1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines BugReporter, a utility class for generating
11 //  PathDiagnostics.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclBase.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ParentMap.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/AST/StmtObjC.h"
25 #include "clang/Analysis/AnalysisDeclContext.h"
26 #include "clang/Analysis/CFG.h"
27 #include "clang/Analysis/CFGStmtMap.h"
28 #include "clang/Analysis/ProgramPoint.h"
29 #include "clang/Basic/LLVM.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
33 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
34 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
35 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
36 #include "clang/StaticAnalyzer/Core/Checker.h"
37 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
44 #include "llvm/ADT/ArrayRef.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/DenseSet.h"
47 #include "llvm/ADT/FoldingSet.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallString.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/ADT/iterator_range.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MemoryBuffer.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <iterator>
66 #include <memory>
67 #include <queue>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72 
73 using namespace clang;
74 using namespace ento;
75 
76 #define DEBUG_TYPE "BugReporter"
77 
78 STATISTIC(MaxBugClassSize,
79           "The maximum number of bug reports in the same equivalence class");
80 STATISTIC(MaxValidBugClassSize,
81           "The maximum number of bug reports in the same equivalence class "
82           "where at least one report is valid (not suppressed)");
83 
84 BugReporterVisitor::~BugReporterVisitor() = default;
85 
86 void BugReporterContext::anchor() {}
87 
88 //===----------------------------------------------------------------------===//
89 // Helper routines for walking the ExplodedGraph and fetching statements.
90 //===----------------------------------------------------------------------===//
91 
92 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
93   for (N = N->getFirstPred(); N; N = N->getFirstPred())
94     if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
95       return S;
96 
97   return nullptr;
98 }
99 
100 static inline const Stmt*
101 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
102   if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
103     return S;
104 
105   return GetPreviousStmt(N);
106 }
107 
108 //===----------------------------------------------------------------------===//
109 // Diagnostic cleanup.
110 //===----------------------------------------------------------------------===//
111 
112 static PathDiagnosticEventPiece *
113 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
114                             PathDiagnosticEventPiece *Y) {
115   // Prefer diagnostics that come from ConditionBRVisitor over
116   // those that came from TrackConstraintBRVisitor,
117   // unless the one from ConditionBRVisitor is
118   // its generic fallback diagnostic.
119   const void *tagPreferred = ConditionBRVisitor::getTag();
120   const void *tagLesser = TrackConstraintBRVisitor::getTag();
121 
122   if (X->getLocation() != Y->getLocation())
123     return nullptr;
124 
125   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
126     return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X;
127 
128   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
129     return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y;
130 
131   return nullptr;
132 }
133 
134 /// An optimization pass over PathPieces that removes redundant diagnostics
135 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
136 /// BugReporterVisitors use different methods to generate diagnostics, with
137 /// one capable of emitting diagnostics in some cases but not in others.  This
138 /// can lead to redundant diagnostic pieces at the same point in a path.
139 static void removeRedundantMsgs(PathPieces &path) {
140   unsigned N = path.size();
141   if (N < 2)
142     return;
143   // NOTE: this loop intentionally is not using an iterator.  Instead, we
144   // are streaming the path and modifying it in place.  This is done by
145   // grabbing the front, processing it, and if we decide to keep it append
146   // it to the end of the path.  The entire path is processed in this way.
147   for (unsigned i = 0; i < N; ++i) {
148     auto piece = std::move(path.front());
149     path.pop_front();
150 
151     switch (piece->getKind()) {
152       case PathDiagnosticPiece::Call:
153         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
154         break;
155       case PathDiagnosticPiece::Macro:
156         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
157         break;
158       case PathDiagnosticPiece::ControlFlow:
159         break;
160       case PathDiagnosticPiece::Event: {
161         if (i == N-1)
162           break;
163 
164         if (auto *nextEvent =
165             dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
166           auto *event = cast<PathDiagnosticEventPiece>(piece.get());
167           // Check to see if we should keep one of the two pieces.  If we
168           // come up with a preference, record which piece to keep, and consume
169           // another piece from the path.
170           if (auto *pieceToKeep =
171                   eventsDescribeSameCondition(event, nextEvent)) {
172             piece = std::move(pieceToKeep == event ? piece : path.front());
173             path.pop_front();
174             ++i;
175           }
176         }
177         break;
178       }
179       case PathDiagnosticPiece::Note:
180         break;
181     }
182     path.push_back(std::move(piece));
183   }
184 }
185 
186 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
187 /// function call it represents.
188 using LocationContextMap =
189     llvm::DenseMap<const PathPieces *, const LocationContext *>;
190 
191 /// Recursively scan through a path and prune out calls and macros pieces
192 /// that aren't needed.  Return true if afterwards the path contains
193 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
194 static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
195                                 LocationContextMap &LCM,
196                                 bool IsInteresting = false) {
197   bool containsSomethingInteresting = IsInteresting;
198   const unsigned N = pieces.size();
199 
200   for (unsigned i = 0 ; i < N ; ++i) {
201     // Remove the front piece from the path.  If it is still something we
202     // want to keep once we are done, we will push it back on the end.
203     auto piece = std::move(pieces.front());
204     pieces.pop_front();
205 
206     switch (piece->getKind()) {
207       case PathDiagnosticPiece::Call: {
208         auto &call = cast<PathDiagnosticCallPiece>(*piece);
209         // Check if the location context is interesting.
210         assert(LCM.count(&call.path));
211         if (!removeUnneededCalls(call.path, R, LCM,
212                                  R->isInteresting(LCM[&call.path])))
213           continue;
214 
215         containsSomethingInteresting = true;
216         break;
217       }
218       case PathDiagnosticPiece::Macro: {
219         auto &macro = cast<PathDiagnosticMacroPiece>(*piece);
220         if (!removeUnneededCalls(macro.subPieces, R, LCM, IsInteresting))
221           continue;
222         containsSomethingInteresting = true;
223         break;
224       }
225       case PathDiagnosticPiece::Event: {
226         auto &event = cast<PathDiagnosticEventPiece>(*piece);
227 
228         // We never throw away an event, but we do throw it away wholesale
229         // as part of a path if we throw the entire path away.
230         containsSomethingInteresting |= !event.isPrunable();
231         break;
232       }
233       case PathDiagnosticPiece::ControlFlow:
234         break;
235 
236       case PathDiagnosticPiece::Note:
237         break;
238     }
239 
240     pieces.push_back(std::move(piece));
241   }
242 
243   return containsSomethingInteresting;
244 }
245 
246 /// Returns true if the given decl has been implicitly given a body, either by
247 /// the analyzer or by the compiler proper.
248 static bool hasImplicitBody(const Decl *D) {
249   assert(D);
250   return D->isImplicit() || !D->hasBody();
251 }
252 
253 /// Recursively scan through a path and make sure that all call pieces have
254 /// valid locations.
255 static void
256 adjustCallLocations(PathPieces &Pieces,
257                     PathDiagnosticLocation *LastCallLocation = nullptr) {
258   for (const auto &I : Pieces) {
259     auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get());
260 
261     if (!Call)
262       continue;
263 
264     if (LastCallLocation) {
265       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
266       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
267         Call->callEnter = *LastCallLocation;
268       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
269         Call->callReturn = *LastCallLocation;
270     }
271 
272     // Recursively clean out the subclass.  Keep this call around if
273     // it contains any informative diagnostics.
274     PathDiagnosticLocation *ThisCallLocation;
275     if (Call->callEnterWithin.asLocation().isValid() &&
276         !hasImplicitBody(Call->getCallee()))
277       ThisCallLocation = &Call->callEnterWithin;
278     else
279       ThisCallLocation = &Call->callEnter;
280 
281     assert(ThisCallLocation && "Outermost call has an invalid location");
282     adjustCallLocations(Call->path, ThisCallLocation);
283   }
284 }
285 
286 /// Remove edges in and out of C++ default initializer expressions. These are
287 /// for fields that have in-class initializers, as opposed to being initialized
288 /// explicitly in a constructor or braced list.
289 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
290   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
291     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
292       removeEdgesToDefaultInitializers(C->path);
293 
294     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
295       removeEdgesToDefaultInitializers(M->subPieces);
296 
297     if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
298       const Stmt *Start = CF->getStartLocation().asStmt();
299       const Stmt *End = CF->getEndLocation().asStmt();
300       if (Start && isa<CXXDefaultInitExpr>(Start)) {
301         I = Pieces.erase(I);
302         continue;
303       } else if (End && isa<CXXDefaultInitExpr>(End)) {
304         PathPieces::iterator Next = std::next(I);
305         if (Next != E) {
306           if (auto *NextCF =
307                   dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
308             NextCF->setStartLocation(CF->getStartLocation());
309           }
310         }
311         I = Pieces.erase(I);
312         continue;
313       }
314     }
315 
316     I++;
317   }
318 }
319 
320 /// Remove all pieces with invalid locations as these cannot be serialized.
321 /// We might have pieces with invalid locations as a result of inlining Body
322 /// Farm generated functions.
323 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
324   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
325     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
326       removePiecesWithInvalidLocations(C->path);
327 
328     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
329       removePiecesWithInvalidLocations(M->subPieces);
330 
331     if (!(*I)->getLocation().isValid() ||
332         !(*I)->getLocation().asLocation().isValid()) {
333       I = Pieces.erase(I);
334       continue;
335     }
336     I++;
337   }
338 }
339 
340 //===----------------------------------------------------------------------===//
341 // PathDiagnosticBuilder and its associated routines and helper objects.
342 //===----------------------------------------------------------------------===//
343 
344 namespace {
345 
346 class PathDiagnosticBuilder : public BugReporterContext {
347   BugReport *R;
348   PathDiagnosticConsumer *PDC;
349 
350 public:
351   const LocationContext *LC;
352 
353   PathDiagnosticBuilder(GRBugReporter &br,
354                         BugReport *r, InterExplodedGraphMap &Backmap,
355                         PathDiagnosticConsumer *pdc)
356       : BugReporterContext(br, Backmap), R(r), PDC(pdc),
357         LC(r->getErrorNode()->getLocationContext()) {}
358 
359   PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
360 
361   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
362                                             const ExplodedNode *N);
363 
364   BugReport *getBugReport() { return R; }
365 
366   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
367 
368   ParentMap& getParentMap() { return LC->getParentMap(); }
369 
370   const Stmt *getParent(const Stmt *S) {
371     return getParentMap().getParent(S);
372   }
373 
374   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
375 
376   PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
377     return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Minimal;
378   }
379 
380   bool supportsLogicalOpControlFlow() const {
381     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
382   }
383 };
384 
385 } // namespace
386 
387 PathDiagnosticLocation
388 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
389   if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
390     return PathDiagnosticLocation(S, getSourceManager(), LC);
391 
392   return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
393                                                getSourceManager());
394 }
395 
396 PathDiagnosticLocation
397 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
398                                           const ExplodedNode *N) {
399   // Slow, but probably doesn't matter.
400   if (os.str().empty())
401     os << ' ';
402 
403   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
404 
405   if (Loc.asStmt())
406     os << "Execution continues on line "
407        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
408        << '.';
409   else {
410     os << "Execution jumps to the end of the ";
411     const Decl *D = N->getLocationContext()->getDecl();
412     if (isa<ObjCMethodDecl>(D))
413       os << "method";
414     else if (isa<FunctionDecl>(D))
415       os << "function";
416     else {
417       assert(isa<BlockDecl>(D));
418       os << "anonymous block";
419     }
420     os << '.';
421   }
422 
423   return Loc;
424 }
425 
426 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
427   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
428     return PM.getParentIgnoreParens(S);
429 
430   const Stmt *Parent = PM.getParentIgnoreParens(S);
431   if (!Parent)
432     return nullptr;
433 
434   switch (Parent->getStmtClass()) {
435   case Stmt::ForStmtClass:
436   case Stmt::DoStmtClass:
437   case Stmt::WhileStmtClass:
438   case Stmt::ObjCForCollectionStmtClass:
439   case Stmt::CXXForRangeStmtClass:
440     return Parent;
441   default:
442     break;
443   }
444 
445   return nullptr;
446 }
447 
448 static PathDiagnosticLocation
449 getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P,
450                          const LocationContext *LC, bool allowNestedContexts) {
451   if (!S)
452     return {};
453 
454   while (const Stmt *Parent = getEnclosingParent(S, P)) {
455     switch (Parent->getStmtClass()) {
456       case Stmt::BinaryOperatorClass: {
457         const auto *B = cast<BinaryOperator>(Parent);
458         if (B->isLogicalOp())
459           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
460         break;
461       }
462       case Stmt::CompoundStmtClass:
463       case Stmt::StmtExprClass:
464         return PathDiagnosticLocation(S, SMgr, LC);
465       case Stmt::ChooseExprClass:
466         // Similar to '?' if we are referring to condition, just have the edge
467         // point to the entire choose expression.
468         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
469           return PathDiagnosticLocation(Parent, SMgr, LC);
470         else
471           return PathDiagnosticLocation(S, SMgr, LC);
472       case Stmt::BinaryConditionalOperatorClass:
473       case Stmt::ConditionalOperatorClass:
474         // For '?', if we are referring to condition, just have the edge point
475         // to the entire '?' expression.
476         if (allowNestedContexts ||
477             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
478           return PathDiagnosticLocation(Parent, SMgr, LC);
479         else
480           return PathDiagnosticLocation(S, SMgr, LC);
481       case Stmt::CXXForRangeStmtClass:
482         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
483           return PathDiagnosticLocation(S, SMgr, LC);
484         break;
485       case Stmt::DoStmtClass:
486           return PathDiagnosticLocation(S, SMgr, LC);
487       case Stmt::ForStmtClass:
488         if (cast<ForStmt>(Parent)->getBody() == S)
489           return PathDiagnosticLocation(S, SMgr, LC);
490         break;
491       case Stmt::IfStmtClass:
492         if (cast<IfStmt>(Parent)->getCond() != S)
493           return PathDiagnosticLocation(S, SMgr, LC);
494         break;
495       case Stmt::ObjCForCollectionStmtClass:
496         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
497           return PathDiagnosticLocation(S, SMgr, LC);
498         break;
499       case Stmt::WhileStmtClass:
500         if (cast<WhileStmt>(Parent)->getCond() != S)
501           return PathDiagnosticLocation(S, SMgr, LC);
502         break;
503       default:
504         break;
505     }
506 
507     S = Parent;
508   }
509 
510   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
511 
512   return PathDiagnosticLocation(S, SMgr, LC);
513 }
514 
515 PathDiagnosticLocation
516 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
517   assert(S && "Null Stmt passed to getEnclosingStmtLocation");
518   return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC,
519                                     /*allowNestedContexts=*/false);
520 }
521 
522 //===----------------------------------------------------------------------===//
523 // "Minimal" path diagnostic generation algorithm.
524 //===----------------------------------------------------------------------===//
525 using StackDiagPair =
526     std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
527 using StackDiagVector = SmallVector<StackDiagPair, 6>;
528 
529 static void updateStackPiecesWithMessage(PathDiagnosticPiece &P,
530                                          StackDiagVector &CallStack) {
531   // If the piece contains a special message, add it to all the call
532   // pieces on the active stack.
533   if (auto *ep = dyn_cast<PathDiagnosticEventPiece>(&P)) {
534     if (ep->hasCallStackHint())
535       for (const auto &I : CallStack) {
536         PathDiagnosticCallPiece *CP = I.first;
537         const ExplodedNode *N = I.second;
538         std::string stackMsg = ep->getCallStackMessage(N);
539 
540         // The last message on the path to final bug is the most important
541         // one. Since we traverse the path backwards, do not add the message
542         // if one has been previously added.
543         if  (!CP->hasCallStackMessage())
544           CP->setCallStackMessage(stackMsg);
545       }
546   }
547 }
548 
549 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
550 
551 
552 std::shared_ptr<PathDiagnosticControlFlowPiece> generateDiagForSwitchOP(
553   const ExplodedNode *N,
554   const CFGBlock *Dst,
555   const SourceManager &SM,
556   const LocationContext *LC,
557   PathDiagnosticBuilder &PDB,
558   PathDiagnosticLocation &Start
559   ) {
560   // Figure out what case arm we took.
561   std::string sbuf;
562   llvm::raw_string_ostream os(sbuf);
563   PathDiagnosticLocation End;
564 
565   if (const Stmt *S = Dst->getLabel()) {
566     End = PathDiagnosticLocation(S, SM, LC);
567 
568     switch (S->getStmtClass()) {
569     default:
570       os << "No cases match in the switch statement. "
571         "Control jumps to line "
572         << End.asLocation().getExpansionLineNumber();
573       break;
574     case Stmt::DefaultStmtClass:
575       os << "Control jumps to the 'default' case at line "
576         << End.asLocation().getExpansionLineNumber();
577       break;
578 
579     case Stmt::CaseStmtClass: {
580       os << "Control jumps to 'case ";
581       const auto *Case = cast<CaseStmt>(S);
582       const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
583 
584       // Determine if it is an enum.
585       bool GetRawInt = true;
586 
587       if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) {
588         // FIXME: Maybe this should be an assertion.  Are there cases
589         // were it is not an EnumConstantDecl?
590         const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
591 
592         if (D) {
593           GetRawInt = false;
594           os << *D;
595         }
596       }
597 
598       if (GetRawInt)
599         os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
600 
601       os << ":'  at line " << End.asLocation().getExpansionLineNumber();
602       break;
603     }
604     }
605   } else {
606     os << "'Default' branch taken. ";
607     End = PDB.ExecutionContinues(os, N);
608   }
609   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
610                                                        os.str());
611 }
612 
613 
614 std::shared_ptr<PathDiagnosticControlFlowPiece> generateDiagForGotoOP(
615   const Stmt *S,
616   PathDiagnosticBuilder &PDB,
617   PathDiagnosticLocation &Start) {
618     std::string sbuf;
619     llvm::raw_string_ostream os(sbuf);
620     const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
621     os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
622     return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str());
623 
624 }
625 
626 std::shared_ptr<PathDiagnosticControlFlowPiece> generateDiagForBinaryOP(
627                                                  const ExplodedNode *N,
628                                                  const Stmt *T,
629                                                  const CFGBlock *Src,
630                                                  const CFGBlock *Dst,
631                                                  const SourceManager &SM,
632                                                  PathDiagnosticBuilder &PDB,
633                                                  const LocationContext *LC) {
634   const auto *B = cast<BinaryOperator>(T);
635   std::string sbuf;
636   llvm::raw_string_ostream os(sbuf);
637   os << "Left side of '";
638   PathDiagnosticLocation Start, End;
639 
640   if (B->getOpcode() == BO_LAnd) {
641     os << "&&"
642       << "' is ";
643 
644     if (*(Src->succ_begin() + 1) == Dst) {
645       os << "false";
646       End = PathDiagnosticLocation(B->getLHS(), SM, LC);
647       Start =
648         PathDiagnosticLocation::createOperatorLoc(B, SM);
649     } else {
650       os << "true";
651       Start = PathDiagnosticLocation(B->getLHS(), SM, LC);
652       End = PDB.ExecutionContinues(N);
653     }
654   } else {
655     assert(B->getOpcode() == BO_LOr);
656     os << "||"
657       << "' is ";
658 
659     if (*(Src->succ_begin() + 1) == Dst) {
660       os << "false";
661       Start = PathDiagnosticLocation(B->getLHS(), SM, LC);
662       End = PDB.ExecutionContinues(N);
663     } else {
664       os << "true";
665       End = PathDiagnosticLocation(B->getLHS(), SM, LC);
666       Start =
667         PathDiagnosticLocation::createOperatorLoc(B, SM);
668     }
669   }
670   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
671                                                          os.str());
672 }
673 
674 void generateMinimalDiagForBlockEdge(const ExplodedNode *N, BlockEdge BE,
675                                      const SourceManager &SM,
676                                      PathDiagnosticBuilder &PDB,
677                                      PathDiagnostic &PD) {
678   const LocationContext *LC = N->getLocationContext();
679   const CFGBlock *Src = BE.getSrc();
680   const CFGBlock *Dst = BE.getDst();
681   const Stmt *T = Src->getTerminator();
682   if (!T)
683     return;
684 
685   auto Start = PathDiagnosticLocation::createBegin(T, SM, LC);
686   switch (T->getStmtClass()) {
687   default:
688     break;
689 
690   case Stmt::GotoStmtClass:
691   case Stmt::IndirectGotoStmtClass: {
692     if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
693       PD.getActivePath().push_front(generateDiagForGotoOP(S, PDB, Start));
694     break;
695   }
696 
697   case Stmt::SwitchStmtClass: {
698     PD.getActivePath().push_front(
699         generateDiagForSwitchOP(N, Dst, SM, LC, PDB, Start));
700     break;
701   }
702 
703   case Stmt::BreakStmtClass:
704   case Stmt::ContinueStmtClass: {
705     std::string sbuf;
706     llvm::raw_string_ostream os(sbuf);
707     PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
708     PD.getActivePath().push_front(
709         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
710     break;
711   }
712 
713   // Determine control-flow for ternary '?'.
714   case Stmt::BinaryConditionalOperatorClass:
715   case Stmt::ConditionalOperatorClass: {
716     std::string sbuf;
717     llvm::raw_string_ostream os(sbuf);
718     os << "'?' condition is ";
719 
720     if (*(Src->succ_begin() + 1) == Dst)
721       os << "false";
722     else
723       os << "true";
724 
725     PathDiagnosticLocation End = PDB.ExecutionContinues(N);
726 
727     if (const Stmt *S = End.asStmt())
728       End = PDB.getEnclosingStmtLocation(S);
729 
730     PD.getActivePath().push_front(
731         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
732     break;
733   }
734 
735   // Determine control-flow for short-circuited '&&' and '||'.
736   case Stmt::BinaryOperatorClass: {
737     if (!PDB.supportsLogicalOpControlFlow())
738       break;
739 
740     std::shared_ptr<PathDiagnosticControlFlowPiece> Diag =
741         generateDiagForBinaryOP(N, T, Src, Dst, SM, PDB, LC);
742     PD.getActivePath().push_front(Diag);
743     break;
744   }
745 
746   case Stmt::DoStmtClass:
747     if (*(Src->succ_begin()) == Dst) {
748       std::string sbuf;
749       llvm::raw_string_ostream os(sbuf);
750 
751       os << "Loop condition is true. ";
752       PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
753 
754       if (const Stmt *S = End.asStmt())
755         End = PDB.getEnclosingStmtLocation(S);
756 
757       PD.getActivePath().push_front(
758           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
759                                                            os.str()));
760     } else {
761       PathDiagnosticLocation End = PDB.ExecutionContinues(N);
762 
763       if (const Stmt *S = End.asStmt())
764         End = PDB.getEnclosingStmtLocation(S);
765 
766       PD.getActivePath().push_front(
767           std::make_shared<PathDiagnosticControlFlowPiece>(
768               Start, End, "Loop condition is false.  Exiting loop"));
769     }
770     break;
771 
772   case Stmt::WhileStmtClass:
773   case Stmt::ForStmtClass:
774     if (*(Src->succ_begin() + 1) == Dst) {
775       std::string sbuf;
776       llvm::raw_string_ostream os(sbuf);
777 
778       os << "Loop condition is false. ";
779       PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
780       if (const Stmt *S = End.asStmt())
781         End = PDB.getEnclosingStmtLocation(S);
782 
783       PD.getActivePath().push_front(
784           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
785                                                            os.str()));
786     } else {
787       PathDiagnosticLocation End = PDB.ExecutionContinues(N);
788       if (const Stmt *S = End.asStmt())
789         End = PDB.getEnclosingStmtLocation(S);
790 
791       PD.getActivePath().push_front(
792           std::make_shared<PathDiagnosticControlFlowPiece>(
793               Start, End, "Loop condition is true.  Entering loop body"));
794     }
795 
796     break;
797 
798   case Stmt::IfStmtClass: {
799     PathDiagnosticLocation End = PDB.ExecutionContinues(N);
800 
801     if (const Stmt *S = End.asStmt())
802       End = PDB.getEnclosingStmtLocation(S);
803 
804     if (*(Src->succ_begin() + 1) == Dst)
805       PD.getActivePath().push_front(
806           std::make_shared<PathDiagnosticControlFlowPiece>(
807               Start, End, "Taking false branch"));
808     else
809       PD.getActivePath().push_front(
810           std::make_shared<PathDiagnosticControlFlowPiece>(
811               Start, End, "Taking true branch"));
812 
813     break;
814   }
815   }
816 }
817 
818 // Cone-of-influence: support the reverse propagation of "interesting" symbols
819 // and values by tracing interesting calculations backwards through evaluated
820 // expressions along a path.  This is probably overly complicated, but the idea
821 // is that if an expression computed an "interesting" value, the child
822 // expressions are are also likely to be "interesting" as well (which then
823 // propagates to the values they in turn compute).  This reverse propagation
824 // is needed to track interesting correlations across function call boundaries,
825 // where formal arguments bind to actual arguments, etc.  This is also needed
826 // because the constraint solver sometimes simplifies certain symbolic values
827 // into constants when appropriate, and this complicates reasoning about
828 // interesting values.
829 using InterestingExprs = llvm::DenseSet<const Expr *>;
830 
831 static void reversePropagateIntererstingSymbols(BugReport &R,
832                                                 InterestingExprs &IE,
833                                                 const ProgramState *State,
834                                                 const Expr *Ex,
835                                                 const LocationContext *LCtx) {
836   SVal V = State->getSVal(Ex, LCtx);
837   if (!(R.isInteresting(V) || IE.count(Ex)))
838     return;
839 
840   switch (Ex->getStmtClass()) {
841     default:
842       if (!isa<CastExpr>(Ex))
843         break;
844       // Fall through.
845     case Stmt::BinaryOperatorClass:
846     case Stmt::UnaryOperatorClass: {
847       for (const Stmt *SubStmt : Ex->children()) {
848         if (const auto *child = dyn_cast_or_null<Expr>(SubStmt)) {
849           IE.insert(child);
850           SVal ChildV = State->getSVal(child, LCtx);
851           R.markInteresting(ChildV);
852         }
853       }
854       break;
855     }
856   }
857 
858   R.markInteresting(V);
859 }
860 
861 static void reversePropagateInterestingSymbols(BugReport &R,
862                                                InterestingExprs &IE,
863                                                const ProgramState *State,
864                                                const LocationContext *CalleeCtx,
865                                                const LocationContext *CallerCtx)
866 {
867   // FIXME: Handle non-CallExpr-based CallEvents.
868   const StackFrameContext *Callee = CalleeCtx->getStackFrame();
869   const Stmt *CallSite = Callee->getCallSite();
870   if (const auto *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
871     if (const auto *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
872       FunctionDecl::param_const_iterator PI = FD->param_begin(),
873                                          PE = FD->param_end();
874       CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
875       for (; AI != AE && PI != PE; ++AI, ++PI) {
876         if (const Expr *ArgE = *AI) {
877           if (const ParmVarDecl *PD = *PI) {
878             Loc LV = State->getLValue(PD, CalleeCtx);
879             if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
880               IE.insert(ArgE);
881           }
882         }
883       }
884     }
885   }
886 }
887 
888 //===----------------------------------------------------------------------===//
889 // Functions for determining if a loop was executed 0 times.
890 //===----------------------------------------------------------------------===//
891 
892 static bool isLoop(const Stmt *Term) {
893   switch (Term->getStmtClass()) {
894     case Stmt::ForStmtClass:
895     case Stmt::WhileStmtClass:
896     case Stmt::ObjCForCollectionStmtClass:
897     case Stmt::CXXForRangeStmtClass:
898       return true;
899     default:
900       // Note that we intentionally do not include do..while here.
901       return false;
902   }
903 }
904 
905 static bool isJumpToFalseBranch(const BlockEdge *BE) {
906   const CFGBlock *Src = BE->getSrc();
907   assert(Src->succ_size() == 2);
908   return (*(Src->succ_begin()+1) == BE->getDst());
909 }
910 
911 static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
912   while (SubS) {
913     if (SubS == S)
914       return true;
915     SubS = PM.getParent(SubS);
916   }
917   return false;
918 }
919 
920 static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
921                                      const ExplodedNode *N) {
922   while (N) {
923     Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
924     if (SP) {
925       const Stmt *S = SP->getStmt();
926       if (!isContainedByStmt(PM, Term, S))
927         return S;
928     }
929     N = N->getFirstPred();
930   }
931   return nullptr;
932 }
933 
934 static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
935   const Stmt *LoopBody = nullptr;
936   switch (Term->getStmtClass()) {
937     case Stmt::CXXForRangeStmtClass: {
938       const auto *FR = cast<CXXForRangeStmt>(Term);
939       if (isContainedByStmt(PM, FR->getInc(), S))
940         return true;
941       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
942         return true;
943       LoopBody = FR->getBody();
944       break;
945     }
946     case Stmt::ForStmtClass: {
947       const auto *FS = cast<ForStmt>(Term);
948       if (isContainedByStmt(PM, FS->getInc(), S))
949         return true;
950       LoopBody = FS->getBody();
951       break;
952     }
953     case Stmt::ObjCForCollectionStmtClass: {
954       const auto *FC = cast<ObjCForCollectionStmt>(Term);
955       LoopBody = FC->getBody();
956       break;
957     }
958     case Stmt::WhileStmtClass:
959       LoopBody = cast<WhileStmt>(Term)->getBody();
960       break;
961     default:
962       return false;
963   }
964   return isContainedByStmt(PM, LoopBody, S);
965 }
966 
967 /// Adds a sanitized control-flow diagnostic edge to a path.
968 static void addEdgeToPath(PathPieces &path,
969                           PathDiagnosticLocation &PrevLoc,
970                           PathDiagnosticLocation NewLoc,
971                           const LocationContext *LC) {
972   if (!NewLoc.isValid())
973     return;
974 
975   SourceLocation NewLocL = NewLoc.asLocation();
976   if (NewLocL.isInvalid())
977     return;
978 
979   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
980     PrevLoc = NewLoc;
981     return;
982   }
983 
984   // Ignore self-edges, which occur when there are multiple nodes at the same
985   // statement.
986   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
987     return;
988 
989   path.push_front(
990       std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
991   PrevLoc = NewLoc;
992 }
993 
994 /// A customized wrapper for CFGBlock::getTerminatorCondition()
995 /// which returns the element for ObjCForCollectionStmts.
996 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
997   const Stmt *S = B->getTerminatorCondition();
998   if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S))
999     return FS->getElement();
1000   return S;
1001 }
1002 
1003 static const char StrEnteringLoop[] = "Entering loop body";
1004 static const char StrLoopBodyZero[] = "Loop body executed 0 times";
1005 static const char StrLoopRangeEmpty[] =
1006   "Loop body skipped when range is empty";
1007 static const char StrLoopCollectionEmpty[] =
1008   "Loop body skipped when collection is empty";
1009 
1010 static std::unique_ptr<FilesToLineNumsMap>
1011 findExecutedLines(SourceManager &SM, const ExplodedNode *N);
1012 
1013 /// Generate diagnostics for the node \p N,
1014 /// and write it into \p PD.
1015 /// \p AddPathEdges Whether diagnostic consumer can generate path arrows
1016 /// showing both row and column.
1017 static void generatePathDiagnosticsForNode(const ExplodedNode *N,
1018       PathDiagnostic &PD,
1019       PathDiagnosticLocation &PrevLoc,
1020       PathDiagnosticBuilder &PDB,
1021       LocationContextMap &LCM,
1022       StackDiagVector &CallStack,
1023       InterestingExprs &IE,
1024       bool AddPathEdges) {
1025   ProgramPoint P = N->getLocation();
1026   const SourceManager& SM = PDB.getSourceManager();
1027 
1028   // Have we encountered an entrance to a call?  It may be
1029   // the case that we have not encountered a matching
1030   // call exit before this point.  This means that the path
1031   // terminated within the call itself.
1032   if (auto CE = P.getAs<CallEnter>()) {
1033 
1034     if (AddPathEdges) {
1035       // Add an edge to the start of the function.
1036       const StackFrameContext *CalleeLC = CE->getCalleeContext();
1037       const Decl *D = CalleeLC->getDecl();
1038       // Add the edge only when the callee has body. We jump to the beginning
1039       // of the *declaration*, however we expect it to be followed by the
1040       // body. This isn't the case for autosynthesized property accessors in
1041       // Objective-C. No need for a similar extra check for CallExit points
1042       // because the exit edge comes from a statement (i.e. return),
1043       // not from declaration.
1044       if (D->hasBody())
1045         addEdgeToPath(PD.getActivePath(), PrevLoc,
1046             PathDiagnosticLocation::createBegin(D, SM), CalleeLC);
1047     }
1048 
1049     // Did we visit an entire call?
1050     bool VisitedEntireCall = PD.isWithinCall();
1051     PD.popActivePath();
1052 
1053     PathDiagnosticCallPiece *C;
1054     if (VisitedEntireCall) {
1055       C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front().get());
1056     } else {
1057       const Decl *Caller = CE->getLocationContext()->getDecl();
1058       C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1059 
1060       if (AddPathEdges) {
1061         // Since we just transferred the path over to the call piece,
1062         // reset the mapping from active to location context.
1063         assert(PD.getActivePath().size() == 1 &&
1064             PD.getActivePath().front().get() == C);
1065         LCM[&PD.getActivePath()] = nullptr;
1066       }
1067 
1068       // Record the location context mapping for the path within
1069       // the call.
1070       assert(LCM[&C->path] == nullptr ||
1071           LCM[&C->path] == CE->getCalleeContext());
1072       LCM[&C->path] = CE->getCalleeContext();
1073 
1074       // If this is the first item in the active path, record
1075       // the new mapping from active path to location context.
1076       const LocationContext *&NewLC = LCM[&PD.getActivePath()];
1077       if (!NewLC)
1078         NewLC = N->getLocationContext();
1079 
1080       PDB.LC = NewLC;
1081     }
1082     C->setCallee(*CE, SM);
1083 
1084     // Update the previous location in the active path.
1085     PrevLoc = C->getLocation();
1086 
1087     if (!CallStack.empty()) {
1088       assert(CallStack.back().first == C);
1089       CallStack.pop_back();
1090     }
1091     return;
1092   }
1093 
1094 
1095   if (AddPathEdges) {
1096     // Query the location context here and the previous location
1097     // as processing CallEnter may change the active path.
1098     PDB.LC = N->getLocationContext();
1099 
1100     // Record the mapping from the active path to the location
1101     // context.
1102     assert(!LCM[&PD.getActivePath()] || LCM[&PD.getActivePath()] == PDB.LC);
1103     LCM[&PD.getActivePath()] = PDB.LC;
1104   }
1105 
1106   // Have we encountered an exit from a function call?
1107   if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1108 
1109     // We are descending into a call (backwards).  Construct
1110     // a new call piece to contain the path pieces for that call.
1111     auto C = PathDiagnosticCallPiece::construct(N, *CE, SM);
1112     // Record the mapping from call piece to LocationContext.
1113     LCM[&C->path] = CE->getCalleeContext();
1114 
1115     if (AddPathEdges) {
1116       const Stmt *S = CE->getCalleeContext()->getCallSite();
1117       // Propagate the interesting symbols accordingly.
1118       if (const auto *Ex = dyn_cast_or_null<Expr>(S)) {
1119         reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1120             N->getState().get(), Ex,
1121             N->getLocationContext());
1122       }
1123       // Add the edge to the return site.
1124       addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
1125       PrevLoc.invalidate();
1126     }
1127 
1128     auto *P = C.get();
1129     PD.getActivePath().push_front(std::move(C));
1130 
1131     // Make the contents of the call the active path for now.
1132     PD.pushActivePath(&P->path);
1133     CallStack.push_back(StackDiagPair(P, N));
1134     return;
1135   }
1136 
1137   if (auto PS = P.getAs<PostStmt>()) {
1138     if (!AddPathEdges)
1139       return;
1140 
1141     // For expressions, make sure we propagate the
1142     // interesting symbols correctly.
1143     if (const Expr *Ex = PS->getStmtAs<Expr>())
1144       reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1145           N->getState().get(), Ex,
1146           N->getLocationContext());
1147 
1148     // Add an edge.  If this is an ObjCForCollectionStmt do
1149     // not add an edge here as it appears in the CFG both
1150     // as a terminator and as a terminator condition.
1151     if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1152       PathDiagnosticLocation L =
1153         PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
1154       addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1155     }
1156 
1157   } else if (auto BE = P.getAs<BlockEdge>()) {
1158 
1159     if (!AddPathEdges) {
1160       generateMinimalDiagForBlockEdge(N, *BE, SM, PDB, PD);
1161       return;
1162     }
1163 
1164     // Does this represent entering a call?  If so, look at propagating
1165     // interesting symbols across call boundaries.
1166     if (const ExplodedNode *NextNode = N->getFirstPred()) {
1167       const LocationContext *CallerCtx = NextNode->getLocationContext();
1168       const LocationContext *CalleeCtx = PDB.LC;
1169       if (CallerCtx != CalleeCtx && AddPathEdges) {
1170         reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1171             N->getState().get(),
1172             CalleeCtx, CallerCtx);
1173       }
1174     }
1175 
1176     // Are we jumping to the head of a loop?  Add a special diagnostic.
1177     if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1178       PathDiagnosticLocation L(Loop, SM, PDB.LC);
1179       const Stmt *Body = nullptr;
1180 
1181       if (const auto *FS = dyn_cast<ForStmt>(Loop))
1182         Body = FS->getBody();
1183       else if (const auto *WS = dyn_cast<WhileStmt>(Loop))
1184         Body = WS->getBody();
1185       else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) {
1186         Body = OFS->getBody();
1187       } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) {
1188         Body = FRS->getBody();
1189       }
1190       // do-while statements are explicitly excluded here
1191 
1192       auto p = std::make_shared<PathDiagnosticEventPiece>(
1193           L, "Looping back to the head "
1194           "of the loop");
1195       p->setPrunable(true);
1196 
1197       addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1198       PD.getActivePath().push_front(std::move(p));
1199 
1200       if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1201         addEdgeToPath(PD.getActivePath(), PrevLoc,
1202             PathDiagnosticLocation::createEndBrace(CS, SM),
1203             PDB.LC);
1204       }
1205     }
1206 
1207     const CFGBlock *BSrc = BE->getSrc();
1208     ParentMap &PM = PDB.getParentMap();
1209 
1210     if (const Stmt *Term = BSrc->getTerminator()) {
1211       // Are we jumping past the loop body without ever executing the
1212       // loop (because the condition was false)?
1213       if (isLoop(Term)) {
1214         const Stmt *TermCond = getTerminatorCondition(BSrc);
1215         bool IsInLoopBody =
1216           isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
1217 
1218         const char *str = nullptr;
1219 
1220         if (isJumpToFalseBranch(&*BE)) {
1221           if (!IsInLoopBody) {
1222             if (isa<ObjCForCollectionStmt>(Term)) {
1223               str = StrLoopCollectionEmpty;
1224             } else if (isa<CXXForRangeStmt>(Term)) {
1225               str = StrLoopRangeEmpty;
1226             } else {
1227               str = StrLoopBodyZero;
1228             }
1229           }
1230         } else {
1231           str = StrEnteringLoop;
1232         }
1233 
1234         if (str) {
1235           PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC);
1236           auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
1237           PE->setPrunable(true);
1238           addEdgeToPath(PD.getActivePath(), PrevLoc,
1239               PE->getLocation(), PDB.LC);
1240           PD.getActivePath().push_front(std::move(PE));
1241         }
1242       } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
1243           isa<GotoStmt>(Term)) {
1244         PathDiagnosticLocation L(Term, SM, PDB.LC);
1245         addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1246       }
1247     }
1248   }
1249 }
1250 
1251 static std::unique_ptr<PathDiagnostic>
1252 generateEmptyDiagnosticForReport(BugReport *R, SourceManager &SM) {
1253   BugType &BT = R->getBugType();
1254   return llvm::make_unique<PathDiagnostic>(
1255       R->getBugType().getCheckName(), R->getDeclWithIssue(),
1256       R->getBugType().getName(), R->getDescription(),
1257       R->getShortDescription(/*Fallback=*/false), BT.getCategory(),
1258       R->getUniqueingLocation(), R->getUniqueingDecl(),
1259       findExecutedLines(SM, R->getErrorNode()));
1260 }
1261 
1262 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1263   if (!S)
1264     return nullptr;
1265 
1266   while (true) {
1267     S = PM.getParentIgnoreParens(S);
1268 
1269     if (!S)
1270       break;
1271 
1272     if (isa<ExprWithCleanups>(S) ||
1273         isa<CXXBindTemporaryExpr>(S) ||
1274         isa<SubstNonTypeTemplateParmExpr>(S))
1275       continue;
1276 
1277     break;
1278   }
1279 
1280   return S;
1281 }
1282 
1283 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1284   switch (S->getStmtClass()) {
1285     case Stmt::BinaryOperatorClass: {
1286       const auto *BO = cast<BinaryOperator>(S);
1287       if (!BO->isLogicalOp())
1288         return false;
1289       return BO->getLHS() == Cond || BO->getRHS() == Cond;
1290     }
1291     case Stmt::IfStmtClass:
1292       return cast<IfStmt>(S)->getCond() == Cond;
1293     case Stmt::ForStmtClass:
1294       return cast<ForStmt>(S)->getCond() == Cond;
1295     case Stmt::WhileStmtClass:
1296       return cast<WhileStmt>(S)->getCond() == Cond;
1297     case Stmt::DoStmtClass:
1298       return cast<DoStmt>(S)->getCond() == Cond;
1299     case Stmt::ChooseExprClass:
1300       return cast<ChooseExpr>(S)->getCond() == Cond;
1301     case Stmt::IndirectGotoStmtClass:
1302       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1303     case Stmt::SwitchStmtClass:
1304       return cast<SwitchStmt>(S)->getCond() == Cond;
1305     case Stmt::BinaryConditionalOperatorClass:
1306       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1307     case Stmt::ConditionalOperatorClass: {
1308       const auto *CO = cast<ConditionalOperator>(S);
1309       return CO->getCond() == Cond ||
1310              CO->getLHS() == Cond ||
1311              CO->getRHS() == Cond;
1312     }
1313     case Stmt::ObjCForCollectionStmtClass:
1314       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1315     case Stmt::CXXForRangeStmtClass: {
1316       const auto *FRS = cast<CXXForRangeStmt>(S);
1317       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1318     }
1319     default:
1320       return false;
1321   }
1322 }
1323 
1324 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1325   if (const auto *FS = dyn_cast<ForStmt>(FL))
1326     return FS->getInc() == S || FS->getInit() == S;
1327   if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL))
1328     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1329            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1330   return false;
1331 }
1332 
1333 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1334 
1335 /// Adds synthetic edges from top-level statements to their subexpressions.
1336 ///
1337 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1338 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1339 /// we'd like to see an edge from A to B, then another one from B to B.1.
1340 static void addContextEdges(PathPieces &pieces, SourceManager &SM,
1341                             const ParentMap &PM, const LocationContext *LCtx) {
1342   PathPieces::iterator Prev = pieces.end();
1343   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1344        Prev = I, ++I) {
1345     auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1346 
1347     if (!Piece)
1348       continue;
1349 
1350     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1351     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1352 
1353     PathDiagnosticLocation NextSrcContext = SrcLoc;
1354     const Stmt *InnerStmt = nullptr;
1355     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1356       SrcContexts.push_back(NextSrcContext);
1357       InnerStmt = NextSrcContext.asStmt();
1358       NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx,
1359                                                 /*allowNested=*/true);
1360     }
1361 
1362     // Repeatedly split the edge as necessary.
1363     // This is important for nested logical expressions (||, &&, ?:) where we
1364     // want to show all the levels of context.
1365     while (true) {
1366       const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1367 
1368       // We are looking at an edge. Is the destination within a larger
1369       // expression?
1370       PathDiagnosticLocation DstContext =
1371         getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true);
1372       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1373         break;
1374 
1375       // If the source is in the same context, we're already good.
1376       if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) !=
1377           SrcContexts.end())
1378         break;
1379 
1380       // Update the subexpression node to point to the context edge.
1381       Piece->setStartLocation(DstContext);
1382 
1383       // Try to extend the previous edge if it's at the same level as the source
1384       // context.
1385       if (Prev != E) {
1386         auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
1387 
1388         if (PrevPiece) {
1389           if (const Stmt *PrevSrc =
1390                   PrevPiece->getStartLocation().getStmtOrNull()) {
1391             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
1392             if (PrevSrcParent ==
1393                 getStmtParent(DstContext.getStmtOrNull(), PM)) {
1394               PrevPiece->setEndLocation(DstContext);
1395               break;
1396             }
1397           }
1398         }
1399       }
1400 
1401       // Otherwise, split the current edge into a context edge and a
1402       // subexpression edge. Note that the context statement may itself have
1403       // context.
1404       auto P =
1405           std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
1406       Piece = P.get();
1407       I = pieces.insert(I, std::move(P));
1408     }
1409   }
1410 }
1411 
1412 /// Move edges from a branch condition to a branch target
1413 ///        when the condition is simple.
1414 ///
1415 /// This restructures some of the work of addContextEdges.  That function
1416 /// creates edges this may destroy, but they work together to create a more
1417 /// aesthetically set of edges around branches.  After the call to
1418 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1419 /// the branch to the branch condition, and (3) an edge from the branch
1420 /// condition to the branch target.  We keep (1), but may wish to remove (2)
1421 /// and move the source of (3) to the branch if the branch condition is simple.
1422 static void simplifySimpleBranches(PathPieces &pieces) {
1423   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1424     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1425 
1426     if (!PieceI)
1427       continue;
1428 
1429     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1430     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1431 
1432     if (!s1Start || !s1End)
1433       continue;
1434 
1435     PathPieces::iterator NextI = I; ++NextI;
1436     if (NextI == E)
1437       break;
1438 
1439     PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1440 
1441     while (true) {
1442       if (NextI == E)
1443         break;
1444 
1445       const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1446       if (EV) {
1447         StringRef S = EV->getString();
1448         if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1449             S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
1450           ++NextI;
1451           continue;
1452         }
1453         break;
1454       }
1455 
1456       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1457       break;
1458     }
1459 
1460     if (!PieceNextI)
1461       continue;
1462 
1463     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1464     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1465 
1466     if (!s2Start || !s2End || s1End != s2Start)
1467       continue;
1468 
1469     // We only perform this transformation for specific branch kinds.
1470     // We don't want to do this for do..while, for example.
1471     if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
1472           isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
1473           isa<CXXForRangeStmt>(s1Start)))
1474       continue;
1475 
1476     // Is s1End the branch condition?
1477     if (!isConditionForTerminator(s1Start, s1End))
1478       continue;
1479 
1480     // Perform the hoisting by eliminating (2) and changing the start
1481     // location of (3).
1482     PieceNextI->setStartLocation(PieceI->getStartLocation());
1483     I = pieces.erase(I);
1484   }
1485 }
1486 
1487 /// Returns the number of bytes in the given (character-based) SourceRange.
1488 ///
1489 /// If the locations in the range are not on the same line, returns None.
1490 ///
1491 /// Note that this does not do a precise user-visible character or column count.
1492 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
1493                                               SourceRange Range) {
1494   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
1495                              SM.getExpansionRange(Range.getEnd()).getEnd());
1496 
1497   FileID FID = SM.getFileID(ExpansionRange.getBegin());
1498   if (FID != SM.getFileID(ExpansionRange.getEnd()))
1499     return None;
1500 
1501   bool Invalid;
1502   const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
1503   if (Invalid)
1504     return None;
1505 
1506   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
1507   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
1508   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
1509 
1510   // We're searching the raw bytes of the buffer here, which might include
1511   // escaped newlines and such. That's okay; we're trying to decide whether the
1512   // SourceRange is covering a large or small amount of space in the user's
1513   // editor.
1514   if (Snippet.find_first_of("\r\n") != StringRef::npos)
1515     return None;
1516 
1517   // This isn't Unicode-aware, but it doesn't need to be.
1518   return Snippet.size();
1519 }
1520 
1521 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1522 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
1523                                               const Stmt *S) {
1524   return getLengthOnSingleLine(SM, S->getSourceRange());
1525 }
1526 
1527 /// Eliminate two-edge cycles created by addContextEdges().
1528 ///
1529 /// Once all the context edges are in place, there are plenty of cases where
1530 /// there's a single edge from a top-level statement to a subexpression,
1531 /// followed by a single path note, and then a reverse edge to get back out to
1532 /// the top level. If the statement is simple enough, the subexpression edges
1533 /// just add noise and make it harder to understand what's going on.
1534 ///
1535 /// This function only removes edges in pairs, because removing only one edge
1536 /// might leave other edges dangling.
1537 ///
1538 /// This will not remove edges in more complicated situations:
1539 /// - if there is more than one "hop" leading to or from a subexpression.
1540 /// - if there is an inlined call between the edges instead of a single event.
1541 /// - if the whole statement is large enough that having subexpression arrows
1542 ///   might be helpful.
1543 static void removeContextCycles(PathPieces &Path, SourceManager &SM,
1544                                 ParentMap &PM) {
1545   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1546     // Pattern match the current piece and its successor.
1547     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1548 
1549     if (!PieceI) {
1550       ++I;
1551       continue;
1552     }
1553 
1554     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1555     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1556 
1557     PathPieces::iterator NextI = I; ++NextI;
1558     if (NextI == E)
1559       break;
1560 
1561     const auto *PieceNextI =
1562         dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1563 
1564     if (!PieceNextI) {
1565       if (isa<PathDiagnosticEventPiece>(NextI->get())) {
1566         ++NextI;
1567         if (NextI == E)
1568           break;
1569         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1570       }
1571 
1572       if (!PieceNextI) {
1573         ++I;
1574         continue;
1575       }
1576     }
1577 
1578     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1579     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1580 
1581     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1582       const size_t MAX_SHORT_LINE_LENGTH = 80;
1583       Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
1584       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1585         Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
1586         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1587           Path.erase(I);
1588           I = Path.erase(NextI);
1589           continue;
1590         }
1591       }
1592     }
1593 
1594     ++I;
1595   }
1596 }
1597 
1598 /// Return true if X is contained by Y.
1599 static bool lexicalContains(ParentMap &PM, const Stmt *X, const Stmt *Y) {
1600   while (X) {
1601     if (X == Y)
1602       return true;
1603     X = PM.getParent(X);
1604   }
1605   return false;
1606 }
1607 
1608 // Remove short edges on the same line less than 3 columns in difference.
1609 static void removePunyEdges(PathPieces &path, SourceManager &SM,
1610                             ParentMap &PM) {
1611   bool erased = false;
1612 
1613   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1614        erased ? I : ++I) {
1615     erased = false;
1616 
1617     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1618 
1619     if (!PieceI)
1620       continue;
1621 
1622     const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1623     const Stmt *end   = PieceI->getEndLocation().getStmtOrNull();
1624 
1625     if (!start || !end)
1626       continue;
1627 
1628     const Stmt *endParent = PM.getParent(end);
1629     if (!endParent)
1630       continue;
1631 
1632     if (isConditionForTerminator(end, endParent))
1633       continue;
1634 
1635     SourceLocation FirstLoc = start->getBeginLoc();
1636     SourceLocation SecondLoc = end->getBeginLoc();
1637 
1638     if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
1639       continue;
1640     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
1641       std::swap(SecondLoc, FirstLoc);
1642 
1643     SourceRange EdgeRange(FirstLoc, SecondLoc);
1644     Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
1645 
1646     // If the statements are on different lines, continue.
1647     if (!ByteWidth)
1648       continue;
1649 
1650     const size_t MAX_PUNY_EDGE_LENGTH = 2;
1651     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1652       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1653       // there might not be enough /columns/. A proper user-visible column count
1654       // is probably too expensive, though.
1655       I = path.erase(I);
1656       erased = true;
1657       continue;
1658     }
1659   }
1660 }
1661 
1662 static void removeIdenticalEvents(PathPieces &path) {
1663   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1664     const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
1665 
1666     if (!PieceI)
1667       continue;
1668 
1669     PathPieces::iterator NextI = I; ++NextI;
1670     if (NextI == E)
1671       return;
1672 
1673     const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1674 
1675     if (!PieceNextI)
1676       continue;
1677 
1678     // Erase the second piece if it has the same exact message text.
1679     if (PieceI->getString() == PieceNextI->getString()) {
1680       path.erase(NextI);
1681     }
1682   }
1683 }
1684 
1685 static bool optimizeEdges(PathPieces &path, SourceManager &SM,
1686                           OptimizedCallsSet &OCS,
1687                           LocationContextMap &LCM) {
1688   bool hasChanges = false;
1689   const LocationContext *LC = LCM[&path];
1690   assert(LC);
1691   ParentMap &PM = LC->getParentMap();
1692 
1693   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1694     // Optimize subpaths.
1695     if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
1696       // Record the fact that a call has been optimized so we only do the
1697       // effort once.
1698       if (!OCS.count(CallI)) {
1699         while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
1700         OCS.insert(CallI);
1701       }
1702       ++I;
1703       continue;
1704     }
1705 
1706     // Pattern match the current piece and its successor.
1707     auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1708 
1709     if (!PieceI) {
1710       ++I;
1711       continue;
1712     }
1713 
1714     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1715     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1716     const Stmt *level1 = getStmtParent(s1Start, PM);
1717     const Stmt *level2 = getStmtParent(s1End, PM);
1718 
1719     PathPieces::iterator NextI = I; ++NextI;
1720     if (NextI == E)
1721       break;
1722 
1723     const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1724 
1725     if (!PieceNextI) {
1726       ++I;
1727       continue;
1728     }
1729 
1730     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1731     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1732     const Stmt *level3 = getStmtParent(s2Start, PM);
1733     const Stmt *level4 = getStmtParent(s2End, PM);
1734 
1735     // Rule I.
1736     //
1737     // If we have two consecutive control edges whose end/begin locations
1738     // are at the same level (e.g. statements or top-level expressions within
1739     // a compound statement, or siblings share a single ancestor expression),
1740     // then merge them if they have no interesting intermediate event.
1741     //
1742     // For example:
1743     //
1744     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1745     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
1746     //
1747     // NOTE: this will be limited later in cases where we add barriers
1748     // to prevent this optimization.
1749     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1750       PieceI->setEndLocation(PieceNextI->getEndLocation());
1751       path.erase(NextI);
1752       hasChanges = true;
1753       continue;
1754     }
1755 
1756     // Rule II.
1757     //
1758     // Eliminate edges between subexpressions and parent expressions
1759     // when the subexpression is consumed.
1760     //
1761     // NOTE: this will be limited later in cases where we add barriers
1762     // to prevent this optimization.
1763     if (s1End && s1End == s2Start && level2) {
1764       bool removeEdge = false;
1765       // Remove edges into the increment or initialization of a
1766       // loop that have no interleaving event.  This means that
1767       // they aren't interesting.
1768       if (isIncrementOrInitInForLoop(s1End, level2))
1769         removeEdge = true;
1770       // Next only consider edges that are not anchored on
1771       // the condition of a terminator.  This are intermediate edges
1772       // that we might want to trim.
1773       else if (!isConditionForTerminator(level2, s1End)) {
1774         // Trim edges on expressions that are consumed by
1775         // the parent expression.
1776         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
1777           removeEdge = true;
1778         }
1779         // Trim edges where a lexical containment doesn't exist.
1780         // For example:
1781         //
1782         //  X -> Y -> Z
1783         //
1784         // If 'Z' lexically contains Y (it is an ancestor) and
1785         // 'X' does not lexically contain Y (it is a descendant OR
1786         // it has no lexical relationship at all) then trim.
1787         //
1788         // This can eliminate edges where we dive into a subexpression
1789         // and then pop back out, etc.
1790         else if (s1Start && s2End &&
1791                  lexicalContains(PM, s2Start, s2End) &&
1792                  !lexicalContains(PM, s1End, s1Start)) {
1793           removeEdge = true;
1794         }
1795         // Trim edges from a subexpression back to the top level if the
1796         // subexpression is on a different line.
1797         //
1798         // A.1 -> A -> B
1799         // becomes
1800         // A.1 -> B
1801         //
1802         // These edges just look ugly and don't usually add anything.
1803         else if (s1Start && s2End &&
1804                  lexicalContains(PM, s1Start, s1End)) {
1805           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1806                                 PieceI->getStartLocation().asLocation());
1807           if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
1808             removeEdge = true;
1809         }
1810       }
1811 
1812       if (removeEdge) {
1813         PieceI->setEndLocation(PieceNextI->getEndLocation());
1814         path.erase(NextI);
1815         hasChanges = true;
1816         continue;
1817       }
1818     }
1819 
1820     // Optimize edges for ObjC fast-enumeration loops.
1821     //
1822     // (X -> collection) -> (collection -> element)
1823     //
1824     // becomes:
1825     //
1826     // (X -> element)
1827     if (s1End == s2Start) {
1828       const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3);
1829       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1830           s2End == FS->getElement()) {
1831         PieceI->setEndLocation(PieceNextI->getEndLocation());
1832         path.erase(NextI);
1833         hasChanges = true;
1834         continue;
1835       }
1836     }
1837 
1838     // No changes at this index?  Move to the next one.
1839     ++I;
1840   }
1841 
1842   if (!hasChanges) {
1843     // Adjust edges into subexpressions to make them more uniform
1844     // and aesthetically pleasing.
1845     addContextEdges(path, SM, PM, LC);
1846     // Remove "cyclical" edges that include one or more context edges.
1847     removeContextCycles(path, SM, PM);
1848     // Hoist edges originating from branch conditions to branches
1849     // for simple branches.
1850     simplifySimpleBranches(path);
1851     // Remove any puny edges left over after primary optimization pass.
1852     removePunyEdges(path, SM, PM);
1853     // Remove identical events.
1854     removeIdenticalEvents(path);
1855   }
1856 
1857   return hasChanges;
1858 }
1859 
1860 /// Drop the very first edge in a path, which should be a function entry edge.
1861 ///
1862 /// If the first edge is not a function entry edge (say, because the first
1863 /// statement had an invalid source location), this function does nothing.
1864 // FIXME: We should just generate invalid edges anyway and have the optimizer
1865 // deal with them.
1866 static void dropFunctionEntryEdge(PathPieces &Path, LocationContextMap &LCM,
1867                                   SourceManager &SM) {
1868   const auto *FirstEdge =
1869       dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
1870   if (!FirstEdge)
1871     return;
1872 
1873   const Decl *D = LCM[&Path]->getDecl();
1874   PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM);
1875   if (FirstEdge->getStartLocation() != EntryLoc)
1876     return;
1877 
1878   Path.pop_front();
1879 }
1880 
1881 using VisitorsDiagnosticsTy = llvm::DenseMap<const ExplodedNode *,
1882                    std::vector<std::shared_ptr<PathDiagnosticPiece>>>;
1883 
1884 /// Populate executes lines with lines containing at least one diagnostics.
1885 static void updateExecutedLinesWithDiagnosticPieces(
1886   PathDiagnostic &PD) {
1887 
1888   PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1889   FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1890 
1891   for (const auto &P : path) {
1892     FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1893     FileID FID = Loc.getFileID();
1894     unsigned LineNo = Loc.getLineNumber();
1895     assert(FID.isValid());
1896     ExecutedLines[FID].insert(LineNo);
1897   }
1898 }
1899 
1900 /// This function is responsible for generating diagnostic pieces that are
1901 /// *not* provided by bug report visitors.
1902 /// These diagnostics may differ depending on the consumer's settings,
1903 /// and are therefore constructed separately for each consumer.
1904 ///
1905 /// There are two path diagnostics generation modes: with adding edges (used
1906 /// for plists) and without  (used for HTML and text).
1907 /// When edges are added (\p ActiveScheme is Extensive),
1908 /// the path is modified to insert artificially generated
1909 /// edges.
1910 /// Otherwise, more detailed diagnostics is emitted for block edges, explaining
1911 /// the transitions in words.
1912 static std::unique_ptr<PathDiagnostic> generatePathDiagnosticForConsumer(
1913     PathDiagnosticConsumer::PathGenerationScheme ActiveScheme,
1914     PathDiagnosticBuilder &PDB,
1915     const ExplodedNode *ErrorNode,
1916     const VisitorsDiagnosticsTy &VisitorsDiagnostics) {
1917 
1918   bool GenerateDiagnostics = (ActiveScheme != PathDiagnosticConsumer::None);
1919   bool AddPathEdges = (ActiveScheme == PathDiagnosticConsumer::Extensive);
1920   SourceManager &SM = PDB.getSourceManager();
1921   BugReport *R = PDB.getBugReport();
1922   AnalyzerOptions &Opts = PDB.getBugReporter().getAnalyzerOptions();
1923   StackDiagVector CallStack;
1924   InterestingExprs IE;
1925   LocationContextMap LCM;
1926   std::unique_ptr<PathDiagnostic> PD = generateEmptyDiagnosticForReport(R, SM);
1927 
1928   if (GenerateDiagnostics) {
1929     auto EndNotes = VisitorsDiagnostics.find(ErrorNode);
1930     std::shared_ptr<PathDiagnosticPiece> LastPiece;
1931     if (EndNotes != VisitorsDiagnostics.end()) {
1932       assert(!EndNotes->second.empty());
1933       LastPiece = EndNotes->second[0];
1934     } else {
1935       LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, ErrorNode, *R);
1936     }
1937     PD->setEndOfPath(LastPiece);
1938   }
1939 
1940   PathDiagnosticLocation PrevLoc = PD->getLocation();
1941   const ExplodedNode *NextNode = ErrorNode->getFirstPred();
1942   while (NextNode) {
1943     if (GenerateDiagnostics)
1944       generatePathDiagnosticsForNode(
1945           NextNode, *PD, PrevLoc, PDB, LCM, CallStack, IE, AddPathEdges);
1946 
1947     auto VisitorNotes = VisitorsDiagnostics.find(NextNode);
1948     NextNode = NextNode->getFirstPred();
1949     if (!GenerateDiagnostics || VisitorNotes == VisitorsDiagnostics.end())
1950       continue;
1951 
1952     // This is a workaround due to inability to put shared PathDiagnosticPiece
1953     // into a FoldingSet.
1954     std::set<llvm::FoldingSetNodeID> DeduplicationSet;
1955 
1956     // Add pieces from custom visitors.
1957     for (const auto &Note : VisitorNotes->second) {
1958       llvm::FoldingSetNodeID ID;
1959       Note->Profile(ID);
1960       auto P = DeduplicationSet.insert(ID);
1961       if (!P.second)
1962         continue;
1963 
1964       if (AddPathEdges)
1965         addEdgeToPath(PD->getActivePath(), PrevLoc, Note->getLocation(),
1966                       PDB.LC);
1967       updateStackPiecesWithMessage(*Note, CallStack);
1968       PD->getActivePath().push_front(Note);
1969     }
1970   }
1971 
1972   if (AddPathEdges) {
1973     // Add an edge to the start of the function.
1974     // We'll prune it out later, but it helps make diagnostics more uniform.
1975     const StackFrameContext *CalleeLC = PDB.LC->getStackFrame();
1976     const Decl *D = CalleeLC->getDecl();
1977     addEdgeToPath(PD->getActivePath(), PrevLoc,
1978                   PathDiagnosticLocation::createBegin(D, SM), CalleeLC);
1979   }
1980 
1981   if (!AddPathEdges && GenerateDiagnostics)
1982     CompactPathDiagnostic(PD->getMutablePieces(), SM);
1983 
1984   // Finally, prune the diagnostic path of uninteresting stuff.
1985   if (!PD->path.empty()) {
1986     if (R->shouldPrunePath() && Opts.shouldPrunePaths()) {
1987       bool stillHasNotes =
1988           removeUnneededCalls(PD->getMutablePieces(), R, LCM);
1989       assert(stillHasNotes);
1990       (void)stillHasNotes;
1991     }
1992 
1993     // Redirect all call pieces to have valid locations.
1994     adjustCallLocations(PD->getMutablePieces());
1995     removePiecesWithInvalidLocations(PD->getMutablePieces());
1996 
1997     if (AddPathEdges) {
1998 
1999       // Reduce the number of edges from a very conservative set
2000       // to an aesthetically pleasing subset that conveys the
2001       // necessary information.
2002       OptimizedCallsSet OCS;
2003       while (optimizeEdges(PD->getMutablePieces(), SM, OCS, LCM)) {}
2004 
2005       // Drop the very first function-entry edge. It's not really necessary
2006       // for top-level functions.
2007       dropFunctionEntryEdge(PD->getMutablePieces(), LCM, SM);
2008     }
2009 
2010     // Remove messages that are basically the same, and edges that may not
2011     // make sense.
2012     // We have to do this after edge optimization in the Extensive mode.
2013     removeRedundantMsgs(PD->getMutablePieces());
2014     removeEdgesToDefaultInitializers(PD->getMutablePieces());
2015   }
2016   return PD;
2017 }
2018 
2019 
2020 //===----------------------------------------------------------------------===//
2021 // Methods for BugType and subclasses.
2022 //===----------------------------------------------------------------------===//
2023 
2024 void BugType::anchor() {}
2025 
2026 void BuiltinBug::anchor() {}
2027 
2028 //===----------------------------------------------------------------------===//
2029 // Methods for BugReport and subclasses.
2030 //===----------------------------------------------------------------------===//
2031 
2032 void BugReport::NodeResolver::anchor() {}
2033 
2034 void BugReport::addVisitor(std::unique_ptr<BugReporterVisitor> visitor) {
2035   if (!visitor)
2036     return;
2037 
2038   llvm::FoldingSetNodeID ID;
2039   visitor->Profile(ID);
2040 
2041   void *InsertPos = nullptr;
2042   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2043     return;
2044   }
2045 
2046   Callbacks.push_back(std::move(visitor));
2047 }
2048 
2049 void BugReport::clearVisitors() {
2050   Callbacks.clear();
2051 }
2052 
2053 BugReport::~BugReport() {
2054   while (!interestingSymbols.empty()) {
2055     popInterestingSymbolsAndRegions();
2056   }
2057 }
2058 
2059 const Decl *BugReport::getDeclWithIssue() const {
2060   if (DeclWithIssue)
2061     return DeclWithIssue;
2062 
2063   const ExplodedNode *N = getErrorNode();
2064   if (!N)
2065     return nullptr;
2066 
2067   const LocationContext *LC = N->getLocationContext();
2068   return LC->getStackFrame()->getDecl();
2069 }
2070 
2071 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2072   hash.AddPointer(&BT);
2073   hash.AddString(Description);
2074   PathDiagnosticLocation UL = getUniqueingLocation();
2075   if (UL.isValid()) {
2076     UL.Profile(hash);
2077   } else if (Location.isValid()) {
2078     Location.Profile(hash);
2079   } else {
2080     assert(ErrorNode);
2081     hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
2082   }
2083 
2084   for (SourceRange range : Ranges) {
2085     if (!range.isValid())
2086       continue;
2087     hash.AddInteger(range.getBegin().getRawEncoding());
2088     hash.AddInteger(range.getEnd().getRawEncoding());
2089   }
2090 }
2091 
2092 void BugReport::markInteresting(SymbolRef sym) {
2093   if (!sym)
2094     return;
2095 
2096   getInterestingSymbols().insert(sym);
2097 
2098   if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2099     getInterestingRegions().insert(meta->getRegion());
2100 }
2101 
2102 void BugReport::markInteresting(const MemRegion *R) {
2103   if (!R)
2104     return;
2105 
2106   R = R->getBaseRegion();
2107   getInterestingRegions().insert(R);
2108 
2109   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2110     getInterestingSymbols().insert(SR->getSymbol());
2111 }
2112 
2113 void BugReport::markInteresting(SVal V) {
2114   markInteresting(V.getAsRegion());
2115   markInteresting(V.getAsSymbol());
2116 }
2117 
2118 void BugReport::markInteresting(const LocationContext *LC) {
2119   if (!LC)
2120     return;
2121   InterestingLocationContexts.insert(LC);
2122 }
2123 
2124 bool BugReport::isInteresting(SVal V) {
2125   return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
2126 }
2127 
2128 bool BugReport::isInteresting(SymbolRef sym) {
2129   if (!sym)
2130     return false;
2131   // We don't currently consider metadata symbols to be interesting
2132   // even if we know their region is interesting. Is that correct behavior?
2133   return getInterestingSymbols().count(sym);
2134 }
2135 
2136 bool BugReport::isInteresting(const MemRegion *R) {
2137   if (!R)
2138     return false;
2139   R = R->getBaseRegion();
2140   bool b = getInterestingRegions().count(R);
2141   if (b)
2142     return true;
2143   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2144     return getInterestingSymbols().count(SR->getSymbol());
2145   return false;
2146 }
2147 
2148 bool BugReport::isInteresting(const LocationContext *LC) {
2149   if (!LC)
2150     return false;
2151   return InterestingLocationContexts.count(LC);
2152 }
2153 
2154 void BugReport::lazyInitializeInterestingSets() {
2155   if (interestingSymbols.empty()) {
2156     interestingSymbols.push_back(new Symbols());
2157     interestingRegions.push_back(new Regions());
2158   }
2159 }
2160 
2161 BugReport::Symbols &BugReport::getInterestingSymbols() {
2162   lazyInitializeInterestingSets();
2163   return *interestingSymbols.back();
2164 }
2165 
2166 BugReport::Regions &BugReport::getInterestingRegions() {
2167   lazyInitializeInterestingSets();
2168   return *interestingRegions.back();
2169 }
2170 
2171 void BugReport::pushInterestingSymbolsAndRegions() {
2172   interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
2173   interestingRegions.push_back(new Regions(getInterestingRegions()));
2174 }
2175 
2176 void BugReport::popInterestingSymbolsAndRegions() {
2177   delete interestingSymbols.pop_back_val();
2178   delete interestingRegions.pop_back_val();
2179 }
2180 
2181 const Stmt *BugReport::getStmt() const {
2182   if (!ErrorNode)
2183     return nullptr;
2184 
2185   ProgramPoint ProgP = ErrorNode->getLocation();
2186   const Stmt *S = nullptr;
2187 
2188   if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2189     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2190     if (BE->getBlock() == &Exit)
2191       S = GetPreviousStmt(ErrorNode);
2192   }
2193   if (!S)
2194     S = PathDiagnosticLocation::getStmt(ErrorNode);
2195 
2196   return S;
2197 }
2198 
2199 llvm::iterator_range<BugReport::ranges_iterator> BugReport::getRanges() {
2200   // If no custom ranges, add the range of the statement corresponding to
2201   // the error node.
2202   if (Ranges.empty()) {
2203     if (const auto *E = dyn_cast_or_null<Expr>(getStmt()))
2204       addRange(E->getSourceRange());
2205     else
2206       return llvm::make_range(ranges_iterator(), ranges_iterator());
2207   }
2208 
2209   // User-specified absence of range info.
2210   if (Ranges.size() == 1 && !Ranges.begin()->isValid())
2211     return llvm::make_range(ranges_iterator(), ranges_iterator());
2212 
2213   return llvm::make_range(Ranges.begin(), Ranges.end());
2214 }
2215 
2216 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
2217   if (ErrorNode) {
2218     assert(!Location.isValid() &&
2219      "Either Location or ErrorNode should be specified but not both.");
2220     return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
2221   }
2222 
2223   assert(Location.isValid());
2224   return Location;
2225 }
2226 
2227 //===----------------------------------------------------------------------===//
2228 // Methods for BugReporter and subclasses.
2229 //===----------------------------------------------------------------------===//
2230 
2231 BugReportEquivClass::~BugReportEquivClass() = default;
2232 
2233 GRBugReporter::~GRBugReporter() = default;
2234 
2235 BugReporterData::~BugReporterData() = default;
2236 
2237 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
2238 
2239 ProgramStateManager&
2240 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
2241 
2242 BugReporter::~BugReporter() {
2243   FlushReports();
2244 
2245   // Free the bug reports we are tracking.
2246   for (const auto I : EQClassesVector)
2247     delete I;
2248 }
2249 
2250 void BugReporter::FlushReports() {
2251   if (BugTypes.isEmpty())
2252     return;
2253 
2254   // We need to flush reports in deterministic order to ensure the order
2255   // of the reports is consistent between runs.
2256   for (const auto EQ : EQClassesVector)
2257     FlushReport(*EQ);
2258 
2259   // BugReporter owns and deletes only BugTypes created implicitly through
2260   // EmitBasicReport.
2261   // FIXME: There are leaks from checkers that assume that the BugTypes they
2262   // create will be destroyed by the BugReporter.
2263   llvm::DeleteContainerSeconds(StrBugTypes);
2264 
2265   // Remove all references to the BugType objects.
2266   BugTypes = F.getEmptySet();
2267 }
2268 
2269 //===----------------------------------------------------------------------===//
2270 // PathDiagnostics generation.
2271 //===----------------------------------------------------------------------===//
2272 
2273 namespace {
2274 
2275 /// A wrapper around a report graph, which contains only a single path, and its
2276 /// node maps.
2277 class ReportGraph {
2278 public:
2279   InterExplodedGraphMap BackMap;
2280   std::unique_ptr<ExplodedGraph> Graph;
2281   const ExplodedNode *ErrorNode;
2282   size_t Index;
2283 };
2284 
2285 /// A wrapper around a trimmed graph and its node maps.
2286 class TrimmedGraph {
2287   InterExplodedGraphMap InverseMap;
2288 
2289   using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2290 
2291   PriorityMapTy PriorityMap;
2292 
2293   using NodeIndexPair = std::pair<const ExplodedNode *, size_t>;
2294 
2295   SmallVector<NodeIndexPair, 32> ReportNodes;
2296 
2297   std::unique_ptr<ExplodedGraph> G;
2298 
2299   /// A helper class for sorting ExplodedNodes by priority.
2300   template <bool Descending>
2301   class PriorityCompare {
2302     const PriorityMapTy &PriorityMap;
2303 
2304   public:
2305     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2306 
2307     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2308       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2309       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2310       PriorityMapTy::const_iterator E = PriorityMap.end();
2311 
2312       if (LI == E)
2313         return Descending;
2314       if (RI == E)
2315         return !Descending;
2316 
2317       return Descending ? LI->second > RI->second
2318                         : LI->second < RI->second;
2319     }
2320 
2321     bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
2322       return (*this)(LHS.first, RHS.first);
2323     }
2324   };
2325 
2326 public:
2327   TrimmedGraph(const ExplodedGraph *OriginalGraph,
2328                ArrayRef<const ExplodedNode *> Nodes);
2329 
2330   bool popNextReportGraph(ReportGraph &GraphWrapper);
2331 };
2332 
2333 } // namespace
2334 
2335 TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
2336                            ArrayRef<const ExplodedNode *> Nodes) {
2337   // The trimmed graph is created in the body of the constructor to ensure
2338   // that the DenseMaps have been initialized already.
2339   InterExplodedGraphMap ForwardMap;
2340   G = OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap);
2341 
2342   // Find the (first) error node in the trimmed graph.  We just need to consult
2343   // the node map which maps from nodes in the original graph to nodes
2344   // in the new graph.
2345   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2346 
2347   for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
2348     if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
2349       ReportNodes.push_back(std::make_pair(NewNode, i));
2350       RemainingNodes.insert(NewNode);
2351     }
2352   }
2353 
2354   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2355 
2356   // Perform a forward BFS to find all the shortest paths.
2357   std::queue<const ExplodedNode *> WS;
2358 
2359   assert(G->num_roots() == 1);
2360   WS.push(*G->roots_begin());
2361   unsigned Priority = 0;
2362 
2363   while (!WS.empty()) {
2364     const ExplodedNode *Node = WS.front();
2365     WS.pop();
2366 
2367     PriorityMapTy::iterator PriorityEntry;
2368     bool IsNew;
2369     std::tie(PriorityEntry, IsNew) =
2370       PriorityMap.insert(std::make_pair(Node, Priority));
2371     ++Priority;
2372 
2373     if (!IsNew) {
2374       assert(PriorityEntry->second <= Priority);
2375       continue;
2376     }
2377 
2378     if (RemainingNodes.erase(Node))
2379       if (RemainingNodes.empty())
2380         break;
2381 
2382     for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
2383                                            E = Node->succ_end();
2384          I != E; ++I)
2385       WS.push(*I);
2386   }
2387 
2388   // Sort the error paths from longest to shortest.
2389   llvm::sort(ReportNodes.begin(), ReportNodes.end(),
2390              PriorityCompare<true>(PriorityMap));
2391 }
2392 
2393 bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
2394   if (ReportNodes.empty())
2395     return false;
2396 
2397   const ExplodedNode *OrigN;
2398   std::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
2399   assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2400          "error node not accessible from root");
2401 
2402   // Create a new graph with a single path.  This is the graph
2403   // that will be returned to the caller.
2404   auto GNew = llvm::make_unique<ExplodedGraph>();
2405   GraphWrapper.BackMap.clear();
2406 
2407   // Now walk from the error node up the BFS path, always taking the
2408   // predeccessor with the lowest number.
2409   ExplodedNode *Succ = nullptr;
2410   while (true) {
2411     // Create the equivalent node in the new graph with the same state
2412     // and location.
2413     ExplodedNode *NewN = GNew->createUncachedNode(OrigN->getLocation(), OrigN->getState(),
2414                                        OrigN->isSink());
2415 
2416     // Store the mapping to the original node.
2417     InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
2418     assert(IMitr != InverseMap.end() && "No mapping to original node.");
2419     GraphWrapper.BackMap[NewN] = IMitr->second;
2420 
2421     // Link up the new node with the previous node.
2422     if (Succ)
2423       Succ->addPredecessor(NewN, *GNew);
2424     else
2425       GraphWrapper.ErrorNode = NewN;
2426 
2427     Succ = NewN;
2428 
2429     // Are we at the final node?
2430     if (OrigN->pred_empty()) {
2431       GNew->addRoot(NewN);
2432       break;
2433     }
2434 
2435     // Find the next predeccessor node.  We choose the node that is marked
2436     // with the lowest BFS number.
2437     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2438                           PriorityCompare<false>(PriorityMap));
2439   }
2440 
2441   GraphWrapper.Graph = std::move(GNew);
2442 
2443   return true;
2444 }
2445 
2446 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
2447 ///  and collapses PathDiagosticPieces that are expanded by macros.
2448 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
2449   using MacroStackTy =
2450       std::vector<
2451           std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2452 
2453   using PiecesTy = std::vector<std::shared_ptr<PathDiagnosticPiece>>;
2454 
2455   MacroStackTy MacroStack;
2456   PiecesTy Pieces;
2457 
2458   for (PathPieces::const_iterator I = path.begin(), E = path.end();
2459        I != E; ++I) {
2460     const auto &piece = *I;
2461 
2462     // Recursively compact calls.
2463     if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
2464       CompactPathDiagnostic(call->path, SM);
2465     }
2466 
2467     // Get the location of the PathDiagnosticPiece.
2468     const FullSourceLoc Loc = piece->getLocation().asLocation();
2469 
2470     // Determine the instantiation location, which is the location we group
2471     // related PathDiagnosticPieces.
2472     SourceLocation InstantiationLoc = Loc.isMacroID() ?
2473                                       SM.getExpansionLoc(Loc) :
2474                                       SourceLocation();
2475 
2476     if (Loc.isFileID()) {
2477       MacroStack.clear();
2478       Pieces.push_back(piece);
2479       continue;
2480     }
2481 
2482     assert(Loc.isMacroID());
2483 
2484     // Is the PathDiagnosticPiece within the same macro group?
2485     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2486       MacroStack.back().first->subPieces.push_back(piece);
2487       continue;
2488     }
2489 
2490     // We aren't in the same group.  Are we descending into a new macro
2491     // or are part of an old one?
2492     std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2493 
2494     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2495                                           SM.getExpansionLoc(Loc) :
2496                                           SourceLocation();
2497 
2498     // Walk the entire macro stack.
2499     while (!MacroStack.empty()) {
2500       if (InstantiationLoc == MacroStack.back().second) {
2501         MacroGroup = MacroStack.back().first;
2502         break;
2503       }
2504 
2505       if (ParentInstantiationLoc == MacroStack.back().second) {
2506         MacroGroup = MacroStack.back().first;
2507         break;
2508       }
2509 
2510       MacroStack.pop_back();
2511     }
2512 
2513     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2514       // Create a new macro group and add it to the stack.
2515       auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2516           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2517 
2518       if (MacroGroup)
2519         MacroGroup->subPieces.push_back(NewGroup);
2520       else {
2521         assert(InstantiationLoc.isFileID());
2522         Pieces.push_back(NewGroup);
2523       }
2524 
2525       MacroGroup = NewGroup;
2526       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2527     }
2528 
2529     // Finally, add the PathDiagnosticPiece to the group.
2530     MacroGroup->subPieces.push_back(piece);
2531   }
2532 
2533   // Now take the pieces and construct a new PathDiagnostic.
2534   path.clear();
2535 
2536   path.insert(path.end(), Pieces.begin(), Pieces.end());
2537 }
2538 
2539 /// Generate notes from all visitors.
2540 /// Notes associated with {@code ErrorNode} are generated using
2541 /// {@code getEndPath}, and the rest are generated with {@code VisitNode}.
2542 static std::unique_ptr<VisitorsDiagnosticsTy>
2543 generateVisitorsDiagnostics(BugReport *R, const ExplodedNode *ErrorNode,
2544                             BugReporterContext &BRC) {
2545   auto Notes = llvm::make_unique<VisitorsDiagnosticsTy>();
2546   BugReport::VisitorList visitors;
2547 
2548   // Run visitors on all nodes starting from the node *before* the last one.
2549   // The last node is reserved for notes generated with {@code getEndPath}.
2550   const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2551   while (NextNode) {
2552 
2553     // At each iteration, move all visitors from report to visitor list.
2554     for (BugReport::visitor_iterator I = R->visitor_begin(),
2555                                      E = R->visitor_end();
2556          I != E; ++I) {
2557       visitors.push_back(std::move(*I));
2558     }
2559     R->clearVisitors();
2560 
2561     const ExplodedNode *Pred = NextNode->getFirstPred();
2562     if (!Pred) {
2563       std::shared_ptr<PathDiagnosticPiece> LastPiece;
2564       for (auto &V : visitors) {
2565         V->finalizeVisitor(BRC, ErrorNode, *R);
2566 
2567         if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) {
2568           assert(!LastPiece &&
2569                  "There can only be one final piece in a diagnostic.");
2570           LastPiece = std::move(Piece);
2571           (*Notes)[ErrorNode].push_back(LastPiece);
2572         }
2573       }
2574       break;
2575     }
2576 
2577     for (auto &V : visitors) {
2578       auto P = V->VisitNode(NextNode, Pred, BRC, *R);
2579       if (P)
2580         (*Notes)[NextNode].push_back(std::move(P));
2581     }
2582 
2583     if (!R->isValid())
2584       break;
2585 
2586     NextNode = Pred;
2587   }
2588 
2589   return Notes;
2590 }
2591 
2592 /// Find a non-invalidated report for a given equivalence class,
2593 /// and return together with a cache of visitors notes.
2594 /// If none found, return a nullptr paired with an empty cache.
2595 static
2596 std::pair<BugReport*, std::unique_ptr<VisitorsDiagnosticsTy>> findValidReport(
2597   TrimmedGraph &TrimG,
2598   ReportGraph &ErrorGraph,
2599   ArrayRef<BugReport *> &bugReports,
2600   AnalyzerOptions &Opts,
2601   GRBugReporter &Reporter) {
2602 
2603   while (TrimG.popNextReportGraph(ErrorGraph)) {
2604     // Find the BugReport with the original location.
2605     assert(ErrorGraph.Index < bugReports.size());
2606     BugReport *R = bugReports[ErrorGraph.Index];
2607     assert(R && "No original report found for sliced graph.");
2608     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2609     const ExplodedNode *ErrorNode = ErrorGraph.ErrorNode;
2610 
2611     // Register refutation visitors first, if they mark the bug invalid no
2612     // further analysis is required
2613     R->addVisitor(llvm::make_unique<LikelyFalsePositiveSuppressionBRVisitor>());
2614 
2615     // Register additional node visitors.
2616     R->addVisitor(llvm::make_unique<NilReceiverBRVisitor>());
2617     R->addVisitor(llvm::make_unique<ConditionBRVisitor>());
2618     R->addVisitor(llvm::make_unique<CXXSelfAssignmentBRVisitor>());
2619 
2620     BugReporterContext BRC(Reporter, ErrorGraph.BackMap);
2621 
2622     // Run all visitors on a given graph, once.
2623     std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2624         generateVisitorsDiagnostics(R, ErrorNode, BRC);
2625 
2626     if (R->isValid()) {
2627       if (Opts.shouldCrosscheckWithZ3()) {
2628         // If crosscheck is enabled, remove all visitors, add the refutation
2629         // visitor and check again
2630         R->clearVisitors();
2631         R->addVisitor(llvm::make_unique<FalsePositiveRefutationBRVisitor>());
2632 
2633         // We don't overrite the notes inserted by other visitors because the
2634         // refutation manager does not add any new note to the path
2635         generateVisitorsDiagnostics(R, ErrorGraph.ErrorNode, BRC);
2636       }
2637 
2638       // Check if the bug is still valid
2639       if (R->isValid())
2640         return std::make_pair(R, std::move(visitorNotes));
2641     }
2642   }
2643 
2644   return std::make_pair(nullptr, llvm::make_unique<VisitorsDiagnosticsTy>());
2645 }
2646 
2647 std::unique_ptr<DiagnosticForConsumerMapTy>
2648 GRBugReporter::generatePathDiagnostics(
2649     ArrayRef<PathDiagnosticConsumer *> consumers,
2650     ArrayRef<BugReport *> &bugReports) {
2651   assert(!bugReports.empty());
2652 
2653   auto Out = llvm::make_unique<DiagnosticForConsumerMapTy>();
2654   bool HasValid = false;
2655   SmallVector<const ExplodedNode *, 32> errorNodes;
2656   for (const auto I : bugReports) {
2657     if (I->isValid()) {
2658       HasValid = true;
2659       errorNodes.push_back(I->getErrorNode());
2660     } else {
2661       // Keep the errorNodes list in sync with the bugReports list.
2662       errorNodes.push_back(nullptr);
2663     }
2664   }
2665 
2666   // If all the reports have been marked invalid by a previous path generation,
2667   // we're done.
2668   if (!HasValid)
2669     return Out;
2670 
2671   TrimmedGraph TrimG(&getGraph(), errorNodes);
2672   ReportGraph ErrorGraph;
2673   auto ReportInfo = findValidReport(TrimG, ErrorGraph, bugReports,
2674                   getAnalyzerOptions(), *this);
2675   BugReport *R = ReportInfo.first;
2676 
2677   if (R && R->isValid()) {
2678     const ExplodedNode *ErrorNode = ErrorGraph.ErrorNode;
2679     for (PathDiagnosticConsumer *PC : consumers) {
2680       PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, PC);
2681       std::unique_ptr<PathDiagnostic> PD = generatePathDiagnosticForConsumer(
2682           PC->getGenerationScheme(), PDB, ErrorNode, *ReportInfo.second);
2683       (*Out)[PC] = std::move(PD);
2684     }
2685   }
2686 
2687   return Out;
2688 }
2689 
2690 void BugReporter::Register(BugType *BT) {
2691   BugTypes = F.add(BugTypes, BT);
2692 }
2693 
2694 void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2695   if (const ExplodedNode *E = R->getErrorNode()) {
2696     // An error node must either be a sink or have a tag, otherwise
2697     // it could get reclaimed before the path diagnostic is created.
2698     assert((E->isSink() || E->getLocation().getTag()) &&
2699             "Error node must either be a sink or have a tag");
2700 
2701     const AnalysisDeclContext *DeclCtx =
2702         E->getLocationContext()->getAnalysisDeclContext();
2703     // The source of autosynthesized body can be handcrafted AST or a model
2704     // file. The locations from handcrafted ASTs have no valid source locations
2705     // and have to be discarded. Locations from model files should be preserved
2706     // for processing and reporting.
2707     if (DeclCtx->isBodyAutosynthesized() &&
2708         !DeclCtx->isBodyAutosynthesizedFromModelFile())
2709       return;
2710   }
2711 
2712   bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid();
2713   assert(ValidSourceLoc);
2714   // If we mess up in a release build, we'd still prefer to just drop the bug
2715   // instead of trying to go on.
2716   if (!ValidSourceLoc)
2717     return;
2718 
2719   // Compute the bug report's hash to determine its equivalence class.
2720   llvm::FoldingSetNodeID ID;
2721   R->Profile(ID);
2722 
2723   // Lookup the equivance class.  If there isn't one, create it.
2724   BugType& BT = R->getBugType();
2725   Register(&BT);
2726   void *InsertPos;
2727   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2728 
2729   if (!EQ) {
2730     EQ = new BugReportEquivClass(std::move(R));
2731     EQClasses.InsertNode(EQ, InsertPos);
2732     EQClassesVector.push_back(EQ);
2733   } else
2734     EQ->AddReport(std::move(R));
2735 }
2736 
2737 //===----------------------------------------------------------------------===//
2738 // Emitting reports in equivalence classes.
2739 //===----------------------------------------------------------------------===//
2740 
2741 namespace {
2742 
2743 struct FRIEC_WLItem {
2744   const ExplodedNode *N;
2745   ExplodedNode::const_succ_iterator I, E;
2746 
2747   FRIEC_WLItem(const ExplodedNode *n)
2748       : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2749 };
2750 
2751 } // namespace
2752 
2753 static const CFGBlock *findBlockForNode(const ExplodedNode *N) {
2754   ProgramPoint P = N->getLocation();
2755   if (auto BEP = P.getAs<BlockEntrance>())
2756     return BEP->getBlock();
2757 
2758   // Find the node's current statement in the CFG.
2759   if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
2760     return N->getLocationContext()->getAnalysisDeclContext()
2761                                   ->getCFGStmtMap()->getBlock(S);
2762 
2763   return nullptr;
2764 }
2765 
2766 // Returns true if by simply looking at the block, we can be sure that it
2767 // results in a sink during analysis. This is useful to know when the analysis
2768 // was interrupted, and we try to figure out if it would sink eventually.
2769 // There may be many more reasons why a sink would appear during analysis
2770 // (eg. checkers may generate sinks arbitrarily), but here we only consider
2771 // sinks that would be obvious by looking at the CFG.
2772 static bool isImmediateSinkBlock(const CFGBlock *Blk) {
2773   if (Blk->hasNoReturnElement())
2774     return true;
2775 
2776   // FIXME: Throw-expressions are currently generating sinks during analysis:
2777   // they're not supported yet, and also often used for actually terminating
2778   // the program. So we should treat them as sinks in this analysis as well,
2779   // at least for now, but once we have better support for exceptions,
2780   // we'd need to carefully handle the case when the throw is being
2781   // immediately caught.
2782   if (std::any_of(Blk->begin(), Blk->end(), [](const CFGElement &Elm) {
2783         if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>())
2784           if (isa<CXXThrowExpr>(StmtElm->getStmt()))
2785             return true;
2786         return false;
2787       }))
2788     return true;
2789 
2790   return false;
2791 }
2792 
2793 // Returns true if by looking at the CFG surrounding the node's program
2794 // point, we can be sure that any analysis starting from this point would
2795 // eventually end with a sink. We scan the child CFG blocks in a depth-first
2796 // manner and see if all paths eventually end up in an immediate sink block.
2797 static bool isInevitablySinking(const ExplodedNode *N) {
2798   const CFG &Cfg = N->getCFG();
2799 
2800   const CFGBlock *StartBlk = findBlockForNode(N);
2801   if (!StartBlk)
2802     return false;
2803   if (isImmediateSinkBlock(StartBlk))
2804     return true;
2805 
2806   llvm::SmallVector<const CFGBlock *, 32> DFSWorkList;
2807   llvm::SmallPtrSet<const CFGBlock *, 32> Visited;
2808 
2809   DFSWorkList.push_back(StartBlk);
2810   while (!DFSWorkList.empty()) {
2811     const CFGBlock *Blk = DFSWorkList.back();
2812     DFSWorkList.pop_back();
2813     Visited.insert(Blk);
2814 
2815     // If at least one path reaches the CFG exit, it means that control is
2816     // returned to the caller. For now, say that we are not sure what
2817     // happens next. If necessary, this can be improved to analyze
2818     // the parent StackFrameContext's call site in a similar manner.
2819     if (Blk == &Cfg.getExit())
2820       return false;
2821 
2822     for (const auto &Succ : Blk->succs()) {
2823       if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) {
2824         if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) {
2825           // If the block has reachable child blocks that aren't no-return,
2826           // add them to the worklist.
2827           DFSWorkList.push_back(SuccBlk);
2828         }
2829       }
2830     }
2831   }
2832 
2833   // Nothing reached the exit. It can only mean one thing: there's no return.
2834   return true;
2835 }
2836 
2837 static BugReport *
2838 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
2839                              SmallVectorImpl<BugReport*> &bugReports) {
2840   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
2841   assert(I != E);
2842   BugType& BT = I->getBugType();
2843 
2844   // If we don't need to suppress any of the nodes because they are
2845   // post-dominated by a sink, simply add all the nodes in the equivalence class
2846   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2847   if (!BT.isSuppressOnSink()) {
2848     BugReport *R = &*I;
2849     for (auto &I : EQ) {
2850       const ExplodedNode *N = I.getErrorNode();
2851       if (N) {
2852         R = &I;
2853         bugReports.push_back(R);
2854       }
2855     }
2856     return R;
2857   }
2858 
2859   // For bug reports that should be suppressed when all paths are post-dominated
2860   // by a sink node, iterate through the reports in the equivalence class
2861   // until we find one that isn't post-dominated (if one exists).  We use a
2862   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2863   // this as a recursive function, but we don't want to risk blowing out the
2864   // stack for very long paths.
2865   BugReport *exampleReport = nullptr;
2866 
2867   for (; I != E; ++I) {
2868     const ExplodedNode *errorNode = I->getErrorNode();
2869 
2870     if (!errorNode)
2871       continue;
2872     if (errorNode->isSink()) {
2873       llvm_unreachable(
2874            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2875     }
2876     // No successors?  By definition this nodes isn't post-dominated by a sink.
2877     if (errorNode->succ_empty()) {
2878       bugReports.push_back(&*I);
2879       if (!exampleReport)
2880         exampleReport = &*I;
2881       continue;
2882     }
2883 
2884     // See if we are in a no-return CFG block. If so, treat this similarly
2885     // to being post-dominated by a sink. This works better when the analysis
2886     // is incomplete and we have never reached the no-return function call(s)
2887     // that we'd inevitably bump into on this path.
2888     if (isInevitablySinking(errorNode))
2889       continue;
2890 
2891     // At this point we know that 'N' is not a sink and it has at least one
2892     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
2893     using WLItem = FRIEC_WLItem;
2894     using DFSWorkList = SmallVector<WLItem, 10>;
2895 
2896     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2897 
2898     DFSWorkList WL;
2899     WL.push_back(errorNode);
2900     Visited[errorNode] = 1;
2901 
2902     while (!WL.empty()) {
2903       WLItem &WI = WL.back();
2904       assert(!WI.N->succ_empty());
2905 
2906       for (; WI.I != WI.E; ++WI.I) {
2907         const ExplodedNode *Succ = *WI.I;
2908         // End-of-path node?
2909         if (Succ->succ_empty()) {
2910           // If we found an end-of-path node that is not a sink.
2911           if (!Succ->isSink()) {
2912             bugReports.push_back(&*I);
2913             if (!exampleReport)
2914               exampleReport = &*I;
2915             WL.clear();
2916             break;
2917           }
2918           // Found a sink?  Continue on to the next successor.
2919           continue;
2920         }
2921         // Mark the successor as visited.  If it hasn't been explored,
2922         // enqueue it to the DFS worklist.
2923         unsigned &mark = Visited[Succ];
2924         if (!mark) {
2925           mark = 1;
2926           WL.push_back(Succ);
2927           break;
2928         }
2929       }
2930 
2931       // The worklist may have been cleared at this point.  First
2932       // check if it is empty before checking the last item.
2933       if (!WL.empty() && &WL.back() == &WI)
2934         WL.pop_back();
2935     }
2936   }
2937 
2938   // ExampleReport will be NULL if all the nodes in the equivalence class
2939   // were post-dominated by sinks.
2940   return exampleReport;
2941 }
2942 
2943 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2944   SmallVector<BugReport*, 10> bugReports;
2945   BugReport *report = FindReportInEquivalenceClass(EQ, bugReports);
2946   if (!report)
2947     return;
2948 
2949   ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
2950   std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
2951       generateDiagnosticForConsumerMap(report, Consumers, bugReports);
2952 
2953   for (auto &P : *Diagnostics) {
2954     PathDiagnosticConsumer *Consumer = P.first;
2955     std::unique_ptr<PathDiagnostic> &PD = P.second;
2956 
2957     // If the path is empty, generate a single step path with the location
2958     // of the issue.
2959     if (PD->path.empty()) {
2960       PathDiagnosticLocation L = report->getLocation(getSourceManager());
2961       auto piece = llvm::make_unique<PathDiagnosticEventPiece>(
2962         L, report->getDescription());
2963       for (SourceRange Range : report->getRanges())
2964         piece->addRange(Range);
2965       PD->setEndOfPath(std::move(piece));
2966     }
2967 
2968     PathPieces &Pieces = PD->getMutablePieces();
2969     if (getAnalyzerOptions().shouldDisplayNotesAsEvents()) {
2970       // For path diagnostic consumers that don't support extra notes,
2971       // we may optionally convert those to path notes.
2972       for (auto I = report->getNotes().rbegin(),
2973            E = report->getNotes().rend(); I != E; ++I) {
2974         PathDiagnosticNotePiece *Piece = I->get();
2975         auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
2976           Piece->getLocation(), Piece->getString());
2977         for (const auto &R: Piece->getRanges())
2978           ConvertedPiece->addRange(R);
2979 
2980         Pieces.push_front(std::move(ConvertedPiece));
2981       }
2982     } else {
2983       for (auto I = report->getNotes().rbegin(),
2984            E = report->getNotes().rend(); I != E; ++I)
2985         Pieces.push_front(*I);
2986     }
2987 
2988     // Get the meta data.
2989     const BugReport::ExtraTextList &Meta = report->getExtraText();
2990     for (const auto &i : Meta)
2991       PD->addMeta(i);
2992 
2993     updateExecutedLinesWithDiagnosticPieces(*PD);
2994     Consumer->HandlePathDiagnostic(std::move(PD));
2995   }
2996 }
2997 
2998 /// Insert all lines participating in the function signature \p Signature
2999 /// into \p ExecutedLines.
3000 static void populateExecutedLinesWithFunctionSignature(
3001     const Decl *Signature, SourceManager &SM,
3002     FilesToLineNumsMap &ExecutedLines) {
3003   SourceRange SignatureSourceRange;
3004   const Stmt* Body = Signature->getBody();
3005   if (const auto FD = dyn_cast<FunctionDecl>(Signature)) {
3006     SignatureSourceRange = FD->getSourceRange();
3007   } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
3008     SignatureSourceRange = OD->getSourceRange();
3009   } else {
3010     return;
3011   }
3012   SourceLocation Start = SignatureSourceRange.getBegin();
3013   SourceLocation End = Body ? Body->getSourceRange().getBegin()
3014     : SignatureSourceRange.getEnd();
3015   if (!Start.isValid() || !End.isValid())
3016     return;
3017   unsigned StartLine = SM.getExpansionLineNumber(Start);
3018   unsigned EndLine = SM.getExpansionLineNumber(End);
3019 
3020   FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
3021   for (unsigned Line = StartLine; Line <= EndLine; Line++)
3022     ExecutedLines[FID].insert(Line);
3023 }
3024 
3025 static void populateExecutedLinesWithStmt(
3026     const Stmt *S, SourceManager &SM,
3027     FilesToLineNumsMap &ExecutedLines) {
3028   SourceLocation Loc = S->getSourceRange().getBegin();
3029   if (!Loc.isValid())
3030     return;
3031   SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3032   FileID FID = SM.getFileID(ExpansionLoc);
3033   unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
3034   ExecutedLines[FID].insert(LineNo);
3035 }
3036 
3037 /// \return all executed lines including function signatures on the path
3038 /// starting from \p N.
3039 static std::unique_ptr<FilesToLineNumsMap>
3040 findExecutedLines(SourceManager &SM, const ExplodedNode *N) {
3041   auto ExecutedLines = llvm::make_unique<FilesToLineNumsMap>();
3042 
3043   while (N) {
3044     if (N->getFirstPred() == nullptr) {
3045       // First node: show signature of the entrance point.
3046       const Decl *D = N->getLocationContext()->getDecl();
3047       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3048     } else if (auto CE = N->getLocationAs<CallEnter>()) {
3049       // Inlined function: show signature.
3050       const Decl* D = CE->getCalleeContext()->getDecl();
3051       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3052     } else if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) {
3053       populateExecutedLinesWithStmt(S, SM, *ExecutedLines);
3054 
3055       // Show extra context for some parent kinds.
3056       const Stmt *P = N->getParentMap().getParent(S);
3057 
3058       // The path exploration can die before the node with the associated
3059       // return statement is generated, but we do want to show the whole
3060       // return.
3061       if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
3062         populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3063         P = N->getParentMap().getParent(RS);
3064       }
3065 
3066       if (P && (isa<SwitchCase>(P) || isa<LabelStmt>(P)))
3067         populateExecutedLinesWithStmt(P, SM, *ExecutedLines);
3068     }
3069 
3070     N = N->getFirstPred();
3071   }
3072   return ExecutedLines;
3073 }
3074 
3075 std::unique_ptr<DiagnosticForConsumerMapTy>
3076 BugReporter::generateDiagnosticForConsumerMap(
3077     BugReport *report, ArrayRef<PathDiagnosticConsumer *> consumers,
3078     ArrayRef<BugReport *> bugReports) {
3079 
3080   if (!report->isPathSensitive()) {
3081     auto Out = llvm::make_unique<DiagnosticForConsumerMapTy>();
3082     for (auto *Consumer : consumers)
3083       (*Out)[Consumer] = generateEmptyDiagnosticForReport(report,
3084                                                           getSourceManager());
3085     return Out;
3086   }
3087 
3088   // Generate the full path sensitive diagnostic, using the generation scheme
3089   // specified by the PathDiagnosticConsumer. Note that we have to generate
3090   // path diagnostics even for consumers which do not support paths, because
3091   // the BugReporterVisitors may mark this bug as a false positive.
3092   assert(!bugReports.empty());
3093   MaxBugClassSize.updateMax(bugReports.size());
3094   std::unique_ptr<DiagnosticForConsumerMapTy> Out =
3095     generatePathDiagnostics(consumers, bugReports);
3096 
3097   if (Out->empty())
3098     return Out;
3099 
3100   MaxValidBugClassSize.updateMax(bugReports.size());
3101 
3102   // Examine the report and see if the last piece is in a header. Reset the
3103   // report location to the last piece in the main source file.
3104   AnalyzerOptions &Opts = getAnalyzerOptions();
3105   for (auto const &P : *Out)
3106     if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll)
3107       P.second->resetDiagnosticLocationToMainFile();
3108 
3109   return Out;
3110 }
3111 
3112 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3113                                   const CheckerBase *Checker,
3114                                   StringRef Name, StringRef Category,
3115                                   StringRef Str, PathDiagnosticLocation Loc,
3116                                   ArrayRef<SourceRange> Ranges) {
3117   EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str,
3118                   Loc, Ranges);
3119 }
3120 
3121 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3122                                   CheckName CheckName,
3123                                   StringRef name, StringRef category,
3124                                   StringRef str, PathDiagnosticLocation Loc,
3125                                   ArrayRef<SourceRange> Ranges) {
3126   // 'BT' is owned by BugReporter.
3127   BugType *BT = getBugTypeForName(CheckName, name, category);
3128   auto R = llvm::make_unique<BugReport>(*BT, str, Loc);
3129   R->setDeclWithIssue(DeclWithIssue);
3130   for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end();
3131        I != E; ++I)
3132     R->addRange(*I);
3133   emitReport(std::move(R));
3134 }
3135 
3136 BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name,
3137                                         StringRef category) {
3138   SmallString<136> fullDesc;
3139   llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3140                                       << ":" << category;
3141   BugType *&BT = StrBugTypes[fullDesc];
3142   if (!BT)
3143     BT = new BugType(CheckName, name, category);
3144   return BT;
3145 }
3146