1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a set of BugReporter "visitors" which can be used to 11 // enhance the diagnostics reported for a bug. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclBase.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/ExprObjC.h" 23 #include "clang/AST/Stmt.h" 24 #include "clang/AST/Type.h" 25 #include "clang/ASTMatchers/ASTMatchFinder.h" 26 #include "clang/Analysis/AnalysisDeclContext.h" 27 #include "clang/Analysis/CFG.h" 28 #include "clang/Analysis/CFGStmtMap.h" 29 #include "clang/Analysis/ProgramPoint.h" 30 #include "clang/Basic/IdentifierTable.h" 31 #include "clang/Basic/LLVM.h" 32 #include "clang/Basic/SourceLocation.h" 33 #include "clang/Basic/SourceManager.h" 34 #include "clang/Lex/Lexer.h" 35 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" 36 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 37 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 38 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 45 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h" 46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 48 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/None.h" 51 #include "llvm/ADT/Optional.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallString.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/ADT/StringRef.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <cassert> 62 #include <deque> 63 #include <memory> 64 #include <string> 65 #include <utility> 66 67 using namespace clang; 68 using namespace ento; 69 70 //===----------------------------------------------------------------------===// 71 // Utility functions. 72 //===----------------------------------------------------------------------===// 73 74 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) { 75 if (B->isAdditiveOp() && B->getType()->isPointerType()) { 76 if (B->getLHS()->getType()->isPointerType()) { 77 return B->getLHS(); 78 } else if (B->getRHS()->getType()->isPointerType()) { 79 return B->getRHS(); 80 } 81 } 82 return nullptr; 83 } 84 85 /// Given that expression S represents a pointer that would be dereferenced, 86 /// try to find a sub-expression from which the pointer came from. 87 /// This is used for tracking down origins of a null or undefined value: 88 /// "this is null because that is null because that is null" etc. 89 /// We wipe away field and element offsets because they merely add offsets. 90 /// We also wipe away all casts except lvalue-to-rvalue casts, because the 91 /// latter represent an actual pointer dereference; however, we remove 92 /// the final lvalue-to-rvalue cast before returning from this function 93 /// because it demonstrates more clearly from where the pointer rvalue was 94 /// loaded. Examples: 95 /// x->y.z ==> x (lvalue) 96 /// foo()->y.z ==> foo() (rvalue) 97 const Expr *bugreporter::getDerefExpr(const Stmt *S) { 98 const auto *E = dyn_cast<Expr>(S); 99 if (!E) 100 return nullptr; 101 102 while (true) { 103 if (const auto *CE = dyn_cast<CastExpr>(E)) { 104 if (CE->getCastKind() == CK_LValueToRValue) { 105 // This cast represents the load we're looking for. 106 break; 107 } 108 E = CE->getSubExpr(); 109 } else if (const auto *B = dyn_cast<BinaryOperator>(E)) { 110 // Pointer arithmetic: '*(x + 2)' -> 'x') etc. 111 if (const Expr *Inner = peelOffPointerArithmetic(B)) { 112 E = Inner; 113 } else { 114 // Probably more arithmetic can be pattern-matched here, 115 // but for now give up. 116 break; 117 } 118 } else if (const auto *U = dyn_cast<UnaryOperator>(E)) { 119 if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf || 120 (U->isIncrementDecrementOp() && U->getType()->isPointerType())) { 121 // Operators '*' and '&' don't actually mean anything. 122 // We look at casts instead. 123 E = U->getSubExpr(); 124 } else { 125 // Probably more arithmetic can be pattern-matched here, 126 // but for now give up. 127 break; 128 } 129 } 130 // Pattern match for a few useful cases: a[0], p->f, *p etc. 131 else if (const auto *ME = dyn_cast<MemberExpr>(E)) { 132 E = ME->getBase(); 133 } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 134 E = IvarRef->getBase(); 135 } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) { 136 E = AE->getBase(); 137 } else if (const auto *PE = dyn_cast<ParenExpr>(E)) { 138 E = PE->getSubExpr(); 139 } else if (const auto *FE = dyn_cast<FullExpr>(E)) { 140 E = FE->getSubExpr(); 141 } else { 142 // Other arbitrary stuff. 143 break; 144 } 145 } 146 147 // Special case: remove the final lvalue-to-rvalue cast, but do not recurse 148 // deeper into the sub-expression. This way we return the lvalue from which 149 // our pointer rvalue was loaded. 150 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) 151 if (CE->getCastKind() == CK_LValueToRValue) 152 E = CE->getSubExpr(); 153 154 return E; 155 } 156 157 //===----------------------------------------------------------------------===// 158 // Definitions for bug reporter visitors. 159 //===----------------------------------------------------------------------===// 160 161 std::shared_ptr<PathDiagnosticPiece> 162 BugReporterVisitor::getEndPath(BugReporterContext &, 163 const ExplodedNode *, BugReport &) { 164 return nullptr; 165 } 166 167 void 168 BugReporterVisitor::finalizeVisitor(BugReporterContext &, 169 const ExplodedNode *, BugReport &) {} 170 171 std::shared_ptr<PathDiagnosticPiece> BugReporterVisitor::getDefaultEndPath( 172 BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) { 173 PathDiagnosticLocation L = 174 PathDiagnosticLocation::createEndOfPath(EndPathNode,BRC.getSourceManager()); 175 176 const auto &Ranges = BR.getRanges(); 177 178 // Only add the statement itself as a range if we didn't specify any 179 // special ranges for this report. 180 auto P = std::make_shared<PathDiagnosticEventPiece>( 181 L, BR.getDescription(), Ranges.begin() == Ranges.end()); 182 for (SourceRange Range : Ranges) 183 P->addRange(Range); 184 185 return P; 186 } 187 188 /// \return name of the macro inside the location \p Loc. 189 static StringRef getMacroName(SourceLocation Loc, 190 BugReporterContext &BRC) { 191 return Lexer::getImmediateMacroName( 192 Loc, 193 BRC.getSourceManager(), 194 BRC.getASTContext().getLangOpts()); 195 } 196 197 /// \return Whether given spelling location corresponds to an expansion 198 /// of a function-like macro. 199 static bool isFunctionMacroExpansion(SourceLocation Loc, 200 const SourceManager &SM) { 201 if (!Loc.isMacroID()) 202 return false; 203 while (SM.isMacroArgExpansion(Loc)) 204 Loc = SM.getImmediateExpansionRange(Loc).getBegin(); 205 std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc); 206 SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first); 207 const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion(); 208 return EInfo.isFunctionMacroExpansion(); 209 } 210 211 /// \return Whether \c RegionOfInterest was modified at \p N, 212 /// where \p ReturnState is a state associated with the return 213 /// from the current frame. 214 static bool wasRegionOfInterestModifiedAt( 215 const SubRegion *RegionOfInterest, 216 const ExplodedNode *N, 217 SVal ValueAfter) { 218 ProgramStateRef State = N->getState(); 219 ProgramStateManager &Mgr = N->getState()->getStateManager(); 220 221 if (!N->getLocationAs<PostStore>() 222 && !N->getLocationAs<PostInitializer>() 223 && !N->getLocationAs<PostStmt>()) 224 return false; 225 226 // Writing into region of interest. 227 if (auto PS = N->getLocationAs<PostStmt>()) 228 if (auto *BO = PS->getStmtAs<BinaryOperator>()) 229 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf( 230 N->getSVal(BO->getLHS()).getAsRegion())) 231 return true; 232 233 // SVal after the state is possibly different. 234 SVal ValueAtN = N->getState()->getSVal(RegionOfInterest); 235 if (!Mgr.getSValBuilder().areEqual(State, ValueAtN, ValueAfter).isConstrainedTrue() && 236 (!ValueAtN.isUndef() || !ValueAfter.isUndef())) 237 return true; 238 239 return false; 240 } 241 242 243 namespace { 244 245 /// Put a diagnostic on return statement of all inlined functions 246 /// for which the region of interest \p RegionOfInterest was passed into, 247 /// but not written inside, and it has caused an undefined read or a null 248 /// pointer dereference outside. 249 class NoStoreFuncVisitor final : public BugReporterVisitor { 250 const SubRegion *RegionOfInterest; 251 MemRegionManager &MmrMgr; 252 const SourceManager &SM; 253 const PrintingPolicy &PP; 254 255 /// Recursion limit for dereferencing fields when looking for the 256 /// region of interest. 257 /// The limit of two indicates that we will dereference fields only once. 258 static const unsigned DEREFERENCE_LIMIT = 2; 259 260 /// Frames writing into \c RegionOfInterest. 261 /// This visitor generates a note only if a function does not write into 262 /// a region of interest. This information is not immediately available 263 /// by looking at the node associated with the exit from the function 264 /// (usually the return statement). To avoid recomputing the same information 265 /// many times (going up the path for each node and checking whether the 266 /// region was written into) we instead lazily compute the 267 /// stack frames along the path which write into the region of interest. 268 llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingRegion; 269 llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingCalculated; 270 271 using RegionVector = SmallVector<const MemRegion *, 5>; 272 public: 273 NoStoreFuncVisitor(const SubRegion *R) 274 : RegionOfInterest(R), MmrMgr(*R->getMemRegionManager()), 275 SM(MmrMgr.getContext().getSourceManager()), 276 PP(MmrMgr.getContext().getPrintingPolicy()) {} 277 278 void Profile(llvm::FoldingSetNodeID &ID) const override { 279 static int Tag = 0; 280 ID.AddPointer(&Tag); 281 ID.AddPointer(RegionOfInterest); 282 } 283 284 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 285 BugReporterContext &BR, 286 BugReport &) override { 287 288 const LocationContext *Ctx = N->getLocationContext(); 289 const StackFrameContext *SCtx = Ctx->getStackFrame(); 290 ProgramStateRef State = N->getState(); 291 auto CallExitLoc = N->getLocationAs<CallExitBegin>(); 292 293 // No diagnostic if region was modified inside the frame. 294 if (!CallExitLoc || isRegionOfInterestModifiedInFrame(N)) 295 return nullptr; 296 297 CallEventRef<> Call = 298 BR.getStateManager().getCallEventManager().getCaller(SCtx, State); 299 300 if (SM.isInSystemHeader(Call->getDecl()->getSourceRange().getBegin())) 301 return nullptr; 302 303 // Region of interest corresponds to an IVar, exiting a method 304 // which could have written into that IVar, but did not. 305 if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) { 306 if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) { 307 const MemRegion *SelfRegion = MC->getReceiverSVal().getAsRegion(); 308 if (RegionOfInterest->isSubRegionOf(SelfRegion) && 309 potentiallyWritesIntoIvar(Call->getRuntimeDefinition().getDecl(), 310 IvarR->getDecl())) 311 return notModifiedDiagnostics(Ctx, *CallExitLoc, Call, {}, SelfRegion, 312 "self", /*FirstIsReferenceType=*/false, 313 1); 314 } 315 } 316 317 if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) { 318 const MemRegion *ThisR = CCall->getCXXThisVal().getAsRegion(); 319 if (RegionOfInterest->isSubRegionOf(ThisR) 320 && !CCall->getDecl()->isImplicit()) 321 return notModifiedDiagnostics(Ctx, *CallExitLoc, Call, {}, ThisR, 322 "this", 323 /*FirstIsReferenceType=*/false, 1); 324 325 // Do not generate diagnostics for not modified parameters in 326 // constructors. 327 return nullptr; 328 } 329 330 ArrayRef<ParmVarDecl *> parameters = getCallParameters(Call); 331 for (unsigned I = 0; I < Call->getNumArgs() && I < parameters.size(); ++I) { 332 const ParmVarDecl *PVD = parameters[I]; 333 SVal S = Call->getArgSVal(I); 334 bool ParamIsReferenceType = PVD->getType()->isReferenceType(); 335 std::string ParamName = PVD->getNameAsString(); 336 337 int IndirectionLevel = 1; 338 QualType T = PVD->getType(); 339 while (const MemRegion *R = S.getAsRegion()) { 340 if (RegionOfInterest->isSubRegionOf(R) && !isPointerToConst(T)) 341 return notModifiedDiagnostics(Ctx, *CallExitLoc, Call, {}, R, 342 ParamName, ParamIsReferenceType, 343 IndirectionLevel); 344 345 QualType PT = T->getPointeeType(); 346 if (PT.isNull() || PT->isVoidType()) break; 347 348 if (const RecordDecl *RD = PT->getAsRecordDecl()) 349 if (auto P = findRegionOfInterestInRecord(RD, State, R)) 350 return notModifiedDiagnostics( 351 Ctx, *CallExitLoc, Call, *P, RegionOfInterest, ParamName, 352 ParamIsReferenceType, IndirectionLevel); 353 354 S = State->getSVal(R, PT); 355 T = PT; 356 IndirectionLevel++; 357 } 358 } 359 360 return nullptr; 361 } 362 363 private: 364 /// Attempts to find the region of interest in a given CXX decl, 365 /// by either following the base classes or fields. 366 /// Dereferences fields up to a given recursion limit. 367 /// Note that \p Vec is passed by value, leading to quadratic copying cost, 368 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT. 369 /// \return A chain fields leading to the region of interest or None. 370 const Optional<RegionVector> 371 findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State, 372 const MemRegion *R, 373 const RegionVector &Vec = {}, 374 int depth = 0) { 375 376 if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth. 377 return None; 378 379 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD)) 380 if (!RDX->hasDefinition()) 381 return None; 382 383 // Recursively examine the base classes. 384 // Note that following base classes does not increase the recursion depth. 385 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD)) 386 for (const auto II : RDX->bases()) 387 if (const RecordDecl *RRD = II.getType()->getAsRecordDecl()) 388 if (auto Out = findRegionOfInterestInRecord(RRD, State, R, Vec, depth)) 389 return Out; 390 391 for (const FieldDecl *I : RD->fields()) { 392 QualType FT = I->getType(); 393 const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R)); 394 const SVal V = State->getSVal(FR); 395 const MemRegion *VR = V.getAsRegion(); 396 397 RegionVector VecF = Vec; 398 VecF.push_back(FR); 399 400 if (RegionOfInterest == VR) 401 return VecF; 402 403 if (const RecordDecl *RRD = FT->getAsRecordDecl()) 404 if (auto Out = 405 findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1)) 406 return Out; 407 408 QualType PT = FT->getPointeeType(); 409 if (PT.isNull() || PT->isVoidType() || !VR) continue; 410 411 if (const RecordDecl *RRD = PT->getAsRecordDecl()) 412 if (auto Out = 413 findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1)) 414 return Out; 415 416 } 417 418 return None; 419 } 420 421 /// \return Whether the method declaration \p Parent 422 /// syntactically has a binary operation writing into the ivar \p Ivar. 423 bool potentiallyWritesIntoIvar(const Decl *Parent, 424 const ObjCIvarDecl *Ivar) { 425 using namespace ast_matchers; 426 const char * IvarBind = "Ivar"; 427 if (!Parent || !Parent->hasBody()) 428 return false; 429 StatementMatcher WriteIntoIvarM = binaryOperator( 430 hasOperatorName("="), 431 hasLHS(ignoringParenImpCasts( 432 objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind)))); 433 StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM)); 434 auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext()); 435 for (BoundNodes &Match : Matches) { 436 auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind); 437 if (IvarRef->isFreeIvar()) 438 return true; 439 440 const Expr *Base = IvarRef->getBase(); 441 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base)) 442 Base = ICE->getSubExpr(); 443 444 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) 445 if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl())) 446 if (ID->getParameterKind() == ImplicitParamDecl::ObjCSelf) 447 return true; 448 449 return false; 450 } 451 return false; 452 } 453 454 /// Check and lazily calculate whether the region of interest is 455 /// modified in the stack frame to which \p N belongs. 456 /// The calculation is cached in FramesModifyingRegion. 457 bool isRegionOfInterestModifiedInFrame(const ExplodedNode *N) { 458 const LocationContext *Ctx = N->getLocationContext(); 459 const StackFrameContext *SCtx = Ctx->getStackFrame(); 460 if (!FramesModifyingCalculated.count(SCtx)) 461 findModifyingFrames(N); 462 return FramesModifyingRegion.count(SCtx); 463 } 464 465 466 /// Write to \c FramesModifyingRegion all stack frames along 467 /// the path in the current stack frame which modify \c RegionOfInterest. 468 void findModifyingFrames(const ExplodedNode *N) { 469 assert(N->getLocationAs<CallExitBegin>()); 470 ProgramStateRef LastReturnState = N->getState(); 471 SVal ValueAtReturn = LastReturnState->getSVal(RegionOfInterest); 472 const LocationContext *Ctx = N->getLocationContext(); 473 const StackFrameContext *OriginalSCtx = Ctx->getStackFrame(); 474 475 do { 476 ProgramStateRef State = N->getState(); 477 auto CallExitLoc = N->getLocationAs<CallExitBegin>(); 478 if (CallExitLoc) { 479 LastReturnState = State; 480 ValueAtReturn = LastReturnState->getSVal(RegionOfInterest); 481 } 482 483 FramesModifyingCalculated.insert( 484 N->getLocationContext()->getStackFrame()); 485 486 if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtReturn)) { 487 const StackFrameContext *SCtx = N->getStackFrame(); 488 while (!SCtx->inTopFrame()) { 489 auto p = FramesModifyingRegion.insert(SCtx); 490 if (!p.second) 491 break; // Frame and all its parents already inserted. 492 SCtx = SCtx->getParent()->getStackFrame(); 493 } 494 } 495 496 // Stop calculation at the call to the current function. 497 if (auto CE = N->getLocationAs<CallEnter>()) 498 if (CE->getCalleeContext() == OriginalSCtx) 499 break; 500 501 N = N->getFirstPred(); 502 } while (N); 503 } 504 505 /// Get parameters associated with runtime definition in order 506 /// to get the correct parameter name. 507 ArrayRef<ParmVarDecl *> getCallParameters(CallEventRef<> Call) { 508 // Use runtime definition, if available. 509 RuntimeDefinition RD = Call->getRuntimeDefinition(); 510 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(RD.getDecl())) 511 return FD->parameters(); 512 if (const auto *MD = dyn_cast_or_null<ObjCMethodDecl>(RD.getDecl())) 513 return MD->parameters(); 514 515 return Call->parameters(); 516 } 517 518 /// \return whether \p Ty points to a const type, or is a const reference. 519 bool isPointerToConst(QualType Ty) { 520 return !Ty->getPointeeType().isNull() && 521 Ty->getPointeeType().getCanonicalType().isConstQualified(); 522 } 523 524 /// \return Diagnostics piece for region not modified in the current function. 525 std::shared_ptr<PathDiagnosticPiece> 526 notModifiedDiagnostics(const LocationContext *Ctx, CallExitBegin &CallExitLoc, 527 CallEventRef<> Call, const RegionVector &FieldChain, 528 const MemRegion *MatchedRegion, StringRef FirstElement, 529 bool FirstIsReferenceType, unsigned IndirectionLevel) { 530 531 PathDiagnosticLocation L; 532 if (const ReturnStmt *RS = CallExitLoc.getReturnStmt()) { 533 L = PathDiagnosticLocation::createBegin(RS, SM, Ctx); 534 } else { 535 L = PathDiagnosticLocation( 536 Call->getRuntimeDefinition().getDecl()->getSourceRange().getEnd(), 537 SM); 538 } 539 540 SmallString<256> sbuf; 541 llvm::raw_svector_ostream os(sbuf); 542 os << "Returning without writing to '"; 543 544 // Do not generate the note if failed to pretty-print. 545 if (!prettyPrintRegionName(FirstElement, FirstIsReferenceType, 546 MatchedRegion, FieldChain, IndirectionLevel, os)) 547 return nullptr; 548 549 os << "'"; 550 return std::make_shared<PathDiagnosticEventPiece>(L, os.str()); 551 } 552 553 /// Pretty-print region \p MatchedRegion to \p os. 554 /// \return Whether printing succeeded. 555 bool prettyPrintRegionName(StringRef FirstElement, bool FirstIsReferenceType, 556 const MemRegion *MatchedRegion, 557 const RegionVector &FieldChain, 558 int IndirectionLevel, 559 llvm::raw_svector_ostream &os) { 560 561 if (FirstIsReferenceType) 562 IndirectionLevel--; 563 564 RegionVector RegionSequence; 565 566 // Add the regions in the reverse order, then reverse the resulting array. 567 assert(RegionOfInterest->isSubRegionOf(MatchedRegion)); 568 const MemRegion *R = RegionOfInterest; 569 while (R != MatchedRegion) { 570 RegionSequence.push_back(R); 571 R = cast<SubRegion>(R)->getSuperRegion(); 572 } 573 std::reverse(RegionSequence.begin(), RegionSequence.end()); 574 RegionSequence.append(FieldChain.begin(), FieldChain.end()); 575 576 StringRef Sep; 577 for (const MemRegion *R : RegionSequence) { 578 579 // Just keep going up to the base region. 580 // Element regions may appear due to casts. 581 if (isa<CXXBaseObjectRegion>(R) || isa<CXXTempObjectRegion>(R)) 582 continue; 583 584 if (Sep.empty()) 585 Sep = prettyPrintFirstElement(FirstElement, 586 /*MoreItemsExpected=*/true, 587 IndirectionLevel, os); 588 589 os << Sep; 590 591 // Can only reasonably pretty-print DeclRegions. 592 if (!isa<DeclRegion>(R)) 593 return false; 594 595 const auto *DR = cast<DeclRegion>(R); 596 Sep = DR->getValueType()->isAnyPointerType() ? "->" : "."; 597 DR->getDecl()->getDeclName().print(os, PP); 598 } 599 600 if (Sep.empty()) 601 prettyPrintFirstElement(FirstElement, 602 /*MoreItemsExpected=*/false, IndirectionLevel, 603 os); 604 return true; 605 } 606 607 /// Print first item in the chain, return new separator. 608 StringRef prettyPrintFirstElement(StringRef FirstElement, 609 bool MoreItemsExpected, 610 int IndirectionLevel, 611 llvm::raw_svector_ostream &os) { 612 StringRef Out = "."; 613 614 if (IndirectionLevel > 0 && MoreItemsExpected) { 615 IndirectionLevel--; 616 Out = "->"; 617 } 618 619 if (IndirectionLevel > 0 && MoreItemsExpected) 620 os << "("; 621 622 for (int i=0; i<IndirectionLevel; i++) 623 os << "*"; 624 os << FirstElement; 625 626 if (IndirectionLevel > 0 && MoreItemsExpected) 627 os << ")"; 628 629 return Out; 630 } 631 }; 632 633 /// Suppress null-pointer-dereference bugs where dereferenced null was returned 634 /// the macro. 635 class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor { 636 const SubRegion *RegionOfInterest; 637 const SVal ValueAtDereference; 638 639 // Do not invalidate the reports where the value was modified 640 // after it got assigned to from the macro. 641 bool WasModified = false; 642 643 public: 644 MacroNullReturnSuppressionVisitor(const SubRegion *R, 645 const SVal V) : RegionOfInterest(R), 646 ValueAtDereference(V) {} 647 648 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 649 BugReporterContext &BRC, 650 BugReport &BR) override { 651 if (WasModified) 652 return nullptr; 653 654 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>(); 655 if (!BugPoint) 656 return nullptr; 657 658 const SourceManager &SMgr = BRC.getSourceManager(); 659 if (auto Loc = matchAssignment(N)) { 660 if (isFunctionMacroExpansion(*Loc, SMgr)) { 661 std::string MacroName = getMacroName(*Loc, BRC); 662 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc(); 663 if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName) 664 BR.markInvalid(getTag(), MacroName.c_str()); 665 } 666 } 667 668 if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference)) 669 WasModified = true; 670 671 return nullptr; 672 } 673 674 static void addMacroVisitorIfNecessary( 675 const ExplodedNode *N, const MemRegion *R, 676 bool EnableNullFPSuppression, BugReport &BR, 677 const SVal V) { 678 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options; 679 if (EnableNullFPSuppression && Options.shouldSuppressNullReturnPaths() 680 && V.getAs<Loc>()) 681 BR.addVisitor(llvm::make_unique<MacroNullReturnSuppressionVisitor>( 682 R->getAs<SubRegion>(), V)); 683 } 684 685 void* getTag() const { 686 static int Tag = 0; 687 return static_cast<void *>(&Tag); 688 } 689 690 void Profile(llvm::FoldingSetNodeID &ID) const override { 691 ID.AddPointer(getTag()); 692 } 693 694 private: 695 /// \return Source location of right hand side of an assignment 696 /// into \c RegionOfInterest, empty optional if none found. 697 Optional<SourceLocation> matchAssignment(const ExplodedNode *N) { 698 const Stmt *S = PathDiagnosticLocation::getStmt(N); 699 ProgramStateRef State = N->getState(); 700 auto *LCtx = N->getLocationContext(); 701 if (!S) 702 return None; 703 704 if (const auto *DS = dyn_cast<DeclStmt>(S)) { 705 if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl())) 706 if (const Expr *RHS = VD->getInit()) 707 if (RegionOfInterest->isSubRegionOf( 708 State->getLValue(VD, LCtx).getAsRegion())) 709 return RHS->getBeginLoc(); 710 } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) { 711 const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion(); 712 const Expr *RHS = BO->getRHS(); 713 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) { 714 return RHS->getBeginLoc(); 715 } 716 } 717 return None; 718 } 719 }; 720 721 /// Emits an extra note at the return statement of an interesting stack frame. 722 /// 723 /// The returned value is marked as an interesting value, and if it's null, 724 /// adds a visitor to track where it became null. 725 /// 726 /// This visitor is intended to be used when another visitor discovers that an 727 /// interesting value comes from an inlined function call. 728 class ReturnVisitor : public BugReporterVisitor { 729 const StackFrameContext *StackFrame; 730 enum { 731 Initial, 732 MaybeUnsuppress, 733 Satisfied 734 } Mode = Initial; 735 736 bool EnableNullFPSuppression; 737 bool ShouldInvalidate = true; 738 AnalyzerOptions& Options; 739 740 public: 741 ReturnVisitor(const StackFrameContext *Frame, 742 bool Suppressed, 743 AnalyzerOptions &Options) 744 : StackFrame(Frame), EnableNullFPSuppression(Suppressed), 745 Options(Options) {} 746 747 static void *getTag() { 748 static int Tag = 0; 749 return static_cast<void *>(&Tag); 750 } 751 752 void Profile(llvm::FoldingSetNodeID &ID) const override { 753 ID.AddPointer(ReturnVisitor::getTag()); 754 ID.AddPointer(StackFrame); 755 ID.AddBoolean(EnableNullFPSuppression); 756 } 757 758 /// Adds a ReturnVisitor if the given statement represents a call that was 759 /// inlined. 760 /// 761 /// This will search back through the ExplodedGraph, starting from the given 762 /// node, looking for when the given statement was processed. If it turns out 763 /// the statement is a call that was inlined, we add the visitor to the 764 /// bug report, so it can print a note later. 765 static void addVisitorIfNecessary(const ExplodedNode *Node, const Stmt *S, 766 BugReport &BR, 767 bool InEnableNullFPSuppression) { 768 if (!CallEvent::isCallStmt(S)) 769 return; 770 771 // First, find when we processed the statement. 772 do { 773 if (auto CEE = Node->getLocationAs<CallExitEnd>()) 774 if (CEE->getCalleeContext()->getCallSite() == S) 775 break; 776 if (auto SP = Node->getLocationAs<StmtPoint>()) 777 if (SP->getStmt() == S) 778 break; 779 780 Node = Node->getFirstPred(); 781 } while (Node); 782 783 // Next, step over any post-statement checks. 784 while (Node && Node->getLocation().getAs<PostStmt>()) 785 Node = Node->getFirstPred(); 786 if (!Node) 787 return; 788 789 // Finally, see if we inlined the call. 790 Optional<CallExitEnd> CEE = Node->getLocationAs<CallExitEnd>(); 791 if (!CEE) 792 return; 793 794 const StackFrameContext *CalleeContext = CEE->getCalleeContext(); 795 if (CalleeContext->getCallSite() != S) 796 return; 797 798 // Check the return value. 799 ProgramStateRef State = Node->getState(); 800 SVal RetVal = Node->getSVal(S); 801 802 // Handle cases where a reference is returned and then immediately used. 803 if (cast<Expr>(S)->isGLValue()) 804 if (Optional<Loc> LValue = RetVal.getAs<Loc>()) 805 RetVal = State->getSVal(*LValue); 806 807 // See if the return value is NULL. If so, suppress the report. 808 AnalyzerOptions &Options = State->getAnalysisManager().options; 809 810 bool EnableNullFPSuppression = false; 811 if (InEnableNullFPSuppression && Options.shouldSuppressNullReturnPaths()) 812 if (Optional<Loc> RetLoc = RetVal.getAs<Loc>()) 813 EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue(); 814 815 BR.markInteresting(CalleeContext); 816 BR.addVisitor(llvm::make_unique<ReturnVisitor>(CalleeContext, 817 EnableNullFPSuppression, 818 Options)); 819 } 820 821 std::shared_ptr<PathDiagnosticPiece> 822 visitNodeInitial(const ExplodedNode *N, 823 BugReporterContext &BRC, BugReport &BR) { 824 // Only print a message at the interesting return statement. 825 if (N->getLocationContext() != StackFrame) 826 return nullptr; 827 828 Optional<StmtPoint> SP = N->getLocationAs<StmtPoint>(); 829 if (!SP) 830 return nullptr; 831 832 const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt()); 833 if (!Ret) 834 return nullptr; 835 836 // Okay, we're at the right return statement, but do we have the return 837 // value available? 838 ProgramStateRef State = N->getState(); 839 SVal V = State->getSVal(Ret, StackFrame); 840 if (V.isUnknownOrUndef()) 841 return nullptr; 842 843 // Don't print any more notes after this one. 844 Mode = Satisfied; 845 846 const Expr *RetE = Ret->getRetValue(); 847 assert(RetE && "Tracking a return value for a void function"); 848 849 // Handle cases where a reference is returned and then immediately used. 850 Optional<Loc> LValue; 851 if (RetE->isGLValue()) { 852 if ((LValue = V.getAs<Loc>())) { 853 SVal RValue = State->getRawSVal(*LValue, RetE->getType()); 854 if (RValue.getAs<DefinedSVal>()) 855 V = RValue; 856 } 857 } 858 859 // Ignore aggregate rvalues. 860 if (V.getAs<nonloc::LazyCompoundVal>() || 861 V.getAs<nonloc::CompoundVal>()) 862 return nullptr; 863 864 RetE = RetE->IgnoreParenCasts(); 865 866 // If we're returning 0, we should track where that 0 came from. 867 bugreporter::trackExpressionValue(N, RetE, BR, EnableNullFPSuppression); 868 869 // Build an appropriate message based on the return value. 870 SmallString<64> Msg; 871 llvm::raw_svector_ostream Out(Msg); 872 873 if (State->isNull(V).isConstrainedTrue()) { 874 if (V.getAs<Loc>()) { 875 876 // If we have counter-suppression enabled, make sure we keep visiting 877 // future nodes. We want to emit a path note as well, in case 878 // the report is resurrected as valid later on. 879 if (EnableNullFPSuppression && 880 Options.shouldAvoidSuppressingNullArgumentPaths()) 881 Mode = MaybeUnsuppress; 882 883 if (RetE->getType()->isObjCObjectPointerType()) { 884 Out << "Returning nil"; 885 } else { 886 Out << "Returning null pointer"; 887 } 888 } else { 889 Out << "Returning zero"; 890 } 891 892 } else { 893 if (auto CI = V.getAs<nonloc::ConcreteInt>()) { 894 Out << "Returning the value " << CI->getValue(); 895 } else if (V.getAs<Loc>()) { 896 Out << "Returning pointer"; 897 } else { 898 Out << "Returning value"; 899 } 900 } 901 902 if (LValue) { 903 if (const MemRegion *MR = LValue->getAsRegion()) { 904 if (MR->canPrintPretty()) { 905 Out << " (reference to "; 906 MR->printPretty(Out); 907 Out << ")"; 908 } 909 } 910 } else { 911 // FIXME: We should have a more generalized location printing mechanism. 912 if (const auto *DR = dyn_cast<DeclRefExpr>(RetE)) 913 if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl())) 914 Out << " (loaded from '" << *DD << "')"; 915 } 916 917 PathDiagnosticLocation L(Ret, BRC.getSourceManager(), StackFrame); 918 if (!L.isValid() || !L.asLocation().isValid()) 919 return nullptr; 920 921 return std::make_shared<PathDiagnosticEventPiece>(L, Out.str()); 922 } 923 924 std::shared_ptr<PathDiagnosticPiece> 925 visitNodeMaybeUnsuppress(const ExplodedNode *N, 926 BugReporterContext &BRC, BugReport &BR) { 927 #ifndef NDEBUG 928 assert(Options.shouldAvoidSuppressingNullArgumentPaths()); 929 #endif 930 931 // Are we at the entry node for this call? 932 Optional<CallEnter> CE = N->getLocationAs<CallEnter>(); 933 if (!CE) 934 return nullptr; 935 936 if (CE->getCalleeContext() != StackFrame) 937 return nullptr; 938 939 Mode = Satisfied; 940 941 // Don't automatically suppress a report if one of the arguments is 942 // known to be a null pointer. Instead, start tracking /that/ null 943 // value back to its origin. 944 ProgramStateManager &StateMgr = BRC.getStateManager(); 945 CallEventManager &CallMgr = StateMgr.getCallEventManager(); 946 947 ProgramStateRef State = N->getState(); 948 CallEventRef<> Call = CallMgr.getCaller(StackFrame, State); 949 for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) { 950 Optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>(); 951 if (!ArgV) 952 continue; 953 954 const Expr *ArgE = Call->getArgExpr(I); 955 if (!ArgE) 956 continue; 957 958 // Is it possible for this argument to be non-null? 959 if (!State->isNull(*ArgV).isConstrainedTrue()) 960 continue; 961 962 if (bugreporter::trackExpressionValue(N, ArgE, BR, EnableNullFPSuppression)) 963 ShouldInvalidate = false; 964 965 // If we /can't/ track the null pointer, we should err on the side of 966 // false negatives, and continue towards marking this report invalid. 967 // (We will still look at the other arguments, though.) 968 } 969 970 return nullptr; 971 } 972 973 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 974 BugReporterContext &BRC, 975 BugReport &BR) override { 976 switch (Mode) { 977 case Initial: 978 return visitNodeInitial(N, BRC, BR); 979 case MaybeUnsuppress: 980 return visitNodeMaybeUnsuppress(N, BRC, BR); 981 case Satisfied: 982 return nullptr; 983 } 984 985 llvm_unreachable("Invalid visit mode!"); 986 } 987 988 void finalizeVisitor(BugReporterContext &, const ExplodedNode *, 989 BugReport &BR) override { 990 if (EnableNullFPSuppression && ShouldInvalidate) 991 BR.markInvalid(ReturnVisitor::getTag(), StackFrame); 992 } 993 }; 994 995 } // namespace 996 997 void FindLastStoreBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const { 998 static int tag = 0; 999 ID.AddPointer(&tag); 1000 ID.AddPointer(R); 1001 ID.Add(V); 1002 ID.AddBoolean(EnableNullFPSuppression); 1003 } 1004 1005 /// Returns true if \p N represents the DeclStmt declaring and initializing 1006 /// \p VR. 1007 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) { 1008 Optional<PostStmt> P = N->getLocationAs<PostStmt>(); 1009 if (!P) 1010 return false; 1011 1012 const DeclStmt *DS = P->getStmtAs<DeclStmt>(); 1013 if (!DS) 1014 return false; 1015 1016 if (DS->getSingleDecl() != VR->getDecl()) 1017 return false; 1018 1019 const MemSpaceRegion *VarSpace = VR->getMemorySpace(); 1020 const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace); 1021 if (!FrameSpace) { 1022 // If we ever directly evaluate global DeclStmts, this assertion will be 1023 // invalid, but this still seems preferable to silently accepting an 1024 // initialization that may be for a path-sensitive variable. 1025 assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion"); 1026 return true; 1027 } 1028 1029 assert(VR->getDecl()->hasLocalStorage()); 1030 const LocationContext *LCtx = N->getLocationContext(); 1031 return FrameSpace->getStackFrame() == LCtx->getStackFrame(); 1032 } 1033 1034 /// Show diagnostics for initializing or declaring a region \p R with a bad value. 1035 static void showBRDiagnostics(const char *action, llvm::raw_svector_ostream &os, 1036 const MemRegion *R, SVal V, const DeclStmt *DS) { 1037 if (R->canPrintPretty()) { 1038 R->printPretty(os); 1039 os << " "; 1040 } 1041 1042 if (V.getAs<loc::ConcreteInt>()) { 1043 bool b = false; 1044 if (R->isBoundable()) { 1045 if (const auto *TR = dyn_cast<TypedValueRegion>(R)) { 1046 if (TR->getValueType()->isObjCObjectPointerType()) { 1047 os << action << "nil"; 1048 b = true; 1049 } 1050 } 1051 } 1052 if (!b) 1053 os << action << "a null pointer value"; 1054 1055 } else if (auto CVal = V.getAs<nonloc::ConcreteInt>()) { 1056 os << action << CVal->getValue(); 1057 } else if (DS) { 1058 if (V.isUndef()) { 1059 if (isa<VarRegion>(R)) { 1060 const auto *VD = cast<VarDecl>(DS->getSingleDecl()); 1061 if (VD->getInit()) { 1062 os << (R->canPrintPretty() ? "initialized" : "Initializing") 1063 << " to a garbage value"; 1064 } else { 1065 os << (R->canPrintPretty() ? "declared" : "Declaring") 1066 << " without an initial value"; 1067 } 1068 } 1069 } else { 1070 os << (R->canPrintPretty() ? "initialized" : "Initialized") 1071 << " here"; 1072 } 1073 } 1074 } 1075 1076 /// Display diagnostics for passing bad region as a parameter. 1077 static void showBRParamDiagnostics(llvm::raw_svector_ostream& os, 1078 const VarRegion *VR, 1079 SVal V) { 1080 const auto *Param = cast<ParmVarDecl>(VR->getDecl()); 1081 1082 os << "Passing "; 1083 1084 if (V.getAs<loc::ConcreteInt>()) { 1085 if (Param->getType()->isObjCObjectPointerType()) 1086 os << "nil object reference"; 1087 else 1088 os << "null pointer value"; 1089 } else if (V.isUndef()) { 1090 os << "uninitialized value"; 1091 } else if (auto CI = V.getAs<nonloc::ConcreteInt>()) { 1092 os << "the value " << CI->getValue(); 1093 } else { 1094 os << "value"; 1095 } 1096 1097 // Printed parameter indexes are 1-based, not 0-based. 1098 unsigned Idx = Param->getFunctionScopeIndex() + 1; 1099 os << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter"; 1100 if (VR->canPrintPretty()) { 1101 os << " "; 1102 VR->printPretty(os); 1103 } 1104 } 1105 1106 /// Show default diagnostics for storing bad region. 1107 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream& os, 1108 const MemRegion *R, 1109 SVal V) { 1110 if (V.getAs<loc::ConcreteInt>()) { 1111 bool b = false; 1112 if (R->isBoundable()) { 1113 if (const auto *TR = dyn_cast<TypedValueRegion>(R)) { 1114 if (TR->getValueType()->isObjCObjectPointerType()) { 1115 os << "nil object reference stored"; 1116 b = true; 1117 } 1118 } 1119 } 1120 if (!b) { 1121 if (R->canPrintPretty()) 1122 os << "Null pointer value stored"; 1123 else 1124 os << "Storing null pointer value"; 1125 } 1126 1127 } else if (V.isUndef()) { 1128 if (R->canPrintPretty()) 1129 os << "Uninitialized value stored"; 1130 else 1131 os << "Storing uninitialized value"; 1132 1133 } else if (auto CV = V.getAs<nonloc::ConcreteInt>()) { 1134 if (R->canPrintPretty()) 1135 os << "The value " << CV->getValue() << " is assigned"; 1136 else 1137 os << "Assigning " << CV->getValue(); 1138 1139 } else { 1140 if (R->canPrintPretty()) 1141 os << "Value assigned"; 1142 else 1143 os << "Assigning value"; 1144 } 1145 1146 if (R->canPrintPretty()) { 1147 os << " to "; 1148 R->printPretty(os); 1149 } 1150 } 1151 1152 std::shared_ptr<PathDiagnosticPiece> 1153 FindLastStoreBRVisitor::VisitNode(const ExplodedNode *Succ, 1154 BugReporterContext &BRC, BugReport &BR) { 1155 if (Satisfied) 1156 return nullptr; 1157 1158 const ExplodedNode *StoreSite = nullptr; 1159 const ExplodedNode *Pred = Succ->getFirstPred(); 1160 const Expr *InitE = nullptr; 1161 bool IsParam = false; 1162 1163 // First see if we reached the declaration of the region. 1164 if (const auto *VR = dyn_cast<VarRegion>(R)) { 1165 if (isInitializationOfVar(Pred, VR)) { 1166 StoreSite = Pred; 1167 InitE = VR->getDecl()->getInit(); 1168 } 1169 } 1170 1171 // If this is a post initializer expression, initializing the region, we 1172 // should track the initializer expression. 1173 if (Optional<PostInitializer> PIP = Pred->getLocationAs<PostInitializer>()) { 1174 const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue(); 1175 if (FieldReg && FieldReg == R) { 1176 StoreSite = Pred; 1177 InitE = PIP->getInitializer()->getInit(); 1178 } 1179 } 1180 1181 // Otherwise, see if this is the store site: 1182 // (1) Succ has this binding and Pred does not, i.e. this is 1183 // where the binding first occurred. 1184 // (2) Succ has this binding and is a PostStore node for this region, i.e. 1185 // the same binding was re-assigned here. 1186 if (!StoreSite) { 1187 if (Succ->getState()->getSVal(R) != V) 1188 return nullptr; 1189 1190 if (Pred->getState()->getSVal(R) == V) { 1191 Optional<PostStore> PS = Succ->getLocationAs<PostStore>(); 1192 if (!PS || PS->getLocationValue() != R) 1193 return nullptr; 1194 } 1195 1196 StoreSite = Succ; 1197 1198 // If this is an assignment expression, we can track the value 1199 // being assigned. 1200 if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>()) 1201 if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>()) 1202 if (BO->isAssignmentOp()) 1203 InitE = BO->getRHS(); 1204 1205 // If this is a call entry, the variable should be a parameter. 1206 // FIXME: Handle CXXThisRegion as well. (This is not a priority because 1207 // 'this' should never be NULL, but this visitor isn't just for NULL and 1208 // UndefinedVal.) 1209 if (Optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) { 1210 if (const auto *VR = dyn_cast<VarRegion>(R)) { 1211 const auto *Param = cast<ParmVarDecl>(VR->getDecl()); 1212 1213 ProgramStateManager &StateMgr = BRC.getStateManager(); 1214 CallEventManager &CallMgr = StateMgr.getCallEventManager(); 1215 1216 CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(), 1217 Succ->getState()); 1218 InitE = Call->getArgExpr(Param->getFunctionScopeIndex()); 1219 IsParam = true; 1220 } 1221 } 1222 1223 // If this is a CXXTempObjectRegion, the Expr responsible for its creation 1224 // is wrapped inside of it. 1225 if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R)) 1226 InitE = TmpR->getExpr(); 1227 } 1228 1229 if (!StoreSite) 1230 return nullptr; 1231 Satisfied = true; 1232 1233 // If we have an expression that provided the value, try to track where it 1234 // came from. 1235 if (InitE) { 1236 if (V.isUndef() || 1237 V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) { 1238 if (!IsParam) 1239 InitE = InitE->IgnoreParenCasts(); 1240 bugreporter::trackExpressionValue(StoreSite, InitE, BR, 1241 EnableNullFPSuppression); 1242 } 1243 ReturnVisitor::addVisitorIfNecessary(StoreSite, InitE->IgnoreParenCasts(), 1244 BR, EnableNullFPSuppression); 1245 } 1246 1247 // Okay, we've found the binding. Emit an appropriate message. 1248 SmallString<256> sbuf; 1249 llvm::raw_svector_ostream os(sbuf); 1250 1251 if (Optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) { 1252 const Stmt *S = PS->getStmt(); 1253 const char *action = nullptr; 1254 const auto *DS = dyn_cast<DeclStmt>(S); 1255 const auto *VR = dyn_cast<VarRegion>(R); 1256 1257 if (DS) { 1258 action = R->canPrintPretty() ? "initialized to " : 1259 "Initializing to "; 1260 } else if (isa<BlockExpr>(S)) { 1261 action = R->canPrintPretty() ? "captured by block as " : 1262 "Captured by block as "; 1263 if (VR) { 1264 // See if we can get the BlockVarRegion. 1265 ProgramStateRef State = StoreSite->getState(); 1266 SVal V = StoreSite->getSVal(S); 1267 if (const auto *BDR = 1268 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 1269 if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) { 1270 if (auto KV = State->getSVal(OriginalR).getAs<KnownSVal>()) 1271 BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1272 *KV, OriginalR, EnableNullFPSuppression)); 1273 } 1274 } 1275 } 1276 } 1277 if (action) 1278 showBRDiagnostics(action, os, R, V, DS); 1279 1280 } else if (StoreSite->getLocation().getAs<CallEnter>()) { 1281 if (const auto *VR = dyn_cast<VarRegion>(R)) 1282 showBRParamDiagnostics(os, VR, V); 1283 } 1284 1285 if (os.str().empty()) 1286 showBRDefaultDiagnostics(os, R, V); 1287 1288 // Construct a new PathDiagnosticPiece. 1289 ProgramPoint P = StoreSite->getLocation(); 1290 PathDiagnosticLocation L; 1291 if (P.getAs<CallEnter>() && InitE) 1292 L = PathDiagnosticLocation(InitE, BRC.getSourceManager(), 1293 P.getLocationContext()); 1294 1295 if (!L.isValid() || !L.asLocation().isValid()) 1296 L = PathDiagnosticLocation::create(P, BRC.getSourceManager()); 1297 1298 if (!L.isValid() || !L.asLocation().isValid()) 1299 return nullptr; 1300 1301 return std::make_shared<PathDiagnosticEventPiece>(L, os.str()); 1302 } 1303 1304 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const { 1305 static int tag = 0; 1306 ID.AddPointer(&tag); 1307 ID.AddBoolean(Assumption); 1308 ID.Add(Constraint); 1309 } 1310 1311 /// Return the tag associated with this visitor. This tag will be used 1312 /// to make all PathDiagnosticPieces created by this visitor. 1313 const char *TrackConstraintBRVisitor::getTag() { 1314 return "TrackConstraintBRVisitor"; 1315 } 1316 1317 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const { 1318 if (IsZeroCheck) 1319 return N->getState()->isNull(Constraint).isUnderconstrained(); 1320 return (bool)N->getState()->assume(Constraint, !Assumption); 1321 } 1322 1323 std::shared_ptr<PathDiagnosticPiece> 1324 TrackConstraintBRVisitor::VisitNode(const ExplodedNode *N, 1325 BugReporterContext &BRC, BugReport &) { 1326 const ExplodedNode *PrevN = N->getFirstPred(); 1327 if (IsSatisfied) 1328 return nullptr; 1329 1330 // Start tracking after we see the first state in which the value is 1331 // constrained. 1332 if (!IsTrackingTurnedOn) 1333 if (!isUnderconstrained(N)) 1334 IsTrackingTurnedOn = true; 1335 if (!IsTrackingTurnedOn) 1336 return nullptr; 1337 1338 // Check if in the previous state it was feasible for this constraint 1339 // to *not* be true. 1340 if (isUnderconstrained(PrevN)) { 1341 IsSatisfied = true; 1342 1343 // As a sanity check, make sure that the negation of the constraint 1344 // was infeasible in the current state. If it is feasible, we somehow 1345 // missed the transition point. 1346 assert(!isUnderconstrained(N)); 1347 1348 // We found the transition point for the constraint. We now need to 1349 // pretty-print the constraint. (work-in-progress) 1350 SmallString<64> sbuf; 1351 llvm::raw_svector_ostream os(sbuf); 1352 1353 if (Constraint.getAs<Loc>()) { 1354 os << "Assuming pointer value is "; 1355 os << (Assumption ? "non-null" : "null"); 1356 } 1357 1358 if (os.str().empty()) 1359 return nullptr; 1360 1361 // Construct a new PathDiagnosticPiece. 1362 ProgramPoint P = N->getLocation(); 1363 PathDiagnosticLocation L = 1364 PathDiagnosticLocation::create(P, BRC.getSourceManager()); 1365 if (!L.isValid()) 1366 return nullptr; 1367 1368 auto X = std::make_shared<PathDiagnosticEventPiece>(L, os.str()); 1369 X->setTag(getTag()); 1370 return std::move(X); 1371 } 1372 1373 return nullptr; 1374 } 1375 1376 SuppressInlineDefensiveChecksVisitor:: 1377 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N) 1378 : V(Value) { 1379 // Check if the visitor is disabled. 1380 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options; 1381 if (!Options.shouldSuppressInlinedDefensiveChecks()) 1382 IsSatisfied = true; 1383 1384 assert(N->getState()->isNull(V).isConstrainedTrue() && 1385 "The visitor only tracks the cases where V is constrained to 0"); 1386 } 1387 1388 void SuppressInlineDefensiveChecksVisitor::Profile( 1389 llvm::FoldingSetNodeID &ID) const { 1390 static int id = 0; 1391 ID.AddPointer(&id); 1392 ID.Add(V); 1393 } 1394 1395 const char *SuppressInlineDefensiveChecksVisitor::getTag() { 1396 return "IDCVisitor"; 1397 } 1398 1399 std::shared_ptr<PathDiagnosticPiece> 1400 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ, 1401 BugReporterContext &BRC, 1402 BugReport &BR) { 1403 const ExplodedNode *Pred = Succ->getFirstPred(); 1404 if (IsSatisfied) 1405 return nullptr; 1406 1407 // Start tracking after we see the first state in which the value is null. 1408 if (!IsTrackingTurnedOn) 1409 if (Succ->getState()->isNull(V).isConstrainedTrue()) 1410 IsTrackingTurnedOn = true; 1411 if (!IsTrackingTurnedOn) 1412 return nullptr; 1413 1414 // Check if in the previous state it was feasible for this value 1415 // to *not* be null. 1416 if (!Pred->getState()->isNull(V).isConstrainedTrue()) { 1417 IsSatisfied = true; 1418 1419 assert(Succ->getState()->isNull(V).isConstrainedTrue()); 1420 1421 // Check if this is inlined defensive checks. 1422 const LocationContext *CurLC =Succ->getLocationContext(); 1423 const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext(); 1424 if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) { 1425 BR.markInvalid("Suppress IDC", CurLC); 1426 return nullptr; 1427 } 1428 1429 // Treat defensive checks in function-like macros as if they were an inlined 1430 // defensive check. If the bug location is not in a macro and the 1431 // terminator for the current location is in a macro then suppress the 1432 // warning. 1433 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>(); 1434 1435 if (!BugPoint) 1436 return nullptr; 1437 1438 ProgramPoint CurPoint = Succ->getLocation(); 1439 const Stmt *CurTerminatorStmt = nullptr; 1440 if (auto BE = CurPoint.getAs<BlockEdge>()) { 1441 CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt(); 1442 } else if (auto SP = CurPoint.getAs<StmtPoint>()) { 1443 const Stmt *CurStmt = SP->getStmt(); 1444 if (!CurStmt->getBeginLoc().isMacroID()) 1445 return nullptr; 1446 1447 CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap(); 1448 CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminator(); 1449 } else { 1450 return nullptr; 1451 } 1452 1453 if (!CurTerminatorStmt) 1454 return nullptr; 1455 1456 SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc(); 1457 if (TerminatorLoc.isMacroID()) { 1458 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc(); 1459 1460 // Suppress reports unless we are in that same macro. 1461 if (!BugLoc.isMacroID() || 1462 getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) { 1463 BR.markInvalid("Suppress Macro IDC", CurLC); 1464 } 1465 return nullptr; 1466 } 1467 } 1468 return nullptr; 1469 } 1470 1471 static const MemRegion *getLocationRegionIfReference(const Expr *E, 1472 const ExplodedNode *N) { 1473 if (const auto *DR = dyn_cast<DeclRefExpr>(E)) { 1474 if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) { 1475 if (!VD->getType()->isReferenceType()) 1476 return nullptr; 1477 ProgramStateManager &StateMgr = N->getState()->getStateManager(); 1478 MemRegionManager &MRMgr = StateMgr.getRegionManager(); 1479 return MRMgr.getVarRegion(VD, N->getLocationContext()); 1480 } 1481 } 1482 1483 // FIXME: This does not handle other kinds of null references, 1484 // for example, references from FieldRegions: 1485 // struct Wrapper { int &ref; }; 1486 // Wrapper w = { *(int *)0 }; 1487 // w.ref = 1; 1488 1489 return nullptr; 1490 } 1491 1492 /// \return A subexpression of {@code Ex} which represents the 1493 /// expression-of-interest. 1494 static const Expr *peelOffOuterExpr(const Expr *Ex, 1495 const ExplodedNode *N) { 1496 Ex = Ex->IgnoreParenCasts(); 1497 if (const auto *FE = dyn_cast<FullExpr>(Ex)) 1498 return peelOffOuterExpr(FE->getSubExpr(), N); 1499 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex)) 1500 return peelOffOuterExpr(OVE->getSourceExpr(), N); 1501 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) { 1502 const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm()); 1503 if (PropRef && PropRef->isMessagingGetter()) { 1504 const Expr *GetterMessageSend = 1505 POE->getSemanticExpr(POE->getNumSemanticExprs() - 1); 1506 assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts())); 1507 return peelOffOuterExpr(GetterMessageSend, N); 1508 } 1509 } 1510 1511 // Peel off the ternary operator. 1512 if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) { 1513 // Find a node where the branching occurred and find out which branch 1514 // we took (true/false) by looking at the ExplodedGraph. 1515 const ExplodedNode *NI = N; 1516 do { 1517 ProgramPoint ProgPoint = NI->getLocation(); 1518 if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) { 1519 const CFGBlock *srcBlk = BE->getSrc(); 1520 if (const Stmt *term = srcBlk->getTerminator()) { 1521 if (term == CO) { 1522 bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst()); 1523 if (TookTrueBranch) 1524 return peelOffOuterExpr(CO->getTrueExpr(), N); 1525 else 1526 return peelOffOuterExpr(CO->getFalseExpr(), N); 1527 } 1528 } 1529 } 1530 NI = NI->getFirstPred(); 1531 } while (NI); 1532 } 1533 1534 if (auto *BO = dyn_cast<BinaryOperator>(Ex)) 1535 if (const Expr *SubEx = peelOffPointerArithmetic(BO)) 1536 return peelOffOuterExpr(SubEx, N); 1537 1538 if (auto *UO = dyn_cast<UnaryOperator>(Ex)) { 1539 if (UO->getOpcode() == UO_LNot) 1540 return peelOffOuterExpr(UO->getSubExpr(), N); 1541 1542 // FIXME: There's a hack in our Store implementation that always computes 1543 // field offsets around null pointers as if they are always equal to 0. 1544 // The idea here is to report accesses to fields as null dereferences 1545 // even though the pointer value that's being dereferenced is actually 1546 // the offset of the field rather than exactly 0. 1547 // See the FIXME in StoreManager's getLValueFieldOrIvar() method. 1548 // This code interacts heavily with this hack; otherwise the value 1549 // would not be null at all for most fields, so we'd be unable to track it. 1550 if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue()) 1551 if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr())) 1552 return peelOffOuterExpr(DerefEx, N); 1553 } 1554 1555 return Ex; 1556 } 1557 1558 /// Find the ExplodedNode where the lvalue (the value of 'Ex') 1559 /// was computed. 1560 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N, 1561 const Expr *Inner) { 1562 while (N) { 1563 if (PathDiagnosticLocation::getStmt(N) == Inner) 1564 return N; 1565 N = N->getFirstPred(); 1566 } 1567 return N; 1568 } 1569 1570 bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode, 1571 const Expr *E, BugReport &report, 1572 bool EnableNullFPSuppression) { 1573 if (!E || !InputNode) 1574 return false; 1575 1576 const Expr *Inner = peelOffOuterExpr(E, InputNode); 1577 const ExplodedNode *LVNode = findNodeForExpression(InputNode, Inner); 1578 if (!LVNode) 1579 return false; 1580 1581 ProgramStateRef LVState = LVNode->getState(); 1582 1583 // The message send could be nil due to the receiver being nil. 1584 // At this point in the path, the receiver should be live since we are at the 1585 // message send expr. If it is nil, start tracking it. 1586 if (const Expr *Receiver = NilReceiverBRVisitor::getNilReceiver(Inner, LVNode)) 1587 trackExpressionValue(LVNode, Receiver, report, EnableNullFPSuppression); 1588 1589 // See if the expression we're interested refers to a variable. 1590 // If so, we can track both its contents and constraints on its value. 1591 if (ExplodedGraph::isInterestingLValueExpr(Inner)) { 1592 SVal LVal = LVNode->getSVal(Inner); 1593 1594 const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode); 1595 bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue(); 1596 1597 // If this is a C++ reference to a null pointer, we are tracking the 1598 // pointer. In addition, we should find the store at which the reference 1599 // got initialized. 1600 if (RR && !LVIsNull) 1601 if (auto KV = LVal.getAs<KnownSVal>()) 1602 report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1603 *KV, RR, EnableNullFPSuppression)); 1604 1605 // In case of C++ references, we want to differentiate between a null 1606 // reference and reference to null pointer. 1607 // If the LVal is null, check if we are dealing with null reference. 1608 // For those, we want to track the location of the reference. 1609 const MemRegion *R = (RR && LVIsNull) ? RR : 1610 LVNode->getSVal(Inner).getAsRegion(); 1611 1612 if (R) { 1613 1614 // Mark both the variable region and its contents as interesting. 1615 SVal V = LVState->getRawSVal(loc::MemRegionVal(R)); 1616 report.addVisitor( 1617 llvm::make_unique<NoStoreFuncVisitor>(cast<SubRegion>(R))); 1618 1619 MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary( 1620 LVNode, R, EnableNullFPSuppression, report, V); 1621 1622 report.markInteresting(V); 1623 report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(R)); 1624 1625 // If the contents are symbolic, find out when they became null. 1626 if (V.getAsLocSymbol(/*IncludeBaseRegions*/ true)) 1627 report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>( 1628 V.castAs<DefinedSVal>(), false)); 1629 1630 // Add visitor, which will suppress inline defensive checks. 1631 if (auto DV = V.getAs<DefinedSVal>()) 1632 if (!DV->isZeroConstant() && LVState->isNull(*DV).isConstrainedTrue() && 1633 EnableNullFPSuppression) 1634 report.addVisitor( 1635 llvm::make_unique<SuppressInlineDefensiveChecksVisitor>(*DV, 1636 LVNode)); 1637 1638 if (auto KV = V.getAs<KnownSVal>()) 1639 report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1640 *KV, R, EnableNullFPSuppression)); 1641 return true; 1642 } 1643 } 1644 1645 // If the expression is not an "lvalue expression", we can still 1646 // track the constraints on its contents. 1647 SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext()); 1648 1649 ReturnVisitor::addVisitorIfNecessary( 1650 LVNode, Inner, report, EnableNullFPSuppression); 1651 1652 // Is it a symbolic value? 1653 if (auto L = V.getAs<loc::MemRegionVal>()) { 1654 report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(L->getRegion())); 1655 1656 // FIXME: this is a hack for fixing a later crash when attempting to 1657 // dereference a void* pointer. 1658 // We should not try to dereference pointers at all when we don't care 1659 // what is written inside the pointer. 1660 bool CanDereference = true; 1661 if (const auto *SR = dyn_cast<SymbolicRegion>(L->getRegion())) 1662 if (SR->getSymbol()->getType()->getPointeeType()->isVoidType()) 1663 CanDereference = false; 1664 1665 // At this point we are dealing with the region's LValue. 1666 // However, if the rvalue is a symbolic region, we should track it as well. 1667 // Try to use the correct type when looking up the value. 1668 SVal RVal; 1669 if (ExplodedGraph::isInterestingLValueExpr(Inner)) { 1670 RVal = LVState->getRawSVal(L.getValue(), Inner->getType()); 1671 } else if (CanDereference) { 1672 RVal = LVState->getSVal(L->getRegion()); 1673 } 1674 1675 if (CanDereference) 1676 if (auto KV = RVal.getAs<KnownSVal>()) 1677 report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1678 *KV, L->getRegion(), EnableNullFPSuppression)); 1679 1680 const MemRegion *RegionRVal = RVal.getAsRegion(); 1681 if (RegionRVal && isa<SymbolicRegion>(RegionRVal)) { 1682 report.markInteresting(RegionRVal); 1683 report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>( 1684 loc::MemRegionVal(RegionRVal), /*assumption=*/false)); 1685 } 1686 } 1687 return true; 1688 } 1689 1690 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S, 1691 const ExplodedNode *N) { 1692 const auto *ME = dyn_cast<ObjCMessageExpr>(S); 1693 if (!ME) 1694 return nullptr; 1695 if (const Expr *Receiver = ME->getInstanceReceiver()) { 1696 ProgramStateRef state = N->getState(); 1697 SVal V = N->getSVal(Receiver); 1698 if (state->isNull(V).isConstrainedTrue()) 1699 return Receiver; 1700 } 1701 return nullptr; 1702 } 1703 1704 std::shared_ptr<PathDiagnosticPiece> 1705 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, 1706 BugReporterContext &BRC, BugReport &BR) { 1707 Optional<PreStmt> P = N->getLocationAs<PreStmt>(); 1708 if (!P) 1709 return nullptr; 1710 1711 const Stmt *S = P->getStmt(); 1712 const Expr *Receiver = getNilReceiver(S, N); 1713 if (!Receiver) 1714 return nullptr; 1715 1716 llvm::SmallString<256> Buf; 1717 llvm::raw_svector_ostream OS(Buf); 1718 1719 if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) { 1720 OS << "'"; 1721 ME->getSelector().print(OS); 1722 OS << "' not called"; 1723 } 1724 else { 1725 OS << "No method is called"; 1726 } 1727 OS << " because the receiver is nil"; 1728 1729 // The receiver was nil, and hence the method was skipped. 1730 // Register a BugReporterVisitor to issue a message telling us how 1731 // the receiver was null. 1732 bugreporter::trackExpressionValue(N, Receiver, BR, 1733 /*EnableNullFPSuppression*/ false); 1734 // Issue a message saying that the method was skipped. 1735 PathDiagnosticLocation L(Receiver, BRC.getSourceManager(), 1736 N->getLocationContext()); 1737 return std::make_shared<PathDiagnosticEventPiece>(L, OS.str()); 1738 } 1739 1740 // Registers every VarDecl inside a Stmt with a last store visitor. 1741 void FindLastStoreBRVisitor::registerStatementVarDecls(BugReport &BR, 1742 const Stmt *S, 1743 bool EnableNullFPSuppression) { 1744 const ExplodedNode *N = BR.getErrorNode(); 1745 std::deque<const Stmt *> WorkList; 1746 WorkList.push_back(S); 1747 1748 while (!WorkList.empty()) { 1749 const Stmt *Head = WorkList.front(); 1750 WorkList.pop_front(); 1751 1752 ProgramStateManager &StateMgr = N->getState()->getStateManager(); 1753 1754 if (const auto *DR = dyn_cast<DeclRefExpr>(Head)) { 1755 if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) { 1756 const VarRegion *R = 1757 StateMgr.getRegionManager().getVarRegion(VD, N->getLocationContext()); 1758 1759 // What did we load? 1760 SVal V = N->getSVal(S); 1761 1762 if (V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) { 1763 // Register a new visitor with the BugReport. 1764 BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1765 V.castAs<KnownSVal>(), R, EnableNullFPSuppression)); 1766 } 1767 } 1768 } 1769 1770 for (const Stmt *SubStmt : Head->children()) 1771 WorkList.push_back(SubStmt); 1772 } 1773 } 1774 1775 //===----------------------------------------------------------------------===// 1776 // Visitor that tries to report interesting diagnostics from conditions. 1777 //===----------------------------------------------------------------------===// 1778 1779 /// Return the tag associated with this visitor. This tag will be used 1780 /// to make all PathDiagnosticPieces created by this visitor. 1781 const char *ConditionBRVisitor::getTag() { 1782 return "ConditionBRVisitor"; 1783 } 1784 1785 std::shared_ptr<PathDiagnosticPiece> 1786 ConditionBRVisitor::VisitNode(const ExplodedNode *N, 1787 BugReporterContext &BRC, BugReport &BR) { 1788 auto piece = VisitNodeImpl(N, BRC, BR); 1789 if (piece) { 1790 piece->setTag(getTag()); 1791 if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get())) 1792 ev->setPrunable(true, /* override */ false); 1793 } 1794 return piece; 1795 } 1796 1797 std::shared_ptr<PathDiagnosticPiece> 1798 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N, 1799 BugReporterContext &BRC, BugReport &BR) { 1800 ProgramPoint progPoint = N->getLocation(); 1801 ProgramStateRef CurrentState = N->getState(); 1802 ProgramStateRef PrevState = N->getFirstPred()->getState(); 1803 1804 // Compare the GDMs of the state, because that is where constraints 1805 // are managed. Note that ensure that we only look at nodes that 1806 // were generated by the analyzer engine proper, not checkers. 1807 if (CurrentState->getGDM().getRoot() == 1808 PrevState->getGDM().getRoot()) 1809 return nullptr; 1810 1811 // If an assumption was made on a branch, it should be caught 1812 // here by looking at the state transition. 1813 if (Optional<BlockEdge> BE = progPoint.getAs<BlockEdge>()) { 1814 const CFGBlock *srcBlk = BE->getSrc(); 1815 if (const Stmt *term = srcBlk->getTerminator()) 1816 return VisitTerminator(term, N, srcBlk, BE->getDst(), BR, BRC); 1817 return nullptr; 1818 } 1819 1820 if (Optional<PostStmt> PS = progPoint.getAs<PostStmt>()) { 1821 const std::pair<const ProgramPointTag *, const ProgramPointTag *> &tags = 1822 ExprEngine::geteagerlyAssumeBinOpBifurcationTags(); 1823 1824 const ProgramPointTag *tag = PS->getTag(); 1825 if (tag == tags.first) 1826 return VisitTrueTest(cast<Expr>(PS->getStmt()), true, 1827 BRC, BR, N); 1828 if (tag == tags.second) 1829 return VisitTrueTest(cast<Expr>(PS->getStmt()), false, 1830 BRC, BR, N); 1831 1832 return nullptr; 1833 } 1834 1835 return nullptr; 1836 } 1837 1838 std::shared_ptr<PathDiagnosticPiece> ConditionBRVisitor::VisitTerminator( 1839 const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk, 1840 const CFGBlock *dstBlk, BugReport &R, BugReporterContext &BRC) { 1841 const Expr *Cond = nullptr; 1842 1843 // In the code below, Term is a CFG terminator and Cond is a branch condition 1844 // expression upon which the decision is made on this terminator. 1845 // 1846 // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator, 1847 // and "x == 0" is the respective condition. 1848 // 1849 // Another example: in "if (x && y)", we've got two terminators and two 1850 // conditions due to short-circuit nature of operator "&&": 1851 // 1. The "if (x && y)" statement is a terminator, 1852 // and "y" is the respective condition. 1853 // 2. Also "x && ..." is another terminator, 1854 // and "x" is its condition. 1855 1856 switch (Term->getStmtClass()) { 1857 // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit 1858 // more tricky because there are more than two branches to account for. 1859 default: 1860 return nullptr; 1861 case Stmt::IfStmtClass: 1862 Cond = cast<IfStmt>(Term)->getCond(); 1863 break; 1864 case Stmt::ConditionalOperatorClass: 1865 Cond = cast<ConditionalOperator>(Term)->getCond(); 1866 break; 1867 case Stmt::BinaryOperatorClass: 1868 // When we encounter a logical operator (&& or ||) as a CFG terminator, 1869 // then the condition is actually its LHS; otherwise, we'd encounter 1870 // the parent, such as if-statement, as a terminator. 1871 const auto *BO = cast<BinaryOperator>(Term); 1872 assert(BO->isLogicalOp() && 1873 "CFG terminator is not a short-circuit operator!"); 1874 Cond = BO->getLHS(); 1875 break; 1876 } 1877 1878 // However, when we encounter a logical operator as a branch condition, 1879 // then the condition is actually its RHS, because LHS would be 1880 // the condition for the logical operator terminator. 1881 while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) { 1882 if (!InnerBO->isLogicalOp()) 1883 break; 1884 Cond = InnerBO->getRHS()->IgnoreParens(); 1885 } 1886 1887 assert(Cond); 1888 assert(srcBlk->succ_size() == 2); 1889 const bool tookTrue = *(srcBlk->succ_begin()) == dstBlk; 1890 return VisitTrueTest(Cond, tookTrue, BRC, R, N); 1891 } 1892 1893 std::shared_ptr<PathDiagnosticPiece> 1894 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, bool tookTrue, 1895 BugReporterContext &BRC, BugReport &R, 1896 const ExplodedNode *N) { 1897 // These will be modified in code below, but we need to preserve the original 1898 // values in case we want to throw the generic message. 1899 const Expr *CondTmp = Cond; 1900 bool tookTrueTmp = tookTrue; 1901 1902 while (true) { 1903 CondTmp = CondTmp->IgnoreParenCasts(); 1904 switch (CondTmp->getStmtClass()) { 1905 default: 1906 break; 1907 case Stmt::BinaryOperatorClass: 1908 if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp), 1909 tookTrueTmp, BRC, R, N)) 1910 return P; 1911 break; 1912 case Stmt::DeclRefExprClass: 1913 if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp), 1914 tookTrueTmp, BRC, R, N)) 1915 return P; 1916 break; 1917 case Stmt::UnaryOperatorClass: { 1918 const auto *UO = cast<UnaryOperator>(CondTmp); 1919 if (UO->getOpcode() == UO_LNot) { 1920 tookTrueTmp = !tookTrueTmp; 1921 CondTmp = UO->getSubExpr(); 1922 continue; 1923 } 1924 break; 1925 } 1926 } 1927 break; 1928 } 1929 1930 // Condition too complex to explain? Just say something so that the user 1931 // knew we've made some path decision at this point. 1932 const LocationContext *LCtx = N->getLocationContext(); 1933 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); 1934 if (!Loc.isValid() || !Loc.asLocation().isValid()) 1935 return nullptr; 1936 1937 return std::make_shared<PathDiagnosticEventPiece>( 1938 Loc, tookTrue ? GenericTrueMessage : GenericFalseMessage); 1939 } 1940 1941 bool ConditionBRVisitor::patternMatch(const Expr *Ex, 1942 const Expr *ParentEx, 1943 raw_ostream &Out, 1944 BugReporterContext &BRC, 1945 BugReport &report, 1946 const ExplodedNode *N, 1947 Optional<bool> &prunable) { 1948 const Expr *OriginalExpr = Ex; 1949 Ex = Ex->IgnoreParenCasts(); 1950 1951 // Use heuristics to determine if Ex is a macro expending to a literal and 1952 // if so, use the macro's name. 1953 SourceLocation LocStart = Ex->getBeginLoc(); 1954 SourceLocation LocEnd = Ex->getEndLoc(); 1955 if (LocStart.isMacroID() && LocEnd.isMacroID() && 1956 (isa<GNUNullExpr>(Ex) || 1957 isa<ObjCBoolLiteralExpr>(Ex) || 1958 isa<CXXBoolLiteralExpr>(Ex) || 1959 isa<IntegerLiteral>(Ex) || 1960 isa<FloatingLiteral>(Ex))) { 1961 StringRef StartName = Lexer::getImmediateMacroNameForDiagnostics(LocStart, 1962 BRC.getSourceManager(), BRC.getASTContext().getLangOpts()); 1963 StringRef EndName = Lexer::getImmediateMacroNameForDiagnostics(LocEnd, 1964 BRC.getSourceManager(), BRC.getASTContext().getLangOpts()); 1965 bool beginAndEndAreTheSameMacro = StartName.equals(EndName); 1966 1967 bool partOfParentMacro = false; 1968 if (ParentEx->getBeginLoc().isMacroID()) { 1969 StringRef PName = Lexer::getImmediateMacroNameForDiagnostics( 1970 ParentEx->getBeginLoc(), BRC.getSourceManager(), 1971 BRC.getASTContext().getLangOpts()); 1972 partOfParentMacro = PName.equals(StartName); 1973 } 1974 1975 if (beginAndEndAreTheSameMacro && !partOfParentMacro ) { 1976 // Get the location of the macro name as written by the caller. 1977 SourceLocation Loc = LocStart; 1978 while (LocStart.isMacroID()) { 1979 Loc = LocStart; 1980 LocStart = BRC.getSourceManager().getImmediateMacroCallerLoc(LocStart); 1981 } 1982 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 1983 Loc, BRC.getSourceManager(), BRC.getASTContext().getLangOpts()); 1984 1985 // Return the macro name. 1986 Out << MacroName; 1987 return false; 1988 } 1989 } 1990 1991 if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) { 1992 const bool quotes = isa<VarDecl>(DR->getDecl()); 1993 if (quotes) { 1994 Out << '\''; 1995 const LocationContext *LCtx = N->getLocationContext(); 1996 const ProgramState *state = N->getState().get(); 1997 if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()), 1998 LCtx).getAsRegion()) { 1999 if (report.isInteresting(R)) 2000 prunable = false; 2001 else { 2002 const ProgramState *state = N->getState().get(); 2003 SVal V = state->getSVal(R); 2004 if (report.isInteresting(V)) 2005 prunable = false; 2006 } 2007 } 2008 } 2009 Out << DR->getDecl()->getDeclName().getAsString(); 2010 if (quotes) 2011 Out << '\''; 2012 return quotes; 2013 } 2014 2015 if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) { 2016 QualType OriginalTy = OriginalExpr->getType(); 2017 if (OriginalTy->isPointerType()) { 2018 if (IL->getValue() == 0) { 2019 Out << "null"; 2020 return false; 2021 } 2022 } 2023 else if (OriginalTy->isObjCObjectPointerType()) { 2024 if (IL->getValue() == 0) { 2025 Out << "nil"; 2026 return false; 2027 } 2028 } 2029 2030 Out << IL->getValue(); 2031 return false; 2032 } 2033 2034 return false; 2035 } 2036 2037 std::shared_ptr<PathDiagnosticPiece> 2038 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const BinaryOperator *BExpr, 2039 const bool tookTrue, BugReporterContext &BRC, 2040 BugReport &R, const ExplodedNode *N) { 2041 bool shouldInvert = false; 2042 Optional<bool> shouldPrune; 2043 2044 SmallString<128> LhsString, RhsString; 2045 { 2046 llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString); 2047 const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, 2048 BRC, R, N, shouldPrune); 2049 const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, 2050 BRC, R, N, shouldPrune); 2051 2052 shouldInvert = !isVarLHS && isVarRHS; 2053 } 2054 2055 BinaryOperator::Opcode Op = BExpr->getOpcode(); 2056 2057 if (BinaryOperator::isAssignmentOp(Op)) { 2058 // For assignment operators, all that we care about is that the LHS 2059 // evaluates to "true" or "false". 2060 return VisitConditionVariable(LhsString, BExpr->getLHS(), tookTrue, 2061 BRC, R, N); 2062 } 2063 2064 // For non-assignment operations, we require that we can understand 2065 // both the LHS and RHS. 2066 if (LhsString.empty() || RhsString.empty() || 2067 !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp) 2068 return nullptr; 2069 2070 // Should we invert the strings if the LHS is not a variable name? 2071 SmallString<256> buf; 2072 llvm::raw_svector_ostream Out(buf); 2073 Out << "Assuming " << (shouldInvert ? RhsString : LhsString) << " is "; 2074 2075 // Do we need to invert the opcode? 2076 if (shouldInvert) 2077 switch (Op) { 2078 default: break; 2079 case BO_LT: Op = BO_GT; break; 2080 case BO_GT: Op = BO_LT; break; 2081 case BO_LE: Op = BO_GE; break; 2082 case BO_GE: Op = BO_LE; break; 2083 } 2084 2085 if (!tookTrue) 2086 switch (Op) { 2087 case BO_EQ: Op = BO_NE; break; 2088 case BO_NE: Op = BO_EQ; break; 2089 case BO_LT: Op = BO_GE; break; 2090 case BO_GT: Op = BO_LE; break; 2091 case BO_LE: Op = BO_GT; break; 2092 case BO_GE: Op = BO_LT; break; 2093 default: 2094 return nullptr; 2095 } 2096 2097 switch (Op) { 2098 case BO_EQ: 2099 Out << "equal to "; 2100 break; 2101 case BO_NE: 2102 Out << "not equal to "; 2103 break; 2104 default: 2105 Out << BinaryOperator::getOpcodeStr(Op) << ' '; 2106 break; 2107 } 2108 2109 Out << (shouldInvert ? LhsString : RhsString); 2110 const LocationContext *LCtx = N->getLocationContext(); 2111 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); 2112 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); 2113 if (shouldPrune.hasValue()) 2114 event->setPrunable(shouldPrune.getValue()); 2115 return event; 2116 } 2117 2118 std::shared_ptr<PathDiagnosticPiece> ConditionBRVisitor::VisitConditionVariable( 2119 StringRef LhsString, const Expr *CondVarExpr, const bool tookTrue, 2120 BugReporterContext &BRC, BugReport &report, const ExplodedNode *N) { 2121 // FIXME: If there's already a constraint tracker for this variable, 2122 // we shouldn't emit anything here (c.f. the double note in 2123 // test/Analysis/inlining/path-notes.c) 2124 SmallString<256> buf; 2125 llvm::raw_svector_ostream Out(buf); 2126 Out << "Assuming " << LhsString << " is "; 2127 2128 QualType Ty = CondVarExpr->getType(); 2129 2130 if (Ty->isPointerType()) 2131 Out << (tookTrue ? "not null" : "null"); 2132 else if (Ty->isObjCObjectPointerType()) 2133 Out << (tookTrue ? "not nil" : "nil"); 2134 else if (Ty->isBooleanType()) 2135 Out << (tookTrue ? "true" : "false"); 2136 else if (Ty->isIntegralOrEnumerationType()) 2137 Out << (tookTrue ? "non-zero" : "zero"); 2138 else 2139 return nullptr; 2140 2141 const LocationContext *LCtx = N->getLocationContext(); 2142 PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx); 2143 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); 2144 2145 if (const auto *DR = dyn_cast<DeclRefExpr>(CondVarExpr)) { 2146 if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) { 2147 const ProgramState *state = N->getState().get(); 2148 if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) { 2149 if (report.isInteresting(R)) 2150 event->setPrunable(false); 2151 } 2152 } 2153 } 2154 2155 return event; 2156 } 2157 2158 std::shared_ptr<PathDiagnosticPiece> 2159 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const DeclRefExpr *DR, 2160 const bool tookTrue, BugReporterContext &BRC, 2161 BugReport &report, const ExplodedNode *N) { 2162 const auto *VD = dyn_cast<VarDecl>(DR->getDecl()); 2163 if (!VD) 2164 return nullptr; 2165 2166 SmallString<256> Buf; 2167 llvm::raw_svector_ostream Out(Buf); 2168 2169 Out << "Assuming '" << VD->getDeclName() << "' is "; 2170 2171 QualType VDTy = VD->getType(); 2172 2173 if (VDTy->isPointerType()) 2174 Out << (tookTrue ? "non-null" : "null"); 2175 else if (VDTy->isObjCObjectPointerType()) 2176 Out << (tookTrue ? "non-nil" : "nil"); 2177 else if (VDTy->isScalarType()) 2178 Out << (tookTrue ? "not equal to 0" : "0"); 2179 else 2180 return nullptr; 2181 2182 const LocationContext *LCtx = N->getLocationContext(); 2183 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); 2184 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); 2185 2186 const ProgramState *state = N->getState().get(); 2187 if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) { 2188 if (report.isInteresting(R)) 2189 event->setPrunable(false); 2190 else { 2191 SVal V = state->getSVal(R); 2192 if (report.isInteresting(V)) 2193 event->setPrunable(false); 2194 } 2195 } 2196 return std::move(event); 2197 } 2198 2199 const char *const ConditionBRVisitor::GenericTrueMessage = 2200 "Assuming the condition is true"; 2201 const char *const ConditionBRVisitor::GenericFalseMessage = 2202 "Assuming the condition is false"; 2203 2204 bool ConditionBRVisitor::isPieceMessageGeneric( 2205 const PathDiagnosticPiece *Piece) { 2206 return Piece->getString() == GenericTrueMessage || 2207 Piece->getString() == GenericFalseMessage; 2208 } 2209 2210 void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor( 2211 BugReporterContext &BRC, const ExplodedNode *N, BugReport &BR) { 2212 // Here we suppress false positives coming from system headers. This list is 2213 // based on known issues. 2214 AnalyzerOptions &Options = BRC.getAnalyzerOptions(); 2215 const Decl *D = N->getLocationContext()->getDecl(); 2216 2217 if (AnalysisDeclContext::isInStdNamespace(D)) { 2218 // Skip reports within the 'std' namespace. Although these can sometimes be 2219 // the user's fault, we currently don't report them very well, and 2220 // Note that this will not help for any other data structure libraries, like 2221 // TR1, Boost, or llvm/ADT. 2222 if (Options.shouldSuppressFromCXXStandardLibrary()) { 2223 BR.markInvalid(getTag(), nullptr); 2224 return; 2225 } else { 2226 // If the complete 'std' suppression is not enabled, suppress reports 2227 // from the 'std' namespace that are known to produce false positives. 2228 2229 // The analyzer issues a false use-after-free when std::list::pop_front 2230 // or std::list::pop_back are called multiple times because we cannot 2231 // reason about the internal invariants of the data structure. 2232 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 2233 const CXXRecordDecl *CD = MD->getParent(); 2234 if (CD->getName() == "list") { 2235 BR.markInvalid(getTag(), nullptr); 2236 return; 2237 } 2238 } 2239 2240 // The analyzer issues a false positive when the constructor of 2241 // std::__independent_bits_engine from algorithms is used. 2242 if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) { 2243 const CXXRecordDecl *CD = MD->getParent(); 2244 if (CD->getName() == "__independent_bits_engine") { 2245 BR.markInvalid(getTag(), nullptr); 2246 return; 2247 } 2248 } 2249 2250 for (const LocationContext *LCtx = N->getLocationContext(); LCtx; 2251 LCtx = LCtx->getParent()) { 2252 const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl()); 2253 if (!MD) 2254 continue; 2255 2256 const CXXRecordDecl *CD = MD->getParent(); 2257 // The analyzer issues a false positive on 2258 // std::basic_string<uint8_t> v; v.push_back(1); 2259 // and 2260 // std::u16string s; s += u'a'; 2261 // because we cannot reason about the internal invariants of the 2262 // data structure. 2263 if (CD->getName() == "basic_string") { 2264 BR.markInvalid(getTag(), nullptr); 2265 return; 2266 } 2267 2268 // The analyzer issues a false positive on 2269 // std::shared_ptr<int> p(new int(1)); p = nullptr; 2270 // because it does not reason properly about temporary destructors. 2271 if (CD->getName() == "shared_ptr") { 2272 BR.markInvalid(getTag(), nullptr); 2273 return; 2274 } 2275 } 2276 } 2277 } 2278 2279 // Skip reports within the sys/queue.h macros as we do not have the ability to 2280 // reason about data structure shapes. 2281 SourceManager &SM = BRC.getSourceManager(); 2282 FullSourceLoc Loc = BR.getLocation(SM).asLocation(); 2283 while (Loc.isMacroID()) { 2284 Loc = Loc.getSpellingLoc(); 2285 if (SM.getFilename(Loc).endswith("sys/queue.h")) { 2286 BR.markInvalid(getTag(), nullptr); 2287 return; 2288 } 2289 } 2290 } 2291 2292 std::shared_ptr<PathDiagnosticPiece> 2293 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, 2294 BugReporterContext &BRC, BugReport &BR) { 2295 ProgramStateRef State = N->getState(); 2296 ProgramPoint ProgLoc = N->getLocation(); 2297 2298 // We are only interested in visiting CallEnter nodes. 2299 Optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>(); 2300 if (!CEnter) 2301 return nullptr; 2302 2303 // Check if one of the arguments is the region the visitor is tracking. 2304 CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager(); 2305 CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State); 2306 unsigned Idx = 0; 2307 ArrayRef<ParmVarDecl *> parms = Call->parameters(); 2308 2309 for (const auto ParamDecl : parms) { 2310 const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion(); 2311 ++Idx; 2312 2313 // Are we tracking the argument or its subregion? 2314 if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts())) 2315 continue; 2316 2317 // Check the function parameter type. 2318 assert(ParamDecl && "Formal parameter has no decl?"); 2319 QualType T = ParamDecl->getType(); 2320 2321 if (!(T->isAnyPointerType() || T->isReferenceType())) { 2322 // Function can only change the value passed in by address. 2323 continue; 2324 } 2325 2326 // If it is a const pointer value, the function does not intend to 2327 // change the value. 2328 if (T->getPointeeType().isConstQualified()) 2329 continue; 2330 2331 // Mark the call site (LocationContext) as interesting if the value of the 2332 // argument is undefined or '0'/'NULL'. 2333 SVal BoundVal = State->getSVal(R); 2334 if (BoundVal.isUndef() || BoundVal.isZeroConstant()) { 2335 BR.markInteresting(CEnter->getCalleeContext()); 2336 return nullptr; 2337 } 2338 } 2339 return nullptr; 2340 } 2341 2342 std::shared_ptr<PathDiagnosticPiece> 2343 CXXSelfAssignmentBRVisitor::VisitNode(const ExplodedNode *Succ, 2344 BugReporterContext &BRC, BugReport &) { 2345 if (Satisfied) 2346 return nullptr; 2347 2348 const auto Edge = Succ->getLocation().getAs<BlockEdge>(); 2349 if (!Edge.hasValue()) 2350 return nullptr; 2351 2352 auto Tag = Edge->getTag(); 2353 if (!Tag) 2354 return nullptr; 2355 2356 if (Tag->getTagDescription() != "cplusplus.SelfAssignment") 2357 return nullptr; 2358 2359 Satisfied = true; 2360 2361 const auto *Met = 2362 dyn_cast<CXXMethodDecl>(Succ->getCodeDecl().getAsFunction()); 2363 assert(Met && "Not a C++ method."); 2364 assert((Met->isCopyAssignmentOperator() || Met->isMoveAssignmentOperator()) && 2365 "Not a copy/move assignment operator."); 2366 2367 const auto *LCtx = Edge->getLocationContext(); 2368 2369 const auto &State = Succ->getState(); 2370 auto &SVB = State->getStateManager().getSValBuilder(); 2371 2372 const auto Param = 2373 State->getSVal(State->getRegion(Met->getParamDecl(0), LCtx)); 2374 const auto This = 2375 State->getSVal(SVB.getCXXThis(Met, LCtx->getStackFrame())); 2376 2377 auto L = PathDiagnosticLocation::create(Met, BRC.getSourceManager()); 2378 2379 if (!L.isValid() || !L.asLocation().isValid()) 2380 return nullptr; 2381 2382 SmallString<256> Buf; 2383 llvm::raw_svector_ostream Out(Buf); 2384 2385 Out << "Assuming " << Met->getParamDecl(0)->getName() << 2386 ((Param == This) ? " == " : " != ") << "*this"; 2387 2388 auto Piece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str()); 2389 Piece->addRange(Met->getSourceRange()); 2390 2391 return std::move(Piece); 2392 } 2393 2394 std::shared_ptr<PathDiagnosticPiece> 2395 TaintBugVisitor::VisitNode(const ExplodedNode *N, 2396 BugReporterContext &BRC, BugReport &) { 2397 2398 // Find the ExplodedNode where the taint was first introduced 2399 if (!N->getState()->isTainted(V) || N->getFirstPred()->getState()->isTainted(V)) 2400 return nullptr; 2401 2402 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2403 if (!S) 2404 return nullptr; 2405 2406 const LocationContext *NCtx = N->getLocationContext(); 2407 PathDiagnosticLocation L = 2408 PathDiagnosticLocation::createBegin(S, BRC.getSourceManager(), NCtx); 2409 if (!L.isValid() || !L.asLocation().isValid()) 2410 return nullptr; 2411 2412 return std::make_shared<PathDiagnosticEventPiece>(L, "Taint originated here"); 2413 } 2414 2415 FalsePositiveRefutationBRVisitor::FalsePositiveRefutationBRVisitor() 2416 : Constraints(ConstraintRangeTy::Factory().getEmptyMap()) {} 2417 2418 void FalsePositiveRefutationBRVisitor::finalizeVisitor( 2419 BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) { 2420 // Collect new constraints 2421 VisitNode(EndPathNode, BRC, BR); 2422 2423 // Create a refutation manager 2424 SMTSolverRef RefutationSolver = CreateZ3Solver(); 2425 ASTContext &Ctx = BRC.getASTContext(); 2426 2427 // Add constraints to the solver 2428 for (const auto &I : Constraints) { 2429 const SymbolRef Sym = I.first; 2430 auto RangeIt = I.second.begin(); 2431 2432 SMTExprRef Constraints = SMTConv::getRangeExpr( 2433 RefutationSolver, Ctx, Sym, RangeIt->From(), RangeIt->To(), 2434 /*InRange=*/true); 2435 while ((++RangeIt) != I.second.end()) { 2436 Constraints = RefutationSolver->mkOr( 2437 Constraints, SMTConv::getRangeExpr(RefutationSolver, Ctx, Sym, 2438 RangeIt->From(), RangeIt->To(), 2439 /*InRange=*/true)); 2440 } 2441 2442 RefutationSolver->addConstraint(Constraints); 2443 } 2444 2445 // And check for satisfiability 2446 Optional<bool> isSat = RefutationSolver->check(); 2447 if (!isSat.hasValue()) 2448 return; 2449 2450 if (!isSat.getValue()) 2451 BR.markInvalid("Infeasible constraints", EndPathNode->getLocationContext()); 2452 } 2453 2454 std::shared_ptr<PathDiagnosticPiece> 2455 FalsePositiveRefutationBRVisitor::VisitNode(const ExplodedNode *N, 2456 BugReporterContext &, 2457 BugReport &) { 2458 // Collect new constraints 2459 const ConstraintRangeTy &NewCs = N->getState()->get<ConstraintRange>(); 2460 ConstraintRangeTy::Factory &CF = 2461 N->getState()->get_context<ConstraintRange>(); 2462 2463 // Add constraints if we don't have them yet 2464 for (auto const &C : NewCs) { 2465 const SymbolRef &Sym = C.first; 2466 if (!Constraints.contains(Sym)) { 2467 Constraints = CF.add(Constraints, Sym, C.second); 2468 } 2469 } 2470 2471 return nullptr; 2472 } 2473 2474 void FalsePositiveRefutationBRVisitor::Profile( 2475 llvm::FoldingSetNodeID &ID) const { 2476 static int Tag = 0; 2477 ID.AddPointer(&Tag); 2478 } 2479