1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a set of BugReporter "visitors" which can be used to 10 // enhance the diagnostics reported for a bug. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclBase.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/ExprObjC.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/Type.h" 24 #include "clang/ASTMatchers/ASTMatchFinder.h" 25 #include "clang/Analysis/AnalysisDeclContext.h" 26 #include "clang/Analysis/CFG.h" 27 #include "clang/Analysis/CFGStmtMap.h" 28 #include "clang/Analysis/ProgramPoint.h" 29 #include "clang/Basic/IdentifierTable.h" 30 #include "clang/Basic/LLVM.h" 31 #include "clang/Basic/SourceLocation.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Lex/Lexer.h" 34 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" 35 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 36 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 37 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 38 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 44 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h" 45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 47 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 48 #include "llvm/ADT/ArrayRef.h" 49 #include "llvm/ADT/None.h" 50 #include "llvm/ADT/Optional.h" 51 #include "llvm/ADT/STLExtras.h" 52 #include "llvm/ADT/SmallPtrSet.h" 53 #include "llvm/ADT/SmallString.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/ADT/StringRef.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <cassert> 61 #include <deque> 62 #include <memory> 63 #include <string> 64 #include <utility> 65 66 using namespace clang; 67 using namespace ento; 68 69 //===----------------------------------------------------------------------===// 70 // Utility functions. 71 //===----------------------------------------------------------------------===// 72 73 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) { 74 if (B->isAdditiveOp() && B->getType()->isPointerType()) { 75 if (B->getLHS()->getType()->isPointerType()) { 76 return B->getLHS(); 77 } else if (B->getRHS()->getType()->isPointerType()) { 78 return B->getRHS(); 79 } 80 } 81 return nullptr; 82 } 83 84 /// Given that expression S represents a pointer that would be dereferenced, 85 /// try to find a sub-expression from which the pointer came from. 86 /// This is used for tracking down origins of a null or undefined value: 87 /// "this is null because that is null because that is null" etc. 88 /// We wipe away field and element offsets because they merely add offsets. 89 /// We also wipe away all casts except lvalue-to-rvalue casts, because the 90 /// latter represent an actual pointer dereference; however, we remove 91 /// the final lvalue-to-rvalue cast before returning from this function 92 /// because it demonstrates more clearly from where the pointer rvalue was 93 /// loaded. Examples: 94 /// x->y.z ==> x (lvalue) 95 /// foo()->y.z ==> foo() (rvalue) 96 const Expr *bugreporter::getDerefExpr(const Stmt *S) { 97 const auto *E = dyn_cast<Expr>(S); 98 if (!E) 99 return nullptr; 100 101 while (true) { 102 if (const auto *CE = dyn_cast<CastExpr>(E)) { 103 if (CE->getCastKind() == CK_LValueToRValue) { 104 // This cast represents the load we're looking for. 105 break; 106 } 107 E = CE->getSubExpr(); 108 } else if (const auto *B = dyn_cast<BinaryOperator>(E)) { 109 // Pointer arithmetic: '*(x + 2)' -> 'x') etc. 110 if (const Expr *Inner = peelOffPointerArithmetic(B)) { 111 E = Inner; 112 } else { 113 // Probably more arithmetic can be pattern-matched here, 114 // but for now give up. 115 break; 116 } 117 } else if (const auto *U = dyn_cast<UnaryOperator>(E)) { 118 if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf || 119 (U->isIncrementDecrementOp() && U->getType()->isPointerType())) { 120 // Operators '*' and '&' don't actually mean anything. 121 // We look at casts instead. 122 E = U->getSubExpr(); 123 } else { 124 // Probably more arithmetic can be pattern-matched here, 125 // but for now give up. 126 break; 127 } 128 } 129 // Pattern match for a few useful cases: a[0], p->f, *p etc. 130 else if (const auto *ME = dyn_cast<MemberExpr>(E)) { 131 E = ME->getBase(); 132 } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 133 E = IvarRef->getBase(); 134 } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) { 135 E = AE->getBase(); 136 } else if (const auto *PE = dyn_cast<ParenExpr>(E)) { 137 E = PE->getSubExpr(); 138 } else if (const auto *FE = dyn_cast<FullExpr>(E)) { 139 E = FE->getSubExpr(); 140 } else { 141 // Other arbitrary stuff. 142 break; 143 } 144 } 145 146 // Special case: remove the final lvalue-to-rvalue cast, but do not recurse 147 // deeper into the sub-expression. This way we return the lvalue from which 148 // our pointer rvalue was loaded. 149 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) 150 if (CE->getCastKind() == CK_LValueToRValue) 151 E = CE->getSubExpr(); 152 153 return E; 154 } 155 156 /// Comparing internal representations of symbolic values (via 157 /// SVal::operator==()) is a valid way to check if the value was updated, 158 /// unless it's a LazyCompoundVal that may have a different internal 159 /// representation every time it is loaded from the state. In this function we 160 /// do an approximate comparison for lazy compound values, checking that they 161 /// are the immediate snapshots of the tracked region's bindings within the 162 /// node's respective states but not really checking that these snapshots 163 /// actually contain the same set of bindings. 164 static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal, 165 const ExplodedNode *RightNode, SVal RightVal) { 166 if (LeftVal == RightVal) 167 return true; 168 169 const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>(); 170 if (!LLCV) 171 return false; 172 173 const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>(); 174 if (!RLCV) 175 return false; 176 177 return LLCV->getRegion() == RLCV->getRegion() && 178 LLCV->getStore() == LeftNode->getState()->getStore() && 179 RLCV->getStore() == RightNode->getState()->getStore(); 180 } 181 182 //===----------------------------------------------------------------------===// 183 // Definitions for bug reporter visitors. 184 //===----------------------------------------------------------------------===// 185 186 std::shared_ptr<PathDiagnosticPiece> 187 BugReporterVisitor::getEndPath(BugReporterContext &, 188 const ExplodedNode *, BugReport &) { 189 return nullptr; 190 } 191 192 void 193 BugReporterVisitor::finalizeVisitor(BugReporterContext &, 194 const ExplodedNode *, BugReport &) {} 195 196 std::shared_ptr<PathDiagnosticPiece> BugReporterVisitor::getDefaultEndPath( 197 BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) { 198 PathDiagnosticLocation L = 199 PathDiagnosticLocation::createEndOfPath(EndPathNode,BRC.getSourceManager()); 200 201 const auto &Ranges = BR.getRanges(); 202 203 // Only add the statement itself as a range if we didn't specify any 204 // special ranges for this report. 205 auto P = std::make_shared<PathDiagnosticEventPiece>( 206 L, BR.getDescription(), Ranges.begin() == Ranges.end()); 207 for (SourceRange Range : Ranges) 208 P->addRange(Range); 209 210 return P; 211 } 212 213 /// \return name of the macro inside the location \p Loc. 214 static StringRef getMacroName(SourceLocation Loc, 215 BugReporterContext &BRC) { 216 return Lexer::getImmediateMacroName( 217 Loc, 218 BRC.getSourceManager(), 219 BRC.getASTContext().getLangOpts()); 220 } 221 222 /// \return Whether given spelling location corresponds to an expansion 223 /// of a function-like macro. 224 static bool isFunctionMacroExpansion(SourceLocation Loc, 225 const SourceManager &SM) { 226 if (!Loc.isMacroID()) 227 return false; 228 while (SM.isMacroArgExpansion(Loc)) 229 Loc = SM.getImmediateExpansionRange(Loc).getBegin(); 230 std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc); 231 SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first); 232 const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion(); 233 return EInfo.isFunctionMacroExpansion(); 234 } 235 236 /// \return Whether \c RegionOfInterest was modified at \p N, 237 /// where \p ReturnState is a state associated with the return 238 /// from the current frame. 239 static bool wasRegionOfInterestModifiedAt( 240 const SubRegion *RegionOfInterest, 241 const ExplodedNode *N, 242 SVal ValueAfter) { 243 ProgramStateRef State = N->getState(); 244 ProgramStateManager &Mgr = N->getState()->getStateManager(); 245 246 if (!N->getLocationAs<PostStore>() 247 && !N->getLocationAs<PostInitializer>() 248 && !N->getLocationAs<PostStmt>()) 249 return false; 250 251 // Writing into region of interest. 252 if (auto PS = N->getLocationAs<PostStmt>()) 253 if (auto *BO = PS->getStmtAs<BinaryOperator>()) 254 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf( 255 N->getSVal(BO->getLHS()).getAsRegion())) 256 return true; 257 258 // SVal after the state is possibly different. 259 SVal ValueAtN = N->getState()->getSVal(RegionOfInterest); 260 if (!Mgr.getSValBuilder().areEqual(State, ValueAtN, ValueAfter).isConstrainedTrue() && 261 (!ValueAtN.isUndef() || !ValueAfter.isUndef())) 262 return true; 263 264 return false; 265 } 266 267 268 namespace { 269 270 /// Put a diagnostic on return statement of all inlined functions 271 /// for which the region of interest \p RegionOfInterest was passed into, 272 /// but not written inside, and it has caused an undefined read or a null 273 /// pointer dereference outside. 274 class NoStoreFuncVisitor final : public BugReporterVisitor { 275 const SubRegion *RegionOfInterest; 276 MemRegionManager &MmrMgr; 277 const SourceManager &SM; 278 const PrintingPolicy &PP; 279 280 /// Recursion limit for dereferencing fields when looking for the 281 /// region of interest. 282 /// The limit of two indicates that we will dereference fields only once. 283 static const unsigned DEREFERENCE_LIMIT = 2; 284 285 /// Frames writing into \c RegionOfInterest. 286 /// This visitor generates a note only if a function does not write into 287 /// a region of interest. This information is not immediately available 288 /// by looking at the node associated with the exit from the function 289 /// (usually the return statement). To avoid recomputing the same information 290 /// many times (going up the path for each node and checking whether the 291 /// region was written into) we instead lazily compute the 292 /// stack frames along the path which write into the region of interest. 293 llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingRegion; 294 llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingCalculated; 295 296 using RegionVector = SmallVector<const MemRegion *, 5>; 297 public: 298 NoStoreFuncVisitor(const SubRegion *R) 299 : RegionOfInterest(R), MmrMgr(*R->getMemRegionManager()), 300 SM(MmrMgr.getContext().getSourceManager()), 301 PP(MmrMgr.getContext().getPrintingPolicy()) {} 302 303 void Profile(llvm::FoldingSetNodeID &ID) const override { 304 static int Tag = 0; 305 ID.AddPointer(&Tag); 306 ID.AddPointer(RegionOfInterest); 307 } 308 309 void *getTag() const { 310 static int Tag = 0; 311 return static_cast<void *>(&Tag); 312 } 313 314 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 315 BugReporterContext &BR, 316 BugReport &R) override { 317 318 const LocationContext *Ctx = N->getLocationContext(); 319 const StackFrameContext *SCtx = Ctx->getStackFrame(); 320 ProgramStateRef State = N->getState(); 321 auto CallExitLoc = N->getLocationAs<CallExitBegin>(); 322 323 // No diagnostic if region was modified inside the frame. 324 if (!CallExitLoc || isRegionOfInterestModifiedInFrame(N)) 325 return nullptr; 326 327 CallEventRef<> Call = 328 BR.getStateManager().getCallEventManager().getCaller(SCtx, State); 329 330 // Region of interest corresponds to an IVar, exiting a method 331 // which could have written into that IVar, but did not. 332 if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) { 333 if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) { 334 const MemRegion *SelfRegion = MC->getReceiverSVal().getAsRegion(); 335 if (RegionOfInterest->isSubRegionOf(SelfRegion) && 336 potentiallyWritesIntoIvar(Call->getRuntimeDefinition().getDecl(), 337 IvarR->getDecl())) 338 return maybeEmitNode(R, *Call, N, {}, SelfRegion, "self", 339 /*FirstIsReferenceType=*/false, 1); 340 } 341 } 342 343 if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) { 344 const MemRegion *ThisR = CCall->getCXXThisVal().getAsRegion(); 345 if (RegionOfInterest->isSubRegionOf(ThisR) 346 && !CCall->getDecl()->isImplicit()) 347 return maybeEmitNode(R, *Call, N, {}, ThisR, "this", 348 /*FirstIsReferenceType=*/false, 1); 349 350 // Do not generate diagnostics for not modified parameters in 351 // constructors. 352 return nullptr; 353 } 354 355 ArrayRef<ParmVarDecl *> parameters = getCallParameters(Call); 356 for (unsigned I = 0; I < Call->getNumArgs() && I < parameters.size(); ++I) { 357 const ParmVarDecl *PVD = parameters[I]; 358 SVal V = Call->getArgSVal(I); 359 bool ParamIsReferenceType = PVD->getType()->isReferenceType(); 360 std::string ParamName = PVD->getNameAsString(); 361 362 int IndirectionLevel = 1; 363 QualType T = PVD->getType(); 364 while (const MemRegion *MR = V.getAsRegion()) { 365 if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T)) 366 return maybeEmitNode(R, *Call, N, {}, MR, ParamName, 367 ParamIsReferenceType, IndirectionLevel); 368 369 QualType PT = T->getPointeeType(); 370 if (PT.isNull() || PT->isVoidType()) break; 371 372 if (const RecordDecl *RD = PT->getAsRecordDecl()) 373 if (auto P = findRegionOfInterestInRecord(RD, State, MR)) 374 return maybeEmitNode(R, *Call, N, *P, RegionOfInterest, ParamName, 375 ParamIsReferenceType, IndirectionLevel); 376 377 V = State->getSVal(MR, PT); 378 T = PT; 379 IndirectionLevel++; 380 } 381 } 382 383 return nullptr; 384 } 385 386 private: 387 /// Attempts to find the region of interest in a given CXX decl, 388 /// by either following the base classes or fields. 389 /// Dereferences fields up to a given recursion limit. 390 /// Note that \p Vec is passed by value, leading to quadratic copying cost, 391 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT. 392 /// \return A chain fields leading to the region of interest or None. 393 const Optional<RegionVector> 394 findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State, 395 const MemRegion *R, 396 const RegionVector &Vec = {}, 397 int depth = 0) { 398 399 if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth. 400 return None; 401 402 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD)) 403 if (!RDX->hasDefinition()) 404 return None; 405 406 // Recursively examine the base classes. 407 // Note that following base classes does not increase the recursion depth. 408 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD)) 409 for (const auto II : RDX->bases()) 410 if (const RecordDecl *RRD = II.getType()->getAsRecordDecl()) 411 if (auto Out = findRegionOfInterestInRecord(RRD, State, R, Vec, depth)) 412 return Out; 413 414 for (const FieldDecl *I : RD->fields()) { 415 QualType FT = I->getType(); 416 const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R)); 417 const SVal V = State->getSVal(FR); 418 const MemRegion *VR = V.getAsRegion(); 419 420 RegionVector VecF = Vec; 421 VecF.push_back(FR); 422 423 if (RegionOfInterest == VR) 424 return VecF; 425 426 if (const RecordDecl *RRD = FT->getAsRecordDecl()) 427 if (auto Out = 428 findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1)) 429 return Out; 430 431 QualType PT = FT->getPointeeType(); 432 if (PT.isNull() || PT->isVoidType() || !VR) continue; 433 434 if (const RecordDecl *RRD = PT->getAsRecordDecl()) 435 if (auto Out = 436 findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1)) 437 return Out; 438 439 } 440 441 return None; 442 } 443 444 /// \return Whether the method declaration \p Parent 445 /// syntactically has a binary operation writing into the ivar \p Ivar. 446 bool potentiallyWritesIntoIvar(const Decl *Parent, 447 const ObjCIvarDecl *Ivar) { 448 using namespace ast_matchers; 449 const char * IvarBind = "Ivar"; 450 if (!Parent || !Parent->hasBody()) 451 return false; 452 StatementMatcher WriteIntoIvarM = binaryOperator( 453 hasOperatorName("="), 454 hasLHS(ignoringParenImpCasts( 455 objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind)))); 456 StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM)); 457 auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext()); 458 for (BoundNodes &Match : Matches) { 459 auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind); 460 if (IvarRef->isFreeIvar()) 461 return true; 462 463 const Expr *Base = IvarRef->getBase(); 464 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base)) 465 Base = ICE->getSubExpr(); 466 467 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) 468 if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl())) 469 if (ID->getParameterKind() == ImplicitParamDecl::ObjCSelf) 470 return true; 471 472 return false; 473 } 474 return false; 475 } 476 477 /// Check and lazily calculate whether the region of interest is 478 /// modified in the stack frame to which \p N belongs. 479 /// The calculation is cached in FramesModifyingRegion. 480 bool isRegionOfInterestModifiedInFrame(const ExplodedNode *N) { 481 const LocationContext *Ctx = N->getLocationContext(); 482 const StackFrameContext *SCtx = Ctx->getStackFrame(); 483 if (!FramesModifyingCalculated.count(SCtx)) 484 findModifyingFrames(N); 485 return FramesModifyingRegion.count(SCtx); 486 } 487 488 489 /// Write to \c FramesModifyingRegion all stack frames along 490 /// the path in the current stack frame which modify \c RegionOfInterest. 491 void findModifyingFrames(const ExplodedNode *N) { 492 assert(N->getLocationAs<CallExitBegin>()); 493 ProgramStateRef LastReturnState = N->getState(); 494 SVal ValueAtReturn = LastReturnState->getSVal(RegionOfInterest); 495 const LocationContext *Ctx = N->getLocationContext(); 496 const StackFrameContext *OriginalSCtx = Ctx->getStackFrame(); 497 498 do { 499 ProgramStateRef State = N->getState(); 500 auto CallExitLoc = N->getLocationAs<CallExitBegin>(); 501 if (CallExitLoc) { 502 LastReturnState = State; 503 ValueAtReturn = LastReturnState->getSVal(RegionOfInterest); 504 } 505 506 FramesModifyingCalculated.insert( 507 N->getLocationContext()->getStackFrame()); 508 509 if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtReturn)) { 510 const StackFrameContext *SCtx = N->getStackFrame(); 511 while (!SCtx->inTopFrame()) { 512 auto p = FramesModifyingRegion.insert(SCtx); 513 if (!p.second) 514 break; // Frame and all its parents already inserted. 515 SCtx = SCtx->getParent()->getStackFrame(); 516 } 517 } 518 519 // Stop calculation at the call to the current function. 520 if (auto CE = N->getLocationAs<CallEnter>()) 521 if (CE->getCalleeContext() == OriginalSCtx) 522 break; 523 524 N = N->getFirstPred(); 525 } while (N); 526 } 527 528 /// Get parameters associated with runtime definition in order 529 /// to get the correct parameter name. 530 ArrayRef<ParmVarDecl *> getCallParameters(CallEventRef<> Call) { 531 // Use runtime definition, if available. 532 RuntimeDefinition RD = Call->getRuntimeDefinition(); 533 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(RD.getDecl())) 534 return FD->parameters(); 535 if (const auto *MD = dyn_cast_or_null<ObjCMethodDecl>(RD.getDecl())) 536 return MD->parameters(); 537 538 return Call->parameters(); 539 } 540 541 /// \return whether \p Ty points to a const type, or is a const reference. 542 bool isPointerToConst(QualType Ty) { 543 return !Ty->getPointeeType().isNull() && 544 Ty->getPointeeType().getCanonicalType().isConstQualified(); 545 } 546 547 /// Consume the information on the no-store stack frame in order to 548 /// either emit a note or suppress the report enirely. 549 /// \return Diagnostics piece for region not modified in the current function, 550 /// if it decides to emit one. 551 std::shared_ptr<PathDiagnosticPiece> 552 maybeEmitNode(BugReport &R, const CallEvent &Call, const ExplodedNode *N, 553 const RegionVector &FieldChain, const MemRegion *MatchedRegion, 554 StringRef FirstElement, bool FirstIsReferenceType, 555 unsigned IndirectionLevel) { 556 // Optimistically suppress uninitialized value bugs that result 557 // from system headers having a chance to initialize the value 558 // but failing to do so. It's too unlikely a system header's fault. 559 // It's much more likely a situation in which the function has a failure 560 // mode that the user decided not to check. If we want to hunt such 561 // omitted checks, we should provide an explicit function-specific note 562 // describing the precondition under which the function isn't supposed to 563 // initialize its out-parameter, and additionally check that such 564 // precondition can actually be fulfilled on the current path. 565 if (Call.isInSystemHeader()) { 566 // We make an exception for system header functions that have no branches, 567 // i.e. have exactly 3 CFG blocks: begin, all its code, end. Such 568 // functions unconditionally fail to initialize the variable. 569 // If they call other functions that have more paths within them, 570 // this suppression would still apply when we visit these inner functions. 571 // One common example of a standard function that doesn't ever initialize 572 // its out parameter is operator placement new; it's up to the follow-up 573 // constructor (if any) to initialize the memory. 574 if (N->getStackFrame()->getCFG()->size() > 3) 575 R.markInvalid(getTag(), nullptr); 576 return nullptr; 577 } 578 579 PathDiagnosticLocation L = 580 PathDiagnosticLocation::create(N->getLocation(), SM); 581 582 SmallString<256> sbuf; 583 llvm::raw_svector_ostream os(sbuf); 584 os << "Returning without writing to '"; 585 586 // Do not generate the note if failed to pretty-print. 587 if (!prettyPrintRegionName(FirstElement, FirstIsReferenceType, 588 MatchedRegion, FieldChain, IndirectionLevel, os)) 589 return nullptr; 590 591 os << "'"; 592 return std::make_shared<PathDiagnosticEventPiece>(L, os.str()); 593 } 594 595 /// Pretty-print region \p MatchedRegion to \p os. 596 /// \return Whether printing succeeded. 597 bool prettyPrintRegionName(StringRef FirstElement, bool FirstIsReferenceType, 598 const MemRegion *MatchedRegion, 599 const RegionVector &FieldChain, 600 int IndirectionLevel, 601 llvm::raw_svector_ostream &os) { 602 603 if (FirstIsReferenceType) 604 IndirectionLevel--; 605 606 RegionVector RegionSequence; 607 608 // Add the regions in the reverse order, then reverse the resulting array. 609 assert(RegionOfInterest->isSubRegionOf(MatchedRegion)); 610 const MemRegion *R = RegionOfInterest; 611 while (R != MatchedRegion) { 612 RegionSequence.push_back(R); 613 R = cast<SubRegion>(R)->getSuperRegion(); 614 } 615 std::reverse(RegionSequence.begin(), RegionSequence.end()); 616 RegionSequence.append(FieldChain.begin(), FieldChain.end()); 617 618 StringRef Sep; 619 for (const MemRegion *R : RegionSequence) { 620 621 // Just keep going up to the base region. 622 // Element regions may appear due to casts. 623 if (isa<CXXBaseObjectRegion>(R) || isa<CXXTempObjectRegion>(R)) 624 continue; 625 626 if (Sep.empty()) 627 Sep = prettyPrintFirstElement(FirstElement, 628 /*MoreItemsExpected=*/true, 629 IndirectionLevel, os); 630 631 os << Sep; 632 633 // Can only reasonably pretty-print DeclRegions. 634 if (!isa<DeclRegion>(R)) 635 return false; 636 637 const auto *DR = cast<DeclRegion>(R); 638 Sep = DR->getValueType()->isAnyPointerType() ? "->" : "."; 639 DR->getDecl()->getDeclName().print(os, PP); 640 } 641 642 if (Sep.empty()) 643 prettyPrintFirstElement(FirstElement, 644 /*MoreItemsExpected=*/false, IndirectionLevel, 645 os); 646 return true; 647 } 648 649 /// Print first item in the chain, return new separator. 650 StringRef prettyPrintFirstElement(StringRef FirstElement, 651 bool MoreItemsExpected, 652 int IndirectionLevel, 653 llvm::raw_svector_ostream &os) { 654 StringRef Out = "."; 655 656 if (IndirectionLevel > 0 && MoreItemsExpected) { 657 IndirectionLevel--; 658 Out = "->"; 659 } 660 661 if (IndirectionLevel > 0 && MoreItemsExpected) 662 os << "("; 663 664 for (int i=0; i<IndirectionLevel; i++) 665 os << "*"; 666 os << FirstElement; 667 668 if (IndirectionLevel > 0 && MoreItemsExpected) 669 os << ")"; 670 671 return Out; 672 } 673 }; 674 675 /// Suppress null-pointer-dereference bugs where dereferenced null was returned 676 /// the macro. 677 class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor { 678 const SubRegion *RegionOfInterest; 679 const SVal ValueAtDereference; 680 681 // Do not invalidate the reports where the value was modified 682 // after it got assigned to from the macro. 683 bool WasModified = false; 684 685 public: 686 MacroNullReturnSuppressionVisitor(const SubRegion *R, 687 const SVal V) : RegionOfInterest(R), 688 ValueAtDereference(V) {} 689 690 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 691 BugReporterContext &BRC, 692 BugReport &BR) override { 693 if (WasModified) 694 return nullptr; 695 696 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>(); 697 if (!BugPoint) 698 return nullptr; 699 700 const SourceManager &SMgr = BRC.getSourceManager(); 701 if (auto Loc = matchAssignment(N)) { 702 if (isFunctionMacroExpansion(*Loc, SMgr)) { 703 std::string MacroName = getMacroName(*Loc, BRC); 704 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc(); 705 if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName) 706 BR.markInvalid(getTag(), MacroName.c_str()); 707 } 708 } 709 710 if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference)) 711 WasModified = true; 712 713 return nullptr; 714 } 715 716 static void addMacroVisitorIfNecessary( 717 const ExplodedNode *N, const MemRegion *R, 718 bool EnableNullFPSuppression, BugReport &BR, 719 const SVal V) { 720 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options; 721 if (EnableNullFPSuppression && 722 Options.ShouldSuppressNullReturnPaths && V.getAs<Loc>()) 723 BR.addVisitor(llvm::make_unique<MacroNullReturnSuppressionVisitor>( 724 R->getAs<SubRegion>(), V)); 725 } 726 727 void* getTag() const { 728 static int Tag = 0; 729 return static_cast<void *>(&Tag); 730 } 731 732 void Profile(llvm::FoldingSetNodeID &ID) const override { 733 ID.AddPointer(getTag()); 734 } 735 736 private: 737 /// \return Source location of right hand side of an assignment 738 /// into \c RegionOfInterest, empty optional if none found. 739 Optional<SourceLocation> matchAssignment(const ExplodedNode *N) { 740 const Stmt *S = PathDiagnosticLocation::getStmt(N); 741 ProgramStateRef State = N->getState(); 742 auto *LCtx = N->getLocationContext(); 743 if (!S) 744 return None; 745 746 if (const auto *DS = dyn_cast<DeclStmt>(S)) { 747 if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl())) 748 if (const Expr *RHS = VD->getInit()) 749 if (RegionOfInterest->isSubRegionOf( 750 State->getLValue(VD, LCtx).getAsRegion())) 751 return RHS->getBeginLoc(); 752 } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) { 753 const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion(); 754 const Expr *RHS = BO->getRHS(); 755 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) { 756 return RHS->getBeginLoc(); 757 } 758 } 759 return None; 760 } 761 }; 762 763 /// Emits an extra note at the return statement of an interesting stack frame. 764 /// 765 /// The returned value is marked as an interesting value, and if it's null, 766 /// adds a visitor to track where it became null. 767 /// 768 /// This visitor is intended to be used when another visitor discovers that an 769 /// interesting value comes from an inlined function call. 770 class ReturnVisitor : public BugReporterVisitor { 771 const StackFrameContext *StackFrame; 772 enum { 773 Initial, 774 MaybeUnsuppress, 775 Satisfied 776 } Mode = Initial; 777 778 bool EnableNullFPSuppression; 779 bool ShouldInvalidate = true; 780 AnalyzerOptions& Options; 781 782 public: 783 ReturnVisitor(const StackFrameContext *Frame, 784 bool Suppressed, 785 AnalyzerOptions &Options) 786 : StackFrame(Frame), EnableNullFPSuppression(Suppressed), 787 Options(Options) {} 788 789 static void *getTag() { 790 static int Tag = 0; 791 return static_cast<void *>(&Tag); 792 } 793 794 void Profile(llvm::FoldingSetNodeID &ID) const override { 795 ID.AddPointer(ReturnVisitor::getTag()); 796 ID.AddPointer(StackFrame); 797 ID.AddBoolean(EnableNullFPSuppression); 798 } 799 800 /// Adds a ReturnVisitor if the given statement represents a call that was 801 /// inlined. 802 /// 803 /// This will search back through the ExplodedGraph, starting from the given 804 /// node, looking for when the given statement was processed. If it turns out 805 /// the statement is a call that was inlined, we add the visitor to the 806 /// bug report, so it can print a note later. 807 static void addVisitorIfNecessary(const ExplodedNode *Node, const Stmt *S, 808 BugReport &BR, 809 bool InEnableNullFPSuppression) { 810 if (!CallEvent::isCallStmt(S)) 811 return; 812 813 // First, find when we processed the statement. 814 do { 815 if (auto CEE = Node->getLocationAs<CallExitEnd>()) 816 if (CEE->getCalleeContext()->getCallSite() == S) 817 break; 818 if (auto SP = Node->getLocationAs<StmtPoint>()) 819 if (SP->getStmt() == S) 820 break; 821 822 Node = Node->getFirstPred(); 823 } while (Node); 824 825 // Next, step over any post-statement checks. 826 while (Node && Node->getLocation().getAs<PostStmt>()) 827 Node = Node->getFirstPred(); 828 if (!Node) 829 return; 830 831 // Finally, see if we inlined the call. 832 Optional<CallExitEnd> CEE = Node->getLocationAs<CallExitEnd>(); 833 if (!CEE) 834 return; 835 836 const StackFrameContext *CalleeContext = CEE->getCalleeContext(); 837 if (CalleeContext->getCallSite() != S) 838 return; 839 840 // Check the return value. 841 ProgramStateRef State = Node->getState(); 842 SVal RetVal = Node->getSVal(S); 843 844 // Handle cases where a reference is returned and then immediately used. 845 if (cast<Expr>(S)->isGLValue()) 846 if (Optional<Loc> LValue = RetVal.getAs<Loc>()) 847 RetVal = State->getSVal(*LValue); 848 849 // See if the return value is NULL. If so, suppress the report. 850 AnalyzerOptions &Options = State->getAnalysisManager().options; 851 852 bool EnableNullFPSuppression = false; 853 if (InEnableNullFPSuppression && 854 Options.ShouldSuppressNullReturnPaths) 855 if (Optional<Loc> RetLoc = RetVal.getAs<Loc>()) 856 EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue(); 857 858 BR.markInteresting(CalleeContext); 859 BR.addVisitor(llvm::make_unique<ReturnVisitor>(CalleeContext, 860 EnableNullFPSuppression, 861 Options)); 862 } 863 864 std::shared_ptr<PathDiagnosticPiece> 865 visitNodeInitial(const ExplodedNode *N, 866 BugReporterContext &BRC, BugReport &BR) { 867 // Only print a message at the interesting return statement. 868 if (N->getLocationContext() != StackFrame) 869 return nullptr; 870 871 Optional<StmtPoint> SP = N->getLocationAs<StmtPoint>(); 872 if (!SP) 873 return nullptr; 874 875 const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt()); 876 if (!Ret) 877 return nullptr; 878 879 // Okay, we're at the right return statement, but do we have the return 880 // value available? 881 ProgramStateRef State = N->getState(); 882 SVal V = State->getSVal(Ret, StackFrame); 883 if (V.isUnknownOrUndef()) 884 return nullptr; 885 886 // Don't print any more notes after this one. 887 Mode = Satisfied; 888 889 const Expr *RetE = Ret->getRetValue(); 890 assert(RetE && "Tracking a return value for a void function"); 891 892 // Handle cases where a reference is returned and then immediately used. 893 Optional<Loc> LValue; 894 if (RetE->isGLValue()) { 895 if ((LValue = V.getAs<Loc>())) { 896 SVal RValue = State->getRawSVal(*LValue, RetE->getType()); 897 if (RValue.getAs<DefinedSVal>()) 898 V = RValue; 899 } 900 } 901 902 // Ignore aggregate rvalues. 903 if (V.getAs<nonloc::LazyCompoundVal>() || 904 V.getAs<nonloc::CompoundVal>()) 905 return nullptr; 906 907 RetE = RetE->IgnoreParenCasts(); 908 909 // If we're returning 0, we should track where that 0 came from. 910 bugreporter::trackExpressionValue(N, RetE, BR, EnableNullFPSuppression); 911 912 // Build an appropriate message based on the return value. 913 SmallString<64> Msg; 914 llvm::raw_svector_ostream Out(Msg); 915 916 if (State->isNull(V).isConstrainedTrue()) { 917 if (V.getAs<Loc>()) { 918 919 // If we have counter-suppression enabled, make sure we keep visiting 920 // future nodes. We want to emit a path note as well, in case 921 // the report is resurrected as valid later on. 922 if (EnableNullFPSuppression && 923 Options.ShouldAvoidSuppressingNullArgumentPaths) 924 Mode = MaybeUnsuppress; 925 926 if (RetE->getType()->isObjCObjectPointerType()) { 927 Out << "Returning nil"; 928 } else { 929 Out << "Returning null pointer"; 930 } 931 } else { 932 Out << "Returning zero"; 933 } 934 935 } else { 936 if (auto CI = V.getAs<nonloc::ConcreteInt>()) { 937 Out << "Returning the value " << CI->getValue(); 938 } else if (V.getAs<Loc>()) { 939 Out << "Returning pointer"; 940 } else { 941 Out << "Returning value"; 942 } 943 } 944 945 if (LValue) { 946 if (const MemRegion *MR = LValue->getAsRegion()) { 947 if (MR->canPrintPretty()) { 948 Out << " (reference to "; 949 MR->printPretty(Out); 950 Out << ")"; 951 } 952 } 953 } else { 954 // FIXME: We should have a more generalized location printing mechanism. 955 if (const auto *DR = dyn_cast<DeclRefExpr>(RetE)) 956 if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl())) 957 Out << " (loaded from '" << *DD << "')"; 958 } 959 960 PathDiagnosticLocation L(Ret, BRC.getSourceManager(), StackFrame); 961 if (!L.isValid() || !L.asLocation().isValid()) 962 return nullptr; 963 964 return std::make_shared<PathDiagnosticEventPiece>(L, Out.str()); 965 } 966 967 std::shared_ptr<PathDiagnosticPiece> 968 visitNodeMaybeUnsuppress(const ExplodedNode *N, 969 BugReporterContext &BRC, BugReport &BR) { 970 #ifndef NDEBUG 971 assert(Options.ShouldAvoidSuppressingNullArgumentPaths); 972 #endif 973 974 // Are we at the entry node for this call? 975 Optional<CallEnter> CE = N->getLocationAs<CallEnter>(); 976 if (!CE) 977 return nullptr; 978 979 if (CE->getCalleeContext() != StackFrame) 980 return nullptr; 981 982 Mode = Satisfied; 983 984 // Don't automatically suppress a report if one of the arguments is 985 // known to be a null pointer. Instead, start tracking /that/ null 986 // value back to its origin. 987 ProgramStateManager &StateMgr = BRC.getStateManager(); 988 CallEventManager &CallMgr = StateMgr.getCallEventManager(); 989 990 ProgramStateRef State = N->getState(); 991 CallEventRef<> Call = CallMgr.getCaller(StackFrame, State); 992 for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) { 993 Optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>(); 994 if (!ArgV) 995 continue; 996 997 const Expr *ArgE = Call->getArgExpr(I); 998 if (!ArgE) 999 continue; 1000 1001 // Is it possible for this argument to be non-null? 1002 if (!State->isNull(*ArgV).isConstrainedTrue()) 1003 continue; 1004 1005 if (bugreporter::trackExpressionValue(N, ArgE, BR, EnableNullFPSuppression)) 1006 ShouldInvalidate = false; 1007 1008 // If we /can't/ track the null pointer, we should err on the side of 1009 // false negatives, and continue towards marking this report invalid. 1010 // (We will still look at the other arguments, though.) 1011 } 1012 1013 return nullptr; 1014 } 1015 1016 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 1017 BugReporterContext &BRC, 1018 BugReport &BR) override { 1019 switch (Mode) { 1020 case Initial: 1021 return visitNodeInitial(N, BRC, BR); 1022 case MaybeUnsuppress: 1023 return visitNodeMaybeUnsuppress(N, BRC, BR); 1024 case Satisfied: 1025 return nullptr; 1026 } 1027 1028 llvm_unreachable("Invalid visit mode!"); 1029 } 1030 1031 void finalizeVisitor(BugReporterContext &, const ExplodedNode *, 1032 BugReport &BR) override { 1033 if (EnableNullFPSuppression && ShouldInvalidate) 1034 BR.markInvalid(ReturnVisitor::getTag(), StackFrame); 1035 } 1036 }; 1037 1038 } // namespace 1039 1040 void FindLastStoreBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const { 1041 static int tag = 0; 1042 ID.AddPointer(&tag); 1043 ID.AddPointer(R); 1044 ID.Add(V); 1045 ID.AddBoolean(EnableNullFPSuppression); 1046 } 1047 1048 /// Returns true if \p N represents the DeclStmt declaring and initializing 1049 /// \p VR. 1050 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) { 1051 Optional<PostStmt> P = N->getLocationAs<PostStmt>(); 1052 if (!P) 1053 return false; 1054 1055 const DeclStmt *DS = P->getStmtAs<DeclStmt>(); 1056 if (!DS) 1057 return false; 1058 1059 if (DS->getSingleDecl() != VR->getDecl()) 1060 return false; 1061 1062 const MemSpaceRegion *VarSpace = VR->getMemorySpace(); 1063 const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace); 1064 if (!FrameSpace) { 1065 // If we ever directly evaluate global DeclStmts, this assertion will be 1066 // invalid, but this still seems preferable to silently accepting an 1067 // initialization that may be for a path-sensitive variable. 1068 assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion"); 1069 return true; 1070 } 1071 1072 assert(VR->getDecl()->hasLocalStorage()); 1073 const LocationContext *LCtx = N->getLocationContext(); 1074 return FrameSpace->getStackFrame() == LCtx->getStackFrame(); 1075 } 1076 1077 /// Show diagnostics for initializing or declaring a region \p R with a bad value. 1078 static void showBRDiagnostics(const char *action, llvm::raw_svector_ostream &os, 1079 const MemRegion *R, SVal V, const DeclStmt *DS) { 1080 if (R->canPrintPretty()) { 1081 R->printPretty(os); 1082 os << " "; 1083 } 1084 1085 if (V.getAs<loc::ConcreteInt>()) { 1086 bool b = false; 1087 if (R->isBoundable()) { 1088 if (const auto *TR = dyn_cast<TypedValueRegion>(R)) { 1089 if (TR->getValueType()->isObjCObjectPointerType()) { 1090 os << action << "nil"; 1091 b = true; 1092 } 1093 } 1094 } 1095 if (!b) 1096 os << action << "a null pointer value"; 1097 1098 } else if (auto CVal = V.getAs<nonloc::ConcreteInt>()) { 1099 os << action << CVal->getValue(); 1100 } else if (DS) { 1101 if (V.isUndef()) { 1102 if (isa<VarRegion>(R)) { 1103 const auto *VD = cast<VarDecl>(DS->getSingleDecl()); 1104 if (VD->getInit()) { 1105 os << (R->canPrintPretty() ? "initialized" : "Initializing") 1106 << " to a garbage value"; 1107 } else { 1108 os << (R->canPrintPretty() ? "declared" : "Declaring") 1109 << " without an initial value"; 1110 } 1111 } 1112 } else { 1113 os << (R->canPrintPretty() ? "initialized" : "Initialized") 1114 << " here"; 1115 } 1116 } 1117 } 1118 1119 /// Display diagnostics for passing bad region as a parameter. 1120 static void showBRParamDiagnostics(llvm::raw_svector_ostream& os, 1121 const VarRegion *VR, 1122 SVal V) { 1123 const auto *Param = cast<ParmVarDecl>(VR->getDecl()); 1124 1125 os << "Passing "; 1126 1127 if (V.getAs<loc::ConcreteInt>()) { 1128 if (Param->getType()->isObjCObjectPointerType()) 1129 os << "nil object reference"; 1130 else 1131 os << "null pointer value"; 1132 } else if (V.isUndef()) { 1133 os << "uninitialized value"; 1134 } else if (auto CI = V.getAs<nonloc::ConcreteInt>()) { 1135 os << "the value " << CI->getValue(); 1136 } else { 1137 os << "value"; 1138 } 1139 1140 // Printed parameter indexes are 1-based, not 0-based. 1141 unsigned Idx = Param->getFunctionScopeIndex() + 1; 1142 os << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter"; 1143 if (VR->canPrintPretty()) { 1144 os << " "; 1145 VR->printPretty(os); 1146 } 1147 } 1148 1149 /// Show default diagnostics for storing bad region. 1150 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream& os, 1151 const MemRegion *R, 1152 SVal V) { 1153 if (V.getAs<loc::ConcreteInt>()) { 1154 bool b = false; 1155 if (R->isBoundable()) { 1156 if (const auto *TR = dyn_cast<TypedValueRegion>(R)) { 1157 if (TR->getValueType()->isObjCObjectPointerType()) { 1158 os << "nil object reference stored"; 1159 b = true; 1160 } 1161 } 1162 } 1163 if (!b) { 1164 if (R->canPrintPretty()) 1165 os << "Null pointer value stored"; 1166 else 1167 os << "Storing null pointer value"; 1168 } 1169 1170 } else if (V.isUndef()) { 1171 if (R->canPrintPretty()) 1172 os << "Uninitialized value stored"; 1173 else 1174 os << "Storing uninitialized value"; 1175 1176 } else if (auto CV = V.getAs<nonloc::ConcreteInt>()) { 1177 if (R->canPrintPretty()) 1178 os << "The value " << CV->getValue() << " is assigned"; 1179 else 1180 os << "Assigning " << CV->getValue(); 1181 1182 } else { 1183 if (R->canPrintPretty()) 1184 os << "Value assigned"; 1185 else 1186 os << "Assigning value"; 1187 } 1188 1189 if (R->canPrintPretty()) { 1190 os << " to "; 1191 R->printPretty(os); 1192 } 1193 } 1194 1195 std::shared_ptr<PathDiagnosticPiece> 1196 FindLastStoreBRVisitor::VisitNode(const ExplodedNode *Succ, 1197 BugReporterContext &BRC, BugReport &BR) { 1198 if (Satisfied) 1199 return nullptr; 1200 1201 const ExplodedNode *StoreSite = nullptr; 1202 const ExplodedNode *Pred = Succ->getFirstPred(); 1203 const Expr *InitE = nullptr; 1204 bool IsParam = false; 1205 1206 // First see if we reached the declaration of the region. 1207 if (const auto *VR = dyn_cast<VarRegion>(R)) { 1208 if (isInitializationOfVar(Pred, VR)) { 1209 StoreSite = Pred; 1210 InitE = VR->getDecl()->getInit(); 1211 } 1212 } 1213 1214 // If this is a post initializer expression, initializing the region, we 1215 // should track the initializer expression. 1216 if (Optional<PostInitializer> PIP = Pred->getLocationAs<PostInitializer>()) { 1217 const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue(); 1218 if (FieldReg && FieldReg == R) { 1219 StoreSite = Pred; 1220 InitE = PIP->getInitializer()->getInit(); 1221 } 1222 } 1223 1224 // Otherwise, see if this is the store site: 1225 // (1) Succ has this binding and Pred does not, i.e. this is 1226 // where the binding first occurred. 1227 // (2) Succ has this binding and is a PostStore node for this region, i.e. 1228 // the same binding was re-assigned here. 1229 if (!StoreSite) { 1230 if (Succ->getState()->getSVal(R) != V) 1231 return nullptr; 1232 1233 if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) { 1234 Optional<PostStore> PS = Succ->getLocationAs<PostStore>(); 1235 if (!PS || PS->getLocationValue() != R) 1236 return nullptr; 1237 } 1238 1239 StoreSite = Succ; 1240 1241 // If this is an assignment expression, we can track the value 1242 // being assigned. 1243 if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>()) 1244 if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>()) 1245 if (BO->isAssignmentOp()) 1246 InitE = BO->getRHS(); 1247 1248 // If this is a call entry, the variable should be a parameter. 1249 // FIXME: Handle CXXThisRegion as well. (This is not a priority because 1250 // 'this' should never be NULL, but this visitor isn't just for NULL and 1251 // UndefinedVal.) 1252 if (Optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) { 1253 if (const auto *VR = dyn_cast<VarRegion>(R)) { 1254 1255 const auto *Param = cast<ParmVarDecl>(VR->getDecl()); 1256 1257 ProgramStateManager &StateMgr = BRC.getStateManager(); 1258 CallEventManager &CallMgr = StateMgr.getCallEventManager(); 1259 1260 CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(), 1261 Succ->getState()); 1262 InitE = Call->getArgExpr(Param->getFunctionScopeIndex()); 1263 IsParam = true; 1264 } 1265 } 1266 1267 // If this is a CXXTempObjectRegion, the Expr responsible for its creation 1268 // is wrapped inside of it. 1269 if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R)) 1270 InitE = TmpR->getExpr(); 1271 } 1272 1273 if (!StoreSite) 1274 return nullptr; 1275 Satisfied = true; 1276 1277 // If we have an expression that provided the value, try to track where it 1278 // came from. 1279 if (InitE) { 1280 if (V.isUndef() || 1281 V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) { 1282 if (!IsParam) 1283 InitE = InitE->IgnoreParenCasts(); 1284 bugreporter::trackExpressionValue(StoreSite, InitE, BR, 1285 EnableNullFPSuppression); 1286 } 1287 ReturnVisitor::addVisitorIfNecessary(StoreSite, InitE->IgnoreParenCasts(), 1288 BR, EnableNullFPSuppression); 1289 } 1290 1291 // Okay, we've found the binding. Emit an appropriate message. 1292 SmallString<256> sbuf; 1293 llvm::raw_svector_ostream os(sbuf); 1294 1295 if (Optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) { 1296 const Stmt *S = PS->getStmt(); 1297 const char *action = nullptr; 1298 const auto *DS = dyn_cast<DeclStmt>(S); 1299 const auto *VR = dyn_cast<VarRegion>(R); 1300 1301 if (DS) { 1302 action = R->canPrintPretty() ? "initialized to " : 1303 "Initializing to "; 1304 } else if (isa<BlockExpr>(S)) { 1305 action = R->canPrintPretty() ? "captured by block as " : 1306 "Captured by block as "; 1307 if (VR) { 1308 // See if we can get the BlockVarRegion. 1309 ProgramStateRef State = StoreSite->getState(); 1310 SVal V = StoreSite->getSVal(S); 1311 if (const auto *BDR = 1312 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 1313 if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) { 1314 if (auto KV = State->getSVal(OriginalR).getAs<KnownSVal>()) 1315 BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1316 *KV, OriginalR, EnableNullFPSuppression)); 1317 } 1318 } 1319 } 1320 } 1321 if (action) 1322 showBRDiagnostics(action, os, R, V, DS); 1323 1324 } else if (StoreSite->getLocation().getAs<CallEnter>()) { 1325 if (const auto *VR = dyn_cast<VarRegion>(R)) 1326 showBRParamDiagnostics(os, VR, V); 1327 } 1328 1329 if (os.str().empty()) 1330 showBRDefaultDiagnostics(os, R, V); 1331 1332 // Construct a new PathDiagnosticPiece. 1333 ProgramPoint P = StoreSite->getLocation(); 1334 PathDiagnosticLocation L; 1335 if (P.getAs<CallEnter>() && InitE) 1336 L = PathDiagnosticLocation(InitE, BRC.getSourceManager(), 1337 P.getLocationContext()); 1338 1339 if (!L.isValid() || !L.asLocation().isValid()) 1340 L = PathDiagnosticLocation::create(P, BRC.getSourceManager()); 1341 1342 if (!L.isValid() || !L.asLocation().isValid()) 1343 return nullptr; 1344 1345 return std::make_shared<PathDiagnosticEventPiece>(L, os.str()); 1346 } 1347 1348 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const { 1349 static int tag = 0; 1350 ID.AddPointer(&tag); 1351 ID.AddBoolean(Assumption); 1352 ID.Add(Constraint); 1353 } 1354 1355 /// Return the tag associated with this visitor. This tag will be used 1356 /// to make all PathDiagnosticPieces created by this visitor. 1357 const char *TrackConstraintBRVisitor::getTag() { 1358 return "TrackConstraintBRVisitor"; 1359 } 1360 1361 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const { 1362 if (IsZeroCheck) 1363 return N->getState()->isNull(Constraint).isUnderconstrained(); 1364 return (bool)N->getState()->assume(Constraint, !Assumption); 1365 } 1366 1367 std::shared_ptr<PathDiagnosticPiece> 1368 TrackConstraintBRVisitor::VisitNode(const ExplodedNode *N, 1369 BugReporterContext &BRC, BugReport &) { 1370 const ExplodedNode *PrevN = N->getFirstPred(); 1371 if (IsSatisfied) 1372 return nullptr; 1373 1374 // Start tracking after we see the first state in which the value is 1375 // constrained. 1376 if (!IsTrackingTurnedOn) 1377 if (!isUnderconstrained(N)) 1378 IsTrackingTurnedOn = true; 1379 if (!IsTrackingTurnedOn) 1380 return nullptr; 1381 1382 // Check if in the previous state it was feasible for this constraint 1383 // to *not* be true. 1384 if (isUnderconstrained(PrevN)) { 1385 IsSatisfied = true; 1386 1387 // As a sanity check, make sure that the negation of the constraint 1388 // was infeasible in the current state. If it is feasible, we somehow 1389 // missed the transition point. 1390 assert(!isUnderconstrained(N)); 1391 1392 // We found the transition point for the constraint. We now need to 1393 // pretty-print the constraint. (work-in-progress) 1394 SmallString<64> sbuf; 1395 llvm::raw_svector_ostream os(sbuf); 1396 1397 if (Constraint.getAs<Loc>()) { 1398 os << "Assuming pointer value is "; 1399 os << (Assumption ? "non-null" : "null"); 1400 } 1401 1402 if (os.str().empty()) 1403 return nullptr; 1404 1405 // Construct a new PathDiagnosticPiece. 1406 ProgramPoint P = N->getLocation(); 1407 PathDiagnosticLocation L = 1408 PathDiagnosticLocation::create(P, BRC.getSourceManager()); 1409 if (!L.isValid()) 1410 return nullptr; 1411 1412 auto X = std::make_shared<PathDiagnosticEventPiece>(L, os.str()); 1413 X->setTag(getTag()); 1414 return std::move(X); 1415 } 1416 1417 return nullptr; 1418 } 1419 1420 SuppressInlineDefensiveChecksVisitor:: 1421 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N) 1422 : V(Value) { 1423 // Check if the visitor is disabled. 1424 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options; 1425 if (!Options.ShouldSuppressInlinedDefensiveChecks) 1426 IsSatisfied = true; 1427 1428 assert(N->getState()->isNull(V).isConstrainedTrue() && 1429 "The visitor only tracks the cases where V is constrained to 0"); 1430 } 1431 1432 void SuppressInlineDefensiveChecksVisitor::Profile( 1433 llvm::FoldingSetNodeID &ID) const { 1434 static int id = 0; 1435 ID.AddPointer(&id); 1436 ID.Add(V); 1437 } 1438 1439 const char *SuppressInlineDefensiveChecksVisitor::getTag() { 1440 return "IDCVisitor"; 1441 } 1442 1443 std::shared_ptr<PathDiagnosticPiece> 1444 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ, 1445 BugReporterContext &BRC, 1446 BugReport &BR) { 1447 const ExplodedNode *Pred = Succ->getFirstPred(); 1448 if (IsSatisfied) 1449 return nullptr; 1450 1451 // Start tracking after we see the first state in which the value is null. 1452 if (!IsTrackingTurnedOn) 1453 if (Succ->getState()->isNull(V).isConstrainedTrue()) 1454 IsTrackingTurnedOn = true; 1455 if (!IsTrackingTurnedOn) 1456 return nullptr; 1457 1458 // Check if in the previous state it was feasible for this value 1459 // to *not* be null. 1460 if (!Pred->getState()->isNull(V).isConstrainedTrue()) { 1461 IsSatisfied = true; 1462 1463 assert(Succ->getState()->isNull(V).isConstrainedTrue()); 1464 1465 // Check if this is inlined defensive checks. 1466 const LocationContext *CurLC =Succ->getLocationContext(); 1467 const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext(); 1468 if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) { 1469 BR.markInvalid("Suppress IDC", CurLC); 1470 return nullptr; 1471 } 1472 1473 // Treat defensive checks in function-like macros as if they were an inlined 1474 // defensive check. If the bug location is not in a macro and the 1475 // terminator for the current location is in a macro then suppress the 1476 // warning. 1477 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>(); 1478 1479 if (!BugPoint) 1480 return nullptr; 1481 1482 ProgramPoint CurPoint = Succ->getLocation(); 1483 const Stmt *CurTerminatorStmt = nullptr; 1484 if (auto BE = CurPoint.getAs<BlockEdge>()) { 1485 CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt(); 1486 } else if (auto SP = CurPoint.getAs<StmtPoint>()) { 1487 const Stmt *CurStmt = SP->getStmt(); 1488 if (!CurStmt->getBeginLoc().isMacroID()) 1489 return nullptr; 1490 1491 CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap(); 1492 CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminator(); 1493 } else { 1494 return nullptr; 1495 } 1496 1497 if (!CurTerminatorStmt) 1498 return nullptr; 1499 1500 SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc(); 1501 if (TerminatorLoc.isMacroID()) { 1502 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc(); 1503 1504 // Suppress reports unless we are in that same macro. 1505 if (!BugLoc.isMacroID() || 1506 getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) { 1507 BR.markInvalid("Suppress Macro IDC", CurLC); 1508 } 1509 return nullptr; 1510 } 1511 } 1512 return nullptr; 1513 } 1514 1515 static const MemRegion *getLocationRegionIfReference(const Expr *E, 1516 const ExplodedNode *N) { 1517 if (const auto *DR = dyn_cast<DeclRefExpr>(E)) { 1518 if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) { 1519 if (!VD->getType()->isReferenceType()) 1520 return nullptr; 1521 ProgramStateManager &StateMgr = N->getState()->getStateManager(); 1522 MemRegionManager &MRMgr = StateMgr.getRegionManager(); 1523 return MRMgr.getVarRegion(VD, N->getLocationContext()); 1524 } 1525 } 1526 1527 // FIXME: This does not handle other kinds of null references, 1528 // for example, references from FieldRegions: 1529 // struct Wrapper { int &ref; }; 1530 // Wrapper w = { *(int *)0 }; 1531 // w.ref = 1; 1532 1533 return nullptr; 1534 } 1535 1536 /// \return A subexpression of {@code Ex} which represents the 1537 /// expression-of-interest. 1538 static const Expr *peelOffOuterExpr(const Expr *Ex, 1539 const ExplodedNode *N) { 1540 Ex = Ex->IgnoreParenCasts(); 1541 if (const auto *FE = dyn_cast<FullExpr>(Ex)) 1542 return peelOffOuterExpr(FE->getSubExpr(), N); 1543 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex)) 1544 return peelOffOuterExpr(OVE->getSourceExpr(), N); 1545 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) { 1546 const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm()); 1547 if (PropRef && PropRef->isMessagingGetter()) { 1548 const Expr *GetterMessageSend = 1549 POE->getSemanticExpr(POE->getNumSemanticExprs() - 1); 1550 assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts())); 1551 return peelOffOuterExpr(GetterMessageSend, N); 1552 } 1553 } 1554 1555 // Peel off the ternary operator. 1556 if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) { 1557 // Find a node where the branching occurred and find out which branch 1558 // we took (true/false) by looking at the ExplodedGraph. 1559 const ExplodedNode *NI = N; 1560 do { 1561 ProgramPoint ProgPoint = NI->getLocation(); 1562 if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) { 1563 const CFGBlock *srcBlk = BE->getSrc(); 1564 if (const Stmt *term = srcBlk->getTerminator()) { 1565 if (term == CO) { 1566 bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst()); 1567 if (TookTrueBranch) 1568 return peelOffOuterExpr(CO->getTrueExpr(), N); 1569 else 1570 return peelOffOuterExpr(CO->getFalseExpr(), N); 1571 } 1572 } 1573 } 1574 NI = NI->getFirstPred(); 1575 } while (NI); 1576 } 1577 1578 if (auto *BO = dyn_cast<BinaryOperator>(Ex)) 1579 if (const Expr *SubEx = peelOffPointerArithmetic(BO)) 1580 return peelOffOuterExpr(SubEx, N); 1581 1582 if (auto *UO = dyn_cast<UnaryOperator>(Ex)) { 1583 if (UO->getOpcode() == UO_LNot) 1584 return peelOffOuterExpr(UO->getSubExpr(), N); 1585 1586 // FIXME: There's a hack in our Store implementation that always computes 1587 // field offsets around null pointers as if they are always equal to 0. 1588 // The idea here is to report accesses to fields as null dereferences 1589 // even though the pointer value that's being dereferenced is actually 1590 // the offset of the field rather than exactly 0. 1591 // See the FIXME in StoreManager's getLValueFieldOrIvar() method. 1592 // This code interacts heavily with this hack; otherwise the value 1593 // would not be null at all for most fields, so we'd be unable to track it. 1594 if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue()) 1595 if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr())) 1596 return peelOffOuterExpr(DerefEx, N); 1597 } 1598 1599 return Ex; 1600 } 1601 1602 /// Find the ExplodedNode where the lvalue (the value of 'Ex') 1603 /// was computed. 1604 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N, 1605 const Expr *Inner) { 1606 while (N) { 1607 if (PathDiagnosticLocation::getStmt(N) == Inner) 1608 return N; 1609 N = N->getFirstPred(); 1610 } 1611 return N; 1612 } 1613 1614 bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode, 1615 const Expr *E, BugReport &report, 1616 bool EnableNullFPSuppression) { 1617 if (!E || !InputNode) 1618 return false; 1619 1620 const Expr *Inner = peelOffOuterExpr(E, InputNode); 1621 const ExplodedNode *LVNode = findNodeForExpression(InputNode, Inner); 1622 if (!LVNode) 1623 return false; 1624 1625 ProgramStateRef LVState = LVNode->getState(); 1626 1627 // The message send could be nil due to the receiver being nil. 1628 // At this point in the path, the receiver should be live since we are at the 1629 // message send expr. If it is nil, start tracking it. 1630 if (const Expr *Receiver = NilReceiverBRVisitor::getNilReceiver(Inner, LVNode)) 1631 trackExpressionValue(LVNode, Receiver, report, EnableNullFPSuppression); 1632 1633 // See if the expression we're interested refers to a variable. 1634 // If so, we can track both its contents and constraints on its value. 1635 if (ExplodedGraph::isInterestingLValueExpr(Inner)) { 1636 SVal LVal = LVNode->getSVal(Inner); 1637 1638 const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode); 1639 bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue(); 1640 1641 // If this is a C++ reference to a null pointer, we are tracking the 1642 // pointer. In addition, we should find the store at which the reference 1643 // got initialized. 1644 if (RR && !LVIsNull) 1645 if (auto KV = LVal.getAs<KnownSVal>()) 1646 report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1647 *KV, RR, EnableNullFPSuppression)); 1648 1649 // In case of C++ references, we want to differentiate between a null 1650 // reference and reference to null pointer. 1651 // If the LVal is null, check if we are dealing with null reference. 1652 // For those, we want to track the location of the reference. 1653 const MemRegion *R = (RR && LVIsNull) ? RR : 1654 LVNode->getSVal(Inner).getAsRegion(); 1655 1656 if (R) { 1657 1658 // Mark both the variable region and its contents as interesting. 1659 SVal V = LVState->getRawSVal(loc::MemRegionVal(R)); 1660 report.addVisitor( 1661 llvm::make_unique<NoStoreFuncVisitor>(cast<SubRegion>(R))); 1662 1663 MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary( 1664 LVNode, R, EnableNullFPSuppression, report, V); 1665 1666 report.markInteresting(V); 1667 report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(R)); 1668 1669 // If the contents are symbolic, find out when they became null. 1670 if (V.getAsLocSymbol(/*IncludeBaseRegions*/ true)) 1671 report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>( 1672 V.castAs<DefinedSVal>(), false)); 1673 1674 // Add visitor, which will suppress inline defensive checks. 1675 if (auto DV = V.getAs<DefinedSVal>()) 1676 if (!DV->isZeroConstant() && LVState->isNull(*DV).isConstrainedTrue() && 1677 EnableNullFPSuppression) 1678 report.addVisitor( 1679 llvm::make_unique<SuppressInlineDefensiveChecksVisitor>(*DV, 1680 LVNode)); 1681 1682 if (auto KV = V.getAs<KnownSVal>()) 1683 report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1684 *KV, R, EnableNullFPSuppression)); 1685 return true; 1686 } 1687 } 1688 1689 // If the expression is not an "lvalue expression", we can still 1690 // track the constraints on its contents. 1691 SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext()); 1692 1693 ReturnVisitor::addVisitorIfNecessary( 1694 LVNode, Inner, report, EnableNullFPSuppression); 1695 1696 // Is it a symbolic value? 1697 if (auto L = V.getAs<loc::MemRegionVal>()) { 1698 report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(L->getRegion())); 1699 1700 // FIXME: this is a hack for fixing a later crash when attempting to 1701 // dereference a void* pointer. 1702 // We should not try to dereference pointers at all when we don't care 1703 // what is written inside the pointer. 1704 bool CanDereference = true; 1705 if (const auto *SR = dyn_cast<SymbolicRegion>(L->getRegion())) 1706 if (SR->getSymbol()->getType()->getPointeeType()->isVoidType()) 1707 CanDereference = false; 1708 1709 // At this point we are dealing with the region's LValue. 1710 // However, if the rvalue is a symbolic region, we should track it as well. 1711 // Try to use the correct type when looking up the value. 1712 SVal RVal; 1713 if (ExplodedGraph::isInterestingLValueExpr(Inner)) { 1714 RVal = LVState->getRawSVal(L.getValue(), Inner->getType()); 1715 } else if (CanDereference) { 1716 RVal = LVState->getSVal(L->getRegion()); 1717 } 1718 1719 if (CanDereference) 1720 if (auto KV = RVal.getAs<KnownSVal>()) 1721 report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1722 *KV, L->getRegion(), EnableNullFPSuppression)); 1723 1724 const MemRegion *RegionRVal = RVal.getAsRegion(); 1725 if (RegionRVal && isa<SymbolicRegion>(RegionRVal)) { 1726 report.markInteresting(RegionRVal); 1727 report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>( 1728 loc::MemRegionVal(RegionRVal), /*assumption=*/false)); 1729 } 1730 } 1731 return true; 1732 } 1733 1734 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S, 1735 const ExplodedNode *N) { 1736 const auto *ME = dyn_cast<ObjCMessageExpr>(S); 1737 if (!ME) 1738 return nullptr; 1739 if (const Expr *Receiver = ME->getInstanceReceiver()) { 1740 ProgramStateRef state = N->getState(); 1741 SVal V = N->getSVal(Receiver); 1742 if (state->isNull(V).isConstrainedTrue()) 1743 return Receiver; 1744 } 1745 return nullptr; 1746 } 1747 1748 std::shared_ptr<PathDiagnosticPiece> 1749 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, 1750 BugReporterContext &BRC, BugReport &BR) { 1751 Optional<PreStmt> P = N->getLocationAs<PreStmt>(); 1752 if (!P) 1753 return nullptr; 1754 1755 const Stmt *S = P->getStmt(); 1756 const Expr *Receiver = getNilReceiver(S, N); 1757 if (!Receiver) 1758 return nullptr; 1759 1760 llvm::SmallString<256> Buf; 1761 llvm::raw_svector_ostream OS(Buf); 1762 1763 if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) { 1764 OS << "'"; 1765 ME->getSelector().print(OS); 1766 OS << "' not called"; 1767 } 1768 else { 1769 OS << "No method is called"; 1770 } 1771 OS << " because the receiver is nil"; 1772 1773 // The receiver was nil, and hence the method was skipped. 1774 // Register a BugReporterVisitor to issue a message telling us how 1775 // the receiver was null. 1776 bugreporter::trackExpressionValue(N, Receiver, BR, 1777 /*EnableNullFPSuppression*/ false); 1778 // Issue a message saying that the method was skipped. 1779 PathDiagnosticLocation L(Receiver, BRC.getSourceManager(), 1780 N->getLocationContext()); 1781 return std::make_shared<PathDiagnosticEventPiece>(L, OS.str()); 1782 } 1783 1784 // Registers every VarDecl inside a Stmt with a last store visitor. 1785 void FindLastStoreBRVisitor::registerStatementVarDecls(BugReport &BR, 1786 const Stmt *S, 1787 bool EnableNullFPSuppression) { 1788 const ExplodedNode *N = BR.getErrorNode(); 1789 std::deque<const Stmt *> WorkList; 1790 WorkList.push_back(S); 1791 1792 while (!WorkList.empty()) { 1793 const Stmt *Head = WorkList.front(); 1794 WorkList.pop_front(); 1795 1796 ProgramStateManager &StateMgr = N->getState()->getStateManager(); 1797 1798 if (const auto *DR = dyn_cast<DeclRefExpr>(Head)) { 1799 if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) { 1800 const VarRegion *R = 1801 StateMgr.getRegionManager().getVarRegion(VD, N->getLocationContext()); 1802 1803 // What did we load? 1804 SVal V = N->getSVal(S); 1805 1806 if (V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) { 1807 // Register a new visitor with the BugReport. 1808 BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1809 V.castAs<KnownSVal>(), R, EnableNullFPSuppression)); 1810 } 1811 } 1812 } 1813 1814 for (const Stmt *SubStmt : Head->children()) 1815 WorkList.push_back(SubStmt); 1816 } 1817 } 1818 1819 //===----------------------------------------------------------------------===// 1820 // Visitor that tries to report interesting diagnostics from conditions. 1821 //===----------------------------------------------------------------------===// 1822 1823 /// Return the tag associated with this visitor. This tag will be used 1824 /// to make all PathDiagnosticPieces created by this visitor. 1825 const char *ConditionBRVisitor::getTag() { 1826 return "ConditionBRVisitor"; 1827 } 1828 1829 std::shared_ptr<PathDiagnosticPiece> 1830 ConditionBRVisitor::VisitNode(const ExplodedNode *N, 1831 BugReporterContext &BRC, BugReport &BR) { 1832 auto piece = VisitNodeImpl(N, BRC, BR); 1833 if (piece) { 1834 piece->setTag(getTag()); 1835 if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get())) 1836 ev->setPrunable(true, /* override */ false); 1837 } 1838 return piece; 1839 } 1840 1841 std::shared_ptr<PathDiagnosticPiece> 1842 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N, 1843 BugReporterContext &BRC, BugReport &BR) { 1844 ProgramPoint progPoint = N->getLocation(); 1845 1846 // If an assumption was made on a branch, it should be caught 1847 // here by looking at the state transition. 1848 if (Optional<BlockEdge> BE = progPoint.getAs<BlockEdge>()) { 1849 const CFGBlock *srcBlk = BE->getSrc(); 1850 if (const Stmt *term = srcBlk->getTerminator()) 1851 return VisitTerminator(term, N, srcBlk, BE->getDst(), BR, BRC); 1852 return nullptr; 1853 } 1854 1855 if (Optional<PostStmt> PS = progPoint.getAs<PostStmt>()) { 1856 const std::pair<const ProgramPointTag *, const ProgramPointTag *> &tags = 1857 ExprEngine::geteagerlyAssumeBinOpBifurcationTags(); 1858 1859 const ProgramPointTag *tag = PS->getTag(); 1860 if (tag == tags.first) 1861 return VisitTrueTest(cast<Expr>(PS->getStmt()), true, 1862 BRC, BR, N); 1863 if (tag == tags.second) 1864 return VisitTrueTest(cast<Expr>(PS->getStmt()), false, 1865 BRC, BR, N); 1866 1867 return nullptr; 1868 } 1869 1870 return nullptr; 1871 } 1872 1873 std::shared_ptr<PathDiagnosticPiece> ConditionBRVisitor::VisitTerminator( 1874 const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk, 1875 const CFGBlock *dstBlk, BugReport &R, BugReporterContext &BRC) { 1876 const Expr *Cond = nullptr; 1877 1878 // In the code below, Term is a CFG terminator and Cond is a branch condition 1879 // expression upon which the decision is made on this terminator. 1880 // 1881 // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator, 1882 // and "x == 0" is the respective condition. 1883 // 1884 // Another example: in "if (x && y)", we've got two terminators and two 1885 // conditions due to short-circuit nature of operator "&&": 1886 // 1. The "if (x && y)" statement is a terminator, 1887 // and "y" is the respective condition. 1888 // 2. Also "x && ..." is another terminator, 1889 // and "x" is its condition. 1890 1891 switch (Term->getStmtClass()) { 1892 // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit 1893 // more tricky because there are more than two branches to account for. 1894 default: 1895 return nullptr; 1896 case Stmt::IfStmtClass: 1897 Cond = cast<IfStmt>(Term)->getCond(); 1898 break; 1899 case Stmt::ConditionalOperatorClass: 1900 Cond = cast<ConditionalOperator>(Term)->getCond(); 1901 break; 1902 case Stmt::BinaryOperatorClass: 1903 // When we encounter a logical operator (&& or ||) as a CFG terminator, 1904 // then the condition is actually its LHS; otherwise, we'd encounter 1905 // the parent, such as if-statement, as a terminator. 1906 const auto *BO = cast<BinaryOperator>(Term); 1907 assert(BO->isLogicalOp() && 1908 "CFG terminator is not a short-circuit operator!"); 1909 Cond = BO->getLHS(); 1910 break; 1911 } 1912 1913 Cond = Cond->IgnoreParens(); 1914 1915 // However, when we encounter a logical operator as a branch condition, 1916 // then the condition is actually its RHS, because LHS would be 1917 // the condition for the logical operator terminator. 1918 while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) { 1919 if (!InnerBO->isLogicalOp()) 1920 break; 1921 Cond = InnerBO->getRHS()->IgnoreParens(); 1922 } 1923 1924 assert(Cond); 1925 assert(srcBlk->succ_size() == 2); 1926 const bool tookTrue = *(srcBlk->succ_begin()) == dstBlk; 1927 return VisitTrueTest(Cond, tookTrue, BRC, R, N); 1928 } 1929 1930 std::shared_ptr<PathDiagnosticPiece> 1931 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, bool tookTrue, 1932 BugReporterContext &BRC, BugReport &R, 1933 const ExplodedNode *N) { 1934 ProgramStateRef CurrentState = N->getState(); 1935 ProgramStateRef PreviousState = N->getFirstPred()->getState(); 1936 const LocationContext *LCtx = N->getLocationContext(); 1937 1938 // If the constraint information is changed between the current and the 1939 // previous program state we assuming the newly seen constraint information. 1940 // If we cannot evaluate the condition (and the constraints are the same) 1941 // the analyzer has no information about the value and just assuming it. 1942 if (BRC.getStateManager().haveEqualConstraints(CurrentState, PreviousState) && 1943 CurrentState->getSVal(Cond, LCtx).isValid()) 1944 return nullptr; 1945 1946 // These will be modified in code below, but we need to preserve the original 1947 // values in case we want to throw the generic message. 1948 const Expr *CondTmp = Cond; 1949 bool tookTrueTmp = tookTrue; 1950 1951 while (true) { 1952 CondTmp = CondTmp->IgnoreParenCasts(); 1953 switch (CondTmp->getStmtClass()) { 1954 default: 1955 break; 1956 case Stmt::BinaryOperatorClass: 1957 if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp), 1958 tookTrueTmp, BRC, R, N)) 1959 return P; 1960 break; 1961 case Stmt::DeclRefExprClass: 1962 if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp), 1963 tookTrueTmp, BRC, R, N)) 1964 return P; 1965 break; 1966 case Stmt::UnaryOperatorClass: { 1967 const auto *UO = cast<UnaryOperator>(CondTmp); 1968 if (UO->getOpcode() == UO_LNot) { 1969 tookTrueTmp = !tookTrueTmp; 1970 CondTmp = UO->getSubExpr(); 1971 continue; 1972 } 1973 break; 1974 } 1975 } 1976 break; 1977 } 1978 1979 // Condition too complex to explain? Just say something so that the user 1980 // knew we've made some path decision at this point. 1981 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); 1982 if (!Loc.isValid() || !Loc.asLocation().isValid()) 1983 return nullptr; 1984 1985 return std::make_shared<PathDiagnosticEventPiece>( 1986 Loc, tookTrue ? GenericTrueMessage : GenericFalseMessage); 1987 } 1988 1989 bool ConditionBRVisitor::patternMatch(const Expr *Ex, 1990 const Expr *ParentEx, 1991 raw_ostream &Out, 1992 BugReporterContext &BRC, 1993 BugReport &report, 1994 const ExplodedNode *N, 1995 Optional<bool> &prunable) { 1996 const Expr *OriginalExpr = Ex; 1997 Ex = Ex->IgnoreParenCasts(); 1998 1999 // Use heuristics to determine if Ex is a macro expending to a literal and 2000 // if so, use the macro's name. 2001 SourceLocation LocStart = Ex->getBeginLoc(); 2002 SourceLocation LocEnd = Ex->getEndLoc(); 2003 if (LocStart.isMacroID() && LocEnd.isMacroID() && 2004 (isa<GNUNullExpr>(Ex) || 2005 isa<ObjCBoolLiteralExpr>(Ex) || 2006 isa<CXXBoolLiteralExpr>(Ex) || 2007 isa<IntegerLiteral>(Ex) || 2008 isa<FloatingLiteral>(Ex))) { 2009 StringRef StartName = Lexer::getImmediateMacroNameForDiagnostics(LocStart, 2010 BRC.getSourceManager(), BRC.getASTContext().getLangOpts()); 2011 StringRef EndName = Lexer::getImmediateMacroNameForDiagnostics(LocEnd, 2012 BRC.getSourceManager(), BRC.getASTContext().getLangOpts()); 2013 bool beginAndEndAreTheSameMacro = StartName.equals(EndName); 2014 2015 bool partOfParentMacro = false; 2016 if (ParentEx->getBeginLoc().isMacroID()) { 2017 StringRef PName = Lexer::getImmediateMacroNameForDiagnostics( 2018 ParentEx->getBeginLoc(), BRC.getSourceManager(), 2019 BRC.getASTContext().getLangOpts()); 2020 partOfParentMacro = PName.equals(StartName); 2021 } 2022 2023 if (beginAndEndAreTheSameMacro && !partOfParentMacro ) { 2024 // Get the location of the macro name as written by the caller. 2025 SourceLocation Loc = LocStart; 2026 while (LocStart.isMacroID()) { 2027 Loc = LocStart; 2028 LocStart = BRC.getSourceManager().getImmediateMacroCallerLoc(LocStart); 2029 } 2030 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 2031 Loc, BRC.getSourceManager(), BRC.getASTContext().getLangOpts()); 2032 2033 // Return the macro name. 2034 Out << MacroName; 2035 return false; 2036 } 2037 } 2038 2039 if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) { 2040 const bool quotes = isa<VarDecl>(DR->getDecl()); 2041 if (quotes) { 2042 Out << '\''; 2043 const LocationContext *LCtx = N->getLocationContext(); 2044 const ProgramState *state = N->getState().get(); 2045 if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()), 2046 LCtx).getAsRegion()) { 2047 if (report.isInteresting(R)) 2048 prunable = false; 2049 else { 2050 const ProgramState *state = N->getState().get(); 2051 SVal V = state->getSVal(R); 2052 if (report.isInteresting(V)) 2053 prunable = false; 2054 } 2055 } 2056 } 2057 Out << DR->getDecl()->getDeclName().getAsString(); 2058 if (quotes) 2059 Out << '\''; 2060 return quotes; 2061 } 2062 2063 if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) { 2064 QualType OriginalTy = OriginalExpr->getType(); 2065 if (OriginalTy->isPointerType()) { 2066 if (IL->getValue() == 0) { 2067 Out << "null"; 2068 return false; 2069 } 2070 } 2071 else if (OriginalTy->isObjCObjectPointerType()) { 2072 if (IL->getValue() == 0) { 2073 Out << "nil"; 2074 return false; 2075 } 2076 } 2077 2078 Out << IL->getValue(); 2079 return false; 2080 } 2081 2082 return false; 2083 } 2084 2085 std::shared_ptr<PathDiagnosticPiece> 2086 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const BinaryOperator *BExpr, 2087 const bool tookTrue, BugReporterContext &BRC, 2088 BugReport &R, const ExplodedNode *N) { 2089 bool shouldInvert = false; 2090 Optional<bool> shouldPrune; 2091 2092 SmallString<128> LhsString, RhsString; 2093 { 2094 llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString); 2095 const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, 2096 BRC, R, N, shouldPrune); 2097 const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, 2098 BRC, R, N, shouldPrune); 2099 2100 shouldInvert = !isVarLHS && isVarRHS; 2101 } 2102 2103 BinaryOperator::Opcode Op = BExpr->getOpcode(); 2104 2105 if (BinaryOperator::isAssignmentOp(Op)) { 2106 // For assignment operators, all that we care about is that the LHS 2107 // evaluates to "true" or "false". 2108 return VisitConditionVariable(LhsString, BExpr->getLHS(), tookTrue, 2109 BRC, R, N); 2110 } 2111 2112 // For non-assignment operations, we require that we can understand 2113 // both the LHS and RHS. 2114 if (LhsString.empty() || RhsString.empty() || 2115 !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp) 2116 return nullptr; 2117 2118 // Should we invert the strings if the LHS is not a variable name? 2119 SmallString<256> buf; 2120 llvm::raw_svector_ostream Out(buf); 2121 Out << "Assuming " << (shouldInvert ? RhsString : LhsString) << " is "; 2122 2123 // Do we need to invert the opcode? 2124 if (shouldInvert) 2125 switch (Op) { 2126 default: break; 2127 case BO_LT: Op = BO_GT; break; 2128 case BO_GT: Op = BO_LT; break; 2129 case BO_LE: Op = BO_GE; break; 2130 case BO_GE: Op = BO_LE; break; 2131 } 2132 2133 if (!tookTrue) 2134 switch (Op) { 2135 case BO_EQ: Op = BO_NE; break; 2136 case BO_NE: Op = BO_EQ; break; 2137 case BO_LT: Op = BO_GE; break; 2138 case BO_GT: Op = BO_LE; break; 2139 case BO_LE: Op = BO_GT; break; 2140 case BO_GE: Op = BO_LT; break; 2141 default: 2142 return nullptr; 2143 } 2144 2145 switch (Op) { 2146 case BO_EQ: 2147 Out << "equal to "; 2148 break; 2149 case BO_NE: 2150 Out << "not equal to "; 2151 break; 2152 default: 2153 Out << BinaryOperator::getOpcodeStr(Op) << ' '; 2154 break; 2155 } 2156 2157 Out << (shouldInvert ? LhsString : RhsString); 2158 const LocationContext *LCtx = N->getLocationContext(); 2159 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); 2160 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); 2161 if (shouldPrune.hasValue()) 2162 event->setPrunable(shouldPrune.getValue()); 2163 return event; 2164 } 2165 2166 std::shared_ptr<PathDiagnosticPiece> ConditionBRVisitor::VisitConditionVariable( 2167 StringRef LhsString, const Expr *CondVarExpr, const bool tookTrue, 2168 BugReporterContext &BRC, BugReport &report, const ExplodedNode *N) { 2169 // FIXME: If there's already a constraint tracker for this variable, 2170 // we shouldn't emit anything here (c.f. the double note in 2171 // test/Analysis/inlining/path-notes.c) 2172 SmallString<256> buf; 2173 llvm::raw_svector_ostream Out(buf); 2174 Out << "Assuming " << LhsString << " is "; 2175 2176 QualType Ty = CondVarExpr->getType(); 2177 2178 if (Ty->isPointerType()) 2179 Out << (tookTrue ? "not null" : "null"); 2180 else if (Ty->isObjCObjectPointerType()) 2181 Out << (tookTrue ? "not nil" : "nil"); 2182 else if (Ty->isBooleanType()) 2183 Out << (tookTrue ? "true" : "false"); 2184 else if (Ty->isIntegralOrEnumerationType()) 2185 Out << (tookTrue ? "non-zero" : "zero"); 2186 else 2187 return nullptr; 2188 2189 const LocationContext *LCtx = N->getLocationContext(); 2190 PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx); 2191 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); 2192 2193 if (const auto *DR = dyn_cast<DeclRefExpr>(CondVarExpr)) { 2194 if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) { 2195 const ProgramState *state = N->getState().get(); 2196 if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) { 2197 if (report.isInteresting(R)) 2198 event->setPrunable(false); 2199 } 2200 } 2201 } 2202 2203 return event; 2204 } 2205 2206 std::shared_ptr<PathDiagnosticPiece> 2207 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const DeclRefExpr *DR, 2208 const bool tookTrue, BugReporterContext &BRC, 2209 BugReport &report, const ExplodedNode *N) { 2210 const auto *VD = dyn_cast<VarDecl>(DR->getDecl()); 2211 if (!VD) 2212 return nullptr; 2213 2214 SmallString<256> Buf; 2215 llvm::raw_svector_ostream Out(Buf); 2216 2217 Out << "Assuming '" << VD->getDeclName() << "' is "; 2218 2219 QualType VDTy = VD->getType(); 2220 2221 if (VDTy->isPointerType()) 2222 Out << (tookTrue ? "non-null" : "null"); 2223 else if (VDTy->isObjCObjectPointerType()) 2224 Out << (tookTrue ? "non-nil" : "nil"); 2225 else if (VDTy->isScalarType()) 2226 Out << (tookTrue ? "not equal to 0" : "0"); 2227 else 2228 return nullptr; 2229 2230 const LocationContext *LCtx = N->getLocationContext(); 2231 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); 2232 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); 2233 2234 const ProgramState *state = N->getState().get(); 2235 if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) { 2236 if (report.isInteresting(R)) 2237 event->setPrunable(false); 2238 else { 2239 SVal V = state->getSVal(R); 2240 if (report.isInteresting(V)) 2241 event->setPrunable(false); 2242 } 2243 } 2244 return std::move(event); 2245 } 2246 2247 const char *const ConditionBRVisitor::GenericTrueMessage = 2248 "Assuming the condition is true"; 2249 const char *const ConditionBRVisitor::GenericFalseMessage = 2250 "Assuming the condition is false"; 2251 2252 bool ConditionBRVisitor::isPieceMessageGeneric( 2253 const PathDiagnosticPiece *Piece) { 2254 return Piece->getString() == GenericTrueMessage || 2255 Piece->getString() == GenericFalseMessage; 2256 } 2257 2258 void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor( 2259 BugReporterContext &BRC, const ExplodedNode *N, BugReport &BR) { 2260 // Here we suppress false positives coming from system headers. This list is 2261 // based on known issues. 2262 AnalyzerOptions &Options = BRC.getAnalyzerOptions(); 2263 const Decl *D = N->getLocationContext()->getDecl(); 2264 2265 if (AnalysisDeclContext::isInStdNamespace(D)) { 2266 // Skip reports within the 'std' namespace. Although these can sometimes be 2267 // the user's fault, we currently don't report them very well, and 2268 // Note that this will not help for any other data structure libraries, like 2269 // TR1, Boost, or llvm/ADT. 2270 if (Options.ShouldSuppressFromCXXStandardLibrary) { 2271 BR.markInvalid(getTag(), nullptr); 2272 return; 2273 } else { 2274 // If the complete 'std' suppression is not enabled, suppress reports 2275 // from the 'std' namespace that are known to produce false positives. 2276 2277 // The analyzer issues a false use-after-free when std::list::pop_front 2278 // or std::list::pop_back are called multiple times because we cannot 2279 // reason about the internal invariants of the data structure. 2280 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 2281 const CXXRecordDecl *CD = MD->getParent(); 2282 if (CD->getName() == "list") { 2283 BR.markInvalid(getTag(), nullptr); 2284 return; 2285 } 2286 } 2287 2288 // The analyzer issues a false positive when the constructor of 2289 // std::__independent_bits_engine from algorithms is used. 2290 if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) { 2291 const CXXRecordDecl *CD = MD->getParent(); 2292 if (CD->getName() == "__independent_bits_engine") { 2293 BR.markInvalid(getTag(), nullptr); 2294 return; 2295 } 2296 } 2297 2298 for (const LocationContext *LCtx = N->getLocationContext(); LCtx; 2299 LCtx = LCtx->getParent()) { 2300 const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl()); 2301 if (!MD) 2302 continue; 2303 2304 const CXXRecordDecl *CD = MD->getParent(); 2305 // The analyzer issues a false positive on 2306 // std::basic_string<uint8_t> v; v.push_back(1); 2307 // and 2308 // std::u16string s; s += u'a'; 2309 // because we cannot reason about the internal invariants of the 2310 // data structure. 2311 if (CD->getName() == "basic_string") { 2312 BR.markInvalid(getTag(), nullptr); 2313 return; 2314 } 2315 2316 // The analyzer issues a false positive on 2317 // std::shared_ptr<int> p(new int(1)); p = nullptr; 2318 // because it does not reason properly about temporary destructors. 2319 if (CD->getName() == "shared_ptr") { 2320 BR.markInvalid(getTag(), nullptr); 2321 return; 2322 } 2323 } 2324 } 2325 } 2326 2327 // Skip reports within the sys/queue.h macros as we do not have the ability to 2328 // reason about data structure shapes. 2329 SourceManager &SM = BRC.getSourceManager(); 2330 FullSourceLoc Loc = BR.getLocation(SM).asLocation(); 2331 while (Loc.isMacroID()) { 2332 Loc = Loc.getSpellingLoc(); 2333 if (SM.getFilename(Loc).endswith("sys/queue.h")) { 2334 BR.markInvalid(getTag(), nullptr); 2335 return; 2336 } 2337 } 2338 } 2339 2340 std::shared_ptr<PathDiagnosticPiece> 2341 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, 2342 BugReporterContext &BRC, BugReport &BR) { 2343 ProgramStateRef State = N->getState(); 2344 ProgramPoint ProgLoc = N->getLocation(); 2345 2346 // We are only interested in visiting CallEnter nodes. 2347 Optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>(); 2348 if (!CEnter) 2349 return nullptr; 2350 2351 // Check if one of the arguments is the region the visitor is tracking. 2352 CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager(); 2353 CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State); 2354 unsigned Idx = 0; 2355 ArrayRef<ParmVarDecl *> parms = Call->parameters(); 2356 2357 for (const auto ParamDecl : parms) { 2358 const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion(); 2359 ++Idx; 2360 2361 // Are we tracking the argument or its subregion? 2362 if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts())) 2363 continue; 2364 2365 // Check the function parameter type. 2366 assert(ParamDecl && "Formal parameter has no decl?"); 2367 QualType T = ParamDecl->getType(); 2368 2369 if (!(T->isAnyPointerType() || T->isReferenceType())) { 2370 // Function can only change the value passed in by address. 2371 continue; 2372 } 2373 2374 // If it is a const pointer value, the function does not intend to 2375 // change the value. 2376 if (T->getPointeeType().isConstQualified()) 2377 continue; 2378 2379 // Mark the call site (LocationContext) as interesting if the value of the 2380 // argument is undefined or '0'/'NULL'. 2381 SVal BoundVal = State->getSVal(R); 2382 if (BoundVal.isUndef() || BoundVal.isZeroConstant()) { 2383 BR.markInteresting(CEnter->getCalleeContext()); 2384 return nullptr; 2385 } 2386 } 2387 return nullptr; 2388 } 2389 2390 std::shared_ptr<PathDiagnosticPiece> 2391 CXXSelfAssignmentBRVisitor::VisitNode(const ExplodedNode *Succ, 2392 BugReporterContext &BRC, BugReport &) { 2393 if (Satisfied) 2394 return nullptr; 2395 2396 const auto Edge = Succ->getLocation().getAs<BlockEdge>(); 2397 if (!Edge.hasValue()) 2398 return nullptr; 2399 2400 auto Tag = Edge->getTag(); 2401 if (!Tag) 2402 return nullptr; 2403 2404 if (Tag->getTagDescription() != "cplusplus.SelfAssignment") 2405 return nullptr; 2406 2407 Satisfied = true; 2408 2409 const auto *Met = 2410 dyn_cast<CXXMethodDecl>(Succ->getCodeDecl().getAsFunction()); 2411 assert(Met && "Not a C++ method."); 2412 assert((Met->isCopyAssignmentOperator() || Met->isMoveAssignmentOperator()) && 2413 "Not a copy/move assignment operator."); 2414 2415 const auto *LCtx = Edge->getLocationContext(); 2416 2417 const auto &State = Succ->getState(); 2418 auto &SVB = State->getStateManager().getSValBuilder(); 2419 2420 const auto Param = 2421 State->getSVal(State->getRegion(Met->getParamDecl(0), LCtx)); 2422 const auto This = 2423 State->getSVal(SVB.getCXXThis(Met, LCtx->getStackFrame())); 2424 2425 auto L = PathDiagnosticLocation::create(Met, BRC.getSourceManager()); 2426 2427 if (!L.isValid() || !L.asLocation().isValid()) 2428 return nullptr; 2429 2430 SmallString<256> Buf; 2431 llvm::raw_svector_ostream Out(Buf); 2432 2433 Out << "Assuming " << Met->getParamDecl(0)->getName() << 2434 ((Param == This) ? " == " : " != ") << "*this"; 2435 2436 auto Piece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str()); 2437 Piece->addRange(Met->getSourceRange()); 2438 2439 return std::move(Piece); 2440 } 2441 2442 2443 FalsePositiveRefutationBRVisitor::FalsePositiveRefutationBRVisitor() 2444 : Constraints(ConstraintRangeTy::Factory().getEmptyMap()) {} 2445 2446 void FalsePositiveRefutationBRVisitor::finalizeVisitor( 2447 BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) { 2448 // Collect new constraints 2449 VisitNode(EndPathNode, BRC, BR); 2450 2451 // Create a refutation manager 2452 llvm::SMTSolverRef RefutationSolver = llvm::CreateZ3Solver(); 2453 ASTContext &Ctx = BRC.getASTContext(); 2454 2455 // Add constraints to the solver 2456 for (const auto &I : Constraints) { 2457 const SymbolRef Sym = I.first; 2458 auto RangeIt = I.second.begin(); 2459 2460 llvm::SMTExprRef Constraints = SMTConv::getRangeExpr( 2461 RefutationSolver, Ctx, Sym, RangeIt->From(), RangeIt->To(), 2462 /*InRange=*/true); 2463 while ((++RangeIt) != I.second.end()) { 2464 Constraints = RefutationSolver->mkOr( 2465 Constraints, SMTConv::getRangeExpr(RefutationSolver, Ctx, Sym, 2466 RangeIt->From(), RangeIt->To(), 2467 /*InRange=*/true)); 2468 } 2469 2470 RefutationSolver->addConstraint(Constraints); 2471 } 2472 2473 // And check for satisfiability 2474 Optional<bool> isSat = RefutationSolver->check(); 2475 if (!isSat.hasValue()) 2476 return; 2477 2478 if (!isSat.getValue()) 2479 BR.markInvalid("Infeasible constraints", EndPathNode->getLocationContext()); 2480 } 2481 2482 std::shared_ptr<PathDiagnosticPiece> 2483 FalsePositiveRefutationBRVisitor::VisitNode(const ExplodedNode *N, 2484 BugReporterContext &, 2485 BugReport &) { 2486 // Collect new constraints 2487 const ConstraintRangeTy &NewCs = N->getState()->get<ConstraintRange>(); 2488 ConstraintRangeTy::Factory &CF = 2489 N->getState()->get_context<ConstraintRange>(); 2490 2491 // Add constraints if we don't have them yet 2492 for (auto const &C : NewCs) { 2493 const SymbolRef &Sym = C.first; 2494 if (!Constraints.contains(Sym)) { 2495 Constraints = CF.add(Constraints, Sym, C.second); 2496 } 2497 } 2498 2499 return nullptr; 2500 } 2501 2502 void FalsePositiveRefutationBRVisitor::Profile( 2503 llvm::FoldingSetNodeID &ID) const { 2504 static int Tag = 0; 2505 ID.AddPointer(&Tag); 2506 } 2507