
588                                     llvm::raw_svector_ostream &os);
589 };
590 } // namespace
591 
592 /// \return Whether the method declaration \p Parent
593 /// syntactically has a binary operation writing into the ivar \p Ivar.
594 static bool potentiallyWritesIntoIvar(const Decl *Parent,
595                                       const ObjCIvarDecl *Ivar) {
596   using namespace ast_matchers;
597   const char *IvarBind = "Ivar";
598   if (!Parent || !Parent->hasBody())
599     return false;
600   StatementMatcher WriteIntoIvarM = binaryOperator(
601       hasOperatorName("="),
602       hasLHS(ignoringParenImpCasts(
603           objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
604   StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
605   auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
606   for (BoundNodes &Match : Matches) {
607     auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
608     if (IvarRef->isFreeIvar())
609       return true;
610 
611     const Expr *Base = IvarRef->getBase();
612     if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
613       Base = ICE->getSubExpr();
614 
615     if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
616       if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
617         if (ID->getParameterKind() == ImplicitParamDecl::ObjCSelf)
618           return true;
619 
620     return false;
621   }
622   return false;
623 }
624 
625 /// Attempts to find the region of interest in a given CXX decl,
626 /// by either following the base classes or fields.
627 /// Dereferences fields up to a given recursion limit.
628 /// Note that \p Vec is passed by value, leading to quadratic copying cost,
629 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
630 /// \return A chain fields leading to the region of interest or None.
631 const Optional<NoStoreFuncVisitor::RegionVector>
632 NoStoreFuncVisitor::findRegionOfInterestInRecord(
633     const RecordDecl *RD, ProgramStateRef State, const MemRegion *R,
634     const NoStoreFuncVisitor::RegionVector &Vec /* = {} */,
635     int depth /* = 0 */) {
636 
637   if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
638     return None;
639 
640   if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
641     if (!RDX->hasDefinition())
642       return None;
643 
644   // Recursively examine the base classes.
645   // Note that following base classes does not increase the recursion depth.
646   if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
647     for (const auto &II : RDX->bases())
648       if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
649         if (Optional<RegionVector> Out =
650                 findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
651           return Out;
652 
653   for (const FieldDecl *I : RD->fields()) {
654     QualType FT = I->getType();
655     const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
656     const SVal V = State->getSVal(FR);
657     const MemRegion *VR = V.getAsRegion();
658 
659     RegionVector VecF = Vec;
660     VecF.push_back(FR);
661 
662     if (RegionOfInterest == VR)
663       return VecF;
664 
665     if (const RecordDecl *RRD = FT->getAsRecordDecl())
666       if (auto Out =
667               findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
668         return Out;
669 
670     QualType PT = FT->getPointeeType();
671     if (PT.isNull() || PT->isVoidType() || !VR)
672       continue;
673 
674     if (const RecordDecl *RRD = PT->getAsRecordDecl())
675       if (Optional<RegionVector> Out =
676               findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
677         return Out;
678   }
679 
680   return None;
681 }
682 
683 PathDiagnosticPieceRef
684 NoStoreFuncVisitor::maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
685                                              const ObjCMethodCall &Call,
686                                              const ExplodedNode *N) {
687   if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
688     const MemRegion *SelfRegion = Call.getReceiverSVal().getAsRegion();
689     if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
690         potentiallyWritesIntoIvar(Call.getRuntimeDefinition().getDecl(),
691                                   IvarR->getDecl()))
692       return maybeEmitNote(R, Call, N, {}, SelfRegion, "self",
693                            /*FirstIsReferenceType=*/false, 1);
694   }
695   return nullptr;
696 }
697 
698 PathDiagnosticPieceRef
699 NoStoreFuncVisitor::maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
700                                             const CXXConstructorCall &Call,
701                                             const ExplodedNode *N) {
702   const MemRegion *ThisR = Call.getCXXThisVal().getAsRegion();
703   if (RegionOfInterest->isSubRegionOf(ThisR) && !Call.getDecl()->isImplicit())
704     return maybeEmitNote(R, Call, N, {}, ThisR, "this",
705                          /*FirstIsReferenceType=*/false, 1);
706 
707   // Do not generate diagnostics for not modified parameters in
708   // constructors.
709   return nullptr;
710 }
711 
712 /// \return whether \p Ty points to a const type, or is a const reference.
713 static bool isPointerToConst(QualType Ty) {
714   return !Ty->getPointeeType().isNull() &&
715          Ty->getPointeeType().getCanonicalType().isConstQualified();
716 }
717 
718 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForParameters(
719     PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N) {
720   ArrayRef<ParmVarDecl *> Parameters = Call.parameters();
721   for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) {
722     const ParmVarDecl *PVD = Parameters[I];
723     SVal V = Call.getArgSVal(I);
724     bool ParamIsReferenceType = PVD->getType()->isReferenceType();
725     std::string ParamName = PVD->getNameAsString();
726 
727     unsigned IndirectionLevel = 1;
728     QualType T = PVD->getType();
729     while (const MemRegion *MR = V.getAsRegion()) {
730       if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T))
731         return maybeEmitNote(R, Call, N, {}, MR, ParamName,
732                              ParamIsReferenceType, IndirectionLevel);
733 
734       QualType PT = T->getPointeeType();
735       if (PT.isNull() || PT->isVoidType())
736         break;
737 
738       ProgramStateRef State = N->getState();
739 
740       if (const RecordDecl *RD = PT->getAsRecordDecl())
741         if (Optional<RegionVector> P =
742                 findRegionOfInterestInRecord(RD, State, MR))
743           return maybeEmitNote(R, Call, N, *P, RegionOfInterest, ParamName,
744                                ParamIsReferenceType, IndirectionLevel);
745 
746       V = State->getSVal(MR, PT);
747       T = PT;
748       IndirectionLevel++;
749     }
750   }
751 
752   return nullptr;
753 }
754 
755 bool NoStoreFuncVisitor::wasModifiedBeforeCallExit(
756     const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN) {
757   return ::wasRegionOfInterestModifiedAt(
758       RegionOfInterest, CurrN,
759       CallExitBeginN->getState()->getSVal(RegionOfInterest));
760 }
761 
762 static llvm::StringLiteral WillBeUsedForACondition =
763     ", which participates in a condition later";
764 
765 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote(
766     PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N,
767     const RegionVector &FieldChain, const MemRegion *MatchedRegion,
768     StringRef FirstElement, bool FirstIsReferenceType,
769     unsigned IndirectionLevel) {
770 
771   PathDiagnosticLocation L =
772       PathDiagnosticLocation::create(N->getLocation(), SM);
773 
774   // For now this shouldn't trigger, but once it does (as we add more
775   // functions to the body farm), we'll need to decide if these reports
776   // are worth suppressing as well.
777   if (!L.hasValidLocation())
778     return nullptr;
779 
780   SmallString<256> sbuf;
781   llvm::raw_svector_ostream os(sbuf);
782   os << "Returning without writing to '";
783 
784   // Do not generate the note if failed to pretty-print.
785   if (!prettyPrintRegionName(FieldChain, MatchedRegion, FirstElement,
786                              FirstIsReferenceType, IndirectionLevel, os))
787     return nullptr;
788 
789   os << "'";
790   if (TKind == bugreporter::TrackingKind::Condition)
791     os << WillBeUsedForACondition;
792   return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
793 }
794 
795 bool NoStoreFuncVisitor::prettyPrintRegionName(const RegionVector &FieldChain,
796                                                const MemRegion *MatchedRegion,
797                                                StringRef FirstElement,
798                                                bool FirstIsReferenceType,
799                                                unsigned IndirectionLevel,
800                                                llvm::raw_svector_ostream &os) {
801 
802   if (FirstIsReferenceType)
803     IndirectionLevel--;
804 
805   RegionVector RegionSequence;
806 
807   // Add the regions in the reverse order, then reverse the resulting array.
808   assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
809   const MemRegion *R = RegionOfInterest;
810   while (R != MatchedRegion) {
811     RegionSequence.push_back(R);
812     R = cast<SubRegion>(R)->getSuperRegion();
813   }
814   std::reverse(RegionSequence.begin(), RegionSequence.end());
815   RegionSequence.append(FieldChain.begin(), FieldChain.end());
816 
817   StringRef Sep;
818   for (const MemRegion *R : RegionSequence) {
819 
820     // Just keep going up to the base region.
821     // Element regions may appear due to casts.
822     if (isa<CXXBaseObjectRegion, CXXTempObjectRegion>(R))
823       continue;
824 
825     if (Sep.empty())
826       Sep = prettyPrintFirstElement(FirstElement,
827                                     /*MoreItemsExpected=*/true,
828                                     IndirectionLevel, os);
829 
830     os << Sep;
831 
832     // Can only reasonably pretty-print DeclRegions.
833     if (!isa<DeclRegion>(R))
834       return false;
835 
836     const auto *DR = cast<DeclRegion>(R);
837     Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
838     DR->getDecl()->getDeclName().print(os, PP);
839   }
840 
841   if (Sep.empty())
842     prettyPrintFirstElement(FirstElement,
843                             /*MoreItemsExpected=*/false, IndirectionLevel, os);
844   return true;
845 }
846 
847 StringRef NoStoreFuncVisitor::prettyPrintFirstElement(
848     StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel,
849     llvm::raw_svector_ostream &os) {
850   StringRef Out = ".";
851 
852   if (IndirectionLevel > 0 && MoreItemsExpected) {
853     IndirectionLevel--;
854     Out = "->";
855   }
856 
857   if (IndirectionLevel > 0 && MoreItemsExpected)
858     os << "(";
859 
860   for (int i = 0; i < IndirectionLevel; i++)
861     os << "*";
862   os << FirstElement;
863 
864   if (IndirectionLevel > 0 && MoreItemsExpected)
865     os << ")";
866 
867   return Out;
868 }
869 
870 //===----------------------------------------------------------------------===//
871 // Implementation of MacroNullReturnSuppressionVisitor.
872 //===----------------------------------------------------------------------===//
873 
874 namespace {
875 
876 /// Suppress null-pointer-dereference bugs where dereferenced null was returned
877 /// the macro.
878 class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
879   const SubRegion *RegionOfInterest;
880   const SVal ValueAtDereference;
881 
882   // Do not invalidate the reports where the value was modified
883   // after it got assigned to from the macro.
884   bool WasModified = false;
885 
886 public:
887   MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V)
888       : RegionOfInterest(R), ValueAtDereference(V) {}
889 
890   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
891                                    BugReporterContext &BRC,
892                                    PathSensitiveBugReport &BR) override {
893     if (WasModified)
894       return nullptr;
895 
896     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
897     if (!BugPoint)
898       return nullptr;
899 
900     const SourceManager &SMgr = BRC.getSourceManager();
901     if (auto Loc = matchAssignment(N)) {
902       if (isFunctionMacroExpansion(*Loc, SMgr)) {
903         std::string MacroName = std::string(getMacroName(*Loc, BRC));
904         SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
905         if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
906           BR.markInvalid(getTag(), MacroName.c_str());
907       }
908     }
909 
910     if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
911       WasModified = true;
912 
913     return nullptr;
914   }
915 
916   static void addMacroVisitorIfNecessary(
917         const ExplodedNode *N, const MemRegion *R,
918         bool EnableNullFPSuppression, PathSensitiveBugReport &BR,
919         const SVal V) {
920     AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
921     if (EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths &&
922         V.getAs<Loc>())
923       BR.addVisitor<MacroNullReturnSuppressionVisitor>(R->getAs<SubRegion>(),
924                                                        V);
925   }
926 
927   void* getTag() const {
928     static int Tag = 0;
929     return static_cast<void *>(&Tag);
930   }
931 
932   void Profile(llvm::FoldingSetNodeID &ID) const override {
933     ID.AddPointer(getTag());
934   }
935 
936 private:
937   /// \return Source location of right hand side of an assignment
938   /// into \c RegionOfInterest, empty optional if none found.
939   Optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
940     const Stmt *S = N->getStmtForDiagnostics();
941     ProgramStateRef State = N->getState();
942     auto *LCtx = N->getLocationContext();
943     if (!S)
944       return None;
945 
946     if (const auto *DS = dyn_cast<DeclStmt>(S)) {
947       if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
948         if (const Expr *RHS = VD->getInit())
949           if (RegionOfInterest->isSubRegionOf(
950                   State->getLValue(VD, LCtx).getAsRegion()))
951             return RHS->getBeginLoc();
952     } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
953       const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
954       const Expr *RHS = BO->getRHS();
955       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
956         return RHS->getBeginLoc();
957       }
958     }
959     return None;
960   }
961 };
962 
963 } // end of anonymous namespace
964 
965 namespace {
966 
967 /// Emits an extra note at the return statement of an interesting stack frame.
968 ///
969 /// The returned value is marked as an interesting value, and if it's null,
970 /// adds a visitor to track where it became null.
971 ///
972 /// This visitor is intended to be used when another visitor discovers that an
973 /// interesting value comes from an inlined function call.
974 class ReturnVisitor : public TrackingBugReporterVisitor {
975   const StackFrameContext *CalleeSFC;
976   enum {
977     Initial,
978     MaybeUnsuppress,
979     Satisfied
980   } Mode = Initial;
981 
982   bool EnableNullFPSuppression;
983   bool ShouldInvalidate = true;
984   AnalyzerOptions& Options;
985   bugreporter::TrackingKind TKind;
986 
987 public:
988   ReturnVisitor(TrackerRef ParentTracker, const StackFrameContext *Frame,
989                 bool Suppressed, AnalyzerOptions &Options,
990                 bugreporter::TrackingKind TKind)
991       : TrackingBugReporterVisitor(ParentTracker), CalleeSFC(Frame),
992         EnableNullFPSuppression(Suppressed), Options(Options), TKind(TKind) {}
993 
994   static void *getTag() {
995     static int Tag = 0;
996     return static_cast<void *>(&Tag);
997   }
998 
999   void Profile(llvm::FoldingSetNodeID &ID) const override {
1000     ID.AddPointer(ReturnVisitor::getTag());
1001     ID.AddPointer(CalleeSFC);
1002     ID.AddBoolean(EnableNullFPSuppression);
1003   }
1004 
1005   PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N,
1006                                           BugReporterContext &BRC,
1007                                           PathSensitiveBugReport &BR) {
1008     // Only print a message at the interesting return statement.
1009     if (N->getLocationContext() != CalleeSFC)
1010       return nullptr;
1011 
1012     Optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
1013     if (!SP)
1014       return nullptr;
1015 
1016     const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
1017     if (!Ret)
1018       return nullptr;
1019 
1020     // Okay, we're at the right return statement, but do we have the return
1021     // value available?
1022     ProgramStateRef State = N->getState();
1023     SVal V = State->getSVal(Ret, CalleeSFC);
1024     if (V.isUnknownOrUndef())
1025       return nullptr;
1026 
1027     // Don't print any more notes after this one.
1028     Mode = Satisfied;
1029 
1030     const Expr *RetE = Ret->getRetValue();
1031     assert(RetE && "Tracking a return value for a void function");
1032 
1033     // Handle cases where a reference is returned and then immediately used.
1034     Optional<Loc> LValue;
1035     if (RetE->isGLValue()) {
1036       if ((LValue = V.getAs<Loc>())) {
1037         SVal RValue = State->getRawSVal(*LValue, RetE->getType());
1038         if (RValue.getAs<DefinedSVal>())
1039           V = RValue;
1040       }
1041     }
1042 
1043     // Ignore aggregate rvalues.
1044     if (V.getAs<nonloc::LazyCompoundVal>() ||
1045         V.getAs<nonloc::CompoundVal>())
1046       return nullptr;
1047 
1048     RetE = RetE->IgnoreParenCasts();
1049 
1050     // Let's track the return value.
1051     getParentTracker().track(RetE, N, {TKind, EnableNullFPSuppression});
1052 
1053     // Build an appropriate message based on the return value.
1054     SmallString<64> Msg;
1055     llvm::raw_svector_ostream Out(Msg);
1056 
1057     bool WouldEventBeMeaningless = false;
1058 
1059     if (State->isNull(V).isConstrainedTrue()) {
1060       if (V.getAs<Loc>()) {
1061 
1062         // If we have counter-suppression enabled, make sure we keep visiting
1063         // future nodes. We want to emit a path note as well, in case
1064         // the report is resurrected as valid later on.
1065         if (EnableNullFPSuppression &&
1066             Options.ShouldAvoidSuppressingNullArgumentPaths)
1067           Mode = MaybeUnsuppress;
1068 
1069         if (RetE->getType()->isObjCObjectPointerType()) {
1070           Out << "Returning nil";
1071         } else {
1072           Out << "Returning null pointer";
1073         }
1074       } else {
1075         Out << "Returning zero";
1076       }
1077 
1078     } else {
1079       if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1080         Out << "Returning the value " << CI->getValue();
1081       } else {
1082         // There is nothing interesting about returning a value, when it is
1083         // plain value without any constraints, and the function is guaranteed
1084         // to return that every time. We could use CFG::isLinear() here, but
1085         // constexpr branches are obvious to the compiler, not necesserily to
1086         // the programmer.
1087         if (N->getCFG().size() == 3)
1088           WouldEventBeMeaningless = true;
1089 
1090         if (V.getAs<Loc>())
1091           Out << "Returning pointer";
1092         else
1093           Out << "Returning value";
1094       }
1095     }
1096 
1097     if (LValue) {
1098       if (const MemRegion *MR = LValue->getAsRegion()) {
1099         if (MR->canPrintPretty()) {
1100           Out << " (reference to ";
1101           MR->printPretty(Out);
1102           Out << ")";
1103         }
1104       }
1105     } else {
1106       // FIXME: We should have a more generalized location printing mechanism.
1107       if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
1108         if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
1109           Out << " (loaded from '" << *DD << "')";
1110     }
1111 
1112     PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC);
1113     if (!L.isValid() || !L.asLocation().isValid())
1114       return nullptr;
1115 
1116     if (TKind == bugreporter::TrackingKind::Condition)
1117       Out << WillBeUsedForACondition;
1118 
1119     auto EventPiece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
1120 
1121     // If we determined that the note is meaningless, make it prunable, and
1122     // don't mark the stackframe interesting.
1123     if (WouldEventBeMeaningless)
1124       EventPiece->setPrunable(true);
1125     else
1126       BR.markInteresting(CalleeSFC);
1127 
1128     return EventPiece;
1129   }
1130 
1131   PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N,
1132                                                   BugReporterContext &BRC,
1133                                                   PathSensitiveBugReport &BR) {
1134     assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
1135 
1136     // Are we at the entry node for this call?
1137     Optional<CallEnter> CE = N->getLocationAs<CallEnter>();
1138     if (!CE)
1139       return nullptr;
1140 
1141     if (CE->getCalleeContext() != CalleeSFC)
1142       return nullptr;
1143 
1144     Mode = Satisfied;
1145 
1146     // Don't automatically suppress a report if one of the arguments is
1147     // known to be a null pointer. Instead, start tracking /that/ null
1148     // value back to its origin.
1149     ProgramStateManager &StateMgr = BRC.getStateManager();
1150     CallEventManager &CallMgr = StateMgr.getCallEventManager();
1151 
1152     ProgramStateRef State = N->getState();
1153     CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State);
1154     for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
1155       Optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
1156       if (!ArgV)
1157         continue;
1158 
1159       const Expr *ArgE = Call->getArgExpr(I);
1160       if (!ArgE)
1161         continue;
1162 
1163       // Is it possible for this argument to be non-null?
1164       if (!State->isNull(*ArgV).isConstrainedTrue())
1165         continue;
1166 
1167       if (getParentTracker()
1168               .track(ArgE, N, {TKind, EnableNullFPSuppression})
1169               .FoundSomethingToTrack)
1170         ShouldInvalidate = false;
1171 
1172       // If we /can't/ track the null pointer, we should err on the side of
1173       // false negatives, and continue towards marking this report invalid.
1174       // (We will still look at the other arguments, though.)
1175     }
1176 
1177     return nullptr;
1178   }
1179 
1180   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1181                                    BugReporterContext &BRC,
1182                                    PathSensitiveBugReport &BR) override {
1183     switch (Mode) {
1184     case Initial:
1185       return visitNodeInitial(N, BRC, BR);
1186     case MaybeUnsuppress:
1187       return visitNodeMaybeUnsuppress(N, BRC, BR);
1188     case Satisfied:
1189       return nullptr;
1190     }
1191 
1192     llvm_unreachable("Invalid visit mode!");
1193   }
1194 
1195   void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
1196                        PathSensitiveBugReport &BR) override {
1197     if (EnableNullFPSuppression && ShouldInvalidate)
1198       BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC);
1199   }
1200 };
1201 
1202 } // end of anonymous namespace
1203 
1204 //===----------------------------------------------------------------------===//
1205 //                               StoreSiteFinder
1206 //===----------------------------------------------------------------------===//
1207 
1208 /// Finds last store into the given region,
1209 /// which is different from a given symbolic value.
1210 class StoreSiteFinder final : public TrackingBugReporterVisitor {
1211   const MemRegion *R;
1212   SVal V;
1213   bool Satisfied = false;
1214 
1215   TrackingOptions Options;
1216   const StackFrameContext *OriginSFC;
1217 
1218 public:
1219   /// \param V We're searching for the store where \c R received this value.
1220   /// \param R The region we're tracking.
1221   /// \param Options Tracking behavior options.
1222   /// \param OriginSFC Only adds notes when the last store happened in a
1223   ///        different stackframe to this one. Disregarded if the tracking kind
1224   ///        is thorough.
1225   ///        This is useful, because for non-tracked regions, notes about
1226   ///        changes to its value in a nested stackframe could be pruned, and
1227   ///        this visitor can prevent that without polluting the bugpath too
1228   ///        much.
1229   StoreSiteFinder(bugreporter::TrackerRef ParentTracker, KnownSVal V,
1230                   const MemRegion *R, TrackingOptions Options,
1231                   const StackFrameContext *OriginSFC = nullptr)
1232       : TrackingBugReporterVisitor(ParentTracker), R(R), V(V), Options(Options),
1233         OriginSFC(OriginSFC) {
1234     assert(R);
1235   }
1236 
1237   void Profile(llvm::FoldingSetNodeID &ID) const override;
1238 
1239   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1240                                    BugReporterContext &BRC,
1241                                    PathSensitiveBugReport &BR) override;
1242 };
1243 
1244 void StoreSiteFinder::Profile(llvm::FoldingSetNodeID &ID) const {
1245   static int tag = 0;
1246   ID.AddPointer(&tag);
1247   ID.AddPointer(R);
1248   ID.Add(V);
1249   ID.AddInteger(static_cast<int>(Options.Kind));
1250   ID.AddBoolean(Options.EnableNullFPSuppression);
1251 }
1252 
1253 /// Returns true if \p N represents the DeclStmt declaring and initializing
1254 /// \p VR.
1255 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
1256   Optional<PostStmt> P = N->getLocationAs<PostStmt>();
1257   if (!P)
1258     return false;
1259 
1260   const DeclStmt *DS = P->getStmtAs<DeclStmt>();
1261   if (!DS)
1262     return false;
1263 
1264   if (DS->getSingleDecl() != VR->getDecl())
1265     return false;
1266 
1267   const MemSpaceRegion *VarSpace = VR->getMemorySpace();
1268   const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
1269   if (!FrameSpace) {
1270     // If we ever directly evaluate global DeclStmts, this assertion will be
1271     // invalid, but this still seems preferable to silently accepting an
1272     // initialization that may be for a path-sensitive variable.
1273     assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
1274     return true;
1275   }
1276 
1277   assert(VR->getDecl()->hasLocalStorage());
1278   const LocationContext *LCtx = N->getLocationContext();
1279   return FrameSpace->getStackFrame() == LCtx->getStackFrame();
1280 }
1281 
1282 static bool isObjCPointer(const MemRegion *R) {
1283   if (R->isBoundable())
1284     if (const auto *TR = dyn_cast<TypedValueRegion>(R))
1285       return TR->getValueType()->isObjCObjectPointerType();
1286 
1287   return false;
1288 }
1289 
1290 static bool isObjCPointer(const ValueDecl *D) {
1291   return D->getType()->isObjCObjectPointerType();
1292 }
1293 
1294 /// Show diagnostics for initializing or declaring a region \p R with a bad value.
1295 static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) {
1296   const bool HasPrefix = SI.Dest->canPrintPretty();
1297 
1298   if (HasPrefix) {
1299     SI.Dest->printPretty(OS);
1300     OS << " ";
1301   }
1302 
1303   const char *Action = nullptr;
1304 
1305   switch (SI.StoreKind) {
1306   case StoreInfo::Initialization:
1307     Action = HasPrefix ? "initialized to " : "Initializing to ";
1308     break;
1309   case StoreInfo::BlockCapture:
1310     Action = HasPrefix ? "captured by block as " : "Captured by block as ";
1311     break;
1312   default:
1313     llvm_unreachable("Unexpected store kind");
1314   }
1315 
1316   if (SI.Value.getAs<loc::ConcreteInt>()) {
1317     OS << Action << (isObjCPointer(SI.Dest) ? "nil" : "a null pointer value");
1318 
1319   } else if (auto CVal = SI.Value.getAs<nonloc::ConcreteInt>()) {
1320     OS << Action << CVal->getValue();
1321 
1322   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1323     OS << Action << "the value of ";
1324     SI.Origin->printPretty(OS);
1325 
1326   } else if (SI.StoreKind == StoreInfo::Initialization) {
1327     // We don't need to check here, all these conditions were
1328     // checked by StoreSiteFinder, when it figured out that it is
1329     // initialization.
1330     const auto *DS =
1331         cast<DeclStmt>(SI.StoreSite->getLocationAs<PostStmt>()->getStmt());
1332 
1333     if (SI.Value.isUndef()) {
1334       if (isa<VarRegion>(SI.Dest)) {
1335         const auto *VD = cast<VarDecl>(DS->getSingleDecl());
1336 
1337         if (VD->getInit()) {
1338           OS << (HasPrefix ? "initialized" : "Initializing")
1339              << " to a garbage value";
1340         } else {
1341           OS << (HasPrefix ? "declared" : "Declaring")
1342              << " without an initial value";
1343         }
1344       }
1345     } else {
1346       OS << (HasPrefix ? "initialized" : "Initialized") << " here";
1347     }
1348   }
1349 }
1350 
1351 /// Display diagnostics for passing bad region as a parameter.
1352 static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS,
1353                                    StoreInfo SI) {
1354   const auto *VR = cast<VarRegion>(SI.Dest);
1355   const auto *Param = cast<ParmVarDecl>(VR->getDecl());
1356 
1357   OS << "Passing ";
1358 
1359   if (SI.Value.getAs<loc::ConcreteInt>()) {
1360     OS << (isObjCPointer(Param) ? "nil object reference"
1361                                 : "null pointer value");
1362 
1363   } else if (SI.Value.isUndef()) {
1364     OS << "uninitialized value";
1365 
1366   } else if (auto CI = SI.Value.getAs<nonloc::ConcreteInt>()) {
1367     OS << "the value " << CI->getValue();
1368 
1369   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1370     SI.Origin->printPretty(OS);
1371 
1372   } else {
1373     OS << "value";
1374   }
1375 
1376   // Printed parameter indexes are 1-based, not 0-based.
1377   unsigned Idx = Param->getFunctionScopeIndex() + 1;
1378   OS << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
1379   if (VR->canPrintPretty()) {
1380     OS << " ";
1381     VR->printPretty(OS);
1382   }
1383 }
1384 
1385 /// Show default diagnostics for storing bad region.
1386 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS,
1387                                      StoreInfo SI) {
1388   const bool HasSuffix = SI.Dest->canPrintPretty();
1389 
1390   if (SI.Value.getAs<loc::ConcreteInt>()) {
1391     OS << (isObjCPointer(SI.Dest) ? "nil object reference stored"
1392                                   : (HasSuffix ? "Null pointer value stored"
1393                                                : "Storing null pointer value"));
1394 
1395   } else if (SI.Value.isUndef()) {
1396     OS << (HasSuffix ? "Uninitialized value stored"
1397                      : "Storing uninitialized value");
1398 
1399   } else if (auto CV = SI.Value.getAs<nonloc::ConcreteInt>()) {
1400     if (HasSuffix)
1401       OS << "The value " << CV->getValue() << " is assigned";
1402     else
1403       OS << "Assigning " << CV->getValue();
1404 
1405   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1406     if (HasSuffix) {
1407       OS << "The value of ";
1408       SI.Origin->printPretty(OS);
1409       OS << " is assigned";
1410     } else {
1411       OS << "Assigning the value of ";
1412       SI.Origin->printPretty(OS);
1413     }
1414 
1415   } else {
1416     OS << (HasSuffix ? "Value assigned" : "Assigning value");
1417   }
1418 
1419   if (HasSuffix) {
1420     OS << " to ";
1421     SI.Dest->printPretty(OS);
1422   }
1423 }
1424 
1425 PathDiagnosticPieceRef StoreSiteFinder::VisitNode(const ExplodedNode *Succ,
1426                                                   BugReporterContext &BRC,
1427                                                   PathSensitiveBugReport &BR) {
1428   if (Satisfied)
1429     return nullptr;
1430 
1431   const ExplodedNode *StoreSite = nullptr;
1432   const ExplodedNode *Pred = Succ->getFirstPred();
1433   const Expr *InitE = nullptr;
1434   bool IsParam = false;
1435 
1436   // First see if we reached the declaration of the region.
1437   if (const auto *VR = dyn_cast<VarRegion>(R)) {
1438     if (isInitializationOfVar(Pred, VR)) {
1439       StoreSite = Pred;
1440       InitE = VR->getDecl()->getInit();
1441     }
1442   }
1443 
1444   // If this is a post initializer expression, initializing the region, we
1445   // should track the initializer expression.
1446   if (Optional<PostInitializer> PIP = Pred->getLocationAs<PostInitializer>()) {
1447     const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
1448     if (FieldReg == R) {
1449       StoreSite = Pred;
1450       InitE = PIP->getInitializer()->getInit();
1451     }
1452   }
1453 
1454   // Otherwise, see if this is the store site:
1455   // (1) Succ has this binding and Pred does not, i.e. this is
1456   //     where the binding first occurred.
1457   // (2) Succ has this binding and is a PostStore node for this region, i.e.
1458   //     the same binding was re-assigned here.
1459   if (!StoreSite) {
1460     if (Succ->getState()->getSVal(R) != V)
1461       return nullptr;
1462 
1463     if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) {
1464       Optional<PostStore> PS = Succ->getLocationAs<PostStore>();
1465       if (!PS || PS->getLocationValue() != R)
1466         return nullptr;
1467     }
1468 
1469     StoreSite = Succ;
1470 
1471     // If this is an assignment expression, we can track the value
1472     // being assigned.
1473     if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>())
1474       if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>())
1475         if (BO->isAssignmentOp())
1476           InitE = BO->getRHS();
1477 
1478     // If this is a call entry, the variable should be a parameter.
1479     // FIXME: Handle CXXThisRegion as well. (This is not a priority because
1480     // 'this' should never be NULL, but this visitor isn't just for NULL and
1481     // UndefinedVal.)
1482     if (Optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
1483       if (const auto *VR = dyn_cast<VarRegion>(R)) {
1484 
1485         if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1486           ProgramStateManager &StateMgr = BRC.getStateManager();
1487           CallEventManager &CallMgr = StateMgr.getCallEventManager();
1488 
1489           CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
1490                                                   Succ->getState());
1491           InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
1492         } else {
1493           // Handle Objective-C 'self'.
1494           assert(isa<ImplicitParamDecl>(VR->getDecl()));
1495           InitE = cast<ObjCMessageExpr>(CE->getCalleeContext()->getCallSite())
1496                       ->getInstanceReceiver()->IgnoreParenCasts();
1497         }
1498         IsParam = true;
1499       }
1500     }
1501 
1502     // If this is a CXXTempObjectRegion, the Expr responsible for its creation
1503     // is wrapped inside of it.
1504     if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
1505       InitE = TmpR->getExpr();
1506   }
1507 
1508   if (!StoreSite)
1509     return nullptr;
1510 
1511   Satisfied = true;
1512 
1513   // If we have an expression that provided the value, try to track where it
1514   // came from.
1515   if (InitE) {
1516     if (!IsParam)
1517       InitE = InitE->IgnoreParenCasts();
1518 
1519     getParentTracker().track(InitE, StoreSite, Options);
1520   }
1521 
1522   // Let's try to find the region where the value came from.
1523   const MemRegion *OldRegion = nullptr;
1524 
1525   // If we have init expression, it might be simply a reference
1526   // to a variable, so we can use it.
1527   if (InitE) {
1528     // That region might still be not exactly what we are looking for.
1529     // In situations like `int &ref = val;`, we can't say that
1530     // `ref` is initialized with `val`, rather refers to `val`.
1531     //
1532     // In order, to mitigate situations like this, we check if the last
1533     // stored value in that region is the value that we track.
1534     //
1535     // TODO: support other situations better.
1536     if (const MemRegion *Candidate =
1537             getLocationRegionIfReference(InitE, Succ, false)) {
1538       const StoreManager &SM = BRC.getStateManager().getStoreManager();
1539 
1540       // Here we traverse the graph up to find the last node where the
1541       // candidate region is still in the store.
1542       for (const ExplodedNode *N = StoreSite; N; N = N->getFirstPred()) {
1543         if (SM.includedInBindings(N->getState()->getStore(), Candidate)) {
1544           // And if it was bound to the target value, we can use it.
1545           if (N->getState()->getSVal(Candidate) == V) {
1546             OldRegion = Candidate;
1547           }
1548           break;
1549         }
1550       }
1551     }
1552   }
1553 
1554   // Otherwise, if the current region does indeed contain the value
1555   // we are looking for, we can look for a region where this value
1556   // was before.
1557   //
1558   // It can be useful for situations like:
1559   //     new = identity(old)
1560   // where the analyzer knows that 'identity' returns the value of its
1561   // first argument.
1562   //
1563   // NOTE: If the region R is not a simple var region, it can contain
1564   //       V in one of its subregions.
1565   if (!OldRegion && StoreSite->getState()->getSVal(R) == V) {
1566     // Let's go up the graph to find the node where the region is
1567     // bound to V.
1568     const ExplodedNode *NodeWithoutBinding = StoreSite->getFirstPred();
1569     for (;
1570          NodeWithoutBinding && NodeWithoutBinding->getState()->getSVal(R) == V;
1571          NodeWithoutBinding = NodeWithoutBinding->getFirstPred()) {
1572     }
1573 
1574     if (NodeWithoutBinding) {
1575       // Let's try to find a unique binding for the value in that node.
1576       // We want to use this to find unique bindings because of the following
1577       // situations:
1578       //     b = a;
1579       //     c = identity(b);
1580       //
1581       // Telling the user that the value of 'a' is assigned to 'c', while
1582       // correct, can be confusing.
1583       StoreManager::FindUniqueBinding FB(V.getAsLocSymbol());
1584       BRC.getStateManager().iterBindings(NodeWithoutBinding->getState(), FB);
1585       if (FB)
1586         OldRegion = FB.getRegion();
1587     }
1588   }
1589 
1590   if (Options.Kind == TrackingKind::Condition && OriginSFC &&
1591       !OriginSFC->isParentOf(StoreSite->getStackFrame()))
1592     return nullptr;
1593 
1594   // Okay, we've found the binding. Emit an appropriate message.
1595   SmallString<256> sbuf;
1596   llvm::raw_svector_ostream os(sbuf);
1597 
1598   StoreInfo SI = {StoreInfo::Assignment, // default kind
1599                   StoreSite,
1600                   InitE,
1601                   V,
1602                   R,
1603                   OldRegion};
1604 
1605   if (Optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
1606     const Stmt *S = PS->getStmt();
1607     const auto *DS = dyn_cast<DeclStmt>(S);
1608     const auto *VR = dyn_cast<VarRegion>(R);
1609 
1610     if (DS) {
1611       SI.StoreKind = StoreInfo::Initialization;
1612     } else if (isa<BlockExpr>(S)) {
1613       SI.StoreKind = StoreInfo::BlockCapture;
1614       if (VR) {
1615         // See if we can get the BlockVarRegion.
1616         ProgramStateRef State = StoreSite->getState();
1617         SVal V = StoreSite->getSVal(S);
1618         if (const auto *BDR =
1619                 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
1620           if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
1621             getParentTracker().track(State->getSVal(OriginalR), OriginalR,
1622                                      Options, OriginSFC);
1623           }
1624         }
1625       }
1626     }
1627   } else if (SI.StoreSite->getLocation().getAs<CallEnter>() &&
1628              isa<VarRegion>(SI.Dest)) {
1629     SI.StoreKind = StoreInfo::CallArgument;
1630   }
1631 
1632   return getParentTracker().handle(SI, BRC, Options);
1633 }
1634 
1635 //===----------------------------------------------------------------------===//
1636 // Implementation of TrackConstraintBRVisitor.
1637 //===----------------------------------------------------------------------===//
1638 
1639 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1640   static int tag = 0;
1641   ID.AddPointer(&tag);
1642   ID.AddBoolean(Assumption);
1643   ID.Add(Constraint);
1644 }
1645 
1646 /// Return the tag associated with this visitor.  This tag will be used
1647 /// to make all PathDiagnosticPieces created by this visitor.
1648 const char *TrackConstraintBRVisitor::getTag() {
1649   return "TrackConstraintBRVisitor";
1650 }
1651 
1652 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
1653   if (IsZeroCheck)
1654     return N->getState()->isNull(Constraint).isUnderconstrained();
1655   return (bool)N->getState()->assume(Constraint, !Assumption);
1656 }
1657 
1658 PathDiagnosticPieceRef TrackConstraintBRVisitor::VisitNode(
1659     const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &) {
1660   const ExplodedNode *PrevN = N->getFirstPred();
1661   if (IsSatisfied)
1662     return nullptr;
1663 
1664   // Start tracking after we see the first state in which the value is
1665   // constrained.
1666   if (!IsTrackingTurnedOn)
1667     if (!isUnderconstrained(N))
1668       IsTrackingTurnedOn = true;
1669   if (!IsTrackingTurnedOn)
1670     return nullptr;
1671 
1672   // Check if in the previous state it was feasible for this constraint
1673   // to *not* be true.
1674   if (isUnderconstrained(PrevN)) {
1675     IsSatisfied = true;
1676 
1677     // At this point, the negation of the constraint should be infeasible. If it
1678     // is feasible, make sure that the negation of the constrainti was
1679     // infeasible in the current state.  If it is feasible, we somehow missed
1680     // the transition point.
1681     assert(!isUnderconstrained(N));
1682 
1683     // We found the transition point for the constraint.  We now need to
1684     // pretty-print the constraint. (work-in-progress)
1685     SmallString<64> sbuf;
1686     llvm::raw_svector_ostream os(sbuf);
1687 
1688     if (Constraint.getAs<Loc>()) {
1689       os << "Assuming pointer value is ";
1690       os << (Assumption ? "non-null" : "null");
1691     }
1692 
1693     if (os.str().empty())
1694       return nullptr;
1695 
1696     // Construct a new PathDiagnosticPiece.
1697     ProgramPoint P = N->getLocation();
1698     PathDiagnosticLocation L =
1699       PathDiagnosticLocation::create(P, BRC.getSourceManager());
1700     if (!L.isValid())
1701       return nullptr;
1702 
1703     auto X = std::make_shared<PathDiagnosticEventPiece>(L, os.str());
1704     X->setTag(getTag());
1705     return std::move(X);
1706   }
1707 
1708   return nullptr;
1709 }
1710 
1711 //===----------------------------------------------------------------------===//
1712 // Implementation of SuppressInlineDefensiveChecksVisitor.
1713 //===----------------------------------------------------------------------===//
1714 
1715 SuppressInlineDefensiveChecksVisitor::
1716 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N)
1717     : V(Value) {
1718   // Check if the visitor is disabled.
1719   AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
1720   if (!Options.ShouldSuppressInlinedDefensiveChecks)
1721     IsSatisfied = true;
1722 }
1723 
1724 void SuppressInlineDefensiveChecksVisitor::Profile(
1725     llvm::FoldingSetNodeID &ID) const {
1726   static int id = 0;
1727   ID.AddPointer(&id);
1728   ID.Add(V);
1729 }
1730 
1731 const char *SuppressInlineDefensiveChecksVisitor::getTag() {
1732   return "IDCVisitor";
1733 }
1734 
1735 PathDiagnosticPieceRef
1736 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ,
1737                                                 BugReporterContext &BRC,
1738                                                 PathSensitiveBugReport &BR) {
1739   const ExplodedNode *Pred = Succ->getFirstPred();
1740   if (IsSatisfied)
1741     return nullptr;
1742 
1743   // Start tracking after we see the first state in which the value is null.
1744   if (!IsTrackingTurnedOn)
1745     if (Succ->getState()->isNull(V).isConstrainedTrue())
1746       IsTrackingTurnedOn = true;
1747   if (!IsTrackingTurnedOn)
1748     return nullptr;
1749 
1750   // Check if in the previous state it was feasible for this value
1751   // to *not* be null.
1752   if (!Pred->getState()->isNull(V).isConstrainedTrue() &&
1753       Succ->getState()->isNull(V).isConstrainedTrue()) {
1754     IsSatisfied = true;
1755 
1756     // Check if this is inlined defensive checks.
1757     const LocationContext *CurLC = Succ->getLocationContext();
1758     const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
1759     if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
1760       BR.markInvalid("Suppress IDC", CurLC);
1761       return nullptr;
1762     }
1763 
1764     // Treat defensive checks in function-like macros as if they were an inlined
1765     // defensive check. If the bug location is not in a macro and the
1766     // terminator for the current location is in a macro then suppress the
1767     // warning.
1768     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
1769 
1770     if (!BugPoint)
1771       return nullptr;
1772 
1773     ProgramPoint CurPoint = Succ->getLocation();
1774     const Stmt *CurTerminatorStmt = nullptr;
1775     if (auto BE = CurPoint.getAs<BlockEdge>()) {
1776       CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
1777     } else if (auto SP = CurPoint.getAs<StmtPoint>()) {
1778       const Stmt *CurStmt = SP->getStmt();
1779       if (!CurStmt->getBeginLoc().isMacroID())
1780         return nullptr;
1781 
1782       CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap();
1783       CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt();
1784     } else {
1785       return nullptr;
1786     }
1787 
1788     if (!CurTerminatorStmt)
1789       return nullptr;
1790 
1791     SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
1792     if (TerminatorLoc.isMacroID()) {
1793       SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
1794 
1795       // Suppress reports unless we are in that same macro.
1796       if (!BugLoc.isMacroID() ||
1797           getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
1798         BR.markInvalid("Suppress Macro IDC", CurLC);
1799       }
1800       return nullptr;
1801     }
1802   }
1803   return nullptr;
1804 }
1805 
1806 //===----------------------------------------------------------------------===//
1807 // TrackControlDependencyCondBRVisitor.
1808 //===----------------------------------------------------------------------===//
1809 
1810 namespace {
1811 /// Tracks the expressions that are a control dependency of the node that was
1812 /// supplied to the constructor.
1813 /// For example:
1814 ///
1815 ///   cond = 1;
1816 ///   if (cond)
1817 ///     10 / 0;
1818 ///
1819 /// An error is emitted at line 3. This visitor realizes that the branch
1820 /// on line 2 is a control dependency of line 3, and tracks it's condition via
1821 /// trackExpressionValue().
1822 class TrackControlDependencyCondBRVisitor final
1823     : public TrackingBugReporterVisitor {
1824   const ExplodedNode *Origin;
1825   ControlDependencyCalculator ControlDeps;
1826   llvm::SmallSet<const CFGBlock *, 32> VisitedBlocks;
1827 
1828 public:
1829   TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker,
1830                                       const ExplodedNode *O)
1831       : TrackingBugReporterVisitor(ParentTracker), Origin(O),
1832         ControlDeps(&O->getCFG()) {}
1833 
1834   void Profile(llvm::FoldingSetNodeID &ID) const override {
1835     static int x = 0;
1836     ID.AddPointer(&x);
1837   }
1838 
1839   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1840                                    BugReporterContext &BRC,
1841                                    PathSensitiveBugReport &BR) override;
1842 };
1843 } // end of anonymous namespace
1844 
1845 static std::shared_ptr<PathDiagnosticEventPiece>
1846 constructDebugPieceForTrackedCondition(const Expr *Cond,
1847                                        const ExplodedNode *N,
1848                                        BugReporterContext &BRC) {
1849 
1850   if (BRC.getAnalyzerOptions().AnalysisDiagOpt == PD_NONE ||
1851       !BRC.getAnalyzerOptions().ShouldTrackConditionsDebug)
1852     return nullptr;
1853 
1854   std::string ConditionText = std::string(Lexer::getSourceText(
1855       CharSourceRange::getTokenRange(Cond->getSourceRange()),
1856       BRC.getSourceManager(), BRC.getASTContext().getLangOpts()));
1857 
1858   return std::make_shared<PathDiagnosticEventPiece>(
1859       PathDiagnosticLocation::createBegin(
1860           Cond, BRC.getSourceManager(), N->getLocationContext()),
1861           (Twine() + "Tracking condition '" + ConditionText + "'").str());
1862 }
1863 
1864 static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) {
1865   if (B->succ_size() != 2)
1866     return false;
1867 
1868   const CFGBlock *Then = B->succ_begin()->getReachableBlock();
1869   const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock();
1870 
1871   if (!Then || !Else)
1872     return false;
1873 
1874   if (Then->isInevitablySinking() != Else->isInevitablySinking())
1875     return true;
1876 
1877   // For the following condition the following CFG would be built:
1878   //
1879   //                          ------------->
1880   //                         /              \
1881   //                       [B1] -> [B2] -> [B3] -> [sink]
1882   // assert(A && B || C);            \       \
1883   //                                  -----------> [go on with the execution]
1884   //
1885   // It so happens that CFGBlock::getTerminatorCondition returns 'A' for block
1886   // B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we
1887   // reached the end of the condition!
1888   if (const Stmt *ElseCond = Else->getTerminatorCondition())
1889     if (const auto *BinOp = dyn_cast<BinaryOperator>(ElseCond))
1890       if (BinOp->isLogicalOp())
1891         return isAssertlikeBlock(Else, Context);
1892 
1893   return false;
1894 }
1895 
1896 PathDiagnosticPieceRef
1897 TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N,
1898                                                BugReporterContext &BRC,
1899                                                PathSensitiveBugReport &BR) {
1900   // We can only reason about control dependencies within the same stack frame.
1901   if (Origin->getStackFrame() != N->getStackFrame())
1902     return nullptr;
1903 
1904   CFGBlock *NB = const_cast<CFGBlock *>(N->getCFGBlock());
1905 
1906   // Skip if we already inspected this block.
1907   if (!VisitedBlocks.insert(NB).second)
1908     return nullptr;
1909 
1910   CFGBlock *OriginB = const_cast<CFGBlock *>(Origin->getCFGBlock());
1911 
1912   // TODO: Cache CFGBlocks for each ExplodedNode.
1913   if (!OriginB || !NB)
1914     return nullptr;
1915 
1916   if (isAssertlikeBlock(NB, BRC.getASTContext()))
1917     return nullptr;
1918 
1919   if (ControlDeps.isControlDependent(OriginB, NB)) {
1920     // We don't really want to explain for range loops. Evidence suggests that
1921     // the only thing that leads to is the addition of calls to operator!=.
1922     if (llvm::isa_and_nonnull<CXXForRangeStmt>(NB->getTerminatorStmt()))
1923       return nullptr;
1924 
1925     if (const Expr *Condition = NB->getLastCondition()) {
1926 
1927       // If we can't retrieve a sensible condition, just bail out.
1928       const Expr *InnerExpr = peelOffOuterExpr(Condition, N);
1929       if (!InnerExpr)
1930         return nullptr;
1931 
1932       // If the condition was a function call, we likely won't gain much from
1933       // tracking it either. Evidence suggests that it will mostly trigger in
1934       // scenarios like this:
1935       //
1936       //   void f(int *x) {
1937       //     x = nullptr;
1938       //     if (alwaysTrue()) // We don't need a whole lot of explanation
1939       //                       // here, the function name is good enough.
1940       //       *x = 5;
1941       //   }
1942       //
1943       // Its easy to create a counterexample where this heuristic would make us
1944       // lose valuable information, but we've never really seen one in practice.
1945       if (isa<CallExpr>(InnerExpr))
1946         return nullptr;
1947 
1948       // Keeping track of the already tracked conditions on a visitor level
1949       // isn't sufficient, because a new visitor is created for each tracked
1950       // expression, hence the BugReport level set.
1951       if (BR.addTrackedCondition(N)) {
1952         getParentTracker().track(InnerExpr, N,
1953                                  {bugreporter::TrackingKind::Condition,
1954                                   /*EnableNullFPSuppression=*/false});
1955         return constructDebugPieceForTrackedCondition(Condition, N, BRC);
1956       }
1957     }
1958   }
1959 
1960   return nullptr;
1961 }
1962 
1963 //===----------------------------------------------------------------------===//
1964 // Implementation of trackExpressionValue.
1965 //===----------------------------------------------------------------------===//
1966 
1967 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N) {
1968 
1969   Ex = Ex->IgnoreParenCasts();
1970   if (const auto *FE = dyn_cast<FullExpr>(Ex))
1971     return peelOffOuterExpr(FE->getSubExpr(), N);
1972   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
1973     return peelOffOuterExpr(OVE->getSourceExpr(), N);
1974   if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
1975     const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
1976     if (PropRef && PropRef->isMessagingGetter()) {
1977       const Expr *GetterMessageSend =
1978           POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
1979       assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
1980       return peelOffOuterExpr(GetterMessageSend, N);
1981     }
1982   }
1983 
1984   // Peel off the ternary operator.
1985   if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
1986     // Find a node where the branching occurred and find out which branch
1987     // we took (true/false) by looking at the ExplodedGraph.
1988     const ExplodedNode *NI = N;
1989     do {
1990       ProgramPoint ProgPoint = NI->getLocation();
1991       if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
1992         const CFGBlock *srcBlk = BE->getSrc();
1993         if (const Stmt *term = srcBlk->getTerminatorStmt()) {
1994           if (term == CO) {
1995             bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
1996             if (TookTrueBranch)
1997               return peelOffOuterExpr(CO->getTrueExpr(), N);
1998             else
1999               return peelOffOuterExpr(CO->getFalseExpr(), N);
2000           }
2001         }
2002       }
2003       NI = NI->getFirstPred();
2004     } while (NI);
2005   }
2006 
2007   if (auto *BO = dyn_cast<BinaryOperator>(Ex))
2008     if (const Expr *SubEx = peelOffPointerArithmetic(BO))
2009       return peelOffOuterExpr(SubEx, N);
2010 
2011   if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
2012     if (UO->getOpcode() == UO_LNot)
2013       return peelOffOuterExpr(UO->getSubExpr(), N);
2014 
2015     // FIXME: There's a hack in our Store implementation that always computes
2016     // field offsets around null pointers as if they are always equal to 0.
2017     // The idea here is to report accesses to fields as null dereferences
2018     // even though the pointer value that's being dereferenced is actually
2019     // the offset of the field rather than exactly 0.
2020     // See the FIXME in StoreManager's getLValueFieldOrIvar() method.
2021     // This code interacts heavily with this hack; otherwise the value
2022     // would not be null at all for most fields, so we'd be unable to track it.
2023     if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
2024       if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
2025         return peelOffOuterExpr(DerefEx, N);
2026   }
2027 
2028   return Ex;
2029 }
2030 
2031 /// Find the ExplodedNode where the lvalue (the value of 'Ex')
2032 /// was computed.
2033 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N,
2034                                                  const Expr *Inner) {
2035   while (N) {
2036     if (N->getStmtForDiagnostics() == Inner)
2037       return N;
2038     N = N->getFirstPred();
2039   }
2040   return N;
2041 }
2042 
2043 //===----------------------------------------------------------------------===//
2044 //                            Tracker implementation
2045 //===----------------------------------------------------------------------===//
2046 
2047 PathDiagnosticPieceRef StoreHandler::constructNote(StoreInfo SI,
2048                                                    BugReporterContext &BRC,
2049                                                    StringRef NodeText) {
2050   // Construct a new PathDiagnosticPiece.
2051   ProgramPoint P = SI.StoreSite->getLocation();
2052   PathDiagnosticLocation L;
2053   if (P.getAs<CallEnter>() && SI.SourceOfTheValue)
2054     L = PathDiagnosticLocation(SI.SourceOfTheValue, BRC.getSourceManager(),
2055                                P.getLocationContext());
2056 
2057   if (!L.isValid() || !L.asLocation().isValid())
2058     L = PathDiagnosticLocation::create(P, BRC.getSourceManager());
2059 
2060   if (!L.isValid() || !L.asLocation().isValid())
2061     return nullptr;
2062 
2063   return std::make_shared<PathDiagnosticEventPiece>(L, NodeText);
2064 }
2065 
2066 class DefaultStoreHandler final : public StoreHandler {
2067 public:
2068   using StoreHandler::StoreHandler;
2069 
2070   PathDiagnosticPieceRef handle(StoreInfo SI, BugReporterContext &BRC,
2071                                 TrackingOptions Opts) override {
2072     // Okay, we've found the binding. Emit an appropriate message.
2073     SmallString<256> Buffer;
2074     llvm::raw_svector_ostream OS(Buffer);
2075 
2076     switch (SI.StoreKind) {
2077     case StoreInfo::Initialization:
2078     case StoreInfo::BlockCapture:
2079       showBRDiagnostics(OS, SI);
2080       break;
2081     case StoreInfo::CallArgument:
2082       showBRParamDiagnostics(OS, SI);
2083       break;
2084     case StoreInfo::Assignment:
2085       showBRDefaultDiagnostics(OS, SI);
2086       break;
2087     }
2088 
2089     if (Opts.Kind == bugreporter::TrackingKind::Condition)
2090       OS << WillBeUsedForACondition;
2091 
2092     return constructNote(SI, BRC, OS.str());
2093   }
2094 };
2095 
2096 class ControlDependencyHandler final : public ExpressionHandler {
2097 public:
2098   using ExpressionHandler::ExpressionHandler;
2099 
2100   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2101                          const ExplodedNode *LVNode,
2102                          TrackingOptions Opts) override {
2103     PathSensitiveBugReport &Report = getParentTracker().getReport();
2104 
2105     // We only track expressions if we believe that they are important. Chances
2106     // are good that control dependencies to the tracking point are also
2107     // important because of this, let's explain why we believe control reached
2108     // this point.
2109     // TODO: Shouldn't we track control dependencies of every bug location,
2110     // rather than only tracked expressions?
2111     if (LVNode->getState()
2112             ->getAnalysisManager()
2113             .getAnalyzerOptions()
2114             .ShouldTrackConditions) {
2115       Report.addVisitor<TrackControlDependencyCondBRVisitor>(
2116           &getParentTracker(), InputNode);
2117       return {/*FoundSomethingToTrack=*/true};
2118     }
2119 
2120     return {};
2121   }
2122 };
2123 
2124 class NilReceiverHandler final : public ExpressionHandler {
2125 public:
2126   using ExpressionHandler::ExpressionHandler;
2127 
2128   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2129                          const ExplodedNode *LVNode,
2130                          TrackingOptions Opts) override {
2131     // The message send could be nil due to the receiver being nil.
2132     // At this point in the path, the receiver should be live since we are at
2133     // the message send expr. If it is nil, start tracking it.
2134     if (const Expr *Receiver =
2135             NilReceiverBRVisitor::getNilReceiver(Inner, LVNode))
2136       return getParentTracker().track(Receiver, LVNode, Opts);
2137 
2138     return {};
2139   }
2140 };
2141 
2142 class ArrayIndexHandler final : public ExpressionHandler {
2143 public:
2144   using ExpressionHandler::ExpressionHandler;
2145 
2146   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2147                          const ExplodedNode *LVNode,
2148                          TrackingOptions Opts) override {
2149     // Track the index if this is an array subscript.
2150     if (const auto *Arr = dyn_cast<ArraySubscriptExpr>(Inner))
2151       return getParentTracker().track(
2152           Arr->getIdx(), LVNode,
2153           {Opts.Kind, /*EnableNullFPSuppression*/ false});
2154 
2155     return {};
2156   }
2157 };
2158 
2159 // TODO: extract it into more handlers
2160 class InterestingLValueHandler final : public ExpressionHandler {
2161 public:
2162   using ExpressionHandler::ExpressionHandler;
2163 
2164   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2165                          const ExplodedNode *LVNode,
2166                          TrackingOptions Opts) override {
2167     ProgramStateRef LVState = LVNode->getState();
2168     const StackFrameContext *SFC = LVNode->getStackFrame();
2169     PathSensitiveBugReport &Report = getParentTracker().getReport();
2170     Tracker::Result Result;
2171 
2172     // See if the expression we're interested refers to a variable.
2173     // If so, we can track both its contents and constraints on its value.
2174     if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
2175       SVal LVal = LVNode->getSVal(Inner);
2176 
2177       const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
2178       bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
2179 
2180       // If this is a C++ reference to a null pointer, we are tracking the
2181       // pointer. In addition, we should find the store at which the reference
2182       // got initialized.
2183       if (RR && !LVIsNull)
2184         Result.combineWith(getParentTracker().track(LVal, RR, Opts, SFC));
2185 
2186       // In case of C++ references, we want to differentiate between a null
2187       // reference and reference to null pointer.
2188       // If the LVal is null, check if we are dealing with null reference.
2189       // For those, we want to track the location of the reference.
2190       const MemRegion *R =
2191           (RR && LVIsNull) ? RR : LVNode->getSVal(Inner).getAsRegion();
2192 
2193       if (R) {
2194 
2195         // Mark both the variable region and its contents as interesting.
2196         SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
2197         Report.addVisitor<NoStoreFuncVisitor>(cast<SubRegion>(R), Opts.Kind);
2198 
2199         // When we got here, we do have something to track, and we will
2200         // interrupt.
2201         Result.FoundSomethingToTrack = true;
2202         Result.WasInterrupted = true;
2203 
2204         MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
2205             LVNode, R, Opts.EnableNullFPSuppression, Report, V);
2206 
2207         Report.markInteresting(V, Opts.Kind);
2208         Report.addVisitor<UndefOrNullArgVisitor>(R);
2209 
2210         // If the contents are symbolic and null, find out when they became
2211         // null.
2212         if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true))
2213           if (LVState->isNull(V).isConstrainedTrue())
2214             Report.addVisitor<TrackConstraintBRVisitor>(V.castAs<DefinedSVal>(),
2215                                                         false);
2216 
2217         // Add visitor, which will suppress inline defensive checks.
2218         if (auto DV = V.getAs<DefinedSVal>())
2219           if (!DV->isZeroConstant() && Opts.EnableNullFPSuppression)
2220             // Note that LVNode may be too late (i.e., too far from the
2221             // InputNode) because the lvalue may have been computed before the
2222             // inlined call was evaluated. InputNode may as well be too early
2223             // here, because the symbol is already dead; this, however, is fine
2224             // because we can still find the node in which it collapsed to null
2225             // previously.
2226             Report.addVisitor<SuppressInlineDefensiveChecksVisitor>(*DV,
2227                                                                     InputNode);
2228         getParentTracker().track(V, R, Opts, SFC);
2229       }
2230     }
2231 
2232     return Result;
2233   }
2234 };
2235 
2236 /// Adds a ReturnVisitor if the given statement represents a call that was
2237 /// inlined.
2238 ///
2239 /// This will search back through the ExplodedGraph, starting from the given
2240 /// node, looking for when the given statement was processed. If it turns out
2241 /// the statement is a call that was inlined, we add the visitor to the
2242 /// bug report, so it can print a note later.
2243 class InlinedFunctionCallHandler final : public ExpressionHandler {
2244   using ExpressionHandler::ExpressionHandler;
2245 
2246   Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2247                          const ExplodedNode *ExprNode,
2248                          TrackingOptions Opts) override {
2249     if (!CallEvent::isCallStmt(E))
2250       return {};
2251 
2252     // First, find when we processed the statement.
2253     // If we work with a 'CXXNewExpr' that is going to be purged away before
2254     // its call take place. We would catch that purge in the last condition
2255     // as a 'StmtPoint' so we have to bypass it.
2256     const bool BypassCXXNewExprEval = isa<CXXNewExpr>(E);
2257 
2258     // This is moving forward when we enter into another context.
2259     const StackFrameContext *CurrentSFC = ExprNode->getStackFrame();
2260 
2261     do {
2262       // If that is satisfied we found our statement as an inlined call.
2263       if (Optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>())
2264         if (CEE->getCalleeContext()->getCallSite() == E)
2265           break;
2266 
2267       // Try to move forward to the end of the call-chain.
2268       ExprNode = ExprNode->getFirstPred();
2269       if (!ExprNode)
2270         break;
2271 
2272       const StackFrameContext *PredSFC = ExprNode->getStackFrame();
2273 
2274       // If that is satisfied we found our statement.
2275       // FIXME: This code currently bypasses the call site for the
2276       //        conservatively evaluated allocator.
2277       if (!BypassCXXNewExprEval)
2278         if (Optional<StmtPoint> SP = ExprNode->getLocationAs<StmtPoint>())
2279           // See if we do not enter into another context.
2280           if (SP->getStmt() == E && CurrentSFC == PredSFC)
2281             break;
2282 
2283       CurrentSFC = PredSFC;
2284     } while (ExprNode->getStackFrame() == CurrentSFC);
2285 
2286     // Next, step over any post-statement checks.
2287     while (ExprNode && ExprNode->getLocation().getAs<PostStmt>())
2288       ExprNode = ExprNode->getFirstPred();
2289     if (!ExprNode)
2290       return {};
2291 
2292     // Finally, see if we inlined the call.
2293     Optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>();
2294     if (!CEE)
2295       return {};
2296 
2297     const StackFrameContext *CalleeContext = CEE->getCalleeContext();
2298     if (CalleeContext->getCallSite() != E)
2299       return {};
2300 
2301     // Check the return value.
2302     ProgramStateRef State = ExprNode->getState();
2303     SVal RetVal = ExprNode->getSVal(E);
2304 
2305     // Handle cases where a reference is returned and then immediately used.
2306     if (cast<Expr>(E)->isGLValue())
2307       if (Optional<Loc> LValue = RetVal.getAs<Loc>())
2308         RetVal = State->getSVal(*LValue);
2309 
2310     // See if the return value is NULL. If so, suppress the report.
2311     AnalyzerOptions &Options = State->getAnalysisManager().options;
2312 
2313     bool EnableNullFPSuppression = false;
2314     if (Opts.EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths)
2315       if (Optional<Loc> RetLoc = RetVal.getAs<Loc>())
2316         EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
2317 
2318     PathSensitiveBugReport &Report = getParentTracker().getReport();
2319     Report.addVisitor<ReturnVisitor>(&getParentTracker(), CalleeContext,
2320                                      EnableNullFPSuppression, Options,
2321                                      Opts.Kind);
2322     return {true};
2323   }
2324 };
2325 
2326 class DefaultExpressionHandler final : public ExpressionHandler {
2327 public:
2328   using ExpressionHandler::ExpressionHandler;
2329 
2330   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2331                          const ExplodedNode *LVNode,
2332                          TrackingOptions Opts) override {
2333     ProgramStateRef LVState = LVNode->getState();
2334     const StackFrameContext *SFC = LVNode->getStackFrame();
2335     PathSensitiveBugReport &Report = getParentTracker().getReport();
2336     Tracker::Result Result;
2337 
2338     // If the expression is not an "lvalue expression", we can still
2339     // track the constraints on its contents.
2340     SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
2341 
2342     // Is it a symbolic value?
2343     if (auto L = V.getAs<loc::MemRegionVal>()) {
2344       // FIXME: this is a hack for fixing a later crash when attempting to
2345       // dereference a void* pointer.
2346       // We should not try to dereference pointers at all when we don't care
2347       // what is written inside the pointer.
2348       bool CanDereference = true;
2349       if (const auto *SR = L->getRegionAs<SymbolicRegion>()) {
2350         if (SR->getSymbol()->getType()->getPointeeType()->isVoidType())
2351           CanDereference = false;
2352       } else if (L->getRegionAs<AllocaRegion>())
2353         CanDereference = false;
2354 
2355       // At this point we are dealing with the region's LValue.
2356       // However, if the rvalue is a symbolic region, we should track it as
2357       // well. Try to use the correct type when looking up the value.
2358       SVal RVal;
2359       if (ExplodedGraph::isInterestingLValueExpr(Inner))
2360         RVal = LVState->getRawSVal(L.getValue(), Inner->getType());
2361       else if (CanDereference)
2362         RVal = LVState->getSVal(L->getRegion());
2363 
2364       if (CanDereference) {
2365         Report.addVisitor<UndefOrNullArgVisitor>(L->getRegion());
2366         Result.FoundSomethingToTrack = true;
2367 
2368         if (auto KV = RVal.getAs<KnownSVal>())
2369           Result.combineWith(
2370               getParentTracker().track(*KV, L->getRegion(), Opts, SFC));
2371       }
2372 
2373       const MemRegion *RegionRVal = RVal.getAsRegion();
2374       if (isa_and_nonnull<SymbolicRegion>(RegionRVal)) {
2375         Report.markInteresting(RegionRVal, Opts.Kind);
2376         Report.addVisitor<TrackConstraintBRVisitor>(
2377             loc::MemRegionVal(RegionRVal),
2378             /*assumption=*/false);
2379         Result.FoundSomethingToTrack = true;
2380       }
2381     }
2382 
2383     return Result;
2384   }
2385 };
2386 
2387 /// Attempts to add visitors to track an RValue expression back to its point of
2388 /// origin.
2389 class PRValueHandler final : public ExpressionHandler {
2390 public:
2391   using ExpressionHandler::ExpressionHandler;
2392 
2393   Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2394                          const ExplodedNode *ExprNode,
2395                          TrackingOptions Opts) override {
2396     if (!E->isPRValue())
2397       return {};
2398 
2399     const ExplodedNode *RVNode = findNodeForExpression(ExprNode, E);
2400     if (!RVNode)
2401       return {};
2402 
2403     ProgramStateRef RVState = RVNode->getState();
2404     SVal V = RVState->getSValAsScalarOrLoc(E, RVNode->getLocationContext());
2405     const auto *BO = dyn_cast<BinaryOperator>(E);
2406 
2407     if (!BO || !BO->isMultiplicativeOp() || !V.isZeroConstant())
2408       return {};
2409 
2410     SVal RHSV = RVState->getSVal(BO->getRHS(), RVNode->getLocationContext());
2411     SVal LHSV = RVState->getSVal(BO->getLHS(), RVNode->getLocationContext());
2412 
2413     // Track both LHS and RHS of a multiplication.
2414     Tracker::Result CombinedResult;
2415     Tracker &Parent = getParentTracker();
2416 
2417     const auto track = [&CombinedResult, &Parent, ExprNode, Opts](Expr *Inner) {
2418       CombinedResult.combineWith(Parent.track(Inner, ExprNode, Opts));
2419     };
2420 
2421     if (BO->getOpcode() == BO_Mul) {
2422       if (LHSV.isZeroConstant())
2423         track(BO->getLHS());
2424       if (RHSV.isZeroConstant())
2425         track(BO->getRHS());
2426     } else { // Track only the LHS of a division or a modulo.
2427       if (LHSV.isZeroConstant())
2428         track(BO->getLHS());
2429     }
2430 
2431     return CombinedResult;
2432   }
2433 };
2434 
2435 Tracker::Tracker(PathSensitiveBugReport &Report) : Report(Report) {
2436   // Default expression handlers.
2437   addLowPriorityHandler<ControlDependencyHandler>();
2438   addLowPriorityHandler<NilReceiverHandler>();
2439   addLowPriorityHandler<ArrayIndexHandler>();
2440   addLowPriorityHandler<InterestingLValueHandler>();
2441   addLowPriorityHandler<InlinedFunctionCallHandler>();
2442   addLowPriorityHandler<DefaultExpressionHandler>();
2443   addLowPriorityHandler<PRValueHandler>();
2444   // Default store handlers.
2445   addHighPriorityHandler<DefaultStoreHandler>();
2446 }
2447 
2448 Tracker::Result Tracker::track(const Expr *E, const ExplodedNode *N,
2449                                TrackingOptions Opts) {
2450   if (!E || !N)
2451     return {};
2452 
2453   const Expr *Inner = peelOffOuterExpr(E, N);
2454   const ExplodedNode *LVNode = findNodeForExpression(N, Inner);
2455   if (!LVNode)
2456     return {};
2457 
2458   Result CombinedResult;
2459   // Iterate through the handlers in the order according to their priorities.
2460   for (ExpressionHandlerPtr &Handler : ExpressionHandlers) {
2461     CombinedResult.combineWith(Handler->handle(Inner, N, LVNode, Opts));
2462     if (CombinedResult.WasInterrupted) {
2463       // There is no need to confuse our users here.
2464       // We got interrupted, but our users don't need to know about it.
2465       CombinedResult.WasInterrupted = false;
2466       break;
2467     }
2468   }
2469 
2470   return CombinedResult;
2471 }
2472 
2473 Tracker::Result Tracker::track(SVal V, const MemRegion *R, TrackingOptions Opts,
2474                                const StackFrameContext *Origin) {
2475   if (auto KV = V.getAs<KnownSVal>()) {
2476     Report.addVisitor<StoreSiteFinder>(this, *KV, R, Opts, Origin);
2477     return {true};
2478   }
2479   return {};
2480 }
2481 
2482 PathDiagnosticPieceRef Tracker::handle(StoreInfo SI, BugReporterContext &BRC,
2483                                        TrackingOptions Opts) {
2484   // Iterate through the handlers in the order according to their priorities.
2485   for (StoreHandlerPtr &Handler : StoreHandlers) {
2486     if (PathDiagnosticPieceRef Result = Handler->handle(SI, BRC, Opts))
2487       // If the handler produced a non-null piece, return it.
2488       // There is no need in asking other handlers.
2489       return Result;
2490   }
2491   return {};
2492 }
2493 
2494 bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode,
2495                                        const Expr *E,
2496 
2497                                        PathSensitiveBugReport &Report,
2498                                        TrackingOptions Opts) {
2499   return Tracker::create(Report)
2500       ->track(E, InputNode, Opts)
2501       .FoundSomethingToTrack;
2502 }
2503 
2504 void bugreporter::trackStoredValue(KnownSVal V, const MemRegion *R,
2505                                    PathSensitiveBugReport &Report,
2506                                    TrackingOptions Opts,
2507                                    const StackFrameContext *Origin) {
2508   Tracker::create(Report)->track(V, R, Opts, Origin);
2509 }
2510 
2511 //===----------------------------------------------------------------------===//
2512 // Implementation of NulReceiverBRVisitor.
2513 //===----------------------------------------------------------------------===//
2514 
2515 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S,
2516                                                  const ExplodedNode *N) {
2517   const auto *ME = dyn_cast<ObjCMessageExpr>(S);
2518   if (!ME)
2519     return nullptr;
2520   if (const Expr *Receiver = ME->getInstanceReceiver()) {
2521     ProgramStateRef state = N->getState();
2522     SVal V = N->getSVal(Receiver);
2523     if (state->isNull(V).isConstrainedTrue())
2524       return Receiver;
2525   }
2526   return nullptr;
2527 }
2528 
2529 PathDiagnosticPieceRef
2530 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2531                                 PathSensitiveBugReport &BR) {
2532   Optional<PreStmt> P = N->getLocationAs<PreStmt>();
2533   if (!P)
2534     return nullptr;
2535 
2536   const Stmt *S = P->getStmt();
2537   const Expr *Receiver = getNilReceiver(S, N);
2538   if (!Receiver)
2539     return nullptr;
2540 
2541   llvm::SmallString<256> Buf;
2542   llvm::raw_svector_ostream OS(Buf);
2543 
2544   if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
2545     OS << "'";
2546     ME->getSelector().print(OS);
2547     OS << "' not called";
2548   }
2549   else {
2550     OS << "No method is called";
2551   }
2552   OS << " because the receiver is nil";
2553 
2554   // The receiver was nil, and hence the method was skipped.
2555   // Register a BugReporterVisitor to issue a message telling us how
2556   // the receiver was null.
2557   bugreporter::trackExpressionValue(N, Receiver, BR,
2558                                     {bugreporter::TrackingKind::Thorough,
2559                                      /*EnableNullFPSuppression*/ false});
2560   // Issue a message saying that the method was skipped.
2561   PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
2562                                      N->getLocationContext());
2563   return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
2564 }
2565 
2566 //===----------------------------------------------------------------------===//
2567 // Visitor that tries to report interesting diagnostics from conditions.
2568 //===----------------------------------------------------------------------===//
2569 
2570 /// Return the tag associated with this visitor.  This tag will be used
2571 /// to make all PathDiagnosticPieces created by this visitor.
2572 const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; }
2573 
2574 PathDiagnosticPieceRef
2575 ConditionBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2576                               PathSensitiveBugReport &BR) {
2577   auto piece = VisitNodeImpl(N, BRC, BR);
2578   if (piece) {
2579     piece->setTag(getTag());
2580     if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
2581       ev->setPrunable(true, /* override */ false);
2582   }
2583   return piece;
2584 }
2585 
2586 PathDiagnosticPieceRef
2587 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
2588                                   BugReporterContext &BRC,
2589                                   PathSensitiveBugReport &BR) {
2590   ProgramPoint ProgPoint = N->getLocation();
2591   const std::pair<const ProgramPointTag *, const ProgramPointTag *> &Tags =
2592       ExprEngine::geteagerlyAssumeBinOpBifurcationTags();
2593 
2594   // If an assumption was made on a branch, it should be caught
2595   // here by looking at the state transition.
2596   if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2597     const CFGBlock *SrcBlock = BE->getSrc();
2598     if (const Stmt *Term = SrcBlock->getTerminatorStmt()) {
2599       // If the tag of the previous node is 'Eagerly Assume...' the current
2600       // 'BlockEdge' has the same constraint information. We do not want to
2601       // report the value as it is just an assumption on the predecessor node
2602       // which will be caught in the next VisitNode() iteration as a 'PostStmt'.
2603       const ProgramPointTag *PreviousNodeTag =
2604           N->getFirstPred()->getLocation().getTag();
2605       if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second)
2606         return nullptr;
2607 
2608       return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC);
2609     }
2610     return nullptr;
2611   }
2612 
2613   if (Optional<PostStmt> PS = ProgPoint.getAs<PostStmt>()) {
2614     const ProgramPointTag *CurrentNodeTag = PS->getTag();
2615     if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second)
2616       return nullptr;
2617 
2618     bool TookTrue = CurrentNodeTag == Tags.first;
2619     return VisitTrueTest(cast<Expr>(PS->getStmt()), BRC, BR, N, TookTrue);
2620   }
2621 
2622   return nullptr;
2623 }
2624 
2625 PathDiagnosticPieceRef ConditionBRVisitor::VisitTerminator(
2626     const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
2627     const CFGBlock *dstBlk, PathSensitiveBugReport &R,
2628     BugReporterContext &BRC) {
2629   const Expr *Cond = nullptr;
2630 
2631   // In the code below, Term is a CFG terminator and Cond is a branch condition
2632   // expression upon which the decision is made on this terminator.
2633   //
2634   // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
2635   // and "x == 0" is the respective condition.
2636   //
2637   // Another example: in "if (x && y)", we've got two terminators and two
2638   // conditions due to short-circuit nature of operator "&&":
2639   // 1. The "if (x && y)" statement is a terminator,
2640   //    and "y" is the respective condition.
2641   // 2. Also "x && ..." is another terminator,
2642   //    and "x" is its condition.
2643 
2644   switch (Term->getStmtClass()) {
2645   // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
2646   // more tricky because there are more than two branches to account for.
2647   default:
2648     return nullptr;
2649   case Stmt::IfStmtClass:
2650     Cond = cast<IfStmt>(Term)->getCond();
2651     break;
2652   case Stmt::ConditionalOperatorClass:
2653     Cond = cast<ConditionalOperator>(Term)->getCond();
2654     break;
2655   case Stmt::BinaryOperatorClass:
2656     // When we encounter a logical operator (&& or ||) as a CFG terminator,
2657     // then the condition is actually its LHS; otherwise, we'd encounter
2658     // the parent, such as if-statement, as a terminator.
2659     const auto *BO = cast<BinaryOperator>(Term);
2660     assert(BO->isLogicalOp() &&
2661            "CFG terminator is not a short-circuit operator!");
2662     Cond = BO->getLHS();
2663     break;
2664   }
2665 
2666   Cond = Cond->IgnoreParens();
2667 
2668   // However, when we encounter a logical operator as a branch condition,
2669   // then the condition is actually its RHS, because LHS would be
2670   // the condition for the logical operator terminator.
2671   while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
2672     if (!InnerBO->isLogicalOp())
2673       break;
2674     Cond = InnerBO->getRHS()->IgnoreParens();
2675   }
2676 
2677   assert(Cond);
2678   assert(srcBlk->succ_size() == 2);
2679   const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk;
2680   return VisitTrueTest(Cond, BRC, R, N, TookTrue);
2681 }
2682 
2683 PathDiagnosticPieceRef
2684 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, BugReporterContext &BRC,
2685                                   PathSensitiveBugReport &R,
2686                                   const ExplodedNode *N, bool TookTrue) {
2687   ProgramStateRef CurrentState = N->getState();
2688   ProgramStateRef PrevState = N->getFirstPred()->getState();
2689   const LocationContext *LCtx = N->getLocationContext();
2690 
2691   // If the constraint information is changed between the current and the
2692   // previous program state we assuming the newly seen constraint information.
2693   // If we cannot evaluate the condition (and the constraints are the same)
2694   // the analyzer has no information about the value and just assuming it.
2695   bool IsAssuming =
2696       !BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) ||
2697       CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef();
2698 
2699   // These will be modified in code below, but we need to preserve the original
2700   //  values in case we want to throw the generic message.
2701   const Expr *CondTmp = Cond;
2702   bool TookTrueTmp = TookTrue;
2703 
2704   while (true) {
2705     CondTmp = CondTmp->IgnoreParenCasts();
2706     switch (CondTmp->getStmtClass()) {
2707       default:
2708         break;
2709       case Stmt::BinaryOperatorClass:
2710         if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
2711                                    BRC, R, N, TookTrueTmp, IsAssuming))
2712           return P;
2713         break;
2714       case Stmt::DeclRefExprClass:
2715         if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
2716                                    BRC, R, N, TookTrueTmp, IsAssuming))
2717           return P;
2718         break;
2719       case Stmt::MemberExprClass:
2720         if (auto P = VisitTrueTest(Cond, cast<MemberExpr>(CondTmp),
2721                                    BRC, R, N, TookTrueTmp, IsAssuming))
2722           return P;
2723         break;
2724       case Stmt::UnaryOperatorClass: {
2725         const auto *UO = cast<UnaryOperator>(CondTmp);
2726         if (UO->getOpcode() == UO_LNot) {
2727           TookTrueTmp = !TookTrueTmp;
2728           CondTmp = UO->getSubExpr();
2729           continue;
2730         }
2731         break;
2732       }
2733     }
2734     break;
2735   }
2736 
2737   // Condition too complex to explain? Just say something so that the user
2738   // knew we've made some path decision at this point.
2739   // If it is too complex and we know the evaluation of the condition do not
2740   // repeat the note from 'BugReporter.cpp'
2741   if (!IsAssuming)
2742     return nullptr;
2743 
2744   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2745   if (!Loc.isValid() || !Loc.asLocation().isValid())
2746     return nullptr;
2747 
2748   return std::make_shared<PathDiagnosticEventPiece>(
2749       Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage);
2750 }
2751 
2752 bool ConditionBRVisitor::patternMatch(const Expr *Ex,
2753                                       const Expr *ParentEx,
2754                                       raw_ostream &Out,
2755                                       BugReporterContext &BRC,
2756                                       PathSensitiveBugReport &report,
2757                                       const ExplodedNode *N,
2758                                       Optional<bool> &prunable,
2759                                       bool IsSameFieldName) {
2760   const Expr *OriginalExpr = Ex;
2761   Ex = Ex->IgnoreParenCasts();
2762 
2763   if (isa<GNUNullExpr, ObjCBoolLiteralExpr, CXXBoolLiteralExpr, IntegerLiteral,
2764           FloatingLiteral>(Ex)) {
2765     // Use heuristics to determine if the expression is a macro
2766     // expanding to a literal and if so, use the macro's name.
2767     SourceLocation BeginLoc = OriginalExpr->getBeginLoc();
2768     SourceLocation EndLoc = OriginalExpr->getEndLoc();
2769     if (BeginLoc.isMacroID() && EndLoc.isMacroID()) {
2770       const SourceManager &SM = BRC.getSourceManager();
2771       const LangOptions &LO = BRC.getASTContext().getLangOpts();
2772       if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) &&
2773           Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) {
2774         CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO);
2775         Out << Lexer::getSourceText(R, SM, LO);
2776         return false;
2777       }
2778     }
2779   }
2780 
2781   if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) {
2782     const bool quotes = isa<VarDecl>(DR->getDecl());
2783     if (quotes) {
2784       Out << '\'';
2785       const LocationContext *LCtx = N->getLocationContext();
2786       const ProgramState *state = N->getState().get();
2787       if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
2788                                                 LCtx).getAsRegion()) {
2789         if (report.isInteresting(R))
2790           prunable = false;
2791         else {
2792           const ProgramState *state = N->getState().get();
2793           SVal V = state->getSVal(R);
2794           if (report.isInteresting(V))
2795             prunable = false;
2796         }
2797       }
2798     }
2799     Out << DR->getDecl()->getDeclName().getAsString();
2800     if (quotes)
2801       Out << '\'';
2802     return quotes;
2803   }
2804 
2805   if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) {
2806     QualType OriginalTy = OriginalExpr->getType();
2807     if (OriginalTy->isPointerType()) {
2808       if (IL->getValue() == 0) {
2809         Out << "null";
2810         return false;
2811       }
2812     }
2813     else if (OriginalTy->isObjCObjectPointerType()) {
2814       if (IL->getValue() == 0) {
2815         Out << "nil";
2816         return false;
2817       }
2818     }
2819 
2820     Out << IL->getValue();
2821     return false;
2822   }
2823 
2824   if (const auto *ME = dyn_cast<MemberExpr>(Ex)) {
2825     if (!IsSameFieldName)
2826       Out << "field '" << ME->getMemberDecl()->getName() << '\'';
2827     else
2828       Out << '\''
2829           << Lexer::getSourceText(
2830                  CharSourceRange::getTokenRange(Ex->getSourceRange()),
2831                  BRC.getSourceManager(), BRC.getASTContext().getLangOpts(),
2832                  nullptr)
2833           << '\'';
2834   }
2835 
2836   return false;
2837 }
2838 
2839 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
2840     const Expr *Cond, const BinaryOperator *BExpr, BugReporterContext &BRC,
2841     PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue,
2842     bool IsAssuming) {
2843   bool shouldInvert = false;
2844   Optional<bool> shouldPrune;
2845 
2846   // Check if the field name of the MemberExprs is ambiguous. Example:
2847   // " 'a.d' is equal to 'h.d' " in 'test/Analysis/null-deref-path-notes.cpp'.
2848   bool IsSameFieldName = false;
2849   const auto *LhsME = dyn_cast<MemberExpr>(BExpr->getLHS()->IgnoreParenCasts());
2850   const auto *RhsME = dyn_cast<MemberExpr>(BExpr->getRHS()->IgnoreParenCasts());
2851 
2852   if (LhsME && RhsME)
2853     IsSameFieldName =
2854         LhsME->getMemberDecl()->getName() == RhsME->getMemberDecl()->getName();
2855 
2856   SmallString<128> LhsString, RhsString;
2857   {
2858     llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
2859     const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, BRC, R,
2860                                        N, shouldPrune, IsSameFieldName);
2861     const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, BRC, R,
2862                                        N, shouldPrune, IsSameFieldName);
2863 
2864     shouldInvert = !isVarLHS && isVarRHS;
2865   }
2866 
2867   BinaryOperator::Opcode Op = BExpr->getOpcode();
2868 
2869   if (BinaryOperator::isAssignmentOp(Op)) {
2870     // For assignment operators, all that we care about is that the LHS
2871     // evaluates to "true" or "false".
2872     return VisitConditionVariable(LhsString, BExpr->getLHS(), BRC, R, N,
2873                                   TookTrue);
2874   }
2875 
2876   // For non-assignment operations, we require that we can understand
2877   // both the LHS and RHS.
2878   if (LhsString.empty() || RhsString.empty() ||
2879       !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp)
2880     return nullptr;
2881 
2882   // Should we invert the strings if the LHS is not a variable name?
2883   SmallString<256> buf;
2884   llvm::raw_svector_ostream Out(buf);
2885   Out << (IsAssuming ? "Assuming " : "")
2886       << (shouldInvert ? RhsString : LhsString) << " is ";
2887 
2888   // Do we need to invert the opcode?
2889   if (shouldInvert)
2890     switch (Op) {
2891       default: break;
2892       case BO_LT: Op = BO_GT; break;
2893       case BO_GT: Op = BO_LT; break;
2894       case BO_LE: Op = BO_GE; break;
2895       case BO_GE: Op = BO_LE; break;
2896     }
2897 
2898   if (!TookTrue)
2899     switch (Op) {
2900       case BO_EQ: Op = BO_NE; break;
2901       case BO_NE: Op = BO_EQ; break;
2902       case BO_LT: Op = BO_GE; break;
2903       case BO_GT: Op = BO_LE; break;
2904       case BO_LE: Op = BO_GT; break;
2905       case BO_GE: Op = BO_LT; break;
2906       default:
2907         return nullptr;
2908     }
2909 
2910   switch (Op) {
2911     case BO_EQ:
2912       Out << "equal to ";
2913       break;
2914     case BO_NE:
2915       Out << "not equal to ";
2916       break;
2917     default:
2918       Out << BinaryOperator::getOpcodeStr(Op) << ' ';
2919       break;
2920   }
2921 
2922   Out << (shouldInvert ? LhsString : RhsString);
2923   const LocationContext *LCtx = N->getLocationContext();
2924   const SourceManager &SM = BRC.getSourceManager();
2925 
2926   if (isVarAnInterestingCondition(BExpr->getLHS(), N, &R) ||
2927       isVarAnInterestingCondition(BExpr->getRHS(), N, &R))
2928     Out << WillBeUsedForACondition;
2929 
2930   // Convert 'field ...' to 'Field ...' if it is a MemberExpr.
2931   std::string Message = std::string(Out.str());
2932   Message[0] = toupper(Message[0]);
2933 
2934   // If we know the value create a pop-up note to the value part of 'BExpr'.
2935   if (!IsAssuming) {
2936     PathDiagnosticLocation Loc;
2937     if (!shouldInvert) {
2938       if (LhsME && LhsME->getMemberLoc().isValid())
2939         Loc = PathDiagnosticLocation(LhsME->getMemberLoc(), SM);
2940       else
2941         Loc = PathDiagnosticLocation(BExpr->getLHS(), SM, LCtx);
2942     } else {
2943       if (RhsME && RhsME->getMemberLoc().isValid())
2944         Loc = PathDiagnosticLocation(RhsME->getMemberLoc(), SM);
2945       else
2946         Loc = PathDiagnosticLocation(BExpr->getRHS(), SM, LCtx);
2947     }
2948 
2949     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Message);
2950   }
2951 
2952   PathDiagnosticLocation Loc(Cond, SM, LCtx);
2953   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Message);
2954   if (shouldPrune.hasValue())
2955     event->setPrunable(shouldPrune.getValue());
2956   return event;
2957 }
2958 
2959 PathDiagnosticPieceRef ConditionBRVisitor::VisitConditionVariable(
2960     StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC,
2961     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue) {
2962   // FIXME: If there's already a constraint tracker for this variable,
2963   // we shouldn't emit anything here (c.f. the double note in
2964   // test/Analysis/inlining/path-notes.c)
2965   SmallString<256> buf;
2966   llvm::raw_svector_ostream Out(buf);
2967   Out << "Assuming " << LhsString << " is ";
2968 
2969   if (!printValue(CondVarExpr, Out, N, TookTrue, /*IsAssuming=*/true))
2970     return nullptr;
2971 
2972   const LocationContext *LCtx = N->getLocationContext();
2973   PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
2974 
2975   if (isVarAnInterestingCondition(CondVarExpr, N, &report))
2976     Out << WillBeUsedForACondition;
2977 
2978   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
2979 
2980   if (isInterestingExpr(CondVarExpr, N, &report))
2981     event->setPrunable(false);
2982 
2983   return event;
2984 }
2985 
2986 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
2987     const Expr *Cond, const DeclRefExpr *DRE, BugReporterContext &BRC,
2988     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
2989     bool IsAssuming) {
2990   const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
2991   if (!VD)
2992     return nullptr;
2993 
2994   SmallString<256> Buf;
2995   llvm::raw_svector_ostream Out(Buf);
2996 
2997   Out << (IsAssuming ? "Assuming '" : "'") << VD->getDeclName() << "' is ";
2998 
2999   if (!printValue(DRE, Out, N, TookTrue, IsAssuming))
3000     return nullptr;
3001 
3002   const LocationContext *LCtx = N->getLocationContext();
3003 
3004   if (isVarAnInterestingCondition(DRE, N, &report))
3005     Out << WillBeUsedForACondition;
3006 
3007   // If we know the value create a pop-up note to the 'DRE'.
3008   if (!IsAssuming) {
3009     PathDiagnosticLocation Loc(DRE, BRC.getSourceManager(), LCtx);
3010     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3011   }
3012 
3013   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
3014   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3015 
3016   if (isInterestingExpr(DRE, N, &report))
3017     event->setPrunable(false);
3018 
3019   return std::move(event);
3020 }
3021 
3022 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3023     const Expr *Cond, const MemberExpr *ME, BugReporterContext &BRC,
3024     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3025     bool IsAssuming) {
3026   SmallString<256> Buf;
3027   llvm::raw_svector_ostream Out(Buf);
3028 
3029   Out << (IsAssuming ? "Assuming field '" : "Field '")
3030       << ME->getMemberDecl()->getName() << "' is ";
3031 
3032   if (!printValue(ME, Out, N, TookTrue, IsAssuming))
3033     return nullptr;
3034 
3035   const LocationContext *LCtx = N->getLocationContext();
3036   PathDiagnosticLocation Loc;
3037 
3038   // If we know the value create a pop-up note to the member of the MemberExpr.
3039   if (!IsAssuming && ME->getMemberLoc().isValid())
3040     Loc = PathDiagnosticLocation(ME->getMemberLoc(), BRC.getSourceManager());
3041   else
3042     Loc = PathDiagnosticLocation(Cond, BRC.getSourceManager(), LCtx);
3043 
3044   if (!Loc.isValid() || !Loc.asLocation().isValid())
3045     return nullptr;
3046 
3047   if (isVarAnInterestingCondition(ME, N, &report))
3048     Out << WillBeUsedForACondition;
3049 
3050   // If we know the value create a pop-up note.
3051   if (!IsAssuming)
3052     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3053 
3054   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3055   if (isInterestingExpr(ME, N, &report))
3056     event->setPrunable(false);
3057   return event;
3058 }
3059 
3060 bool ConditionBRVisitor::printValue(const Expr *CondVarExpr, raw_ostream &Out,
3061                                     const ExplodedNode *N, bool TookTrue,
3062                                     bool IsAssuming) {
3063   QualType Ty = CondVarExpr->getType();
3064 
3065   if (Ty->isPointerType()) {
3066     Out << (TookTrue ? "non-null" : "null");
3067     return true;
3068   }
3069 
3070   if (Ty->isObjCObjectPointerType()) {
3071     Out << (TookTrue ? "non-nil" : "nil");
3072     return true;
3073   }
3074 
3075   if (!Ty->isIntegralOrEnumerationType())
3076     return false;
3077 
3078   Optional<const llvm::APSInt *> IntValue;
3079   if (!IsAssuming)
3080     IntValue = getConcreteIntegerValue(CondVarExpr, N);
3081 
3082   if (IsAssuming || !IntValue.hasValue()) {
3083     if (Ty->isBooleanType())
3084       Out << (TookTrue ? "true" : "false");
3085     else
3086       Out << (TookTrue ? "not equal to 0" : "0");
3087   } else {
3088     if (Ty->isBooleanType())
3089       Out << (IntValue.getValue()->getBoolValue() ? "true" : "false");
3090     else
3091       Out << *IntValue.getValue();
3092   }
3093 
3094   return true;
3095 }
3096 
3097 constexpr llvm::StringLiteral ConditionBRVisitor::GenericTrueMessage;
3098 constexpr llvm::StringLiteral ConditionBRVisitor::GenericFalseMessage;
3099 
3100 bool ConditionBRVisitor::isPieceMessageGeneric(
3101     const PathDiagnosticPiece *Piece) {
3102   return Piece->getString() == GenericTrueMessage ||
3103          Piece->getString() == GenericFalseMessage;
3104 }
3105 
3106 //===----------------------------------------------------------------------===//
3107 // Implementation of LikelyFalsePositiveSuppressionBRVisitor.
3108 //===----------------------------------------------------------------------===//
3109 
3110 void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor(
3111     BugReporterContext &BRC, const ExplodedNode *N,
3112     PathSensitiveBugReport &BR) {
3113   // Here we suppress false positives coming from system headers. This list is
3114   // based on known issues.
3115   const AnalyzerOptions &Options = BRC.getAnalyzerOptions();
3116   const Decl *D = N->getLocationContext()->getDecl();
3117 
3118   if (AnalysisDeclContext::isInStdNamespace(D)) {
3119     // Skip reports within the 'std' namespace. Although these can sometimes be
3120     // the user's fault, we currently don't report them very well, and
3121     // Note that this will not help for any other data structure libraries, like
3122     // TR1, Boost, or llvm/ADT.
3123     if (Options.ShouldSuppressFromCXXStandardLibrary) {
3124       BR.markInvalid(getTag(), nullptr);
3125       return;
3126     } else {
3127       // If the complete 'std' suppression is not enabled, suppress reports
3128       // from the 'std' namespace that are known to produce false positives.
3129 
3130       // The analyzer issues a false use-after-free when std::list::pop_front
3131       // or std::list::pop_back are called multiple times because we cannot
3132       // reason about the internal invariants of the data structure.
3133       if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3134         const CXXRecordDecl *CD = MD->getParent();
3135         if (CD->getName() == "list") {
3136           BR.markInvalid(getTag(), nullptr);
3137           return;
3138         }
3139       }
3140 
3141       // The analyzer issues a false positive when the constructor of
3142       // std::__independent_bits_engine from algorithms is used.
3143       if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) {
3144         const CXXRecordDecl *CD = MD->getParent();
3145         if (CD->getName() == "__independent_bits_engine") {
3146           BR.markInvalid(getTag(), nullptr);
3147           return;
3148         }
3149       }
3150 
3151       for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
3152            LCtx = LCtx->getParent()) {
3153         const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
3154         if (!MD)
3155           continue;
3156 
3157         const CXXRecordDecl *CD = MD->getParent();
3158         // The analyzer issues a false positive on
3159         //   std::basic_string<uint8_t> v; v.push_back(1);
3160         // and
3161         //   std::u16string s; s += u'a';
3162         // because we cannot reason about the internal invariants of the
3163         // data structure.
3164         if (CD->getName() == "basic_string") {
3165           BR.markInvalid(getTag(), nullptr);
3166           return;
3167         }
3168 
3169         // The analyzer issues a false positive on
3170         //    std::shared_ptr<int> p(new int(1)); p = nullptr;
3171         // because it does not reason properly about temporary destructors.
3172         if (CD->getName() == "shared_ptr") {
3173           BR.markInvalid(getTag(), nullptr);
3174           return;
3175         }
3176       }
3177     }
3178   }
3179 
3180   // Skip reports within the sys/queue.h macros as we do not have the ability to
3181   // reason about data structure shapes.
3182   const SourceManager &SM = BRC.getSourceManager();
3183   FullSourceLoc Loc = BR.getLocation().asLocation();
3184   while (Loc.isMacroID()) {
3185     Loc = Loc.getSpellingLoc();
3186     if (SM.getFilename(Loc).endswith("sys/queue.h")) {
3187       BR.markInvalid(getTag(), nullptr);
3188       return;
3189     }
3190   }
3191 }
3192 
3193 //===----------------------------------------------------------------------===//
3194 // Implementation of UndefOrNullArgVisitor.
3195 //===----------------------------------------------------------------------===//
3196 
3197 PathDiagnosticPieceRef
3198 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
3199                                  PathSensitiveBugReport &BR) {
3200   ProgramStateRef State = N->getState();
3201   ProgramPoint ProgLoc = N->getLocation();
3202 
3203   // We are only interested in visiting CallEnter nodes.
3204   Optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
3205   if (!CEnter)
3206     return nullptr;
3207 
3208   // Check if one of the arguments is the region the visitor is tracking.
3209   CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager();
3210   CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
3211   unsigned Idx = 0;
3212   ArrayRef<ParmVarDecl *> parms = Call->parameters();
3213 
3214   for (const auto ParamDecl : parms) {
3215     const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
3216     ++Idx;
3217 
3218     // Are we tracking the argument or its subregion?
3219     if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts()))
3220       continue;
3221 
3222     // Check the function parameter type.
3223     assert(ParamDecl && "Formal parameter has no decl?");
3224     QualType T = ParamDecl->getType();
3225 
3226     if (!(T->isAnyPointerType() || T->isReferenceType())) {
3227       // Function can only change the value passed in by address.
3228       continue;
3229     }
3230 
3231     // If it is a const pointer value, the function does not intend to
3232     // change the value.
3233     if (T->getPointeeType().isConstQualified())
3234       continue;
3235 
3236     // Mark the call site (LocationContext) as interesting if the value of the
3237     // argument is undefined or '0'/'NULL'.
3238     SVal BoundVal = State->getSVal(R);
3239     if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
3240       BR.markInteresting(CEnter->getCalleeContext());
3241       return nullptr;
3242     }
3243   }
3244   return nullptr;
3245 }
3246 
3247 //===----------------------------------------------------------------------===//
3248 // Implementation of FalsePositiveRefutationBRVisitor.
3249 //===----------------------------------------------------------------------===//
3250 
3251 FalsePositiveRefutationBRVisitor::FalsePositiveRefutationBRVisitor()
3252     : Constraints(ConstraintMap::Factory().getEmptyMap()) {}
3253 
3254 void FalsePositiveRefutationBRVisitor::finalizeVisitor(
3255     BugReporterContext &BRC, const ExplodedNode *EndPathNode,
3256     PathSensitiveBugReport &BR) {
3257   // Collect new constraints
3258   addConstraints(EndPathNode, /*OverwriteConstraintsOnExistingSyms=*/true);
3259 
3260   // Create a refutation manager
3261   llvm::SMTSolverRef RefutationSolver = llvm::CreateZ3Solver();
3262   ASTContext &Ctx = BRC.getASTContext();
3263 
3264   // Add constraints to the solver
3265   for (const auto &I : Constraints) {
3266     const SymbolRef Sym = I.first;
3267     auto RangeIt = I.second.begin();
3268 
3269     llvm::SMTExprRef SMTConstraints = SMTConv::getRangeExpr(
3270         RefutationSolver, Ctx, Sym, RangeIt->From(), RangeIt->To(),
3271         /*InRange=*/true);
3272     while ((++RangeIt) != I.second.end()) {
3273       SMTConstraints = RefutationSolver->mkOr(
3274           SMTConstraints, SMTConv::getRangeExpr(RefutationSolver, Ctx, Sym,
3275                                                 RangeIt->From(), RangeIt->To(),
3276                                                 /*InRange=*/true));
3277     }
3278 
3279     RefutationSolver->addConstraint(SMTConstraints);
3280   }
3281 
3282   // And check for satisfiability
3283   Optional<bool> IsSAT = RefutationSolver->check();
3284   if (!IsSAT.hasValue())
3285     return;
3286 
3287   if (!IsSAT.getValue())
3288     BR.markInvalid("Infeasible constraints", EndPathNode->getLocationContext());
3289 }
3290 
3291 void FalsePositiveRefutationBRVisitor::addConstraints(
3292     const ExplodedNode *N, bool OverwriteConstraintsOnExistingSyms) {
3293   // Collect new constraints
3294   ConstraintMap NewCs = getConstraintMap(N->getState());
3295   ConstraintMap::Factory &CF = N->getState()->get_context<ConstraintMap>();
3296 
3297   // Add constraints if we don't have them yet
3298   for (auto const &C : NewCs) {
3299     const SymbolRef &Sym = C.first;
3300     if (!Constraints.contains(Sym)) {
3301       // This symbol is new, just add the constraint.
3302       Constraints = CF.add(Constraints, Sym, C.second);
3303     } else if (OverwriteConstraintsOnExistingSyms) {
3304       // Overwrite the associated constraint of the Symbol.
3305       Constraints = CF.remove(Constraints, Sym);
3306       Constraints = CF.add(Constraints, Sym, C.second);
3307     }
3308   }
3309 }
3310 
3311 PathDiagnosticPieceRef FalsePositiveRefutationBRVisitor::VisitNode(
3312     const ExplodedNode *N, BugReporterContext &, PathSensitiveBugReport &) {
3313   addConstraints(N, /*OverwriteConstraintsOnExistingSyms=*/false);
3314   return nullptr;
3315 }
3316 
3317 void FalsePositiveRefutationBRVisitor::Profile(
3318     llvm::FoldingSetNodeID &ID) const {
3319   static int Tag = 0;
3320   ID.AddPointer(&Tag);
3321 }
3322 
3323 //===----------------------------------------------------------------------===//
3324 // Implementation of TagVisitor.
3325 //===----------------------------------------------------------------------===//
3326 
3327 int NoteTag::Kind = 0;
3328 
3329 void TagVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
3330   static int Tag = 0;
3331   ID.AddPointer(&Tag);
3332 }
3333 
3334 PathDiagnosticPieceRef TagVisitor::VisitNode(const ExplodedNode *N,
3335                                              BugReporterContext &BRC,
3336                                              PathSensitiveBugReport &R) {
3337   ProgramPoint PP = N->getLocation();
3338   const NoteTag *T = dyn_cast_or_null<NoteTag>(PP.getTag());
3339   if (!T)
3340     return nullptr;
3341 
3342   if (Optional<std::string> Msg = T->generateMessage(BRC, R)) {
3343     PathDiagnosticLocation Loc =
3344         PathDiagnosticLocation::create(PP, BRC.getSourceManager());
3345     auto Piece = std::make_shared<PathDiagnosticEventPiece>(Loc, *Msg);
3346     Piece->setPrunable(T->isPrunable());
3347     return Piece;
3348   }
3349 
3350   return nullptr;
3351 }
3352