1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines a set of BugReporter "visitors" which can be used to
10 //  enhance the diagnostics reported for a bug.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclBase.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/ASTMatchers/ASTMatchFinder.h"
25 #include "clang/Analysis/AnalysisDeclContext.h"
26 #include "clang/Analysis/CFG.h"
27 #include "clang/Analysis/CFGStmtMap.h"
28 #include "clang/Analysis/ProgramPoint.h"
29 #include "clang/Basic/IdentifierTable.h"
30 #include "clang/Basic/LLVM.h"
31 #include "clang/Basic/SourceLocation.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Lex/Lexer.h"
34 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
35 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
36 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
37 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/STLExtras.h"
52 #include "llvm/ADT/SmallPtrSet.h"
53 #include "llvm/ADT/SmallString.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cassert>
61 #include <deque>
62 #include <memory>
63 #include <string>
64 #include <utility>
65 
66 using namespace clang;
67 using namespace ento;
68 
69 //===----------------------------------------------------------------------===//
70 // Utility functions.
71 //===----------------------------------------------------------------------===//
72 
73 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) {
74   if (B->isAdditiveOp() && B->getType()->isPointerType()) {
75     if (B->getLHS()->getType()->isPointerType()) {
76       return B->getLHS();
77     } else if (B->getRHS()->getType()->isPointerType()) {
78       return B->getRHS();
79     }
80   }
81   return nullptr;
82 }
83 
84 /// Given that expression S represents a pointer that would be dereferenced,
85 /// try to find a sub-expression from which the pointer came from.
86 /// This is used for tracking down origins of a null or undefined value:
87 /// "this is null because that is null because that is null" etc.
88 /// We wipe away field and element offsets because they merely add offsets.
89 /// We also wipe away all casts except lvalue-to-rvalue casts, because the
90 /// latter represent an actual pointer dereference; however, we remove
91 /// the final lvalue-to-rvalue cast before returning from this function
92 /// because it demonstrates more clearly from where the pointer rvalue was
93 /// loaded. Examples:
94 ///   x->y.z      ==>  x (lvalue)
95 ///   foo()->y.z  ==>  foo() (rvalue)
96 const Expr *bugreporter::getDerefExpr(const Stmt *S) {
97   const auto *E = dyn_cast<Expr>(S);
98   if (!E)
99     return nullptr;
100 
101   while (true) {
102     if (const auto *CE = dyn_cast<CastExpr>(E)) {
103       if (CE->getCastKind() == CK_LValueToRValue) {
104         // This cast represents the load we're looking for.
105         break;
106       }
107       E = CE->getSubExpr();
108     } else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
109       // Pointer arithmetic: '*(x + 2)' -> 'x') etc.
110       if (const Expr *Inner = peelOffPointerArithmetic(B)) {
111         E = Inner;
112       } else {
113         // Probably more arithmetic can be pattern-matched here,
114         // but for now give up.
115         break;
116       }
117     } else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
118       if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
119           (U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
120         // Operators '*' and '&' don't actually mean anything.
121         // We look at casts instead.
122         E = U->getSubExpr();
123       } else {
124         // Probably more arithmetic can be pattern-matched here,
125         // but for now give up.
126         break;
127       }
128     }
129     // Pattern match for a few useful cases: a[0], p->f, *p etc.
130     else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
131       E = ME->getBase();
132     } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
133       E = IvarRef->getBase();
134     } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
135       E = AE->getBase();
136     } else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
137       E = PE->getSubExpr();
138     } else if (const auto *FE = dyn_cast<FullExpr>(E)) {
139       E = FE->getSubExpr();
140     } else {
141       // Other arbitrary stuff.
142       break;
143     }
144   }
145 
146   // Special case: remove the final lvalue-to-rvalue cast, but do not recurse
147   // deeper into the sub-expression. This way we return the lvalue from which
148   // our pointer rvalue was loaded.
149   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
150     if (CE->getCastKind() == CK_LValueToRValue)
151       E = CE->getSubExpr();
152 
153   return E;
154 }
155 
156 //===----------------------------------------------------------------------===//
157 // Definitions for bug reporter visitors.
158 //===----------------------------------------------------------------------===//
159 
160 std::shared_ptr<PathDiagnosticPiece>
161 BugReporterVisitor::getEndPath(BugReporterContext &,
162                                const ExplodedNode *, BugReport &) {
163   return nullptr;
164 }
165 
166 void
167 BugReporterVisitor::finalizeVisitor(BugReporterContext &,
168                                     const ExplodedNode *, BugReport &) {}
169 
170 std::shared_ptr<PathDiagnosticPiece> BugReporterVisitor::getDefaultEndPath(
171     BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) {
172   PathDiagnosticLocation L =
173     PathDiagnosticLocation::createEndOfPath(EndPathNode,BRC.getSourceManager());
174 
175   const auto &Ranges = BR.getRanges();
176 
177   // Only add the statement itself as a range if we didn't specify any
178   // special ranges for this report.
179   auto P = std::make_shared<PathDiagnosticEventPiece>(
180       L, BR.getDescription(), Ranges.begin() == Ranges.end());
181   for (SourceRange Range : Ranges)
182     P->addRange(Range);
183 
184   return P;
185 }
186 
187 /// \return name of the macro inside the location \p Loc.
188 static StringRef getMacroName(SourceLocation Loc,
189     BugReporterContext &BRC) {
190   return Lexer::getImmediateMacroName(
191       Loc,
192       BRC.getSourceManager(),
193       BRC.getASTContext().getLangOpts());
194 }
195 
196 /// \return Whether given spelling location corresponds to an expansion
197 /// of a function-like macro.
198 static bool isFunctionMacroExpansion(SourceLocation Loc,
199                                 const SourceManager &SM) {
200   if (!Loc.isMacroID())
201     return false;
202   while (SM.isMacroArgExpansion(Loc))
203     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
204   std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
205   SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
206   const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
207   return EInfo.isFunctionMacroExpansion();
208 }
209 
210 /// \return Whether \c RegionOfInterest was modified at \p N,
211 /// where \p ReturnState is a state associated with the return
212 /// from the current frame.
213 static bool wasRegionOfInterestModifiedAt(
214         const SubRegion *RegionOfInterest,
215         const ExplodedNode *N,
216         SVal ValueAfter) {
217   ProgramStateRef State = N->getState();
218   ProgramStateManager &Mgr = N->getState()->getStateManager();
219 
220   if (!N->getLocationAs<PostStore>()
221       && !N->getLocationAs<PostInitializer>()
222       && !N->getLocationAs<PostStmt>())
223     return false;
224 
225   // Writing into region of interest.
226   if (auto PS = N->getLocationAs<PostStmt>())
227     if (auto *BO = PS->getStmtAs<BinaryOperator>())
228       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
229             N->getSVal(BO->getLHS()).getAsRegion()))
230         return true;
231 
232   // SVal after the state is possibly different.
233   SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
234   if (!Mgr.getSValBuilder().areEqual(State, ValueAtN, ValueAfter).isConstrainedTrue() &&
235       (!ValueAtN.isUndef() || !ValueAfter.isUndef()))
236     return true;
237 
238   return false;
239 }
240 
241 
242 namespace {
243 
244 /// Put a diagnostic on return statement of all inlined functions
245 /// for which  the region of interest \p RegionOfInterest was passed into,
246 /// but not written inside, and it has caused an undefined read or a null
247 /// pointer dereference outside.
248 class NoStoreFuncVisitor final : public BugReporterVisitor {
249   const SubRegion *RegionOfInterest;
250   MemRegionManager &MmrMgr;
251   const SourceManager &SM;
252   const PrintingPolicy &PP;
253 
254   /// Recursion limit for dereferencing fields when looking for the
255   /// region of interest.
256   /// The limit of two indicates that we will dereference fields only once.
257   static const unsigned DEREFERENCE_LIMIT = 2;
258 
259   /// Frames writing into \c RegionOfInterest.
260   /// This visitor generates a note only if a function does not write into
261   /// a region of interest. This information is not immediately available
262   /// by looking at the node associated with the exit from the function
263   /// (usually the return statement). To avoid recomputing the same information
264   /// many times (going up the path for each node and checking whether the
265   /// region was written into) we instead lazily compute the
266   /// stack frames along the path which write into the region of interest.
267   llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingRegion;
268   llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingCalculated;
269 
270   using RegionVector = SmallVector<const MemRegion *, 5>;
271 public:
272   NoStoreFuncVisitor(const SubRegion *R)
273       : RegionOfInterest(R), MmrMgr(*R->getMemRegionManager()),
274         SM(MmrMgr.getContext().getSourceManager()),
275         PP(MmrMgr.getContext().getPrintingPolicy()) {}
276 
277   void Profile(llvm::FoldingSetNodeID &ID) const override {
278     static int Tag = 0;
279     ID.AddPointer(&Tag);
280     ID.AddPointer(RegionOfInterest);
281   }
282 
283   std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N,
284                                                  BugReporterContext &BR,
285                                                  BugReport &) override {
286 
287     const LocationContext *Ctx = N->getLocationContext();
288     const StackFrameContext *SCtx = Ctx->getStackFrame();
289     ProgramStateRef State = N->getState();
290     auto CallExitLoc = N->getLocationAs<CallExitBegin>();
291 
292     // No diagnostic if region was modified inside the frame.
293     if (!CallExitLoc || isRegionOfInterestModifiedInFrame(N))
294       return nullptr;
295 
296     CallEventRef<> Call =
297         BR.getStateManager().getCallEventManager().getCaller(SCtx, State);
298 
299     if (SM.isInSystemHeader(Call->getDecl()->getSourceRange().getBegin()))
300       return nullptr;
301 
302     // Region of interest corresponds to an IVar, exiting a method
303     // which could have written into that IVar, but did not.
304     if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
305       if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
306         const MemRegion *SelfRegion = MC->getReceiverSVal().getAsRegion();
307         if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
308             potentiallyWritesIntoIvar(Call->getRuntimeDefinition().getDecl(),
309                                       IvarR->getDecl()))
310           return notModifiedDiagnostics(N, {}, SelfRegion, "self",
311                                         /*FirstIsReferenceType=*/false, 1);
312       }
313     }
314 
315     if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
316       const MemRegion *ThisR = CCall->getCXXThisVal().getAsRegion();
317       if (RegionOfInterest->isSubRegionOf(ThisR)
318           && !CCall->getDecl()->isImplicit())
319         return notModifiedDiagnostics(N, {}, ThisR, "this",
320                                       /*FirstIsReferenceType=*/false, 1);
321 
322       // Do not generate diagnostics for not modified parameters in
323       // constructors.
324       return nullptr;
325     }
326 
327     ArrayRef<ParmVarDecl *> parameters = getCallParameters(Call);
328     for (unsigned I = 0; I < Call->getNumArgs() && I < parameters.size(); ++I) {
329       const ParmVarDecl *PVD = parameters[I];
330       SVal S = Call->getArgSVal(I);
331       bool ParamIsReferenceType = PVD->getType()->isReferenceType();
332       std::string ParamName = PVD->getNameAsString();
333 
334       int IndirectionLevel = 1;
335       QualType T = PVD->getType();
336       while (const MemRegion *R = S.getAsRegion()) {
337         if (RegionOfInterest->isSubRegionOf(R) && !isPointerToConst(T))
338           return notModifiedDiagnostics(N, {}, R, ParamName,
339                                         ParamIsReferenceType, IndirectionLevel);
340 
341         QualType PT = T->getPointeeType();
342         if (PT.isNull() || PT->isVoidType()) break;
343 
344         if (const RecordDecl *RD = PT->getAsRecordDecl())
345           if (auto P = findRegionOfInterestInRecord(RD, State, R))
346             return notModifiedDiagnostics(N, *P, RegionOfInterest, ParamName,
347                                           ParamIsReferenceType,
348                                           IndirectionLevel);
349 
350         S = State->getSVal(R, PT);
351         T = PT;
352         IndirectionLevel++;
353       }
354     }
355 
356     return nullptr;
357   }
358 
359 private:
360   /// Attempts to find the region of interest in a given CXX decl,
361   /// by either following the base classes or fields.
362   /// Dereferences fields up to a given recursion limit.
363   /// Note that \p Vec is passed by value, leading to quadratic copying cost,
364   /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
365   /// \return A chain fields leading to the region of interest or None.
366   const Optional<RegionVector>
367   findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State,
368                                const MemRegion *R,
369                                const RegionVector &Vec = {},
370                                int depth = 0) {
371 
372     if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
373       return None;
374 
375     if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
376       if (!RDX->hasDefinition())
377         return None;
378 
379     // Recursively examine the base classes.
380     // Note that following base classes does not increase the recursion depth.
381     if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
382       for (const auto II : RDX->bases())
383         if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
384           if (auto Out = findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
385             return Out;
386 
387     for (const FieldDecl *I : RD->fields()) {
388       QualType FT = I->getType();
389       const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
390       const SVal V = State->getSVal(FR);
391       const MemRegion *VR = V.getAsRegion();
392 
393       RegionVector VecF = Vec;
394       VecF.push_back(FR);
395 
396       if (RegionOfInterest == VR)
397         return VecF;
398 
399       if (const RecordDecl *RRD = FT->getAsRecordDecl())
400         if (auto Out =
401                 findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
402           return Out;
403 
404       QualType PT = FT->getPointeeType();
405       if (PT.isNull() || PT->isVoidType() || !VR) continue;
406 
407       if (const RecordDecl *RRD = PT->getAsRecordDecl())
408         if (auto Out =
409                 findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
410           return Out;
411 
412     }
413 
414     return None;
415   }
416 
417   /// \return Whether the method declaration \p Parent
418   /// syntactically has a binary operation writing into the ivar \p Ivar.
419   bool potentiallyWritesIntoIvar(const Decl *Parent,
420                                  const ObjCIvarDecl *Ivar) {
421     using namespace ast_matchers;
422     const char * IvarBind = "Ivar";
423     if (!Parent || !Parent->hasBody())
424       return false;
425     StatementMatcher WriteIntoIvarM = binaryOperator(
426         hasOperatorName("="),
427         hasLHS(ignoringParenImpCasts(
428             objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
429     StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
430     auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
431     for (BoundNodes &Match : Matches) {
432       auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
433       if (IvarRef->isFreeIvar())
434         return true;
435 
436       const Expr *Base = IvarRef->getBase();
437       if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
438         Base = ICE->getSubExpr();
439 
440       if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
441         if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
442           if (ID->getParameterKind() == ImplicitParamDecl::ObjCSelf)
443             return true;
444 
445       return false;
446     }
447     return false;
448   }
449 
450   /// Check and lazily calculate whether the region of interest is
451   /// modified in the stack frame to which \p N belongs.
452   /// The calculation is cached in FramesModifyingRegion.
453   bool isRegionOfInterestModifiedInFrame(const ExplodedNode *N) {
454     const LocationContext *Ctx = N->getLocationContext();
455     const StackFrameContext *SCtx = Ctx->getStackFrame();
456     if (!FramesModifyingCalculated.count(SCtx))
457       findModifyingFrames(N);
458     return FramesModifyingRegion.count(SCtx);
459   }
460 
461 
462   /// Write to \c FramesModifyingRegion all stack frames along
463   /// the path in the current stack frame which modify \c RegionOfInterest.
464   void findModifyingFrames(const ExplodedNode *N) {
465     assert(N->getLocationAs<CallExitBegin>());
466     ProgramStateRef LastReturnState = N->getState();
467     SVal ValueAtReturn = LastReturnState->getSVal(RegionOfInterest);
468     const LocationContext *Ctx = N->getLocationContext();
469     const StackFrameContext *OriginalSCtx = Ctx->getStackFrame();
470 
471     do {
472       ProgramStateRef State = N->getState();
473       auto CallExitLoc = N->getLocationAs<CallExitBegin>();
474       if (CallExitLoc) {
475         LastReturnState = State;
476         ValueAtReturn = LastReturnState->getSVal(RegionOfInterest);
477       }
478 
479       FramesModifyingCalculated.insert(
480         N->getLocationContext()->getStackFrame());
481 
482       if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtReturn)) {
483         const StackFrameContext *SCtx = N->getStackFrame();
484         while (!SCtx->inTopFrame()) {
485           auto p = FramesModifyingRegion.insert(SCtx);
486           if (!p.second)
487             break; // Frame and all its parents already inserted.
488           SCtx = SCtx->getParent()->getStackFrame();
489         }
490       }
491 
492       // Stop calculation at the call to the current function.
493       if (auto CE = N->getLocationAs<CallEnter>())
494         if (CE->getCalleeContext() == OriginalSCtx)
495           break;
496 
497       N = N->getFirstPred();
498     } while (N);
499   }
500 
501   /// Get parameters associated with runtime definition in order
502   /// to get the correct parameter name.
503   ArrayRef<ParmVarDecl *> getCallParameters(CallEventRef<> Call) {
504     // Use runtime definition, if available.
505     RuntimeDefinition RD = Call->getRuntimeDefinition();
506     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(RD.getDecl()))
507       return FD->parameters();
508     if (const auto *MD = dyn_cast_or_null<ObjCMethodDecl>(RD.getDecl()))
509       return MD->parameters();
510 
511     return Call->parameters();
512   }
513 
514   /// \return whether \p Ty points to a const type, or is a const reference.
515   bool isPointerToConst(QualType Ty) {
516     return !Ty->getPointeeType().isNull() &&
517            Ty->getPointeeType().getCanonicalType().isConstQualified();
518   }
519 
520   /// \return Diagnostics piece for region not modified in the current function.
521   std::shared_ptr<PathDiagnosticPiece>
522   notModifiedDiagnostics(const ExplodedNode *N, const RegionVector &FieldChain,
523                          const MemRegion *MatchedRegion, StringRef FirstElement,
524                          bool FirstIsReferenceType, unsigned IndirectionLevel) {
525 
526     PathDiagnosticLocation L =
527         PathDiagnosticLocation::create(N->getLocation(), SM);
528 
529     SmallString<256> sbuf;
530     llvm::raw_svector_ostream os(sbuf);
531     os << "Returning without writing to '";
532 
533     // Do not generate the note if failed to pretty-print.
534     if (!prettyPrintRegionName(FirstElement, FirstIsReferenceType,
535                                MatchedRegion, FieldChain, IndirectionLevel, os))
536       return nullptr;
537 
538     os << "'";
539     return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
540   }
541 
542   /// Pretty-print region \p MatchedRegion to \p os.
543   /// \return Whether printing succeeded.
544   bool prettyPrintRegionName(StringRef FirstElement, bool FirstIsReferenceType,
545                              const MemRegion *MatchedRegion,
546                              const RegionVector &FieldChain,
547                              int IndirectionLevel,
548                              llvm::raw_svector_ostream &os) {
549 
550     if (FirstIsReferenceType)
551       IndirectionLevel--;
552 
553     RegionVector RegionSequence;
554 
555     // Add the regions in the reverse order, then reverse the resulting array.
556     assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
557     const MemRegion *R = RegionOfInterest;
558     while (R != MatchedRegion) {
559       RegionSequence.push_back(R);
560       R = cast<SubRegion>(R)->getSuperRegion();
561     }
562     std::reverse(RegionSequence.begin(), RegionSequence.end());
563     RegionSequence.append(FieldChain.begin(), FieldChain.end());
564 
565     StringRef Sep;
566     for (const MemRegion *R : RegionSequence) {
567 
568       // Just keep going up to the base region.
569       // Element regions may appear due to casts.
570       if (isa<CXXBaseObjectRegion>(R) || isa<CXXTempObjectRegion>(R))
571         continue;
572 
573       if (Sep.empty())
574         Sep = prettyPrintFirstElement(FirstElement,
575                                       /*MoreItemsExpected=*/true,
576                                       IndirectionLevel, os);
577 
578       os << Sep;
579 
580       // Can only reasonably pretty-print DeclRegions.
581       if (!isa<DeclRegion>(R))
582         return false;
583 
584       const auto *DR = cast<DeclRegion>(R);
585       Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
586       DR->getDecl()->getDeclName().print(os, PP);
587     }
588 
589     if (Sep.empty())
590       prettyPrintFirstElement(FirstElement,
591                               /*MoreItemsExpected=*/false, IndirectionLevel,
592                               os);
593     return true;
594   }
595 
596   /// Print first item in the chain, return new separator.
597   StringRef prettyPrintFirstElement(StringRef FirstElement,
598                        bool MoreItemsExpected,
599                        int IndirectionLevel,
600                        llvm::raw_svector_ostream &os) {
601     StringRef Out = ".";
602 
603     if (IndirectionLevel > 0 && MoreItemsExpected) {
604       IndirectionLevel--;
605       Out = "->";
606     }
607 
608     if (IndirectionLevel > 0 && MoreItemsExpected)
609       os << "(";
610 
611     for (int i=0; i<IndirectionLevel; i++)
612       os << "*";
613     os << FirstElement;
614 
615     if (IndirectionLevel > 0 && MoreItemsExpected)
616       os << ")";
617 
618     return Out;
619   }
620 };
621 
622 /// Suppress null-pointer-dereference bugs where dereferenced null was returned
623 /// the macro.
624 class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
625   const SubRegion *RegionOfInterest;
626   const SVal ValueAtDereference;
627 
628   // Do not invalidate the reports where the value was modified
629   // after it got assigned to from the macro.
630   bool WasModified = false;
631 
632 public:
633   MacroNullReturnSuppressionVisitor(const SubRegion *R,
634                                     const SVal V) : RegionOfInterest(R),
635                                                     ValueAtDereference(V) {}
636 
637   std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N,
638                                                  BugReporterContext &BRC,
639                                                  BugReport &BR) override {
640     if (WasModified)
641       return nullptr;
642 
643     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
644     if (!BugPoint)
645       return nullptr;
646 
647     const SourceManager &SMgr = BRC.getSourceManager();
648     if (auto Loc = matchAssignment(N)) {
649       if (isFunctionMacroExpansion(*Loc, SMgr)) {
650         std::string MacroName = getMacroName(*Loc, BRC);
651         SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
652         if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
653           BR.markInvalid(getTag(), MacroName.c_str());
654       }
655     }
656 
657     if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
658       WasModified = true;
659 
660     return nullptr;
661   }
662 
663   static void addMacroVisitorIfNecessary(
664         const ExplodedNode *N, const MemRegion *R,
665         bool EnableNullFPSuppression, BugReport &BR,
666         const SVal V) {
667     AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
668     if (EnableNullFPSuppression &&
669         Options.ShouldSuppressNullReturnPaths && V.getAs<Loc>())
670       BR.addVisitor(llvm::make_unique<MacroNullReturnSuppressionVisitor>(
671               R->getAs<SubRegion>(), V));
672   }
673 
674   void* getTag() const {
675     static int Tag = 0;
676     return static_cast<void *>(&Tag);
677   }
678 
679   void Profile(llvm::FoldingSetNodeID &ID) const override {
680     ID.AddPointer(getTag());
681   }
682 
683 private:
684   /// \return Source location of right hand side of an assignment
685   /// into \c RegionOfInterest, empty optional if none found.
686   Optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
687     const Stmt *S = PathDiagnosticLocation::getStmt(N);
688     ProgramStateRef State = N->getState();
689     auto *LCtx = N->getLocationContext();
690     if (!S)
691       return None;
692 
693     if (const auto *DS = dyn_cast<DeclStmt>(S)) {
694       if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
695         if (const Expr *RHS = VD->getInit())
696           if (RegionOfInterest->isSubRegionOf(
697                   State->getLValue(VD, LCtx).getAsRegion()))
698             return RHS->getBeginLoc();
699     } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
700       const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
701       const Expr *RHS = BO->getRHS();
702       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
703         return RHS->getBeginLoc();
704       }
705     }
706     return None;
707   }
708 };
709 
710 /// Emits an extra note at the return statement of an interesting stack frame.
711 ///
712 /// The returned value is marked as an interesting value, and if it's null,
713 /// adds a visitor to track where it became null.
714 ///
715 /// This visitor is intended to be used when another visitor discovers that an
716 /// interesting value comes from an inlined function call.
717 class ReturnVisitor : public BugReporterVisitor {
718   const StackFrameContext *StackFrame;
719   enum {
720     Initial,
721     MaybeUnsuppress,
722     Satisfied
723   } Mode = Initial;
724 
725   bool EnableNullFPSuppression;
726   bool ShouldInvalidate = true;
727   AnalyzerOptions& Options;
728 
729 public:
730   ReturnVisitor(const StackFrameContext *Frame,
731                 bool Suppressed,
732                 AnalyzerOptions &Options)
733       : StackFrame(Frame), EnableNullFPSuppression(Suppressed),
734         Options(Options) {}
735 
736   static void *getTag() {
737     static int Tag = 0;
738     return static_cast<void *>(&Tag);
739   }
740 
741   void Profile(llvm::FoldingSetNodeID &ID) const override {
742     ID.AddPointer(ReturnVisitor::getTag());
743     ID.AddPointer(StackFrame);
744     ID.AddBoolean(EnableNullFPSuppression);
745   }
746 
747   /// Adds a ReturnVisitor if the given statement represents a call that was
748   /// inlined.
749   ///
750   /// This will search back through the ExplodedGraph, starting from the given
751   /// node, looking for when the given statement was processed. If it turns out
752   /// the statement is a call that was inlined, we add the visitor to the
753   /// bug report, so it can print a note later.
754   static void addVisitorIfNecessary(const ExplodedNode *Node, const Stmt *S,
755                                     BugReport &BR,
756                                     bool InEnableNullFPSuppression) {
757     if (!CallEvent::isCallStmt(S))
758       return;
759 
760     // First, find when we processed the statement.
761     do {
762       if (auto CEE = Node->getLocationAs<CallExitEnd>())
763         if (CEE->getCalleeContext()->getCallSite() == S)
764           break;
765       if (auto SP = Node->getLocationAs<StmtPoint>())
766         if (SP->getStmt() == S)
767           break;
768 
769       Node = Node->getFirstPred();
770     } while (Node);
771 
772     // Next, step over any post-statement checks.
773     while (Node && Node->getLocation().getAs<PostStmt>())
774       Node = Node->getFirstPred();
775     if (!Node)
776       return;
777 
778     // Finally, see if we inlined the call.
779     Optional<CallExitEnd> CEE = Node->getLocationAs<CallExitEnd>();
780     if (!CEE)
781       return;
782 
783     const StackFrameContext *CalleeContext = CEE->getCalleeContext();
784     if (CalleeContext->getCallSite() != S)
785       return;
786 
787     // Check the return value.
788     ProgramStateRef State = Node->getState();
789     SVal RetVal = Node->getSVal(S);
790 
791     // Handle cases where a reference is returned and then immediately used.
792     if (cast<Expr>(S)->isGLValue())
793       if (Optional<Loc> LValue = RetVal.getAs<Loc>())
794         RetVal = State->getSVal(*LValue);
795 
796     // See if the return value is NULL. If so, suppress the report.
797     AnalyzerOptions &Options = State->getAnalysisManager().options;
798 
799     bool EnableNullFPSuppression = false;
800     if (InEnableNullFPSuppression &&
801         Options.ShouldSuppressNullReturnPaths)
802       if (Optional<Loc> RetLoc = RetVal.getAs<Loc>())
803         EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
804 
805     BR.markInteresting(CalleeContext);
806     BR.addVisitor(llvm::make_unique<ReturnVisitor>(CalleeContext,
807                                                    EnableNullFPSuppression,
808                                                    Options));
809   }
810 
811   std::shared_ptr<PathDiagnosticPiece>
812   visitNodeInitial(const ExplodedNode *N,
813                    BugReporterContext &BRC, BugReport &BR) {
814     // Only print a message at the interesting return statement.
815     if (N->getLocationContext() != StackFrame)
816       return nullptr;
817 
818     Optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
819     if (!SP)
820       return nullptr;
821 
822     const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
823     if (!Ret)
824       return nullptr;
825 
826     // Okay, we're at the right return statement, but do we have the return
827     // value available?
828     ProgramStateRef State = N->getState();
829     SVal V = State->getSVal(Ret, StackFrame);
830     if (V.isUnknownOrUndef())
831       return nullptr;
832 
833     // Don't print any more notes after this one.
834     Mode = Satisfied;
835 
836     const Expr *RetE = Ret->getRetValue();
837     assert(RetE && "Tracking a return value for a void function");
838 
839     // Handle cases where a reference is returned and then immediately used.
840     Optional<Loc> LValue;
841     if (RetE->isGLValue()) {
842       if ((LValue = V.getAs<Loc>())) {
843         SVal RValue = State->getRawSVal(*LValue, RetE->getType());
844         if (RValue.getAs<DefinedSVal>())
845           V = RValue;
846       }
847     }
848 
849     // Ignore aggregate rvalues.
850     if (V.getAs<nonloc::LazyCompoundVal>() ||
851         V.getAs<nonloc::CompoundVal>())
852       return nullptr;
853 
854     RetE = RetE->IgnoreParenCasts();
855 
856     // If we're returning 0, we should track where that 0 came from.
857     bugreporter::trackExpressionValue(N, RetE, BR, EnableNullFPSuppression);
858 
859     // Build an appropriate message based on the return value.
860     SmallString<64> Msg;
861     llvm::raw_svector_ostream Out(Msg);
862 
863     if (State->isNull(V).isConstrainedTrue()) {
864       if (V.getAs<Loc>()) {
865 
866         // If we have counter-suppression enabled, make sure we keep visiting
867         // future nodes. We want to emit a path note as well, in case
868         // the report is resurrected as valid later on.
869         if (EnableNullFPSuppression &&
870             Options.ShouldAvoidSuppressingNullArgumentPaths)
871           Mode = MaybeUnsuppress;
872 
873         if (RetE->getType()->isObjCObjectPointerType()) {
874           Out << "Returning nil";
875         } else {
876           Out << "Returning null pointer";
877         }
878       } else {
879         Out << "Returning zero";
880       }
881 
882     } else {
883       if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
884         Out << "Returning the value " << CI->getValue();
885       } else if (V.getAs<Loc>()) {
886         Out << "Returning pointer";
887       } else {
888         Out << "Returning value";
889       }
890     }
891 
892     if (LValue) {
893       if (const MemRegion *MR = LValue->getAsRegion()) {
894         if (MR->canPrintPretty()) {
895           Out << " (reference to ";
896           MR->printPretty(Out);
897           Out << ")";
898         }
899       }
900     } else {
901       // FIXME: We should have a more generalized location printing mechanism.
902       if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
903         if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
904           Out << " (loaded from '" << *DD << "')";
905     }
906 
907     PathDiagnosticLocation L(Ret, BRC.getSourceManager(), StackFrame);
908     if (!L.isValid() || !L.asLocation().isValid())
909       return nullptr;
910 
911     return std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
912   }
913 
914   std::shared_ptr<PathDiagnosticPiece>
915   visitNodeMaybeUnsuppress(const ExplodedNode *N,
916                            BugReporterContext &BRC, BugReport &BR) {
917 #ifndef NDEBUG
918     assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
919 #endif
920 
921     // Are we at the entry node for this call?
922     Optional<CallEnter> CE = N->getLocationAs<CallEnter>();
923     if (!CE)
924       return nullptr;
925 
926     if (CE->getCalleeContext() != StackFrame)
927       return nullptr;
928 
929     Mode = Satisfied;
930 
931     // Don't automatically suppress a report if one of the arguments is
932     // known to be a null pointer. Instead, start tracking /that/ null
933     // value back to its origin.
934     ProgramStateManager &StateMgr = BRC.getStateManager();
935     CallEventManager &CallMgr = StateMgr.getCallEventManager();
936 
937     ProgramStateRef State = N->getState();
938     CallEventRef<> Call = CallMgr.getCaller(StackFrame, State);
939     for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
940       Optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
941       if (!ArgV)
942         continue;
943 
944       const Expr *ArgE = Call->getArgExpr(I);
945       if (!ArgE)
946         continue;
947 
948       // Is it possible for this argument to be non-null?
949       if (!State->isNull(*ArgV).isConstrainedTrue())
950         continue;
951 
952       if (bugreporter::trackExpressionValue(N, ArgE, BR, EnableNullFPSuppression))
953         ShouldInvalidate = false;
954 
955       // If we /can't/ track the null pointer, we should err on the side of
956       // false negatives, and continue towards marking this report invalid.
957       // (We will still look at the other arguments, though.)
958     }
959 
960     return nullptr;
961   }
962 
963   std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N,
964                                                  BugReporterContext &BRC,
965                                                  BugReport &BR) override {
966     switch (Mode) {
967     case Initial:
968       return visitNodeInitial(N, BRC, BR);
969     case MaybeUnsuppress:
970       return visitNodeMaybeUnsuppress(N, BRC, BR);
971     case Satisfied:
972       return nullptr;
973     }
974 
975     llvm_unreachable("Invalid visit mode!");
976   }
977 
978   void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
979                        BugReport &BR) override {
980     if (EnableNullFPSuppression && ShouldInvalidate)
981       BR.markInvalid(ReturnVisitor::getTag(), StackFrame);
982   }
983 };
984 
985 } // namespace
986 
987 void FindLastStoreBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
988   static int tag = 0;
989   ID.AddPointer(&tag);
990   ID.AddPointer(R);
991   ID.Add(V);
992   ID.AddBoolean(EnableNullFPSuppression);
993 }
994 
995 /// Returns true if \p N represents the DeclStmt declaring and initializing
996 /// \p VR.
997 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
998   Optional<PostStmt> P = N->getLocationAs<PostStmt>();
999   if (!P)
1000     return false;
1001 
1002   const DeclStmt *DS = P->getStmtAs<DeclStmt>();
1003   if (!DS)
1004     return false;
1005 
1006   if (DS->getSingleDecl() != VR->getDecl())
1007     return false;
1008 
1009   const MemSpaceRegion *VarSpace = VR->getMemorySpace();
1010   const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
1011   if (!FrameSpace) {
1012     // If we ever directly evaluate global DeclStmts, this assertion will be
1013     // invalid, but this still seems preferable to silently accepting an
1014     // initialization that may be for a path-sensitive variable.
1015     assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
1016     return true;
1017   }
1018 
1019   assert(VR->getDecl()->hasLocalStorage());
1020   const LocationContext *LCtx = N->getLocationContext();
1021   return FrameSpace->getStackFrame() == LCtx->getStackFrame();
1022 }
1023 
1024 /// Show diagnostics for initializing or declaring a region \p R with a bad value.
1025 static void showBRDiagnostics(const char *action, llvm::raw_svector_ostream &os,
1026                               const MemRegion *R, SVal V, const DeclStmt *DS) {
1027   if (R->canPrintPretty()) {
1028     R->printPretty(os);
1029     os << " ";
1030   }
1031 
1032   if (V.getAs<loc::ConcreteInt>()) {
1033     bool b = false;
1034     if (R->isBoundable()) {
1035       if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
1036         if (TR->getValueType()->isObjCObjectPointerType()) {
1037           os << action << "nil";
1038           b = true;
1039         }
1040       }
1041     }
1042     if (!b)
1043       os << action << "a null pointer value";
1044 
1045   } else if (auto CVal = V.getAs<nonloc::ConcreteInt>()) {
1046     os << action << CVal->getValue();
1047   } else if (DS) {
1048     if (V.isUndef()) {
1049       if (isa<VarRegion>(R)) {
1050         const auto *VD = cast<VarDecl>(DS->getSingleDecl());
1051         if (VD->getInit()) {
1052           os << (R->canPrintPretty() ? "initialized" : "Initializing")
1053             << " to a garbage value";
1054         } else {
1055           os << (R->canPrintPretty() ? "declared" : "Declaring")
1056             << " without an initial value";
1057         }
1058       }
1059     } else {
1060       os << (R->canPrintPretty() ? "initialized" : "Initialized")
1061         << " here";
1062     }
1063   }
1064 }
1065 
1066 /// Display diagnostics for passing bad region as a parameter.
1067 static void showBRParamDiagnostics(llvm::raw_svector_ostream& os,
1068     const VarRegion *VR,
1069     SVal V) {
1070   const auto *Param = cast<ParmVarDecl>(VR->getDecl());
1071 
1072   os << "Passing ";
1073 
1074   if (V.getAs<loc::ConcreteInt>()) {
1075     if (Param->getType()->isObjCObjectPointerType())
1076       os << "nil object reference";
1077     else
1078       os << "null pointer value";
1079   } else if (V.isUndef()) {
1080     os << "uninitialized value";
1081   } else if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1082     os << "the value " << CI->getValue();
1083   } else {
1084     os << "value";
1085   }
1086 
1087   // Printed parameter indexes are 1-based, not 0-based.
1088   unsigned Idx = Param->getFunctionScopeIndex() + 1;
1089   os << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
1090   if (VR->canPrintPretty()) {
1091     os << " ";
1092     VR->printPretty(os);
1093   }
1094 }
1095 
1096 /// Show default diagnostics for storing bad region.
1097 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream& os,
1098     const MemRegion *R,
1099     SVal V) {
1100   if (V.getAs<loc::ConcreteInt>()) {
1101     bool b = false;
1102     if (R->isBoundable()) {
1103       if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
1104         if (TR->getValueType()->isObjCObjectPointerType()) {
1105           os << "nil object reference stored";
1106           b = true;
1107         }
1108       }
1109     }
1110     if (!b) {
1111       if (R->canPrintPretty())
1112         os << "Null pointer value stored";
1113       else
1114         os << "Storing null pointer value";
1115     }
1116 
1117   } else if (V.isUndef()) {
1118     if (R->canPrintPretty())
1119       os << "Uninitialized value stored";
1120     else
1121       os << "Storing uninitialized value";
1122 
1123   } else if (auto CV = V.getAs<nonloc::ConcreteInt>()) {
1124     if (R->canPrintPretty())
1125       os << "The value " << CV->getValue() << " is assigned";
1126     else
1127       os << "Assigning " << CV->getValue();
1128 
1129   } else {
1130     if (R->canPrintPretty())
1131       os << "Value assigned";
1132     else
1133       os << "Assigning value";
1134   }
1135 
1136   if (R->canPrintPretty()) {
1137     os << " to ";
1138     R->printPretty(os);
1139   }
1140 }
1141 
1142 std::shared_ptr<PathDiagnosticPiece>
1143 FindLastStoreBRVisitor::VisitNode(const ExplodedNode *Succ,
1144                                   BugReporterContext &BRC, BugReport &BR) {
1145   if (Satisfied)
1146     return nullptr;
1147 
1148   const ExplodedNode *StoreSite = nullptr;
1149   const ExplodedNode *Pred = Succ->getFirstPred();
1150   const Expr *InitE = nullptr;
1151   bool IsParam = false;
1152 
1153   // First see if we reached the declaration of the region.
1154   if (const auto *VR = dyn_cast<VarRegion>(R)) {
1155     if (isInitializationOfVar(Pred, VR)) {
1156       StoreSite = Pred;
1157       InitE = VR->getDecl()->getInit();
1158     }
1159   }
1160 
1161   // If this is a post initializer expression, initializing the region, we
1162   // should track the initializer expression.
1163   if (Optional<PostInitializer> PIP = Pred->getLocationAs<PostInitializer>()) {
1164     const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
1165     if (FieldReg && FieldReg == R) {
1166       StoreSite = Pred;
1167       InitE = PIP->getInitializer()->getInit();
1168     }
1169   }
1170 
1171   // Otherwise, see if this is the store site:
1172   // (1) Succ has this binding and Pred does not, i.e. this is
1173   //     where the binding first occurred.
1174   // (2) Succ has this binding and is a PostStore node for this region, i.e.
1175   //     the same binding was re-assigned here.
1176   if (!StoreSite) {
1177     if (Succ->getState()->getSVal(R) != V)
1178       return nullptr;
1179 
1180     if (Pred->getState()->getSVal(R) == V) {
1181       Optional<PostStore> PS = Succ->getLocationAs<PostStore>();
1182       if (!PS || PS->getLocationValue() != R)
1183         return nullptr;
1184     }
1185 
1186     StoreSite = Succ;
1187 
1188     // If this is an assignment expression, we can track the value
1189     // being assigned.
1190     if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>())
1191       if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>())
1192         if (BO->isAssignmentOp())
1193           InitE = BO->getRHS();
1194 
1195     // If this is a call entry, the variable should be a parameter.
1196     // FIXME: Handle CXXThisRegion as well. (This is not a priority because
1197     // 'this' should never be NULL, but this visitor isn't just for NULL and
1198     // UndefinedVal.)
1199     if (Optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
1200       if (const auto *VR = dyn_cast<VarRegion>(R)) {
1201         const auto *Param = cast<ParmVarDecl>(VR->getDecl());
1202 
1203         ProgramStateManager &StateMgr = BRC.getStateManager();
1204         CallEventManager &CallMgr = StateMgr.getCallEventManager();
1205 
1206         CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
1207                                                 Succ->getState());
1208         InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
1209         IsParam = true;
1210       }
1211     }
1212 
1213     // If this is a CXXTempObjectRegion, the Expr responsible for its creation
1214     // is wrapped inside of it.
1215     if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
1216       InitE = TmpR->getExpr();
1217   }
1218 
1219   if (!StoreSite)
1220     return nullptr;
1221   Satisfied = true;
1222 
1223   // If we have an expression that provided the value, try to track where it
1224   // came from.
1225   if (InitE) {
1226     if (V.isUndef() ||
1227         V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) {
1228       if (!IsParam)
1229         InitE = InitE->IgnoreParenCasts();
1230       bugreporter::trackExpressionValue(StoreSite, InitE, BR,
1231                                    EnableNullFPSuppression);
1232     }
1233     ReturnVisitor::addVisitorIfNecessary(StoreSite, InitE->IgnoreParenCasts(),
1234                                          BR, EnableNullFPSuppression);
1235   }
1236 
1237   // Okay, we've found the binding. Emit an appropriate message.
1238   SmallString<256> sbuf;
1239   llvm::raw_svector_ostream os(sbuf);
1240 
1241   if (Optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
1242     const Stmt *S = PS->getStmt();
1243     const char *action = nullptr;
1244     const auto *DS = dyn_cast<DeclStmt>(S);
1245     const auto *VR = dyn_cast<VarRegion>(R);
1246 
1247     if (DS) {
1248       action = R->canPrintPretty() ? "initialized to " :
1249                                      "Initializing to ";
1250     } else if (isa<BlockExpr>(S)) {
1251       action = R->canPrintPretty() ? "captured by block as " :
1252                                      "Captured by block as ";
1253       if (VR) {
1254         // See if we can get the BlockVarRegion.
1255         ProgramStateRef State = StoreSite->getState();
1256         SVal V = StoreSite->getSVal(S);
1257         if (const auto *BDR =
1258               dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
1259           if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
1260             if (auto KV = State->getSVal(OriginalR).getAs<KnownSVal>())
1261               BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
1262                   *KV, OriginalR, EnableNullFPSuppression));
1263           }
1264         }
1265       }
1266     }
1267     if (action)
1268       showBRDiagnostics(action, os, R, V, DS);
1269 
1270   } else if (StoreSite->getLocation().getAs<CallEnter>()) {
1271     if (const auto *VR = dyn_cast<VarRegion>(R))
1272       showBRParamDiagnostics(os, VR, V);
1273   }
1274 
1275   if (os.str().empty())
1276     showBRDefaultDiagnostics(os, R, V);
1277 
1278   // Construct a new PathDiagnosticPiece.
1279   ProgramPoint P = StoreSite->getLocation();
1280   PathDiagnosticLocation L;
1281   if (P.getAs<CallEnter>() && InitE)
1282     L = PathDiagnosticLocation(InitE, BRC.getSourceManager(),
1283                                P.getLocationContext());
1284 
1285   if (!L.isValid() || !L.asLocation().isValid())
1286     L = PathDiagnosticLocation::create(P, BRC.getSourceManager());
1287 
1288   if (!L.isValid() || !L.asLocation().isValid())
1289     return nullptr;
1290 
1291   return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
1292 }
1293 
1294 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1295   static int tag = 0;
1296   ID.AddPointer(&tag);
1297   ID.AddBoolean(Assumption);
1298   ID.Add(Constraint);
1299 }
1300 
1301 /// Return the tag associated with this visitor.  This tag will be used
1302 /// to make all PathDiagnosticPieces created by this visitor.
1303 const char *TrackConstraintBRVisitor::getTag() {
1304   return "TrackConstraintBRVisitor";
1305 }
1306 
1307 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
1308   if (IsZeroCheck)
1309     return N->getState()->isNull(Constraint).isUnderconstrained();
1310   return (bool)N->getState()->assume(Constraint, !Assumption);
1311 }
1312 
1313 std::shared_ptr<PathDiagnosticPiece>
1314 TrackConstraintBRVisitor::VisitNode(const ExplodedNode *N,
1315                                     BugReporterContext &BRC, BugReport &) {
1316   const ExplodedNode *PrevN = N->getFirstPred();
1317   if (IsSatisfied)
1318     return nullptr;
1319 
1320   // Start tracking after we see the first state in which the value is
1321   // constrained.
1322   if (!IsTrackingTurnedOn)
1323     if (!isUnderconstrained(N))
1324       IsTrackingTurnedOn = true;
1325   if (!IsTrackingTurnedOn)
1326     return nullptr;
1327 
1328   // Check if in the previous state it was feasible for this constraint
1329   // to *not* be true.
1330   if (isUnderconstrained(PrevN)) {
1331     IsSatisfied = true;
1332 
1333     // As a sanity check, make sure that the negation of the constraint
1334     // was infeasible in the current state.  If it is feasible, we somehow
1335     // missed the transition point.
1336     assert(!isUnderconstrained(N));
1337 
1338     // We found the transition point for the constraint.  We now need to
1339     // pretty-print the constraint. (work-in-progress)
1340     SmallString<64> sbuf;
1341     llvm::raw_svector_ostream os(sbuf);
1342 
1343     if (Constraint.getAs<Loc>()) {
1344       os << "Assuming pointer value is ";
1345       os << (Assumption ? "non-null" : "null");
1346     }
1347 
1348     if (os.str().empty())
1349       return nullptr;
1350 
1351     // Construct a new PathDiagnosticPiece.
1352     ProgramPoint P = N->getLocation();
1353     PathDiagnosticLocation L =
1354       PathDiagnosticLocation::create(P, BRC.getSourceManager());
1355     if (!L.isValid())
1356       return nullptr;
1357 
1358     auto X = std::make_shared<PathDiagnosticEventPiece>(L, os.str());
1359     X->setTag(getTag());
1360     return std::move(X);
1361   }
1362 
1363   return nullptr;
1364 }
1365 
1366 SuppressInlineDefensiveChecksVisitor::
1367 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N)
1368     : V(Value) {
1369   // Check if the visitor is disabled.
1370   AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
1371   if (!Options.ShouldSuppressInlinedDefensiveChecks)
1372     IsSatisfied = true;
1373 
1374   assert(N->getState()->isNull(V).isConstrainedTrue() &&
1375          "The visitor only tracks the cases where V is constrained to 0");
1376 }
1377 
1378 void SuppressInlineDefensiveChecksVisitor::Profile(
1379     llvm::FoldingSetNodeID &ID) const {
1380   static int id = 0;
1381   ID.AddPointer(&id);
1382   ID.Add(V);
1383 }
1384 
1385 const char *SuppressInlineDefensiveChecksVisitor::getTag() {
1386   return "IDCVisitor";
1387 }
1388 
1389 std::shared_ptr<PathDiagnosticPiece>
1390 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ,
1391                                                 BugReporterContext &BRC,
1392                                                 BugReport &BR) {
1393   const ExplodedNode *Pred = Succ->getFirstPred();
1394   if (IsSatisfied)
1395     return nullptr;
1396 
1397   // Start tracking after we see the first state in which the value is null.
1398   if (!IsTrackingTurnedOn)
1399     if (Succ->getState()->isNull(V).isConstrainedTrue())
1400       IsTrackingTurnedOn = true;
1401   if (!IsTrackingTurnedOn)
1402     return nullptr;
1403 
1404   // Check if in the previous state it was feasible for this value
1405   // to *not* be null.
1406   if (!Pred->getState()->isNull(V).isConstrainedTrue()) {
1407     IsSatisfied = true;
1408 
1409     assert(Succ->getState()->isNull(V).isConstrainedTrue());
1410 
1411     // Check if this is inlined defensive checks.
1412     const LocationContext *CurLC =Succ->getLocationContext();
1413     const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
1414     if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
1415       BR.markInvalid("Suppress IDC", CurLC);
1416       return nullptr;
1417     }
1418 
1419     // Treat defensive checks in function-like macros as if they were an inlined
1420     // defensive check. If the bug location is not in a macro and the
1421     // terminator for the current location is in a macro then suppress the
1422     // warning.
1423     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
1424 
1425     if (!BugPoint)
1426       return nullptr;
1427 
1428     ProgramPoint CurPoint = Succ->getLocation();
1429     const Stmt *CurTerminatorStmt = nullptr;
1430     if (auto BE = CurPoint.getAs<BlockEdge>()) {
1431       CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
1432     } else if (auto SP = CurPoint.getAs<StmtPoint>()) {
1433       const Stmt *CurStmt = SP->getStmt();
1434       if (!CurStmt->getBeginLoc().isMacroID())
1435         return nullptr;
1436 
1437       CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap();
1438       CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminator();
1439     } else {
1440       return nullptr;
1441     }
1442 
1443     if (!CurTerminatorStmt)
1444       return nullptr;
1445 
1446     SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
1447     if (TerminatorLoc.isMacroID()) {
1448       SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
1449 
1450       // Suppress reports unless we are in that same macro.
1451       if (!BugLoc.isMacroID() ||
1452           getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
1453         BR.markInvalid("Suppress Macro IDC", CurLC);
1454       }
1455       return nullptr;
1456     }
1457   }
1458   return nullptr;
1459 }
1460 
1461 static const MemRegion *getLocationRegionIfReference(const Expr *E,
1462                                                      const ExplodedNode *N) {
1463   if (const auto *DR = dyn_cast<DeclRefExpr>(E)) {
1464     if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1465       if (!VD->getType()->isReferenceType())
1466         return nullptr;
1467       ProgramStateManager &StateMgr = N->getState()->getStateManager();
1468       MemRegionManager &MRMgr = StateMgr.getRegionManager();
1469       return MRMgr.getVarRegion(VD, N->getLocationContext());
1470     }
1471   }
1472 
1473   // FIXME: This does not handle other kinds of null references,
1474   // for example, references from FieldRegions:
1475   //   struct Wrapper { int &ref; };
1476   //   Wrapper w = { *(int *)0 };
1477   //   w.ref = 1;
1478 
1479   return nullptr;
1480 }
1481 
1482 /// \return A subexpression of {@code Ex} which represents the
1483 /// expression-of-interest.
1484 static const Expr *peelOffOuterExpr(const Expr *Ex,
1485                                     const ExplodedNode *N) {
1486   Ex = Ex->IgnoreParenCasts();
1487   if (const auto *FE = dyn_cast<FullExpr>(Ex))
1488     return peelOffOuterExpr(FE->getSubExpr(), N);
1489   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
1490     return peelOffOuterExpr(OVE->getSourceExpr(), N);
1491   if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
1492     const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
1493     if (PropRef && PropRef->isMessagingGetter()) {
1494       const Expr *GetterMessageSend =
1495           POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
1496       assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
1497       return peelOffOuterExpr(GetterMessageSend, N);
1498     }
1499   }
1500 
1501   // Peel off the ternary operator.
1502   if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
1503     // Find a node where the branching occurred and find out which branch
1504     // we took (true/false) by looking at the ExplodedGraph.
1505     const ExplodedNode *NI = N;
1506     do {
1507       ProgramPoint ProgPoint = NI->getLocation();
1508       if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
1509         const CFGBlock *srcBlk = BE->getSrc();
1510         if (const Stmt *term = srcBlk->getTerminator()) {
1511           if (term == CO) {
1512             bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
1513             if (TookTrueBranch)
1514               return peelOffOuterExpr(CO->getTrueExpr(), N);
1515             else
1516               return peelOffOuterExpr(CO->getFalseExpr(), N);
1517           }
1518         }
1519       }
1520       NI = NI->getFirstPred();
1521     } while (NI);
1522   }
1523 
1524   if (auto *BO = dyn_cast<BinaryOperator>(Ex))
1525     if (const Expr *SubEx = peelOffPointerArithmetic(BO))
1526       return peelOffOuterExpr(SubEx, N);
1527 
1528   if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
1529     if (UO->getOpcode() == UO_LNot)
1530       return peelOffOuterExpr(UO->getSubExpr(), N);
1531 
1532     // FIXME: There's a hack in our Store implementation that always computes
1533     // field offsets around null pointers as if they are always equal to 0.
1534     // The idea here is to report accesses to fields as null dereferences
1535     // even though the pointer value that's being dereferenced is actually
1536     // the offset of the field rather than exactly 0.
1537     // See the FIXME in StoreManager's getLValueFieldOrIvar() method.
1538     // This code interacts heavily with this hack; otherwise the value
1539     // would not be null at all for most fields, so we'd be unable to track it.
1540     if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
1541       if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
1542         return peelOffOuterExpr(DerefEx, N);
1543   }
1544 
1545   return Ex;
1546 }
1547 
1548 /// Find the ExplodedNode where the lvalue (the value of 'Ex')
1549 /// was computed.
1550 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N,
1551                                                  const Expr *Inner) {
1552   while (N) {
1553     if (PathDiagnosticLocation::getStmt(N) == Inner)
1554       return N;
1555     N = N->getFirstPred();
1556   }
1557   return N;
1558 }
1559 
1560 bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode,
1561                                        const Expr *E, BugReport &report,
1562                                        bool EnableNullFPSuppression) {
1563   if (!E || !InputNode)
1564     return false;
1565 
1566   const Expr *Inner = peelOffOuterExpr(E, InputNode);
1567   const ExplodedNode *LVNode = findNodeForExpression(InputNode, Inner);
1568   if (!LVNode)
1569     return false;
1570 
1571   ProgramStateRef LVState = LVNode->getState();
1572 
1573   // The message send could be nil due to the receiver being nil.
1574   // At this point in the path, the receiver should be live since we are at the
1575   // message send expr. If it is nil, start tracking it.
1576   if (const Expr *Receiver = NilReceiverBRVisitor::getNilReceiver(Inner, LVNode))
1577     trackExpressionValue(LVNode, Receiver, report, EnableNullFPSuppression);
1578 
1579   // See if the expression we're interested refers to a variable.
1580   // If so, we can track both its contents and constraints on its value.
1581   if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
1582     SVal LVal = LVNode->getSVal(Inner);
1583 
1584     const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
1585     bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
1586 
1587     // If this is a C++ reference to a null pointer, we are tracking the
1588     // pointer. In addition, we should find the store at which the reference
1589     // got initialized.
1590     if (RR && !LVIsNull)
1591       if (auto KV = LVal.getAs<KnownSVal>())
1592         report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
1593               *KV, RR, EnableNullFPSuppression));
1594 
1595     // In case of C++ references, we want to differentiate between a null
1596     // reference and reference to null pointer.
1597     // If the LVal is null, check if we are dealing with null reference.
1598     // For those, we want to track the location of the reference.
1599     const MemRegion *R = (RR && LVIsNull) ? RR :
1600         LVNode->getSVal(Inner).getAsRegion();
1601 
1602     if (R) {
1603 
1604       // Mark both the variable region and its contents as interesting.
1605       SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
1606       report.addVisitor(
1607           llvm::make_unique<NoStoreFuncVisitor>(cast<SubRegion>(R)));
1608 
1609       MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
1610           LVNode, R, EnableNullFPSuppression, report, V);
1611 
1612       report.markInteresting(V);
1613       report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(R));
1614 
1615       // If the contents are symbolic, find out when they became null.
1616       if (V.getAsLocSymbol(/*IncludeBaseRegions*/ true))
1617         report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>(
1618               V.castAs<DefinedSVal>(), false));
1619 
1620       // Add visitor, which will suppress inline defensive checks.
1621       if (auto DV = V.getAs<DefinedSVal>())
1622         if (!DV->isZeroConstant() && LVState->isNull(*DV).isConstrainedTrue() &&
1623             EnableNullFPSuppression)
1624           report.addVisitor(
1625               llvm::make_unique<SuppressInlineDefensiveChecksVisitor>(*DV,
1626                                                                       LVNode));
1627 
1628       if (auto KV = V.getAs<KnownSVal>())
1629         report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
1630               *KV, R, EnableNullFPSuppression));
1631       return true;
1632     }
1633   }
1634 
1635   // If the expression is not an "lvalue expression", we can still
1636   // track the constraints on its contents.
1637   SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
1638 
1639   ReturnVisitor::addVisitorIfNecessary(
1640     LVNode, Inner, report, EnableNullFPSuppression);
1641 
1642   // Is it a symbolic value?
1643   if (auto L = V.getAs<loc::MemRegionVal>()) {
1644     report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(L->getRegion()));
1645 
1646     // FIXME: this is a hack for fixing a later crash when attempting to
1647     // dereference a void* pointer.
1648     // We should not try to dereference pointers at all when we don't care
1649     // what is written inside the pointer.
1650     bool CanDereference = true;
1651     if (const auto *SR = dyn_cast<SymbolicRegion>(L->getRegion()))
1652       if (SR->getSymbol()->getType()->getPointeeType()->isVoidType())
1653         CanDereference = false;
1654 
1655     // At this point we are dealing with the region's LValue.
1656     // However, if the rvalue is a symbolic region, we should track it as well.
1657     // Try to use the correct type when looking up the value.
1658     SVal RVal;
1659     if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
1660       RVal = LVState->getRawSVal(L.getValue(), Inner->getType());
1661     } else if (CanDereference) {
1662       RVal = LVState->getSVal(L->getRegion());
1663     }
1664 
1665     if (CanDereference)
1666       if (auto KV = RVal.getAs<KnownSVal>())
1667         report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
1668             *KV, L->getRegion(), EnableNullFPSuppression));
1669 
1670     const MemRegion *RegionRVal = RVal.getAsRegion();
1671     if (RegionRVal && isa<SymbolicRegion>(RegionRVal)) {
1672       report.markInteresting(RegionRVal);
1673       report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>(
1674             loc::MemRegionVal(RegionRVal), /*assumption=*/false));
1675     }
1676   }
1677   return true;
1678 }
1679 
1680 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S,
1681                                                  const ExplodedNode *N) {
1682   const auto *ME = dyn_cast<ObjCMessageExpr>(S);
1683   if (!ME)
1684     return nullptr;
1685   if (const Expr *Receiver = ME->getInstanceReceiver()) {
1686     ProgramStateRef state = N->getState();
1687     SVal V = N->getSVal(Receiver);
1688     if (state->isNull(V).isConstrainedTrue())
1689       return Receiver;
1690   }
1691   return nullptr;
1692 }
1693 
1694 std::shared_ptr<PathDiagnosticPiece>
1695 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N,
1696                                 BugReporterContext &BRC, BugReport &BR) {
1697   Optional<PreStmt> P = N->getLocationAs<PreStmt>();
1698   if (!P)
1699     return nullptr;
1700 
1701   const Stmt *S = P->getStmt();
1702   const Expr *Receiver = getNilReceiver(S, N);
1703   if (!Receiver)
1704     return nullptr;
1705 
1706   llvm::SmallString<256> Buf;
1707   llvm::raw_svector_ostream OS(Buf);
1708 
1709   if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1710     OS << "'";
1711     ME->getSelector().print(OS);
1712     OS << "' not called";
1713   }
1714   else {
1715     OS << "No method is called";
1716   }
1717   OS << " because the receiver is nil";
1718 
1719   // The receiver was nil, and hence the method was skipped.
1720   // Register a BugReporterVisitor to issue a message telling us how
1721   // the receiver was null.
1722   bugreporter::trackExpressionValue(N, Receiver, BR,
1723                                /*EnableNullFPSuppression*/ false);
1724   // Issue a message saying that the method was skipped.
1725   PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
1726                                      N->getLocationContext());
1727   return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
1728 }
1729 
1730 // Registers every VarDecl inside a Stmt with a last store visitor.
1731 void FindLastStoreBRVisitor::registerStatementVarDecls(BugReport &BR,
1732                                                 const Stmt *S,
1733                                                 bool EnableNullFPSuppression) {
1734   const ExplodedNode *N = BR.getErrorNode();
1735   std::deque<const Stmt *> WorkList;
1736   WorkList.push_back(S);
1737 
1738   while (!WorkList.empty()) {
1739     const Stmt *Head = WorkList.front();
1740     WorkList.pop_front();
1741 
1742     ProgramStateManager &StateMgr = N->getState()->getStateManager();
1743 
1744     if (const auto *DR = dyn_cast<DeclRefExpr>(Head)) {
1745       if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1746         const VarRegion *R =
1747         StateMgr.getRegionManager().getVarRegion(VD, N->getLocationContext());
1748 
1749         // What did we load?
1750         SVal V = N->getSVal(S);
1751 
1752         if (V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) {
1753           // Register a new visitor with the BugReport.
1754           BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>(
1755               V.castAs<KnownSVal>(), R, EnableNullFPSuppression));
1756         }
1757       }
1758     }
1759 
1760     for (const Stmt *SubStmt : Head->children())
1761       WorkList.push_back(SubStmt);
1762   }
1763 }
1764 
1765 //===----------------------------------------------------------------------===//
1766 // Visitor that tries to report interesting diagnostics from conditions.
1767 //===----------------------------------------------------------------------===//
1768 
1769 /// Return the tag associated with this visitor.  This tag will be used
1770 /// to make all PathDiagnosticPieces created by this visitor.
1771 const char *ConditionBRVisitor::getTag() {
1772   return "ConditionBRVisitor";
1773 }
1774 
1775 std::shared_ptr<PathDiagnosticPiece>
1776 ConditionBRVisitor::VisitNode(const ExplodedNode *N,
1777                               BugReporterContext &BRC, BugReport &BR) {
1778   auto piece = VisitNodeImpl(N, BRC, BR);
1779   if (piece) {
1780     piece->setTag(getTag());
1781     if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
1782       ev->setPrunable(true, /* override */ false);
1783   }
1784   return piece;
1785 }
1786 
1787 std::shared_ptr<PathDiagnosticPiece>
1788 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
1789                                   BugReporterContext &BRC, BugReport &BR) {
1790   ProgramPoint progPoint = N->getLocation();
1791   ProgramStateRef CurrentState = N->getState();
1792   ProgramStateRef PrevState = N->getFirstPred()->getState();
1793 
1794   // Compare the GDMs of the state, because that is where constraints
1795   // are managed.  Note that ensure that we only look at nodes that
1796   // were generated by the analyzer engine proper, not checkers.
1797   if (CurrentState->getGDM().getRoot() ==
1798       PrevState->getGDM().getRoot())
1799     return nullptr;
1800 
1801   // If an assumption was made on a branch, it should be caught
1802   // here by looking at the state transition.
1803   if (Optional<BlockEdge> BE = progPoint.getAs<BlockEdge>()) {
1804     const CFGBlock *srcBlk = BE->getSrc();
1805     if (const Stmt *term = srcBlk->getTerminator())
1806       return VisitTerminator(term, N, srcBlk, BE->getDst(), BR, BRC);
1807     return nullptr;
1808   }
1809 
1810   if (Optional<PostStmt> PS = progPoint.getAs<PostStmt>()) {
1811     const std::pair<const ProgramPointTag *, const ProgramPointTag *> &tags =
1812         ExprEngine::geteagerlyAssumeBinOpBifurcationTags();
1813 
1814     const ProgramPointTag *tag = PS->getTag();
1815     if (tag == tags.first)
1816       return VisitTrueTest(cast<Expr>(PS->getStmt()), true,
1817                            BRC, BR, N);
1818     if (tag == tags.second)
1819       return VisitTrueTest(cast<Expr>(PS->getStmt()), false,
1820                            BRC, BR, N);
1821 
1822     return nullptr;
1823   }
1824 
1825   return nullptr;
1826 }
1827 
1828 std::shared_ptr<PathDiagnosticPiece> ConditionBRVisitor::VisitTerminator(
1829     const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
1830     const CFGBlock *dstBlk, BugReport &R, BugReporterContext &BRC) {
1831   const Expr *Cond = nullptr;
1832 
1833   // In the code below, Term is a CFG terminator and Cond is a branch condition
1834   // expression upon which the decision is made on this terminator.
1835   //
1836   // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
1837   // and "x == 0" is the respective condition.
1838   //
1839   // Another example: in "if (x && y)", we've got two terminators and two
1840   // conditions due to short-circuit nature of operator "&&":
1841   // 1. The "if (x && y)" statement is a terminator,
1842   //    and "y" is the respective condition.
1843   // 2. Also "x && ..." is another terminator,
1844   //    and "x" is its condition.
1845 
1846   switch (Term->getStmtClass()) {
1847   // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
1848   // more tricky because there are more than two branches to account for.
1849   default:
1850     return nullptr;
1851   case Stmt::IfStmtClass:
1852     Cond = cast<IfStmt>(Term)->getCond();
1853     break;
1854   case Stmt::ConditionalOperatorClass:
1855     Cond = cast<ConditionalOperator>(Term)->getCond();
1856     break;
1857   case Stmt::BinaryOperatorClass:
1858     // When we encounter a logical operator (&& or ||) as a CFG terminator,
1859     // then the condition is actually its LHS; otherwise, we'd encounter
1860     // the parent, such as if-statement, as a terminator.
1861     const auto *BO = cast<BinaryOperator>(Term);
1862     assert(BO->isLogicalOp() &&
1863            "CFG terminator is not a short-circuit operator!");
1864     Cond = BO->getLHS();
1865     break;
1866   }
1867 
1868   // However, when we encounter a logical operator as a branch condition,
1869   // then the condition is actually its RHS, because LHS would be
1870   // the condition for the logical operator terminator.
1871   while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
1872     if (!InnerBO->isLogicalOp())
1873       break;
1874     Cond = InnerBO->getRHS()->IgnoreParens();
1875   }
1876 
1877   assert(Cond);
1878   assert(srcBlk->succ_size() == 2);
1879   const bool tookTrue = *(srcBlk->succ_begin()) == dstBlk;
1880   return VisitTrueTest(Cond, tookTrue, BRC, R, N);
1881 }
1882 
1883 std::shared_ptr<PathDiagnosticPiece>
1884 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, bool tookTrue,
1885                                   BugReporterContext &BRC, BugReport &R,
1886                                   const ExplodedNode *N) {
1887   // These will be modified in code below, but we need to preserve the original
1888   //  values in case we want to throw the generic message.
1889   const Expr *CondTmp = Cond;
1890   bool tookTrueTmp = tookTrue;
1891 
1892   while (true) {
1893     CondTmp = CondTmp->IgnoreParenCasts();
1894     switch (CondTmp->getStmtClass()) {
1895       default:
1896         break;
1897       case Stmt::BinaryOperatorClass:
1898         if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
1899                                    tookTrueTmp, BRC, R, N))
1900           return P;
1901         break;
1902       case Stmt::DeclRefExprClass:
1903         if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
1904                                    tookTrueTmp, BRC, R, N))
1905           return P;
1906         break;
1907       case Stmt::UnaryOperatorClass: {
1908         const auto *UO = cast<UnaryOperator>(CondTmp);
1909         if (UO->getOpcode() == UO_LNot) {
1910           tookTrueTmp = !tookTrueTmp;
1911           CondTmp = UO->getSubExpr();
1912           continue;
1913         }
1914         break;
1915       }
1916     }
1917     break;
1918   }
1919 
1920   // Condition too complex to explain? Just say something so that the user
1921   // knew we've made some path decision at this point.
1922   const LocationContext *LCtx = N->getLocationContext();
1923   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
1924   if (!Loc.isValid() || !Loc.asLocation().isValid())
1925     return nullptr;
1926 
1927   return std::make_shared<PathDiagnosticEventPiece>(
1928       Loc, tookTrue ? GenericTrueMessage : GenericFalseMessage);
1929 }
1930 
1931 bool ConditionBRVisitor::patternMatch(const Expr *Ex,
1932                                       const Expr *ParentEx,
1933                                       raw_ostream &Out,
1934                                       BugReporterContext &BRC,
1935                                       BugReport &report,
1936                                       const ExplodedNode *N,
1937                                       Optional<bool> &prunable) {
1938   const Expr *OriginalExpr = Ex;
1939   Ex = Ex->IgnoreParenCasts();
1940 
1941   // Use heuristics to determine if Ex is a macro expending to a literal and
1942   // if so, use the macro's name.
1943   SourceLocation LocStart = Ex->getBeginLoc();
1944   SourceLocation LocEnd = Ex->getEndLoc();
1945   if (LocStart.isMacroID() && LocEnd.isMacroID() &&
1946       (isa<GNUNullExpr>(Ex) ||
1947        isa<ObjCBoolLiteralExpr>(Ex) ||
1948        isa<CXXBoolLiteralExpr>(Ex) ||
1949        isa<IntegerLiteral>(Ex) ||
1950        isa<FloatingLiteral>(Ex))) {
1951     StringRef StartName = Lexer::getImmediateMacroNameForDiagnostics(LocStart,
1952       BRC.getSourceManager(), BRC.getASTContext().getLangOpts());
1953     StringRef EndName = Lexer::getImmediateMacroNameForDiagnostics(LocEnd,
1954       BRC.getSourceManager(), BRC.getASTContext().getLangOpts());
1955     bool beginAndEndAreTheSameMacro = StartName.equals(EndName);
1956 
1957     bool partOfParentMacro = false;
1958     if (ParentEx->getBeginLoc().isMacroID()) {
1959       StringRef PName = Lexer::getImmediateMacroNameForDiagnostics(
1960           ParentEx->getBeginLoc(), BRC.getSourceManager(),
1961           BRC.getASTContext().getLangOpts());
1962       partOfParentMacro = PName.equals(StartName);
1963     }
1964 
1965     if (beginAndEndAreTheSameMacro && !partOfParentMacro ) {
1966       // Get the location of the macro name as written by the caller.
1967       SourceLocation Loc = LocStart;
1968       while (LocStart.isMacroID()) {
1969         Loc = LocStart;
1970         LocStart = BRC.getSourceManager().getImmediateMacroCallerLoc(LocStart);
1971       }
1972       StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
1973         Loc, BRC.getSourceManager(), BRC.getASTContext().getLangOpts());
1974 
1975       // Return the macro name.
1976       Out << MacroName;
1977       return false;
1978     }
1979   }
1980 
1981   if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) {
1982     const bool quotes = isa<VarDecl>(DR->getDecl());
1983     if (quotes) {
1984       Out << '\'';
1985       const LocationContext *LCtx = N->getLocationContext();
1986       const ProgramState *state = N->getState().get();
1987       if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
1988                                                 LCtx).getAsRegion()) {
1989         if (report.isInteresting(R))
1990           prunable = false;
1991         else {
1992           const ProgramState *state = N->getState().get();
1993           SVal V = state->getSVal(R);
1994           if (report.isInteresting(V))
1995             prunable = false;
1996         }
1997       }
1998     }
1999     Out << DR->getDecl()->getDeclName().getAsString();
2000     if (quotes)
2001       Out << '\'';
2002     return quotes;
2003   }
2004 
2005   if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) {
2006     QualType OriginalTy = OriginalExpr->getType();
2007     if (OriginalTy->isPointerType()) {
2008       if (IL->getValue() == 0) {
2009         Out << "null";
2010         return false;
2011       }
2012     }
2013     else if (OriginalTy->isObjCObjectPointerType()) {
2014       if (IL->getValue() == 0) {
2015         Out << "nil";
2016         return false;
2017       }
2018     }
2019 
2020     Out << IL->getValue();
2021     return false;
2022   }
2023 
2024   return false;
2025 }
2026 
2027 std::shared_ptr<PathDiagnosticPiece>
2028 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const BinaryOperator *BExpr,
2029                                   const bool tookTrue, BugReporterContext &BRC,
2030                                   BugReport &R, const ExplodedNode *N) {
2031   bool shouldInvert = false;
2032   Optional<bool> shouldPrune;
2033 
2034   SmallString<128> LhsString, RhsString;
2035   {
2036     llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
2037     const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS,
2038                                        BRC, R, N, shouldPrune);
2039     const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS,
2040                                        BRC, R, N, shouldPrune);
2041 
2042     shouldInvert = !isVarLHS && isVarRHS;
2043   }
2044 
2045   BinaryOperator::Opcode Op = BExpr->getOpcode();
2046 
2047   if (BinaryOperator::isAssignmentOp(Op)) {
2048     // For assignment operators, all that we care about is that the LHS
2049     // evaluates to "true" or "false".
2050     return VisitConditionVariable(LhsString, BExpr->getLHS(), tookTrue,
2051                                   BRC, R, N);
2052   }
2053 
2054   // For non-assignment operations, we require that we can understand
2055   // both the LHS and RHS.
2056   if (LhsString.empty() || RhsString.empty() ||
2057       !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp)
2058     return nullptr;
2059 
2060   // Should we invert the strings if the LHS is not a variable name?
2061   SmallString<256> buf;
2062   llvm::raw_svector_ostream Out(buf);
2063   Out << "Assuming " << (shouldInvert ? RhsString : LhsString) << " is ";
2064 
2065   // Do we need to invert the opcode?
2066   if (shouldInvert)
2067     switch (Op) {
2068       default: break;
2069       case BO_LT: Op = BO_GT; break;
2070       case BO_GT: Op = BO_LT; break;
2071       case BO_LE: Op = BO_GE; break;
2072       case BO_GE: Op = BO_LE; break;
2073     }
2074 
2075   if (!tookTrue)
2076     switch (Op) {
2077       case BO_EQ: Op = BO_NE; break;
2078       case BO_NE: Op = BO_EQ; break;
2079       case BO_LT: Op = BO_GE; break;
2080       case BO_GT: Op = BO_LE; break;
2081       case BO_LE: Op = BO_GT; break;
2082       case BO_GE: Op = BO_LT; break;
2083       default:
2084         return nullptr;
2085     }
2086 
2087   switch (Op) {
2088     case BO_EQ:
2089       Out << "equal to ";
2090       break;
2091     case BO_NE:
2092       Out << "not equal to ";
2093       break;
2094     default:
2095       Out << BinaryOperator::getOpcodeStr(Op) << ' ';
2096       break;
2097   }
2098 
2099   Out << (shouldInvert ? LhsString : RhsString);
2100   const LocationContext *LCtx = N->getLocationContext();
2101   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2102   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
2103   if (shouldPrune.hasValue())
2104     event->setPrunable(shouldPrune.getValue());
2105   return event;
2106 }
2107 
2108 std::shared_ptr<PathDiagnosticPiece> ConditionBRVisitor::VisitConditionVariable(
2109     StringRef LhsString, const Expr *CondVarExpr, const bool tookTrue,
2110     BugReporterContext &BRC, BugReport &report, const ExplodedNode *N) {
2111   // FIXME: If there's already a constraint tracker for this variable,
2112   // we shouldn't emit anything here (c.f. the double note in
2113   // test/Analysis/inlining/path-notes.c)
2114   SmallString<256> buf;
2115   llvm::raw_svector_ostream Out(buf);
2116   Out << "Assuming " << LhsString << " is ";
2117 
2118   QualType Ty = CondVarExpr->getType();
2119 
2120   if (Ty->isPointerType())
2121     Out << (tookTrue ? "not null" : "null");
2122   else if (Ty->isObjCObjectPointerType())
2123     Out << (tookTrue ? "not nil" : "nil");
2124   else if (Ty->isBooleanType())
2125     Out << (tookTrue ? "true" : "false");
2126   else if (Ty->isIntegralOrEnumerationType())
2127     Out << (tookTrue ? "non-zero" : "zero");
2128   else
2129     return nullptr;
2130 
2131   const LocationContext *LCtx = N->getLocationContext();
2132   PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
2133   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
2134 
2135   if (const auto *DR = dyn_cast<DeclRefExpr>(CondVarExpr)) {
2136     if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) {
2137       const ProgramState *state = N->getState().get();
2138       if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) {
2139         if (report.isInteresting(R))
2140           event->setPrunable(false);
2141       }
2142     }
2143   }
2144 
2145   return event;
2146 }
2147 
2148 std::shared_ptr<PathDiagnosticPiece>
2149 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const DeclRefExpr *DR,
2150                                   const bool tookTrue, BugReporterContext &BRC,
2151                                   BugReport &report, const ExplodedNode *N) {
2152   const auto *VD = dyn_cast<VarDecl>(DR->getDecl());
2153   if (!VD)
2154     return nullptr;
2155 
2156   SmallString<256> Buf;
2157   llvm::raw_svector_ostream Out(Buf);
2158 
2159   Out << "Assuming '" << VD->getDeclName() << "' is ";
2160 
2161   QualType VDTy = VD->getType();
2162 
2163   if (VDTy->isPointerType())
2164     Out << (tookTrue ? "non-null" : "null");
2165   else if (VDTy->isObjCObjectPointerType())
2166     Out << (tookTrue ? "non-nil" : "nil");
2167   else if (VDTy->isScalarType())
2168     Out << (tookTrue ? "not equal to 0" : "0");
2169   else
2170     return nullptr;
2171 
2172   const LocationContext *LCtx = N->getLocationContext();
2173   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2174   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
2175 
2176   const ProgramState *state = N->getState().get();
2177   if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) {
2178     if (report.isInteresting(R))
2179       event->setPrunable(false);
2180     else {
2181       SVal V = state->getSVal(R);
2182       if (report.isInteresting(V))
2183         event->setPrunable(false);
2184     }
2185   }
2186   return std::move(event);
2187 }
2188 
2189 const char *const ConditionBRVisitor::GenericTrueMessage =
2190     "Assuming the condition is true";
2191 const char *const ConditionBRVisitor::GenericFalseMessage =
2192     "Assuming the condition is false";
2193 
2194 bool ConditionBRVisitor::isPieceMessageGeneric(
2195     const PathDiagnosticPiece *Piece) {
2196   return Piece->getString() == GenericTrueMessage ||
2197          Piece->getString() == GenericFalseMessage;
2198 }
2199 
2200 void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor(
2201     BugReporterContext &BRC, const ExplodedNode *N, BugReport &BR) {
2202   // Here we suppress false positives coming from system headers. This list is
2203   // based on known issues.
2204   AnalyzerOptions &Options = BRC.getAnalyzerOptions();
2205   const Decl *D = N->getLocationContext()->getDecl();
2206 
2207   if (AnalysisDeclContext::isInStdNamespace(D)) {
2208     // Skip reports within the 'std' namespace. Although these can sometimes be
2209     // the user's fault, we currently don't report them very well, and
2210     // Note that this will not help for any other data structure libraries, like
2211     // TR1, Boost, or llvm/ADT.
2212     if (Options.ShouldSuppressFromCXXStandardLibrary) {
2213       BR.markInvalid(getTag(), nullptr);
2214       return;
2215     } else {
2216       // If the complete 'std' suppression is not enabled, suppress reports
2217       // from the 'std' namespace that are known to produce false positives.
2218 
2219       // The analyzer issues a false use-after-free when std::list::pop_front
2220       // or std::list::pop_back are called multiple times because we cannot
2221       // reason about the internal invariants of the data structure.
2222       if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
2223         const CXXRecordDecl *CD = MD->getParent();
2224         if (CD->getName() == "list") {
2225           BR.markInvalid(getTag(), nullptr);
2226           return;
2227         }
2228       }
2229 
2230       // The analyzer issues a false positive when the constructor of
2231       // std::__independent_bits_engine from algorithms is used.
2232       if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) {
2233         const CXXRecordDecl *CD = MD->getParent();
2234         if (CD->getName() == "__independent_bits_engine") {
2235           BR.markInvalid(getTag(), nullptr);
2236           return;
2237         }
2238       }
2239 
2240       for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
2241            LCtx = LCtx->getParent()) {
2242         const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
2243         if (!MD)
2244           continue;
2245 
2246         const CXXRecordDecl *CD = MD->getParent();
2247         // The analyzer issues a false positive on
2248         //   std::basic_string<uint8_t> v; v.push_back(1);
2249         // and
2250         //   std::u16string s; s += u'a';
2251         // because we cannot reason about the internal invariants of the
2252         // data structure.
2253         if (CD->getName() == "basic_string") {
2254           BR.markInvalid(getTag(), nullptr);
2255           return;
2256         }
2257 
2258         // The analyzer issues a false positive on
2259         //    std::shared_ptr<int> p(new int(1)); p = nullptr;
2260         // because it does not reason properly about temporary destructors.
2261         if (CD->getName() == "shared_ptr") {
2262           BR.markInvalid(getTag(), nullptr);
2263           return;
2264         }
2265       }
2266     }
2267   }
2268 
2269   // Skip reports within the sys/queue.h macros as we do not have the ability to
2270   // reason about data structure shapes.
2271   SourceManager &SM = BRC.getSourceManager();
2272   FullSourceLoc Loc = BR.getLocation(SM).asLocation();
2273   while (Loc.isMacroID()) {
2274     Loc = Loc.getSpellingLoc();
2275     if (SM.getFilename(Loc).endswith("sys/queue.h")) {
2276       BR.markInvalid(getTag(), nullptr);
2277       return;
2278     }
2279   }
2280 }
2281 
2282 std::shared_ptr<PathDiagnosticPiece>
2283 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N,
2284                                  BugReporterContext &BRC, BugReport &BR) {
2285   ProgramStateRef State = N->getState();
2286   ProgramPoint ProgLoc = N->getLocation();
2287 
2288   // We are only interested in visiting CallEnter nodes.
2289   Optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
2290   if (!CEnter)
2291     return nullptr;
2292 
2293   // Check if one of the arguments is the region the visitor is tracking.
2294   CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager();
2295   CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
2296   unsigned Idx = 0;
2297   ArrayRef<ParmVarDecl *> parms = Call->parameters();
2298 
2299   for (const auto ParamDecl : parms) {
2300     const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
2301     ++Idx;
2302 
2303     // Are we tracking the argument or its subregion?
2304     if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts()))
2305       continue;
2306 
2307     // Check the function parameter type.
2308     assert(ParamDecl && "Formal parameter has no decl?");
2309     QualType T = ParamDecl->getType();
2310 
2311     if (!(T->isAnyPointerType() || T->isReferenceType())) {
2312       // Function can only change the value passed in by address.
2313       continue;
2314     }
2315 
2316     // If it is a const pointer value, the function does not intend to
2317     // change the value.
2318     if (T->getPointeeType().isConstQualified())
2319       continue;
2320 
2321     // Mark the call site (LocationContext) as interesting if the value of the
2322     // argument is undefined or '0'/'NULL'.
2323     SVal BoundVal = State->getSVal(R);
2324     if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
2325       BR.markInteresting(CEnter->getCalleeContext());
2326       return nullptr;
2327     }
2328   }
2329   return nullptr;
2330 }
2331 
2332 std::shared_ptr<PathDiagnosticPiece>
2333 CXXSelfAssignmentBRVisitor::VisitNode(const ExplodedNode *Succ,
2334                                       BugReporterContext &BRC, BugReport &) {
2335   if (Satisfied)
2336     return nullptr;
2337 
2338   const auto Edge = Succ->getLocation().getAs<BlockEdge>();
2339   if (!Edge.hasValue())
2340     return nullptr;
2341 
2342   auto Tag = Edge->getTag();
2343   if (!Tag)
2344     return nullptr;
2345 
2346   if (Tag->getTagDescription() != "cplusplus.SelfAssignment")
2347     return nullptr;
2348 
2349   Satisfied = true;
2350 
2351   const auto *Met =
2352       dyn_cast<CXXMethodDecl>(Succ->getCodeDecl().getAsFunction());
2353   assert(Met && "Not a C++ method.");
2354   assert((Met->isCopyAssignmentOperator() || Met->isMoveAssignmentOperator()) &&
2355          "Not a copy/move assignment operator.");
2356 
2357   const auto *LCtx = Edge->getLocationContext();
2358 
2359   const auto &State = Succ->getState();
2360   auto &SVB = State->getStateManager().getSValBuilder();
2361 
2362   const auto Param =
2363       State->getSVal(State->getRegion(Met->getParamDecl(0), LCtx));
2364   const auto This =
2365       State->getSVal(SVB.getCXXThis(Met, LCtx->getStackFrame()));
2366 
2367   auto L = PathDiagnosticLocation::create(Met, BRC.getSourceManager());
2368 
2369   if (!L.isValid() || !L.asLocation().isValid())
2370     return nullptr;
2371 
2372   SmallString<256> Buf;
2373   llvm::raw_svector_ostream Out(Buf);
2374 
2375   Out << "Assuming " << Met->getParamDecl(0)->getName() <<
2376     ((Param == This) ? " == " : " != ") << "*this";
2377 
2378   auto Piece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
2379   Piece->addRange(Met->getSourceRange());
2380 
2381   return std::move(Piece);
2382 }
2383 
2384 std::shared_ptr<PathDiagnosticPiece>
2385 TaintBugVisitor::VisitNode(const ExplodedNode *N,
2386                            BugReporterContext &BRC, BugReport &) {
2387 
2388   // Find the ExplodedNode where the taint was first introduced
2389   if (!N->getState()->isTainted(V) || N->getFirstPred()->getState()->isTainted(V))
2390     return nullptr;
2391 
2392   const Stmt *S = PathDiagnosticLocation::getStmt(N);
2393   if (!S)
2394     return nullptr;
2395 
2396   const LocationContext *NCtx = N->getLocationContext();
2397   PathDiagnosticLocation L =
2398       PathDiagnosticLocation::createBegin(S, BRC.getSourceManager(), NCtx);
2399   if (!L.isValid() || !L.asLocation().isValid())
2400     return nullptr;
2401 
2402   return std::make_shared<PathDiagnosticEventPiece>(L, "Taint originated here");
2403 }
2404 
2405 FalsePositiveRefutationBRVisitor::FalsePositiveRefutationBRVisitor()
2406     : Constraints(ConstraintRangeTy::Factory().getEmptyMap()) {}
2407 
2408 void FalsePositiveRefutationBRVisitor::finalizeVisitor(
2409     BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) {
2410   // Collect new constraints
2411   VisitNode(EndPathNode, BRC, BR);
2412 
2413   // Create a refutation manager
2414   SMTSolverRef RefutationSolver = CreateZ3Solver();
2415   ASTContext &Ctx = BRC.getASTContext();
2416 
2417   // Add constraints to the solver
2418   for (const auto &I : Constraints) {
2419     const SymbolRef Sym = I.first;
2420     auto RangeIt = I.second.begin();
2421 
2422     SMTExprRef Constraints = SMTConv::getRangeExpr(
2423         RefutationSolver, Ctx, Sym, RangeIt->From(), RangeIt->To(),
2424         /*InRange=*/true);
2425     while ((++RangeIt) != I.second.end()) {
2426       Constraints = RefutationSolver->mkOr(
2427           Constraints, SMTConv::getRangeExpr(RefutationSolver, Ctx, Sym,
2428                                              RangeIt->From(), RangeIt->To(),
2429                                              /*InRange=*/true));
2430     }
2431 
2432     RefutationSolver->addConstraint(Constraints);
2433   }
2434 
2435   // And check for satisfiability
2436   Optional<bool> isSat = RefutationSolver->check();
2437   if (!isSat.hasValue())
2438     return;
2439 
2440   if (!isSat.getValue())
2441     BR.markInvalid("Infeasible constraints", EndPathNode->getLocationContext());
2442 }
2443 
2444 std::shared_ptr<PathDiagnosticPiece>
2445 FalsePositiveRefutationBRVisitor::VisitNode(const ExplodedNode *N,
2446                                             BugReporterContext &,
2447                                             BugReport &) {
2448   // Collect new constraints
2449   const ConstraintRangeTy &NewCs = N->getState()->get<ConstraintRange>();
2450   ConstraintRangeTy::Factory &CF =
2451       N->getState()->get_context<ConstraintRange>();
2452 
2453   // Add constraints if we don't have them yet
2454   for (auto const &C : NewCs) {
2455     const SymbolRef &Sym = C.first;
2456     if (!Constraints.contains(Sym)) {
2457       Constraints = CF.add(Constraints, Sym, C.second);
2458     }
2459   }
2460 
2461   return nullptr;
2462 }
2463 
2464 void FalsePositiveRefutationBRVisitor::Profile(
2465     llvm::FoldingSetNodeID &ID) const {
2466   static int Tag = 0;
2467   ID.AddPointer(&Tag);
2468 }
2469