1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a set of BugReporter "visitors" which can be used to 11 // enhance the diagnostics reported for a bug. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclBase.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/ExprObjC.h" 23 #include "clang/AST/Stmt.h" 24 #include "clang/AST/Type.h" 25 #include "clang/Analysis/AnalysisDeclContext.h" 26 #include "clang/Analysis/CFG.h" 27 #include "clang/Analysis/CFGStmtMap.h" 28 #include "clang/Analysis/ProgramPoint.h" 29 #include "clang/Basic/IdentifierTable.h" 30 #include "clang/Basic/LLVM.h" 31 #include "clang/Basic/SourceLocation.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Lex/Lexer.h" 34 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" 35 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 36 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 37 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 38 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 44 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 45 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 46 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" 47 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConstraintManager.h" 48 #include "llvm/ADT/ArrayRef.h" 49 #include "llvm/ADT/None.h" 50 #include "llvm/ADT/Optional.h" 51 #include "llvm/ADT/STLExtras.h" 52 #include "llvm/ADT/SmallPtrSet.h" 53 #include "llvm/ADT/SmallString.h" 54 #include "llvm/ADT/SmallVector.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/ADT/StringRef.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <cassert> 61 #include <deque> 62 #include <memory> 63 #include <string> 64 #include <utility> 65 66 using namespace clang; 67 using namespace ento; 68 69 //===----------------------------------------------------------------------===// 70 // Utility functions. 71 //===----------------------------------------------------------------------===// 72 73 bool bugreporter::isDeclRefExprToReference(const Expr *E) { 74 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 75 return DRE->getDecl()->getType()->isReferenceType(); 76 return false; 77 } 78 79 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) { 80 if (B->isAdditiveOp() && B->getType()->isPointerType()) { 81 if (B->getLHS()->getType()->isPointerType()) { 82 return B->getLHS(); 83 } else if (B->getRHS()->getType()->isPointerType()) { 84 return B->getRHS(); 85 } 86 } 87 return nullptr; 88 } 89 90 /// Given that expression S represents a pointer that would be dereferenced, 91 /// try to find a sub-expression from which the pointer came from. 92 /// This is used for tracking down origins of a null or undefined value: 93 /// "this is null because that is null because that is null" etc. 94 /// We wipe away field and element offsets because they merely add offsets. 95 /// We also wipe away all casts except lvalue-to-rvalue casts, because the 96 /// latter represent an actual pointer dereference; however, we remove 97 /// the final lvalue-to-rvalue cast before returning from this function 98 /// because it demonstrates more clearly from where the pointer rvalue was 99 /// loaded. Examples: 100 /// x->y.z ==> x (lvalue) 101 /// foo()->y.z ==> foo() (rvalue) 102 const Expr *bugreporter::getDerefExpr(const Stmt *S) { 103 const auto *E = dyn_cast<Expr>(S); 104 if (!E) 105 return nullptr; 106 107 while (true) { 108 if (const auto *CE = dyn_cast<CastExpr>(E)) { 109 if (CE->getCastKind() == CK_LValueToRValue) { 110 // This cast represents the load we're looking for. 111 break; 112 } 113 E = CE->getSubExpr(); 114 } else if (const auto *B = dyn_cast<BinaryOperator>(E)) { 115 // Pointer arithmetic: '*(x + 2)' -> 'x') etc. 116 if (const Expr *Inner = peelOffPointerArithmetic(B)) { 117 E = Inner; 118 } else { 119 // Probably more arithmetic can be pattern-matched here, 120 // but for now give up. 121 break; 122 } 123 } else if (const auto *U = dyn_cast<UnaryOperator>(E)) { 124 if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf || 125 (U->isIncrementDecrementOp() && U->getType()->isPointerType())) { 126 // Operators '*' and '&' don't actually mean anything. 127 // We look at casts instead. 128 E = U->getSubExpr(); 129 } else { 130 // Probably more arithmetic can be pattern-matched here, 131 // but for now give up. 132 break; 133 } 134 } 135 // Pattern match for a few useful cases: a[0], p->f, *p etc. 136 else if (const auto *ME = dyn_cast<MemberExpr>(E)) { 137 E = ME->getBase(); 138 } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { 139 E = IvarRef->getBase(); 140 } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) { 141 E = AE->getBase(); 142 } else if (const auto *PE = dyn_cast<ParenExpr>(E)) { 143 E = PE->getSubExpr(); 144 } else { 145 // Other arbitrary stuff. 146 break; 147 } 148 } 149 150 // Special case: remove the final lvalue-to-rvalue cast, but do not recurse 151 // deeper into the sub-expression. This way we return the lvalue from which 152 // our pointer rvalue was loaded. 153 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) 154 if (CE->getCastKind() == CK_LValueToRValue) 155 E = CE->getSubExpr(); 156 157 return E; 158 } 159 160 const Stmt *bugreporter::GetDenomExpr(const ExplodedNode *N) { 161 const Stmt *S = N->getLocationAs<PreStmt>()->getStmt(); 162 if (const auto *BE = dyn_cast<BinaryOperator>(S)) 163 return BE->getRHS(); 164 return nullptr; 165 } 166 167 const Stmt *bugreporter::GetRetValExpr(const ExplodedNode *N) { 168 const Stmt *S = N->getLocationAs<PostStmt>()->getStmt(); 169 if (const auto *RS = dyn_cast<ReturnStmt>(S)) 170 return RS->getRetValue(); 171 return nullptr; 172 } 173 174 //===----------------------------------------------------------------------===// 175 // Definitions for bug reporter visitors. 176 //===----------------------------------------------------------------------===// 177 178 std::unique_ptr<PathDiagnosticPiece> 179 BugReporterVisitor::getEndPath(BugReporterContext &BRC, 180 const ExplodedNode *EndPathNode, BugReport &BR) { 181 return nullptr; 182 } 183 184 std::unique_ptr<PathDiagnosticPiece> BugReporterVisitor::getDefaultEndPath( 185 BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) { 186 PathDiagnosticLocation L = 187 PathDiagnosticLocation::createEndOfPath(EndPathNode,BRC.getSourceManager()); 188 189 const auto &Ranges = BR.getRanges(); 190 191 // Only add the statement itself as a range if we didn't specify any 192 // special ranges for this report. 193 auto P = llvm::make_unique<PathDiagnosticEventPiece>( 194 L, BR.getDescription(), Ranges.begin() == Ranges.end()); 195 for (SourceRange Range : Ranges) 196 P->addRange(Range); 197 198 return std::move(P); 199 } 200 201 /// \return name of the macro inside the location \p Loc. 202 static StringRef getMacroName(SourceLocation Loc, 203 BugReporterContext &BRC) { 204 return Lexer::getImmediateMacroName( 205 Loc, 206 BRC.getSourceManager(), 207 BRC.getASTContext().getLangOpts()); 208 } 209 210 /// \return Whether given spelling location corresponds to an expansion 211 /// of a function-like macro. 212 static bool isFunctionMacroExpansion(SourceLocation Loc, 213 const SourceManager &SM) { 214 if (!Loc.isMacroID()) 215 return false; 216 while (SM.isMacroArgExpansion(Loc)) 217 Loc = SM.getImmediateExpansionRange(Loc).getBegin(); 218 std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc); 219 SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first); 220 const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion(); 221 return EInfo.isFunctionMacroExpansion(); 222 } 223 224 namespace { 225 226 /// Put a diagnostic on return statement of all inlined functions 227 /// for which the region of interest \p RegionOfInterest was passed into, 228 /// but not written inside, and it has caused an undefined read or a null 229 /// pointer dereference outside. 230 class NoStoreFuncVisitor final 231 : public BugReporterVisitorImpl<NoStoreFuncVisitor> { 232 const SubRegion *RegionOfInterest; 233 static constexpr const char *DiagnosticsMsg = 234 "Returning without writing to '"; 235 236 /// Frames writing into \c RegionOfInterest. 237 /// This visitor generates a note only if a function does not write into 238 /// a region of interest. This information is not immediately available 239 /// by looking at the node associated with the exit from the function 240 /// (usually the return statement). To avoid recomputing the same information 241 /// many times (going up the path for each node and checking whether the 242 /// region was written into) we instead lazily compute the 243 /// stack frames along the path which write into the region of interest. 244 llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingRegion; 245 llvm::SmallPtrSet<const StackFrameContext *, 32> FramesModifyingCalculated; 246 247 public: 248 NoStoreFuncVisitor(const SubRegion *R) : RegionOfInterest(R) {} 249 250 void Profile(llvm::FoldingSetNodeID &ID) const override { 251 static int Tag = 0; 252 ID.AddPointer(&Tag); 253 } 254 255 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 256 const ExplodedNode *PrevN, 257 BugReporterContext &BRC, 258 BugReport &BR) override { 259 260 const LocationContext *Ctx = N->getLocationContext(); 261 const StackFrameContext *SCtx = Ctx->getCurrentStackFrame(); 262 ProgramStateRef State = N->getState(); 263 auto CallExitLoc = N->getLocationAs<CallExitBegin>(); 264 265 // No diagnostic if region was modified inside the frame. 266 if (!CallExitLoc) 267 return nullptr; 268 269 CallEventRef<> Call = 270 BRC.getStateManager().getCallEventManager().getCaller(SCtx, State); 271 272 const PrintingPolicy &PP = BRC.getASTContext().getPrintingPolicy(); 273 const SourceManager &SM = BRC.getSourceManager(); 274 if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) { 275 const MemRegion *ThisRegion = CCall->getCXXThisVal().getAsRegion(); 276 if (RegionOfInterest->isSubRegionOf(ThisRegion) 277 && !CCall->getDecl()->isImplicit() 278 && !isRegionOfInterestModifiedInFrame(N)) 279 return notModifiedInConstructorDiagnostics(Ctx, SM, PP, *CallExitLoc, 280 CCall, ThisRegion); 281 } 282 283 ArrayRef<ParmVarDecl *> parameters = getCallParameters(Call); 284 for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) { 285 const ParmVarDecl *PVD = parameters[I]; 286 SVal S = Call->getArgSVal(I); 287 unsigned IndirectionLevel = 1; 288 QualType T = PVD->getType(); 289 while (const MemRegion *R = S.getAsRegion()) { 290 if (RegionOfInterest->isSubRegionOf(R) 291 && !isPointerToConst(PVD->getType())) { 292 293 if (isRegionOfInterestModifiedInFrame(N)) 294 return nullptr; 295 296 return notModifiedDiagnostics( 297 Ctx, SM, PP, *CallExitLoc, Call, PVD, R, IndirectionLevel); 298 } 299 QualType PT = T->getPointeeType(); 300 if (PT.isNull() || PT->isVoidType()) break; 301 S = State->getSVal(R, PT); 302 T = PT; 303 IndirectionLevel++; 304 } 305 } 306 307 return nullptr; 308 } 309 310 private: 311 /// Check and lazily calculate whether the region of interest is 312 /// modified in the stack frame to which \p N belongs. 313 /// The calculation is cached in FramesModifyingRegion. 314 bool isRegionOfInterestModifiedInFrame(const ExplodedNode *N) { 315 const LocationContext *Ctx = N->getLocationContext(); 316 const StackFrameContext *SCtx = Ctx->getCurrentStackFrame(); 317 if (!FramesModifyingCalculated.count(SCtx)) 318 findModifyingFrames(N); 319 return FramesModifyingRegion.count(SCtx); 320 } 321 322 323 /// Write to \c FramesModifyingRegion all stack frames along 324 /// the path in the current stack frame which modify \c RegionOfInterest. 325 void findModifyingFrames(const ExplodedNode *N) { 326 assert(N->getLocationAs<CallExitBegin>()); 327 ProgramStateRef LastReturnState = N->getState(); 328 SVal ValueAtReturn = LastReturnState->getSVal(RegionOfInterest); 329 const LocationContext *Ctx = N->getLocationContext(); 330 const StackFrameContext *OriginalSCtx = Ctx->getCurrentStackFrame(); 331 332 do { 333 ProgramStateRef State = N->getState(); 334 auto CallExitLoc = N->getLocationAs<CallExitBegin>(); 335 if (CallExitLoc) { 336 LastReturnState = State; 337 ValueAtReturn = LastReturnState->getSVal(RegionOfInterest); 338 } 339 340 FramesModifyingCalculated.insert( 341 N->getLocationContext()->getCurrentStackFrame()); 342 343 if (wasRegionOfInterestModifiedAt(N, LastReturnState, ValueAtReturn)) { 344 const StackFrameContext *SCtx = 345 N->getLocationContext()->getCurrentStackFrame(); 346 while (!SCtx->inTopFrame()) { 347 auto p = FramesModifyingRegion.insert(SCtx); 348 if (!p.second) 349 break; // Frame and all its parents already inserted. 350 SCtx = SCtx->getParent()->getCurrentStackFrame(); 351 } 352 } 353 354 // Stop calculation at the call to the current function. 355 if (auto CE = N->getLocationAs<CallEnter>()) 356 if (CE->getCalleeContext() == OriginalSCtx) 357 break; 358 359 N = N->getFirstPred(); 360 } while (N); 361 } 362 363 /// \return Whether \c RegionOfInterest was modified at \p N, 364 /// where \p ReturnState is a state associated with the return 365 /// from the current frame. 366 bool wasRegionOfInterestModifiedAt(const ExplodedNode *N, 367 ProgramStateRef ReturnState, 368 SVal ValueAtReturn) { 369 if (!N->getLocationAs<PostStore>() 370 && !N->getLocationAs<PostInitializer>() 371 && !N->getLocationAs<PostStmt>()) 372 return false; 373 374 // Writing into region of interest. 375 if (auto PS = N->getLocationAs<PostStmt>()) 376 if (auto *BO = PS->getStmtAs<BinaryOperator>()) 377 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf( 378 N->getSVal(BO->getLHS()).getAsRegion())) 379 return true; 380 381 // SVal after the state is possibly different. 382 SVal ValueAtN = N->getState()->getSVal(RegionOfInterest); 383 if (!ReturnState->areEqual(ValueAtN, ValueAtReturn).isConstrainedTrue() && 384 (!ValueAtN.isUndef() || !ValueAtReturn.isUndef())) 385 return true; 386 387 return false; 388 } 389 390 /// Get parameters associated with runtime definition in order 391 /// to get the correct parameter name. 392 ArrayRef<ParmVarDecl *> getCallParameters(CallEventRef<> Call) { 393 // Use runtime definition, if available. 394 RuntimeDefinition RD = Call->getRuntimeDefinition(); 395 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(RD.getDecl())) 396 return FD->parameters(); 397 398 return Call->parameters(); 399 } 400 401 /// \return whether \p Ty points to a const type, or is a const reference. 402 bool isPointerToConst(QualType Ty) { 403 return !Ty->getPointeeType().isNull() && 404 Ty->getPointeeType().getCanonicalType().isConstQualified(); 405 } 406 407 std::shared_ptr<PathDiagnosticPiece> notModifiedInConstructorDiagnostics( 408 const LocationContext *Ctx, 409 const SourceManager &SM, 410 const PrintingPolicy &PP, 411 CallExitBegin &CallExitLoc, 412 const CXXConstructorCall *Call, 413 const MemRegion *ArgRegion) { 414 SmallString<256> sbuf; 415 llvm::raw_svector_ostream os(sbuf); 416 os << DiagnosticsMsg; 417 bool out = prettyPrintRegionName( 418 "this", "->", /*IsReference=*/true, 419 /*IndirectionLevel=*/1, ArgRegion, os, PP); 420 421 // Return nothing if we have failed to pretty-print. 422 if (!out) 423 return nullptr; 424 425 os << "'"; 426 PathDiagnosticLocation L = 427 getPathDiagnosticLocation(nullptr, SM, Ctx, Call); 428 return std::make_shared<PathDiagnosticEventPiece>(L, os.str()); 429 } 430 431 /// \p IndirectionLevel How many times \c ArgRegion has to be dereferenced 432 /// before we get to the super region of \c RegionOfInterest 433 std::shared_ptr<PathDiagnosticPiece> 434 notModifiedDiagnostics(const LocationContext *Ctx, 435 const SourceManager &SM, 436 const PrintingPolicy &PP, 437 CallExitBegin &CallExitLoc, 438 CallEventRef<> Call, 439 const ParmVarDecl *PVD, 440 const MemRegion *ArgRegion, 441 unsigned IndirectionLevel) { 442 PathDiagnosticLocation L = getPathDiagnosticLocation( 443 CallExitLoc.getReturnStmt(), SM, Ctx, Call); 444 SmallString<256> sbuf; 445 llvm::raw_svector_ostream os(sbuf); 446 os << DiagnosticsMsg; 447 bool IsReference = PVD->getType()->isReferenceType(); 448 const char *Sep = IsReference && IndirectionLevel == 1 ? "." : "->"; 449 bool Success = prettyPrintRegionName( 450 PVD->getQualifiedNameAsString().c_str(), 451 Sep, IsReference, IndirectionLevel, ArgRegion, os, PP); 452 453 // Print the parameter name if the pretty-printing has failed. 454 if (!Success) 455 PVD->printQualifiedName(os); 456 os << "'"; 457 return std::make_shared<PathDiagnosticEventPiece>(L, os.str()); 458 } 459 460 /// \return a path diagnostic location for the optionally 461 /// present return statement \p RS. 462 PathDiagnosticLocation getPathDiagnosticLocation(const ReturnStmt *RS, 463 const SourceManager &SM, 464 const LocationContext *Ctx, 465 CallEventRef<> Call) { 466 if (RS) 467 return PathDiagnosticLocation::createBegin(RS, SM, Ctx); 468 return PathDiagnosticLocation( 469 Call->getRuntimeDefinition().getDecl()->getSourceRange().getEnd(), SM); 470 } 471 472 /// Pretty-print region \p ArgRegion starting from parent to \p os. 473 /// \return whether printing has succeeded 474 bool prettyPrintRegionName(const char *TopRegionName, 475 const char *Sep, 476 bool IsReference, 477 int IndirectionLevel, 478 const MemRegion *ArgRegion, 479 llvm::raw_svector_ostream &os, 480 const PrintingPolicy &PP) { 481 SmallVector<const MemRegion *, 5> Subregions; 482 const MemRegion *R = RegionOfInterest; 483 while (R != ArgRegion) { 484 if (!(isa<FieldRegion>(R) || isa<CXXBaseObjectRegion>(R))) 485 return false; // Pattern-matching failed. 486 Subregions.push_back(R); 487 R = cast<SubRegion>(R)->getSuperRegion(); 488 } 489 bool IndirectReference = !Subregions.empty(); 490 491 if (IndirectReference) 492 IndirectionLevel--; // Due to "->" symbol. 493 494 if (IsReference) 495 IndirectionLevel--; // Due to reference semantics. 496 497 bool ShouldSurround = IndirectReference && IndirectionLevel > 0; 498 499 if (ShouldSurround) 500 os << "("; 501 for (int i = 0; i < IndirectionLevel; i++) 502 os << "*"; 503 os << TopRegionName; 504 if (ShouldSurround) 505 os << ")"; 506 507 for (auto I = Subregions.rbegin(), E = Subregions.rend(); I != E; ++I) { 508 if (const auto *FR = dyn_cast<FieldRegion>(*I)) { 509 os << Sep; 510 FR->getDecl()->getDeclName().print(os, PP); 511 Sep = "."; 512 } else if (isa<CXXBaseObjectRegion>(*I)) { 513 continue; // Just keep going up to the base region. 514 } else { 515 llvm_unreachable("Previous check has missed an unexpected region"); 516 } 517 } 518 return true; 519 } 520 }; 521 522 class MacroNullReturnSuppressionVisitor final 523 : public BugReporterVisitorImpl<MacroNullReturnSuppressionVisitor> { 524 const SubRegion *RegionOfInterest; 525 526 public: 527 MacroNullReturnSuppressionVisitor(const SubRegion *R) : RegionOfInterest(R) {} 528 529 static void *getTag() { 530 static int Tag = 0; 531 return static_cast<void *>(&Tag); 532 } 533 534 void Profile(llvm::FoldingSetNodeID &ID) const override { 535 ID.AddPointer(getTag()); 536 } 537 538 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 539 const ExplodedNode *PrevN, 540 BugReporterContext &BRC, 541 BugReport &BR) override { 542 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>(); 543 if (!BugPoint) 544 return nullptr; 545 546 const SourceManager &SMgr = BRC.getSourceManager(); 547 if (auto Loc = matchAssignment(N, BRC)) { 548 if (isFunctionMacroExpansion(*Loc, SMgr)) { 549 std::string MacroName = getMacroName(*Loc, BRC); 550 SourceLocation BugLoc = BugPoint->getStmt()->getLocStart(); 551 if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName) 552 BR.markInvalid(getTag(), MacroName.c_str()); 553 } 554 } 555 return nullptr; 556 } 557 558 static void addMacroVisitorIfNecessary( 559 const ExplodedNode *N, const MemRegion *R, 560 bool EnableNullFPSuppression, BugReport &BR, 561 const SVal V) { 562 AnalyzerOptions &Options = N->getState()->getStateManager() 563 .getOwningEngine()->getAnalysisManager().options; 564 if (EnableNullFPSuppression && Options.shouldSuppressNullReturnPaths() 565 && V.getAs<Loc>()) 566 BR.addVisitor(llvm::make_unique<MacroNullReturnSuppressionVisitor>( 567 R->getAs<SubRegion>())); 568 } 569 570 private: 571 /// \return Source location of right hand side of an assignment 572 /// into \c RegionOfInterest, empty optional if none found. 573 Optional<SourceLocation> matchAssignment(const ExplodedNode *N, 574 BugReporterContext &BRC) { 575 const Stmt *S = PathDiagnosticLocation::getStmt(N); 576 ProgramStateRef State = N->getState(); 577 auto *LCtx = N->getLocationContext(); 578 if (!S) 579 return None; 580 581 if (const auto *DS = dyn_cast<DeclStmt>(S)) { 582 if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl())) 583 if (const Expr *RHS = VD->getInit()) 584 if (RegionOfInterest->isSubRegionOf( 585 State->getLValue(VD, LCtx).getAsRegion())) 586 return RHS->getLocStart(); 587 } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) { 588 const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion(); 589 const Expr *RHS = BO->getRHS(); 590 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) { 591 return RHS->getLocStart(); 592 } 593 } 594 return None; 595 } 596 }; 597 598 /// Emits an extra note at the return statement of an interesting stack frame. 599 /// 600 /// The returned value is marked as an interesting value, and if it's null, 601 /// adds a visitor to track where it became null. 602 /// 603 /// This visitor is intended to be used when another visitor discovers that an 604 /// interesting value comes from an inlined function call. 605 class ReturnVisitor : public BugReporterVisitorImpl<ReturnVisitor> { 606 const StackFrameContext *StackFrame; 607 enum { 608 Initial, 609 MaybeUnsuppress, 610 Satisfied 611 } Mode = Initial; 612 613 bool EnableNullFPSuppression; 614 615 public: 616 ReturnVisitor(const StackFrameContext *Frame, bool Suppressed) 617 : StackFrame(Frame), EnableNullFPSuppression(Suppressed) {} 618 619 static void *getTag() { 620 static int Tag = 0; 621 return static_cast<void *>(&Tag); 622 } 623 624 void Profile(llvm::FoldingSetNodeID &ID) const override { 625 ID.AddPointer(ReturnVisitor::getTag()); 626 ID.AddPointer(StackFrame); 627 ID.AddBoolean(EnableNullFPSuppression); 628 } 629 630 /// Adds a ReturnVisitor if the given statement represents a call that was 631 /// inlined. 632 /// 633 /// This will search back through the ExplodedGraph, starting from the given 634 /// node, looking for when the given statement was processed. If it turns out 635 /// the statement is a call that was inlined, we add the visitor to the 636 /// bug report, so it can print a note later. 637 static void addVisitorIfNecessary(const ExplodedNode *Node, const Stmt *S, 638 BugReport &BR, 639 bool InEnableNullFPSuppression) { 640 if (!CallEvent::isCallStmt(S)) 641 return; 642 643 // First, find when we processed the statement. 644 do { 645 if (Optional<CallExitEnd> CEE = Node->getLocationAs<CallExitEnd>()) 646 if (CEE->getCalleeContext()->getCallSite() == S) 647 break; 648 if (Optional<StmtPoint> SP = Node->getLocationAs<StmtPoint>()) 649 if (SP->getStmt() == S) 650 break; 651 652 Node = Node->getFirstPred(); 653 } while (Node); 654 655 // Next, step over any post-statement checks. 656 while (Node && Node->getLocation().getAs<PostStmt>()) 657 Node = Node->getFirstPred(); 658 if (!Node) 659 return; 660 661 // Finally, see if we inlined the call. 662 Optional<CallExitEnd> CEE = Node->getLocationAs<CallExitEnd>(); 663 if (!CEE) 664 return; 665 666 const StackFrameContext *CalleeContext = CEE->getCalleeContext(); 667 if (CalleeContext->getCallSite() != S) 668 return; 669 670 // Check the return value. 671 ProgramStateRef State = Node->getState(); 672 SVal RetVal = Node->getSVal(S); 673 674 // Handle cases where a reference is returned and then immediately used. 675 if (cast<Expr>(S)->isGLValue()) 676 if (Optional<Loc> LValue = RetVal.getAs<Loc>()) 677 RetVal = State->getSVal(*LValue); 678 679 // See if the return value is NULL. If so, suppress the report. 680 SubEngine *Eng = State->getStateManager().getOwningEngine(); 681 assert(Eng && "Cannot file a bug report without an owning engine"); 682 AnalyzerOptions &Options = Eng->getAnalysisManager().options; 683 684 bool EnableNullFPSuppression = false; 685 if (InEnableNullFPSuppression && Options.shouldSuppressNullReturnPaths()) 686 if (Optional<Loc> RetLoc = RetVal.getAs<Loc>()) 687 EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue(); 688 689 BR.markInteresting(CalleeContext); 690 BR.addVisitor(llvm::make_unique<ReturnVisitor>(CalleeContext, 691 EnableNullFPSuppression)); 692 } 693 694 /// Returns true if any counter-suppression heuristics are enabled for 695 /// ReturnVisitor. 696 static bool hasCounterSuppression(AnalyzerOptions &Options) { 697 return Options.shouldAvoidSuppressingNullArgumentPaths(); 698 } 699 700 std::shared_ptr<PathDiagnosticPiece> 701 visitNodeInitial(const ExplodedNode *N, const ExplodedNode *PrevN, 702 BugReporterContext &BRC, BugReport &BR) { 703 // Only print a message at the interesting return statement. 704 if (N->getLocationContext() != StackFrame) 705 return nullptr; 706 707 Optional<StmtPoint> SP = N->getLocationAs<StmtPoint>(); 708 if (!SP) 709 return nullptr; 710 711 const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt()); 712 if (!Ret) 713 return nullptr; 714 715 // Okay, we're at the right return statement, but do we have the return 716 // value available? 717 ProgramStateRef State = N->getState(); 718 SVal V = State->getSVal(Ret, StackFrame); 719 if (V.isUnknownOrUndef()) 720 return nullptr; 721 722 // Don't print any more notes after this one. 723 Mode = Satisfied; 724 725 const Expr *RetE = Ret->getRetValue(); 726 assert(RetE && "Tracking a return value for a void function"); 727 728 // Handle cases where a reference is returned and then immediately used. 729 Optional<Loc> LValue; 730 if (RetE->isGLValue()) { 731 if ((LValue = V.getAs<Loc>())) { 732 SVal RValue = State->getRawSVal(*LValue, RetE->getType()); 733 if (RValue.getAs<DefinedSVal>()) 734 V = RValue; 735 } 736 } 737 738 // Ignore aggregate rvalues. 739 if (V.getAs<nonloc::LazyCompoundVal>() || 740 V.getAs<nonloc::CompoundVal>()) 741 return nullptr; 742 743 RetE = RetE->IgnoreParenCasts(); 744 745 // If we can't prove the return value is 0, just mark it interesting, and 746 // make sure to track it into any further inner functions. 747 if (!State->isNull(V).isConstrainedTrue()) { 748 BR.markInteresting(V); 749 ReturnVisitor::addVisitorIfNecessary(N, RetE, BR, 750 EnableNullFPSuppression); 751 return nullptr; 752 } 753 754 // If we're returning 0, we should track where that 0 came from. 755 bugreporter::trackNullOrUndefValue(N, RetE, BR, /*IsArg*/ false, 756 EnableNullFPSuppression); 757 758 // Build an appropriate message based on the return value. 759 SmallString<64> Msg; 760 llvm::raw_svector_ostream Out(Msg); 761 762 if (V.getAs<Loc>()) { 763 // If we have counter-suppression enabled, make sure we keep visiting 764 // future nodes. We want to emit a path note as well, in case 765 // the report is resurrected as valid later on. 766 ExprEngine &Eng = BRC.getBugReporter().getEngine(); 767 AnalyzerOptions &Options = Eng.getAnalysisManager().options; 768 if (EnableNullFPSuppression && hasCounterSuppression(Options)) 769 Mode = MaybeUnsuppress; 770 771 if (RetE->getType()->isObjCObjectPointerType()) 772 Out << "Returning nil"; 773 else 774 Out << "Returning null pointer"; 775 } else { 776 Out << "Returning zero"; 777 } 778 779 if (LValue) { 780 if (const MemRegion *MR = LValue->getAsRegion()) { 781 if (MR->canPrintPretty()) { 782 Out << " (reference to "; 783 MR->printPretty(Out); 784 Out << ")"; 785 } 786 } 787 } else { 788 // FIXME: We should have a more generalized location printing mechanism. 789 if (const auto *DR = dyn_cast<DeclRefExpr>(RetE)) 790 if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl())) 791 Out << " (loaded from '" << *DD << "')"; 792 } 793 794 PathDiagnosticLocation L(Ret, BRC.getSourceManager(), StackFrame); 795 if (!L.isValid() || !L.asLocation().isValid()) 796 return nullptr; 797 798 return std::make_shared<PathDiagnosticEventPiece>(L, Out.str()); 799 } 800 801 std::shared_ptr<PathDiagnosticPiece> 802 visitNodeMaybeUnsuppress(const ExplodedNode *N, const ExplodedNode *PrevN, 803 BugReporterContext &BRC, BugReport &BR) { 804 #ifndef NDEBUG 805 ExprEngine &Eng = BRC.getBugReporter().getEngine(); 806 AnalyzerOptions &Options = Eng.getAnalysisManager().options; 807 assert(hasCounterSuppression(Options)); 808 #endif 809 810 // Are we at the entry node for this call? 811 Optional<CallEnter> CE = N->getLocationAs<CallEnter>(); 812 if (!CE) 813 return nullptr; 814 815 if (CE->getCalleeContext() != StackFrame) 816 return nullptr; 817 818 Mode = Satisfied; 819 820 // Don't automatically suppress a report if one of the arguments is 821 // known to be a null pointer. Instead, start tracking /that/ null 822 // value back to its origin. 823 ProgramStateManager &StateMgr = BRC.getStateManager(); 824 CallEventManager &CallMgr = StateMgr.getCallEventManager(); 825 826 ProgramStateRef State = N->getState(); 827 CallEventRef<> Call = CallMgr.getCaller(StackFrame, State); 828 for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) { 829 Optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>(); 830 if (!ArgV) 831 continue; 832 833 const Expr *ArgE = Call->getArgExpr(I); 834 if (!ArgE) 835 continue; 836 837 // Is it possible for this argument to be non-null? 838 if (!State->isNull(*ArgV).isConstrainedTrue()) 839 continue; 840 841 if (bugreporter::trackNullOrUndefValue(N, ArgE, BR, /*IsArg=*/true, 842 EnableNullFPSuppression)) 843 BR.removeInvalidation(ReturnVisitor::getTag(), StackFrame); 844 845 // If we /can't/ track the null pointer, we should err on the side of 846 // false negatives, and continue towards marking this report invalid. 847 // (We will still look at the other arguments, though.) 848 } 849 850 return nullptr; 851 } 852 853 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 854 const ExplodedNode *PrevN, 855 BugReporterContext &BRC, 856 BugReport &BR) override { 857 switch (Mode) { 858 case Initial: 859 return visitNodeInitial(N, PrevN, BRC, BR); 860 case MaybeUnsuppress: 861 return visitNodeMaybeUnsuppress(N, PrevN, BRC, BR); 862 case Satisfied: 863 return nullptr; 864 } 865 866 llvm_unreachable("Invalid visit mode!"); 867 } 868 869 std::unique_ptr<PathDiagnosticPiece> getEndPath(BugReporterContext &BRC, 870 const ExplodedNode *N, 871 BugReport &BR) override { 872 if (EnableNullFPSuppression) 873 BR.markInvalid(ReturnVisitor::getTag(), StackFrame); 874 return nullptr; 875 } 876 }; 877 878 } // namespace 879 880 void FindLastStoreBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const { 881 static int tag = 0; 882 ID.AddPointer(&tag); 883 ID.AddPointer(R); 884 ID.Add(V); 885 ID.AddBoolean(EnableNullFPSuppression); 886 } 887 888 /// Returns true if \p N represents the DeclStmt declaring and initializing 889 /// \p VR. 890 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) { 891 Optional<PostStmt> P = N->getLocationAs<PostStmt>(); 892 if (!P) 893 return false; 894 895 const DeclStmt *DS = P->getStmtAs<DeclStmt>(); 896 if (!DS) 897 return false; 898 899 if (DS->getSingleDecl() != VR->getDecl()) 900 return false; 901 902 const MemSpaceRegion *VarSpace = VR->getMemorySpace(); 903 const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace); 904 if (!FrameSpace) { 905 // If we ever directly evaluate global DeclStmts, this assertion will be 906 // invalid, but this still seems preferable to silently accepting an 907 // initialization that may be for a path-sensitive variable. 908 assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion"); 909 return true; 910 } 911 912 assert(VR->getDecl()->hasLocalStorage()); 913 const LocationContext *LCtx = N->getLocationContext(); 914 return FrameSpace->getStackFrame() == LCtx->getCurrentStackFrame(); 915 } 916 917 /// Show diagnostics for initializing or declaring a region \p R with a bad value. 918 static void showBRDiagnostics(const char *action, llvm::raw_svector_ostream &os, 919 const MemRegion *R, SVal V, const DeclStmt *DS) { 920 if (R->canPrintPretty()) { 921 R->printPretty(os); 922 os << " "; 923 } 924 925 if (V.getAs<loc::ConcreteInt>()) { 926 bool b = false; 927 if (R->isBoundable()) { 928 if (const auto *TR = dyn_cast<TypedValueRegion>(R)) { 929 if (TR->getValueType()->isObjCObjectPointerType()) { 930 os << action << "nil"; 931 b = true; 932 } 933 } 934 } 935 if (!b) 936 os << action << "a null pointer value"; 937 938 } else if (auto CVal = V.getAs<nonloc::ConcreteInt>()) { 939 os << action << CVal->getValue(); 940 } else if (DS) { 941 if (V.isUndef()) { 942 if (isa<VarRegion>(R)) { 943 const auto *VD = cast<VarDecl>(DS->getSingleDecl()); 944 if (VD->getInit()) { 945 os << (R->canPrintPretty() ? "initialized" : "Initializing") 946 << " to a garbage value"; 947 } else { 948 os << (R->canPrintPretty() ? "declared" : "Declaring") 949 << " without an initial value"; 950 } 951 } 952 } else { 953 os << (R->canPrintPretty() ? "initialized" : "Initialized") 954 << " here"; 955 } 956 } 957 } 958 959 /// Display diagnostics for passing bad region as a parameter. 960 static void showBRParamDiagnostics(llvm::raw_svector_ostream& os, 961 const VarRegion *VR, 962 SVal V) { 963 const auto *Param = cast<ParmVarDecl>(VR->getDecl()); 964 965 os << "Passing "; 966 967 if (V.getAs<loc::ConcreteInt>()) { 968 if (Param->getType()->isObjCObjectPointerType()) 969 os << "nil object reference"; 970 else 971 os << "null pointer value"; 972 } else if (V.isUndef()) { 973 os << "uninitialized value"; 974 } else if (auto CI = V.getAs<nonloc::ConcreteInt>()) { 975 os << "the value " << CI->getValue(); 976 } else { 977 os << "value"; 978 } 979 980 // Printed parameter indexes are 1-based, not 0-based. 981 unsigned Idx = Param->getFunctionScopeIndex() + 1; 982 os << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter"; 983 if (VR->canPrintPretty()) { 984 os << " "; 985 VR->printPretty(os); 986 } 987 } 988 989 /// Show default diagnostics for storing bad region. 990 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream& os, 991 const MemRegion *R, 992 SVal V) { 993 if (V.getAs<loc::ConcreteInt>()) { 994 bool b = false; 995 if (R->isBoundable()) { 996 if (const auto *TR = dyn_cast<TypedValueRegion>(R)) { 997 if (TR->getValueType()->isObjCObjectPointerType()) { 998 os << "nil object reference stored"; 999 b = true; 1000 } 1001 } 1002 } 1003 if (!b) { 1004 if (R->canPrintPretty()) 1005 os << "Null pointer value stored"; 1006 else 1007 os << "Storing null pointer value"; 1008 } 1009 1010 } else if (V.isUndef()) { 1011 if (R->canPrintPretty()) 1012 os << "Uninitialized value stored"; 1013 else 1014 os << "Storing uninitialized value"; 1015 1016 } else if (auto CV = V.getAs<nonloc::ConcreteInt>()) { 1017 if (R->canPrintPretty()) 1018 os << "The value " << CV->getValue() << " is assigned"; 1019 else 1020 os << "Assigning " << CV->getValue(); 1021 1022 } else { 1023 if (R->canPrintPretty()) 1024 os << "Value assigned"; 1025 else 1026 os << "Assigning value"; 1027 } 1028 1029 if (R->canPrintPretty()) { 1030 os << " to "; 1031 R->printPretty(os); 1032 } 1033 } 1034 1035 std::shared_ptr<PathDiagnosticPiece> 1036 FindLastStoreBRVisitor::VisitNode(const ExplodedNode *Succ, 1037 const ExplodedNode *Pred, 1038 BugReporterContext &BRC, BugReport &BR) { 1039 if (Satisfied) 1040 return nullptr; 1041 1042 const ExplodedNode *StoreSite = nullptr; 1043 const Expr *InitE = nullptr; 1044 bool IsParam = false; 1045 1046 // First see if we reached the declaration of the region. 1047 if (const auto *VR = dyn_cast<VarRegion>(R)) { 1048 if (isInitializationOfVar(Pred, VR)) { 1049 StoreSite = Pred; 1050 InitE = VR->getDecl()->getInit(); 1051 } 1052 } 1053 1054 // If this is a post initializer expression, initializing the region, we 1055 // should track the initializer expression. 1056 if (Optional<PostInitializer> PIP = Pred->getLocationAs<PostInitializer>()) { 1057 const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue(); 1058 if (FieldReg && FieldReg == R) { 1059 StoreSite = Pred; 1060 InitE = PIP->getInitializer()->getInit(); 1061 } 1062 } 1063 1064 // Otherwise, see if this is the store site: 1065 // (1) Succ has this binding and Pred does not, i.e. this is 1066 // where the binding first occurred. 1067 // (2) Succ has this binding and is a PostStore node for this region, i.e. 1068 // the same binding was re-assigned here. 1069 if (!StoreSite) { 1070 if (Succ->getState()->getSVal(R) != V) 1071 return nullptr; 1072 1073 if (Pred->getState()->getSVal(R) == V) { 1074 Optional<PostStore> PS = Succ->getLocationAs<PostStore>(); 1075 if (!PS || PS->getLocationValue() != R) 1076 return nullptr; 1077 } 1078 1079 StoreSite = Succ; 1080 1081 // If this is an assignment expression, we can track the value 1082 // being assigned. 1083 if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>()) 1084 if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>()) 1085 if (BO->isAssignmentOp()) 1086 InitE = BO->getRHS(); 1087 1088 // If this is a call entry, the variable should be a parameter. 1089 // FIXME: Handle CXXThisRegion as well. (This is not a priority because 1090 // 'this' should never be NULL, but this visitor isn't just for NULL and 1091 // UndefinedVal.) 1092 if (Optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) { 1093 if (const auto *VR = dyn_cast<VarRegion>(R)) { 1094 const auto *Param = cast<ParmVarDecl>(VR->getDecl()); 1095 1096 ProgramStateManager &StateMgr = BRC.getStateManager(); 1097 CallEventManager &CallMgr = StateMgr.getCallEventManager(); 1098 1099 CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(), 1100 Succ->getState()); 1101 InitE = Call->getArgExpr(Param->getFunctionScopeIndex()); 1102 IsParam = true; 1103 } 1104 } 1105 1106 // If this is a CXXTempObjectRegion, the Expr responsible for its creation 1107 // is wrapped inside of it. 1108 if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R)) 1109 InitE = TmpR->getExpr(); 1110 } 1111 1112 if (!StoreSite) 1113 return nullptr; 1114 Satisfied = true; 1115 1116 // If we have an expression that provided the value, try to track where it 1117 // came from. 1118 if (InitE) { 1119 if (V.isUndef() || 1120 V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) { 1121 if (!IsParam) 1122 InitE = InitE->IgnoreParenCasts(); 1123 bugreporter::trackNullOrUndefValue(StoreSite, InitE, BR, IsParam, 1124 EnableNullFPSuppression); 1125 } else { 1126 ReturnVisitor::addVisitorIfNecessary(StoreSite, InitE->IgnoreParenCasts(), 1127 BR, EnableNullFPSuppression); 1128 } 1129 } 1130 1131 // Okay, we've found the binding. Emit an appropriate message. 1132 SmallString<256> sbuf; 1133 llvm::raw_svector_ostream os(sbuf); 1134 1135 if (Optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) { 1136 const Stmt *S = PS->getStmt(); 1137 const char *action = nullptr; 1138 const auto *DS = dyn_cast<DeclStmt>(S); 1139 const auto *VR = dyn_cast<VarRegion>(R); 1140 1141 if (DS) { 1142 action = R->canPrintPretty() ? "initialized to " : 1143 "Initializing to "; 1144 } else if (isa<BlockExpr>(S)) { 1145 action = R->canPrintPretty() ? "captured by block as " : 1146 "Captured by block as "; 1147 if (VR) { 1148 // See if we can get the BlockVarRegion. 1149 ProgramStateRef State = StoreSite->getState(); 1150 SVal V = StoreSite->getSVal(S); 1151 if (const auto *BDR = 1152 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 1153 if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) { 1154 if (Optional<KnownSVal> KV = 1155 State->getSVal(OriginalR).getAs<KnownSVal>()) 1156 BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1157 *KV, OriginalR, EnableNullFPSuppression)); 1158 } 1159 } 1160 } 1161 } 1162 if (action) 1163 showBRDiagnostics(action, os, R, V, DS); 1164 1165 } else if (StoreSite->getLocation().getAs<CallEnter>()) { 1166 if (const auto *VR = dyn_cast<VarRegion>(R)) 1167 showBRParamDiagnostics(os, VR, V); 1168 } 1169 1170 if (os.str().empty()) 1171 showBRDefaultDiagnostics(os, R, V); 1172 1173 // Construct a new PathDiagnosticPiece. 1174 ProgramPoint P = StoreSite->getLocation(); 1175 PathDiagnosticLocation L; 1176 if (P.getAs<CallEnter>() && InitE) 1177 L = PathDiagnosticLocation(InitE, BRC.getSourceManager(), 1178 P.getLocationContext()); 1179 1180 if (!L.isValid() || !L.asLocation().isValid()) 1181 L = PathDiagnosticLocation::create(P, BRC.getSourceManager()); 1182 1183 if (!L.isValid() || !L.asLocation().isValid()) 1184 return nullptr; 1185 1186 return std::make_shared<PathDiagnosticEventPiece>(L, os.str()); 1187 } 1188 1189 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const { 1190 static int tag = 0; 1191 ID.AddPointer(&tag); 1192 ID.AddBoolean(Assumption); 1193 ID.Add(Constraint); 1194 } 1195 1196 /// Return the tag associated with this visitor. This tag will be used 1197 /// to make all PathDiagnosticPieces created by this visitor. 1198 const char *TrackConstraintBRVisitor::getTag() { 1199 return "TrackConstraintBRVisitor"; 1200 } 1201 1202 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const { 1203 if (IsZeroCheck) 1204 return N->getState()->isNull(Constraint).isUnderconstrained(); 1205 return (bool)N->getState()->assume(Constraint, !Assumption); 1206 } 1207 1208 std::shared_ptr<PathDiagnosticPiece> 1209 TrackConstraintBRVisitor::VisitNode(const ExplodedNode *N, 1210 const ExplodedNode *PrevN, 1211 BugReporterContext &BRC, BugReport &BR) { 1212 if (IsSatisfied) 1213 return nullptr; 1214 1215 // Start tracking after we see the first state in which the value is 1216 // constrained. 1217 if (!IsTrackingTurnedOn) 1218 if (!isUnderconstrained(N)) 1219 IsTrackingTurnedOn = true; 1220 if (!IsTrackingTurnedOn) 1221 return nullptr; 1222 1223 // Check if in the previous state it was feasible for this constraint 1224 // to *not* be true. 1225 if (isUnderconstrained(PrevN)) { 1226 IsSatisfied = true; 1227 1228 // As a sanity check, make sure that the negation of the constraint 1229 // was infeasible in the current state. If it is feasible, we somehow 1230 // missed the transition point. 1231 assert(!isUnderconstrained(N)); 1232 1233 // We found the transition point for the constraint. We now need to 1234 // pretty-print the constraint. (work-in-progress) 1235 SmallString<64> sbuf; 1236 llvm::raw_svector_ostream os(sbuf); 1237 1238 if (Constraint.getAs<Loc>()) { 1239 os << "Assuming pointer value is "; 1240 os << (Assumption ? "non-null" : "null"); 1241 } 1242 1243 if (os.str().empty()) 1244 return nullptr; 1245 1246 // Construct a new PathDiagnosticPiece. 1247 ProgramPoint P = N->getLocation(); 1248 PathDiagnosticLocation L = 1249 PathDiagnosticLocation::create(P, BRC.getSourceManager()); 1250 if (!L.isValid()) 1251 return nullptr; 1252 1253 auto X = std::make_shared<PathDiagnosticEventPiece>(L, os.str()); 1254 X->setTag(getTag()); 1255 return std::move(X); 1256 } 1257 1258 return nullptr; 1259 } 1260 1261 SuppressInlineDefensiveChecksVisitor:: 1262 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N) 1263 : V(Value) { 1264 // Check if the visitor is disabled. 1265 SubEngine *Eng = N->getState()->getStateManager().getOwningEngine(); 1266 assert(Eng && "Cannot file a bug report without an owning engine"); 1267 AnalyzerOptions &Options = Eng->getAnalysisManager().options; 1268 if (!Options.shouldSuppressInlinedDefensiveChecks()) 1269 IsSatisfied = true; 1270 1271 assert(N->getState()->isNull(V).isConstrainedTrue() && 1272 "The visitor only tracks the cases where V is constrained to 0"); 1273 } 1274 1275 void SuppressInlineDefensiveChecksVisitor::Profile( 1276 llvm::FoldingSetNodeID &ID) const { 1277 static int id = 0; 1278 ID.AddPointer(&id); 1279 ID.Add(V); 1280 } 1281 1282 const char *SuppressInlineDefensiveChecksVisitor::getTag() { 1283 return "IDCVisitor"; 1284 } 1285 1286 std::shared_ptr<PathDiagnosticPiece> 1287 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ, 1288 const ExplodedNode *Pred, 1289 BugReporterContext &BRC, 1290 BugReport &BR) { 1291 if (IsSatisfied) 1292 return nullptr; 1293 1294 // Start tracking after we see the first state in which the value is null. 1295 if (!IsTrackingTurnedOn) 1296 if (Succ->getState()->isNull(V).isConstrainedTrue()) 1297 IsTrackingTurnedOn = true; 1298 if (!IsTrackingTurnedOn) 1299 return nullptr; 1300 1301 // Check if in the previous state it was feasible for this value 1302 // to *not* be null. 1303 if (!Pred->getState()->isNull(V).isConstrainedTrue()) { 1304 IsSatisfied = true; 1305 1306 assert(Succ->getState()->isNull(V).isConstrainedTrue()); 1307 1308 // Check if this is inlined defensive checks. 1309 const LocationContext *CurLC =Succ->getLocationContext(); 1310 const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext(); 1311 if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) { 1312 BR.markInvalid("Suppress IDC", CurLC); 1313 return nullptr; 1314 } 1315 1316 // Treat defensive checks in function-like macros as if they were an inlined 1317 // defensive check. If the bug location is not in a macro and the 1318 // terminator for the current location is in a macro then suppress the 1319 // warning. 1320 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>(); 1321 1322 if (!BugPoint) 1323 return nullptr; 1324 1325 ProgramPoint CurPoint = Succ->getLocation(); 1326 const Stmt *CurTerminatorStmt = nullptr; 1327 if (auto BE = CurPoint.getAs<BlockEdge>()) { 1328 CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt(); 1329 } else if (auto SP = CurPoint.getAs<StmtPoint>()) { 1330 const Stmt *CurStmt = SP->getStmt(); 1331 if (!CurStmt->getLocStart().isMacroID()) 1332 return nullptr; 1333 1334 CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap(); 1335 CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminator(); 1336 } else { 1337 return nullptr; 1338 } 1339 1340 if (!CurTerminatorStmt) 1341 return nullptr; 1342 1343 SourceLocation TerminatorLoc = CurTerminatorStmt->getLocStart(); 1344 if (TerminatorLoc.isMacroID()) { 1345 SourceLocation BugLoc = BugPoint->getStmt()->getLocStart(); 1346 1347 // Suppress reports unless we are in that same macro. 1348 if (!BugLoc.isMacroID() || 1349 getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) { 1350 BR.markInvalid("Suppress Macro IDC", CurLC); 1351 } 1352 return nullptr; 1353 } 1354 } 1355 return nullptr; 1356 } 1357 1358 static const MemRegion *getLocationRegionIfReference(const Expr *E, 1359 const ExplodedNode *N) { 1360 if (const auto *DR = dyn_cast<DeclRefExpr>(E)) { 1361 if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) { 1362 if (!VD->getType()->isReferenceType()) 1363 return nullptr; 1364 ProgramStateManager &StateMgr = N->getState()->getStateManager(); 1365 MemRegionManager &MRMgr = StateMgr.getRegionManager(); 1366 return MRMgr.getVarRegion(VD, N->getLocationContext()); 1367 } 1368 } 1369 1370 // FIXME: This does not handle other kinds of null references, 1371 // for example, references from FieldRegions: 1372 // struct Wrapper { int &ref; }; 1373 // Wrapper w = { *(int *)0 }; 1374 // w.ref = 1; 1375 1376 return nullptr; 1377 } 1378 1379 static const Expr *peelOffOuterExpr(const Expr *Ex, 1380 const ExplodedNode *N) { 1381 Ex = Ex->IgnoreParenCasts(); 1382 if (const auto *EWC = dyn_cast<ExprWithCleanups>(Ex)) 1383 return peelOffOuterExpr(EWC->getSubExpr(), N); 1384 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex)) 1385 return peelOffOuterExpr(OVE->getSourceExpr(), N); 1386 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) { 1387 const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm()); 1388 if (PropRef && PropRef->isMessagingGetter()) { 1389 const Expr *GetterMessageSend = 1390 POE->getSemanticExpr(POE->getNumSemanticExprs() - 1); 1391 assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts())); 1392 return peelOffOuterExpr(GetterMessageSend, N); 1393 } 1394 } 1395 1396 // Peel off the ternary operator. 1397 if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) { 1398 // Find a node where the branching occurred and find out which branch 1399 // we took (true/false) by looking at the ExplodedGraph. 1400 const ExplodedNode *NI = N; 1401 do { 1402 ProgramPoint ProgPoint = NI->getLocation(); 1403 if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) { 1404 const CFGBlock *srcBlk = BE->getSrc(); 1405 if (const Stmt *term = srcBlk->getTerminator()) { 1406 if (term == CO) { 1407 bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst()); 1408 if (TookTrueBranch) 1409 return peelOffOuterExpr(CO->getTrueExpr(), N); 1410 else 1411 return peelOffOuterExpr(CO->getFalseExpr(), N); 1412 } 1413 } 1414 } 1415 NI = NI->getFirstPred(); 1416 } while (NI); 1417 } 1418 1419 if (auto *BO = dyn_cast<BinaryOperator>(Ex)) 1420 if (const Expr *SubEx = peelOffPointerArithmetic(BO)) 1421 return peelOffOuterExpr(SubEx, N); 1422 1423 return Ex; 1424 } 1425 1426 /// Walk through nodes until we get one that matches the statement exactly. 1427 /// Alternately, if we hit a known lvalue for the statement, we know we've 1428 /// gone too far (though we can likely track the lvalue better anyway). 1429 static const ExplodedNode* findNodeForStatement(const ExplodedNode *N, 1430 const Stmt *S, 1431 const Expr *Inner) { 1432 do { 1433 const ProgramPoint &pp = N->getLocation(); 1434 if (auto ps = pp.getAs<StmtPoint>()) { 1435 if (ps->getStmt() == S || ps->getStmt() == Inner) 1436 break; 1437 } else if (auto CEE = pp.getAs<CallExitEnd>()) { 1438 if (CEE->getCalleeContext()->getCallSite() == S || 1439 CEE->getCalleeContext()->getCallSite() == Inner) 1440 break; 1441 } 1442 N = N->getFirstPred(); 1443 } while (N); 1444 return N; 1445 } 1446 1447 /// Find the ExplodedNode where the lvalue (the value of 'Ex') 1448 /// was computed. 1449 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N, 1450 const Expr *Inner) { 1451 while (N) { 1452 if (auto P = N->getLocation().getAs<PostStmt>()) { 1453 if (P->getStmt() == Inner) 1454 break; 1455 } 1456 N = N->getFirstPred(); 1457 } 1458 assert(N && "Unable to find the lvalue node."); 1459 return N; 1460 } 1461 1462 /// Performing operator `&' on an lvalue expression is essentially a no-op. 1463 /// Then, if we are taking addresses of fields or elements, these are also 1464 /// unlikely to matter. 1465 static const Expr* peelOfOuterAddrOf(const Expr* Ex) { 1466 Ex = Ex->IgnoreParenCasts(); 1467 1468 // FIXME: There's a hack in our Store implementation that always computes 1469 // field offsets around null pointers as if they are always equal to 0. 1470 // The idea here is to report accesses to fields as null dereferences 1471 // even though the pointer value that's being dereferenced is actually 1472 // the offset of the field rather than exactly 0. 1473 // See the FIXME in StoreManager's getLValueFieldOrIvar() method. 1474 // This code interacts heavily with this hack; otherwise the value 1475 // would not be null at all for most fields, so we'd be unable to track it. 1476 if (const auto *Op = dyn_cast<UnaryOperator>(Ex)) 1477 if (Op->getOpcode() == UO_AddrOf && Op->getSubExpr()->isLValue()) 1478 if (const Expr *DerefEx = bugreporter::getDerefExpr(Op->getSubExpr())) 1479 return DerefEx; 1480 return Ex; 1481 } 1482 1483 bool bugreporter::trackNullOrUndefValue(const ExplodedNode *N, 1484 const Stmt *S, 1485 BugReport &report, bool IsArg, 1486 bool EnableNullFPSuppression) { 1487 if (!S || !N) 1488 return false; 1489 1490 if (const auto *Ex = dyn_cast<Expr>(S)) 1491 S = peelOffOuterExpr(Ex, N); 1492 1493 const Expr *Inner = nullptr; 1494 if (const auto *Ex = dyn_cast<Expr>(S)) { 1495 Ex = peelOfOuterAddrOf(Ex); 1496 Ex = Ex->IgnoreParenCasts(); 1497 1498 if (Ex && (ExplodedGraph::isInterestingLValueExpr(Ex) 1499 || CallEvent::isCallStmt(Ex))) 1500 Inner = Ex; 1501 } 1502 1503 if (IsArg && !Inner) { 1504 assert(N->getLocation().getAs<CallEnter>() && "Tracking arg but not at call"); 1505 } else { 1506 N = findNodeForStatement(N, S, Inner); 1507 if (!N) 1508 return false; 1509 } 1510 1511 ProgramStateRef state = N->getState(); 1512 1513 // The message send could be nil due to the receiver being nil. 1514 // At this point in the path, the receiver should be live since we are at the 1515 // message send expr. If it is nil, start tracking it. 1516 if (const Expr *Receiver = NilReceiverBRVisitor::getNilReceiver(S, N)) 1517 trackNullOrUndefValue(N, Receiver, report, /* IsArg=*/ false, 1518 EnableNullFPSuppression); 1519 1520 // See if the expression we're interested refers to a variable. 1521 // If so, we can track both its contents and constraints on its value. 1522 if (Inner && ExplodedGraph::isInterestingLValueExpr(Inner)) { 1523 const ExplodedNode *LVNode = findNodeForExpression(N, Inner); 1524 ProgramStateRef LVState = LVNode->getState(); 1525 SVal LVal = LVNode->getSVal(Inner); 1526 1527 const MemRegion *RR = getLocationRegionIfReference(Inner, N); 1528 bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue(); 1529 1530 // If this is a C++ reference to a null pointer, we are tracking the 1531 // pointer. In addition, we should find the store at which the reference 1532 // got initialized. 1533 if (RR && !LVIsNull) { 1534 if (auto KV = LVal.getAs<KnownSVal>()) 1535 report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1536 *KV, RR, EnableNullFPSuppression)); 1537 } 1538 1539 // In case of C++ references, we want to differentiate between a null 1540 // reference and reference to null pointer. 1541 // If the LVal is null, check if we are dealing with null reference. 1542 // For those, we want to track the location of the reference. 1543 const MemRegion *R = (RR && LVIsNull) ? RR : 1544 LVNode->getSVal(Inner).getAsRegion(); 1545 1546 if (R) { 1547 // Mark both the variable region and its contents as interesting. 1548 SVal V = LVState->getRawSVal(loc::MemRegionVal(R)); 1549 report.addVisitor( 1550 llvm::make_unique<NoStoreFuncVisitor>(cast<SubRegion>(R))); 1551 1552 MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary( 1553 N, R, EnableNullFPSuppression, report, V); 1554 1555 report.markInteresting(R); 1556 report.markInteresting(V); 1557 report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(R)); 1558 1559 // If the contents are symbolic, find out when they became null. 1560 if (V.getAsLocSymbol(/*IncludeBaseRegions*/ true)) 1561 report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>( 1562 V.castAs<DefinedSVal>(), false)); 1563 1564 // Add visitor, which will suppress inline defensive checks. 1565 if (auto DV = V.getAs<DefinedSVal>()) { 1566 if (!DV->isZeroConstant() && LVState->isNull(*DV).isConstrainedTrue() && 1567 EnableNullFPSuppression) { 1568 report.addVisitor( 1569 llvm::make_unique<SuppressInlineDefensiveChecksVisitor>(*DV, 1570 LVNode)); 1571 } 1572 } 1573 1574 if (auto KV = V.getAs<KnownSVal>()) 1575 report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1576 *KV, R, EnableNullFPSuppression)); 1577 return true; 1578 } 1579 } 1580 1581 // If the expression is not an "lvalue expression", we can still 1582 // track the constraints on its contents. 1583 SVal V = state->getSValAsScalarOrLoc(S, N->getLocationContext()); 1584 1585 // If the value came from an inlined function call, we should at least make 1586 // sure that function isn't pruned in our output. 1587 if (const auto *E = dyn_cast<Expr>(S)) 1588 S = E->IgnoreParenCasts(); 1589 1590 ReturnVisitor::addVisitorIfNecessary(N, S, report, EnableNullFPSuppression); 1591 1592 // Uncomment this to find cases where we aren't properly getting the 1593 // base value that was dereferenced. 1594 // assert(!V.isUnknownOrUndef()); 1595 // Is it a symbolic value? 1596 if (auto L = V.getAs<loc::MemRegionVal>()) { 1597 report.addVisitor(llvm::make_unique<UndefOrNullArgVisitor>(L->getRegion())); 1598 1599 // At this point we are dealing with the region's LValue. 1600 // However, if the rvalue is a symbolic region, we should track it as well. 1601 // Try to use the correct type when looking up the value. 1602 SVal RVal; 1603 if (const auto *E = dyn_cast<Expr>(S)) 1604 RVal = state->getRawSVal(L.getValue(), E->getType()); 1605 else 1606 RVal = state->getSVal(L->getRegion()); 1607 1608 if (auto KV = RVal.getAs<KnownSVal>()) 1609 report.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1610 *KV, L->getRegion(), EnableNullFPSuppression)); 1611 1612 const MemRegion *RegionRVal = RVal.getAsRegion(); 1613 if (RegionRVal && isa<SymbolicRegion>(RegionRVal)) { 1614 report.markInteresting(RegionRVal); 1615 report.addVisitor(llvm::make_unique<TrackConstraintBRVisitor>( 1616 loc::MemRegionVal(RegionRVal), false)); 1617 } 1618 } 1619 return true; 1620 } 1621 1622 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S, 1623 const ExplodedNode *N) { 1624 const auto *ME = dyn_cast<ObjCMessageExpr>(S); 1625 if (!ME) 1626 return nullptr; 1627 if (const Expr *Receiver = ME->getInstanceReceiver()) { 1628 ProgramStateRef state = N->getState(); 1629 SVal V = N->getSVal(Receiver); 1630 if (state->isNull(V).isConstrainedTrue()) 1631 return Receiver; 1632 } 1633 return nullptr; 1634 } 1635 1636 std::shared_ptr<PathDiagnosticPiece> 1637 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, 1638 const ExplodedNode *PrevN, 1639 BugReporterContext &BRC, BugReport &BR) { 1640 Optional<PreStmt> P = N->getLocationAs<PreStmt>(); 1641 if (!P) 1642 return nullptr; 1643 1644 const Stmt *S = P->getStmt(); 1645 const Expr *Receiver = getNilReceiver(S, N); 1646 if (!Receiver) 1647 return nullptr; 1648 1649 llvm::SmallString<256> Buf; 1650 llvm::raw_svector_ostream OS(Buf); 1651 1652 if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) { 1653 OS << "'"; 1654 ME->getSelector().print(OS); 1655 OS << "' not called"; 1656 } 1657 else { 1658 OS << "No method is called"; 1659 } 1660 OS << " because the receiver is nil"; 1661 1662 // The receiver was nil, and hence the method was skipped. 1663 // Register a BugReporterVisitor to issue a message telling us how 1664 // the receiver was null. 1665 bugreporter::trackNullOrUndefValue(N, Receiver, BR, /*IsArg*/ false, 1666 /*EnableNullFPSuppression*/ false); 1667 // Issue a message saying that the method was skipped. 1668 PathDiagnosticLocation L(Receiver, BRC.getSourceManager(), 1669 N->getLocationContext()); 1670 return std::make_shared<PathDiagnosticEventPiece>(L, OS.str()); 1671 } 1672 1673 // Registers every VarDecl inside a Stmt with a last store visitor. 1674 void FindLastStoreBRVisitor::registerStatementVarDecls(BugReport &BR, 1675 const Stmt *S, 1676 bool EnableNullFPSuppression) { 1677 const ExplodedNode *N = BR.getErrorNode(); 1678 std::deque<const Stmt *> WorkList; 1679 WorkList.push_back(S); 1680 1681 while (!WorkList.empty()) { 1682 const Stmt *Head = WorkList.front(); 1683 WorkList.pop_front(); 1684 1685 ProgramStateManager &StateMgr = N->getState()->getStateManager(); 1686 1687 if (const auto *DR = dyn_cast<DeclRefExpr>(Head)) { 1688 if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) { 1689 const VarRegion *R = 1690 StateMgr.getRegionManager().getVarRegion(VD, N->getLocationContext()); 1691 1692 // What did we load? 1693 SVal V = N->getSVal(S); 1694 1695 if (V.getAs<loc::ConcreteInt>() || V.getAs<nonloc::ConcreteInt>()) { 1696 // Register a new visitor with the BugReport. 1697 BR.addVisitor(llvm::make_unique<FindLastStoreBRVisitor>( 1698 V.castAs<KnownSVal>(), R, EnableNullFPSuppression)); 1699 } 1700 } 1701 } 1702 1703 for (const Stmt *SubStmt : Head->children()) 1704 WorkList.push_back(SubStmt); 1705 } 1706 } 1707 1708 //===----------------------------------------------------------------------===// 1709 // Visitor that tries to report interesting diagnostics from conditions. 1710 //===----------------------------------------------------------------------===// 1711 1712 /// Return the tag associated with this visitor. This tag will be used 1713 /// to make all PathDiagnosticPieces created by this visitor. 1714 const char *ConditionBRVisitor::getTag() { 1715 return "ConditionBRVisitor"; 1716 } 1717 1718 std::shared_ptr<PathDiagnosticPiece> 1719 ConditionBRVisitor::VisitNode(const ExplodedNode *N, const ExplodedNode *Prev, 1720 BugReporterContext &BRC, BugReport &BR) { 1721 auto piece = VisitNodeImpl(N, Prev, BRC, BR); 1722 if (piece) { 1723 piece->setTag(getTag()); 1724 if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get())) 1725 ev->setPrunable(true, /* override */ false); 1726 } 1727 return piece; 1728 } 1729 1730 std::shared_ptr<PathDiagnosticPiece> 1731 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N, 1732 const ExplodedNode *Prev, 1733 BugReporterContext &BRC, BugReport &BR) { 1734 ProgramPoint progPoint = N->getLocation(); 1735 ProgramStateRef CurrentState = N->getState(); 1736 ProgramStateRef PrevState = Prev->getState(); 1737 1738 // Compare the GDMs of the state, because that is where constraints 1739 // are managed. Note that ensure that we only look at nodes that 1740 // were generated by the analyzer engine proper, not checkers. 1741 if (CurrentState->getGDM().getRoot() == 1742 PrevState->getGDM().getRoot()) 1743 return nullptr; 1744 1745 // If an assumption was made on a branch, it should be caught 1746 // here by looking at the state transition. 1747 if (Optional<BlockEdge> BE = progPoint.getAs<BlockEdge>()) { 1748 const CFGBlock *srcBlk = BE->getSrc(); 1749 if (const Stmt *term = srcBlk->getTerminator()) 1750 return VisitTerminator(term, N, srcBlk, BE->getDst(), BR, BRC); 1751 return nullptr; 1752 } 1753 1754 if (Optional<PostStmt> PS = progPoint.getAs<PostStmt>()) { 1755 // FIXME: Assuming that BugReporter is a GRBugReporter is a layering 1756 // violation. 1757 const std::pair<const ProgramPointTag *, const ProgramPointTag *> &tags = 1758 cast<GRBugReporter>(BRC.getBugReporter()). 1759 getEngine().geteagerlyAssumeBinOpBifurcationTags(); 1760 1761 const ProgramPointTag *tag = PS->getTag(); 1762 if (tag == tags.first) 1763 return VisitTrueTest(cast<Expr>(PS->getStmt()), true, 1764 BRC, BR, N); 1765 if (tag == tags.second) 1766 return VisitTrueTest(cast<Expr>(PS->getStmt()), false, 1767 BRC, BR, N); 1768 1769 return nullptr; 1770 } 1771 1772 return nullptr; 1773 } 1774 1775 std::shared_ptr<PathDiagnosticPiece> ConditionBRVisitor::VisitTerminator( 1776 const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk, 1777 const CFGBlock *dstBlk, BugReport &R, BugReporterContext &BRC) { 1778 const Expr *Cond = nullptr; 1779 1780 // In the code below, Term is a CFG terminator and Cond is a branch condition 1781 // expression upon which the decision is made on this terminator. 1782 // 1783 // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator, 1784 // and "x == 0" is the respective condition. 1785 // 1786 // Another example: in "if (x && y)", we've got two terminators and two 1787 // conditions due to short-circuit nature of operator "&&": 1788 // 1. The "if (x && y)" statement is a terminator, 1789 // and "y" is the respective condition. 1790 // 2. Also "x && ..." is another terminator, 1791 // and "x" is its condition. 1792 1793 switch (Term->getStmtClass()) { 1794 // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit 1795 // more tricky because there are more than two branches to account for. 1796 default: 1797 return nullptr; 1798 case Stmt::IfStmtClass: 1799 Cond = cast<IfStmt>(Term)->getCond(); 1800 break; 1801 case Stmt::ConditionalOperatorClass: 1802 Cond = cast<ConditionalOperator>(Term)->getCond(); 1803 break; 1804 case Stmt::BinaryOperatorClass: 1805 // When we encounter a logical operator (&& or ||) as a CFG terminator, 1806 // then the condition is actually its LHS; otherwise, we'd encounter 1807 // the parent, such as if-statement, as a terminator. 1808 const auto *BO = cast<BinaryOperator>(Term); 1809 assert(BO->isLogicalOp() && 1810 "CFG terminator is not a short-circuit operator!"); 1811 Cond = BO->getLHS(); 1812 break; 1813 } 1814 1815 // However, when we encounter a logical operator as a branch condition, 1816 // then the condition is actually its RHS, because LHS would be 1817 // the condition for the logical operator terminator. 1818 while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) { 1819 if (!InnerBO->isLogicalOp()) 1820 break; 1821 Cond = InnerBO->getRHS()->IgnoreParens(); 1822 } 1823 1824 assert(Cond); 1825 assert(srcBlk->succ_size() == 2); 1826 const bool tookTrue = *(srcBlk->succ_begin()) == dstBlk; 1827 return VisitTrueTest(Cond, tookTrue, BRC, R, N); 1828 } 1829 1830 std::shared_ptr<PathDiagnosticPiece> 1831 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, bool tookTrue, 1832 BugReporterContext &BRC, BugReport &R, 1833 const ExplodedNode *N) { 1834 // These will be modified in code below, but we need to preserve the original 1835 // values in case we want to throw the generic message. 1836 const Expr *CondTmp = Cond; 1837 bool tookTrueTmp = tookTrue; 1838 1839 while (true) { 1840 CondTmp = CondTmp->IgnoreParenCasts(); 1841 switch (CondTmp->getStmtClass()) { 1842 default: 1843 break; 1844 case Stmt::BinaryOperatorClass: 1845 if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp), 1846 tookTrueTmp, BRC, R, N)) 1847 return P; 1848 break; 1849 case Stmt::DeclRefExprClass: 1850 if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp), 1851 tookTrueTmp, BRC, R, N)) 1852 return P; 1853 break; 1854 case Stmt::UnaryOperatorClass: { 1855 const auto *UO = cast<UnaryOperator>(CondTmp); 1856 if (UO->getOpcode() == UO_LNot) { 1857 tookTrueTmp = !tookTrueTmp; 1858 CondTmp = UO->getSubExpr(); 1859 continue; 1860 } 1861 break; 1862 } 1863 } 1864 break; 1865 } 1866 1867 // Condition too complex to explain? Just say something so that the user 1868 // knew we've made some path decision at this point. 1869 const LocationContext *LCtx = N->getLocationContext(); 1870 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); 1871 if (!Loc.isValid() || !Loc.asLocation().isValid()) 1872 return nullptr; 1873 1874 return std::make_shared<PathDiagnosticEventPiece>( 1875 Loc, tookTrue ? GenericTrueMessage : GenericFalseMessage); 1876 } 1877 1878 bool ConditionBRVisitor::patternMatch(const Expr *Ex, 1879 const Expr *ParentEx, 1880 raw_ostream &Out, 1881 BugReporterContext &BRC, 1882 BugReport &report, 1883 const ExplodedNode *N, 1884 Optional<bool> &prunable) { 1885 const Expr *OriginalExpr = Ex; 1886 Ex = Ex->IgnoreParenCasts(); 1887 1888 // Use heuristics to determine if Ex is a macro expending to a literal and 1889 // if so, use the macro's name. 1890 SourceLocation LocStart = Ex->getLocStart(); 1891 SourceLocation LocEnd = Ex->getLocEnd(); 1892 if (LocStart.isMacroID() && LocEnd.isMacroID() && 1893 (isa<GNUNullExpr>(Ex) || 1894 isa<ObjCBoolLiteralExpr>(Ex) || 1895 isa<CXXBoolLiteralExpr>(Ex) || 1896 isa<IntegerLiteral>(Ex) || 1897 isa<FloatingLiteral>(Ex))) { 1898 StringRef StartName = Lexer::getImmediateMacroNameForDiagnostics(LocStart, 1899 BRC.getSourceManager(), BRC.getASTContext().getLangOpts()); 1900 StringRef EndName = Lexer::getImmediateMacroNameForDiagnostics(LocEnd, 1901 BRC.getSourceManager(), BRC.getASTContext().getLangOpts()); 1902 bool beginAndEndAreTheSameMacro = StartName.equals(EndName); 1903 1904 bool partOfParentMacro = false; 1905 if (ParentEx->getLocStart().isMacroID()) { 1906 StringRef PName = Lexer::getImmediateMacroNameForDiagnostics( 1907 ParentEx->getLocStart(), BRC.getSourceManager(), 1908 BRC.getASTContext().getLangOpts()); 1909 partOfParentMacro = PName.equals(StartName); 1910 } 1911 1912 if (beginAndEndAreTheSameMacro && !partOfParentMacro ) { 1913 // Get the location of the macro name as written by the caller. 1914 SourceLocation Loc = LocStart; 1915 while (LocStart.isMacroID()) { 1916 Loc = LocStart; 1917 LocStart = BRC.getSourceManager().getImmediateMacroCallerLoc(LocStart); 1918 } 1919 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 1920 Loc, BRC.getSourceManager(), BRC.getASTContext().getLangOpts()); 1921 1922 // Return the macro name. 1923 Out << MacroName; 1924 return false; 1925 } 1926 } 1927 1928 if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) { 1929 const bool quotes = isa<VarDecl>(DR->getDecl()); 1930 if (quotes) { 1931 Out << '\''; 1932 const LocationContext *LCtx = N->getLocationContext(); 1933 const ProgramState *state = N->getState().get(); 1934 if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()), 1935 LCtx).getAsRegion()) { 1936 if (report.isInteresting(R)) 1937 prunable = false; 1938 else { 1939 const ProgramState *state = N->getState().get(); 1940 SVal V = state->getSVal(R); 1941 if (report.isInteresting(V)) 1942 prunable = false; 1943 } 1944 } 1945 } 1946 Out << DR->getDecl()->getDeclName().getAsString(); 1947 if (quotes) 1948 Out << '\''; 1949 return quotes; 1950 } 1951 1952 if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) { 1953 QualType OriginalTy = OriginalExpr->getType(); 1954 if (OriginalTy->isPointerType()) { 1955 if (IL->getValue() == 0) { 1956 Out << "null"; 1957 return false; 1958 } 1959 } 1960 else if (OriginalTy->isObjCObjectPointerType()) { 1961 if (IL->getValue() == 0) { 1962 Out << "nil"; 1963 return false; 1964 } 1965 } 1966 1967 Out << IL->getValue(); 1968 return false; 1969 } 1970 1971 return false; 1972 } 1973 1974 std::shared_ptr<PathDiagnosticPiece> 1975 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const BinaryOperator *BExpr, 1976 const bool tookTrue, BugReporterContext &BRC, 1977 BugReport &R, const ExplodedNode *N) { 1978 bool shouldInvert = false; 1979 Optional<bool> shouldPrune; 1980 1981 SmallString<128> LhsString, RhsString; 1982 { 1983 llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString); 1984 const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, 1985 BRC, R, N, shouldPrune); 1986 const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, 1987 BRC, R, N, shouldPrune); 1988 1989 shouldInvert = !isVarLHS && isVarRHS; 1990 } 1991 1992 BinaryOperator::Opcode Op = BExpr->getOpcode(); 1993 1994 if (BinaryOperator::isAssignmentOp(Op)) { 1995 // For assignment operators, all that we care about is that the LHS 1996 // evaluates to "true" or "false". 1997 return VisitConditionVariable(LhsString, BExpr->getLHS(), tookTrue, 1998 BRC, R, N); 1999 } 2000 2001 // For non-assignment operations, we require that we can understand 2002 // both the LHS and RHS. 2003 if (LhsString.empty() || RhsString.empty() || 2004 !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp) 2005 return nullptr; 2006 2007 // Should we invert the strings if the LHS is not a variable name? 2008 SmallString<256> buf; 2009 llvm::raw_svector_ostream Out(buf); 2010 Out << "Assuming " << (shouldInvert ? RhsString : LhsString) << " is "; 2011 2012 // Do we need to invert the opcode? 2013 if (shouldInvert) 2014 switch (Op) { 2015 default: break; 2016 case BO_LT: Op = BO_GT; break; 2017 case BO_GT: Op = BO_LT; break; 2018 case BO_LE: Op = BO_GE; break; 2019 case BO_GE: Op = BO_LE; break; 2020 } 2021 2022 if (!tookTrue) 2023 switch (Op) { 2024 case BO_EQ: Op = BO_NE; break; 2025 case BO_NE: Op = BO_EQ; break; 2026 case BO_LT: Op = BO_GE; break; 2027 case BO_GT: Op = BO_LE; break; 2028 case BO_LE: Op = BO_GT; break; 2029 case BO_GE: Op = BO_LT; break; 2030 default: 2031 return nullptr; 2032 } 2033 2034 switch (Op) { 2035 case BO_EQ: 2036 Out << "equal to "; 2037 break; 2038 case BO_NE: 2039 Out << "not equal to "; 2040 break; 2041 default: 2042 Out << BinaryOperator::getOpcodeStr(Op) << ' '; 2043 break; 2044 } 2045 2046 Out << (shouldInvert ? LhsString : RhsString); 2047 const LocationContext *LCtx = N->getLocationContext(); 2048 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); 2049 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); 2050 if (shouldPrune.hasValue()) 2051 event->setPrunable(shouldPrune.getValue()); 2052 return event; 2053 } 2054 2055 std::shared_ptr<PathDiagnosticPiece> ConditionBRVisitor::VisitConditionVariable( 2056 StringRef LhsString, const Expr *CondVarExpr, const bool tookTrue, 2057 BugReporterContext &BRC, BugReport &report, const ExplodedNode *N) { 2058 // FIXME: If there's already a constraint tracker for this variable, 2059 // we shouldn't emit anything here (c.f. the double note in 2060 // test/Analysis/inlining/path-notes.c) 2061 SmallString<256> buf; 2062 llvm::raw_svector_ostream Out(buf); 2063 Out << "Assuming " << LhsString << " is "; 2064 2065 QualType Ty = CondVarExpr->getType(); 2066 2067 if (Ty->isPointerType()) 2068 Out << (tookTrue ? "not null" : "null"); 2069 else if (Ty->isObjCObjectPointerType()) 2070 Out << (tookTrue ? "not nil" : "nil"); 2071 else if (Ty->isBooleanType()) 2072 Out << (tookTrue ? "true" : "false"); 2073 else if (Ty->isIntegralOrEnumerationType()) 2074 Out << (tookTrue ? "non-zero" : "zero"); 2075 else 2076 return nullptr; 2077 2078 const LocationContext *LCtx = N->getLocationContext(); 2079 PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx); 2080 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); 2081 2082 if (const auto *DR = dyn_cast<DeclRefExpr>(CondVarExpr)) { 2083 if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) { 2084 const ProgramState *state = N->getState().get(); 2085 if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) { 2086 if (report.isInteresting(R)) 2087 event->setPrunable(false); 2088 } 2089 } 2090 } 2091 2092 return event; 2093 } 2094 2095 std::shared_ptr<PathDiagnosticPiece> 2096 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const DeclRefExpr *DR, 2097 const bool tookTrue, BugReporterContext &BRC, 2098 BugReport &report, const ExplodedNode *N) { 2099 const auto *VD = dyn_cast<VarDecl>(DR->getDecl()); 2100 if (!VD) 2101 return nullptr; 2102 2103 SmallString<256> Buf; 2104 llvm::raw_svector_ostream Out(Buf); 2105 2106 Out << "Assuming '" << VD->getDeclName() << "' is "; 2107 2108 QualType VDTy = VD->getType(); 2109 2110 if (VDTy->isPointerType()) 2111 Out << (tookTrue ? "non-null" : "null"); 2112 else if (VDTy->isObjCObjectPointerType()) 2113 Out << (tookTrue ? "non-nil" : "nil"); 2114 else if (VDTy->isScalarType()) 2115 Out << (tookTrue ? "not equal to 0" : "0"); 2116 else 2117 return nullptr; 2118 2119 const LocationContext *LCtx = N->getLocationContext(); 2120 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); 2121 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str()); 2122 2123 const ProgramState *state = N->getState().get(); 2124 if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) { 2125 if (report.isInteresting(R)) 2126 event->setPrunable(false); 2127 else { 2128 SVal V = state->getSVal(R); 2129 if (report.isInteresting(V)) 2130 event->setPrunable(false); 2131 } 2132 } 2133 return std::move(event); 2134 } 2135 2136 const char *const ConditionBRVisitor::GenericTrueMessage = 2137 "Assuming the condition is true"; 2138 const char *const ConditionBRVisitor::GenericFalseMessage = 2139 "Assuming the condition is false"; 2140 2141 bool ConditionBRVisitor::isPieceMessageGeneric( 2142 const PathDiagnosticPiece *Piece) { 2143 return Piece->getString() == GenericTrueMessage || 2144 Piece->getString() == GenericFalseMessage; 2145 } 2146 2147 std::unique_ptr<PathDiagnosticPiece> 2148 LikelyFalsePositiveSuppressionBRVisitor::getEndPath(BugReporterContext &BRC, 2149 const ExplodedNode *N, 2150 BugReport &BR) { 2151 // Here we suppress false positives coming from system headers. This list is 2152 // based on known issues. 2153 ExprEngine &Eng = BRC.getBugReporter().getEngine(); 2154 AnalyzerOptions &Options = Eng.getAnalysisManager().options; 2155 const Decl *D = N->getLocationContext()->getDecl(); 2156 2157 if (AnalysisDeclContext::isInStdNamespace(D)) { 2158 // Skip reports within the 'std' namespace. Although these can sometimes be 2159 // the user's fault, we currently don't report them very well, and 2160 // Note that this will not help for any other data structure libraries, like 2161 // TR1, Boost, or llvm/ADT. 2162 if (Options.shouldSuppressFromCXXStandardLibrary()) { 2163 BR.markInvalid(getTag(), nullptr); 2164 return nullptr; 2165 } else { 2166 // If the complete 'std' suppression is not enabled, suppress reports 2167 // from the 'std' namespace that are known to produce false positives. 2168 2169 // The analyzer issues a false use-after-free when std::list::pop_front 2170 // or std::list::pop_back are called multiple times because we cannot 2171 // reason about the internal invariants of the data structure. 2172 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 2173 const CXXRecordDecl *CD = MD->getParent(); 2174 if (CD->getName() == "list") { 2175 BR.markInvalid(getTag(), nullptr); 2176 return nullptr; 2177 } 2178 } 2179 2180 // The analyzer issues a false positive when the constructor of 2181 // std::__independent_bits_engine from algorithms is used. 2182 if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) { 2183 const CXXRecordDecl *CD = MD->getParent(); 2184 if (CD->getName() == "__independent_bits_engine") { 2185 BR.markInvalid(getTag(), nullptr); 2186 return nullptr; 2187 } 2188 } 2189 2190 for (const LocationContext *LCtx = N->getLocationContext(); LCtx; 2191 LCtx = LCtx->getParent()) { 2192 const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl()); 2193 if (!MD) 2194 continue; 2195 2196 const CXXRecordDecl *CD = MD->getParent(); 2197 // The analyzer issues a false positive on 2198 // std::basic_string<uint8_t> v; v.push_back(1); 2199 // and 2200 // std::u16string s; s += u'a'; 2201 // because we cannot reason about the internal invariants of the 2202 // data structure. 2203 if (CD->getName() == "basic_string") { 2204 BR.markInvalid(getTag(), nullptr); 2205 return nullptr; 2206 } 2207 2208 // The analyzer issues a false positive on 2209 // std::shared_ptr<int> p(new int(1)); p = nullptr; 2210 // because it does not reason properly about temporary destructors. 2211 if (CD->getName() == "shared_ptr") { 2212 BR.markInvalid(getTag(), nullptr); 2213 return nullptr; 2214 } 2215 } 2216 } 2217 } 2218 2219 // Skip reports within the sys/queue.h macros as we do not have the ability to 2220 // reason about data structure shapes. 2221 SourceManager &SM = BRC.getSourceManager(); 2222 FullSourceLoc Loc = BR.getLocation(SM).asLocation(); 2223 while (Loc.isMacroID()) { 2224 Loc = Loc.getSpellingLoc(); 2225 if (SM.getFilename(Loc).endswith("sys/queue.h")) { 2226 BR.markInvalid(getTag(), nullptr); 2227 return nullptr; 2228 } 2229 } 2230 2231 return nullptr; 2232 } 2233 2234 std::shared_ptr<PathDiagnosticPiece> 2235 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, 2236 const ExplodedNode *PrevN, 2237 BugReporterContext &BRC, BugReport &BR) { 2238 ProgramStateRef State = N->getState(); 2239 ProgramPoint ProgLoc = N->getLocation(); 2240 2241 // We are only interested in visiting CallEnter nodes. 2242 Optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>(); 2243 if (!CEnter) 2244 return nullptr; 2245 2246 // Check if one of the arguments is the region the visitor is tracking. 2247 CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager(); 2248 CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State); 2249 unsigned Idx = 0; 2250 ArrayRef<ParmVarDecl *> parms = Call->parameters(); 2251 2252 for (const auto ParamDecl : parms) { 2253 const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion(); 2254 ++Idx; 2255 2256 // Are we tracking the argument or its subregion? 2257 if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts())) 2258 continue; 2259 2260 // Check the function parameter type. 2261 assert(ParamDecl && "Formal parameter has no decl?"); 2262 QualType T = ParamDecl->getType(); 2263 2264 if (!(T->isAnyPointerType() || T->isReferenceType())) { 2265 // Function can only change the value passed in by address. 2266 continue; 2267 } 2268 2269 // If it is a const pointer value, the function does not intend to 2270 // change the value. 2271 if (T->getPointeeType().isConstQualified()) 2272 continue; 2273 2274 // Mark the call site (LocationContext) as interesting if the value of the 2275 // argument is undefined or '0'/'NULL'. 2276 SVal BoundVal = State->getSVal(R); 2277 if (BoundVal.isUndef() || BoundVal.isZeroConstant()) { 2278 BR.markInteresting(CEnter->getCalleeContext()); 2279 return nullptr; 2280 } 2281 } 2282 return nullptr; 2283 } 2284 2285 std::shared_ptr<PathDiagnosticPiece> 2286 CXXSelfAssignmentBRVisitor::VisitNode(const ExplodedNode *Succ, 2287 const ExplodedNode *Pred, 2288 BugReporterContext &BRC, BugReport &BR) { 2289 if (Satisfied) 2290 return nullptr; 2291 2292 const auto Edge = Succ->getLocation().getAs<BlockEdge>(); 2293 if (!Edge.hasValue()) 2294 return nullptr; 2295 2296 auto Tag = Edge->getTag(); 2297 if (!Tag) 2298 return nullptr; 2299 2300 if (Tag->getTagDescription() != "cplusplus.SelfAssignment") 2301 return nullptr; 2302 2303 Satisfied = true; 2304 2305 const auto *Met = 2306 dyn_cast<CXXMethodDecl>(Succ->getCodeDecl().getAsFunction()); 2307 assert(Met && "Not a C++ method."); 2308 assert((Met->isCopyAssignmentOperator() || Met->isMoveAssignmentOperator()) && 2309 "Not a copy/move assignment operator."); 2310 2311 const auto *LCtx = Edge->getLocationContext(); 2312 2313 const auto &State = Succ->getState(); 2314 auto &SVB = State->getStateManager().getSValBuilder(); 2315 2316 const auto Param = 2317 State->getSVal(State->getRegion(Met->getParamDecl(0), LCtx)); 2318 const auto This = 2319 State->getSVal(SVB.getCXXThis(Met, LCtx->getCurrentStackFrame())); 2320 2321 auto L = PathDiagnosticLocation::create(Met, BRC.getSourceManager()); 2322 2323 if (!L.isValid() || !L.asLocation().isValid()) 2324 return nullptr; 2325 2326 SmallString<256> Buf; 2327 llvm::raw_svector_ostream Out(Buf); 2328 2329 Out << "Assuming " << Met->getParamDecl(0)->getName() << 2330 ((Param == This) ? " == " : " != ") << "*this"; 2331 2332 auto Piece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str()); 2333 Piece->addRange(Met->getSourceRange()); 2334 2335 return std::move(Piece); 2336 } 2337 2338 std::shared_ptr<PathDiagnosticPiece> 2339 TaintBugVisitor::VisitNode(const ExplodedNode *N, const ExplodedNode *PrevN, 2340 BugReporterContext &BRC, BugReport &BR) { 2341 2342 // Find the ExplodedNode where the taint was first introduced 2343 if (!N->getState()->isTainted(V) || PrevN->getState()->isTainted(V)) 2344 return nullptr; 2345 2346 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2347 if (!S) 2348 return nullptr; 2349 2350 const LocationContext *NCtx = N->getLocationContext(); 2351 PathDiagnosticLocation L = 2352 PathDiagnosticLocation::createBegin(S, BRC.getSourceManager(), NCtx); 2353 if (!L.isValid() || !L.asLocation().isValid()) 2354 return nullptr; 2355 2356 return std::make_shared<PathDiagnosticEventPiece>(L, "Taint originated here"); 2357 } 2358 2359 static bool 2360 areConstraintsUnfeasible(BugReporterContext &BRC, 2361 const llvm::SmallVector<ConstraintRangeTy, 32> &Cs) { 2362 // Create a refutation manager 2363 std::unique_ptr<ConstraintManager> RefutationMgr = CreateZ3ConstraintManager( 2364 BRC.getStateManager(), BRC.getStateManager().getOwningEngine()); 2365 2366 SMTConstraintManager *SMTRefutationMgr = 2367 static_cast<SMTConstraintManager *>(RefutationMgr.get()); 2368 2369 // Add constraints to the solver 2370 for (const auto &C : Cs) 2371 SMTRefutationMgr->addRangeConstraints(C); 2372 2373 // And check for satisfiability 2374 return SMTRefutationMgr->isModelFeasible().isConstrainedFalse(); 2375 } 2376 2377 std::shared_ptr<PathDiagnosticPiece> 2378 FalsePositiveRefutationBRVisitor::VisitNode(const ExplodedNode *N, 2379 const ExplodedNode *PrevN, 2380 BugReporterContext &BRC, 2381 BugReport &BR) { 2382 // Collect the constraint for the current state 2383 const ConstraintRangeTy &CR = N->getState()->get<ConstraintRange>(); 2384 Constraints.push_back(CR); 2385 2386 // If there are no predecessor, we reached the root node. In this point, 2387 // a new refutation manager will be created and the path will be checked 2388 // for reachability 2389 if (PrevN->pred_size() == 0 && areConstraintsUnfeasible(BRC, Constraints)) { 2390 BR.markInvalid("Infeasible constraints", N->getLocationContext()); 2391 } 2392 2393 return nullptr; 2394 } 2395 2396 void FalsePositiveRefutationBRVisitor::Profile( 2397 llvm::FoldingSetNodeID &ID) const { 2398 static int Tag = 0; 2399 ID.AddPointer(&Tag); 2400 } 2401