1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines a set of BugReporter "visitors" which can be used to
10 //  enhance the diagnostics reported for a bug.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclBase.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/ASTMatchers/ASTMatchFinder.h"
25 #include "clang/Analysis/Analyses/Dominators.h"
26 #include "clang/Analysis/AnalysisDeclContext.h"
27 #include "clang/Analysis/CFG.h"
28 #include "clang/Analysis/CFGStmtMap.h"
29 #include "clang/Analysis/PathDiagnostic.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/Basic/IdentifierTable.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Lex/Lexer.h"
36 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/STLExtras.h"
52 #include "llvm/ADT/SmallPtrSet.h"
53 #include "llvm/ADT/SmallString.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cassert>
61 #include <deque>
62 #include <memory>
63 #include <string>
64 #include <utility>
65 
66 using namespace clang;
67 using namespace ento;
68 using namespace bugreporter;
69 
70 //===----------------------------------------------------------------------===//
71 // Utility functions.
72 //===----------------------------------------------------------------------===//
73 
74 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) {
75   if (B->isAdditiveOp() && B->getType()->isPointerType()) {
76     if (B->getLHS()->getType()->isPointerType()) {
77       return B->getLHS();
78     } else if (B->getRHS()->getType()->isPointerType()) {
79       return B->getRHS();
80     }
81   }
82   return nullptr;
83 }
84 
85 /// \return A subexpression of @c Ex which represents the
86 /// expression-of-interest.
87 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N);
88 
89 /// Given that expression S represents a pointer that would be dereferenced,
90 /// try to find a sub-expression from which the pointer came from.
91 /// This is used for tracking down origins of a null or undefined value:
92 /// "this is null because that is null because that is null" etc.
93 /// We wipe away field and element offsets because they merely add offsets.
94 /// We also wipe away all casts except lvalue-to-rvalue casts, because the
95 /// latter represent an actual pointer dereference; however, we remove
96 /// the final lvalue-to-rvalue cast before returning from this function
97 /// because it demonstrates more clearly from where the pointer rvalue was
98 /// loaded. Examples:
99 ///   x->y.z      ==>  x (lvalue)
100 ///   foo()->y.z  ==>  foo() (rvalue)
101 const Expr *bugreporter::getDerefExpr(const Stmt *S) {
102   const auto *E = dyn_cast<Expr>(S);
103   if (!E)
104     return nullptr;
105 
106   while (true) {
107     if (const auto *CE = dyn_cast<CastExpr>(E)) {
108       if (CE->getCastKind() == CK_LValueToRValue) {
109         // This cast represents the load we're looking for.
110         break;
111       }
112       E = CE->getSubExpr();
113     } else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
114       // Pointer arithmetic: '*(x + 2)' -> 'x') etc.
115       if (const Expr *Inner = peelOffPointerArithmetic(B)) {
116         E = Inner;
117       } else {
118         // Probably more arithmetic can be pattern-matched here,
119         // but for now give up.
120         break;
121       }
122     } else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
123       if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
124           (U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
125         // Operators '*' and '&' don't actually mean anything.
126         // We look at casts instead.
127         E = U->getSubExpr();
128       } else {
129         // Probably more arithmetic can be pattern-matched here,
130         // but for now give up.
131         break;
132       }
133     }
134     // Pattern match for a few useful cases: a[0], p->f, *p etc.
135     else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
136       E = ME->getBase();
137     } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
138       E = IvarRef->getBase();
139     } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
140       E = AE->getBase();
141     } else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
142       E = PE->getSubExpr();
143     } else if (const auto *FE = dyn_cast<FullExpr>(E)) {
144       E = FE->getSubExpr();
145     } else {
146       // Other arbitrary stuff.
147       break;
148     }
149   }
150 
151   // Special case: remove the final lvalue-to-rvalue cast, but do not recurse
152   // deeper into the sub-expression. This way we return the lvalue from which
153   // our pointer rvalue was loaded.
154   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
155     if (CE->getCastKind() == CK_LValueToRValue)
156       E = CE->getSubExpr();
157 
158   return E;
159 }
160 
161 static const MemRegion *
162 getLocationRegionIfReference(const Expr *E, const ExplodedNode *N,
163                              bool LookingForReference = true) {
164   if (const auto *DR = dyn_cast<DeclRefExpr>(E)) {
165     if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) {
166       if (LookingForReference && !VD->getType()->isReferenceType())
167         return nullptr;
168       return N->getState()
169           ->getLValue(VD, N->getLocationContext())
170           .getAsRegion();
171     }
172   }
173 
174   // FIXME: This does not handle other kinds of null references,
175   // for example, references from FieldRegions:
176   //   struct Wrapper { int &ref; };
177   //   Wrapper w = { *(int *)0 };
178   //   w.ref = 1;
179 
180   return nullptr;
181 }
182 
183 /// Comparing internal representations of symbolic values (via
184 /// SVal::operator==()) is a valid way to check if the value was updated,
185 /// unless it's a LazyCompoundVal that may have a different internal
186 /// representation every time it is loaded from the state. In this function we
187 /// do an approximate comparison for lazy compound values, checking that they
188 /// are the immediate snapshots of the tracked region's bindings within the
189 /// node's respective states but not really checking that these snapshots
190 /// actually contain the same set of bindings.
191 static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal,
192                              const ExplodedNode *RightNode, SVal RightVal) {
193   if (LeftVal == RightVal)
194     return true;
195 
196   const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>();
197   if (!LLCV)
198     return false;
199 
200   const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>();
201   if (!RLCV)
202     return false;
203 
204   return LLCV->getRegion() == RLCV->getRegion() &&
205     LLCV->getStore() == LeftNode->getState()->getStore() &&
206     RLCV->getStore() == RightNode->getState()->getStore();
207 }
208 
209 static Optional<SVal> getSValForVar(const Expr *CondVarExpr,
210                                     const ExplodedNode *N) {
211   ProgramStateRef State = N->getState();
212   const LocationContext *LCtx = N->getLocationContext();
213 
214   assert(CondVarExpr);
215   CondVarExpr = CondVarExpr->IgnoreImpCasts();
216 
217   // The declaration of the value may rely on a pointer so take its l-value.
218   // FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may
219   // evaluate to a FieldRegion when it refers to a declaration of a lambda
220   // capture variable. We most likely need to duplicate that logic here.
221   if (const auto *DRE = dyn_cast<DeclRefExpr>(CondVarExpr))
222     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
223       return State->getSVal(State->getLValue(VD, LCtx));
224 
225   if (const auto *ME = dyn_cast<MemberExpr>(CondVarExpr))
226     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
227       if (auto FieldL = State->getSVal(ME, LCtx).getAs<Loc>())
228         return State->getRawSVal(*FieldL, FD->getType());
229 
230   return None;
231 }
232 
233 static Optional<const llvm::APSInt *>
234 getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) {
235 
236   if (Optional<SVal> V = getSValForVar(CondVarExpr, N))
237     if (auto CI = V->getAs<nonloc::ConcreteInt>())
238       return &CI->getValue();
239   return None;
240 }
241 
242 static bool isVarAnInterestingCondition(const Expr *CondVarExpr,
243                                         const ExplodedNode *N,
244                                         const PathSensitiveBugReport *B) {
245   // Even if this condition is marked as interesting, it isn't *that*
246   // interesting if it didn't happen in a nested stackframe, the user could just
247   // follow the arrows.
248   if (!B->getErrorNode()->getStackFrame()->isParentOf(N->getStackFrame()))
249     return false;
250 
251   if (Optional<SVal> V = getSValForVar(CondVarExpr, N))
252     if (Optional<bugreporter::TrackingKind> K = B->getInterestingnessKind(*V))
253       return *K == bugreporter::TrackingKind::Condition;
254 
255   return false;
256 }
257 
258 static bool isInterestingExpr(const Expr *E, const ExplodedNode *N,
259                               const PathSensitiveBugReport *B) {
260   if (Optional<SVal> V = getSValForVar(E, N))
261     return B->getInterestingnessKind(*V).has_value();
262   return false;
263 }
264 
265 /// \return name of the macro inside the location \p Loc.
266 static StringRef getMacroName(SourceLocation Loc,
267     BugReporterContext &BRC) {
268   return Lexer::getImmediateMacroName(
269       Loc,
270       BRC.getSourceManager(),
271       BRC.getASTContext().getLangOpts());
272 }
273 
274 /// \return Whether given spelling location corresponds to an expansion
275 /// of a function-like macro.
276 static bool isFunctionMacroExpansion(SourceLocation Loc,
277                                 const SourceManager &SM) {
278   if (!Loc.isMacroID())
279     return false;
280   while (SM.isMacroArgExpansion(Loc))
281     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
282   std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
283   SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
284   const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
285   return EInfo.isFunctionMacroExpansion();
286 }
287 
288 /// \return Whether \c RegionOfInterest was modified at \p N,
289 /// where \p ValueAfter is \c RegionOfInterest's value at the end of the
290 /// stack frame.
291 static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest,
292                                           const ExplodedNode *N,
293                                           SVal ValueAfter) {
294   ProgramStateRef State = N->getState();
295   ProgramStateManager &Mgr = N->getState()->getStateManager();
296 
297   if (!N->getLocationAs<PostStore>() && !N->getLocationAs<PostInitializer>() &&
298       !N->getLocationAs<PostStmt>())
299     return false;
300 
301   // Writing into region of interest.
302   if (auto PS = N->getLocationAs<PostStmt>())
303     if (auto *BO = PS->getStmtAs<BinaryOperator>())
304       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
305                                       N->getSVal(BO->getLHS()).getAsRegion()))
306         return true;
307 
308   // SVal after the state is possibly different.
309   SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
310   if (!Mgr.getSValBuilder()
311            .areEqual(State, ValueAtN, ValueAfter)
312            .isConstrainedTrue() &&
313       (!ValueAtN.isUndef() || !ValueAfter.isUndef()))
314     return true;
315 
316   return false;
317 }
318 
319 //===----------------------------------------------------------------------===//
320 // Implementation of BugReporterVisitor.
321 //===----------------------------------------------------------------------===//
322 
323 PathDiagnosticPieceRef BugReporterVisitor::getEndPath(BugReporterContext &,
324                                                       const ExplodedNode *,
325                                                       PathSensitiveBugReport &) {
326   return nullptr;
327 }
328 
329 void BugReporterVisitor::finalizeVisitor(BugReporterContext &,
330                                          const ExplodedNode *,
331                                          PathSensitiveBugReport &) {}
332 
333 PathDiagnosticPieceRef
334 BugReporterVisitor::getDefaultEndPath(const BugReporterContext &BRC,
335                                       const ExplodedNode *EndPathNode,
336                                       const PathSensitiveBugReport &BR) {
337   PathDiagnosticLocation L = BR.getLocation();
338   const auto &Ranges = BR.getRanges();
339 
340   // Only add the statement itself as a range if we didn't specify any
341   // special ranges for this report.
342   auto P = std::make_shared<PathDiagnosticEventPiece>(
343       L, BR.getDescription(), Ranges.begin() == Ranges.end());
344   for (SourceRange Range : Ranges)
345     P->addRange(Range);
346 
347   return P;
348 }
349 
350 //===----------------------------------------------------------------------===//
351 // Implementation of NoStateChangeFuncVisitor.
352 //===----------------------------------------------------------------------===//
353 
354 bool NoStateChangeFuncVisitor::isModifiedInFrame(const ExplodedNode *N) {
355   const LocationContext *Ctx = N->getLocationContext();
356   const StackFrameContext *SCtx = Ctx->getStackFrame();
357   if (!FramesModifyingCalculated.count(SCtx))
358     findModifyingFrames(N);
359   return FramesModifying.count(SCtx);
360 }
361 
362 void NoStateChangeFuncVisitor::markFrameAsModifying(
363     const StackFrameContext *SCtx) {
364   while (!SCtx->inTopFrame()) {
365     auto p = FramesModifying.insert(SCtx);
366     if (!p.second)
367       break; // Frame and all its parents already inserted.
368 
369     SCtx = SCtx->getParent()->getStackFrame();
370   }
371 }
372 
373 static const ExplodedNode *getMatchingCallExitEnd(const ExplodedNode *N) {
374   assert(N->getLocationAs<CallEnter>());
375   // The stackframe of the callee is only found in the nodes succeeding
376   // the CallEnter node. CallEnter's stack frame refers to the caller.
377   const StackFrameContext *OrigSCtx = N->getFirstSucc()->getStackFrame();
378 
379   // Similarly, the nodes preceding CallExitEnd refer to the callee's stack
380   // frame.
381   auto IsMatchingCallExitEnd = [OrigSCtx](const ExplodedNode *N) {
382     return N->getLocationAs<CallExitEnd>() &&
383            OrigSCtx == N->getFirstPred()->getStackFrame();
384   };
385   while (N && !IsMatchingCallExitEnd(N)) {
386     assert(N->succ_size() <= 1 &&
387            "This function is to be used on the trimmed ExplodedGraph!");
388     N = N->getFirstSucc();
389   }
390   return N;
391 }
392 
393 void NoStateChangeFuncVisitor::findModifyingFrames(
394     const ExplodedNode *const CallExitBeginN) {
395 
396   assert(CallExitBeginN->getLocationAs<CallExitBegin>());
397 
398   const StackFrameContext *const OriginalSCtx =
399       CallExitBeginN->getLocationContext()->getStackFrame();
400 
401   const ExplodedNode *CurrCallExitBeginN = CallExitBeginN;
402   const StackFrameContext *CurrentSCtx = OriginalSCtx;
403 
404   for (const ExplodedNode *CurrN = CallExitBeginN; CurrN;
405        CurrN = CurrN->getFirstPred()) {
406     // Found a new inlined call.
407     if (CurrN->getLocationAs<CallExitBegin>()) {
408       CurrCallExitBeginN = CurrN;
409       CurrentSCtx = CurrN->getStackFrame();
410       FramesModifyingCalculated.insert(CurrentSCtx);
411       // We won't see a change in between two identical exploded nodes: skip.
412       continue;
413     }
414 
415     if (auto CE = CurrN->getLocationAs<CallEnter>()) {
416       if (const ExplodedNode *CallExitEndN = getMatchingCallExitEnd(CurrN))
417         if (wasModifiedInFunction(CurrN, CallExitEndN))
418           markFrameAsModifying(CurrentSCtx);
419 
420       // We exited this inlined call, lets actualize the stack frame.
421       CurrentSCtx = CurrN->getStackFrame();
422 
423       // Stop calculating at the current function, but always regard it as
424       // modifying, so we can avoid notes like this:
425       //   void f(Foo &F) {
426       //     F.field = 0; // note: 0 assigned to 'F.field'
427       //                  // note: returning without writing to 'F.field'
428       //   }
429       if (CE->getCalleeContext() == OriginalSCtx) {
430         markFrameAsModifying(CurrentSCtx);
431         break;
432       }
433     }
434 
435     if (wasModifiedBeforeCallExit(CurrN, CurrCallExitBeginN))
436       markFrameAsModifying(CurrentSCtx);
437   }
438 }
439 
440 PathDiagnosticPieceRef NoStateChangeFuncVisitor::VisitNode(
441     const ExplodedNode *N, BugReporterContext &BR, PathSensitiveBugReport &R) {
442 
443   const LocationContext *Ctx = N->getLocationContext();
444   const StackFrameContext *SCtx = Ctx->getStackFrame();
445   ProgramStateRef State = N->getState();
446   auto CallExitLoc = N->getLocationAs<CallExitBegin>();
447 
448   // No diagnostic if region was modified inside the frame.
449   if (!CallExitLoc || isModifiedInFrame(N))
450     return nullptr;
451 
452   CallEventRef<> Call =
453       BR.getStateManager().getCallEventManager().getCaller(SCtx, State);
454 
455   // Optimistically suppress uninitialized value bugs that result
456   // from system headers having a chance to initialize the value
457   // but failing to do so. It's too unlikely a system header's fault.
458   // It's much more likely a situation in which the function has a failure
459   // mode that the user decided not to check. If we want to hunt such
460   // omitted checks, we should provide an explicit function-specific note
461   // describing the precondition under which the function isn't supposed to
462   // initialize its out-parameter, and additionally check that such
463   // precondition can actually be fulfilled on the current path.
464   if (Call->isInSystemHeader()) {
465     // We make an exception for system header functions that have no branches.
466     // Such functions unconditionally fail to initialize the variable.
467     // If they call other functions that have more paths within them,
468     // this suppression would still apply when we visit these inner functions.
469     // One common example of a standard function that doesn't ever initialize
470     // its out parameter is operator placement new; it's up to the follow-up
471     // constructor (if any) to initialize the memory.
472     if (!N->getStackFrame()->getCFG()->isLinear()) {
473       static int i = 0;
474       R.markInvalid(&i, nullptr);
475     }
476     return nullptr;
477   }
478 
479   if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
480     // If we failed to construct a piece for self, we still want to check
481     // whether the entity of interest is in a parameter.
482     if (PathDiagnosticPieceRef Piece = maybeEmitNoteForObjCSelf(R, *MC, N))
483       return Piece;
484   }
485 
486   if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
487     // Do not generate diagnostics for not modified parameters in
488     // constructors.
489     return maybeEmitNoteForCXXThis(R, *CCall, N);
490   }
491 
492   return maybeEmitNoteForParameters(R, *Call, N);
493 }
494 
495 //===----------------------------------------------------------------------===//
496 // Implementation of NoStoreFuncVisitor.
497 //===----------------------------------------------------------------------===//
498 
499 namespace {
500 /// Put a diagnostic on return statement of all inlined functions
501 /// for which  the region of interest \p RegionOfInterest was passed into,
502 /// but not written inside, and it has caused an undefined read or a null
503 /// pointer dereference outside.
504 class NoStoreFuncVisitor final : public NoStateChangeFuncVisitor {
505   const SubRegion *RegionOfInterest;
506   MemRegionManager &MmrMgr;
507   const SourceManager &SM;
508   const PrintingPolicy &PP;
509 
510   /// Recursion limit for dereferencing fields when looking for the
511   /// region of interest.
512   /// The limit of two indicates that we will dereference fields only once.
513   static const unsigned DEREFERENCE_LIMIT = 2;
514 
515   using RegionVector = SmallVector<const MemRegion *, 5>;
516 
517 public:
518   NoStoreFuncVisitor(const SubRegion *R, bugreporter::TrackingKind TKind)
519       : NoStateChangeFuncVisitor(TKind), RegionOfInterest(R),
520         MmrMgr(R->getMemRegionManager()),
521         SM(MmrMgr.getContext().getSourceManager()),
522         PP(MmrMgr.getContext().getPrintingPolicy()) {}
523 
524   void Profile(llvm::FoldingSetNodeID &ID) const override {
525     static int Tag = 0;
526     ID.AddPointer(&Tag);
527     ID.AddPointer(RegionOfInterest);
528   }
529 
530 private:
531   /// \return Whether \c RegionOfInterest was modified at \p CurrN compared to
532   /// the value it holds in \p CallExitBeginN.
533   virtual bool
534   wasModifiedBeforeCallExit(const ExplodedNode *CurrN,
535                             const ExplodedNode *CallExitBeginN) override;
536 
537   /// Attempts to find the region of interest in a given record decl,
538   /// by either following the base classes or fields.
539   /// Dereferences fields up to a given recursion limit.
540   /// Note that \p Vec is passed by value, leading to quadratic copying cost,
541   /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
542   /// \return A chain fields leading to the region of interest or None.
543   const Optional<RegionVector>
544   findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State,
545                                const MemRegion *R, const RegionVector &Vec = {},
546                                int depth = 0);
547 
548   // Region of interest corresponds to an IVar, exiting a method
549   // which could have written into that IVar, but did not.
550   PathDiagnosticPieceRef maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
551                                                   const ObjCMethodCall &Call,
552                                                   const ExplodedNode *N) final;
553 
554   PathDiagnosticPieceRef maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
555                                                  const CXXConstructorCall &Call,
556                                                  const ExplodedNode *N) final;
557 
558   PathDiagnosticPieceRef
559   maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call,
560                              const ExplodedNode *N) final;
561 
562   /// Consume the information on the no-store stack frame in order to
563   /// either emit a note or suppress the report enirely.
564   /// \return Diagnostics piece for region not modified in the current function,
565   /// if it decides to emit one.
566   PathDiagnosticPieceRef
567   maybeEmitNote(PathSensitiveBugReport &R, const CallEvent &Call,
568                 const ExplodedNode *N, const RegionVector &FieldChain,
569                 const MemRegion *MatchedRegion, StringRef FirstElement,
570                 bool FirstIsReferenceType, unsigned IndirectionLevel);
571 
572   bool prettyPrintRegionName(const RegionVector &FieldChain,
573                              const MemRegion *MatchedRegion,
574                              StringRef FirstElement, bool FirstIsReferenceType,
575                              unsigned IndirectionLevel,
576                              llvm::raw_svector_ostream &os);
577 
578   StringRef prettyPrintFirstElement(StringRef FirstElement,
579                                     bool MoreItemsExpected,
580                                     int IndirectionLevel,
581                                     llvm::raw_svector_ostream &os);
582 };
583 } // namespace
584 
585 /// \return Whether the method declaration \p Parent
586 /// syntactically has a binary operation writing into the ivar \p Ivar.
587 static bool potentiallyWritesIntoIvar(const Decl *Parent,
588                                       const ObjCIvarDecl *Ivar) {
589   using namespace ast_matchers;
590   const char *IvarBind = "Ivar";
591   if (!Parent || !Parent->hasBody())
592     return false;
593   StatementMatcher WriteIntoIvarM = binaryOperator(
594       hasOperatorName("="),
595       hasLHS(ignoringParenImpCasts(
596           objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
597   StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
598   auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
599   for (BoundNodes &Match : Matches) {
600     auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
601     if (IvarRef->isFreeIvar())
602       return true;
603 
604     const Expr *Base = IvarRef->getBase();
605     if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
606       Base = ICE->getSubExpr();
607 
608     if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
609       if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
610         if (ID->getParameterKind() == ImplicitParamDecl::ObjCSelf)
611           return true;
612 
613     return false;
614   }
615   return false;
616 }
617 
618 /// Attempts to find the region of interest in a given CXX decl,
619 /// by either following the base classes or fields.
620 /// Dereferences fields up to a given recursion limit.
621 /// Note that \p Vec is passed by value, leading to quadratic copying cost,
622 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
623 /// \return A chain fields leading to the region of interest or None.
624 const Optional<NoStoreFuncVisitor::RegionVector>
625 NoStoreFuncVisitor::findRegionOfInterestInRecord(
626     const RecordDecl *RD, ProgramStateRef State, const MemRegion *R,
627     const NoStoreFuncVisitor::RegionVector &Vec /* = {} */,
628     int depth /* = 0 */) {
629 
630   if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
631     return None;
632 
633   if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
634     if (!RDX->hasDefinition())
635       return None;
636 
637   // Recursively examine the base classes.
638   // Note that following base classes does not increase the recursion depth.
639   if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
640     for (const auto &II : RDX->bases())
641       if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
642         if (Optional<RegionVector> Out =
643                 findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
644           return Out;
645 
646   for (const FieldDecl *I : RD->fields()) {
647     QualType FT = I->getType();
648     const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
649     const SVal V = State->getSVal(FR);
650     const MemRegion *VR = V.getAsRegion();
651 
652     RegionVector VecF = Vec;
653     VecF.push_back(FR);
654 
655     if (RegionOfInterest == VR)
656       return VecF;
657 
658     if (const RecordDecl *RRD = FT->getAsRecordDecl())
659       if (auto Out =
660               findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
661         return Out;
662 
663     QualType PT = FT->getPointeeType();
664     if (PT.isNull() || PT->isVoidType() || !VR)
665       continue;
666 
667     if (const RecordDecl *RRD = PT->getAsRecordDecl())
668       if (Optional<RegionVector> Out =
669               findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
670         return Out;
671   }
672 
673   return None;
674 }
675 
676 PathDiagnosticPieceRef
677 NoStoreFuncVisitor::maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
678                                              const ObjCMethodCall &Call,
679                                              const ExplodedNode *N) {
680   if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
681     const MemRegion *SelfRegion = Call.getReceiverSVal().getAsRegion();
682     if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
683         potentiallyWritesIntoIvar(Call.getRuntimeDefinition().getDecl(),
684                                   IvarR->getDecl()))
685       return maybeEmitNote(R, Call, N, {}, SelfRegion, "self",
686                            /*FirstIsReferenceType=*/false, 1);
687   }
688   return nullptr;
689 }
690 
691 PathDiagnosticPieceRef
692 NoStoreFuncVisitor::maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
693                                             const CXXConstructorCall &Call,
694                                             const ExplodedNode *N) {
695   const MemRegion *ThisR = Call.getCXXThisVal().getAsRegion();
696   if (RegionOfInterest->isSubRegionOf(ThisR) && !Call.getDecl()->isImplicit())
697     return maybeEmitNote(R, Call, N, {}, ThisR, "this",
698                          /*FirstIsReferenceType=*/false, 1);
699 
700   // Do not generate diagnostics for not modified parameters in
701   // constructors.
702   return nullptr;
703 }
704 
705 /// \return whether \p Ty points to a const type, or is a const reference.
706 static bool isPointerToConst(QualType Ty) {
707   return !Ty->getPointeeType().isNull() &&
708          Ty->getPointeeType().getCanonicalType().isConstQualified();
709 }
710 
711 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForParameters(
712     PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N) {
713   ArrayRef<ParmVarDecl *> Parameters = Call.parameters();
714   for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) {
715     const ParmVarDecl *PVD = Parameters[I];
716     SVal V = Call.getArgSVal(I);
717     bool ParamIsReferenceType = PVD->getType()->isReferenceType();
718     std::string ParamName = PVD->getNameAsString();
719 
720     unsigned IndirectionLevel = 1;
721     QualType T = PVD->getType();
722     while (const MemRegion *MR = V.getAsRegion()) {
723       if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T))
724         return maybeEmitNote(R, Call, N, {}, MR, ParamName,
725                              ParamIsReferenceType, IndirectionLevel);
726 
727       QualType PT = T->getPointeeType();
728       if (PT.isNull() || PT->isVoidType())
729         break;
730 
731       ProgramStateRef State = N->getState();
732 
733       if (const RecordDecl *RD = PT->getAsRecordDecl())
734         if (Optional<RegionVector> P =
735                 findRegionOfInterestInRecord(RD, State, MR))
736           return maybeEmitNote(R, Call, N, *P, RegionOfInterest, ParamName,
737                                ParamIsReferenceType, IndirectionLevel);
738 
739       V = State->getSVal(MR, PT);
740       T = PT;
741       IndirectionLevel++;
742     }
743   }
744 
745   return nullptr;
746 }
747 
748 bool NoStoreFuncVisitor::wasModifiedBeforeCallExit(
749     const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN) {
750   return ::wasRegionOfInterestModifiedAt(
751       RegionOfInterest, CurrN,
752       CallExitBeginN->getState()->getSVal(RegionOfInterest));
753 }
754 
755 static llvm::StringLiteral WillBeUsedForACondition =
756     ", which participates in a condition later";
757 
758 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote(
759     PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N,
760     const RegionVector &FieldChain, const MemRegion *MatchedRegion,
761     StringRef FirstElement, bool FirstIsReferenceType,
762     unsigned IndirectionLevel) {
763 
764   PathDiagnosticLocation L =
765       PathDiagnosticLocation::create(N->getLocation(), SM);
766 
767   // For now this shouldn't trigger, but once it does (as we add more
768   // functions to the body farm), we'll need to decide if these reports
769   // are worth suppressing as well.
770   if (!L.hasValidLocation())
771     return nullptr;
772 
773   SmallString<256> sbuf;
774   llvm::raw_svector_ostream os(sbuf);
775   os << "Returning without writing to '";
776 
777   // Do not generate the note if failed to pretty-print.
778   if (!prettyPrintRegionName(FieldChain, MatchedRegion, FirstElement,
779                              FirstIsReferenceType, IndirectionLevel, os))
780     return nullptr;
781 
782   os << "'";
783   if (TKind == bugreporter::TrackingKind::Condition)
784     os << WillBeUsedForACondition;
785   return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
786 }
787 
788 bool NoStoreFuncVisitor::prettyPrintRegionName(const RegionVector &FieldChain,
789                                                const MemRegion *MatchedRegion,
790                                                StringRef FirstElement,
791                                                bool FirstIsReferenceType,
792                                                unsigned IndirectionLevel,
793                                                llvm::raw_svector_ostream &os) {
794 
795   if (FirstIsReferenceType)
796     IndirectionLevel--;
797 
798   RegionVector RegionSequence;
799 
800   // Add the regions in the reverse order, then reverse the resulting array.
801   assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
802   const MemRegion *R = RegionOfInterest;
803   while (R != MatchedRegion) {
804     RegionSequence.push_back(R);
805     R = cast<SubRegion>(R)->getSuperRegion();
806   }
807   std::reverse(RegionSequence.begin(), RegionSequence.end());
808   RegionSequence.append(FieldChain.begin(), FieldChain.end());
809 
810   StringRef Sep;
811   for (const MemRegion *R : RegionSequence) {
812 
813     // Just keep going up to the base region.
814     // Element regions may appear due to casts.
815     if (isa<CXXBaseObjectRegion, CXXTempObjectRegion>(R))
816       continue;
817 
818     if (Sep.empty())
819       Sep = prettyPrintFirstElement(FirstElement,
820                                     /*MoreItemsExpected=*/true,
821                                     IndirectionLevel, os);
822 
823     os << Sep;
824 
825     // Can only reasonably pretty-print DeclRegions.
826     if (!isa<DeclRegion>(R))
827       return false;
828 
829     const auto *DR = cast<DeclRegion>(R);
830     Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
831     DR->getDecl()->getDeclName().print(os, PP);
832   }
833 
834   if (Sep.empty())
835     prettyPrintFirstElement(FirstElement,
836                             /*MoreItemsExpected=*/false, IndirectionLevel, os);
837   return true;
838 }
839 
840 StringRef NoStoreFuncVisitor::prettyPrintFirstElement(
841     StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel,
842     llvm::raw_svector_ostream &os) {
843   StringRef Out = ".";
844 
845   if (IndirectionLevel > 0 && MoreItemsExpected) {
846     IndirectionLevel--;
847     Out = "->";
848   }
849 
850   if (IndirectionLevel > 0 && MoreItemsExpected)
851     os << "(";
852 
853   for (int i = 0; i < IndirectionLevel; i++)
854     os << "*";
855   os << FirstElement;
856 
857   if (IndirectionLevel > 0 && MoreItemsExpected)
858     os << ")";
859 
860   return Out;
861 }
862 
863 //===----------------------------------------------------------------------===//
864 // Implementation of MacroNullReturnSuppressionVisitor.
865 //===----------------------------------------------------------------------===//
866 
867 namespace {
868 
869 /// Suppress null-pointer-dereference bugs where dereferenced null was returned
870 /// the macro.
871 class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
872   const SubRegion *RegionOfInterest;
873   const SVal ValueAtDereference;
874 
875   // Do not invalidate the reports where the value was modified
876   // after it got assigned to from the macro.
877   bool WasModified = false;
878 
879 public:
880   MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V)
881       : RegionOfInterest(R), ValueAtDereference(V) {}
882 
883   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
884                                    BugReporterContext &BRC,
885                                    PathSensitiveBugReport &BR) override {
886     if (WasModified)
887       return nullptr;
888 
889     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
890     if (!BugPoint)
891       return nullptr;
892 
893     const SourceManager &SMgr = BRC.getSourceManager();
894     if (auto Loc = matchAssignment(N)) {
895       if (isFunctionMacroExpansion(*Loc, SMgr)) {
896         std::string MacroName = std::string(getMacroName(*Loc, BRC));
897         SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
898         if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
899           BR.markInvalid(getTag(), MacroName.c_str());
900       }
901     }
902 
903     if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
904       WasModified = true;
905 
906     return nullptr;
907   }
908 
909   static void addMacroVisitorIfNecessary(
910         const ExplodedNode *N, const MemRegion *R,
911         bool EnableNullFPSuppression, PathSensitiveBugReport &BR,
912         const SVal V) {
913     AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
914     if (EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths &&
915         isa<Loc>(V))
916       BR.addVisitor<MacroNullReturnSuppressionVisitor>(R->getAs<SubRegion>(),
917                                                        V);
918   }
919 
920   void* getTag() const {
921     static int Tag = 0;
922     return static_cast<void *>(&Tag);
923   }
924 
925   void Profile(llvm::FoldingSetNodeID &ID) const override {
926     ID.AddPointer(getTag());
927   }
928 
929 private:
930   /// \return Source location of right hand side of an assignment
931   /// into \c RegionOfInterest, empty optional if none found.
932   Optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
933     const Stmt *S = N->getStmtForDiagnostics();
934     ProgramStateRef State = N->getState();
935     auto *LCtx = N->getLocationContext();
936     if (!S)
937       return None;
938 
939     if (const auto *DS = dyn_cast<DeclStmt>(S)) {
940       if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
941         if (const Expr *RHS = VD->getInit())
942           if (RegionOfInterest->isSubRegionOf(
943                   State->getLValue(VD, LCtx).getAsRegion()))
944             return RHS->getBeginLoc();
945     } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
946       const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
947       const Expr *RHS = BO->getRHS();
948       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
949         return RHS->getBeginLoc();
950       }
951     }
952     return None;
953   }
954 };
955 
956 } // end of anonymous namespace
957 
958 namespace {
959 
960 /// Emits an extra note at the return statement of an interesting stack frame.
961 ///
962 /// The returned value is marked as an interesting value, and if it's null,
963 /// adds a visitor to track where it became null.
964 ///
965 /// This visitor is intended to be used when another visitor discovers that an
966 /// interesting value comes from an inlined function call.
967 class ReturnVisitor : public TrackingBugReporterVisitor {
968   const StackFrameContext *CalleeSFC;
969   enum {
970     Initial,
971     MaybeUnsuppress,
972     Satisfied
973   } Mode = Initial;
974 
975   bool EnableNullFPSuppression;
976   bool ShouldInvalidate = true;
977   AnalyzerOptions& Options;
978   bugreporter::TrackingKind TKind;
979 
980 public:
981   ReturnVisitor(TrackerRef ParentTracker, const StackFrameContext *Frame,
982                 bool Suppressed, AnalyzerOptions &Options,
983                 bugreporter::TrackingKind TKind)
984       : TrackingBugReporterVisitor(ParentTracker), CalleeSFC(Frame),
985         EnableNullFPSuppression(Suppressed), Options(Options), TKind(TKind) {}
986 
987   static void *getTag() {
988     static int Tag = 0;
989     return static_cast<void *>(&Tag);
990   }
991 
992   void Profile(llvm::FoldingSetNodeID &ID) const override {
993     ID.AddPointer(ReturnVisitor::getTag());
994     ID.AddPointer(CalleeSFC);
995     ID.AddBoolean(EnableNullFPSuppression);
996   }
997 
998   PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N,
999                                           BugReporterContext &BRC,
1000                                           PathSensitiveBugReport &BR) {
1001     // Only print a message at the interesting return statement.
1002     if (N->getLocationContext() != CalleeSFC)
1003       return nullptr;
1004 
1005     Optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
1006     if (!SP)
1007       return nullptr;
1008 
1009     const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
1010     if (!Ret)
1011       return nullptr;
1012 
1013     // Okay, we're at the right return statement, but do we have the return
1014     // value available?
1015     ProgramStateRef State = N->getState();
1016     SVal V = State->getSVal(Ret, CalleeSFC);
1017     if (V.isUnknownOrUndef())
1018       return nullptr;
1019 
1020     // Don't print any more notes after this one.
1021     Mode = Satisfied;
1022 
1023     const Expr *RetE = Ret->getRetValue();
1024     assert(RetE && "Tracking a return value for a void function");
1025 
1026     // Handle cases where a reference is returned and then immediately used.
1027     Optional<Loc> LValue;
1028     if (RetE->isGLValue()) {
1029       if ((LValue = V.getAs<Loc>())) {
1030         SVal RValue = State->getRawSVal(*LValue, RetE->getType());
1031         if (isa<DefinedSVal>(RValue))
1032           V = RValue;
1033       }
1034     }
1035 
1036     // Ignore aggregate rvalues.
1037     if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(V))
1038       return nullptr;
1039 
1040     RetE = RetE->IgnoreParenCasts();
1041 
1042     // Let's track the return value.
1043     getParentTracker().track(RetE, N, {TKind, EnableNullFPSuppression});
1044 
1045     // Build an appropriate message based on the return value.
1046     SmallString<64> Msg;
1047     llvm::raw_svector_ostream Out(Msg);
1048 
1049     bool WouldEventBeMeaningless = false;
1050 
1051     if (State->isNull(V).isConstrainedTrue()) {
1052       if (isa<Loc>(V)) {
1053 
1054         // If we have counter-suppression enabled, make sure we keep visiting
1055         // future nodes. We want to emit a path note as well, in case
1056         // the report is resurrected as valid later on.
1057         if (EnableNullFPSuppression &&
1058             Options.ShouldAvoidSuppressingNullArgumentPaths)
1059           Mode = MaybeUnsuppress;
1060 
1061         if (RetE->getType()->isObjCObjectPointerType()) {
1062           Out << "Returning nil";
1063         } else {
1064           Out << "Returning null pointer";
1065         }
1066       } else {
1067         Out << "Returning zero";
1068       }
1069 
1070     } else {
1071       if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1072         Out << "Returning the value " << CI->getValue();
1073       } else {
1074         // There is nothing interesting about returning a value, when it is
1075         // plain value without any constraints, and the function is guaranteed
1076         // to return that every time. We could use CFG::isLinear() here, but
1077         // constexpr branches are obvious to the compiler, not necesserily to
1078         // the programmer.
1079         if (N->getCFG().size() == 3)
1080           WouldEventBeMeaningless = true;
1081 
1082         Out << (isa<Loc>(V) ? "Returning pointer" : "Returning value");
1083       }
1084     }
1085 
1086     if (LValue) {
1087       if (const MemRegion *MR = LValue->getAsRegion()) {
1088         if (MR->canPrintPretty()) {
1089           Out << " (reference to ";
1090           MR->printPretty(Out);
1091           Out << ")";
1092         }
1093       }
1094     } else {
1095       // FIXME: We should have a more generalized location printing mechanism.
1096       if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
1097         if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
1098           Out << " (loaded from '" << *DD << "')";
1099     }
1100 
1101     PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC);
1102     if (!L.isValid() || !L.asLocation().isValid())
1103       return nullptr;
1104 
1105     if (TKind == bugreporter::TrackingKind::Condition)
1106       Out << WillBeUsedForACondition;
1107 
1108     auto EventPiece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
1109 
1110     // If we determined that the note is meaningless, make it prunable, and
1111     // don't mark the stackframe interesting.
1112     if (WouldEventBeMeaningless)
1113       EventPiece->setPrunable(true);
1114     else
1115       BR.markInteresting(CalleeSFC);
1116 
1117     return EventPiece;
1118   }
1119 
1120   PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N,
1121                                                   BugReporterContext &BRC,
1122                                                   PathSensitiveBugReport &BR) {
1123     assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
1124 
1125     // Are we at the entry node for this call?
1126     Optional<CallEnter> CE = N->getLocationAs<CallEnter>();
1127     if (!CE)
1128       return nullptr;
1129 
1130     if (CE->getCalleeContext() != CalleeSFC)
1131       return nullptr;
1132 
1133     Mode = Satisfied;
1134 
1135     // Don't automatically suppress a report if one of the arguments is
1136     // known to be a null pointer. Instead, start tracking /that/ null
1137     // value back to its origin.
1138     ProgramStateManager &StateMgr = BRC.getStateManager();
1139     CallEventManager &CallMgr = StateMgr.getCallEventManager();
1140 
1141     ProgramStateRef State = N->getState();
1142     CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State);
1143     for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
1144       Optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
1145       if (!ArgV)
1146         continue;
1147 
1148       const Expr *ArgE = Call->getArgExpr(I);
1149       if (!ArgE)
1150         continue;
1151 
1152       // Is it possible for this argument to be non-null?
1153       if (!State->isNull(*ArgV).isConstrainedTrue())
1154         continue;
1155 
1156       if (getParentTracker()
1157               .track(ArgE, N, {TKind, EnableNullFPSuppression})
1158               .FoundSomethingToTrack)
1159         ShouldInvalidate = false;
1160 
1161       // If we /can't/ track the null pointer, we should err on the side of
1162       // false negatives, and continue towards marking this report invalid.
1163       // (We will still look at the other arguments, though.)
1164     }
1165 
1166     return nullptr;
1167   }
1168 
1169   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1170                                    BugReporterContext &BRC,
1171                                    PathSensitiveBugReport &BR) override {
1172     switch (Mode) {
1173     case Initial:
1174       return visitNodeInitial(N, BRC, BR);
1175     case MaybeUnsuppress:
1176       return visitNodeMaybeUnsuppress(N, BRC, BR);
1177     case Satisfied:
1178       return nullptr;
1179     }
1180 
1181     llvm_unreachable("Invalid visit mode!");
1182   }
1183 
1184   void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
1185                        PathSensitiveBugReport &BR) override {
1186     if (EnableNullFPSuppression && ShouldInvalidate)
1187       BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC);
1188   }
1189 };
1190 
1191 } // end of anonymous namespace
1192 
1193 //===----------------------------------------------------------------------===//
1194 //                               StoreSiteFinder
1195 //===----------------------------------------------------------------------===//
1196 
1197 /// Finds last store into the given region,
1198 /// which is different from a given symbolic value.
1199 class StoreSiteFinder final : public TrackingBugReporterVisitor {
1200   const MemRegion *R;
1201   SVal V;
1202   bool Satisfied = false;
1203 
1204   TrackingOptions Options;
1205   const StackFrameContext *OriginSFC;
1206 
1207 public:
1208   /// \param V We're searching for the store where \c R received this value.
1209   /// \param R The region we're tracking.
1210   /// \param Options Tracking behavior options.
1211   /// \param OriginSFC Only adds notes when the last store happened in a
1212   ///        different stackframe to this one. Disregarded if the tracking kind
1213   ///        is thorough.
1214   ///        This is useful, because for non-tracked regions, notes about
1215   ///        changes to its value in a nested stackframe could be pruned, and
1216   ///        this visitor can prevent that without polluting the bugpath too
1217   ///        much.
1218   StoreSiteFinder(bugreporter::TrackerRef ParentTracker, KnownSVal V,
1219                   const MemRegion *R, TrackingOptions Options,
1220                   const StackFrameContext *OriginSFC = nullptr)
1221       : TrackingBugReporterVisitor(ParentTracker), R(R), V(V), Options(Options),
1222         OriginSFC(OriginSFC) {
1223     assert(R);
1224   }
1225 
1226   void Profile(llvm::FoldingSetNodeID &ID) const override;
1227 
1228   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1229                                    BugReporterContext &BRC,
1230                                    PathSensitiveBugReport &BR) override;
1231 };
1232 
1233 void StoreSiteFinder::Profile(llvm::FoldingSetNodeID &ID) const {
1234   static int tag = 0;
1235   ID.AddPointer(&tag);
1236   ID.AddPointer(R);
1237   ID.Add(V);
1238   ID.AddInteger(static_cast<int>(Options.Kind));
1239   ID.AddBoolean(Options.EnableNullFPSuppression);
1240 }
1241 
1242 /// Returns true if \p N represents the DeclStmt declaring and initializing
1243 /// \p VR.
1244 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
1245   Optional<PostStmt> P = N->getLocationAs<PostStmt>();
1246   if (!P)
1247     return false;
1248 
1249   const DeclStmt *DS = P->getStmtAs<DeclStmt>();
1250   if (!DS)
1251     return false;
1252 
1253   if (DS->getSingleDecl() != VR->getDecl())
1254     return false;
1255 
1256   const MemSpaceRegion *VarSpace = VR->getMemorySpace();
1257   const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
1258   if (!FrameSpace) {
1259     // If we ever directly evaluate global DeclStmts, this assertion will be
1260     // invalid, but this still seems preferable to silently accepting an
1261     // initialization that may be for a path-sensitive variable.
1262     assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
1263     return true;
1264   }
1265 
1266   assert(VR->getDecl()->hasLocalStorage());
1267   const LocationContext *LCtx = N->getLocationContext();
1268   return FrameSpace->getStackFrame() == LCtx->getStackFrame();
1269 }
1270 
1271 static bool isObjCPointer(const MemRegion *R) {
1272   if (R->isBoundable())
1273     if (const auto *TR = dyn_cast<TypedValueRegion>(R))
1274       return TR->getValueType()->isObjCObjectPointerType();
1275 
1276   return false;
1277 }
1278 
1279 static bool isObjCPointer(const ValueDecl *D) {
1280   return D->getType()->isObjCObjectPointerType();
1281 }
1282 
1283 /// Show diagnostics for initializing or declaring a region \p R with a bad value.
1284 static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) {
1285   const bool HasPrefix = SI.Dest->canPrintPretty();
1286 
1287   if (HasPrefix) {
1288     SI.Dest->printPretty(OS);
1289     OS << " ";
1290   }
1291 
1292   const char *Action = nullptr;
1293 
1294   switch (SI.StoreKind) {
1295   case StoreInfo::Initialization:
1296     Action = HasPrefix ? "initialized to " : "Initializing to ";
1297     break;
1298   case StoreInfo::BlockCapture:
1299     Action = HasPrefix ? "captured by block as " : "Captured by block as ";
1300     break;
1301   default:
1302     llvm_unreachable("Unexpected store kind");
1303   }
1304 
1305   if (isa<loc::ConcreteInt>(SI.Value)) {
1306     OS << Action << (isObjCPointer(SI.Dest) ? "nil" : "a null pointer value");
1307 
1308   } else if (auto CVal = SI.Value.getAs<nonloc::ConcreteInt>()) {
1309     OS << Action << CVal->getValue();
1310 
1311   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1312     OS << Action << "the value of ";
1313     SI.Origin->printPretty(OS);
1314 
1315   } else if (SI.StoreKind == StoreInfo::Initialization) {
1316     // We don't need to check here, all these conditions were
1317     // checked by StoreSiteFinder, when it figured out that it is
1318     // initialization.
1319     const auto *DS =
1320         cast<DeclStmt>(SI.StoreSite->getLocationAs<PostStmt>()->getStmt());
1321 
1322     if (SI.Value.isUndef()) {
1323       if (isa<VarRegion>(SI.Dest)) {
1324         const auto *VD = cast<VarDecl>(DS->getSingleDecl());
1325 
1326         if (VD->getInit()) {
1327           OS << (HasPrefix ? "initialized" : "Initializing")
1328              << " to a garbage value";
1329         } else {
1330           OS << (HasPrefix ? "declared" : "Declaring")
1331              << " without an initial value";
1332         }
1333       }
1334     } else {
1335       OS << (HasPrefix ? "initialized" : "Initialized") << " here";
1336     }
1337   }
1338 }
1339 
1340 /// Display diagnostics for passing bad region as a parameter.
1341 static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS,
1342                                    StoreInfo SI) {
1343   const auto *VR = cast<VarRegion>(SI.Dest);
1344   const auto *Param = cast<ParmVarDecl>(VR->getDecl());
1345 
1346   OS << "Passing ";
1347 
1348   if (isa<loc::ConcreteInt>(SI.Value)) {
1349     OS << (isObjCPointer(Param) ? "nil object reference"
1350                                 : "null pointer value");
1351 
1352   } else if (SI.Value.isUndef()) {
1353     OS << "uninitialized value";
1354 
1355   } else if (auto CI = SI.Value.getAs<nonloc::ConcreteInt>()) {
1356     OS << "the value " << CI->getValue();
1357 
1358   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1359     SI.Origin->printPretty(OS);
1360 
1361   } else {
1362     OS << "value";
1363   }
1364 
1365   // Printed parameter indexes are 1-based, not 0-based.
1366   unsigned Idx = Param->getFunctionScopeIndex() + 1;
1367   OS << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
1368   if (VR->canPrintPretty()) {
1369     OS << " ";
1370     VR->printPretty(OS);
1371   }
1372 }
1373 
1374 /// Show default diagnostics for storing bad region.
1375 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS,
1376                                      StoreInfo SI) {
1377   const bool HasSuffix = SI.Dest->canPrintPretty();
1378 
1379   if (isa<loc::ConcreteInt>(SI.Value)) {
1380     OS << (isObjCPointer(SI.Dest) ? "nil object reference stored"
1381                                   : (HasSuffix ? "Null pointer value stored"
1382                                                : "Storing null pointer value"));
1383 
1384   } else if (SI.Value.isUndef()) {
1385     OS << (HasSuffix ? "Uninitialized value stored"
1386                      : "Storing uninitialized value");
1387 
1388   } else if (auto CV = SI.Value.getAs<nonloc::ConcreteInt>()) {
1389     if (HasSuffix)
1390       OS << "The value " << CV->getValue() << " is assigned";
1391     else
1392       OS << "Assigning " << CV->getValue();
1393 
1394   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1395     if (HasSuffix) {
1396       OS << "The value of ";
1397       SI.Origin->printPretty(OS);
1398       OS << " is assigned";
1399     } else {
1400       OS << "Assigning the value of ";
1401       SI.Origin->printPretty(OS);
1402     }
1403 
1404   } else {
1405     OS << (HasSuffix ? "Value assigned" : "Assigning value");
1406   }
1407 
1408   if (HasSuffix) {
1409     OS << " to ";
1410     SI.Dest->printPretty(OS);
1411   }
1412 }
1413 
1414 PathDiagnosticPieceRef StoreSiteFinder::VisitNode(const ExplodedNode *Succ,
1415                                                   BugReporterContext &BRC,
1416                                                   PathSensitiveBugReport &BR) {
1417   if (Satisfied)
1418     return nullptr;
1419 
1420   const ExplodedNode *StoreSite = nullptr;
1421   const ExplodedNode *Pred = Succ->getFirstPred();
1422   const Expr *InitE = nullptr;
1423   bool IsParam = false;
1424 
1425   // First see if we reached the declaration of the region.
1426   if (const auto *VR = dyn_cast<VarRegion>(R)) {
1427     if (isInitializationOfVar(Pred, VR)) {
1428       StoreSite = Pred;
1429       InitE = VR->getDecl()->getInit();
1430     }
1431   }
1432 
1433   // If this is a post initializer expression, initializing the region, we
1434   // should track the initializer expression.
1435   if (Optional<PostInitializer> PIP = Pred->getLocationAs<PostInitializer>()) {
1436     const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
1437     if (FieldReg == R) {
1438       StoreSite = Pred;
1439       InitE = PIP->getInitializer()->getInit();
1440     }
1441   }
1442 
1443   // Otherwise, see if this is the store site:
1444   // (1) Succ has this binding and Pred does not, i.e. this is
1445   //     where the binding first occurred.
1446   // (2) Succ has this binding and is a PostStore node for this region, i.e.
1447   //     the same binding was re-assigned here.
1448   if (!StoreSite) {
1449     if (Succ->getState()->getSVal(R) != V)
1450       return nullptr;
1451 
1452     if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) {
1453       Optional<PostStore> PS = Succ->getLocationAs<PostStore>();
1454       if (!PS || PS->getLocationValue() != R)
1455         return nullptr;
1456     }
1457 
1458     StoreSite = Succ;
1459 
1460     // If this is an assignment expression, we can track the value
1461     // being assigned.
1462     if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>())
1463       if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>())
1464         if (BO->isAssignmentOp())
1465           InitE = BO->getRHS();
1466 
1467     // If this is a call entry, the variable should be a parameter.
1468     // FIXME: Handle CXXThisRegion as well. (This is not a priority because
1469     // 'this' should never be NULL, but this visitor isn't just for NULL and
1470     // UndefinedVal.)
1471     if (Optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
1472       if (const auto *VR = dyn_cast<VarRegion>(R)) {
1473 
1474         if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1475           ProgramStateManager &StateMgr = BRC.getStateManager();
1476           CallEventManager &CallMgr = StateMgr.getCallEventManager();
1477 
1478           CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
1479                                                   Succ->getState());
1480           InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
1481         } else {
1482           // Handle Objective-C 'self'.
1483           assert(isa<ImplicitParamDecl>(VR->getDecl()));
1484           InitE = cast<ObjCMessageExpr>(CE->getCalleeContext()->getCallSite())
1485                       ->getInstanceReceiver()->IgnoreParenCasts();
1486         }
1487         IsParam = true;
1488       }
1489     }
1490 
1491     // If this is a CXXTempObjectRegion, the Expr responsible for its creation
1492     // is wrapped inside of it.
1493     if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
1494       InitE = TmpR->getExpr();
1495   }
1496 
1497   if (!StoreSite)
1498     return nullptr;
1499 
1500   Satisfied = true;
1501 
1502   // If we have an expression that provided the value, try to track where it
1503   // came from.
1504   if (InitE) {
1505     if (!IsParam)
1506       InitE = InitE->IgnoreParenCasts();
1507 
1508     getParentTracker().track(InitE, StoreSite, Options);
1509   }
1510 
1511   // Let's try to find the region where the value came from.
1512   const MemRegion *OldRegion = nullptr;
1513 
1514   // If we have init expression, it might be simply a reference
1515   // to a variable, so we can use it.
1516   if (InitE) {
1517     // That region might still be not exactly what we are looking for.
1518     // In situations like `int &ref = val;`, we can't say that
1519     // `ref` is initialized with `val`, rather refers to `val`.
1520     //
1521     // In order, to mitigate situations like this, we check if the last
1522     // stored value in that region is the value that we track.
1523     //
1524     // TODO: support other situations better.
1525     if (const MemRegion *Candidate =
1526             getLocationRegionIfReference(InitE, Succ, false)) {
1527       const StoreManager &SM = BRC.getStateManager().getStoreManager();
1528 
1529       // Here we traverse the graph up to find the last node where the
1530       // candidate region is still in the store.
1531       for (const ExplodedNode *N = StoreSite; N; N = N->getFirstPred()) {
1532         if (SM.includedInBindings(N->getState()->getStore(), Candidate)) {
1533           // And if it was bound to the target value, we can use it.
1534           if (N->getState()->getSVal(Candidate) == V) {
1535             OldRegion = Candidate;
1536           }
1537           break;
1538         }
1539       }
1540     }
1541   }
1542 
1543   // Otherwise, if the current region does indeed contain the value
1544   // we are looking for, we can look for a region where this value
1545   // was before.
1546   //
1547   // It can be useful for situations like:
1548   //     new = identity(old)
1549   // where the analyzer knows that 'identity' returns the value of its
1550   // first argument.
1551   //
1552   // NOTE: If the region R is not a simple var region, it can contain
1553   //       V in one of its subregions.
1554   if (!OldRegion && StoreSite->getState()->getSVal(R) == V) {
1555     // Let's go up the graph to find the node where the region is
1556     // bound to V.
1557     const ExplodedNode *NodeWithoutBinding = StoreSite->getFirstPred();
1558     for (;
1559          NodeWithoutBinding && NodeWithoutBinding->getState()->getSVal(R) == V;
1560          NodeWithoutBinding = NodeWithoutBinding->getFirstPred()) {
1561     }
1562 
1563     if (NodeWithoutBinding) {
1564       // Let's try to find a unique binding for the value in that node.
1565       // We want to use this to find unique bindings because of the following
1566       // situations:
1567       //     b = a;
1568       //     c = identity(b);
1569       //
1570       // Telling the user that the value of 'a' is assigned to 'c', while
1571       // correct, can be confusing.
1572       StoreManager::FindUniqueBinding FB(V.getAsLocSymbol());
1573       BRC.getStateManager().iterBindings(NodeWithoutBinding->getState(), FB);
1574       if (FB)
1575         OldRegion = FB.getRegion();
1576     }
1577   }
1578 
1579   if (Options.Kind == TrackingKind::Condition && OriginSFC &&
1580       !OriginSFC->isParentOf(StoreSite->getStackFrame()))
1581     return nullptr;
1582 
1583   // Okay, we've found the binding. Emit an appropriate message.
1584   SmallString<256> sbuf;
1585   llvm::raw_svector_ostream os(sbuf);
1586 
1587   StoreInfo SI = {StoreInfo::Assignment, // default kind
1588                   StoreSite,
1589                   InitE,
1590                   V,
1591                   R,
1592                   OldRegion};
1593 
1594   if (Optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
1595     const Stmt *S = PS->getStmt();
1596     const auto *DS = dyn_cast<DeclStmt>(S);
1597     const auto *VR = dyn_cast<VarRegion>(R);
1598 
1599     if (DS) {
1600       SI.StoreKind = StoreInfo::Initialization;
1601     } else if (isa<BlockExpr>(S)) {
1602       SI.StoreKind = StoreInfo::BlockCapture;
1603       if (VR) {
1604         // See if we can get the BlockVarRegion.
1605         ProgramStateRef State = StoreSite->getState();
1606         SVal V = StoreSite->getSVal(S);
1607         if (const auto *BDR =
1608                 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
1609           if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
1610             getParentTracker().track(State->getSVal(OriginalR), OriginalR,
1611                                      Options, OriginSFC);
1612           }
1613         }
1614       }
1615     }
1616   } else if (SI.StoreSite->getLocation().getAs<CallEnter>() &&
1617              isa<VarRegion>(SI.Dest)) {
1618     SI.StoreKind = StoreInfo::CallArgument;
1619   }
1620 
1621   return getParentTracker().handle(SI, BRC, Options);
1622 }
1623 
1624 //===----------------------------------------------------------------------===//
1625 // Implementation of TrackConstraintBRVisitor.
1626 //===----------------------------------------------------------------------===//
1627 
1628 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1629   static int tag = 0;
1630   ID.AddPointer(&tag);
1631   ID.AddBoolean(Assumption);
1632   ID.Add(Constraint);
1633 }
1634 
1635 /// Return the tag associated with this visitor.  This tag will be used
1636 /// to make all PathDiagnosticPieces created by this visitor.
1637 const char *TrackConstraintBRVisitor::getTag() {
1638   return "TrackConstraintBRVisitor";
1639 }
1640 
1641 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
1642   if (IsZeroCheck)
1643     return N->getState()->isNull(Constraint).isUnderconstrained();
1644   return (bool)N->getState()->assume(Constraint, !Assumption);
1645 }
1646 
1647 PathDiagnosticPieceRef TrackConstraintBRVisitor::VisitNode(
1648     const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &) {
1649   const ExplodedNode *PrevN = N->getFirstPred();
1650   if (IsSatisfied)
1651     return nullptr;
1652 
1653   // Start tracking after we see the first state in which the value is
1654   // constrained.
1655   if (!IsTrackingTurnedOn)
1656     if (!isUnderconstrained(N))
1657       IsTrackingTurnedOn = true;
1658   if (!IsTrackingTurnedOn)
1659     return nullptr;
1660 
1661   // Check if in the previous state it was feasible for this constraint
1662   // to *not* be true.
1663   if (isUnderconstrained(PrevN)) {
1664     IsSatisfied = true;
1665 
1666     // At this point, the negation of the constraint should be infeasible. If it
1667     // is feasible, make sure that the negation of the constrainti was
1668     // infeasible in the current state.  If it is feasible, we somehow missed
1669     // the transition point.
1670     assert(!isUnderconstrained(N));
1671 
1672     // We found the transition point for the constraint.  We now need to
1673     // pretty-print the constraint. (work-in-progress)
1674     SmallString<64> sbuf;
1675     llvm::raw_svector_ostream os(sbuf);
1676 
1677     if (isa<Loc>(Constraint)) {
1678       os << "Assuming pointer value is ";
1679       os << (Assumption ? "non-null" : "null");
1680     }
1681 
1682     if (os.str().empty())
1683       return nullptr;
1684 
1685     // Construct a new PathDiagnosticPiece.
1686     ProgramPoint P = N->getLocation();
1687 
1688     // If this node already have a specialized note, it's probably better
1689     // than our generic note.
1690     // FIXME: This only looks for note tags, not for other ways to add a note.
1691     if (isa_and_nonnull<NoteTag>(P.getTag()))
1692       return nullptr;
1693 
1694     PathDiagnosticLocation L =
1695       PathDiagnosticLocation::create(P, BRC.getSourceManager());
1696     if (!L.isValid())
1697       return nullptr;
1698 
1699     auto X = std::make_shared<PathDiagnosticEventPiece>(L, os.str());
1700     X->setTag(getTag());
1701     return std::move(X);
1702   }
1703 
1704   return nullptr;
1705 }
1706 
1707 //===----------------------------------------------------------------------===//
1708 // Implementation of SuppressInlineDefensiveChecksVisitor.
1709 //===----------------------------------------------------------------------===//
1710 
1711 SuppressInlineDefensiveChecksVisitor::
1712 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N)
1713     : V(Value) {
1714   // Check if the visitor is disabled.
1715   AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
1716   if (!Options.ShouldSuppressInlinedDefensiveChecks)
1717     IsSatisfied = true;
1718 }
1719 
1720 void SuppressInlineDefensiveChecksVisitor::Profile(
1721     llvm::FoldingSetNodeID &ID) const {
1722   static int id = 0;
1723   ID.AddPointer(&id);
1724   ID.Add(V);
1725 }
1726 
1727 const char *SuppressInlineDefensiveChecksVisitor::getTag() {
1728   return "IDCVisitor";
1729 }
1730 
1731 PathDiagnosticPieceRef
1732 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ,
1733                                                 BugReporterContext &BRC,
1734                                                 PathSensitiveBugReport &BR) {
1735   const ExplodedNode *Pred = Succ->getFirstPred();
1736   if (IsSatisfied)
1737     return nullptr;
1738 
1739   // Start tracking after we see the first state in which the value is null.
1740   if (!IsTrackingTurnedOn)
1741     if (Succ->getState()->isNull(V).isConstrainedTrue())
1742       IsTrackingTurnedOn = true;
1743   if (!IsTrackingTurnedOn)
1744     return nullptr;
1745 
1746   // Check if in the previous state it was feasible for this value
1747   // to *not* be null.
1748   if (!Pred->getState()->isNull(V).isConstrainedTrue() &&
1749       Succ->getState()->isNull(V).isConstrainedTrue()) {
1750     IsSatisfied = true;
1751 
1752     // Check if this is inlined defensive checks.
1753     const LocationContext *CurLC = Succ->getLocationContext();
1754     const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
1755     if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
1756       BR.markInvalid("Suppress IDC", CurLC);
1757       return nullptr;
1758     }
1759 
1760     // Treat defensive checks in function-like macros as if they were an inlined
1761     // defensive check. If the bug location is not in a macro and the
1762     // terminator for the current location is in a macro then suppress the
1763     // warning.
1764     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
1765 
1766     if (!BugPoint)
1767       return nullptr;
1768 
1769     ProgramPoint CurPoint = Succ->getLocation();
1770     const Stmt *CurTerminatorStmt = nullptr;
1771     if (auto BE = CurPoint.getAs<BlockEdge>()) {
1772       CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
1773     } else if (auto SP = CurPoint.getAs<StmtPoint>()) {
1774       const Stmt *CurStmt = SP->getStmt();
1775       if (!CurStmt->getBeginLoc().isMacroID())
1776         return nullptr;
1777 
1778       CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap();
1779       CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt();
1780     } else {
1781       return nullptr;
1782     }
1783 
1784     if (!CurTerminatorStmt)
1785       return nullptr;
1786 
1787     SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
1788     if (TerminatorLoc.isMacroID()) {
1789       SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
1790 
1791       // Suppress reports unless we are in that same macro.
1792       if (!BugLoc.isMacroID() ||
1793           getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
1794         BR.markInvalid("Suppress Macro IDC", CurLC);
1795       }
1796       return nullptr;
1797     }
1798   }
1799   return nullptr;
1800 }
1801 
1802 //===----------------------------------------------------------------------===//
1803 // TrackControlDependencyCondBRVisitor.
1804 //===----------------------------------------------------------------------===//
1805 
1806 namespace {
1807 /// Tracks the expressions that are a control dependency of the node that was
1808 /// supplied to the constructor.
1809 /// For example:
1810 ///
1811 ///   cond = 1;
1812 ///   if (cond)
1813 ///     10 / 0;
1814 ///
1815 /// An error is emitted at line 3. This visitor realizes that the branch
1816 /// on line 2 is a control dependency of line 3, and tracks it's condition via
1817 /// trackExpressionValue().
1818 class TrackControlDependencyCondBRVisitor final
1819     : public TrackingBugReporterVisitor {
1820   const ExplodedNode *Origin;
1821   ControlDependencyCalculator ControlDeps;
1822   llvm::SmallSet<const CFGBlock *, 32> VisitedBlocks;
1823 
1824 public:
1825   TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker,
1826                                       const ExplodedNode *O)
1827       : TrackingBugReporterVisitor(ParentTracker), Origin(O),
1828         ControlDeps(&O->getCFG()) {}
1829 
1830   void Profile(llvm::FoldingSetNodeID &ID) const override {
1831     static int x = 0;
1832     ID.AddPointer(&x);
1833   }
1834 
1835   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1836                                    BugReporterContext &BRC,
1837                                    PathSensitiveBugReport &BR) override;
1838 };
1839 } // end of anonymous namespace
1840 
1841 static std::shared_ptr<PathDiagnosticEventPiece>
1842 constructDebugPieceForTrackedCondition(const Expr *Cond,
1843                                        const ExplodedNode *N,
1844                                        BugReporterContext &BRC) {
1845 
1846   if (BRC.getAnalyzerOptions().AnalysisDiagOpt == PD_NONE ||
1847       !BRC.getAnalyzerOptions().ShouldTrackConditionsDebug)
1848     return nullptr;
1849 
1850   std::string ConditionText = std::string(Lexer::getSourceText(
1851       CharSourceRange::getTokenRange(Cond->getSourceRange()),
1852       BRC.getSourceManager(), BRC.getASTContext().getLangOpts()));
1853 
1854   return std::make_shared<PathDiagnosticEventPiece>(
1855       PathDiagnosticLocation::createBegin(
1856           Cond, BRC.getSourceManager(), N->getLocationContext()),
1857           (Twine() + "Tracking condition '" + ConditionText + "'").str());
1858 }
1859 
1860 static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) {
1861   if (B->succ_size() != 2)
1862     return false;
1863 
1864   const CFGBlock *Then = B->succ_begin()->getReachableBlock();
1865   const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock();
1866 
1867   if (!Then || !Else)
1868     return false;
1869 
1870   if (Then->isInevitablySinking() != Else->isInevitablySinking())
1871     return true;
1872 
1873   // For the following condition the following CFG would be built:
1874   //
1875   //                          ------------->
1876   //                         /              \
1877   //                       [B1] -> [B2] -> [B3] -> [sink]
1878   // assert(A && B || C);            \       \
1879   //                                  -----------> [go on with the execution]
1880   //
1881   // It so happens that CFGBlock::getTerminatorCondition returns 'A' for block
1882   // B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we
1883   // reached the end of the condition!
1884   if (const Stmt *ElseCond = Else->getTerminatorCondition())
1885     if (const auto *BinOp = dyn_cast<BinaryOperator>(ElseCond))
1886       if (BinOp->isLogicalOp())
1887         return isAssertlikeBlock(Else, Context);
1888 
1889   return false;
1890 }
1891 
1892 PathDiagnosticPieceRef
1893 TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N,
1894                                                BugReporterContext &BRC,
1895                                                PathSensitiveBugReport &BR) {
1896   // We can only reason about control dependencies within the same stack frame.
1897   if (Origin->getStackFrame() != N->getStackFrame())
1898     return nullptr;
1899 
1900   CFGBlock *NB = const_cast<CFGBlock *>(N->getCFGBlock());
1901 
1902   // Skip if we already inspected this block.
1903   if (!VisitedBlocks.insert(NB).second)
1904     return nullptr;
1905 
1906   CFGBlock *OriginB = const_cast<CFGBlock *>(Origin->getCFGBlock());
1907 
1908   // TODO: Cache CFGBlocks for each ExplodedNode.
1909   if (!OriginB || !NB)
1910     return nullptr;
1911 
1912   if (isAssertlikeBlock(NB, BRC.getASTContext()))
1913     return nullptr;
1914 
1915   if (ControlDeps.isControlDependent(OriginB, NB)) {
1916     // We don't really want to explain for range loops. Evidence suggests that
1917     // the only thing that leads to is the addition of calls to operator!=.
1918     if (llvm::isa_and_nonnull<CXXForRangeStmt>(NB->getTerminatorStmt()))
1919       return nullptr;
1920 
1921     if (const Expr *Condition = NB->getLastCondition()) {
1922 
1923       // If we can't retrieve a sensible condition, just bail out.
1924       const Expr *InnerExpr = peelOffOuterExpr(Condition, N);
1925       if (!InnerExpr)
1926         return nullptr;
1927 
1928       // If the condition was a function call, we likely won't gain much from
1929       // tracking it either. Evidence suggests that it will mostly trigger in
1930       // scenarios like this:
1931       //
1932       //   void f(int *x) {
1933       //     x = nullptr;
1934       //     if (alwaysTrue()) // We don't need a whole lot of explanation
1935       //                       // here, the function name is good enough.
1936       //       *x = 5;
1937       //   }
1938       //
1939       // Its easy to create a counterexample where this heuristic would make us
1940       // lose valuable information, but we've never really seen one in practice.
1941       if (isa<CallExpr>(InnerExpr))
1942         return nullptr;
1943 
1944       // Keeping track of the already tracked conditions on a visitor level
1945       // isn't sufficient, because a new visitor is created for each tracked
1946       // expression, hence the BugReport level set.
1947       if (BR.addTrackedCondition(N)) {
1948         getParentTracker().track(InnerExpr, N,
1949                                  {bugreporter::TrackingKind::Condition,
1950                                   /*EnableNullFPSuppression=*/false});
1951         return constructDebugPieceForTrackedCondition(Condition, N, BRC);
1952       }
1953     }
1954   }
1955 
1956   return nullptr;
1957 }
1958 
1959 //===----------------------------------------------------------------------===//
1960 // Implementation of trackExpressionValue.
1961 //===----------------------------------------------------------------------===//
1962 
1963 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N) {
1964 
1965   Ex = Ex->IgnoreParenCasts();
1966   if (const auto *FE = dyn_cast<FullExpr>(Ex))
1967     return peelOffOuterExpr(FE->getSubExpr(), N);
1968   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
1969     return peelOffOuterExpr(OVE->getSourceExpr(), N);
1970   if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
1971     const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
1972     if (PropRef && PropRef->isMessagingGetter()) {
1973       const Expr *GetterMessageSend =
1974           POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
1975       assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
1976       return peelOffOuterExpr(GetterMessageSend, N);
1977     }
1978   }
1979 
1980   // Peel off the ternary operator.
1981   if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
1982     // Find a node where the branching occurred and find out which branch
1983     // we took (true/false) by looking at the ExplodedGraph.
1984     const ExplodedNode *NI = N;
1985     do {
1986       ProgramPoint ProgPoint = NI->getLocation();
1987       if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
1988         const CFGBlock *srcBlk = BE->getSrc();
1989         if (const Stmt *term = srcBlk->getTerminatorStmt()) {
1990           if (term == CO) {
1991             bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
1992             if (TookTrueBranch)
1993               return peelOffOuterExpr(CO->getTrueExpr(), N);
1994             else
1995               return peelOffOuterExpr(CO->getFalseExpr(), N);
1996           }
1997         }
1998       }
1999       NI = NI->getFirstPred();
2000     } while (NI);
2001   }
2002 
2003   if (auto *BO = dyn_cast<BinaryOperator>(Ex))
2004     if (const Expr *SubEx = peelOffPointerArithmetic(BO))
2005       return peelOffOuterExpr(SubEx, N);
2006 
2007   if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
2008     if (UO->getOpcode() == UO_LNot)
2009       return peelOffOuterExpr(UO->getSubExpr(), N);
2010 
2011     // FIXME: There's a hack in our Store implementation that always computes
2012     // field offsets around null pointers as if they are always equal to 0.
2013     // The idea here is to report accesses to fields as null dereferences
2014     // even though the pointer value that's being dereferenced is actually
2015     // the offset of the field rather than exactly 0.
2016     // See the FIXME in StoreManager's getLValueFieldOrIvar() method.
2017     // This code interacts heavily with this hack; otherwise the value
2018     // would not be null at all for most fields, so we'd be unable to track it.
2019     if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
2020       if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
2021         return peelOffOuterExpr(DerefEx, N);
2022   }
2023 
2024   return Ex;
2025 }
2026 
2027 /// Find the ExplodedNode where the lvalue (the value of 'Ex')
2028 /// was computed.
2029 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N,
2030                                                  const Expr *Inner) {
2031   while (N) {
2032     if (N->getStmtForDiagnostics() == Inner)
2033       return N;
2034     N = N->getFirstPred();
2035   }
2036   return N;
2037 }
2038 
2039 //===----------------------------------------------------------------------===//
2040 //                            Tracker implementation
2041 //===----------------------------------------------------------------------===//
2042 
2043 PathDiagnosticPieceRef StoreHandler::constructNote(StoreInfo SI,
2044                                                    BugReporterContext &BRC,
2045                                                    StringRef NodeText) {
2046   // Construct a new PathDiagnosticPiece.
2047   ProgramPoint P = SI.StoreSite->getLocation();
2048   PathDiagnosticLocation L;
2049   if (P.getAs<CallEnter>() && SI.SourceOfTheValue)
2050     L = PathDiagnosticLocation(SI.SourceOfTheValue, BRC.getSourceManager(),
2051                                P.getLocationContext());
2052 
2053   if (!L.isValid() || !L.asLocation().isValid())
2054     L = PathDiagnosticLocation::create(P, BRC.getSourceManager());
2055 
2056   if (!L.isValid() || !L.asLocation().isValid())
2057     return nullptr;
2058 
2059   return std::make_shared<PathDiagnosticEventPiece>(L, NodeText);
2060 }
2061 
2062 class DefaultStoreHandler final : public StoreHandler {
2063 public:
2064   using StoreHandler::StoreHandler;
2065 
2066   PathDiagnosticPieceRef handle(StoreInfo SI, BugReporterContext &BRC,
2067                                 TrackingOptions Opts) override {
2068     // Okay, we've found the binding. Emit an appropriate message.
2069     SmallString<256> Buffer;
2070     llvm::raw_svector_ostream OS(Buffer);
2071 
2072     switch (SI.StoreKind) {
2073     case StoreInfo::Initialization:
2074     case StoreInfo::BlockCapture:
2075       showBRDiagnostics(OS, SI);
2076       break;
2077     case StoreInfo::CallArgument:
2078       showBRParamDiagnostics(OS, SI);
2079       break;
2080     case StoreInfo::Assignment:
2081       showBRDefaultDiagnostics(OS, SI);
2082       break;
2083     }
2084 
2085     if (Opts.Kind == bugreporter::TrackingKind::Condition)
2086       OS << WillBeUsedForACondition;
2087 
2088     return constructNote(SI, BRC, OS.str());
2089   }
2090 };
2091 
2092 class ControlDependencyHandler final : public ExpressionHandler {
2093 public:
2094   using ExpressionHandler::ExpressionHandler;
2095 
2096   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2097                          const ExplodedNode *LVNode,
2098                          TrackingOptions Opts) override {
2099     PathSensitiveBugReport &Report = getParentTracker().getReport();
2100 
2101     // We only track expressions if we believe that they are important. Chances
2102     // are good that control dependencies to the tracking point are also
2103     // important because of this, let's explain why we believe control reached
2104     // this point.
2105     // TODO: Shouldn't we track control dependencies of every bug location,
2106     // rather than only tracked expressions?
2107     if (LVNode->getState()
2108             ->getAnalysisManager()
2109             .getAnalyzerOptions()
2110             .ShouldTrackConditions) {
2111       Report.addVisitor<TrackControlDependencyCondBRVisitor>(
2112           &getParentTracker(), InputNode);
2113       return {/*FoundSomethingToTrack=*/true};
2114     }
2115 
2116     return {};
2117   }
2118 };
2119 
2120 class NilReceiverHandler final : public ExpressionHandler {
2121 public:
2122   using ExpressionHandler::ExpressionHandler;
2123 
2124   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2125                          const ExplodedNode *LVNode,
2126                          TrackingOptions Opts) override {
2127     // The message send could be nil due to the receiver being nil.
2128     // At this point in the path, the receiver should be live since we are at
2129     // the message send expr. If it is nil, start tracking it.
2130     if (const Expr *Receiver =
2131             NilReceiverBRVisitor::getNilReceiver(Inner, LVNode))
2132       return getParentTracker().track(Receiver, LVNode, Opts);
2133 
2134     return {};
2135   }
2136 };
2137 
2138 class ArrayIndexHandler final : public ExpressionHandler {
2139 public:
2140   using ExpressionHandler::ExpressionHandler;
2141 
2142   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2143                          const ExplodedNode *LVNode,
2144                          TrackingOptions Opts) override {
2145     // Track the index if this is an array subscript.
2146     if (const auto *Arr = dyn_cast<ArraySubscriptExpr>(Inner))
2147       return getParentTracker().track(
2148           Arr->getIdx(), LVNode,
2149           {Opts.Kind, /*EnableNullFPSuppression*/ false});
2150 
2151     return {};
2152   }
2153 };
2154 
2155 // TODO: extract it into more handlers
2156 class InterestingLValueHandler final : public ExpressionHandler {
2157 public:
2158   using ExpressionHandler::ExpressionHandler;
2159 
2160   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2161                          const ExplodedNode *LVNode,
2162                          TrackingOptions Opts) override {
2163     ProgramStateRef LVState = LVNode->getState();
2164     const StackFrameContext *SFC = LVNode->getStackFrame();
2165     PathSensitiveBugReport &Report = getParentTracker().getReport();
2166     Tracker::Result Result;
2167 
2168     // See if the expression we're interested refers to a variable.
2169     // If so, we can track both its contents and constraints on its value.
2170     if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
2171       SVal LVal = LVNode->getSVal(Inner);
2172 
2173       const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
2174       bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
2175 
2176       // If this is a C++ reference to a null pointer, we are tracking the
2177       // pointer. In addition, we should find the store at which the reference
2178       // got initialized.
2179       if (RR && !LVIsNull)
2180         Result.combineWith(getParentTracker().track(LVal, RR, Opts, SFC));
2181 
2182       // In case of C++ references, we want to differentiate between a null
2183       // reference and reference to null pointer.
2184       // If the LVal is null, check if we are dealing with null reference.
2185       // For those, we want to track the location of the reference.
2186       const MemRegion *R =
2187           (RR && LVIsNull) ? RR : LVNode->getSVal(Inner).getAsRegion();
2188 
2189       if (R) {
2190 
2191         // Mark both the variable region and its contents as interesting.
2192         SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
2193         Report.addVisitor<NoStoreFuncVisitor>(cast<SubRegion>(R), Opts.Kind);
2194 
2195         // When we got here, we do have something to track, and we will
2196         // interrupt.
2197         Result.FoundSomethingToTrack = true;
2198         Result.WasInterrupted = true;
2199 
2200         MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
2201             LVNode, R, Opts.EnableNullFPSuppression, Report, V);
2202 
2203         Report.markInteresting(V, Opts.Kind);
2204         Report.addVisitor<UndefOrNullArgVisitor>(R);
2205 
2206         // If the contents are symbolic and null, find out when they became
2207         // null.
2208         if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true))
2209           if (LVState->isNull(V).isConstrainedTrue())
2210             Report.addVisitor<TrackConstraintBRVisitor>(V.castAs<DefinedSVal>(),
2211                                                         false);
2212 
2213         // Add visitor, which will suppress inline defensive checks.
2214         if (auto DV = V.getAs<DefinedSVal>())
2215           if (!DV->isZeroConstant() && Opts.EnableNullFPSuppression)
2216             // Note that LVNode may be too late (i.e., too far from the
2217             // InputNode) because the lvalue may have been computed before the
2218             // inlined call was evaluated. InputNode may as well be too early
2219             // here, because the symbol is already dead; this, however, is fine
2220             // because we can still find the node in which it collapsed to null
2221             // previously.
2222             Report.addVisitor<SuppressInlineDefensiveChecksVisitor>(*DV,
2223                                                                     InputNode);
2224         getParentTracker().track(V, R, Opts, SFC);
2225       }
2226     }
2227 
2228     return Result;
2229   }
2230 };
2231 
2232 /// Adds a ReturnVisitor if the given statement represents a call that was
2233 /// inlined.
2234 ///
2235 /// This will search back through the ExplodedGraph, starting from the given
2236 /// node, looking for when the given statement was processed. If it turns out
2237 /// the statement is a call that was inlined, we add the visitor to the
2238 /// bug report, so it can print a note later.
2239 class InlinedFunctionCallHandler final : public ExpressionHandler {
2240   using ExpressionHandler::ExpressionHandler;
2241 
2242   Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2243                          const ExplodedNode *ExprNode,
2244                          TrackingOptions Opts) override {
2245     if (!CallEvent::isCallStmt(E))
2246       return {};
2247 
2248     // First, find when we processed the statement.
2249     // If we work with a 'CXXNewExpr' that is going to be purged away before
2250     // its call take place. We would catch that purge in the last condition
2251     // as a 'StmtPoint' so we have to bypass it.
2252     const bool BypassCXXNewExprEval = isa<CXXNewExpr>(E);
2253 
2254     // This is moving forward when we enter into another context.
2255     const StackFrameContext *CurrentSFC = ExprNode->getStackFrame();
2256 
2257     do {
2258       // If that is satisfied we found our statement as an inlined call.
2259       if (Optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>())
2260         if (CEE->getCalleeContext()->getCallSite() == E)
2261           break;
2262 
2263       // Try to move forward to the end of the call-chain.
2264       ExprNode = ExprNode->getFirstPred();
2265       if (!ExprNode)
2266         break;
2267 
2268       const StackFrameContext *PredSFC = ExprNode->getStackFrame();
2269 
2270       // If that is satisfied we found our statement.
2271       // FIXME: This code currently bypasses the call site for the
2272       //        conservatively evaluated allocator.
2273       if (!BypassCXXNewExprEval)
2274         if (Optional<StmtPoint> SP = ExprNode->getLocationAs<StmtPoint>())
2275           // See if we do not enter into another context.
2276           if (SP->getStmt() == E && CurrentSFC == PredSFC)
2277             break;
2278 
2279       CurrentSFC = PredSFC;
2280     } while (ExprNode->getStackFrame() == CurrentSFC);
2281 
2282     // Next, step over any post-statement checks.
2283     while (ExprNode && ExprNode->getLocation().getAs<PostStmt>())
2284       ExprNode = ExprNode->getFirstPred();
2285     if (!ExprNode)
2286       return {};
2287 
2288     // Finally, see if we inlined the call.
2289     Optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>();
2290     if (!CEE)
2291       return {};
2292 
2293     const StackFrameContext *CalleeContext = CEE->getCalleeContext();
2294     if (CalleeContext->getCallSite() != E)
2295       return {};
2296 
2297     // Check the return value.
2298     ProgramStateRef State = ExprNode->getState();
2299     SVal RetVal = ExprNode->getSVal(E);
2300 
2301     // Handle cases where a reference is returned and then immediately used.
2302     if (cast<Expr>(E)->isGLValue())
2303       if (Optional<Loc> LValue = RetVal.getAs<Loc>())
2304         RetVal = State->getSVal(*LValue);
2305 
2306     // See if the return value is NULL. If so, suppress the report.
2307     AnalyzerOptions &Options = State->getAnalysisManager().options;
2308 
2309     bool EnableNullFPSuppression = false;
2310     if (Opts.EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths)
2311       if (Optional<Loc> RetLoc = RetVal.getAs<Loc>())
2312         EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
2313 
2314     PathSensitiveBugReport &Report = getParentTracker().getReport();
2315     Report.addVisitor<ReturnVisitor>(&getParentTracker(), CalleeContext,
2316                                      EnableNullFPSuppression, Options,
2317                                      Opts.Kind);
2318     return {true};
2319   }
2320 };
2321 
2322 class DefaultExpressionHandler final : public ExpressionHandler {
2323 public:
2324   using ExpressionHandler::ExpressionHandler;
2325 
2326   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2327                          const ExplodedNode *LVNode,
2328                          TrackingOptions Opts) override {
2329     ProgramStateRef LVState = LVNode->getState();
2330     const StackFrameContext *SFC = LVNode->getStackFrame();
2331     PathSensitiveBugReport &Report = getParentTracker().getReport();
2332     Tracker::Result Result;
2333 
2334     // If the expression is not an "lvalue expression", we can still
2335     // track the constraints on its contents.
2336     SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
2337 
2338     // Is it a symbolic value?
2339     if (auto L = V.getAs<loc::MemRegionVal>()) {
2340       // FIXME: this is a hack for fixing a later crash when attempting to
2341       // dereference a void* pointer.
2342       // We should not try to dereference pointers at all when we don't care
2343       // what is written inside the pointer.
2344       bool CanDereference = true;
2345       if (const auto *SR = L->getRegionAs<SymbolicRegion>()) {
2346         if (SR->getSymbol()->getType()->getPointeeType()->isVoidType())
2347           CanDereference = false;
2348       } else if (L->getRegionAs<AllocaRegion>())
2349         CanDereference = false;
2350 
2351       // At this point we are dealing with the region's LValue.
2352       // However, if the rvalue is a symbolic region, we should track it as
2353       // well. Try to use the correct type when looking up the value.
2354       SVal RVal;
2355       if (ExplodedGraph::isInterestingLValueExpr(Inner))
2356         RVal = LVState->getRawSVal(*L, Inner->getType());
2357       else if (CanDereference)
2358         RVal = LVState->getSVal(L->getRegion());
2359 
2360       if (CanDereference) {
2361         Report.addVisitor<UndefOrNullArgVisitor>(L->getRegion());
2362         Result.FoundSomethingToTrack = true;
2363 
2364         if (auto KV = RVal.getAs<KnownSVal>())
2365           Result.combineWith(
2366               getParentTracker().track(*KV, L->getRegion(), Opts, SFC));
2367       }
2368 
2369       const MemRegion *RegionRVal = RVal.getAsRegion();
2370       if (isa_and_nonnull<SymbolicRegion>(RegionRVal)) {
2371         Report.markInteresting(RegionRVal, Opts.Kind);
2372         Report.addVisitor<TrackConstraintBRVisitor>(
2373             loc::MemRegionVal(RegionRVal),
2374             /*assumption=*/false);
2375         Result.FoundSomethingToTrack = true;
2376       }
2377     }
2378 
2379     return Result;
2380   }
2381 };
2382 
2383 /// Attempts to add visitors to track an RValue expression back to its point of
2384 /// origin.
2385 class PRValueHandler final : public ExpressionHandler {
2386 public:
2387   using ExpressionHandler::ExpressionHandler;
2388 
2389   Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2390                          const ExplodedNode *ExprNode,
2391                          TrackingOptions Opts) override {
2392     if (!E->isPRValue())
2393       return {};
2394 
2395     const ExplodedNode *RVNode = findNodeForExpression(ExprNode, E);
2396     if (!RVNode)
2397       return {};
2398 
2399     ProgramStateRef RVState = RVNode->getState();
2400     SVal V = RVState->getSValAsScalarOrLoc(E, RVNode->getLocationContext());
2401     const auto *BO = dyn_cast<BinaryOperator>(E);
2402 
2403     if (!BO || !BO->isMultiplicativeOp() || !V.isZeroConstant())
2404       return {};
2405 
2406     SVal RHSV = RVState->getSVal(BO->getRHS(), RVNode->getLocationContext());
2407     SVal LHSV = RVState->getSVal(BO->getLHS(), RVNode->getLocationContext());
2408 
2409     // Track both LHS and RHS of a multiplication.
2410     Tracker::Result CombinedResult;
2411     Tracker &Parent = getParentTracker();
2412 
2413     const auto track = [&CombinedResult, &Parent, ExprNode, Opts](Expr *Inner) {
2414       CombinedResult.combineWith(Parent.track(Inner, ExprNode, Opts));
2415     };
2416 
2417     if (BO->getOpcode() == BO_Mul) {
2418       if (LHSV.isZeroConstant())
2419         track(BO->getLHS());
2420       if (RHSV.isZeroConstant())
2421         track(BO->getRHS());
2422     } else { // Track only the LHS of a division or a modulo.
2423       if (LHSV.isZeroConstant())
2424         track(BO->getLHS());
2425     }
2426 
2427     return CombinedResult;
2428   }
2429 };
2430 
2431 Tracker::Tracker(PathSensitiveBugReport &Report) : Report(Report) {
2432   // Default expression handlers.
2433   addLowPriorityHandler<ControlDependencyHandler>();
2434   addLowPriorityHandler<NilReceiverHandler>();
2435   addLowPriorityHandler<ArrayIndexHandler>();
2436   addLowPriorityHandler<InterestingLValueHandler>();
2437   addLowPriorityHandler<InlinedFunctionCallHandler>();
2438   addLowPriorityHandler<DefaultExpressionHandler>();
2439   addLowPriorityHandler<PRValueHandler>();
2440   // Default store handlers.
2441   addHighPriorityHandler<DefaultStoreHandler>();
2442 }
2443 
2444 Tracker::Result Tracker::track(const Expr *E, const ExplodedNode *N,
2445                                TrackingOptions Opts) {
2446   if (!E || !N)
2447     return {};
2448 
2449   const Expr *Inner = peelOffOuterExpr(E, N);
2450   const ExplodedNode *LVNode = findNodeForExpression(N, Inner);
2451   if (!LVNode)
2452     return {};
2453 
2454   Result CombinedResult;
2455   // Iterate through the handlers in the order according to their priorities.
2456   for (ExpressionHandlerPtr &Handler : ExpressionHandlers) {
2457     CombinedResult.combineWith(Handler->handle(Inner, N, LVNode, Opts));
2458     if (CombinedResult.WasInterrupted) {
2459       // There is no need to confuse our users here.
2460       // We got interrupted, but our users don't need to know about it.
2461       CombinedResult.WasInterrupted = false;
2462       break;
2463     }
2464   }
2465 
2466   return CombinedResult;
2467 }
2468 
2469 Tracker::Result Tracker::track(SVal V, const MemRegion *R, TrackingOptions Opts,
2470                                const StackFrameContext *Origin) {
2471   if (auto KV = V.getAs<KnownSVal>()) {
2472     Report.addVisitor<StoreSiteFinder>(this, *KV, R, Opts, Origin);
2473     return {true};
2474   }
2475   return {};
2476 }
2477 
2478 PathDiagnosticPieceRef Tracker::handle(StoreInfo SI, BugReporterContext &BRC,
2479                                        TrackingOptions Opts) {
2480   // Iterate through the handlers in the order according to their priorities.
2481   for (StoreHandlerPtr &Handler : StoreHandlers) {
2482     if (PathDiagnosticPieceRef Result = Handler->handle(SI, BRC, Opts))
2483       // If the handler produced a non-null piece, return it.
2484       // There is no need in asking other handlers.
2485       return Result;
2486   }
2487   return {};
2488 }
2489 
2490 bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode,
2491                                        const Expr *E,
2492 
2493                                        PathSensitiveBugReport &Report,
2494                                        TrackingOptions Opts) {
2495   return Tracker::create(Report)
2496       ->track(E, InputNode, Opts)
2497       .FoundSomethingToTrack;
2498 }
2499 
2500 void bugreporter::trackStoredValue(KnownSVal V, const MemRegion *R,
2501                                    PathSensitiveBugReport &Report,
2502                                    TrackingOptions Opts,
2503                                    const StackFrameContext *Origin) {
2504   Tracker::create(Report)->track(V, R, Opts, Origin);
2505 }
2506 
2507 //===----------------------------------------------------------------------===//
2508 // Implementation of NulReceiverBRVisitor.
2509 //===----------------------------------------------------------------------===//
2510 
2511 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S,
2512                                                  const ExplodedNode *N) {
2513   const auto *ME = dyn_cast<ObjCMessageExpr>(S);
2514   if (!ME)
2515     return nullptr;
2516   if (const Expr *Receiver = ME->getInstanceReceiver()) {
2517     ProgramStateRef state = N->getState();
2518     SVal V = N->getSVal(Receiver);
2519     if (state->isNull(V).isConstrainedTrue())
2520       return Receiver;
2521   }
2522   return nullptr;
2523 }
2524 
2525 PathDiagnosticPieceRef
2526 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2527                                 PathSensitiveBugReport &BR) {
2528   Optional<PreStmt> P = N->getLocationAs<PreStmt>();
2529   if (!P)
2530     return nullptr;
2531 
2532   const Stmt *S = P->getStmt();
2533   const Expr *Receiver = getNilReceiver(S, N);
2534   if (!Receiver)
2535     return nullptr;
2536 
2537   llvm::SmallString<256> Buf;
2538   llvm::raw_svector_ostream OS(Buf);
2539 
2540   if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
2541     OS << "'";
2542     ME->getSelector().print(OS);
2543     OS << "' not called";
2544   }
2545   else {
2546     OS << "No method is called";
2547   }
2548   OS << " because the receiver is nil";
2549 
2550   // The receiver was nil, and hence the method was skipped.
2551   // Register a BugReporterVisitor to issue a message telling us how
2552   // the receiver was null.
2553   bugreporter::trackExpressionValue(N, Receiver, BR,
2554                                     {bugreporter::TrackingKind::Thorough,
2555                                      /*EnableNullFPSuppression*/ false});
2556   // Issue a message saying that the method was skipped.
2557   PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
2558                                      N->getLocationContext());
2559   return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
2560 }
2561 
2562 //===----------------------------------------------------------------------===//
2563 // Visitor that tries to report interesting diagnostics from conditions.
2564 //===----------------------------------------------------------------------===//
2565 
2566 /// Return the tag associated with this visitor.  This tag will be used
2567 /// to make all PathDiagnosticPieces created by this visitor.
2568 const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; }
2569 
2570 PathDiagnosticPieceRef
2571 ConditionBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2572                               PathSensitiveBugReport &BR) {
2573   auto piece = VisitNodeImpl(N, BRC, BR);
2574   if (piece) {
2575     piece->setTag(getTag());
2576     if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
2577       ev->setPrunable(true, /* override */ false);
2578   }
2579   return piece;
2580 }
2581 
2582 PathDiagnosticPieceRef
2583 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
2584                                   BugReporterContext &BRC,
2585                                   PathSensitiveBugReport &BR) {
2586   ProgramPoint ProgPoint = N->getLocation();
2587   const std::pair<const ProgramPointTag *, const ProgramPointTag *> &Tags =
2588       ExprEngine::geteagerlyAssumeBinOpBifurcationTags();
2589 
2590   // If an assumption was made on a branch, it should be caught
2591   // here by looking at the state transition.
2592   if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2593     const CFGBlock *SrcBlock = BE->getSrc();
2594     if (const Stmt *Term = SrcBlock->getTerminatorStmt()) {
2595       // If the tag of the previous node is 'Eagerly Assume...' the current
2596       // 'BlockEdge' has the same constraint information. We do not want to
2597       // report the value as it is just an assumption on the predecessor node
2598       // which will be caught in the next VisitNode() iteration as a 'PostStmt'.
2599       const ProgramPointTag *PreviousNodeTag =
2600           N->getFirstPred()->getLocation().getTag();
2601       if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second)
2602         return nullptr;
2603 
2604       return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC);
2605     }
2606     return nullptr;
2607   }
2608 
2609   if (Optional<PostStmt> PS = ProgPoint.getAs<PostStmt>()) {
2610     const ProgramPointTag *CurrentNodeTag = PS->getTag();
2611     if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second)
2612       return nullptr;
2613 
2614     bool TookTrue = CurrentNodeTag == Tags.first;
2615     return VisitTrueTest(cast<Expr>(PS->getStmt()), BRC, BR, N, TookTrue);
2616   }
2617 
2618   return nullptr;
2619 }
2620 
2621 PathDiagnosticPieceRef ConditionBRVisitor::VisitTerminator(
2622     const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
2623     const CFGBlock *dstBlk, PathSensitiveBugReport &R,
2624     BugReporterContext &BRC) {
2625   const Expr *Cond = nullptr;
2626 
2627   // In the code below, Term is a CFG terminator and Cond is a branch condition
2628   // expression upon which the decision is made on this terminator.
2629   //
2630   // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
2631   // and "x == 0" is the respective condition.
2632   //
2633   // Another example: in "if (x && y)", we've got two terminators and two
2634   // conditions due to short-circuit nature of operator "&&":
2635   // 1. The "if (x && y)" statement is a terminator,
2636   //    and "y" is the respective condition.
2637   // 2. Also "x && ..." is another terminator,
2638   //    and "x" is its condition.
2639 
2640   switch (Term->getStmtClass()) {
2641   // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
2642   // more tricky because there are more than two branches to account for.
2643   default:
2644     return nullptr;
2645   case Stmt::IfStmtClass:
2646     Cond = cast<IfStmt>(Term)->getCond();
2647     break;
2648   case Stmt::ConditionalOperatorClass:
2649     Cond = cast<ConditionalOperator>(Term)->getCond();
2650     break;
2651   case Stmt::BinaryOperatorClass:
2652     // When we encounter a logical operator (&& or ||) as a CFG terminator,
2653     // then the condition is actually its LHS; otherwise, we'd encounter
2654     // the parent, such as if-statement, as a terminator.
2655     const auto *BO = cast<BinaryOperator>(Term);
2656     assert(BO->isLogicalOp() &&
2657            "CFG terminator is not a short-circuit operator!");
2658     Cond = BO->getLHS();
2659     break;
2660   }
2661 
2662   Cond = Cond->IgnoreParens();
2663 
2664   // However, when we encounter a logical operator as a branch condition,
2665   // then the condition is actually its RHS, because LHS would be
2666   // the condition for the logical operator terminator.
2667   while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
2668     if (!InnerBO->isLogicalOp())
2669       break;
2670     Cond = InnerBO->getRHS()->IgnoreParens();
2671   }
2672 
2673   assert(Cond);
2674   assert(srcBlk->succ_size() == 2);
2675   const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk;
2676   return VisitTrueTest(Cond, BRC, R, N, TookTrue);
2677 }
2678 
2679 PathDiagnosticPieceRef
2680 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, BugReporterContext &BRC,
2681                                   PathSensitiveBugReport &R,
2682                                   const ExplodedNode *N, bool TookTrue) {
2683   ProgramStateRef CurrentState = N->getState();
2684   ProgramStateRef PrevState = N->getFirstPred()->getState();
2685   const LocationContext *LCtx = N->getLocationContext();
2686 
2687   // If the constraint information is changed between the current and the
2688   // previous program state we assuming the newly seen constraint information.
2689   // If we cannot evaluate the condition (and the constraints are the same)
2690   // the analyzer has no information about the value and just assuming it.
2691   bool IsAssuming =
2692       !BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) ||
2693       CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef();
2694 
2695   // These will be modified in code below, but we need to preserve the original
2696   //  values in case we want to throw the generic message.
2697   const Expr *CondTmp = Cond;
2698   bool TookTrueTmp = TookTrue;
2699 
2700   while (true) {
2701     CondTmp = CondTmp->IgnoreParenCasts();
2702     switch (CondTmp->getStmtClass()) {
2703       default:
2704         break;
2705       case Stmt::BinaryOperatorClass:
2706         if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
2707                                    BRC, R, N, TookTrueTmp, IsAssuming))
2708           return P;
2709         break;
2710       case Stmt::DeclRefExprClass:
2711         if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
2712                                    BRC, R, N, TookTrueTmp, IsAssuming))
2713           return P;
2714         break;
2715       case Stmt::MemberExprClass:
2716         if (auto P = VisitTrueTest(Cond, cast<MemberExpr>(CondTmp),
2717                                    BRC, R, N, TookTrueTmp, IsAssuming))
2718           return P;
2719         break;
2720       case Stmt::UnaryOperatorClass: {
2721         const auto *UO = cast<UnaryOperator>(CondTmp);
2722         if (UO->getOpcode() == UO_LNot) {
2723           TookTrueTmp = !TookTrueTmp;
2724           CondTmp = UO->getSubExpr();
2725           continue;
2726         }
2727         break;
2728       }
2729     }
2730     break;
2731   }
2732 
2733   // Condition too complex to explain? Just say something so that the user
2734   // knew we've made some path decision at this point.
2735   // If it is too complex and we know the evaluation of the condition do not
2736   // repeat the note from 'BugReporter.cpp'
2737   if (!IsAssuming)
2738     return nullptr;
2739 
2740   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2741   if (!Loc.isValid() || !Loc.asLocation().isValid())
2742     return nullptr;
2743 
2744   return std::make_shared<PathDiagnosticEventPiece>(
2745       Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage);
2746 }
2747 
2748 bool ConditionBRVisitor::patternMatch(const Expr *Ex,
2749                                       const Expr *ParentEx,
2750                                       raw_ostream &Out,
2751                                       BugReporterContext &BRC,
2752                                       PathSensitiveBugReport &report,
2753                                       const ExplodedNode *N,
2754                                       Optional<bool> &prunable,
2755                                       bool IsSameFieldName) {
2756   const Expr *OriginalExpr = Ex;
2757   Ex = Ex->IgnoreParenCasts();
2758 
2759   if (isa<GNUNullExpr, ObjCBoolLiteralExpr, CXXBoolLiteralExpr, IntegerLiteral,
2760           FloatingLiteral>(Ex)) {
2761     // Use heuristics to determine if the expression is a macro
2762     // expanding to a literal and if so, use the macro's name.
2763     SourceLocation BeginLoc = OriginalExpr->getBeginLoc();
2764     SourceLocation EndLoc = OriginalExpr->getEndLoc();
2765     if (BeginLoc.isMacroID() && EndLoc.isMacroID()) {
2766       const SourceManager &SM = BRC.getSourceManager();
2767       const LangOptions &LO = BRC.getASTContext().getLangOpts();
2768       if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) &&
2769           Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) {
2770         CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO);
2771         Out << Lexer::getSourceText(R, SM, LO);
2772         return false;
2773       }
2774     }
2775   }
2776 
2777   if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) {
2778     const bool quotes = isa<VarDecl>(DR->getDecl());
2779     if (quotes) {
2780       Out << '\'';
2781       const LocationContext *LCtx = N->getLocationContext();
2782       const ProgramState *state = N->getState().get();
2783       if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
2784                                                 LCtx).getAsRegion()) {
2785         if (report.isInteresting(R))
2786           prunable = false;
2787         else {
2788           const ProgramState *state = N->getState().get();
2789           SVal V = state->getSVal(R);
2790           if (report.isInteresting(V))
2791             prunable = false;
2792         }
2793       }
2794     }
2795     Out << DR->getDecl()->getDeclName().getAsString();
2796     if (quotes)
2797       Out << '\'';
2798     return quotes;
2799   }
2800 
2801   if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) {
2802     QualType OriginalTy = OriginalExpr->getType();
2803     if (OriginalTy->isPointerType()) {
2804       if (IL->getValue() == 0) {
2805         Out << "null";
2806         return false;
2807       }
2808     }
2809     else if (OriginalTy->isObjCObjectPointerType()) {
2810       if (IL->getValue() == 0) {
2811         Out << "nil";
2812         return false;
2813       }
2814     }
2815 
2816     Out << IL->getValue();
2817     return false;
2818   }
2819 
2820   if (const auto *ME = dyn_cast<MemberExpr>(Ex)) {
2821     if (!IsSameFieldName)
2822       Out << "field '" << ME->getMemberDecl()->getName() << '\'';
2823     else
2824       Out << '\''
2825           << Lexer::getSourceText(
2826                  CharSourceRange::getTokenRange(Ex->getSourceRange()),
2827                  BRC.getSourceManager(), BRC.getASTContext().getLangOpts(),
2828                  nullptr)
2829           << '\'';
2830   }
2831 
2832   return false;
2833 }
2834 
2835 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
2836     const Expr *Cond, const BinaryOperator *BExpr, BugReporterContext &BRC,
2837     PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue,
2838     bool IsAssuming) {
2839   bool shouldInvert = false;
2840   Optional<bool> shouldPrune;
2841 
2842   // Check if the field name of the MemberExprs is ambiguous. Example:
2843   // " 'a.d' is equal to 'h.d' " in 'test/Analysis/null-deref-path-notes.cpp'.
2844   bool IsSameFieldName = false;
2845   const auto *LhsME = dyn_cast<MemberExpr>(BExpr->getLHS()->IgnoreParenCasts());
2846   const auto *RhsME = dyn_cast<MemberExpr>(BExpr->getRHS()->IgnoreParenCasts());
2847 
2848   if (LhsME && RhsME)
2849     IsSameFieldName =
2850         LhsME->getMemberDecl()->getName() == RhsME->getMemberDecl()->getName();
2851 
2852   SmallString<128> LhsString, RhsString;
2853   {
2854     llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
2855     const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, BRC, R,
2856                                        N, shouldPrune, IsSameFieldName);
2857     const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, BRC, R,
2858                                        N, shouldPrune, IsSameFieldName);
2859 
2860     shouldInvert = !isVarLHS && isVarRHS;
2861   }
2862 
2863   BinaryOperator::Opcode Op = BExpr->getOpcode();
2864 
2865   if (BinaryOperator::isAssignmentOp(Op)) {
2866     // For assignment operators, all that we care about is that the LHS
2867     // evaluates to "true" or "false".
2868     return VisitConditionVariable(LhsString, BExpr->getLHS(), BRC, R, N,
2869                                   TookTrue);
2870   }
2871 
2872   // For non-assignment operations, we require that we can understand
2873   // both the LHS and RHS.
2874   if (LhsString.empty() || RhsString.empty() ||
2875       !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp)
2876     return nullptr;
2877 
2878   // Should we invert the strings if the LHS is not a variable name?
2879   SmallString<256> buf;
2880   llvm::raw_svector_ostream Out(buf);
2881   Out << (IsAssuming ? "Assuming " : "")
2882       << (shouldInvert ? RhsString : LhsString) << " is ";
2883 
2884   // Do we need to invert the opcode?
2885   if (shouldInvert)
2886     switch (Op) {
2887       default: break;
2888       case BO_LT: Op = BO_GT; break;
2889       case BO_GT: Op = BO_LT; break;
2890       case BO_LE: Op = BO_GE; break;
2891       case BO_GE: Op = BO_LE; break;
2892     }
2893 
2894   if (!TookTrue)
2895     switch (Op) {
2896       case BO_EQ: Op = BO_NE; break;
2897       case BO_NE: Op = BO_EQ; break;
2898       case BO_LT: Op = BO_GE; break;
2899       case BO_GT: Op = BO_LE; break;
2900       case BO_LE: Op = BO_GT; break;
2901       case BO_GE: Op = BO_LT; break;
2902       default:
2903         return nullptr;
2904     }
2905 
2906   switch (Op) {
2907     case BO_EQ:
2908       Out << "equal to ";
2909       break;
2910     case BO_NE:
2911       Out << "not equal to ";
2912       break;
2913     default:
2914       Out << BinaryOperator::getOpcodeStr(Op) << ' ';
2915       break;
2916   }
2917 
2918   Out << (shouldInvert ? LhsString : RhsString);
2919   const LocationContext *LCtx = N->getLocationContext();
2920   const SourceManager &SM = BRC.getSourceManager();
2921 
2922   if (isVarAnInterestingCondition(BExpr->getLHS(), N, &R) ||
2923       isVarAnInterestingCondition(BExpr->getRHS(), N, &R))
2924     Out << WillBeUsedForACondition;
2925 
2926   // Convert 'field ...' to 'Field ...' if it is a MemberExpr.
2927   std::string Message = std::string(Out.str());
2928   Message[0] = toupper(Message[0]);
2929 
2930   // If we know the value create a pop-up note to the value part of 'BExpr'.
2931   if (!IsAssuming) {
2932     PathDiagnosticLocation Loc;
2933     if (!shouldInvert) {
2934       if (LhsME && LhsME->getMemberLoc().isValid())
2935         Loc = PathDiagnosticLocation(LhsME->getMemberLoc(), SM);
2936       else
2937         Loc = PathDiagnosticLocation(BExpr->getLHS(), SM, LCtx);
2938     } else {
2939       if (RhsME && RhsME->getMemberLoc().isValid())
2940         Loc = PathDiagnosticLocation(RhsME->getMemberLoc(), SM);
2941       else
2942         Loc = PathDiagnosticLocation(BExpr->getRHS(), SM, LCtx);
2943     }
2944 
2945     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Message);
2946   }
2947 
2948   PathDiagnosticLocation Loc(Cond, SM, LCtx);
2949   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Message);
2950   if (shouldPrune)
2951     event->setPrunable(shouldPrune.value());
2952   return event;
2953 }
2954 
2955 PathDiagnosticPieceRef ConditionBRVisitor::VisitConditionVariable(
2956     StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC,
2957     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue) {
2958   // FIXME: If there's already a constraint tracker for this variable,
2959   // we shouldn't emit anything here (c.f. the double note in
2960   // test/Analysis/inlining/path-notes.c)
2961   SmallString<256> buf;
2962   llvm::raw_svector_ostream Out(buf);
2963   Out << "Assuming " << LhsString << " is ";
2964 
2965   if (!printValue(CondVarExpr, Out, N, TookTrue, /*IsAssuming=*/true))
2966     return nullptr;
2967 
2968   const LocationContext *LCtx = N->getLocationContext();
2969   PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
2970 
2971   if (isVarAnInterestingCondition(CondVarExpr, N, &report))
2972     Out << WillBeUsedForACondition;
2973 
2974   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
2975 
2976   if (isInterestingExpr(CondVarExpr, N, &report))
2977     event->setPrunable(false);
2978 
2979   return event;
2980 }
2981 
2982 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
2983     const Expr *Cond, const DeclRefExpr *DRE, BugReporterContext &BRC,
2984     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
2985     bool IsAssuming) {
2986   const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
2987   if (!VD)
2988     return nullptr;
2989 
2990   SmallString<256> Buf;
2991   llvm::raw_svector_ostream Out(Buf);
2992 
2993   Out << (IsAssuming ? "Assuming '" : "'") << VD->getDeclName() << "' is ";
2994 
2995   if (!printValue(DRE, Out, N, TookTrue, IsAssuming))
2996     return nullptr;
2997 
2998   const LocationContext *LCtx = N->getLocationContext();
2999 
3000   if (isVarAnInterestingCondition(DRE, N, &report))
3001     Out << WillBeUsedForACondition;
3002 
3003   // If we know the value create a pop-up note to the 'DRE'.
3004   if (!IsAssuming) {
3005     PathDiagnosticLocation Loc(DRE, BRC.getSourceManager(), LCtx);
3006     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3007   }
3008 
3009   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
3010   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3011 
3012   if (isInterestingExpr(DRE, N, &report))
3013     event->setPrunable(false);
3014 
3015   return std::move(event);
3016 }
3017 
3018 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3019     const Expr *Cond, const MemberExpr *ME, BugReporterContext &BRC,
3020     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3021     bool IsAssuming) {
3022   SmallString<256> Buf;
3023   llvm::raw_svector_ostream Out(Buf);
3024 
3025   Out << (IsAssuming ? "Assuming field '" : "Field '")
3026       << ME->getMemberDecl()->getName() << "' is ";
3027 
3028   if (!printValue(ME, Out, N, TookTrue, IsAssuming))
3029     return nullptr;
3030 
3031   const LocationContext *LCtx = N->getLocationContext();
3032   PathDiagnosticLocation Loc;
3033 
3034   // If we know the value create a pop-up note to the member of the MemberExpr.
3035   if (!IsAssuming && ME->getMemberLoc().isValid())
3036     Loc = PathDiagnosticLocation(ME->getMemberLoc(), BRC.getSourceManager());
3037   else
3038     Loc = PathDiagnosticLocation(Cond, BRC.getSourceManager(), LCtx);
3039 
3040   if (!Loc.isValid() || !Loc.asLocation().isValid())
3041     return nullptr;
3042 
3043   if (isVarAnInterestingCondition(ME, N, &report))
3044     Out << WillBeUsedForACondition;
3045 
3046   // If we know the value create a pop-up note.
3047   if (!IsAssuming)
3048     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3049 
3050   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3051   if (isInterestingExpr(ME, N, &report))
3052     event->setPrunable(false);
3053   return event;
3054 }
3055 
3056 bool ConditionBRVisitor::printValue(const Expr *CondVarExpr, raw_ostream &Out,
3057                                     const ExplodedNode *N, bool TookTrue,
3058                                     bool IsAssuming) {
3059   QualType Ty = CondVarExpr->getType();
3060 
3061   if (Ty->isPointerType()) {
3062     Out << (TookTrue ? "non-null" : "null");
3063     return true;
3064   }
3065 
3066   if (Ty->isObjCObjectPointerType()) {
3067     Out << (TookTrue ? "non-nil" : "nil");
3068     return true;
3069   }
3070 
3071   if (!Ty->isIntegralOrEnumerationType())
3072     return false;
3073 
3074   Optional<const llvm::APSInt *> IntValue;
3075   if (!IsAssuming)
3076     IntValue = getConcreteIntegerValue(CondVarExpr, N);
3077 
3078   if (IsAssuming || !IntValue) {
3079     if (Ty->isBooleanType())
3080       Out << (TookTrue ? "true" : "false");
3081     else
3082       Out << (TookTrue ? "not equal to 0" : "0");
3083   } else {
3084     if (Ty->isBooleanType())
3085       Out << (IntValue.value()->getBoolValue() ? "true" : "false");
3086     else
3087       Out << *IntValue.value();
3088   }
3089 
3090   return true;
3091 }
3092 
3093 constexpr llvm::StringLiteral ConditionBRVisitor::GenericTrueMessage;
3094 constexpr llvm::StringLiteral ConditionBRVisitor::GenericFalseMessage;
3095 
3096 bool ConditionBRVisitor::isPieceMessageGeneric(
3097     const PathDiagnosticPiece *Piece) {
3098   return Piece->getString() == GenericTrueMessage ||
3099          Piece->getString() == GenericFalseMessage;
3100 }
3101 
3102 //===----------------------------------------------------------------------===//
3103 // Implementation of LikelyFalsePositiveSuppressionBRVisitor.
3104 //===----------------------------------------------------------------------===//
3105 
3106 void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor(
3107     BugReporterContext &BRC, const ExplodedNode *N,
3108     PathSensitiveBugReport &BR) {
3109   // Here we suppress false positives coming from system headers. This list is
3110   // based on known issues.
3111   const AnalyzerOptions &Options = BRC.getAnalyzerOptions();
3112   const Decl *D = N->getLocationContext()->getDecl();
3113 
3114   if (AnalysisDeclContext::isInStdNamespace(D)) {
3115     // Skip reports within the 'std' namespace. Although these can sometimes be
3116     // the user's fault, we currently don't report them very well, and
3117     // Note that this will not help for any other data structure libraries, like
3118     // TR1, Boost, or llvm/ADT.
3119     if (Options.ShouldSuppressFromCXXStandardLibrary) {
3120       BR.markInvalid(getTag(), nullptr);
3121       return;
3122     } else {
3123       // If the complete 'std' suppression is not enabled, suppress reports
3124       // from the 'std' namespace that are known to produce false positives.
3125 
3126       // The analyzer issues a false use-after-free when std::list::pop_front
3127       // or std::list::pop_back are called multiple times because we cannot
3128       // reason about the internal invariants of the data structure.
3129       if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3130         const CXXRecordDecl *CD = MD->getParent();
3131         if (CD->getName() == "list") {
3132           BR.markInvalid(getTag(), nullptr);
3133           return;
3134         }
3135       }
3136 
3137       // The analyzer issues a false positive when the constructor of
3138       // std::__independent_bits_engine from algorithms is used.
3139       if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) {
3140         const CXXRecordDecl *CD = MD->getParent();
3141         if (CD->getName() == "__independent_bits_engine") {
3142           BR.markInvalid(getTag(), nullptr);
3143           return;
3144         }
3145       }
3146 
3147       for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
3148            LCtx = LCtx->getParent()) {
3149         const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
3150         if (!MD)
3151           continue;
3152 
3153         const CXXRecordDecl *CD = MD->getParent();
3154         // The analyzer issues a false positive on
3155         //   std::basic_string<uint8_t> v; v.push_back(1);
3156         // and
3157         //   std::u16string s; s += u'a';
3158         // because we cannot reason about the internal invariants of the
3159         // data structure.
3160         if (CD->getName() == "basic_string") {
3161           BR.markInvalid(getTag(), nullptr);
3162           return;
3163         }
3164 
3165         // The analyzer issues a false positive on
3166         //    std::shared_ptr<int> p(new int(1)); p = nullptr;
3167         // because it does not reason properly about temporary destructors.
3168         if (CD->getName() == "shared_ptr") {
3169           BR.markInvalid(getTag(), nullptr);
3170           return;
3171         }
3172       }
3173     }
3174   }
3175 
3176   // Skip reports within the sys/queue.h macros as we do not have the ability to
3177   // reason about data structure shapes.
3178   const SourceManager &SM = BRC.getSourceManager();
3179   FullSourceLoc Loc = BR.getLocation().asLocation();
3180   while (Loc.isMacroID()) {
3181     Loc = Loc.getSpellingLoc();
3182     if (SM.getFilename(Loc).endswith("sys/queue.h")) {
3183       BR.markInvalid(getTag(), nullptr);
3184       return;
3185     }
3186   }
3187 }
3188 
3189 //===----------------------------------------------------------------------===//
3190 // Implementation of UndefOrNullArgVisitor.
3191 //===----------------------------------------------------------------------===//
3192 
3193 PathDiagnosticPieceRef
3194 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
3195                                  PathSensitiveBugReport &BR) {
3196   ProgramStateRef State = N->getState();
3197   ProgramPoint ProgLoc = N->getLocation();
3198 
3199   // We are only interested in visiting CallEnter nodes.
3200   Optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
3201   if (!CEnter)
3202     return nullptr;
3203 
3204   // Check if one of the arguments is the region the visitor is tracking.
3205   CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager();
3206   CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
3207   unsigned Idx = 0;
3208   ArrayRef<ParmVarDecl *> parms = Call->parameters();
3209 
3210   for (const auto ParamDecl : parms) {
3211     const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
3212     ++Idx;
3213 
3214     // Are we tracking the argument or its subregion?
3215     if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts()))
3216       continue;
3217 
3218     // Check the function parameter type.
3219     assert(ParamDecl && "Formal parameter has no decl?");
3220     QualType T = ParamDecl->getType();
3221 
3222     if (!(T->isAnyPointerType() || T->isReferenceType())) {
3223       // Function can only change the value passed in by address.
3224       continue;
3225     }
3226 
3227     // If it is a const pointer value, the function does not intend to
3228     // change the value.
3229     if (T->getPointeeType().isConstQualified())
3230       continue;
3231 
3232     // Mark the call site (LocationContext) as interesting if the value of the
3233     // argument is undefined or '0'/'NULL'.
3234     SVal BoundVal = State->getSVal(R);
3235     if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
3236       BR.markInteresting(CEnter->getCalleeContext());
3237       return nullptr;
3238     }
3239   }
3240   return nullptr;
3241 }
3242 
3243 //===----------------------------------------------------------------------===//
3244 // Implementation of FalsePositiveRefutationBRVisitor.
3245 //===----------------------------------------------------------------------===//
3246 
3247 FalsePositiveRefutationBRVisitor::FalsePositiveRefutationBRVisitor()
3248     : Constraints(ConstraintMap::Factory().getEmptyMap()) {}
3249 
3250 void FalsePositiveRefutationBRVisitor::finalizeVisitor(
3251     BugReporterContext &BRC, const ExplodedNode *EndPathNode,
3252     PathSensitiveBugReport &BR) {
3253   // Collect new constraints
3254   addConstraints(EndPathNode, /*OverwriteConstraintsOnExistingSyms=*/true);
3255 
3256   // Create a refutation manager
3257   llvm::SMTSolverRef RefutationSolver = llvm::CreateZ3Solver();
3258   ASTContext &Ctx = BRC.getASTContext();
3259 
3260   // Add constraints to the solver
3261   for (const auto &I : Constraints) {
3262     const SymbolRef Sym = I.first;
3263     auto RangeIt = I.second.begin();
3264 
3265     llvm::SMTExprRef SMTConstraints = SMTConv::getRangeExpr(
3266         RefutationSolver, Ctx, Sym, RangeIt->From(), RangeIt->To(),
3267         /*InRange=*/true);
3268     while ((++RangeIt) != I.second.end()) {
3269       SMTConstraints = RefutationSolver->mkOr(
3270           SMTConstraints, SMTConv::getRangeExpr(RefutationSolver, Ctx, Sym,
3271                                                 RangeIt->From(), RangeIt->To(),
3272                                                 /*InRange=*/true));
3273     }
3274 
3275     RefutationSolver->addConstraint(SMTConstraints);
3276   }
3277 
3278   // And check for satisfiability
3279   Optional<bool> IsSAT = RefutationSolver->check();
3280   if (!IsSAT)
3281     return;
3282 
3283   if (!IsSAT.value())
3284     BR.markInvalid("Infeasible constraints", EndPathNode->getLocationContext());
3285 }
3286 
3287 void FalsePositiveRefutationBRVisitor::addConstraints(
3288     const ExplodedNode *N, bool OverwriteConstraintsOnExistingSyms) {
3289   // Collect new constraints
3290   ConstraintMap NewCs = getConstraintMap(N->getState());
3291   ConstraintMap::Factory &CF = N->getState()->get_context<ConstraintMap>();
3292 
3293   // Add constraints if we don't have them yet
3294   for (auto const &C : NewCs) {
3295     const SymbolRef &Sym = C.first;
3296     if (!Constraints.contains(Sym)) {
3297       // This symbol is new, just add the constraint.
3298       Constraints = CF.add(Constraints, Sym, C.second);
3299     } else if (OverwriteConstraintsOnExistingSyms) {
3300       // Overwrite the associated constraint of the Symbol.
3301       Constraints = CF.remove(Constraints, Sym);
3302       Constraints = CF.add(Constraints, Sym, C.second);
3303     }
3304   }
3305 }
3306 
3307 PathDiagnosticPieceRef FalsePositiveRefutationBRVisitor::VisitNode(
3308     const ExplodedNode *N, BugReporterContext &, PathSensitiveBugReport &) {
3309   addConstraints(N, /*OverwriteConstraintsOnExistingSyms=*/false);
3310   return nullptr;
3311 }
3312 
3313 void FalsePositiveRefutationBRVisitor::Profile(
3314     llvm::FoldingSetNodeID &ID) const {
3315   static int Tag = 0;
3316   ID.AddPointer(&Tag);
3317 }
3318 
3319 //===----------------------------------------------------------------------===//
3320 // Implementation of TagVisitor.
3321 //===----------------------------------------------------------------------===//
3322 
3323 int NoteTag::Kind = 0;
3324 
3325 void TagVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
3326   static int Tag = 0;
3327   ID.AddPointer(&Tag);
3328 }
3329 
3330 PathDiagnosticPieceRef TagVisitor::VisitNode(const ExplodedNode *N,
3331                                              BugReporterContext &BRC,
3332                                              PathSensitiveBugReport &R) {
3333   ProgramPoint PP = N->getLocation();
3334   const NoteTag *T = dyn_cast_or_null<NoteTag>(PP.getTag());
3335   if (!T)
3336     return nullptr;
3337 
3338   if (Optional<std::string> Msg = T->generateMessage(BRC, R)) {
3339     PathDiagnosticLocation Loc =
3340         PathDiagnosticLocation::create(PP, BRC.getSourceManager());
3341     auto Piece = std::make_shared<PathDiagnosticEventPiece>(Loc, *Msg);
3342     Piece->setPrunable(T->isPrunable());
3343     return Piece;
3344   }
3345 
3346   return nullptr;
3347 }
3348