1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines a set of BugReporter "visitors" which can be used to
10 //  enhance the diagnostics reported for a bug.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclBase.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/ASTMatchers/ASTMatchFinder.h"
25 #include "clang/Analysis/AnalysisDeclContext.h"
26 #include "clang/Analysis/CFG.h"
27 #include "clang/Analysis/CFGStmtMap.h"
28 #include "clang/Analysis/ProgramPoint.h"
29 #include "clang/Basic/IdentifierTable.h"
30 #include "clang/Basic/LLVM.h"
31 #include "clang/Basic/SourceLocation.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Lex/Lexer.h"
34 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
35 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
36 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
37 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/STLExtras.h"
52 #include "llvm/ADT/SmallPtrSet.h"
53 #include "llvm/ADT/SmallString.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cassert>
61 #include <deque>
62 #include <memory>
63 #include <string>
64 #include <utility>
65 
66 using namespace clang;
67 using namespace ento;
68 
69 //===----------------------------------------------------------------------===//
70 // Utility functions.
71 //===----------------------------------------------------------------------===//
72 
73 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) {
74   if (B->isAdditiveOp() && B->getType()->isPointerType()) {
75     if (B->getLHS()->getType()->isPointerType()) {
76       return B->getLHS();
77     } else if (B->getRHS()->getType()->isPointerType()) {
78       return B->getRHS();
79     }
80   }
81   return nullptr;
82 }
83 
84 /// Given that expression S represents a pointer that would be dereferenced,
85 /// try to find a sub-expression from which the pointer came from.
86 /// This is used for tracking down origins of a null or undefined value:
87 /// "this is null because that is null because that is null" etc.
88 /// We wipe away field and element offsets because they merely add offsets.
89 /// We also wipe away all casts except lvalue-to-rvalue casts, because the
90 /// latter represent an actual pointer dereference; however, we remove
91 /// the final lvalue-to-rvalue cast before returning from this function
92 /// because it demonstrates more clearly from where the pointer rvalue was
93 /// loaded. Examples:
94 ///   x->y.z      ==>  x (lvalue)
95 ///   foo()->y.z  ==>  foo() (rvalue)
96 const Expr *bugreporter::getDerefExpr(const Stmt *S) {
97   const auto *E = dyn_cast<Expr>(S);
98   if (!E)
99     return nullptr;
100 
101   while (true) {
102     if (const auto *CE = dyn_cast<CastExpr>(E)) {
103       if (CE->getCastKind() == CK_LValueToRValue) {
104         // This cast represents the load we're looking for.
105         break;
106       }
107       E = CE->getSubExpr();
108     } else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
109       // Pointer arithmetic: '*(x + 2)' -> 'x') etc.
110       if (const Expr *Inner = peelOffPointerArithmetic(B)) {
111         E = Inner;
112       } else {
113         // Probably more arithmetic can be pattern-matched here,
114         // but for now give up.
115         break;
116       }
117     } else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
118       if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
119           (U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
120         // Operators '*' and '&' don't actually mean anything.
121         // We look at casts instead.
122         E = U->getSubExpr();
123       } else {
124         // Probably more arithmetic can be pattern-matched here,
125         // but for now give up.
126         break;
127       }
128     }
129     // Pattern match for a few useful cases: a[0], p->f, *p etc.
130     else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
131       E = ME->getBase();
132     } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
133       E = IvarRef->getBase();
134     } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
135       E = AE->getBase();
136     } else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
137       E = PE->getSubExpr();
138     } else if (const auto *FE = dyn_cast<FullExpr>(E)) {
139       E = FE->getSubExpr();
140     } else {
141       // Other arbitrary stuff.
142       break;
143     }
144   }
145 
146   // Special case: remove the final lvalue-to-rvalue cast, but do not recurse
147   // deeper into the sub-expression. This way we return the lvalue from which
148   // our pointer rvalue was loaded.
149   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
150     if (CE->getCastKind() == CK_LValueToRValue)
151       E = CE->getSubExpr();
152 
153   return E;
154 }
155 
156 /// Comparing internal representations of symbolic values (via
157 /// SVal::operator==()) is a valid way to check if the value was updated,
158 /// unless it's a LazyCompoundVal that may have a different internal
159 /// representation every time it is loaded from the state. In this function we
160 /// do an approximate comparison for lazy compound values, checking that they
161 /// are the immediate snapshots of the tracked region's bindings within the
162 /// node's respective states but not really checking that these snapshots
163 /// actually contain the same set of bindings.
164 static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal,
165                              const ExplodedNode *RightNode, SVal RightVal) {
166   if (LeftVal == RightVal)
167     return true;
168 
169   const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>();
170   if (!LLCV)
171     return false;
172 
173   const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>();
174   if (!RLCV)
175     return false;
176 
177   return LLCV->getRegion() == RLCV->getRegion() &&
178     LLCV->getStore() == LeftNode->getState()->getStore() &&
179     RLCV->getStore() == RightNode->getState()->getStore();
180 }
181 
182 //===----------------------------------------------------------------------===//
183 // Definitions for bug reporter visitors.
184 //===----------------------------------------------------------------------===//
185 
186 std::shared_ptr<PathDiagnosticPiece>
187 BugReporterVisitor::getEndPath(BugReporterContext &,
188                                const ExplodedNode *, BugReport &) {
189   return nullptr;
190 }
191 
192 void
193 BugReporterVisitor::finalizeVisitor(BugReporterContext &,
194                                     const ExplodedNode *, BugReport &) {}
195 
196 std::shared_ptr<PathDiagnosticPiece> BugReporterVisitor::getDefaultEndPath(
197     BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) {
198   PathDiagnosticLocation L =
199     PathDiagnosticLocation::createEndOfPath(EndPathNode,BRC.getSourceManager());
200 
201   const auto &Ranges = BR.getRanges();
202 
203   // Only add the statement itself as a range if we didn't specify any
204   // special ranges for this report.
205   auto P = std::make_shared<PathDiagnosticEventPiece>(
206       L, BR.getDescription(), Ranges.begin() == Ranges.end());
207   for (SourceRange Range : Ranges)
208     P->addRange(Range);
209 
210   return P;
211 }
212 
213 /// \return name of the macro inside the location \p Loc.
214 static StringRef getMacroName(SourceLocation Loc,
215     BugReporterContext &BRC) {
216   return Lexer::getImmediateMacroName(
217       Loc,
218       BRC.getSourceManager(),
219       BRC.getASTContext().getLangOpts());
220 }
221 
222 /// \return Whether given spelling location corresponds to an expansion
223 /// of a function-like macro.
224 static bool isFunctionMacroExpansion(SourceLocation Loc,
225                                 const SourceManager &SM) {
226   if (!Loc.isMacroID())
227     return false;
228   while (SM.isMacroArgExpansion(Loc))
229     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
230   std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
231   SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
232   const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
233   return EInfo.isFunctionMacroExpansion();
234 }
235 
236 /// \return Whether \c RegionOfInterest was modified at \p N,
237 /// where \p ReturnState is a state associated with the return
238 /// from the current frame.
239 static bool wasRegionOfInterestModifiedAt(
240         const SubRegion *RegionOfInterest,
241         const ExplodedNode *N,
242         SVal ValueAfter) {
243   ProgramStateRef State = N->getState();
244   ProgramStateManager &Mgr = N->getState()->getStateManager();
245 
246   if (!N->getLocationAs<PostStore>()
247       && !N->getLocationAs<PostInitializer>()
248       && !N->getLocationAs<PostStmt>())
249     return false;
250 
251   // Writing into region of interest.
252   if (auto PS = N->getLocationAs<PostStmt>())
253     if (auto *BO = PS->getStmtAs<BinaryOperator>())
254       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
255             N->getSVal(BO->getLHS()).getAsRegion()))
256         return true;
257 
258   // SVal after the state is possibly different.
259   SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
260   if (!Mgr.getSValBuilder().areEqual(State, ValueAtN, ValueAfter).isConstrainedTrue() &&
261       (!ValueAtN.isUndef() || !ValueAfter.isUndef()))
262     return true;
263 
264   return false;
265 }
266 
267 
268 namespace {
269 
270 /// Put a diagnostic on return statement of all inlined functions
271 /// for which  the region of interest \p RegionOfInterest was passed into,
272 /// but not written inside, and it has caused an undefined read or a null
273 /// pointer dereference outside.
274 class NoStoreFuncVisitor final : public BugReporterVisitor {
275   const SubRegion *RegionOfInterest;
276   MemRegionManager &MmrMgr;
277   const SourceManager &SM;
278   const PrintingPolicy &PP;
279 
280   /// Recursion limit for dereferencing fields when looking for the
281   /// region of interest.
282   /// The limit of two indicates that we will dereference fields only once.
283   static const unsigned DEREFERENCE_LIMIT = 2;
284 
285   /// Frames writing into \c RegionOfInterest.
286   /// This visitor generates a note only if a function does not write into
287   /// a region of interest. This information is not immediately available
288   /// by looking at the node associated with the exit from the function
289   /// (usually the return statement). To avoid recomputing the same information
290   /// many times (going up the path for each node and checking whether the
291   /// region was written into) we instead lazily compute the
292   /// stack frames along the path which write into the region of interest.
293   llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingRegion;
294   llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingCalculated;
295 
296   using RegionVector = SmallVector<const MemRegion *, 5>;
297 public:
298   NoStoreFuncVisitor(const SubRegion *R)
299       : RegionOfInterest(R), MmrMgr(*R->getMemRegionManager()),
300         SM(MmrMgr.getContext().getSourceManager()),
301         PP(MmrMgr.getContext().getPrintingPolicy()) {}
302 
303   void Profile(llvm::FoldingSetNodeID &ID) const override {
304     static int Tag = 0;
305     ID.AddPointer(&Tag);
306     ID.AddPointer(RegionOfInterest);
307   }
308 
309   void *getTag() const {
310     static int Tag = 0;
311     return static_cast<void *>(&Tag);
312   }
313 
314   std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N,
315                                                  BugReporterContext &BR,
316                                                  BugReport &R) override {
317 
318     const LocationContext *Ctx = N->getLocationContext();
319     const StackFrameContext *SCtx = Ctx->getStackFrame();
320     ProgramStateRef State = N->getState();
321     auto CallExitLoc = N->getLocationAs<CallExitBegin>();
322 
323     // No diagnostic if region was modified inside the frame.
324     if (!CallExitLoc || isRegionOfInterestModifiedInFrame(N))
325       return nullptr;
326 
327     CallEventRef<> Call =
328         BR.getStateManager().getCallEventManager().getCaller(SCtx, State);
329 
330     // Region of interest corresponds to an IVar, exiting a method
331     // which could have written into that IVar, but did not.
332     if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
333       if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
334         const MemRegion *SelfRegion = MC->getReceiverSVal().getAsRegion();
335         if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
336             potentiallyWritesIntoIvar(Call->getRuntimeDefinition().getDecl(),
337                                       IvarR->getDecl()))
338           return maybeEmitNote(R, *Call, N, {}, SelfRegion, "self",
339                                /*FirstIsReferenceType=*/false, 1);
340       }
341     }
342 
343     if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
344       const MemRegion *ThisR = CCall->getCXXThisVal().getAsRegion();
345       if (RegionOfInterest->isSubRegionOf(ThisR)
346           && !CCall->getDecl()->isImplicit())
347         return maybeEmitNote(R, *Call, N, {}, ThisR, "this",
348                              /*FirstIsReferenceType=*/false, 1);
349 
350       // Do not generate diagnostics for not modified parameters in
351       // constructors.
352       return nullptr;
353     }
354 
355     ArrayRef<ParmVarDecl *> parameters = getCallParameters(Call);
356     for (unsigned I = 0; I < Call->getNumArgs() && I < parameters.size(); ++I) {
357       const ParmVarDecl *PVD = parameters[I];
358       SVal V = Call->getArgSVal(I);
359       bool ParamIsReferenceType = PVD->getType()->isReferenceType();
360       std::string ParamName = PVD->getNameAsString();
361 
362       int IndirectionLevel = 1;
363       QualType T = PVD->getType();
364       while (const MemRegion *MR = V.getAsRegion()) {
365         if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T))
366           return maybeEmitNote(R, *Call, N, {}, MR, ParamName,
367                                ParamIsReferenceType, IndirectionLevel);
368 
369         QualType PT = T->getPointeeType();
370         if (PT.isNull() || PT->isVoidType()) break;
371 
372         if (const RecordDecl *RD = PT->getAsRecordDecl())
373           if (auto P = findRegionOfInterestInRecord(RD, State, MR))
374             return maybeEmitNote(R, *Call, N, *P, RegionOfInterest, ParamName,
375                                  ParamIsReferenceType, IndirectionLevel);
376 
377         V = State->getSVal(MR, PT);
378         T = PT;
379         IndirectionLevel++;
380       }
381     }
382 
383     return nullptr;
384   }
385 
386 private:
387   /// Attempts to find the region of interest in a given CXX decl,
388   /// by either following the base classes or fields.
389   /// Dereferences fields up to a given recursion limit.
390   /// Note that \p Vec is passed by value, leading to quadratic copying cost,
391   /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
392   /// \return A chain fields leading to the region of interest or None.
393   const Optional<RegionVector>
394   findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State,
395                                const MemRegion *R,
396                                const RegionVector &Vec = {},
397                                int depth = 0) {
398 
399     if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
400       return None;
401 
402     if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
403       if (!RDX->hasDefinition())
404         return None;
405 
406     // Recursively examine the base classes.
407     // Note that following base classes does not increase the recursion depth.
408     if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
409       for (const auto II : RDX->bases())
410         if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
411           if (auto Out = findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
412             return Out;
413 
414     for (const FieldDecl *I : RD->fields()) {
415       QualType FT = I->getType();
416       const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
417       const SVal V = State->getSVal(FR);
418       const MemRegion *VR = V.getAsRegion();
419 
420       RegionVector VecF = Vec;
421       VecF.push_back(FR);
422 
423       if (RegionOfInterest == VR)
424         return VecF;
425 
426       if (const RecordDecl *RRD = FT->getAsRecordDecl())
427         if (auto Out =
428                 findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
429           return Out;
430 
431       QualType PT = FT->getPointeeType();
432       if (PT.isNull() || PT->isVoidType() || !VR) continue;
433 
434       if (const RecordDecl *RRD = PT->getAsRecordDecl())
435         if (auto Out =
436                 findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
437           return Out;
438 
439     }
440 
441     return None;
442   }
443 
444   /// \return Whether the method declaration \p Parent
445   /// syntactically has a binary operation writing into the ivar \p Ivar.
446   bool potentiallyWritesIntoIvar(const Decl *Parent,
447                                  const ObjCIvarDecl *Ivar) {
448     using namespace ast_matchers;
449     const char * IvarBind = "Ivar";
450     if (!Parent || !Parent->hasBody())
451       return false;
452     StatementMatcher WriteIntoIvarM = binaryOperator(
453         hasOperatorName("="),
454         hasLHS(ignoringParenImpCasts(
455             objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
456     StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
457     auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
458     for (BoundNodes &Match : Matches) {
459       auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
460       if (IvarRef->isFreeIvar())
461         return true;
462 
463       const Expr *Base = IvarRef->getBase();
464       if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
465         Base = ICE->getSubExpr();
466 
467       if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
468         if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
469           if (ID->getParameterKind() == ImplicitParamDecl::ObjCSelf)
470             return true;
471 
472       return false;
473     }
474     return false;
475   }
476 
477   /// Check and lazily calculate whether the region of interest is
478   /// modified in the stack frame to which \p N belongs.
479   /// The calculation is cached in FramesModifyingRegion.
480   bool isRegionOfInterestModifiedInFrame(const ExplodedNode *N) {
481     const LocationContext *Ctx = N->getLocationContext();
482     const StackFrameContext *SCtx = Ctx->getStackFrame();
483     if (!FramesModifyingCalculated.count(SCtx))
484       findModifyingFrames(N);
485     return FramesModifyingRegion.count(SCtx);
486   }
487 
488 
489   /// Write to \c FramesModifyingRegion all stack frames along
490   /// the path in the current stack frame which modify \c RegionOfInterest.
491   void findModifyingFrames(const ExplodedNode *N) {
492     assert(N->getLocationAs<CallExitBegin>());
493     ProgramStateRef LastReturnState = N->getState();
494     SVal ValueAtReturn = LastReturnState->getSVal(RegionOfInterest);
495     const LocationContext *Ctx = N->getLocationContext();
496     const StackFrameContext *OriginalSCtx = Ctx->getStackFrame();
497 
498     do {
499       ProgramStateRef State = N->getState();
500       auto CallExitLoc = N->getLocationAs<CallExitBegin>();
501       if (CallExitLoc) {
502         LastReturnState = State;
503         ValueAtReturn = LastReturnState->getSVal(RegionOfInterest);
504       }
505 
506       FramesModifyingCalculated.insert(
507         N->getLocationContext()->getStackFrame());
508 
509       if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtReturn)) {
510         const StackFrameContext *SCtx = N->getStackFrame();
511         while (!SCtx->inTopFrame()) {
512           auto p = FramesModifyingRegion.insert(SCtx);
513           if (!p.second)
514             break; // Frame and all its parents already inserted.
515           SCtx = SCtx->getParent()->getStackFrame();
516         }
517       }
518 
519       // Stop calculation at the call to the current function.
520       if (auto CE = N->getLocationAs<CallEnter>())
521         if (CE->getCalleeContext() == OriginalSCtx)
522           break;
523 
524       N = N->getFirstPred();
525     } while (N);
526   }
527 
528   /// Get parameters associated with runtime definition in order
529   /// to get the correct parameter name.
530   ArrayRef<ParmVarDecl *> getCallParameters(CallEventRef<> Call) {
531     // Use runtime definition, if available.
532     RuntimeDefinition RD = Call->getRuntimeDefinition();
533     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(RD.getDecl()))
534       return FD->parameters();
535     if (const auto *MD = dyn_cast_or_null<ObjCMethodDecl>(RD.getDecl()))
536       return MD->parameters();
537 
538     return Call->parameters();
539   }
540 
541   /// \return whether \p Ty points to a const type, or is a const reference.
542   bool isPointerToConst(QualType Ty) {
543     return !Ty->getPointeeType().isNull() &&
544            Ty->getPointeeType().getCanonicalType().isConstQualified();
545   }
546 
547   /// Consume the information on the no-store stack frame in order to
548   /// either emit a note or suppress the report enirely.
549   /// \return Diagnostics piece for region not modified in the current function,
550   /// if it decides to emit one.
551   std::shared_ptr<PathDiagnosticPiece>
552   maybeEmitNote(BugReport &R, const CallEvent &Call, const ExplodedNode *N,
553                 const RegionVector &FieldChain, const MemRegion *MatchedRegion,
554                 StringRef FirstElement, bool FirstIsReferenceType,
555                 unsigned IndirectionLevel) {
556     // Optimistically suppress uninitialized value bugs that result
557     // from system headers having a chance to initialize the value
558     // but failing to do so. It's too unlikely a system header's fault.
559     // It's much more likely a situation in which the function has a failure
560     // mode that the user decided not to check. If we want to hunt such
561     // omitted checks, we should provide an explicit function-specific note
562     // describing the precondition under which the function isn't supposed to
563     // initialize its out-parameter, and additionally check that such
564     // precondition can actually be fulfilled on the current path.
565     if (Call.isInSystemHeader()) {
566       // We make an exception for system header functions that have no branches.
567       // Such functions unconditionally fail to initialize the variable.
568       // If they call other functions that have more paths within them,
569       // this suppression would still apply when we visit these inner functions.
570       // One common example of a standard function that doesn't ever initialize
571       // its out parameter is operator placement new; it's up to the follow-up
572       // constructor (if any) to initialize the memory.
573       if (!N->getStackFrame()->getCFG()->isLinear())
574         R.markInvalid(getTag(), nullptr);
575       return nullptr;
576     }
577 
578     PathDiagnosticLocation L =
579         PathDiagnosticLocation::create(N->getLocation(), SM);
580 
581     // For now this shouldn't trigger, but once it does (as we add more
582     // functions to the body farm), we'll need to decide if these reports
583     // are worth suppressing as well.
584     if (!L.hasValidLocation())
585       return nullptr;
586 
587     SmallString<256> sbuf;
588     llvm::raw_svector_ostream os(sbuf);
589     os << "Returning without writing to '";
590 
591     // Do not generate the note if failed to pretty-print.
592     if (!prettyPrintRegionName(FirstElement, FirstIsReferenceType,
593                                MatchedRegion, FieldChain, IndirectionLevel, os))
594       return nullptr;
595 
596     os << "'";
597     return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
598   }
599 
600   /// Pretty-print region \p MatchedRegion to \p os.
601   /// \return Whether printing succeeded.
602   bool prettyPrintRegionName(StringRef FirstElement, bool FirstIsReferenceType,
603                              const MemRegion *MatchedRegion,
604                              const RegionVector &FieldChain,
605                              int IndirectionLevel,
606                              llvm::raw_svector_ostream &os) {
607 
608     if (FirstIsReferenceType)
609       IndirectionLevel--;
610 
611     RegionVector RegionSequence;
612 
613     // Add the regions in the reverse order, then reverse the resulting array.
614     assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
615     const MemRegion *R = RegionOfInterest;
616     while (R != MatchedRegion) {
617       RegionSequence.push_back(R);
618       R = cast<SubRegion>(R)->getSuperRegion();
619     }
620     std::reverse(RegionSequence.begin(), RegionSequence.end());
621     RegionSequence.append(FieldChain.begin(), FieldChain.end());
622 
623     StringRef Sep;
624     for (const MemRegion *R : RegionSequence) {
625 
626       // Just keep going up to the base region.
627       // Element regions may appear due to casts.
628       if (isa<CXXBaseObjectRegion>(R) || isa<CXXTempObjectRegion>(R))
629         continue;
630 
631       if (Sep.empty())
632         Sep = prettyPrintFirstElement(FirstElement,
633                                       /*MoreItemsExpected=*/true,
634                                       IndirectionLevel, os);
635 
636       os << Sep;
637 
638       // Can only reasonably pretty-print DeclRegions.
639       if (!isa<DeclRegion>(R))
640         return false;
641 
642       const auto *DR = cast<DeclRegion>(R);
643       Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
644       DR->getDecl()->getDeclName().print(os, PP);
645     }
646 
647     if (Sep.empty())
648       prettyPrintFirstElement(FirstElement,
649                               /*MoreItemsExpected=*/false, IndirectionLevel,
650                               os);
651     return true;
652   }
653 
654   /// Print first item in the chain, return new separator.
655   StringRef prettyPrintFirstElement(StringRef FirstElement,
656                        bool MoreItemsExpected,
657                        int IndirectionLevel,
658                        llvm::raw_svector_ostream &os) {
659     StringRef Out = ".";
660 
661     if (IndirectionLevel > 0 && MoreItemsExpected) {
662       IndirectionLevel--;
663       Out = "->";
664     }
665 
666     if (IndirectionLevel > 0 && MoreItemsExpected)
667       os << "(";
668 
669     for (int i=0; i<IndirectionLevel; i++)
670       os << "*";
671     os << FirstElement;
672 
673     if (IndirectionLevel > 0 && MoreItemsExpected)
674       os << ")";
675 
676     return Out;
677   }
678 };
679 
680 /// Suppress null-pointer-dereference bugs where dereferenced null was returned
681 /// the macro.
682 class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
683   const SubRegion *RegionOfInterest;
684   const SVal ValueAtDereference;
685 
686   // Do not invalidate the reports where the value was modified
687   // after it got assigned to from the macro.
688   bool WasModified = false;
689 
690 public:
691   MacroNullReturnSuppressionVisitor(const SubRegion *R,
692                                     const SVal V) : RegionOfInterest(R),
693                                                     ValueAtDereference(V) {}
694 
695   std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N,
696                                                  BugReporterContext &BRC,
697                                                  BugReport &BR) override {
698     if (WasModified)
699       return nullptr;
700 
701     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
702     if (!BugPoint)
703       return nullptr;
704 
705     const SourceManager &SMgr = BRC.getSourceManager();
706     if (auto Loc = matchAssignment(N)) {
707       if (isFunctionMacroExpansion(*Loc, SMgr)) {
708         std::string MacroName = getMacroName(*Loc, BRC);
709         SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
710         if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
711           BR.markInvalid(getTag(), MacroName.c_str());
712       }
713     }
714 
715     if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
716       WasModified = true;
717 
718     return nullptr;
719   }
720 
721   static void addMacroVisitorIfNecessary(
722         const ExplodedNode *N, const MemRegion *R,
723         bool EnableNullFPSuppression, BugReport &BR,
724         const SVal V) {
725     AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
726     if (EnableNullFPSuppression &&
727         Options.ShouldSuppressNullReturnPaths && V.getAs<Loc>())
728       BR.addVisitor(llvm::make_unique<MacroNullReturnSuppressionVisitor>(
729               R->getAs<SubRegion>(), V));
730   }
731 
732   void* getTag() const {
733     static int Tag = 0;
734     return static_cast<void *>(&Tag);
735   }
736 
737   void Profile(llvm::FoldingSetNodeID &ID) const override {
738     ID.AddPointer(getTag());
739   }
740 
741 private:
742   /// \return Source location of right hand side of an assignment
743   /// into \c RegionOfInterest, empty optional if none found.
744   Optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
745     const Stmt *S = PathDiagnosticLocation::getStmt(N);
746     ProgramStateRef State = N->getState();
747     auto *LCtx = N->getLocationContext();
748     if (!S)
749       return None;
750 
751     if (const auto *DS = dyn_cast<DeclStmt>(S)) {
752       if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
753         if (const Expr *RHS = VD->getInit())
754           if (RegionOfInterest->isSubRegionOf(
755                   State->getLValue(VD, LCtx).getAsRegion()))
756             return RHS->getBeginLoc();
757     } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
758       const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
759       const Expr *RHS = BO->getRHS();
760       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
761         return RHS->getBeginLoc();
762       }
763     }
764     return None;
765   }
766 };
767 
768 /// Emits an extra note at the return statement of an interesting stack frame.
769 ///
770 /// The returned value is marked as an interesting value, and if it's null,
771 /// adds a visitor to track where it became null.
772 ///
773 /// This visitor is intended to be used when another visitor discovers that an
774 /// interesting value comes from an inlined function call.
775 class ReturnVisitor : public BugReporterVisitor {
776   const StackFrameContext *StackFrame;
777   enum {
778     Initial,
779     MaybeUnsuppress,
780     Satisfied
781   } Mode = Initial;
782 
783   bool EnableNullFPSuppression;
784   bool ShouldInvalidate = true;
785   AnalyzerOptions& Options;
786 
787 public:
788   ReturnVisitor(const StackFrameContext *Frame,
789                 bool Suppressed,
790                 AnalyzerOptions &Options)
791       : StackFrame(Frame), EnableNullFPSuppression(Suppressed),
792         Options(Options) {}
793 
794   static void *getTag() {
795     static int Tag = 0;
796     return static_cast<void *>(&Tag);
797   }
798 
799   void Profile(llvm::FoldingSetNodeID &ID) const override {
800     ID.AddPointer(ReturnVisitor::getTag());
801     ID.AddPointer(StackFrame);
802     ID.AddBoolean(EnableNullFPSuppression);
803   }
804 
805   /// Adds a ReturnVisitor if the given statement represents a call that was
806   /// inlined.
807   ///
808   /// This will search back through the ExplodedGraph, starting from the given
809   /// node, looking for when the given statement was processed. If it turns out
810   /// the statement is a call that was inlined, we add the visitor to the
811   /// bug report, so it can print a note later.
812   static void addVisitorIfNecessary(const ExplodedNode *Node, const Stmt *S,
813                                     BugReport &BR,
814                                     bool InEnableNullFPSuppression) {
815     if (!CallEvent::isCallStmt(S))
816       return;
817 
818     // First, find when we processed the statement.
819     do {
820       if (auto CEE = Node->getLocationAs<CallExitEnd>())
821         if (CEE->getCalleeContext()->getCallSite() == S)
822           break;
823       if (auto SP = Node->getLocationAs<StmtPoint>())
824         if (SP->getStmt() == S)
825           break;
826 
827       Node = Node->getFirstPred();
828     } while (Node);
829 
830     // Next, step over any post-statement checks.
831     while (Node && Node->getLocation().getAs<PostStmt>())
832       Node = Node->getFirstPred();
833     if (!Node)
834       return;
835 
836     // Finally, see if we inlined the call.
837     Optional<CallExitEnd> CEE = Node->getLocationAs<CallExitEnd>();
838     if (!CEE)
839       return;
840 
841     const StackFrameContext *CalleeContext = CEE->getCalleeContext();
842     if (CalleeContext->getCallSite() != S)
843       return;
844 
845     // Check the return value.
846     ProgramStateRef State = Node->getState();
847     SVal RetVal = Node->getSVal(S);
848 
849     // Handle cases where a reference is returned and then immediately used.
850     if (cast<Expr>(S)->isGLValue())
851       if (Optional<Loc> LValue = RetVal.getAs<Loc>())
852         RetVal = State->getSVal(*LValue);
853 
854     // See if the return value is NULL. If so, suppress the report.
855     AnalyzerOptions &Options = State->getAnalysisManager().options;
856 
857     bool EnableNullFPSuppression = false;
858     if (InEnableNullFPSuppression &&
859         Options.ShouldSuppressNullReturnPaths)
860       if (Optional<Loc> RetLoc = RetVal.getAs<Loc>())
861         EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
862 
863     BR.markInteresting(CalleeContext);
864     BR.addVisitor(llvm::make_unique<ReturnVisitor>(CalleeContext,
865                                                    EnableNullFPSuppression,
866                                                    Options));
867   }
868 
869   std::shared_ptr<PathDiagnosticPiece>
870   visitNodeInitial(const ExplodedNode *N,
871                    BugReporterContext &BRC, BugReport &BR) {
872     // Only print a message at the interesting return statement.
873     if (N->getLocationContext() != StackFrame)
874       return nullptr;
875 
876     Optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
877     if (!SP)
878       return nullptr;
879 
880     const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
881     if (!Ret)
882       return nullptr;
883 
884     // Okay, we're at the right return statement, but do we have the return
885     // value available?
886     ProgramStateRef State = N->getState();
887     SVal V = State->getSVal(Ret, StackFrame);
888     if (V.isUnknownOrUndef())
889       return nullptr;
890 
891     // Don't print any more notes after this one.
892     Mode = Satisfied;
893 
894     const Expr *RetE = Ret->getRetValue();
895     assert(RetE && "Tracking a return value for a void function");
896 
897     // Handle cases where a reference is returned and then immediately used.
898     Optional<Loc> LValue;
899     if (RetE->isGLValue()) {
900       if ((LValue = V.getAs<Loc>())) {
901         SVal RValue = State->getRawSVal(*LValue, RetE->getType());
902         if (RValue.getAs<DefinedSVal>())
903           V = RValue;
904       }
905     }
906 
907     // Ignore aggregate rvalues.
908     if (V.getAs<nonloc::LazyCompoundVal>() ||
909         V.getAs<nonloc::CompoundVal>())
910       return nullptr;
911 
912     RetE = RetE->IgnoreParenCasts();
913 
914     // If we're returning 0, we should track where that 0 came from.
915     bugreporter::trackExpressionValue(N, RetE, BR, EnableNullFPSuppression);
916 
917     // Build an appropriate message based on the return value.
918     SmallString<64> Msg;
919     llvm::raw_svector_ostream Out(Msg);
920 
921     if (State->isNull(V).isConstrainedTrue()) {
922       if (V.getAs<Loc>()) {
923 
924         // If we have counter-suppression enabled, make sure we keep visiting
925         // future nodes. We want to emit a path note as well, in case
926         // the report is resurrected as valid later on.
927         if (EnableNullFPSuppression &&
928             Options.ShouldAvoidSuppressingNullArgumentPaths)
929           Mode = MaybeUnsuppress;
930 
931         if (RetE->getType()->isObjCObjectPointerType()) {
932           Out << "Returning nil";
933         } else {
934           Out << "Returning null pointer";
935         }
936       } else {
937         Out << "Returning zero";
938       }
939 
940     } else {
941       if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
942         Out << "Returning the value " << CI->getValue();
943       } else if (V.getAs<Loc>()) {
944         Out << "Returning pointer";
945       } else {
946         Out << "Returning value";
947       }
948     }
949 
950     if (LValue) {
951       if (const MemRegion *MR = LValue->getAsRegion()) {
952         if (MR->canPrintPretty()) {
953           Out << " (reference to ";
954           MR->printPretty(Out);
955           Out << ")";
956         }
957       }
958     } else {
959       // FIXME: We should have a more generalized location printing mechanism.
960       if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
961         if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
962           Out << " (loaded from '" << *DD << "')";
963     }
964 
965     PathDiagnosticLocation L(Ret, BRC.getSourceManager(), StackFrame);
966     if (!L.isValid() || !L.asLocation().isValid())
967       return nullptr;
968 
969     return std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
970   }
971 
972   std::shared_ptr<PathDiagnosticPiece>
973   visitNodeMaybeUnsuppress(const ExplodedNode *N,
974                            BugReporterContext &BRC, BugReport &BR) {
975 #ifndef NDEBUG
976     assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
977 #endif
978 
979     // Are we at the entry node for this call?
980     Optional<CallEnter> CE = N->getLocationAs<CallEnter>();
981     if (!CE)
982       return nullptr;
983 
984     if (CE->getCalleeContext() != StackFrame)
985       return nullptr;
986 
987     Mode = Satisfied;
988 
989     // Don't automatically suppress a report if one of the arguments is
990     // known to be a null pointer. Instead, start tracking /that/ null
991     // value back to its origin.
992     ProgramStateManager &StateMgr = BRC.getStateManager();
993     CallEventManager &CallMgr = StateMgr.getCallEventManager();
994 
995     ProgramStateRef State = N->getState();
996     CallEventRef<> Call = CallMgr.getCaller(StackFrame, State);
997     for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
998       Optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
999       if (!ArgV)
1000         continue;
1001 
1002       const Expr *ArgE = Call->getArgExpr(I);
1003       if (!ArgE)
1004         continue;
1005 
1006       // Is it possible for this argument to be non-null?
1007       if (!State->isNull(*ArgV).isConstrainedTrue())
1008         continue;
1009 
1010       if (bugreporter::trackExpressionValue(N, ArgE, BR, EnableNullFPSuppression))
1011         ShouldInvalidate = false;
1012 
1013       // If we /can't/ track the null pointer, we should err on the side of
1014       // false negatives, and continue towards marking this report invalid.
1015       // (We will still look at the other arguments, though.)
1016     }
1017 
1018     return nullptr;
1019   }
1020 
1021   std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N,
1022                                                  BugReporterContext &BRC,
1023                                                  BugReport &BR) override {
1024     switch (Mode) {
1025     case Initial:
1026       return visitNodeInitial(N, BRC, BR);
1027     case MaybeUnsuppress:
1028       return visitNodeMaybeUnsuppress(N, BRC, BR);
1029     case Satisfied:
1030       return nullptr;
1031     }
1032 
1033     llvm_unreachable("Invalid visit mode!");
1034   }
1035 
1036   void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
1037                        BugReport &BR) override {
1038     if (EnableNullFPSuppression && ShouldInvalidate)
1039       BR.markInvalid(ReturnVisitor::getTag(), StackFrame);
1040   }
1041 };
1042 
1043 } // namespace
1044 
1045 void FindLastStoreBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1046   static int tag = 0;
1047   ID.AddPointer(&tag);
1048   ID.AddPointer(R);
1049   ID.Add(V);
1050   ID.AddBoolean(EnableNullFPSuppression);
1051 }
1052 
1053 /// Returns true if \p N represents the DeclStmt declaring and initializing
1054 /// \p VR.
1055 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
1056   Optional<PostStmt> P = N->getLocationAs<PostStmt>();
1057   if (!P)
1058     return false;
1059 
1060   const DeclStmt *DS = P->getStmtAs<DeclStmt>();
1061   if (!DS)
1062     return false;
1063 
1064   if (DS->getSingleDecl() != VR->getDecl())
1065     return false;
1066 
1067   const MemSpaceRegion *VarSpace = VR->getMemorySpace();
1068   const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
1069   if (!FrameSpace) {
1070     // If we ever directly evaluate global DeclStmts, this assertion will be
1071     // invalid, but this still seems preferable to silently accepting an
1072     // initialization that may be for a path-sensitive variable.
1073     assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
1074     return true;
1075   }
1076 
1077   assert(VR->getDecl()->hasLocalStorage());
1078   const LocationContext *LCtx = N->getLocationContext();
1079   return FrameSpace->getStackFrame() == LCtx->getStackFrame();
1080 }
1081 
1082 /// Show diagnostics for initializing or declaring a region \p R with a bad value.
1083 static void showBRDiagnostics(const char *action, llvm::raw_svector_ostream &os,
1084                               const MemRegion *R, SVal V, const DeclStmt *DS) {
1085   if (R->canPrintPretty()) {
1086     R->printPretty(os);
1087     os << " ";
1088   }
1089 
1090   if (V.getAs<loc::ConcreteInt>()) {
1091     bool b = false;
1092     if (R->isBoundable()) {
1093       if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
1094         if (TR->getValueType()->isObjCObjectPointerType()) {
1095           os << action << "nil";
1096           b = true;
1097         }
1098       }
1099     }
1100     if (!b)
1101       os << action << "a null pointer value";
1102 
1103   } else if (auto CVal = V.getAs<nonloc::ConcreteInt>()) {
1104     os << action << CVal->getValue();
1105   } else if (DS) {
1106     if (V.isUndef()) {
1107       if (isa<VarRegion>(R)) {
1108         const auto *VD = cast<VarDecl>(DS->getSingleDecl());
1109         if (VD->getInit()) {
1110           os << (R->canPrintPretty() ? "initialized" : "Initializing")
1111             << " to a garbage value";
1112         } else {
1113           os << (R->canPrintPretty() ? "declared" : "Declaring")
1114             << " without an initial value";
1115         }
1116       }
1117     } else {
1118       os << (R->canPrintPretty() ? "initialized" : "Initialized")
1119         << " here";
1120     }
1121   }
1122 }
1123 
1124 /// Display diagnostics for passing bad region as a parameter.
1125 static void showBRParamDiagnostics(llvm::raw_svector_ostream& os,
1126     const VarRegion *VR,
1127     SVal V) {
1128   const auto *Param = cast<ParmVarDecl>(VR->getDecl());
1129 
1130   os << "Passing ";
1131 
1132   if (V.getAs<loc::ConcreteInt>()) {
1133     if (Param->getType()->isObjCObjectPointerType())
1134       os << "nil object reference";
1135     else
1136       os << "null pointer value";
1137   } else if (V.isUndef()) {
1138     os << "uninitialized value";
1139   } else if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1140     os << "the value " << CI->getValue();
1141   } else {
1142     os << "value";
1143   }
1144 
1145   // Printed parameter indexes are 1-based, not 0-based.
1146   unsigned Idx = Param->getFunctionScopeIndex() + 1;
1147   os << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
1148   if (VR->canPrintPretty()) {
1149     os << " ";
1150     VR->printPretty(os);
1151   }
1152 }
1153 
1154 /// Show default diagnostics for storing bad region.
1155 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream& os,
1156     const MemRegion *R,
1157     SVal V) {
1158   if (V.getAs<loc::ConcreteInt>()) {
1159     bool b = false;
1160     if (R->isBoundable()) {
1161       if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
1162         if (TR->getValueType()->isObjCObjectPointerType()) {
1163           os << "nil object reference stored";
1164           b = true;
1165         }
1166       }
1167     }
1168     if (!b) {
1169       if (R->canPrintPretty())
1170         os << "Null pointer value stored";
1171       else
1172         os << "Storing null pointer value";
1173     }
1174 
1175   } else if (V.isUndef()) {
1176     if (R->canPrintPretty())
1177       os << "Uninitialized value stored";
1178     else
1179       os << "Storing uninitialized value";
1180 
1181   } else if (auto CV = V.getAs<nonloc::ConcreteInt>()) {
1182     if (R->canPrintPretty())
1183       os << "The value " << CV->getValue() << " is assigned";
1184     else
1185       os << "Assigning " << CV->getValue();
1186 
1187   } else {
1188     if (R->canPrintPretty())
1189       os << "Value assigned";
1190     else
1191       os << "Assigning value";
1192   }
1193 
1194   if (R->canPrintPretty()) {
1195     os << " to ";
1196     R->printPretty(os);
1197   }
1198 }
1199 
1200 std::shared_ptr<PathDiagnosticPiece>
1201 FindLastStoreBRVisitor::VisitNode(const ExplodedNode *Succ,
1202                                   BugReporterContext &BRC, BugReport &BR) {
1203   if (Satisfied)
1204     return nullptr;
1205 
1206   const ExplodedNode *StoreSite = nullptr;
1207   const ExplodedNode *Pred = Succ->getFirstPred();
1208   const Expr *InitE = nullptr;
1209   bool IsParam = false;
1210 
1211   // First see if we reached the declaration of the region.
1212   if (const auto *VR = dyn_cast<VarRegion>(R)) {
1213     if (isInitializationOfVar(Pred, VR)) {
1214       StoreSite = Pred;
1215       InitE = VR->getDecl()->getInit();
1216     }
1217   }
1218 
1219   // If this is a post initializer expression, initializing the region, we
1220   // should track the initializer expression.
1221   if (Optional<PostInitializer> PIP = Pred->getLocationAs<PostInitializer>()) {
1222     const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
1223     if (FieldReg && FieldReg == R) {
1224       StoreSite = Pred;
1225       InitE = PIP->getInitializer()->getInit();
1226     }
1227   }
1228 
1229   // Otherwise, see if this is the store site:
1230   // (1) Succ has this binding and Pred does not, i.e. this is
1231   //     where the binding first occurred.
1232   // (2) Succ has this binding and is a PostStore node for this region, i.e.
1233   //     the same binding was re-assigned here.
1234   if (!StoreSite) {
1235     if (Succ->getState()->getSVal(R) != V)
1236       return nullptr;
1237 
1238     if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) {
1239       Optional<PostStore> PS = Succ->getLocationAs<PostStore>();
1240       if (!PS || PS->getLocationValue() != R)
1241         return nullptr;
1242     }
1243 
1244     StoreSite = Succ;
1245 
1246     // If this is an assignment expression, we can track the value
1247     // being assigned.
1248     if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>())
1249       if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>())
1250         if (BO->isAssignmentOp())
1251           InitE = BO->getRHS();
1252 
1253     // If this is a call entry, the variable should be a parameter.
1254     // FIXME: Handle CXXThisRegion as well. (This is not a priority because
1255     // 'this' should never be NULL, but this visitor isn't just for NULL and
1256     // UndefinedVal.)
1257     if (Optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
1258       if (const auto *VR = dyn_cast<VarRegion>(R)) {
1259 
1260         const auto *Param = cast<ParmVarDecl>(VR->getDecl());
1261 
1262         ProgramStateManager &StateMgr = BRC.getStateManager();
1263         CallEventManager &CallMgr = StateMgr.getCallEventManager();
1264 
1265         CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
1266                                                 Succ->getState());
1267         InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
1268         IsParam = true;
1269       }
1270     }
1271 
1272     // If this is a CXXTempObjectRegion, the Expr responsible for its creation
1273     // is wrapped inside of it.
1274     if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
1275       InitE = TmpR->getExpr();
1276   }
1277 
1278   if (!StoreSite)
1279     return nullptr;
1280   Satisfied = true;
1281 
1282   // If we have an expression that provided the value, try to track where it
1283   // came from.
1284   if (InitE) {
1285     if (V.isUndef() ||
1286         V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) {
1287       if (!IsParam)
1288         InitE = InitE->IgnoreParenCasts();
1289       bugreporter::trackExpressionValue(StoreSite, InitE, BR,
1290                                    EnableNullFPSuppression);
1291     }
1292     ReturnVisitor::addVisitorIfNecessary(StoreSite, InitE->IgnoreParenCasts(),
1293                                          BR, EnableNullFPSuppression);
1294   }
1295 
1296   // Okay, we've found the binding. Emit an appropriate message.
1297   SmallString<256> sbuf;
1298   llvm::raw_svector_ostream os(sbuf);
1299 
1300   if (Optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
1301     const Stmt *S = PS->getStmt();
1302     const char *action = nullptr;
1303     const auto *DS = dyn_cast<DeclStmt>(S);
1304     const auto *VR = dyn_cast<VarRegion>(R);
1305 
1306     if (DS) {
1307       action = R->canPrintPretty() ? "initialized to " :
1308                                      "Initializing to ";
1309     } else if (isa<BlockExpr>(S)) {
1310       action = R->canPrintPretty() ? "captured by block as " :
1311                                      "Captured by block as ";
1312       if (VR) {
1313         // See if we can get the BlockVarRegion.
1314         ProgramStateRef State = StoreSite->getState();
1315         SVal V = StoreSite->getSVal(S);
1316         if (const auto *BDR =
1317               dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
1318           if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
1319             if (auto KV = State->getSVal(OriginalR).getAs<KnownSVal>())
1320               BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
1321                   *KV, OriginalR, EnableNullFPSuppression));
1322           }
1323         }
1324       }
1325     }
1326     if (action)
1327       showBRDiagnostics(action, os, R, V, DS);
1328 
1329   } else if (StoreSite->getLocation().getAs<CallEnter>()) {
1330     if (const auto *VR = dyn_cast<VarRegion>(R))
1331       showBRParamDiagnostics(os, VR, V);
1332   }
1333 
1334   if (os.str().empty())
1335     showBRDefaultDiagnostics(os, R, V);
1336 
1337   // Construct a new PathDiagnosticPiece.
1338   ProgramPoint P = StoreSite->getLocation();
1339   PathDiagnosticLocation L;
1340   if (P.getAs<CallEnter>() && InitE)
1341     L = PathDiagnosticLocation(InitE, BRC.getSourceManager(),
1342                                P.getLocationContext());
1343 
1344   if (!L.isValid() || !L.asLocation().isValid())
1345     L = PathDiagnosticLocation::create(P, BRC.getSourceManager());
1346 
1347   if (!L.isValid() || !L.asLocation().isValid())
1348     return nullptr;
1349 
1350   return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
1351 }
1352 
1353 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1354   static int tag = 0;
1355   ID.AddPointer(&tag);
1356   ID.AddBoolean(Assumption);
1357   ID.Add(Constraint);
1358 }
1359 
1360 /// Return the tag associated with this visitor.  This tag will be used
1361 /// to make all PathDiagnosticPieces created by this visitor.
1362 const char *TrackConstraintBRVisitor::getTag() {
1363   return "TrackConstraintBRVisitor";
1364 }
1365 
1366 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
1367   if (IsZeroCheck)
1368     return N->getState()->isNull(Constraint).isUnderconstrained();
1369   return (bool)N->getState()->assume(Constraint, !Assumption);
1370 }
1371 
1372 std::shared_ptr<PathDiagnosticPiece>
1373 TrackConstraintBRVisitor::VisitNode(const ExplodedNode *N,
1374                                     BugReporterContext &BRC, BugReport &) {
1375   const ExplodedNode *PrevN = N->getFirstPred();
1376   if (IsSatisfied)
1377     return nullptr;
1378 
1379   // Start tracking after we see the first state in which the value is
1380   // constrained.
1381   if (!IsTrackingTurnedOn)
1382     if (!isUnderconstrained(N))
1383       IsTrackingTurnedOn = true;
1384   if (!IsTrackingTurnedOn)
1385     return nullptr;
1386 
1387   // Check if in the previous state it was feasible for this constraint
1388   // to *not* be true.
1389   if (isUnderconstrained(PrevN)) {
1390     IsSatisfied = true;
1391 
1392     // As a sanity check, make sure that the negation of the constraint
1393     // was infeasible in the current state.  If it is feasible, we somehow
1394     // missed the transition point.
1395     assert(!isUnderconstrained(N));
1396 
1397     // We found the transition point for the constraint.  We now need to
1398     // pretty-print the constraint. (work-in-progress)
1399     SmallString<64> sbuf;
1400     llvm::raw_svector_ostream os(sbuf);
1401 
1402     if (Constraint.getAs<Loc>()) {
1403       os << "Assuming pointer value is ";
1404       os << (Assumption ? "non-null" : "null");
1405     }
1406 
1407     if (os.str().empty())
1408       return nullptr;
1409 
1410     // Construct a new PathDiagnosticPiece.
1411     ProgramPoint P = N->getLocation();
1412     PathDiagnosticLocation L =
1413       PathDiagnosticLocation::create(P, BRC.getSourceManager());
1414     if (!L.isValid())
1415       return nullptr;
1416 
1417     auto X = std::make_shared<PathDiagnosticEventPiece>(L, os.str());
1418     X->setTag(getTag());
1419     return std::move(X);
1420   }
1421 
1422   return nullptr;
1423 }
1424 
1425 SuppressInlineDefensiveChecksVisitor::
1426 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N)
1427     : V(Value) {
1428   // Check if the visitor is disabled.
1429   AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
1430   if (!Options.ShouldSuppressInlinedDefensiveChecks)
1431     IsSatisfied = true;
1432 
1433   assert(N->getState()->isNull(V).isConstrainedTrue() &&
1434          "The visitor only tracks the cases where V is constrained to 0");
1435 }
1436 
1437 void SuppressInlineDefensiveChecksVisitor::Profile(
1438     llvm::FoldingSetNodeID &ID) const {
1439   static int id = 0;
1440   ID.AddPointer(&id);
1441   ID.Add(V);
1442 }
1443 
1444 const char *SuppressInlineDefensiveChecksVisitor::getTag() {
1445   return "IDCVisitor";
1446 }
1447 
1448 std::shared_ptr<PathDiagnosticPiece>
1449 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ,
1450                                                 BugReporterContext &BRC,
1451                                                 BugReport &BR) {
1452   const ExplodedNode *Pred = Succ->getFirstPred();
1453   if (IsSatisfied)
1454     return nullptr;
1455 
1456   // Start tracking after we see the first state in which the value is null.
1457   if (!IsTrackingTurnedOn)
1458     if (Succ->getState()->isNull(V).isConstrainedTrue())
1459       IsTrackingTurnedOn = true;
1460   if (!IsTrackingTurnedOn)
1461     return nullptr;
1462 
1463   // Check if in the previous state it was feasible for this value
1464   // to *not* be null.
1465   if (!Pred->getState()->isNull(V).isConstrainedTrue()) {
1466     IsSatisfied = true;
1467 
1468     assert(Succ->getState()->isNull(V).isConstrainedTrue());
1469 
1470     // Check if this is inlined defensive checks.
1471     const LocationContext *CurLC =Succ->getLocationContext();
1472     const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
1473     if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
1474       BR.markInvalid("Suppress IDC", CurLC);
1475       return nullptr;
1476     }
1477 
1478     // Treat defensive checks in function-like macros as if they were an inlined
1479     // defensive check. If the bug location is not in a macro and the
1480     // terminator for the current location is in a macro then suppress the
1481     // warning.
1482     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
1483 
1484     if (!BugPoint)
1485       return nullptr;
1486 
1487     ProgramPoint CurPoint = Succ->getLocation();
1488     const Stmt *CurTerminatorStmt = nullptr;
1489     if (auto BE = CurPoint.getAs<BlockEdge>()) {
1490       CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
1491     } else if (auto SP = CurPoint.getAs<StmtPoint>()) {
1492       const Stmt *CurStmt = SP->getStmt();
1493       if (!CurStmt->getBeginLoc().isMacroID())
1494         return nullptr;
1495 
1496       CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap();
1497       CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminator();
1498     } else {
1499       return nullptr;
1500     }
1501 
1502     if (!CurTerminatorStmt)
1503       return nullptr;
1504 
1505     SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
1506     if (TerminatorLoc.isMacroID()) {
1507       SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
1508 
1509       // Suppress reports unless we are in that same macro.
1510       if (!BugLoc.isMacroID() ||
1511           getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
1512         BR.markInvalid("Suppress Macro IDC", CurLC);
1513       }
1514       return nullptr;
1515     }
1516   }
1517   return nullptr;
1518 }
1519 
1520 static const MemRegion *getLocationRegionIfReference(const Expr *E,
1521                                                      const ExplodedNode *N) {
1522   if (const auto *DR = dyn_cast<DeclRefExpr>(E)) {
1523     if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1524       if (!VD->getType()->isReferenceType())
1525         return nullptr;
1526       ProgramStateManager &StateMgr = N->getState()->getStateManager();
1527       MemRegionManager &MRMgr = StateMgr.getRegionManager();
1528       return MRMgr.getVarRegion(VD, N->getLocationContext());
1529     }
1530   }
1531 
1532   // FIXME: This does not handle other kinds of null references,
1533   // for example, references from FieldRegions:
1534   //   struct Wrapper { int &ref; };
1535   //   Wrapper w = { *(int *)0 };
1536   //   w.ref = 1;
1537 
1538   return nullptr;
1539 }
1540 
1541 /// \return A subexpression of {@code Ex} which represents the
1542 /// expression-of-interest.
1543 static const Expr *peelOffOuterExpr(const Expr *Ex,
1544                                     const ExplodedNode *N) {
1545   Ex = Ex->IgnoreParenCasts();
1546   if (const auto *FE = dyn_cast<FullExpr>(Ex))
1547     return peelOffOuterExpr(FE->getSubExpr(), N);
1548   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
1549     return peelOffOuterExpr(OVE->getSourceExpr(), N);
1550   if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
1551     const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
1552     if (PropRef && PropRef->isMessagingGetter()) {
1553       const Expr *GetterMessageSend =
1554           POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
1555       assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
1556       return peelOffOuterExpr(GetterMessageSend, N);
1557     }
1558   }
1559 
1560   // Peel off the ternary operator.
1561   if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
1562     // Find a node where the branching occurred and find out which branch
1563     // we took (true/false) by looking at the ExplodedGraph.
1564     const ExplodedNode *NI = N;
1565     do {
1566       ProgramPoint ProgPoint = NI->getLocation();
1567       if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
1568         const CFGBlock *srcBlk = BE->getSrc();
1569         if (const Stmt *term = srcBlk->getTerminator()) {
1570           if (term == CO) {
1571             bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
1572             if (TookTrueBranch)
1573               return peelOffOuterExpr(CO->getTrueExpr(), N);
1574             else
1575               return peelOffOuterExpr(CO->getFalseExpr(), N);
1576           }
1577         }
1578       }
1579       NI = NI->getFirstPred();
1580     } while (NI);
1581   }
1582 
1583   if (auto *BO = dyn_cast<BinaryOperator>(Ex))
1584     if (const Expr *SubEx = peelOffPointerArithmetic(BO))
1585       return peelOffOuterExpr(SubEx, N);
1586 
1587   if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
1588     if (UO->getOpcode() == UO_LNot)
1589       return peelOffOuterExpr(UO->getSubExpr(), N);
1590 
1591     // FIXME: There's a hack in our Store implementation that always computes
1592     // field offsets around null pointers as if they are always equal to 0.
1593     // The idea here is to report accesses to fields as null dereferences
1594     // even though the pointer value that's being dereferenced is actually
1595     // the offset of the field rather than exactly 0.
1596     // See the FIXME in StoreManager's getLValueFieldOrIvar() method.
1597     // This code interacts heavily with this hack; otherwise the value
1598     // would not be null at all for most fields, so we'd be unable to track it.
1599     if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
1600       if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
1601         return peelOffOuterExpr(DerefEx, N);
1602   }
1603 
1604   return Ex;
1605 }
1606 
1607 /// Find the ExplodedNode where the lvalue (the value of 'Ex')
1608 /// was computed.
1609 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N,
1610                                                  const Expr *Inner) {
1611   while (N) {
1612     if (PathDiagnosticLocation::getStmt(N) == Inner)
1613       return N;
1614     N = N->getFirstPred();
1615   }
1616   return N;
1617 }
1618 
1619 bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode,
1620                                        const Expr *E, BugReport &report,
1621                                        bool EnableNullFPSuppression) {
1622   if (!E || !InputNode)
1623     return false;
1624 
1625   const Expr *Inner = peelOffOuterExpr(E, InputNode);
1626   const ExplodedNode *LVNode = findNodeForExpression(InputNode, Inner);
1627   if (!LVNode)
1628     return false;
1629 
1630   ProgramStateRef LVState = LVNode->getState();
1631 
1632   // The message send could be nil due to the receiver being nil.
1633   // At this point in the path, the receiver should be live since we are at the
1634   // message send expr. If it is nil, start tracking it.
1635   if (const Expr *Receiver = NilReceiverBRVisitor::getNilReceiver(Inner, LVNode))
1636     trackExpressionValue(LVNode, Receiver, report, EnableNullFPSuppression);
1637 
1638   // See if the expression we're interested refers to a variable.
1639   // If so, we can track both its contents and constraints on its value.
1640   if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
1641     SVal LVal = LVNode->getSVal(Inner);
1642 
1643     const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
1644     bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
1645 
1646     // If this is a C++ reference to a null pointer, we are tracking the
1647     // pointer. In addition, we should find the store at which the reference
1648     // got initialized.
1649     if (RR && !LVIsNull)
1650       if (auto KV = LVal.getAs<KnownSVal>())
1651         report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
1652               *KV, RR, EnableNullFPSuppression));
1653 
1654     // In case of C++ references, we want to differentiate between a null
1655     // reference and reference to null pointer.
1656     // If the LVal is null, check if we are dealing with null reference.
1657     // For those, we want to track the location of the reference.
1658     const MemRegion *R = (RR && LVIsNull) ? RR :
1659         LVNode->getSVal(Inner).getAsRegion();
1660 
1661     if (R) {
1662 
1663       // Mark both the variable region and its contents as interesting.
1664       SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
1665       report.addVisitor(
1666           llvm::make_unique<NoStoreFuncVisitor>(cast<SubRegion>(R)));
1667 
1668       MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
1669           LVNode, R, EnableNullFPSuppression, report, V);
1670 
1671       report.markInteresting(V);
1672       report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(R));
1673 
1674       // If the contents are symbolic, find out when they became null.
1675       if (V.getAsLocSymbol(/*IncludeBaseRegions*/ true))
1676         report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>(
1677               V.castAs<DefinedSVal>(), false));
1678 
1679       // Add visitor, which will suppress inline defensive checks.
1680       if (auto DV = V.getAs<DefinedSVal>())
1681         if (!DV->isZeroConstant() && LVState->isNull(*DV).isConstrainedTrue() &&
1682             EnableNullFPSuppression)
1683           report.addVisitor(
1684               llvm::make_unique<SuppressInlineDefensiveChecksVisitor>(*DV,
1685                                                                       LVNode));
1686 
1687       if (auto KV = V.getAs<KnownSVal>())
1688         report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
1689               *KV, R, EnableNullFPSuppression));
1690       return true;
1691     }
1692   }
1693 
1694   // If the expression is not an "lvalue expression", we can still
1695   // track the constraints on its contents.
1696   SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
1697 
1698   ReturnVisitor::addVisitorIfNecessary(
1699     LVNode, Inner, report, EnableNullFPSuppression);
1700 
1701   // Is it a symbolic value?
1702   if (auto L = V.getAs<loc::MemRegionVal>()) {
1703     report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(L->getRegion()));
1704 
1705     // FIXME: this is a hack for fixing a later crash when attempting to
1706     // dereference a void* pointer.
1707     // We should not try to dereference pointers at all when we don't care
1708     // what is written inside the pointer.
1709     bool CanDereference = true;
1710     if (const auto *SR = dyn_cast<SymbolicRegion>(L->getRegion()))
1711       if (SR->getSymbol()->getType()->getPointeeType()->isVoidType())
1712         CanDereference = false;
1713 
1714     // At this point we are dealing with the region's LValue.
1715     // However, if the rvalue is a symbolic region, we should track it as well.
1716     // Try to use the correct type when looking up the value.
1717     SVal RVal;
1718     if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
1719       RVal = LVState->getRawSVal(L.getValue(), Inner->getType());
1720     } else if (CanDereference) {
1721       RVal = LVState->getSVal(L->getRegion());
1722     }
1723 
1724     if (CanDereference)
1725       if (auto KV = RVal.getAs<KnownSVal>())
1726         report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
1727             *KV, L->getRegion(), EnableNullFPSuppression));
1728 
1729     const MemRegion *RegionRVal = RVal.getAsRegion();
1730     if (RegionRVal && isa<SymbolicRegion>(RegionRVal)) {
1731       report.markInteresting(RegionRVal);
1732       report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>(
1733             loc::MemRegionVal(RegionRVal), /*assumption=*/false));
1734     }
1735   }
1736   return true;
1737 }
1738 
1739 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S,
1740                                                  const ExplodedNode *N) {
1741   const auto *ME = dyn_cast<ObjCMessageExpr>(S);
1742   if (!ME)
1743     return nullptr;
1744   if (const Expr *Receiver = ME->getInstanceReceiver()) {
1745     ProgramStateRef state = N->getState();
1746     SVal V = N->getSVal(Receiver);
1747     if (state->isNull(V).isConstrainedTrue())
1748       return Receiver;
1749   }
1750   return nullptr;
1751 }
1752 
1753 std::shared_ptr<PathDiagnosticPiece>
1754 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N,
1755                                 BugReporterContext &BRC, BugReport &BR) {
1756   Optional<PreStmt> P = N->getLocationAs<PreStmt>();
1757   if (!P)
1758     return nullptr;
1759 
1760   const Stmt *S = P->getStmt();
1761   const Expr *Receiver = getNilReceiver(S, N);
1762   if (!Receiver)
1763     return nullptr;
1764 
1765   llvm::SmallString<256> Buf;
1766   llvm::raw_svector_ostream OS(Buf);
1767 
1768   if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1769     OS << "'";
1770     ME->getSelector().print(OS);
1771     OS << "' not called";
1772   }
1773   else {
1774     OS << "No method is called";
1775   }
1776   OS << " because the receiver is nil";
1777 
1778   // The receiver was nil, and hence the method was skipped.
1779   // Register a BugReporterVisitor to issue a message telling us how
1780   // the receiver was null.
1781   bugreporter::trackExpressionValue(N, Receiver, BR,
1782                                /*EnableNullFPSuppression*/ false);
1783   // Issue a message saying that the method was skipped.
1784   PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
1785                                      N->getLocationContext());
1786   return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
1787 }
1788 
1789 // Registers every VarDecl inside a Stmt with a last store visitor.
1790 void FindLastStoreBRVisitor::registerStatementVarDecls(BugReport &BR,
1791                                                 const Stmt *S,
1792                                                 bool EnableNullFPSuppression) {
1793   const ExplodedNode *N = BR.getErrorNode();
1794   std::deque<const Stmt *> WorkList;
1795   WorkList.push_back(S);
1796 
1797   while (!WorkList.empty()) {
1798     const Stmt *Head = WorkList.front();
1799     WorkList.pop_front();
1800 
1801     ProgramStateManager &StateMgr = N->getState()->getStateManager();
1802 
1803     if (const auto *DR = dyn_cast<DeclRefExpr>(Head)) {
1804       if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1805         const VarRegion *R =
1806         StateMgr.getRegionManager().getVarRegion(VD, N->getLocationContext());
1807 
1808         // What did we load?
1809         SVal V = N->getSVal(S);
1810 
1811         if (V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) {
1812           // Register a new visitor with the BugReport.
1813           BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
1814               V.castAs<KnownSVal>(), R, EnableNullFPSuppression));
1815         }
1816       }
1817     }
1818 
1819     for (const Stmt *SubStmt : Head->children())
1820       WorkList.push_back(SubStmt);
1821   }
1822 }
1823 
1824 //===----------------------------------------------------------------------===//
1825 // Visitor that tries to report interesting diagnostics from conditions.
1826 //===----------------------------------------------------------------------===//
1827 
1828 /// Return the tag associated with this visitor.  This tag will be used
1829 /// to make all PathDiagnosticPieces created by this visitor.
1830 const char *ConditionBRVisitor::getTag() {
1831   return "ConditionBRVisitor";
1832 }
1833 
1834 std::shared_ptr<PathDiagnosticPiece>
1835 ConditionBRVisitor::VisitNode(const ExplodedNode *N,
1836                               BugReporterContext &BRC, BugReport &BR) {
1837   auto piece = VisitNodeImpl(N, BRC, BR);
1838   if (piece) {
1839     piece->setTag(getTag());
1840     if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
1841       ev->setPrunable(true, /* override */ false);
1842   }
1843   return piece;
1844 }
1845 
1846 std::shared_ptr<PathDiagnosticPiece>
1847 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
1848                                   BugReporterContext &BRC, BugReport &BR) {
1849   ProgramPoint progPoint = N->getLocation();
1850 
1851   // If an assumption was made on a branch, it should be caught
1852   // here by looking at the state transition.
1853   if (Optional<BlockEdge> BE = progPoint.getAs<BlockEdge>()) {
1854     const CFGBlock *srcBlk = BE->getSrc();
1855     if (const Stmt *term = srcBlk->getTerminator())
1856       return VisitTerminator(term, N, srcBlk, BE->getDst(), BR, BRC);
1857     return nullptr;
1858   }
1859 
1860   if (Optional<PostStmt> PS = progPoint.getAs<PostStmt>()) {
1861     const std::pair<const ProgramPointTag *, const ProgramPointTag *> &tags =
1862         ExprEngine::geteagerlyAssumeBinOpBifurcationTags();
1863 
1864     const ProgramPointTag *tag = PS->getTag();
1865     if (tag == tags.first)
1866       return VisitTrueTest(cast<Expr>(PS->getStmt()), true,
1867                            BRC, BR, N);
1868     if (tag == tags.second)
1869       return VisitTrueTest(cast<Expr>(PS->getStmt()), false,
1870                            BRC, BR, N);
1871 
1872     return nullptr;
1873   }
1874 
1875   return nullptr;
1876 }
1877 
1878 std::shared_ptr<PathDiagnosticPiece> ConditionBRVisitor::VisitTerminator(
1879     const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
1880     const CFGBlock *dstBlk, BugReport &R, BugReporterContext &BRC) {
1881   const Expr *Cond = nullptr;
1882 
1883   // In the code below, Term is a CFG terminator and Cond is a branch condition
1884   // expression upon which the decision is made on this terminator.
1885   //
1886   // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
1887   // and "x == 0" is the respective condition.
1888   //
1889   // Another example: in "if (x && y)", we've got two terminators and two
1890   // conditions due to short-circuit nature of operator "&&":
1891   // 1. The "if (x && y)" statement is a terminator,
1892   //    and "y" is the respective condition.
1893   // 2. Also "x && ..." is another terminator,
1894   //    and "x" is its condition.
1895 
1896   switch (Term->getStmtClass()) {
1897   // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
1898   // more tricky because there are more than two branches to account for.
1899   default:
1900     return nullptr;
1901   case Stmt::IfStmtClass:
1902     Cond = cast<IfStmt>(Term)->getCond();
1903     break;
1904   case Stmt::ConditionalOperatorClass:
1905     Cond = cast<ConditionalOperator>(Term)->getCond();
1906     break;
1907   case Stmt::BinaryOperatorClass:
1908     // When we encounter a logical operator (&& or ||) as a CFG terminator,
1909     // then the condition is actually its LHS; otherwise, we'd encounter
1910     // the parent, such as if-statement, as a terminator.
1911     const auto *BO = cast<BinaryOperator>(Term);
1912     assert(BO->isLogicalOp() &&
1913            "CFG terminator is not a short-circuit operator!");
1914     Cond = BO->getLHS();
1915     break;
1916   }
1917 
1918   Cond = Cond->IgnoreParens();
1919 
1920   // However, when we encounter a logical operator as a branch condition,
1921   // then the condition is actually its RHS, because LHS would be
1922   // the condition for the logical operator terminator.
1923   while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
1924     if (!InnerBO->isLogicalOp())
1925       break;
1926     Cond = InnerBO->getRHS()->IgnoreParens();
1927   }
1928 
1929   assert(Cond);
1930   assert(srcBlk->succ_size() == 2);
1931   const bool tookTrue = *(srcBlk->succ_begin()) == dstBlk;
1932   return VisitTrueTest(Cond, tookTrue, BRC, R, N);
1933 }
1934 
1935 std::shared_ptr<PathDiagnosticPiece>
1936 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, bool tookTrue,
1937                                   BugReporterContext &BRC, BugReport &R,
1938                                   const ExplodedNode *N) {
1939   ProgramStateRef CurrentState = N->getState();
1940   ProgramStateRef PreviousState = N->getFirstPred()->getState();
1941   const LocationContext *LCtx = N->getLocationContext();
1942 
1943   // If the constraint information is changed between the current and the
1944   // previous program state we assuming the newly seen constraint information.
1945   // If we cannot evaluate the condition (and the constraints are the same)
1946   // the analyzer has no information about the value and just assuming it.
1947   if (BRC.getStateManager().haveEqualConstraints(CurrentState, PreviousState) &&
1948       CurrentState->getSVal(Cond, LCtx).isValid())
1949     return nullptr;
1950 
1951   // These will be modified in code below, but we need to preserve the original
1952   //  values in case we want to throw the generic message.
1953   const Expr *CondTmp = Cond;
1954   bool tookTrueTmp = tookTrue;
1955 
1956   while (true) {
1957     CondTmp = CondTmp->IgnoreParenCasts();
1958     switch (CondTmp->getStmtClass()) {
1959       default:
1960         break;
1961       case Stmt::BinaryOperatorClass:
1962         if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
1963                                    tookTrueTmp, BRC, R, N))
1964           return P;
1965         break;
1966       case Stmt::DeclRefExprClass:
1967         if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
1968                                    tookTrueTmp, BRC, R, N))
1969           return P;
1970         break;
1971       case Stmt::UnaryOperatorClass: {
1972         const auto *UO = cast<UnaryOperator>(CondTmp);
1973         if (UO->getOpcode() == UO_LNot) {
1974           tookTrueTmp = !tookTrueTmp;
1975           CondTmp = UO->getSubExpr();
1976           continue;
1977         }
1978         break;
1979       }
1980     }
1981     break;
1982   }
1983 
1984   // Condition too complex to explain? Just say something so that the user
1985   // knew we've made some path decision at this point.
1986   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
1987   if (!Loc.isValid() || !Loc.asLocation().isValid())
1988     return nullptr;
1989 
1990   return std::make_shared<PathDiagnosticEventPiece>(
1991       Loc, tookTrue ? GenericTrueMessage : GenericFalseMessage);
1992 }
1993 
1994 bool ConditionBRVisitor::patternMatch(const Expr *Ex,
1995                                       const Expr *ParentEx,
1996                                       raw_ostream &Out,
1997                                       BugReporterContext &BRC,
1998                                       BugReport &report,
1999                                       const ExplodedNode *N,
2000                                       Optional<bool> &prunable) {
2001   const Expr *OriginalExpr = Ex;
2002   Ex = Ex->IgnoreParenCasts();
2003 
2004   if (isa<GNUNullExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
2005       isa<CXXBoolLiteralExpr>(Ex) || isa<IntegerLiteral>(Ex) ||
2006       isa<FloatingLiteral>(Ex)) {
2007     // Use heuristics to determine if the expression is a macro
2008     // expanding to a literal and if so, use the macro's name.
2009     SourceLocation BeginLoc = OriginalExpr->getBeginLoc();
2010     SourceLocation EndLoc = OriginalExpr->getEndLoc();
2011     if (BeginLoc.isMacroID() && EndLoc.isMacroID()) {
2012       SourceManager &SM = BRC.getSourceManager();
2013       const LangOptions &LO = BRC.getASTContext().getLangOpts();
2014       if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) &&
2015           Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) {
2016         CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO);
2017         Out << Lexer::getSourceText(R, SM, LO);
2018         return false;
2019       }
2020     }
2021   }
2022 
2023   if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) {
2024     const bool quotes = isa<VarDecl>(DR->getDecl());
2025     if (quotes) {
2026       Out << '\'';
2027       const LocationContext *LCtx = N->getLocationContext();
2028       const ProgramState *state = N->getState().get();
2029       if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
2030                                                 LCtx).getAsRegion()) {
2031         if (report.isInteresting(R))
2032           prunable = false;
2033         else {
2034           const ProgramState *state = N->getState().get();
2035           SVal V = state->getSVal(R);
2036           if (report.isInteresting(V))
2037             prunable = false;
2038         }
2039       }
2040     }
2041     Out << DR->getDecl()->getDeclName().getAsString();
2042     if (quotes)
2043       Out << '\'';
2044     return quotes;
2045   }
2046 
2047   if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) {
2048     QualType OriginalTy = OriginalExpr->getType();
2049     if (OriginalTy->isPointerType()) {
2050       if (IL->getValue() == 0) {
2051         Out << "null";
2052         return false;
2053       }
2054     }
2055     else if (OriginalTy->isObjCObjectPointerType()) {
2056       if (IL->getValue() == 0) {
2057         Out << "nil";
2058         return false;
2059       }
2060     }
2061 
2062     Out << IL->getValue();
2063     return false;
2064   }
2065 
2066   return false;
2067 }
2068 
2069 std::shared_ptr<PathDiagnosticPiece>
2070 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const BinaryOperator *BExpr,
2071                                   const bool tookTrue, BugReporterContext &BRC,
2072                                   BugReport &R, const ExplodedNode *N) {
2073   bool shouldInvert = false;
2074   Optional<bool> shouldPrune;
2075 
2076   SmallString<128> LhsString, RhsString;
2077   {
2078     llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
2079     const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS,
2080                                        BRC, R, N, shouldPrune);
2081     const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS,
2082                                        BRC, R, N, shouldPrune);
2083 
2084     shouldInvert = !isVarLHS && isVarRHS;
2085   }
2086 
2087   BinaryOperator::Opcode Op = BExpr->getOpcode();
2088 
2089   if (BinaryOperator::isAssignmentOp(Op)) {
2090     // For assignment operators, all that we care about is that the LHS
2091     // evaluates to "true" or "false".
2092     return VisitConditionVariable(LhsString, BExpr->getLHS(), tookTrue,
2093                                   BRC, R, N);
2094   }
2095 
2096   // For non-assignment operations, we require that we can understand
2097   // both the LHS and RHS.
2098   if (LhsString.empty() || RhsString.empty() ||
2099       !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp)
2100     return nullptr;
2101 
2102   // Should we invert the strings if the LHS is not a variable name?
2103   SmallString<256> buf;
2104   llvm::raw_svector_ostream Out(buf);
2105   Out << "Assuming " << (shouldInvert ? RhsString : LhsString) << " is ";
2106 
2107   // Do we need to invert the opcode?
2108   if (shouldInvert)
2109     switch (Op) {
2110       default: break;
2111       case BO_LT: Op = BO_GT; break;
2112       case BO_GT: Op = BO_LT; break;
2113       case BO_LE: Op = BO_GE; break;
2114       case BO_GE: Op = BO_LE; break;
2115     }
2116 
2117   if (!tookTrue)
2118     switch (Op) {
2119       case BO_EQ: Op = BO_NE; break;
2120       case BO_NE: Op = BO_EQ; break;
2121       case BO_LT: Op = BO_GE; break;
2122       case BO_GT: Op = BO_LE; break;
2123       case BO_LE: Op = BO_GT; break;
2124       case BO_GE: Op = BO_LT; break;
2125       default:
2126         return nullptr;
2127     }
2128 
2129   switch (Op) {
2130     case BO_EQ:
2131       Out << "equal to ";
2132       break;
2133     case BO_NE:
2134       Out << "not equal to ";
2135       break;
2136     default:
2137       Out << BinaryOperator::getOpcodeStr(Op) << ' ';
2138       break;
2139   }
2140 
2141   Out << (shouldInvert ? LhsString : RhsString);
2142   const LocationContext *LCtx = N->getLocationContext();
2143   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2144   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
2145   if (shouldPrune.hasValue())
2146     event->setPrunable(shouldPrune.getValue());
2147   return event;
2148 }
2149 
2150 std::shared_ptr<PathDiagnosticPiece> ConditionBRVisitor::VisitConditionVariable(
2151     StringRef LhsString, const Expr *CondVarExpr, const bool tookTrue,
2152     BugReporterContext &BRC, BugReport &report, const ExplodedNode *N) {
2153   // FIXME: If there's already a constraint tracker for this variable,
2154   // we shouldn't emit anything here (c.f. the double note in
2155   // test/Analysis/inlining/path-notes.c)
2156   SmallString<256> buf;
2157   llvm::raw_svector_ostream Out(buf);
2158   Out << "Assuming " << LhsString << " is ";
2159 
2160   QualType Ty = CondVarExpr->getType();
2161 
2162   if (Ty->isPointerType())
2163     Out << (tookTrue ? "not null" : "null");
2164   else if (Ty->isObjCObjectPointerType())
2165     Out << (tookTrue ? "not nil" : "nil");
2166   else if (Ty->isBooleanType())
2167     Out << (tookTrue ? "true" : "false");
2168   else if (Ty->isIntegralOrEnumerationType())
2169     Out << (tookTrue ? "non-zero" : "zero");
2170   else
2171     return nullptr;
2172 
2173   const LocationContext *LCtx = N->getLocationContext();
2174   PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
2175   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
2176 
2177   if (const auto *DR = dyn_cast<DeclRefExpr>(CondVarExpr)) {
2178     if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) {
2179       const ProgramState *state = N->getState().get();
2180       if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) {
2181         if (report.isInteresting(R))
2182           event->setPrunable(false);
2183       }
2184     }
2185   }
2186 
2187   return event;
2188 }
2189 
2190 std::shared_ptr<PathDiagnosticPiece>
2191 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const DeclRefExpr *DR,
2192                                   const bool tookTrue, BugReporterContext &BRC,
2193                                   BugReport &report, const ExplodedNode *N) {
2194   const auto *VD = dyn_cast<VarDecl>(DR->getDecl());
2195   if (!VD)
2196     return nullptr;
2197 
2198   SmallString<256> Buf;
2199   llvm::raw_svector_ostream Out(Buf);
2200 
2201   Out << "Assuming '" << VD->getDeclName() << "' is ";
2202 
2203   QualType VDTy = VD->getType();
2204 
2205   if (VDTy->isPointerType())
2206     Out << (tookTrue ? "non-null" : "null");
2207   else if (VDTy->isObjCObjectPointerType())
2208     Out << (tookTrue ? "non-nil" : "nil");
2209   else if (VDTy->isScalarType())
2210     Out << (tookTrue ? "not equal to 0" : "0");
2211   else
2212     return nullptr;
2213 
2214   const LocationContext *LCtx = N->getLocationContext();
2215   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2216   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
2217 
2218   const ProgramState *state = N->getState().get();
2219   if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) {
2220     if (report.isInteresting(R))
2221       event->setPrunable(false);
2222     else {
2223       SVal V = state->getSVal(R);
2224       if (report.isInteresting(V))
2225         event->setPrunable(false);
2226     }
2227   }
2228   return std::move(event);
2229 }
2230 
2231 const char *const ConditionBRVisitor::GenericTrueMessage =
2232     "Assuming the condition is true";
2233 const char *const ConditionBRVisitor::GenericFalseMessage =
2234     "Assuming the condition is false";
2235 
2236 bool ConditionBRVisitor::isPieceMessageGeneric(
2237     const PathDiagnosticPiece *Piece) {
2238   return Piece->getString() == GenericTrueMessage ||
2239          Piece->getString() == GenericFalseMessage;
2240 }
2241 
2242 void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor(
2243     BugReporterContext &BRC, const ExplodedNode *N, BugReport &BR) {
2244   // Here we suppress false positives coming from system headers. This list is
2245   // based on known issues.
2246   AnalyzerOptions &Options = BRC.getAnalyzerOptions();
2247   const Decl *D = N->getLocationContext()->getDecl();
2248 
2249   if (AnalysisDeclContext::isInStdNamespace(D)) {
2250     // Skip reports within the 'std' namespace. Although these can sometimes be
2251     // the user's fault, we currently don't report them very well, and
2252     // Note that this will not help for any other data structure libraries, like
2253     // TR1, Boost, or llvm/ADT.
2254     if (Options.ShouldSuppressFromCXXStandardLibrary) {
2255       BR.markInvalid(getTag(), nullptr);
2256       return;
2257     } else {
2258       // If the complete 'std' suppression is not enabled, suppress reports
2259       // from the 'std' namespace that are known to produce false positives.
2260 
2261       // The analyzer issues a false use-after-free when std::list::pop_front
2262       // or std::list::pop_back are called multiple times because we cannot
2263       // reason about the internal invariants of the data structure.
2264       if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
2265         const CXXRecordDecl *CD = MD->getParent();
2266         if (CD->getName() == "list") {
2267           BR.markInvalid(getTag(), nullptr);
2268           return;
2269         }
2270       }
2271 
2272       // The analyzer issues a false positive when the constructor of
2273       // std::__independent_bits_engine from algorithms is used.
2274       if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) {
2275         const CXXRecordDecl *CD = MD->getParent();
2276         if (CD->getName() == "__independent_bits_engine") {
2277           BR.markInvalid(getTag(), nullptr);
2278           return;
2279         }
2280       }
2281 
2282       for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
2283            LCtx = LCtx->getParent()) {
2284         const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
2285         if (!MD)
2286           continue;
2287 
2288         const CXXRecordDecl *CD = MD->getParent();
2289         // The analyzer issues a false positive on
2290         //   std::basic_string<uint8_t> v; v.push_back(1);
2291         // and
2292         //   std::u16string s; s += u'a';
2293         // because we cannot reason about the internal invariants of the
2294         // data structure.
2295         if (CD->getName() == "basic_string") {
2296           BR.markInvalid(getTag(), nullptr);
2297           return;
2298         }
2299 
2300         // The analyzer issues a false positive on
2301         //    std::shared_ptr<int> p(new int(1)); p = nullptr;
2302         // because it does not reason properly about temporary destructors.
2303         if (CD->getName() == "shared_ptr") {
2304           BR.markInvalid(getTag(), nullptr);
2305           return;
2306         }
2307       }
2308     }
2309   }
2310 
2311   // Skip reports within the sys/queue.h macros as we do not have the ability to
2312   // reason about data structure shapes.
2313   SourceManager &SM = BRC.getSourceManager();
2314   FullSourceLoc Loc = BR.getLocation(SM).asLocation();
2315   while (Loc.isMacroID()) {
2316     Loc = Loc.getSpellingLoc();
2317     if (SM.getFilename(Loc).endswith("sys/queue.h")) {
2318       BR.markInvalid(getTag(), nullptr);
2319       return;
2320     }
2321   }
2322 }
2323 
2324 std::shared_ptr<PathDiagnosticPiece>
2325 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N,
2326                                  BugReporterContext &BRC, BugReport &BR) {
2327   ProgramStateRef State = N->getState();
2328   ProgramPoint ProgLoc = N->getLocation();
2329 
2330   // We are only interested in visiting CallEnter nodes.
2331   Optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
2332   if (!CEnter)
2333     return nullptr;
2334 
2335   // Check if one of the arguments is the region the visitor is tracking.
2336   CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager();
2337   CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
2338   unsigned Idx = 0;
2339   ArrayRef<ParmVarDecl *> parms = Call->parameters();
2340 
2341   for (const auto ParamDecl : parms) {
2342     const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
2343     ++Idx;
2344 
2345     // Are we tracking the argument or its subregion?
2346     if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts()))
2347       continue;
2348 
2349     // Check the function parameter type.
2350     assert(ParamDecl && "Formal parameter has no decl?");
2351     QualType T = ParamDecl->getType();
2352 
2353     if (!(T->isAnyPointerType() || T->isReferenceType())) {
2354       // Function can only change the value passed in by address.
2355       continue;
2356     }
2357 
2358     // If it is a const pointer value, the function does not intend to
2359     // change the value.
2360     if (T->getPointeeType().isConstQualified())
2361       continue;
2362 
2363     // Mark the call site (LocationContext) as interesting if the value of the
2364     // argument is undefined or '0'/'NULL'.
2365     SVal BoundVal = State->getSVal(R);
2366     if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
2367       BR.markInteresting(CEnter->getCalleeContext());
2368       return nullptr;
2369     }
2370   }
2371   return nullptr;
2372 }
2373 
2374 std::shared_ptr<PathDiagnosticPiece>
2375 CXXSelfAssignmentBRVisitor::VisitNode(const ExplodedNode *Succ,
2376                                       BugReporterContext &BRC, BugReport &) {
2377   if (Satisfied)
2378     return nullptr;
2379 
2380   const auto Edge = Succ->getLocation().getAs<BlockEdge>();
2381   if (!Edge.hasValue())
2382     return nullptr;
2383 
2384   auto Tag = Edge->getTag();
2385   if (!Tag)
2386     return nullptr;
2387 
2388   if (Tag->getTagDescription() != "cplusplus.SelfAssignment")
2389     return nullptr;
2390 
2391   Satisfied = true;
2392 
2393   const auto *Met =
2394       dyn_cast<CXXMethodDecl>(Succ->getCodeDecl().getAsFunction());
2395   assert(Met && "Not a C++ method.");
2396   assert((Met->isCopyAssignmentOperator() || Met->isMoveAssignmentOperator()) &&
2397          "Not a copy/move assignment operator.");
2398 
2399   const auto *LCtx = Edge->getLocationContext();
2400 
2401   const auto &State = Succ->getState();
2402   auto &SVB = State->getStateManager().getSValBuilder();
2403 
2404   const auto Param =
2405       State->getSVal(State->getRegion(Met->getParamDecl(0), LCtx));
2406   const auto This =
2407       State->getSVal(SVB.getCXXThis(Met, LCtx->getStackFrame()));
2408 
2409   auto L = PathDiagnosticLocation::create(Met, BRC.getSourceManager());
2410 
2411   if (!L.isValid() || !L.asLocation().isValid())
2412     return nullptr;
2413 
2414   SmallString<256> Buf;
2415   llvm::raw_svector_ostream Out(Buf);
2416 
2417   Out << "Assuming " << Met->getParamDecl(0)->getName() <<
2418     ((Param == This) ? " == " : " != ") << "*this";
2419 
2420   auto Piece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
2421   Piece->addRange(Met->getSourceRange());
2422 
2423   return std::move(Piece);
2424 }
2425 
2426 
2427 FalsePositiveRefutationBRVisitor::FalsePositiveRefutationBRVisitor()
2428     : Constraints(ConstraintRangeTy::Factory().getEmptyMap()) {}
2429 
2430 void FalsePositiveRefutationBRVisitor::finalizeVisitor(
2431     BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) {
2432   // Collect new constraints
2433   VisitNode(EndPathNode, BRC, BR);
2434 
2435   // Create a refutation manager
2436   llvm::SMTSolverRef RefutationSolver = llvm::CreateZ3Solver();
2437   ASTContext &Ctx = BRC.getASTContext();
2438 
2439   // Add constraints to the solver
2440   for (const auto &I : Constraints) {
2441     const SymbolRef Sym = I.first;
2442     auto RangeIt = I.second.begin();
2443 
2444     llvm::SMTExprRef Constraints = SMTConv::getRangeExpr(
2445         RefutationSolver, Ctx, Sym, RangeIt->From(), RangeIt->To(),
2446         /*InRange=*/true);
2447     while ((++RangeIt) != I.second.end()) {
2448       Constraints = RefutationSolver->mkOr(
2449           Constraints, SMTConv::getRangeExpr(RefutationSolver, Ctx, Sym,
2450                                              RangeIt->From(), RangeIt->To(),
2451                                              /*InRange=*/true));
2452     }
2453 
2454     RefutationSolver->addConstraint(Constraints);
2455   }
2456 
2457   // And check for satisfiability
2458   Optional<bool> isSat = RefutationSolver->check();
2459   if (!isSat.hasValue())
2460     return;
2461 
2462   if (!isSat.getValue())
2463     BR.markInvalid("Infeasible constraints", EndPathNode->getLocationContext());
2464 }
2465 
2466 std::shared_ptr<PathDiagnosticPiece>
2467 FalsePositiveRefutationBRVisitor::VisitNode(const ExplodedNode *N,
2468                                             BugReporterContext &,
2469                                             BugReport &) {
2470   // Collect new constraints
2471   const ConstraintRangeTy &NewCs = N->getState()->get<ConstraintRange>();
2472   ConstraintRangeTy::Factory &CF =
2473       N->getState()->get_context<ConstraintRange>();
2474 
2475   // Add constraints if we don't have them yet
2476   for (auto const &C : NewCs) {
2477     const SymbolRef &Sym = C.first;
2478     if (!Constraints.contains(Sym)) {
2479       Constraints = CF.add(Constraints, Sym, C.second);
2480     }
2481   }
2482 
2483   return nullptr;
2484 }
2485 
2486 int NoteTag::Kind = 0;
2487 
2488 void TagVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
2489   static int Tag = 0;
2490   ID.AddPointer(&Tag);
2491 }
2492 
2493 std::shared_ptr<PathDiagnosticPiece>
2494 TagVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2495                       BugReport &R) {
2496   ProgramPoint PP = N->getLocation();
2497   const NoteTag *T = dyn_cast_or_null<NoteTag>(PP.getTag());
2498   if (!T)
2499     return nullptr;
2500 
2501   if (Optional<std::string> Msg = T->generateMessage(BRC, R)) {
2502     PathDiagnosticLocation Loc =
2503         PathDiagnosticLocation::create(PP, BRC.getSourceManager());
2504     return std::make_shared<PathDiagnosticEventPiece>(Loc, *Msg);
2505   }
2506 
2507   return nullptr;
2508 }
2509 
2510 void FalsePositiveRefutationBRVisitor::Profile(
2511     llvm::FoldingSetNodeID &ID) const {
2512   static int Tag = 0;
2513   ID.AddPointer(&Tag);
2514 }
2515