1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines BugReporter, a utility class for generating 11 // PathDiagnostics. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ParentMap.h" 21 #include "clang/AST/StmtCXX.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Analysis/CFG.h" 24 #include "clang/Analysis/CFGStmtMap.h" 25 #include "clang/Analysis/ProgramPoint.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 28 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 29 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/IntrusiveRefCntPtr.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/ADT/SmallString.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <memory> 37 #include <queue> 38 39 using namespace clang; 40 using namespace ento; 41 42 #define DEBUG_TYPE "BugReporter" 43 44 STATISTIC(MaxBugClassSize, 45 "The maximum number of bug reports in the same equivalence class"); 46 STATISTIC(MaxValidBugClassSize, 47 "The maximum number of bug reports in the same equivalence class " 48 "where at least one report is valid (not suppressed)"); 49 50 BugReporterVisitor::~BugReporterVisitor() {} 51 52 void BugReporterContext::anchor() {} 53 54 //===----------------------------------------------------------------------===// 55 // Helper routines for walking the ExplodedGraph and fetching statements. 56 //===----------------------------------------------------------------------===// 57 58 static const Stmt *GetPreviousStmt(const ExplodedNode *N) { 59 for (N = N->getFirstPred(); N; N = N->getFirstPred()) 60 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 61 return S; 62 63 return nullptr; 64 } 65 66 static inline const Stmt* 67 GetCurrentOrPreviousStmt(const ExplodedNode *N) { 68 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 69 return S; 70 71 return GetPreviousStmt(N); 72 } 73 74 //===----------------------------------------------------------------------===// 75 // Diagnostic cleanup. 76 //===----------------------------------------------------------------------===// 77 78 static PathDiagnosticEventPiece * 79 eventsDescribeSameCondition(PathDiagnosticEventPiece *X, 80 PathDiagnosticEventPiece *Y) { 81 // Prefer diagnostics that come from ConditionBRVisitor over 82 // those that came from TrackConstraintBRVisitor, 83 // unless the one from ConditionBRVisitor is 84 // its generic fallback diagnostic. 85 const void *tagPreferred = ConditionBRVisitor::getTag(); 86 const void *tagLesser = TrackConstraintBRVisitor::getTag(); 87 88 if (X->getLocation() != Y->getLocation()) 89 return nullptr; 90 91 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) 92 return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X; 93 94 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) 95 return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y; 96 97 return nullptr; 98 } 99 100 /// An optimization pass over PathPieces that removes redundant diagnostics 101 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both 102 /// BugReporterVisitors use different methods to generate diagnostics, with 103 /// one capable of emitting diagnostics in some cases but not in others. This 104 /// can lead to redundant diagnostic pieces at the same point in a path. 105 static void removeRedundantMsgs(PathPieces &path) { 106 unsigned N = path.size(); 107 if (N < 2) 108 return; 109 // NOTE: this loop intentionally is not using an iterator. Instead, we 110 // are streaming the path and modifying it in place. This is done by 111 // grabbing the front, processing it, and if we decide to keep it append 112 // it to the end of the path. The entire path is processed in this way. 113 for (unsigned i = 0; i < N; ++i) { 114 auto piece = std::move(path.front()); 115 path.pop_front(); 116 117 switch (piece->getKind()) { 118 case PathDiagnosticPiece::Call: 119 removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path); 120 break; 121 case PathDiagnosticPiece::Macro: 122 removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces); 123 break; 124 case PathDiagnosticPiece::ControlFlow: 125 break; 126 case PathDiagnosticPiece::Event: { 127 if (i == N-1) 128 break; 129 130 if (PathDiagnosticEventPiece *nextEvent = 131 dyn_cast<PathDiagnosticEventPiece>(path.front().get())) { 132 PathDiagnosticEventPiece *event = 133 cast<PathDiagnosticEventPiece>(piece.get()); 134 // Check to see if we should keep one of the two pieces. If we 135 // come up with a preference, record which piece to keep, and consume 136 // another piece from the path. 137 if (auto *pieceToKeep = 138 eventsDescribeSameCondition(event, nextEvent)) { 139 piece = std::move(pieceToKeep == event ? piece : path.front()); 140 path.pop_front(); 141 ++i; 142 } 143 } 144 break; 145 } 146 case PathDiagnosticPiece::Note: 147 break; 148 } 149 path.push_back(std::move(piece)); 150 } 151 } 152 153 /// A map from PathDiagnosticPiece to the LocationContext of the inlined 154 /// function call it represents. 155 typedef llvm::DenseMap<const PathPieces *, const LocationContext *> 156 LocationContextMap; 157 158 /// Recursively scan through a path and prune out calls and macros pieces 159 /// that aren't needed. Return true if afterwards the path contains 160 /// "interesting stuff" which means it shouldn't be pruned from the parent path. 161 static bool removeUnneededCalls(PathPieces &pieces, BugReport *R, 162 LocationContextMap &LCM) { 163 bool containsSomethingInteresting = false; 164 const unsigned N = pieces.size(); 165 166 for (unsigned i = 0 ; i < N ; ++i) { 167 // Remove the front piece from the path. If it is still something we 168 // want to keep once we are done, we will push it back on the end. 169 auto piece = std::move(pieces.front()); 170 pieces.pop_front(); 171 172 switch (piece->getKind()) { 173 case PathDiagnosticPiece::Call: { 174 auto &call = cast<PathDiagnosticCallPiece>(*piece); 175 // Check if the location context is interesting. 176 assert(LCM.count(&call.path)); 177 if (R->isInteresting(LCM[&call.path])) { 178 containsSomethingInteresting = true; 179 break; 180 } 181 182 if (!removeUnneededCalls(call.path, R, LCM)) 183 continue; 184 185 containsSomethingInteresting = true; 186 break; 187 } 188 case PathDiagnosticPiece::Macro: { 189 auto ¯o = cast<PathDiagnosticMacroPiece>(*piece); 190 if (!removeUnneededCalls(macro.subPieces, R, LCM)) 191 continue; 192 containsSomethingInteresting = true; 193 break; 194 } 195 case PathDiagnosticPiece::Event: { 196 auto &event = cast<PathDiagnosticEventPiece>(*piece); 197 198 // We never throw away an event, but we do throw it away wholesale 199 // as part of a path if we throw the entire path away. 200 containsSomethingInteresting |= !event.isPrunable(); 201 break; 202 } 203 case PathDiagnosticPiece::ControlFlow: 204 break; 205 206 case PathDiagnosticPiece::Note: 207 break; 208 } 209 210 pieces.push_back(std::move(piece)); 211 } 212 213 return containsSomethingInteresting; 214 } 215 216 /// Returns true if the given decl has been implicitly given a body, either by 217 /// the analyzer or by the compiler proper. 218 static bool hasImplicitBody(const Decl *D) { 219 assert(D); 220 return D->isImplicit() || !D->hasBody(); 221 } 222 223 /// Recursively scan through a path and make sure that all call pieces have 224 /// valid locations. 225 static void 226 adjustCallLocations(PathPieces &Pieces, 227 PathDiagnosticLocation *LastCallLocation = nullptr) { 228 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) { 229 PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(I->get()); 230 231 if (!Call) { 232 continue; 233 } 234 235 if (LastCallLocation) { 236 bool CallerIsImplicit = hasImplicitBody(Call->getCaller()); 237 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid()) 238 Call->callEnter = *LastCallLocation; 239 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid()) 240 Call->callReturn = *LastCallLocation; 241 } 242 243 // Recursively clean out the subclass. Keep this call around if 244 // it contains any informative diagnostics. 245 PathDiagnosticLocation *ThisCallLocation; 246 if (Call->callEnterWithin.asLocation().isValid() && 247 !hasImplicitBody(Call->getCallee())) 248 ThisCallLocation = &Call->callEnterWithin; 249 else 250 ThisCallLocation = &Call->callEnter; 251 252 assert(ThisCallLocation && "Outermost call has an invalid location"); 253 adjustCallLocations(Call->path, ThisCallLocation); 254 } 255 } 256 257 /// Remove edges in and out of C++ default initializer expressions. These are 258 /// for fields that have in-class initializers, as opposed to being initialized 259 /// explicitly in a constructor or braced list. 260 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) { 261 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 262 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 263 removeEdgesToDefaultInitializers(C->path); 264 265 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 266 removeEdgesToDefaultInitializers(M->subPieces); 267 268 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) { 269 const Stmt *Start = CF->getStartLocation().asStmt(); 270 const Stmt *End = CF->getEndLocation().asStmt(); 271 if (Start && isa<CXXDefaultInitExpr>(Start)) { 272 I = Pieces.erase(I); 273 continue; 274 } else if (End && isa<CXXDefaultInitExpr>(End)) { 275 PathPieces::iterator Next = std::next(I); 276 if (Next != E) { 277 if (auto *NextCF = 278 dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) { 279 NextCF->setStartLocation(CF->getStartLocation()); 280 } 281 } 282 I = Pieces.erase(I); 283 continue; 284 } 285 } 286 287 I++; 288 } 289 } 290 291 /// Remove all pieces with invalid locations as these cannot be serialized. 292 /// We might have pieces with invalid locations as a result of inlining Body 293 /// Farm generated functions. 294 static void removePiecesWithInvalidLocations(PathPieces &Pieces) { 295 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 296 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 297 removePiecesWithInvalidLocations(C->path); 298 299 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 300 removePiecesWithInvalidLocations(M->subPieces); 301 302 if (!(*I)->getLocation().isValid() || 303 !(*I)->getLocation().asLocation().isValid()) { 304 I = Pieces.erase(I); 305 continue; 306 } 307 I++; 308 } 309 } 310 311 //===----------------------------------------------------------------------===// 312 // PathDiagnosticBuilder and its associated routines and helper objects. 313 //===----------------------------------------------------------------------===// 314 315 namespace { 316 class NodeMapClosure : public BugReport::NodeResolver { 317 InterExplodedGraphMap &M; 318 public: 319 NodeMapClosure(InterExplodedGraphMap &m) : M(m) {} 320 321 const ExplodedNode *getOriginalNode(const ExplodedNode *N) override { 322 return M.lookup(N); 323 } 324 }; 325 326 class PathDiagnosticBuilder : public BugReporterContext { 327 BugReport *R; 328 PathDiagnosticConsumer *PDC; 329 NodeMapClosure NMC; 330 public: 331 const LocationContext *LC; 332 333 PathDiagnosticBuilder(GRBugReporter &br, 334 BugReport *r, InterExplodedGraphMap &Backmap, 335 PathDiagnosticConsumer *pdc) 336 : BugReporterContext(br), 337 R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext()) 338 {} 339 340 PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N); 341 342 PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os, 343 const ExplodedNode *N); 344 345 BugReport *getBugReport() { return R; } 346 347 Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); } 348 349 ParentMap& getParentMap() { return LC->getParentMap(); } 350 351 const Stmt *getParent(const Stmt *S) { 352 return getParentMap().getParent(S); 353 } 354 355 NodeMapClosure& getNodeResolver() override { return NMC; } 356 357 PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S); 358 359 PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const { 360 return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive; 361 } 362 363 bool supportsLogicalOpControlFlow() const { 364 return PDC ? PDC->supportsLogicalOpControlFlow() : true; 365 } 366 }; 367 } // end anonymous namespace 368 369 PathDiagnosticLocation 370 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) { 371 if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N)) 372 return PathDiagnosticLocation(S, getSourceManager(), LC); 373 374 return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(), 375 getSourceManager()); 376 } 377 378 PathDiagnosticLocation 379 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os, 380 const ExplodedNode *N) { 381 382 // Slow, but probably doesn't matter. 383 if (os.str().empty()) 384 os << ' '; 385 386 const PathDiagnosticLocation &Loc = ExecutionContinues(N); 387 388 if (Loc.asStmt()) 389 os << "Execution continues on line " 390 << getSourceManager().getExpansionLineNumber(Loc.asLocation()) 391 << '.'; 392 else { 393 os << "Execution jumps to the end of the "; 394 const Decl *D = N->getLocationContext()->getDecl(); 395 if (isa<ObjCMethodDecl>(D)) 396 os << "method"; 397 else if (isa<FunctionDecl>(D)) 398 os << "function"; 399 else { 400 assert(isa<BlockDecl>(D)); 401 os << "anonymous block"; 402 } 403 os << '.'; 404 } 405 406 return Loc; 407 } 408 409 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) { 410 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) 411 return PM.getParentIgnoreParens(S); 412 413 const Stmt *Parent = PM.getParentIgnoreParens(S); 414 if (!Parent) 415 return nullptr; 416 417 switch (Parent->getStmtClass()) { 418 case Stmt::ForStmtClass: 419 case Stmt::DoStmtClass: 420 case Stmt::WhileStmtClass: 421 case Stmt::ObjCForCollectionStmtClass: 422 case Stmt::CXXForRangeStmtClass: 423 return Parent; 424 default: 425 break; 426 } 427 428 return nullptr; 429 } 430 431 static PathDiagnosticLocation 432 getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P, 433 const LocationContext *LC, bool allowNestedContexts) { 434 if (!S) 435 return PathDiagnosticLocation(); 436 437 while (const Stmt *Parent = getEnclosingParent(S, P)) { 438 switch (Parent->getStmtClass()) { 439 case Stmt::BinaryOperatorClass: { 440 const BinaryOperator *B = cast<BinaryOperator>(Parent); 441 if (B->isLogicalOp()) 442 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC); 443 break; 444 } 445 case Stmt::CompoundStmtClass: 446 case Stmt::StmtExprClass: 447 return PathDiagnosticLocation(S, SMgr, LC); 448 case Stmt::ChooseExprClass: 449 // Similar to '?' if we are referring to condition, just have the edge 450 // point to the entire choose expression. 451 if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S) 452 return PathDiagnosticLocation(Parent, SMgr, LC); 453 else 454 return PathDiagnosticLocation(S, SMgr, LC); 455 case Stmt::BinaryConditionalOperatorClass: 456 case Stmt::ConditionalOperatorClass: 457 // For '?', if we are referring to condition, just have the edge point 458 // to the entire '?' expression. 459 if (allowNestedContexts || 460 cast<AbstractConditionalOperator>(Parent)->getCond() == S) 461 return PathDiagnosticLocation(Parent, SMgr, LC); 462 else 463 return PathDiagnosticLocation(S, SMgr, LC); 464 case Stmt::CXXForRangeStmtClass: 465 if (cast<CXXForRangeStmt>(Parent)->getBody() == S) 466 return PathDiagnosticLocation(S, SMgr, LC); 467 break; 468 case Stmt::DoStmtClass: 469 return PathDiagnosticLocation(S, SMgr, LC); 470 case Stmt::ForStmtClass: 471 if (cast<ForStmt>(Parent)->getBody() == S) 472 return PathDiagnosticLocation(S, SMgr, LC); 473 break; 474 case Stmt::IfStmtClass: 475 if (cast<IfStmt>(Parent)->getCond() != S) 476 return PathDiagnosticLocation(S, SMgr, LC); 477 break; 478 case Stmt::ObjCForCollectionStmtClass: 479 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) 480 return PathDiagnosticLocation(S, SMgr, LC); 481 break; 482 case Stmt::WhileStmtClass: 483 if (cast<WhileStmt>(Parent)->getCond() != S) 484 return PathDiagnosticLocation(S, SMgr, LC); 485 break; 486 default: 487 break; 488 } 489 490 S = Parent; 491 } 492 493 assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); 494 495 return PathDiagnosticLocation(S, SMgr, LC); 496 } 497 498 PathDiagnosticLocation 499 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) { 500 assert(S && "Null Stmt passed to getEnclosingStmtLocation"); 501 return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC, 502 /*allowNestedContexts=*/false); 503 } 504 505 //===----------------------------------------------------------------------===// 506 // "Visitors only" path diagnostic generation algorithm. 507 //===----------------------------------------------------------------------===// 508 static bool GenerateVisitorsOnlyPathDiagnostic( 509 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 510 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 511 // All path generation skips the very first node (the error node). 512 // This is because there is special handling for the end-of-path note. 513 N = N->getFirstPred(); 514 if (!N) 515 return true; 516 517 BugReport *R = PDB.getBugReport(); 518 while (const ExplodedNode *Pred = N->getFirstPred()) { 519 for (auto &V : visitors) 520 // Visit all the node pairs, but throw the path pieces away. 521 V->VisitNode(N, Pred, PDB, *R); 522 523 N = Pred; 524 } 525 526 return R->isValid(); 527 } 528 529 //===----------------------------------------------------------------------===// 530 // "Minimal" path diagnostic generation algorithm. 531 //===----------------------------------------------------------------------===// 532 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair; 533 typedef SmallVector<StackDiagPair, 6> StackDiagVector; 534 535 static void updateStackPiecesWithMessage(PathDiagnosticPiece &P, 536 StackDiagVector &CallStack) { 537 // If the piece contains a special message, add it to all the call 538 // pieces on the active stack. 539 if (PathDiagnosticEventPiece *ep = dyn_cast<PathDiagnosticEventPiece>(&P)) { 540 541 if (ep->hasCallStackHint()) 542 for (StackDiagVector::iterator I = CallStack.begin(), 543 E = CallStack.end(); I != E; ++I) { 544 PathDiagnosticCallPiece *CP = I->first; 545 const ExplodedNode *N = I->second; 546 std::string stackMsg = ep->getCallStackMessage(N); 547 548 // The last message on the path to final bug is the most important 549 // one. Since we traverse the path backwards, do not add the message 550 // if one has been previously added. 551 if (!CP->hasCallStackMessage()) 552 CP->setCallStackMessage(stackMsg); 553 } 554 } 555 } 556 557 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM); 558 559 560 /// Add path diagnostic for statement associated with node \p N 561 /// to diagnostics \p PD. 562 /// Precondition: location associated with \p N is a \c BlockEdge. 563 static void generateMinimalDiagnosticsForBlockEdge(const ExplodedNode *N, 564 PathDiagnosticBuilder &PDB, 565 PathDiagnostic &PD) { 566 567 const LocationContext *LC = N->getLocationContext(); 568 SourceManager& SMgr = PDB.getSourceManager(); 569 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 570 const CFGBlock *Src = BE.getSrc(); 571 const CFGBlock *Dst = BE.getDst(); 572 const Stmt *T = Src->getTerminator(); 573 if (!T) 574 return; 575 576 auto Start = PathDiagnosticLocation::createBegin(T, SMgr, LC); 577 switch (T->getStmtClass()) { 578 default: 579 break; 580 581 case Stmt::GotoStmtClass: 582 case Stmt::IndirectGotoStmtClass: { 583 const Stmt *S = PathDiagnosticLocation::getNextStmt(N); 584 585 if (!S) 586 break; 587 588 std::string sbuf; 589 llvm::raw_string_ostream os(sbuf); 590 const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S); 591 592 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber(); 593 PD.getActivePath().push_front( 594 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 595 break; 596 } 597 598 case Stmt::SwitchStmtClass: { 599 // Figure out what case arm we took. 600 std::string sbuf; 601 llvm::raw_string_ostream os(sbuf); 602 603 if (const Stmt *S = Dst->getLabel()) { 604 PathDiagnosticLocation End(S, SMgr, LC); 605 606 switch (S->getStmtClass()) { 607 default: 608 os << "No cases match in the switch statement. " 609 "Control jumps to line " 610 << End.asLocation().getExpansionLineNumber(); 611 break; 612 case Stmt::DefaultStmtClass: 613 os << "Control jumps to the 'default' case at line " 614 << End.asLocation().getExpansionLineNumber(); 615 break; 616 617 case Stmt::CaseStmtClass: { 618 os << "Control jumps to 'case "; 619 const CaseStmt *Case = cast<CaseStmt>(S); 620 const Expr *LHS = Case->getLHS()->IgnoreParenCasts(); 621 622 // Determine if it is an enum. 623 bool GetRawInt = true; 624 625 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) { 626 // FIXME: Maybe this should be an assertion. Are there cases 627 // were it is not an EnumConstantDecl? 628 const EnumConstantDecl *D = dyn_cast<EnumConstantDecl>(DR->getDecl()); 629 630 if (D) { 631 GetRawInt = false; 632 os << *D; 633 } 634 } 635 636 if (GetRawInt) 637 os << LHS->EvaluateKnownConstInt(PDB.getASTContext()); 638 639 os << ":' at line " << End.asLocation().getExpansionLineNumber(); 640 break; 641 } 642 } 643 PD.getActivePath().push_front( 644 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 645 os.str())); 646 } else { 647 os << "'Default' branch taken. "; 648 const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N); 649 PD.getActivePath().push_front( 650 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 651 os.str())); 652 } 653 654 break; 655 } 656 657 case Stmt::BreakStmtClass: 658 case Stmt::ContinueStmtClass: { 659 std::string sbuf; 660 llvm::raw_string_ostream os(sbuf); 661 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 662 PD.getActivePath().push_front( 663 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 664 break; 665 } 666 667 // Determine control-flow for ternary '?'. 668 case Stmt::BinaryConditionalOperatorClass: 669 case Stmt::ConditionalOperatorClass: { 670 std::string sbuf; 671 llvm::raw_string_ostream os(sbuf); 672 os << "'?' condition is "; 673 674 if (*(Src->succ_begin() + 1) == Dst) 675 os << "false"; 676 else 677 os << "true"; 678 679 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 680 681 if (const Stmt *S = End.asStmt()) 682 End = PDB.getEnclosingStmtLocation(S); 683 684 PD.getActivePath().push_front( 685 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 686 break; 687 } 688 689 // Determine control-flow for short-circuited '&&' and '||'. 690 case Stmt::BinaryOperatorClass: { 691 if (!PDB.supportsLogicalOpControlFlow()) 692 break; 693 694 const BinaryOperator *B = cast<BinaryOperator>(T); 695 std::string sbuf; 696 llvm::raw_string_ostream os(sbuf); 697 os << "Left side of '"; 698 699 if (B->getOpcode() == BO_LAnd) { 700 os << "&&" 701 << "' is "; 702 703 if (*(Src->succ_begin() + 1) == Dst) { 704 os << "false"; 705 PathDiagnosticLocation End(B->getLHS(), SMgr, LC); 706 PathDiagnosticLocation Start = 707 PathDiagnosticLocation::createOperatorLoc(B, SMgr); 708 PD.getActivePath().push_front( 709 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 710 os.str())); 711 } else { 712 os << "true"; 713 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); 714 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 715 PD.getActivePath().push_front( 716 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 717 os.str())); 718 } 719 } else { 720 assert(B->getOpcode() == BO_LOr); 721 os << "||" 722 << "' is "; 723 724 if (*(Src->succ_begin() + 1) == Dst) { 725 os << "false"; 726 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); 727 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 728 PD.getActivePath().push_front( 729 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 730 os.str())); 731 } else { 732 os << "true"; 733 PathDiagnosticLocation End(B->getLHS(), SMgr, LC); 734 PathDiagnosticLocation Start = 735 PathDiagnosticLocation::createOperatorLoc(B, SMgr); 736 PD.getActivePath().push_front( 737 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 738 os.str())); 739 } 740 } 741 742 break; 743 } 744 745 case Stmt::DoStmtClass: { 746 if (*(Src->succ_begin()) == Dst) { 747 std::string sbuf; 748 llvm::raw_string_ostream os(sbuf); 749 750 os << "Loop condition is true. "; 751 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 752 753 if (const Stmt *S = End.asStmt()) 754 End = PDB.getEnclosingStmtLocation(S); 755 756 PD.getActivePath().push_front( 757 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 758 os.str())); 759 } else { 760 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 761 762 if (const Stmt *S = End.asStmt()) 763 End = PDB.getEnclosingStmtLocation(S); 764 765 PD.getActivePath().push_front( 766 std::make_shared<PathDiagnosticControlFlowPiece>( 767 Start, End, "Loop condition is false. Exiting loop")); 768 } 769 770 break; 771 } 772 773 case Stmt::WhileStmtClass: 774 case Stmt::ForStmtClass: { 775 if (*(Src->succ_begin() + 1) == Dst) { 776 std::string sbuf; 777 llvm::raw_string_ostream os(sbuf); 778 779 os << "Loop condition is false. "; 780 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 781 if (const Stmt *S = End.asStmt()) 782 End = PDB.getEnclosingStmtLocation(S); 783 784 PD.getActivePath().push_front( 785 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 786 os.str())); 787 } else { 788 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 789 if (const Stmt *S = End.asStmt()) 790 End = PDB.getEnclosingStmtLocation(S); 791 792 PD.getActivePath().push_front( 793 std::make_shared<PathDiagnosticControlFlowPiece>( 794 Start, End, "Loop condition is true. Entering loop body")); 795 } 796 797 break; 798 } 799 800 case Stmt::IfStmtClass: { 801 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 802 803 if (const Stmt *S = End.asStmt()) 804 End = PDB.getEnclosingStmtLocation(S); 805 806 if (*(Src->succ_begin() + 1) == Dst) 807 PD.getActivePath().push_front( 808 std::make_shared<PathDiagnosticControlFlowPiece>( 809 Start, End, "Taking false branch")); 810 else 811 PD.getActivePath().push_front( 812 std::make_shared<PathDiagnosticControlFlowPiece>( 813 Start, End, "Taking true branch")); 814 815 break; 816 } 817 } 818 } 819 820 /// Generate minimal diagnostics for node \p N, and write it into path 821 /// diagnostics \p PD. 822 void generateMinimalDiagnosticsForNode(const ExplodedNode *N, 823 PathDiagnosticBuilder &PDB, 824 PathDiagnostic &PD, 825 LocationContextMap &LCM, 826 StackDiagVector &CallStack) { 827 828 SourceManager &SMgr = PDB.getSourceManager(); 829 ProgramPoint P = N->getLocation(); 830 831 if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 832 auto C = PathDiagnosticCallPiece::construct(N, *CE, SMgr); 833 // Record the mapping from call piece to LocationContext. 834 LCM[&C->path] = CE->getCalleeContext(); 835 auto *P = C.get(); 836 PD.getActivePath().push_front(std::move(C)); 837 PD.pushActivePath(&P->path); 838 CallStack.push_back(StackDiagPair(P, N)); 839 } else if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { 840 // Flush all locations, and pop the active path. 841 bool VisitedEntireCall = PD.isWithinCall(); 842 PD.popActivePath(); 843 844 // Either we just added a bunch of stuff to the top-level path, or 845 // we have a previous CallExitEnd. If the former, it means that the 846 // path terminated within a function call. We must then take the 847 // current contents of the active path and place it within 848 // a new PathDiagnosticCallPiece. 849 PathDiagnosticCallPiece *C; 850 if (VisitedEntireCall) { 851 C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front().get()); 852 } else { 853 const Decl *Caller = CE->getLocationContext()->getDecl(); 854 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 855 // Record the mapping from call piece to LocationContext. 856 LCM[&C->path] = CE->getCalleeContext(); 857 } 858 859 C->setCallee(*CE, SMgr); 860 if (!CallStack.empty()) { 861 assert(CallStack.back().first == C); 862 CallStack.pop_back(); 863 } 864 } else if (P.getKind() == ProgramPoint::BlockEdgeKind) { 865 generateMinimalDiagnosticsForBlockEdge(N, PDB, PD); 866 } 867 } 868 869 static bool GenerateMinimalPathDiagnostic( 870 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 871 LocationContextMap &LCM, 872 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 873 const ExplodedNode *NextNode = N->pred_empty() 874 ? nullptr : *(N->pred_begin()); 875 StackDiagVector CallStack; 876 877 while (NextNode) { 878 N = NextNode; 879 PDB.LC = N->getLocationContext(); 880 NextNode = N->getFirstPred(); 881 882 generateMinimalDiagnosticsForNode(N, PDB, PD, LCM, CallStack); 883 884 if (NextNode) { 885 // Add diagnostic pieces from custom visitors. 886 BugReport *R = PDB.getBugReport(); 887 llvm::FoldingSet<PathDiagnosticPiece> DeduplicationSet; 888 for (auto &V : visitors) { 889 if (auto p = V->VisitNode(N, NextNode, PDB, *R)) { 890 if (DeduplicationSet.GetOrInsertNode(p.get()) != p.get()) 891 continue; 892 893 updateStackPiecesWithMessage(*p, CallStack); 894 PD.getActivePath().push_front(std::move(p)); 895 } 896 } 897 } 898 } 899 900 if (!PDB.getBugReport()->isValid()) 901 return false; 902 903 // After constructing the full PathDiagnostic, do a pass over it to compact 904 // PathDiagnosticPieces that occur within a macro. 905 CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager()); 906 return true; 907 } 908 909 //===----------------------------------------------------------------------===// 910 // "Extensive" PathDiagnostic generation. 911 //===----------------------------------------------------------------------===// 912 913 static bool IsControlFlowExpr(const Stmt *S) { 914 const Expr *E = dyn_cast<Expr>(S); 915 916 if (!E) 917 return false; 918 919 E = E->IgnoreParenCasts(); 920 921 if (isa<AbstractConditionalOperator>(E)) 922 return true; 923 924 if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E)) 925 if (B->isLogicalOp()) 926 return true; 927 928 return false; 929 } 930 931 namespace { 932 class ContextLocation : public PathDiagnosticLocation { 933 bool IsDead; 934 public: 935 ContextLocation(const PathDiagnosticLocation &L, bool isdead = false) 936 : PathDiagnosticLocation(L), IsDead(isdead) {} 937 938 void markDead() { IsDead = true; } 939 bool isDead() const { return IsDead; } 940 }; 941 942 static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L, 943 const LocationContext *LC, 944 bool firstCharOnly = false) { 945 if (const Stmt *S = L.asStmt()) { 946 const Stmt *Original = S; 947 while (1) { 948 // Adjust the location for some expressions that are best referenced 949 // by one of their subexpressions. 950 switch (S->getStmtClass()) { 951 default: 952 break; 953 case Stmt::ParenExprClass: 954 case Stmt::GenericSelectionExprClass: 955 S = cast<Expr>(S)->IgnoreParens(); 956 firstCharOnly = true; 957 continue; 958 case Stmt::BinaryConditionalOperatorClass: 959 case Stmt::ConditionalOperatorClass: 960 S = cast<AbstractConditionalOperator>(S)->getCond(); 961 firstCharOnly = true; 962 continue; 963 case Stmt::ChooseExprClass: 964 S = cast<ChooseExpr>(S)->getCond(); 965 firstCharOnly = true; 966 continue; 967 case Stmt::BinaryOperatorClass: 968 S = cast<BinaryOperator>(S)->getLHS(); 969 firstCharOnly = true; 970 continue; 971 } 972 973 break; 974 } 975 976 if (S != Original) 977 L = PathDiagnosticLocation(S, L.getManager(), LC); 978 } 979 980 if (firstCharOnly) 981 L = PathDiagnosticLocation::createSingleLocation(L); 982 983 return L; 984 } 985 986 class EdgeBuilder { 987 std::vector<ContextLocation> CLocs; 988 typedef std::vector<ContextLocation>::iterator iterator; 989 PathDiagnostic &PD; 990 PathDiagnosticBuilder &PDB; 991 PathDiagnosticLocation PrevLoc; 992 993 bool IsConsumedExpr(const PathDiagnosticLocation &L); 994 995 bool containsLocation(const PathDiagnosticLocation &Container, 996 const PathDiagnosticLocation &Containee); 997 998 PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L); 999 1000 1001 1002 void popLocation() { 1003 if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) { 1004 // For contexts, we only one the first character as the range. 1005 rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true)); 1006 } 1007 CLocs.pop_back(); 1008 } 1009 1010 public: 1011 EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb) 1012 : PD(pd), PDB(pdb) { 1013 1014 // If the PathDiagnostic already has pieces, add the enclosing statement 1015 // of the first piece as a context as well. 1016 if (!PD.path.empty()) { 1017 PrevLoc = (*PD.path.begin())->getLocation(); 1018 1019 if (const Stmt *S = PrevLoc.asStmt()) 1020 addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); 1021 } 1022 } 1023 1024 ~EdgeBuilder() { 1025 while (!CLocs.empty()) popLocation(); 1026 1027 // Finally, add an initial edge from the start location of the first 1028 // statement (if it doesn't already exist). 1029 PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin( 1030 PDB.LC, 1031 PDB.getSourceManager()); 1032 if (L.isValid()) 1033 rawAddEdge(L); 1034 } 1035 1036 void flushLocations() { 1037 while (!CLocs.empty()) 1038 popLocation(); 1039 PrevLoc = PathDiagnosticLocation(); 1040 } 1041 1042 void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false, 1043 bool IsPostJump = false); 1044 1045 void rawAddEdge(PathDiagnosticLocation NewLoc); 1046 1047 void addContext(const Stmt *S); 1048 void addContext(const PathDiagnosticLocation &L); 1049 void addExtendedContext(const Stmt *S); 1050 }; 1051 } // end anonymous namespace 1052 1053 1054 PathDiagnosticLocation 1055 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) { 1056 if (const Stmt *S = L.asStmt()) { 1057 if (IsControlFlowExpr(S)) 1058 return L; 1059 1060 return PDB.getEnclosingStmtLocation(S); 1061 } 1062 1063 return L; 1064 } 1065 1066 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container, 1067 const PathDiagnosticLocation &Containee) { 1068 1069 if (Container == Containee) 1070 return true; 1071 1072 if (Container.asDecl()) 1073 return true; 1074 1075 if (const Stmt *S = Containee.asStmt()) 1076 if (const Stmt *ContainerS = Container.asStmt()) { 1077 while (S) { 1078 if (S == ContainerS) 1079 return true; 1080 S = PDB.getParent(S); 1081 } 1082 return false; 1083 } 1084 1085 // Less accurate: compare using source ranges. 1086 SourceRange ContainerR = Container.asRange(); 1087 SourceRange ContaineeR = Containee.asRange(); 1088 1089 SourceManager &SM = PDB.getSourceManager(); 1090 SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin()); 1091 SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd()); 1092 SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin()); 1093 SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd()); 1094 1095 unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg); 1096 unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd); 1097 unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg); 1098 unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd); 1099 1100 assert(ContainerBegLine <= ContainerEndLine); 1101 assert(ContaineeBegLine <= ContaineeEndLine); 1102 1103 return (ContainerBegLine <= ContaineeBegLine && 1104 ContainerEndLine >= ContaineeEndLine && 1105 (ContainerBegLine != ContaineeBegLine || 1106 SM.getExpansionColumnNumber(ContainerRBeg) <= 1107 SM.getExpansionColumnNumber(ContaineeRBeg)) && 1108 (ContainerEndLine != ContaineeEndLine || 1109 SM.getExpansionColumnNumber(ContainerREnd) >= 1110 SM.getExpansionColumnNumber(ContaineeREnd))); 1111 } 1112 1113 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) { 1114 if (!PrevLoc.isValid()) { 1115 PrevLoc = NewLoc; 1116 return; 1117 } 1118 1119 const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC); 1120 const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC); 1121 1122 if (PrevLocClean.asLocation().isInvalid()) { 1123 PrevLoc = NewLoc; 1124 return; 1125 } 1126 1127 if (NewLocClean.asLocation() == PrevLocClean.asLocation()) 1128 return; 1129 1130 // FIXME: Ignore intra-macro edges for now. 1131 if (NewLocClean.asLocation().getExpansionLoc() == 1132 PrevLocClean.asLocation().getExpansionLoc()) 1133 return; 1134 1135 PD.getActivePath().push_front( 1136 std::make_shared<PathDiagnosticControlFlowPiece>(NewLocClean, 1137 PrevLocClean)); 1138 PrevLoc = NewLoc; 1139 } 1140 1141 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd, 1142 bool IsPostJump) { 1143 1144 if (!alwaysAdd && NewLoc.asLocation().isMacroID()) 1145 return; 1146 1147 const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc); 1148 1149 while (!CLocs.empty()) { 1150 ContextLocation &TopContextLoc = CLocs.back(); 1151 1152 // Is the top location context the same as the one for the new location? 1153 if (TopContextLoc == CLoc) { 1154 if (alwaysAdd) { 1155 if (IsConsumedExpr(TopContextLoc)) 1156 TopContextLoc.markDead(); 1157 1158 rawAddEdge(NewLoc); 1159 } 1160 1161 if (IsPostJump) 1162 TopContextLoc.markDead(); 1163 return; 1164 } 1165 1166 if (containsLocation(TopContextLoc, CLoc)) { 1167 if (alwaysAdd) { 1168 rawAddEdge(NewLoc); 1169 1170 if (IsConsumedExpr(CLoc)) { 1171 CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true)); 1172 return; 1173 } 1174 } 1175 1176 CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump)); 1177 return; 1178 } 1179 1180 // Context does not contain the location. Flush it. 1181 popLocation(); 1182 } 1183 1184 // If we reach here, there is no enclosing context. Just add the edge. 1185 rawAddEdge(NewLoc); 1186 } 1187 1188 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) { 1189 if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt())) 1190 return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X); 1191 1192 return false; 1193 } 1194 1195 void EdgeBuilder::addExtendedContext(const Stmt *S) { 1196 if (!S) 1197 return; 1198 1199 const Stmt *Parent = PDB.getParent(S); 1200 while (Parent) { 1201 if (isa<CompoundStmt>(Parent)) 1202 Parent = PDB.getParent(Parent); 1203 else 1204 break; 1205 } 1206 1207 if (Parent) { 1208 switch (Parent->getStmtClass()) { 1209 case Stmt::DoStmtClass: 1210 case Stmt::ObjCAtSynchronizedStmtClass: 1211 addContext(Parent); 1212 default: 1213 break; 1214 } 1215 } 1216 1217 addContext(S); 1218 } 1219 1220 void EdgeBuilder::addContext(const Stmt *S) { 1221 if (!S) 1222 return; 1223 1224 PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC); 1225 addContext(L); 1226 } 1227 1228 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) { 1229 while (!CLocs.empty()) { 1230 const PathDiagnosticLocation &TopContextLoc = CLocs.back(); 1231 1232 // Is the top location context the same as the one for the new location? 1233 if (TopContextLoc == L) 1234 return; 1235 1236 if (containsLocation(TopContextLoc, L)) { 1237 CLocs.push_back(L); 1238 return; 1239 } 1240 1241 // Context does not contain the location. Flush it. 1242 popLocation(); 1243 } 1244 1245 CLocs.push_back(L); 1246 } 1247 1248 // Cone-of-influence: support the reverse propagation of "interesting" symbols 1249 // and values by tracing interesting calculations backwards through evaluated 1250 // expressions along a path. This is probably overly complicated, but the idea 1251 // is that if an expression computed an "interesting" value, the child 1252 // expressions are are also likely to be "interesting" as well (which then 1253 // propagates to the values they in turn compute). This reverse propagation 1254 // is needed to track interesting correlations across function call boundaries, 1255 // where formal arguments bind to actual arguments, etc. This is also needed 1256 // because the constraint solver sometimes simplifies certain symbolic values 1257 // into constants when appropriate, and this complicates reasoning about 1258 // interesting values. 1259 typedef llvm::DenseSet<const Expr *> InterestingExprs; 1260 1261 static void reversePropagateIntererstingSymbols(BugReport &R, 1262 InterestingExprs &IE, 1263 const ProgramState *State, 1264 const Expr *Ex, 1265 const LocationContext *LCtx) { 1266 SVal V = State->getSVal(Ex, LCtx); 1267 if (!(R.isInteresting(V) || IE.count(Ex))) 1268 return; 1269 1270 switch (Ex->getStmtClass()) { 1271 default: 1272 if (!isa<CastExpr>(Ex)) 1273 break; 1274 // Fall through. 1275 case Stmt::BinaryOperatorClass: 1276 case Stmt::UnaryOperatorClass: { 1277 for (const Stmt *SubStmt : Ex->children()) { 1278 if (const Expr *child = dyn_cast_or_null<Expr>(SubStmt)) { 1279 IE.insert(child); 1280 SVal ChildV = State->getSVal(child, LCtx); 1281 R.markInteresting(ChildV); 1282 } 1283 } 1284 break; 1285 } 1286 } 1287 1288 R.markInteresting(V); 1289 } 1290 1291 static void reversePropagateInterestingSymbols(BugReport &R, 1292 InterestingExprs &IE, 1293 const ProgramState *State, 1294 const LocationContext *CalleeCtx, 1295 const LocationContext *CallerCtx) 1296 { 1297 // FIXME: Handle non-CallExpr-based CallEvents. 1298 const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame(); 1299 const Stmt *CallSite = Callee->getCallSite(); 1300 if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) { 1301 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) { 1302 FunctionDecl::param_const_iterator PI = FD->param_begin(), 1303 PE = FD->param_end(); 1304 CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); 1305 for (; AI != AE && PI != PE; ++AI, ++PI) { 1306 if (const Expr *ArgE = *AI) { 1307 if (const ParmVarDecl *PD = *PI) { 1308 Loc LV = State->getLValue(PD, CalleeCtx); 1309 if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV))) 1310 IE.insert(ArgE); 1311 } 1312 } 1313 } 1314 } 1315 } 1316 } 1317 1318 1319 1320 //===----------------------------------------------------------------------===// 1321 // Functions for determining if a loop was executed 0 times. 1322 //===----------------------------------------------------------------------===// 1323 1324 static bool isLoop(const Stmt *Term) { 1325 switch (Term->getStmtClass()) { 1326 case Stmt::ForStmtClass: 1327 case Stmt::WhileStmtClass: 1328 case Stmt::ObjCForCollectionStmtClass: 1329 case Stmt::CXXForRangeStmtClass: 1330 return true; 1331 default: 1332 // Note that we intentionally do not include do..while here. 1333 return false; 1334 } 1335 } 1336 1337 static bool isJumpToFalseBranch(const BlockEdge *BE) { 1338 const CFGBlock *Src = BE->getSrc(); 1339 assert(Src->succ_size() == 2); 1340 return (*(Src->succ_begin()+1) == BE->getDst()); 1341 } 1342 1343 /// Return true if the terminator is a loop and the destination is the 1344 /// false branch. 1345 static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) { 1346 if (!isLoop(Term)) 1347 return false; 1348 1349 // Did we take the false branch? 1350 return isJumpToFalseBranch(BE); 1351 } 1352 1353 static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) { 1354 while (SubS) { 1355 if (SubS == S) 1356 return true; 1357 SubS = PM.getParent(SubS); 1358 } 1359 return false; 1360 } 1361 1362 static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term, 1363 const ExplodedNode *N) { 1364 while (N) { 1365 Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>(); 1366 if (SP) { 1367 const Stmt *S = SP->getStmt(); 1368 if (!isContainedByStmt(PM, Term, S)) 1369 return S; 1370 } 1371 N = N->getFirstPred(); 1372 } 1373 return nullptr; 1374 } 1375 1376 static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) { 1377 const Stmt *LoopBody = nullptr; 1378 switch (Term->getStmtClass()) { 1379 case Stmt::CXXForRangeStmtClass: { 1380 const CXXForRangeStmt *FR = cast<CXXForRangeStmt>(Term); 1381 if (isContainedByStmt(PM, FR->getInc(), S)) 1382 return true; 1383 if (isContainedByStmt(PM, FR->getLoopVarStmt(), S)) 1384 return true; 1385 LoopBody = FR->getBody(); 1386 break; 1387 } 1388 case Stmt::ForStmtClass: { 1389 const ForStmt *FS = cast<ForStmt>(Term); 1390 if (isContainedByStmt(PM, FS->getInc(), S)) 1391 return true; 1392 LoopBody = FS->getBody(); 1393 break; 1394 } 1395 case Stmt::ObjCForCollectionStmtClass: { 1396 const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term); 1397 LoopBody = FC->getBody(); 1398 break; 1399 } 1400 case Stmt::WhileStmtClass: 1401 LoopBody = cast<WhileStmt>(Term)->getBody(); 1402 break; 1403 default: 1404 return false; 1405 } 1406 return isContainedByStmt(PM, LoopBody, S); 1407 } 1408 1409 /// Generate extensive diagnostics for statement associated with node \p N, 1410 /// and write it into \p PD. 1411 static void generateExtensiveDiagnosticsForNode( 1412 const ExplodedNode *N, 1413 PathDiagnosticBuilder &PDB, 1414 LocationContextMap &LCM, 1415 EdgeBuilder &EB, 1416 StackDiagVector &CallStack, 1417 PathDiagnostic &PD, 1418 InterestingExprs &IE) { 1419 1420 const ExplodedNode *NextNode = N->getFirstPred(); 1421 ProgramPoint P = N->getLocation(); 1422 const SourceManager& SM = PDB.getSourceManager(); 1423 1424 if (Optional<PostStmt> PS = P.getAs<PostStmt>()) { 1425 if (const Expr *Ex = PS->getStmtAs<Expr>()) 1426 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1427 N->getState().get(), Ex, 1428 N->getLocationContext()); 1429 return; 1430 } else if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 1431 const Stmt *S = CE->getCalleeContext()->getCallSite(); 1432 if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) { 1433 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1434 N->getState().get(), Ex, 1435 N->getLocationContext()); 1436 } 1437 1438 auto C = PathDiagnosticCallPiece::construct(N, *CE, SM); 1439 LCM[&C->path] = CE->getCalleeContext(); 1440 1441 EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true); 1442 EB.flushLocations(); 1443 1444 auto *P = C.get(); 1445 PD.getActivePath().push_front(std::move(C)); 1446 PD.pushActivePath(&P->path); 1447 CallStack.push_back(StackDiagPair(P, N)); 1448 return; 1449 } else if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { 1450 1451 // Pop the call hierarchy if we are done walking the contents 1452 // of a function call. 1453 1454 // Add an edge to the start of the function. 1455 const Decl *D = CE->getCalleeContext()->getDecl(); 1456 PathDiagnosticLocation pos = 1457 PathDiagnosticLocation::createBegin(D, SM); 1458 EB.addEdge(pos); 1459 1460 // Flush all locations, and pop the active path. 1461 bool VisitedEntireCall = PD.isWithinCall(); 1462 EB.flushLocations(); 1463 PD.popActivePath(); 1464 PDB.LC = N->getLocationContext(); 1465 1466 // Either we just added a bunch of stuff to the top-level path, or 1467 // we have a previous CallExitEnd. If the former, it means that the 1468 // path terminated within a function call. We must then take the 1469 // current contents of the active path and place it within 1470 // a new PathDiagnosticCallPiece. 1471 PathDiagnosticCallPiece *C; 1472 if (VisitedEntireCall) { 1473 C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front().get()); 1474 } else { 1475 const Decl *Caller = CE->getLocationContext()->getDecl(); 1476 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 1477 LCM[&C->path] = CE->getCalleeContext(); 1478 } 1479 1480 C->setCallee(*CE, SM); 1481 EB.addContext(C->getLocation()); 1482 1483 if (!CallStack.empty()) { 1484 assert(CallStack.back().first == C); 1485 CallStack.pop_back(); 1486 } 1487 return; 1488 } 1489 1490 // Note that is important that we update the LocationContext 1491 // after looking at CallExits. CallExit basically adds an 1492 // edge in the *caller*, so we don't want to update the LocationContext 1493 // too soon. 1494 PDB.LC = N->getLocationContext(); 1495 1496 if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) { 1497 // Does this represent entering a call? If so, look at propagating 1498 // interesting symbols across call boundaries. 1499 if (NextNode) { 1500 const LocationContext *CallerCtx = NextNode->getLocationContext(); 1501 const LocationContext *CalleeCtx = PDB.LC; 1502 if (CallerCtx != CalleeCtx) { 1503 reversePropagateInterestingSymbols(*PDB.getBugReport(), IE, 1504 N->getState().get(), 1505 CalleeCtx, CallerCtx); 1506 } 1507 } 1508 1509 // Are we jumping to the head of a loop? Add a special diagnostic. 1510 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { 1511 PathDiagnosticLocation L(Loop, SM, PDB.LC); 1512 const CompoundStmt *CS = nullptr; 1513 1514 if (const ForStmt *FS = dyn_cast<ForStmt>(Loop)) 1515 CS = dyn_cast<CompoundStmt>(FS->getBody()); 1516 else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop)) 1517 CS = dyn_cast<CompoundStmt>(WS->getBody()); 1518 1519 auto p = std::make_shared<PathDiagnosticEventPiece>( 1520 L, "Looping back to the head of the loop"); 1521 p->setPrunable(true); 1522 1523 EB.addEdge(p->getLocation(), true); 1524 PD.getActivePath().push_front(std::move(p)); 1525 1526 if (CS) { 1527 PathDiagnosticLocation BL = 1528 PathDiagnosticLocation::createEndBrace(CS, SM); 1529 EB.addEdge(BL); 1530 } 1531 } 1532 1533 const CFGBlock *BSrc = BE->getSrc(); 1534 ParentMap &PM = PDB.getParentMap(); 1535 1536 if (const Stmt *Term = BSrc->getTerminator()) { 1537 // Are we jumping past the loop body without ever executing the 1538 // loop (because the condition was false)? 1539 if (isLoopJumpPastBody(Term, &*BE) && 1540 !isInLoopBody(PM, 1541 getStmtBeforeCond(PM, 1542 BSrc->getTerminatorCondition(), 1543 N), 1544 Term)) { 1545 PathDiagnosticLocation L(Term, SM, PDB.LC); 1546 auto PE = std::make_shared<PathDiagnosticEventPiece>( 1547 L, "Loop body executed 0 times"); 1548 PE->setPrunable(true); 1549 1550 EB.addEdge(PE->getLocation(), true); 1551 PD.getActivePath().push_front(std::move(PE)); 1552 } 1553 1554 // In any case, add the terminator as the current statement 1555 // context for control edges. 1556 EB.addContext(Term); 1557 } 1558 } else if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) { 1559 Optional<CFGElement> First = BE->getFirstElement(); 1560 if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) { 1561 const Stmt *stmt = S->getStmt(); 1562 if (IsControlFlowExpr(stmt)) { 1563 // Add the proper context for '&&', '||', and '?'. 1564 EB.addContext(stmt); 1565 } 1566 else 1567 EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt()); 1568 } 1569 } 1570 } 1571 1572 //===----------------------------------------------------------------------===// 1573 // Top-level logic for generating extensive path diagnostics. 1574 //===----------------------------------------------------------------------===// 1575 1576 static bool GenerateExtensivePathDiagnostic( 1577 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 1578 LocationContextMap &LCM, 1579 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 1580 EdgeBuilder EB(PD, PDB); 1581 StackDiagVector CallStack; 1582 1583 InterestingExprs IE; 1584 const ExplodedNode *NextNode = N->pred_empty() ? nullptr : *(N->pred_begin()); 1585 while (NextNode) { 1586 N = NextNode; 1587 NextNode = N->getFirstPred(); 1588 1589 generateExtensiveDiagnosticsForNode(N, PDB, LCM, EB, CallStack, PD, IE); 1590 1591 if (!NextNode) 1592 continue; 1593 1594 // Add pieces from custom visitors. 1595 BugReport *R = PDB.getBugReport(); 1596 llvm::FoldingSet<PathDiagnosticPiece> DeduplicationSet; 1597 for (auto &V : visitors) { 1598 if (auto p = V->VisitNode(N, NextNode, PDB, *R)) { 1599 if (DeduplicationSet.GetOrInsertNode(p.get()) != p.get()) 1600 continue; 1601 1602 const PathDiagnosticLocation &Loc = p->getLocation(); 1603 EB.addEdge(Loc, true); 1604 updateStackPiecesWithMessage(*p, CallStack); 1605 PD.getActivePath().push_front(std::move(p)); 1606 1607 if (const Stmt *S = Loc.asStmt()) 1608 EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); 1609 } 1610 } 1611 } 1612 1613 return PDB.getBugReport()->isValid(); 1614 } 1615 1616 /// \brief Adds a sanitized control-flow diagnostic edge to a path. 1617 static void addEdgeToPath(PathPieces &path, 1618 PathDiagnosticLocation &PrevLoc, 1619 PathDiagnosticLocation NewLoc, 1620 const LocationContext *LC) { 1621 if (!NewLoc.isValid()) 1622 return; 1623 1624 SourceLocation NewLocL = NewLoc.asLocation(); 1625 if (NewLocL.isInvalid()) 1626 return; 1627 1628 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) { 1629 PrevLoc = NewLoc; 1630 return; 1631 } 1632 1633 // Ignore self-edges, which occur when there are multiple nodes at the same 1634 // statement. 1635 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt()) 1636 return; 1637 1638 path.push_front( 1639 std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc)); 1640 PrevLoc = NewLoc; 1641 } 1642 1643 /// A customized wrapper for CFGBlock::getTerminatorCondition() 1644 /// which returns the element for ObjCForCollectionStmts. 1645 static const Stmt *getTerminatorCondition(const CFGBlock *B) { 1646 const Stmt *S = B->getTerminatorCondition(); 1647 if (const ObjCForCollectionStmt *FS = 1648 dyn_cast_or_null<ObjCForCollectionStmt>(S)) 1649 return FS->getElement(); 1650 return S; 1651 } 1652 1653 static const char StrEnteringLoop[] = "Entering loop body"; 1654 static const char StrLoopBodyZero[] = "Loop body executed 0 times"; 1655 static const char StrLoopRangeEmpty[] = 1656 "Loop body skipped when range is empty"; 1657 static const char StrLoopCollectionEmpty[] = 1658 "Loop body skipped when collection is empty"; 1659 1660 /// Generate alternate-extensive diagnostics for the node \p N, 1661 /// and write it into \p PD. 1662 static void generateAlternateExtensiveDiagnosticsForNode(const ExplodedNode *N, 1663 PathDiagnostic &PD, 1664 PathDiagnosticLocation &PrevLoc, 1665 PathDiagnosticBuilder &PDB, 1666 LocationContextMap &LCM, 1667 StackDiagVector &CallStack, 1668 InterestingExprs &IE) { 1669 const ExplodedNode *NextNode = N->getFirstPred(); 1670 ProgramPoint P = N->getLocation(); 1671 const SourceManager& SM = PDB.getSourceManager(); 1672 1673 // Have we encountered an entrance to a call? It may be 1674 // the case that we have not encountered a matching 1675 // call exit before this point. This means that the path 1676 // terminated within the call itself. 1677 if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { 1678 // Add an edge to the start of the function. 1679 const StackFrameContext *CalleeLC = CE->getCalleeContext(); 1680 const Decl *D = CalleeLC->getDecl(); 1681 // Add the edge only when the callee has body. We jump to the beginning 1682 // of the *declaration*, however we expect it to be followed by the 1683 // body. This isn't the case for autosynthesized property accessors in 1684 // Objective-C. No need for a similar extra check for CallExit points 1685 // because the exit edge comes from a statement (i.e. return), 1686 // not from declaration. 1687 if (D->hasBody()) 1688 addEdgeToPath(PD.getActivePath(), PrevLoc, 1689 PathDiagnosticLocation::createBegin(D, SM), CalleeLC); 1690 1691 // Did we visit an entire call? 1692 bool VisitedEntireCall = PD.isWithinCall(); 1693 PD.popActivePath(); 1694 1695 PathDiagnosticCallPiece *C; 1696 if (VisitedEntireCall) { 1697 PathDiagnosticPiece *P = PD.getActivePath().front().get(); 1698 C = cast<PathDiagnosticCallPiece>(P); 1699 } else { 1700 const Decl *Caller = CE->getLocationContext()->getDecl(); 1701 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 1702 1703 // Since we just transferred the path over to the call piece, 1704 // reset the mapping from active to location context. 1705 assert(PD.getActivePath().size() == 1 && 1706 PD.getActivePath().front().get() == C); 1707 LCM[&PD.getActivePath()] = nullptr; 1708 1709 // Record the location context mapping for the path within 1710 // the call. 1711 assert(LCM[&C->path] == nullptr || 1712 LCM[&C->path] == CE->getCalleeContext()); 1713 LCM[&C->path] = CE->getCalleeContext(); 1714 1715 // If this is the first item in the active path, record 1716 // the new mapping from active path to location context. 1717 const LocationContext *&NewLC = LCM[&PD.getActivePath()]; 1718 if (!NewLC) 1719 NewLC = N->getLocationContext(); 1720 1721 PDB.LC = NewLC; 1722 } 1723 C->setCallee(*CE, SM); 1724 1725 // Update the previous location in the active path. 1726 PrevLoc = C->getLocation(); 1727 1728 if (!CallStack.empty()) { 1729 assert(CallStack.back().first == C); 1730 CallStack.pop_back(); 1731 } 1732 return; 1733 } 1734 1735 // Query the location context here and the previous location 1736 // as processing CallEnter may change the active path. 1737 PDB.LC = N->getLocationContext(); 1738 1739 // Record the mapping from the active path to the location 1740 // context. 1741 assert(!LCM[&PD.getActivePath()] || 1742 LCM[&PD.getActivePath()] == PDB.LC); 1743 LCM[&PD.getActivePath()] = PDB.LC; 1744 1745 // Have we encountered an exit from a function call? 1746 if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 1747 const Stmt *S = CE->getCalleeContext()->getCallSite(); 1748 // Propagate the interesting symbols accordingly. 1749 if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) { 1750 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1751 N->getState().get(), Ex, 1752 N->getLocationContext()); 1753 } 1754 1755 // We are descending into a call (backwards). Construct 1756 // a new call piece to contain the path pieces for that call. 1757 auto C = PathDiagnosticCallPiece::construct(N, *CE, SM); 1758 1759 // Record the location context for this call piece. 1760 LCM[&C->path] = CE->getCalleeContext(); 1761 1762 // Add the edge to the return site. 1763 addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC); 1764 auto *P = C.get(); 1765 PD.getActivePath().push_front(std::move(C)); 1766 PrevLoc.invalidate(); 1767 1768 // Make the contents of the call the active path for now. 1769 PD.pushActivePath(&P->path); 1770 CallStack.push_back(StackDiagPair(P, N)); 1771 } else if (Optional<PostStmt> PS = P.getAs<PostStmt>()) { 1772 // For expressions, make sure we propagate the 1773 // interesting symbols correctly. 1774 if (const Expr *Ex = PS->getStmtAs<Expr>()) 1775 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1776 N->getState().get(), Ex, 1777 N->getLocationContext()); 1778 1779 // Add an edge. If this is an ObjCForCollectionStmt do 1780 // not add an edge here as it appears in the CFG both 1781 // as a terminator and as a terminator condition. 1782 if (!isa<ObjCForCollectionStmt>(PS->getStmt())) { 1783 PathDiagnosticLocation L = 1784 PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC); 1785 addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC); 1786 } 1787 } else if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) { 1788 // Does this represent entering a call? If so, look at propagating 1789 // interesting symbols across call boundaries. 1790 if (NextNode) { 1791 const LocationContext *CallerCtx = NextNode->getLocationContext(); 1792 const LocationContext *CalleeCtx = PDB.LC; 1793 if (CallerCtx != CalleeCtx) { 1794 reversePropagateInterestingSymbols(*PDB.getBugReport(), IE, 1795 N->getState().get(), 1796 CalleeCtx, CallerCtx); 1797 } 1798 } 1799 1800 // Are we jumping to the head of a loop? Add a special diagnostic. 1801 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { 1802 PathDiagnosticLocation L(Loop, SM, PDB.LC); 1803 const Stmt *Body = nullptr; 1804 1805 if (const ForStmt *FS = dyn_cast<ForStmt>(Loop)) 1806 Body = FS->getBody(); 1807 else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop)) 1808 Body = WS->getBody(); 1809 else if (const ObjCForCollectionStmt *OFS = 1810 dyn_cast<ObjCForCollectionStmt>(Loop)) { 1811 Body = OFS->getBody(); 1812 } else if (const CXXForRangeStmt *FRS = 1813 dyn_cast<CXXForRangeStmt>(Loop)) { 1814 Body = FRS->getBody(); 1815 } 1816 // do-while statements are explicitly excluded here 1817 1818 auto p = std::make_shared<PathDiagnosticEventPiece>( 1819 L, "Looping back to the head " 1820 "of the loop"); 1821 p->setPrunable(true); 1822 1823 addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC); 1824 PD.getActivePath().push_front(std::move(p)); 1825 1826 if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 1827 addEdgeToPath(PD.getActivePath(), PrevLoc, 1828 PathDiagnosticLocation::createEndBrace(CS, SM), 1829 PDB.LC); 1830 } 1831 } 1832 1833 const CFGBlock *BSrc = BE->getSrc(); 1834 ParentMap &PM = PDB.getParentMap(); 1835 1836 if (const Stmt *Term = BSrc->getTerminator()) { 1837 // Are we jumping past the loop body without ever executing the 1838 // loop (because the condition was false)? 1839 if (isLoop(Term)) { 1840 const Stmt *TermCond = getTerminatorCondition(BSrc); 1841 bool IsInLoopBody = 1842 isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term); 1843 1844 const char *str = nullptr; 1845 1846 if (isJumpToFalseBranch(&*BE)) { 1847 if (!IsInLoopBody) { 1848 if (isa<ObjCForCollectionStmt>(Term)) { 1849 str = StrLoopCollectionEmpty; 1850 } else if (isa<CXXForRangeStmt>(Term)) { 1851 str = StrLoopRangeEmpty; 1852 } else { 1853 str = StrLoopBodyZero; 1854 } 1855 } 1856 } else { 1857 str = StrEnteringLoop; 1858 } 1859 1860 if (str) { 1861 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC); 1862 auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str); 1863 PE->setPrunable(true); 1864 addEdgeToPath(PD.getActivePath(), PrevLoc, 1865 PE->getLocation(), PDB.LC); 1866 PD.getActivePath().push_front(std::move(PE)); 1867 } 1868 } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) || 1869 isa<GotoStmt>(Term)) { 1870 PathDiagnosticLocation L(Term, SM, PDB.LC); 1871 addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC); 1872 } 1873 } 1874 } 1875 } 1876 1877 static bool GenerateAlternateExtensivePathDiagnostic( 1878 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 1879 LocationContextMap &LCM, 1880 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 1881 1882 BugReport *report = PDB.getBugReport(); 1883 const SourceManager& SM = PDB.getSourceManager(); 1884 StackDiagVector CallStack; 1885 InterestingExprs IE; 1886 1887 PathDiagnosticLocation PrevLoc = PD.getLocation(); 1888 1889 const ExplodedNode *NextNode = N->getFirstPred(); 1890 while (NextNode) { 1891 N = NextNode; 1892 NextNode = N->getFirstPred(); 1893 1894 generateAlternateExtensiveDiagnosticsForNode( 1895 N, PD, PrevLoc, PDB, LCM, CallStack, IE); 1896 1897 if (!NextNode) 1898 continue; 1899 1900 // Add pieces from custom visitors. 1901 llvm::FoldingSet<PathDiagnosticPiece> DeduplicationSet; 1902 for (auto &V : visitors) { 1903 if (auto p = V->VisitNode(N, NextNode, PDB, *report)) { 1904 if (DeduplicationSet.GetOrInsertNode(p.get()) != p.get()) 1905 continue; 1906 1907 addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC); 1908 updateStackPiecesWithMessage(*p, CallStack); 1909 PD.getActivePath().push_front(std::move(p)); 1910 } 1911 } 1912 } 1913 1914 // Add an edge to the start of the function. 1915 // We'll prune it out later, but it helps make diagnostics more uniform. 1916 const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame(); 1917 const Decl *D = CalleeLC->getDecl(); 1918 addEdgeToPath(PD.getActivePath(), PrevLoc, 1919 PathDiagnosticLocation::createBegin(D, SM), 1920 CalleeLC); 1921 1922 return report->isValid(); 1923 } 1924 1925 static const Stmt *getLocStmt(PathDiagnosticLocation L) { 1926 if (!L.isValid()) 1927 return nullptr; 1928 return L.asStmt(); 1929 } 1930 1931 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) { 1932 if (!S) 1933 return nullptr; 1934 1935 while (true) { 1936 S = PM.getParentIgnoreParens(S); 1937 1938 if (!S) 1939 break; 1940 1941 if (isa<ExprWithCleanups>(S) || 1942 isa<CXXBindTemporaryExpr>(S) || 1943 isa<SubstNonTypeTemplateParmExpr>(S)) 1944 continue; 1945 1946 break; 1947 } 1948 1949 return S; 1950 } 1951 1952 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { 1953 switch (S->getStmtClass()) { 1954 case Stmt::BinaryOperatorClass: { 1955 const BinaryOperator *BO = cast<BinaryOperator>(S); 1956 if (!BO->isLogicalOp()) 1957 return false; 1958 return BO->getLHS() == Cond || BO->getRHS() == Cond; 1959 } 1960 case Stmt::IfStmtClass: 1961 return cast<IfStmt>(S)->getCond() == Cond; 1962 case Stmt::ForStmtClass: 1963 return cast<ForStmt>(S)->getCond() == Cond; 1964 case Stmt::WhileStmtClass: 1965 return cast<WhileStmt>(S)->getCond() == Cond; 1966 case Stmt::DoStmtClass: 1967 return cast<DoStmt>(S)->getCond() == Cond; 1968 case Stmt::ChooseExprClass: 1969 return cast<ChooseExpr>(S)->getCond() == Cond; 1970 case Stmt::IndirectGotoStmtClass: 1971 return cast<IndirectGotoStmt>(S)->getTarget() == Cond; 1972 case Stmt::SwitchStmtClass: 1973 return cast<SwitchStmt>(S)->getCond() == Cond; 1974 case Stmt::BinaryConditionalOperatorClass: 1975 return cast<BinaryConditionalOperator>(S)->getCond() == Cond; 1976 case Stmt::ConditionalOperatorClass: { 1977 const ConditionalOperator *CO = cast<ConditionalOperator>(S); 1978 return CO->getCond() == Cond || 1979 CO->getLHS() == Cond || 1980 CO->getRHS() == Cond; 1981 } 1982 case Stmt::ObjCForCollectionStmtClass: 1983 return cast<ObjCForCollectionStmt>(S)->getElement() == Cond; 1984 case Stmt::CXXForRangeStmtClass: { 1985 const CXXForRangeStmt *FRS = cast<CXXForRangeStmt>(S); 1986 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond; 1987 } 1988 default: 1989 return false; 1990 } 1991 } 1992 1993 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) { 1994 if (const ForStmt *FS = dyn_cast<ForStmt>(FL)) 1995 return FS->getInc() == S || FS->getInit() == S; 1996 if (const CXXForRangeStmt *FRS = dyn_cast<CXXForRangeStmt>(FL)) 1997 return FRS->getInc() == S || FRS->getRangeStmt() == S || 1998 FRS->getLoopVarStmt() || FRS->getRangeInit() == S; 1999 return false; 2000 } 2001 2002 typedef llvm::DenseSet<const PathDiagnosticCallPiece *> 2003 OptimizedCallsSet; 2004 2005 /// Adds synthetic edges from top-level statements to their subexpressions. 2006 /// 2007 /// This avoids a "swoosh" effect, where an edge from a top-level statement A 2008 /// points to a sub-expression B.1 that's not at the start of B. In these cases, 2009 /// we'd like to see an edge from A to B, then another one from B to B.1. 2010 static void addContextEdges(PathPieces &pieces, SourceManager &SM, 2011 const ParentMap &PM, const LocationContext *LCtx) { 2012 PathPieces::iterator Prev = pieces.end(); 2013 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E; 2014 Prev = I, ++I) { 2015 PathDiagnosticControlFlowPiece *Piece = 2016 dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 2017 2018 if (!Piece) 2019 continue; 2020 2021 PathDiagnosticLocation SrcLoc = Piece->getStartLocation(); 2022 SmallVector<PathDiagnosticLocation, 4> SrcContexts; 2023 2024 PathDiagnosticLocation NextSrcContext = SrcLoc; 2025 const Stmt *InnerStmt = nullptr; 2026 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) { 2027 SrcContexts.push_back(NextSrcContext); 2028 InnerStmt = NextSrcContext.asStmt(); 2029 NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx, 2030 /*allowNested=*/true); 2031 } 2032 2033 // Repeatedly split the edge as necessary. 2034 // This is important for nested logical expressions (||, &&, ?:) where we 2035 // want to show all the levels of context. 2036 while (true) { 2037 const Stmt *Dst = getLocStmt(Piece->getEndLocation()); 2038 2039 // We are looking at an edge. Is the destination within a larger 2040 // expression? 2041 PathDiagnosticLocation DstContext = 2042 getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true); 2043 if (!DstContext.isValid() || DstContext.asStmt() == Dst) 2044 break; 2045 2046 // If the source is in the same context, we're already good. 2047 if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) != 2048 SrcContexts.end()) 2049 break; 2050 2051 // Update the subexpression node to point to the context edge. 2052 Piece->setStartLocation(DstContext); 2053 2054 // Try to extend the previous edge if it's at the same level as the source 2055 // context. 2056 if (Prev != E) { 2057 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get()); 2058 2059 if (PrevPiece) { 2060 if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) { 2061 const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM); 2062 if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) { 2063 PrevPiece->setEndLocation(DstContext); 2064 break; 2065 } 2066 } 2067 } 2068 } 2069 2070 // Otherwise, split the current edge into a context edge and a 2071 // subexpression edge. Note that the context statement may itself have 2072 // context. 2073 auto P = 2074 std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext); 2075 Piece = P.get(); 2076 I = pieces.insert(I, std::move(P)); 2077 } 2078 } 2079 } 2080 2081 /// \brief Move edges from a branch condition to a branch target 2082 /// when the condition is simple. 2083 /// 2084 /// This restructures some of the work of addContextEdges. That function 2085 /// creates edges this may destroy, but they work together to create a more 2086 /// aesthetically set of edges around branches. After the call to 2087 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from 2088 /// the branch to the branch condition, and (3) an edge from the branch 2089 /// condition to the branch target. We keep (1), but may wish to remove (2) 2090 /// and move the source of (3) to the branch if the branch condition is simple. 2091 /// 2092 static void simplifySimpleBranches(PathPieces &pieces) { 2093 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) { 2094 2095 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 2096 2097 if (!PieceI) 2098 continue; 2099 2100 const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); 2101 const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); 2102 2103 if (!s1Start || !s1End) 2104 continue; 2105 2106 PathPieces::iterator NextI = I; ++NextI; 2107 if (NextI == E) 2108 break; 2109 2110 PathDiagnosticControlFlowPiece *PieceNextI = nullptr; 2111 2112 while (true) { 2113 if (NextI == E) 2114 break; 2115 2116 auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 2117 if (EV) { 2118 StringRef S = EV->getString(); 2119 if (S == StrEnteringLoop || S == StrLoopBodyZero || 2120 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) { 2121 ++NextI; 2122 continue; 2123 } 2124 break; 2125 } 2126 2127 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 2128 break; 2129 } 2130 2131 if (!PieceNextI) 2132 continue; 2133 2134 const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); 2135 const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); 2136 2137 if (!s2Start || !s2End || s1End != s2Start) 2138 continue; 2139 2140 // We only perform this transformation for specific branch kinds. 2141 // We don't want to do this for do..while, for example. 2142 if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) || 2143 isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) || 2144 isa<CXXForRangeStmt>(s1Start))) 2145 continue; 2146 2147 // Is s1End the branch condition? 2148 if (!isConditionForTerminator(s1Start, s1End)) 2149 continue; 2150 2151 // Perform the hoisting by eliminating (2) and changing the start 2152 // location of (3). 2153 PieceNextI->setStartLocation(PieceI->getStartLocation()); 2154 I = pieces.erase(I); 2155 } 2156 } 2157 2158 /// Returns the number of bytes in the given (character-based) SourceRange. 2159 /// 2160 /// If the locations in the range are not on the same line, returns None. 2161 /// 2162 /// Note that this does not do a precise user-visible character or column count. 2163 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM, 2164 SourceRange Range) { 2165 SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()), 2166 SM.getExpansionRange(Range.getEnd()).second); 2167 2168 FileID FID = SM.getFileID(ExpansionRange.getBegin()); 2169 if (FID != SM.getFileID(ExpansionRange.getEnd())) 2170 return None; 2171 2172 bool Invalid; 2173 const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid); 2174 if (Invalid) 2175 return None; 2176 2177 unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin()); 2178 unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd()); 2179 StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset); 2180 2181 // We're searching the raw bytes of the buffer here, which might include 2182 // escaped newlines and such. That's okay; we're trying to decide whether the 2183 // SourceRange is covering a large or small amount of space in the user's 2184 // editor. 2185 if (Snippet.find_first_of("\r\n") != StringRef::npos) 2186 return None; 2187 2188 // This isn't Unicode-aware, but it doesn't need to be. 2189 return Snippet.size(); 2190 } 2191 2192 /// \sa getLengthOnSingleLine(SourceManager, SourceRange) 2193 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM, 2194 const Stmt *S) { 2195 return getLengthOnSingleLine(SM, S->getSourceRange()); 2196 } 2197 2198 /// Eliminate two-edge cycles created by addContextEdges(). 2199 /// 2200 /// Once all the context edges are in place, there are plenty of cases where 2201 /// there's a single edge from a top-level statement to a subexpression, 2202 /// followed by a single path note, and then a reverse edge to get back out to 2203 /// the top level. If the statement is simple enough, the subexpression edges 2204 /// just add noise and make it harder to understand what's going on. 2205 /// 2206 /// This function only removes edges in pairs, because removing only one edge 2207 /// might leave other edges dangling. 2208 /// 2209 /// This will not remove edges in more complicated situations: 2210 /// - if there is more than one "hop" leading to or from a subexpression. 2211 /// - if there is an inlined call between the edges instead of a single event. 2212 /// - if the whole statement is large enough that having subexpression arrows 2213 /// might be helpful. 2214 static void removeContextCycles(PathPieces &Path, SourceManager &SM, 2215 ParentMap &PM) { 2216 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) { 2217 // Pattern match the current piece and its successor. 2218 PathDiagnosticControlFlowPiece *PieceI = 2219 dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 2220 2221 if (!PieceI) { 2222 ++I; 2223 continue; 2224 } 2225 2226 const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); 2227 const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); 2228 2229 PathPieces::iterator NextI = I; ++NextI; 2230 if (NextI == E) 2231 break; 2232 2233 PathDiagnosticControlFlowPiece *PieceNextI = 2234 dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 2235 2236 if (!PieceNextI) { 2237 if (isa<PathDiagnosticEventPiece>(NextI->get())) { 2238 ++NextI; 2239 if (NextI == E) 2240 break; 2241 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 2242 } 2243 2244 if (!PieceNextI) { 2245 ++I; 2246 continue; 2247 } 2248 } 2249 2250 const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); 2251 const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); 2252 2253 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) { 2254 const size_t MAX_SHORT_LINE_LENGTH = 80; 2255 Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start); 2256 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) { 2257 Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start); 2258 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) { 2259 Path.erase(I); 2260 I = Path.erase(NextI); 2261 continue; 2262 } 2263 } 2264 } 2265 2266 ++I; 2267 } 2268 } 2269 2270 /// \brief Return true if X is contained by Y. 2271 static bool lexicalContains(ParentMap &PM, 2272 const Stmt *X, 2273 const Stmt *Y) { 2274 while (X) { 2275 if (X == Y) 2276 return true; 2277 X = PM.getParent(X); 2278 } 2279 return false; 2280 } 2281 2282 // Remove short edges on the same line less than 3 columns in difference. 2283 static void removePunyEdges(PathPieces &path, 2284 SourceManager &SM, 2285 ParentMap &PM) { 2286 2287 bool erased = false; 2288 2289 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; 2290 erased ? I : ++I) { 2291 2292 erased = false; 2293 2294 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 2295 2296 if (!PieceI) 2297 continue; 2298 2299 const Stmt *start = getLocStmt(PieceI->getStartLocation()); 2300 const Stmt *end = getLocStmt(PieceI->getEndLocation()); 2301 2302 if (!start || !end) 2303 continue; 2304 2305 const Stmt *endParent = PM.getParent(end); 2306 if (!endParent) 2307 continue; 2308 2309 if (isConditionForTerminator(end, endParent)) 2310 continue; 2311 2312 SourceLocation FirstLoc = start->getLocStart(); 2313 SourceLocation SecondLoc = end->getLocStart(); 2314 2315 if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc)) 2316 continue; 2317 if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc)) 2318 std::swap(SecondLoc, FirstLoc); 2319 2320 SourceRange EdgeRange(FirstLoc, SecondLoc); 2321 Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange); 2322 2323 // If the statements are on different lines, continue. 2324 if (!ByteWidth) 2325 continue; 2326 2327 const size_t MAX_PUNY_EDGE_LENGTH = 2; 2328 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) { 2329 // FIXME: There are enough /bytes/ between the endpoints of the edge, but 2330 // there might not be enough /columns/. A proper user-visible column count 2331 // is probably too expensive, though. 2332 I = path.erase(I); 2333 erased = true; 2334 continue; 2335 } 2336 } 2337 } 2338 2339 static void removeIdenticalEvents(PathPieces &path) { 2340 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) { 2341 auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get()); 2342 2343 if (!PieceI) 2344 continue; 2345 2346 PathPieces::iterator NextI = I; ++NextI; 2347 if (NextI == E) 2348 return; 2349 2350 auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 2351 2352 if (!PieceNextI) 2353 continue; 2354 2355 // Erase the second piece if it has the same exact message text. 2356 if (PieceI->getString() == PieceNextI->getString()) { 2357 path.erase(NextI); 2358 } 2359 } 2360 } 2361 2362 static bool optimizeEdges(PathPieces &path, SourceManager &SM, 2363 OptimizedCallsSet &OCS, 2364 LocationContextMap &LCM) { 2365 bool hasChanges = false; 2366 const LocationContext *LC = LCM[&path]; 2367 assert(LC); 2368 ParentMap &PM = LC->getParentMap(); 2369 2370 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { 2371 // Optimize subpaths. 2372 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) { 2373 // Record the fact that a call has been optimized so we only do the 2374 // effort once. 2375 if (!OCS.count(CallI)) { 2376 while (optimizeEdges(CallI->path, SM, OCS, LCM)) {} 2377 OCS.insert(CallI); 2378 } 2379 ++I; 2380 continue; 2381 } 2382 2383 // Pattern match the current piece and its successor. 2384 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 2385 2386 if (!PieceI) { 2387 ++I; 2388 continue; 2389 } 2390 2391 const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); 2392 const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); 2393 const Stmt *level1 = getStmtParent(s1Start, PM); 2394 const Stmt *level2 = getStmtParent(s1End, PM); 2395 2396 PathPieces::iterator NextI = I; ++NextI; 2397 if (NextI == E) 2398 break; 2399 2400 auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 2401 2402 if (!PieceNextI) { 2403 ++I; 2404 continue; 2405 } 2406 2407 const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); 2408 const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); 2409 const Stmt *level3 = getStmtParent(s2Start, PM); 2410 const Stmt *level4 = getStmtParent(s2End, PM); 2411 2412 // Rule I. 2413 // 2414 // If we have two consecutive control edges whose end/begin locations 2415 // are at the same level (e.g. statements or top-level expressions within 2416 // a compound statement, or siblings share a single ancestor expression), 2417 // then merge them if they have no interesting intermediate event. 2418 // 2419 // For example: 2420 // 2421 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common 2422 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. 2423 // 2424 // NOTE: this will be limited later in cases where we add barriers 2425 // to prevent this optimization. 2426 // 2427 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { 2428 PieceI->setEndLocation(PieceNextI->getEndLocation()); 2429 path.erase(NextI); 2430 hasChanges = true; 2431 continue; 2432 } 2433 2434 // Rule II. 2435 // 2436 // Eliminate edges between subexpressions and parent expressions 2437 // when the subexpression is consumed. 2438 // 2439 // NOTE: this will be limited later in cases where we add barriers 2440 // to prevent this optimization. 2441 // 2442 if (s1End && s1End == s2Start && level2) { 2443 bool removeEdge = false; 2444 // Remove edges into the increment or initialization of a 2445 // loop that have no interleaving event. This means that 2446 // they aren't interesting. 2447 if (isIncrementOrInitInForLoop(s1End, level2)) 2448 removeEdge = true; 2449 // Next only consider edges that are not anchored on 2450 // the condition of a terminator. This are intermediate edges 2451 // that we might want to trim. 2452 else if (!isConditionForTerminator(level2, s1End)) { 2453 // Trim edges on expressions that are consumed by 2454 // the parent expression. 2455 if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) { 2456 removeEdge = true; 2457 } 2458 // Trim edges where a lexical containment doesn't exist. 2459 // For example: 2460 // 2461 // X -> Y -> Z 2462 // 2463 // If 'Z' lexically contains Y (it is an ancestor) and 2464 // 'X' does not lexically contain Y (it is a descendant OR 2465 // it has no lexical relationship at all) then trim. 2466 // 2467 // This can eliminate edges where we dive into a subexpression 2468 // and then pop back out, etc. 2469 else if (s1Start && s2End && 2470 lexicalContains(PM, s2Start, s2End) && 2471 !lexicalContains(PM, s1End, s1Start)) { 2472 removeEdge = true; 2473 } 2474 // Trim edges from a subexpression back to the top level if the 2475 // subexpression is on a different line. 2476 // 2477 // A.1 -> A -> B 2478 // becomes 2479 // A.1 -> B 2480 // 2481 // These edges just look ugly and don't usually add anything. 2482 else if (s1Start && s2End && 2483 lexicalContains(PM, s1Start, s1End)) { 2484 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(), 2485 PieceI->getStartLocation().asLocation()); 2486 if (!getLengthOnSingleLine(SM, EdgeRange).hasValue()) 2487 removeEdge = true; 2488 } 2489 } 2490 2491 if (removeEdge) { 2492 PieceI->setEndLocation(PieceNextI->getEndLocation()); 2493 path.erase(NextI); 2494 hasChanges = true; 2495 continue; 2496 } 2497 } 2498 2499 // Optimize edges for ObjC fast-enumeration loops. 2500 // 2501 // (X -> collection) -> (collection -> element) 2502 // 2503 // becomes: 2504 // 2505 // (X -> element) 2506 if (s1End == s2Start) { 2507 const ObjCForCollectionStmt *FS = 2508 dyn_cast_or_null<ObjCForCollectionStmt>(level3); 2509 if (FS && FS->getCollection()->IgnoreParens() == s2Start && 2510 s2End == FS->getElement()) { 2511 PieceI->setEndLocation(PieceNextI->getEndLocation()); 2512 path.erase(NextI); 2513 hasChanges = true; 2514 continue; 2515 } 2516 } 2517 2518 // No changes at this index? Move to the next one. 2519 ++I; 2520 } 2521 2522 if (!hasChanges) { 2523 // Adjust edges into subexpressions to make them more uniform 2524 // and aesthetically pleasing. 2525 addContextEdges(path, SM, PM, LC); 2526 // Remove "cyclical" edges that include one or more context edges. 2527 removeContextCycles(path, SM, PM); 2528 // Hoist edges originating from branch conditions to branches 2529 // for simple branches. 2530 simplifySimpleBranches(path); 2531 // Remove any puny edges left over after primary optimization pass. 2532 removePunyEdges(path, SM, PM); 2533 // Remove identical events. 2534 removeIdenticalEvents(path); 2535 } 2536 2537 return hasChanges; 2538 } 2539 2540 /// Drop the very first edge in a path, which should be a function entry edge. 2541 /// 2542 /// If the first edge is not a function entry edge (say, because the first 2543 /// statement had an invalid source location), this function does nothing. 2544 // FIXME: We should just generate invalid edges anyway and have the optimizer 2545 // deal with them. 2546 static void dropFunctionEntryEdge(PathPieces &Path, 2547 LocationContextMap &LCM, 2548 SourceManager &SM) { 2549 const auto *FirstEdge = 2550 dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get()); 2551 if (!FirstEdge) 2552 return; 2553 2554 const Decl *D = LCM[&Path]->getDecl(); 2555 PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM); 2556 if (FirstEdge->getStartLocation() != EntryLoc) 2557 return; 2558 2559 Path.pop_front(); 2560 } 2561 2562 2563 //===----------------------------------------------------------------------===// 2564 // Methods for BugType and subclasses. 2565 //===----------------------------------------------------------------------===// 2566 void BugType::anchor() { } 2567 2568 void BugType::FlushReports(BugReporter &BR) {} 2569 2570 void BuiltinBug::anchor() {} 2571 2572 //===----------------------------------------------------------------------===// 2573 // Methods for BugReport and subclasses. 2574 //===----------------------------------------------------------------------===// 2575 2576 void BugReport::NodeResolver::anchor() {} 2577 2578 void BugReport::addVisitor(std::unique_ptr<BugReporterVisitor> visitor) { 2579 if (!visitor) 2580 return; 2581 2582 llvm::FoldingSetNodeID ID; 2583 visitor->Profile(ID); 2584 void *InsertPos; 2585 2586 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) 2587 return; 2588 2589 CallbacksSet.InsertNode(visitor.get(), InsertPos); 2590 Callbacks.push_back(std::move(visitor)); 2591 ++ConfigurationChangeToken; 2592 } 2593 2594 BugReport::~BugReport() { 2595 while (!interestingSymbols.empty()) { 2596 popInterestingSymbolsAndRegions(); 2597 } 2598 } 2599 2600 const Decl *BugReport::getDeclWithIssue() const { 2601 if (DeclWithIssue) 2602 return DeclWithIssue; 2603 2604 const ExplodedNode *N = getErrorNode(); 2605 if (!N) 2606 return nullptr; 2607 2608 const LocationContext *LC = N->getLocationContext(); 2609 return LC->getCurrentStackFrame()->getDecl(); 2610 } 2611 2612 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const { 2613 hash.AddPointer(&BT); 2614 hash.AddString(Description); 2615 PathDiagnosticLocation UL = getUniqueingLocation(); 2616 if (UL.isValid()) { 2617 UL.Profile(hash); 2618 } else if (Location.isValid()) { 2619 Location.Profile(hash); 2620 } else { 2621 assert(ErrorNode); 2622 hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode)); 2623 } 2624 2625 for (SourceRange range : Ranges) { 2626 if (!range.isValid()) 2627 continue; 2628 hash.AddInteger(range.getBegin().getRawEncoding()); 2629 hash.AddInteger(range.getEnd().getRawEncoding()); 2630 } 2631 } 2632 2633 void BugReport::markInteresting(SymbolRef sym) { 2634 if (!sym) 2635 return; 2636 2637 // If the symbol wasn't already in our set, note a configuration change. 2638 if (getInterestingSymbols().insert(sym).second) 2639 ++ConfigurationChangeToken; 2640 2641 if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym)) 2642 getInterestingRegions().insert(meta->getRegion()); 2643 } 2644 2645 void BugReport::markInteresting(const MemRegion *R) { 2646 if (!R) 2647 return; 2648 2649 // If the base region wasn't already in our set, note a configuration change. 2650 R = R->getBaseRegion(); 2651 if (getInterestingRegions().insert(R).second) 2652 ++ConfigurationChangeToken; 2653 2654 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 2655 getInterestingSymbols().insert(SR->getSymbol()); 2656 } 2657 2658 void BugReport::markInteresting(SVal V) { 2659 markInteresting(V.getAsRegion()); 2660 markInteresting(V.getAsSymbol()); 2661 } 2662 2663 void BugReport::markInteresting(const LocationContext *LC) { 2664 if (!LC) 2665 return; 2666 InterestingLocationContexts.insert(LC); 2667 } 2668 2669 bool BugReport::isInteresting(SVal V) { 2670 return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol()); 2671 } 2672 2673 bool BugReport::isInteresting(SymbolRef sym) { 2674 if (!sym) 2675 return false; 2676 // We don't currently consider metadata symbols to be interesting 2677 // even if we know their region is interesting. Is that correct behavior? 2678 return getInterestingSymbols().count(sym); 2679 } 2680 2681 bool BugReport::isInteresting(const MemRegion *R) { 2682 if (!R) 2683 return false; 2684 R = R->getBaseRegion(); 2685 bool b = getInterestingRegions().count(R); 2686 if (b) 2687 return true; 2688 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 2689 return getInterestingSymbols().count(SR->getSymbol()); 2690 return false; 2691 } 2692 2693 bool BugReport::isInteresting(const LocationContext *LC) { 2694 if (!LC) 2695 return false; 2696 return InterestingLocationContexts.count(LC); 2697 } 2698 2699 void BugReport::lazyInitializeInterestingSets() { 2700 if (interestingSymbols.empty()) { 2701 interestingSymbols.push_back(new Symbols()); 2702 interestingRegions.push_back(new Regions()); 2703 } 2704 } 2705 2706 BugReport::Symbols &BugReport::getInterestingSymbols() { 2707 lazyInitializeInterestingSets(); 2708 return *interestingSymbols.back(); 2709 } 2710 2711 BugReport::Regions &BugReport::getInterestingRegions() { 2712 lazyInitializeInterestingSets(); 2713 return *interestingRegions.back(); 2714 } 2715 2716 void BugReport::pushInterestingSymbolsAndRegions() { 2717 interestingSymbols.push_back(new Symbols(getInterestingSymbols())); 2718 interestingRegions.push_back(new Regions(getInterestingRegions())); 2719 } 2720 2721 void BugReport::popInterestingSymbolsAndRegions() { 2722 delete interestingSymbols.pop_back_val(); 2723 delete interestingRegions.pop_back_val(); 2724 } 2725 2726 const Stmt *BugReport::getStmt() const { 2727 if (!ErrorNode) 2728 return nullptr; 2729 2730 ProgramPoint ProgP = ErrorNode->getLocation(); 2731 const Stmt *S = nullptr; 2732 2733 if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) { 2734 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); 2735 if (BE->getBlock() == &Exit) 2736 S = GetPreviousStmt(ErrorNode); 2737 } 2738 if (!S) 2739 S = PathDiagnosticLocation::getStmt(ErrorNode); 2740 2741 return S; 2742 } 2743 2744 llvm::iterator_range<BugReport::ranges_iterator> BugReport::getRanges() { 2745 // If no custom ranges, add the range of the statement corresponding to 2746 // the error node. 2747 if (Ranges.empty()) { 2748 if (const Expr *E = dyn_cast_or_null<Expr>(getStmt())) 2749 addRange(E->getSourceRange()); 2750 else 2751 return llvm::make_range(ranges_iterator(), ranges_iterator()); 2752 } 2753 2754 // User-specified absence of range info. 2755 if (Ranges.size() == 1 && !Ranges.begin()->isValid()) 2756 return llvm::make_range(ranges_iterator(), ranges_iterator()); 2757 2758 return llvm::make_range(Ranges.begin(), Ranges.end()); 2759 } 2760 2761 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const { 2762 if (ErrorNode) { 2763 assert(!Location.isValid() && 2764 "Either Location or ErrorNode should be specified but not both."); 2765 return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM); 2766 } 2767 2768 assert(Location.isValid()); 2769 return Location; 2770 } 2771 2772 //===----------------------------------------------------------------------===// 2773 // Methods for BugReporter and subclasses. 2774 //===----------------------------------------------------------------------===// 2775 2776 BugReportEquivClass::~BugReportEquivClass() { } 2777 GRBugReporter::~GRBugReporter() { } 2778 BugReporterData::~BugReporterData() {} 2779 2780 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); } 2781 2782 ProgramStateManager& 2783 GRBugReporter::getStateManager() { return Eng.getStateManager(); } 2784 2785 BugReporter::~BugReporter() { 2786 FlushReports(); 2787 2788 // Free the bug reports we are tracking. 2789 typedef std::vector<BugReportEquivClass *> ContTy; 2790 for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end(); 2791 I != E; ++I) { 2792 delete *I; 2793 } 2794 } 2795 2796 void BugReporter::FlushReports() { 2797 if (BugTypes.isEmpty()) 2798 return; 2799 2800 // First flush the warnings for each BugType. This may end up creating new 2801 // warnings and new BugTypes. 2802 // FIXME: Only NSErrorChecker needs BugType's FlushReports. 2803 // Turn NSErrorChecker into a proper checker and remove this. 2804 SmallVector<const BugType *, 16> bugTypes(BugTypes.begin(), BugTypes.end()); 2805 for (SmallVectorImpl<const BugType *>::iterator 2806 I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I) 2807 const_cast<BugType*>(*I)->FlushReports(*this); 2808 2809 // We need to flush reports in deterministic order to ensure the order 2810 // of the reports is consistent between runs. 2811 typedef std::vector<BugReportEquivClass *> ContVecTy; 2812 for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end(); 2813 EI != EE; ++EI){ 2814 BugReportEquivClass& EQ = **EI; 2815 FlushReport(EQ); 2816 } 2817 2818 // BugReporter owns and deletes only BugTypes created implicitly through 2819 // EmitBasicReport. 2820 // FIXME: There are leaks from checkers that assume that the BugTypes they 2821 // create will be destroyed by the BugReporter. 2822 llvm::DeleteContainerSeconds(StrBugTypes); 2823 2824 // Remove all references to the BugType objects. 2825 BugTypes = F.getEmptySet(); 2826 } 2827 2828 //===----------------------------------------------------------------------===// 2829 // PathDiagnostics generation. 2830 //===----------------------------------------------------------------------===// 2831 2832 namespace { 2833 /// A wrapper around a report graph, which contains only a single path, and its 2834 /// node maps. 2835 class ReportGraph { 2836 public: 2837 InterExplodedGraphMap BackMap; 2838 std::unique_ptr<ExplodedGraph> Graph; 2839 const ExplodedNode *ErrorNode; 2840 size_t Index; 2841 }; 2842 2843 /// A wrapper around a trimmed graph and its node maps. 2844 class TrimmedGraph { 2845 InterExplodedGraphMap InverseMap; 2846 2847 typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy; 2848 PriorityMapTy PriorityMap; 2849 2850 typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair; 2851 SmallVector<NodeIndexPair, 32> ReportNodes; 2852 2853 std::unique_ptr<ExplodedGraph> G; 2854 2855 /// A helper class for sorting ExplodedNodes by priority. 2856 template <bool Descending> 2857 class PriorityCompare { 2858 const PriorityMapTy &PriorityMap; 2859 2860 public: 2861 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {} 2862 2863 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const { 2864 PriorityMapTy::const_iterator LI = PriorityMap.find(LHS); 2865 PriorityMapTy::const_iterator RI = PriorityMap.find(RHS); 2866 PriorityMapTy::const_iterator E = PriorityMap.end(); 2867 2868 if (LI == E) 2869 return Descending; 2870 if (RI == E) 2871 return !Descending; 2872 2873 return Descending ? LI->second > RI->second 2874 : LI->second < RI->second; 2875 } 2876 2877 bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const { 2878 return (*this)(LHS.first, RHS.first); 2879 } 2880 }; 2881 2882 public: 2883 TrimmedGraph(const ExplodedGraph *OriginalGraph, 2884 ArrayRef<const ExplodedNode *> Nodes); 2885 2886 bool popNextReportGraph(ReportGraph &GraphWrapper); 2887 }; 2888 } 2889 2890 TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph, 2891 ArrayRef<const ExplodedNode *> Nodes) { 2892 // The trimmed graph is created in the body of the constructor to ensure 2893 // that the DenseMaps have been initialized already. 2894 InterExplodedGraphMap ForwardMap; 2895 G = OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap); 2896 2897 // Find the (first) error node in the trimmed graph. We just need to consult 2898 // the node map which maps from nodes in the original graph to nodes 2899 // in the new graph. 2900 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes; 2901 2902 for (unsigned i = 0, count = Nodes.size(); i < count; ++i) { 2903 if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) { 2904 ReportNodes.push_back(std::make_pair(NewNode, i)); 2905 RemainingNodes.insert(NewNode); 2906 } 2907 } 2908 2909 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph"); 2910 2911 // Perform a forward BFS to find all the shortest paths. 2912 std::queue<const ExplodedNode *> WS; 2913 2914 assert(G->num_roots() == 1); 2915 WS.push(*G->roots_begin()); 2916 unsigned Priority = 0; 2917 2918 while (!WS.empty()) { 2919 const ExplodedNode *Node = WS.front(); 2920 WS.pop(); 2921 2922 PriorityMapTy::iterator PriorityEntry; 2923 bool IsNew; 2924 std::tie(PriorityEntry, IsNew) = 2925 PriorityMap.insert(std::make_pair(Node, Priority)); 2926 ++Priority; 2927 2928 if (!IsNew) { 2929 assert(PriorityEntry->second <= Priority); 2930 continue; 2931 } 2932 2933 if (RemainingNodes.erase(Node)) 2934 if (RemainingNodes.empty()) 2935 break; 2936 2937 for (ExplodedNode::const_pred_iterator I = Node->succ_begin(), 2938 E = Node->succ_end(); 2939 I != E; ++I) 2940 WS.push(*I); 2941 } 2942 2943 // Sort the error paths from longest to shortest. 2944 std::sort(ReportNodes.begin(), ReportNodes.end(), 2945 PriorityCompare<true>(PriorityMap)); 2946 } 2947 2948 bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) { 2949 if (ReportNodes.empty()) 2950 return false; 2951 2952 const ExplodedNode *OrigN; 2953 std::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val(); 2954 assert(PriorityMap.find(OrigN) != PriorityMap.end() && 2955 "error node not accessible from root"); 2956 2957 // Create a new graph with a single path. This is the graph 2958 // that will be returned to the caller. 2959 auto GNew = llvm::make_unique<ExplodedGraph>(); 2960 GraphWrapper.BackMap.clear(); 2961 2962 // Now walk from the error node up the BFS path, always taking the 2963 // predeccessor with the lowest number. 2964 ExplodedNode *Succ = nullptr; 2965 while (true) { 2966 // Create the equivalent node in the new graph with the same state 2967 // and location. 2968 ExplodedNode *NewN = GNew->createUncachedNode(OrigN->getLocation(), OrigN->getState(), 2969 OrigN->isSink()); 2970 2971 // Store the mapping to the original node. 2972 InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN); 2973 assert(IMitr != InverseMap.end() && "No mapping to original node."); 2974 GraphWrapper.BackMap[NewN] = IMitr->second; 2975 2976 // Link up the new node with the previous node. 2977 if (Succ) 2978 Succ->addPredecessor(NewN, *GNew); 2979 else 2980 GraphWrapper.ErrorNode = NewN; 2981 2982 Succ = NewN; 2983 2984 // Are we at the final node? 2985 if (OrigN->pred_empty()) { 2986 GNew->addRoot(NewN); 2987 break; 2988 } 2989 2990 // Find the next predeccessor node. We choose the node that is marked 2991 // with the lowest BFS number. 2992 OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(), 2993 PriorityCompare<false>(PriorityMap)); 2994 } 2995 2996 GraphWrapper.Graph = std::move(GNew); 2997 2998 return true; 2999 } 3000 3001 3002 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object 3003 /// and collapses PathDiagosticPieces that are expanded by macros. 3004 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) { 3005 typedef std::vector< 3006 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>> 3007 MacroStackTy; 3008 3009 typedef std::vector<std::shared_ptr<PathDiagnosticPiece>> PiecesTy; 3010 3011 MacroStackTy MacroStack; 3012 PiecesTy Pieces; 3013 3014 for (PathPieces::const_iterator I = path.begin(), E = path.end(); 3015 I!=E; ++I) { 3016 3017 auto &piece = *I; 3018 3019 // Recursively compact calls. 3020 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) { 3021 CompactPathDiagnostic(call->path, SM); 3022 } 3023 3024 // Get the location of the PathDiagnosticPiece. 3025 const FullSourceLoc Loc = piece->getLocation().asLocation(); 3026 3027 // Determine the instantiation location, which is the location we group 3028 // related PathDiagnosticPieces. 3029 SourceLocation InstantiationLoc = Loc.isMacroID() ? 3030 SM.getExpansionLoc(Loc) : 3031 SourceLocation(); 3032 3033 if (Loc.isFileID()) { 3034 MacroStack.clear(); 3035 Pieces.push_back(piece); 3036 continue; 3037 } 3038 3039 assert(Loc.isMacroID()); 3040 3041 // Is the PathDiagnosticPiece within the same macro group? 3042 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { 3043 MacroStack.back().first->subPieces.push_back(piece); 3044 continue; 3045 } 3046 3047 // We aren't in the same group. Are we descending into a new macro 3048 // or are part of an old one? 3049 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup; 3050 3051 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? 3052 SM.getExpansionLoc(Loc) : 3053 SourceLocation(); 3054 3055 // Walk the entire macro stack. 3056 while (!MacroStack.empty()) { 3057 if (InstantiationLoc == MacroStack.back().second) { 3058 MacroGroup = MacroStack.back().first; 3059 break; 3060 } 3061 3062 if (ParentInstantiationLoc == MacroStack.back().second) { 3063 MacroGroup = MacroStack.back().first; 3064 break; 3065 } 3066 3067 MacroStack.pop_back(); 3068 } 3069 3070 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { 3071 // Create a new macro group and add it to the stack. 3072 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>( 3073 PathDiagnosticLocation::createSingleLocation(piece->getLocation())); 3074 3075 if (MacroGroup) 3076 MacroGroup->subPieces.push_back(NewGroup); 3077 else { 3078 assert(InstantiationLoc.isFileID()); 3079 Pieces.push_back(NewGroup); 3080 } 3081 3082 MacroGroup = NewGroup; 3083 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); 3084 } 3085 3086 // Finally, add the PathDiagnosticPiece to the group. 3087 MacroGroup->subPieces.push_back(piece); 3088 } 3089 3090 // Now take the pieces and construct a new PathDiagnostic. 3091 path.clear(); 3092 3093 path.insert(path.end(), Pieces.begin(), Pieces.end()); 3094 } 3095 3096 bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD, 3097 PathDiagnosticConsumer &PC, 3098 ArrayRef<BugReport *> &bugReports) { 3099 assert(!bugReports.empty()); 3100 3101 bool HasValid = false; 3102 bool HasInvalid = false; 3103 SmallVector<const ExplodedNode *, 32> errorNodes; 3104 for (ArrayRef<BugReport*>::iterator I = bugReports.begin(), 3105 E = bugReports.end(); I != E; ++I) { 3106 if ((*I)->isValid()) { 3107 HasValid = true; 3108 errorNodes.push_back((*I)->getErrorNode()); 3109 } else { 3110 // Keep the errorNodes list in sync with the bugReports list. 3111 HasInvalid = true; 3112 errorNodes.push_back(nullptr); 3113 } 3114 } 3115 3116 // If all the reports have been marked invalid by a previous path generation, 3117 // we're done. 3118 if (!HasValid) 3119 return false; 3120 3121 typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme; 3122 PathGenerationScheme ActiveScheme = PC.getGenerationScheme(); 3123 3124 if (ActiveScheme == PathDiagnosticConsumer::Extensive) { 3125 AnalyzerOptions &options = getAnalyzerOptions(); 3126 if (options.getBooleanOption("path-diagnostics-alternate", true)) { 3127 ActiveScheme = PathDiagnosticConsumer::AlternateExtensive; 3128 } 3129 } 3130 3131 TrimmedGraph TrimG(&getGraph(), errorNodes); 3132 ReportGraph ErrorGraph; 3133 3134 while (TrimG.popNextReportGraph(ErrorGraph)) { 3135 // Find the BugReport with the original location. 3136 assert(ErrorGraph.Index < bugReports.size()); 3137 BugReport *R = bugReports[ErrorGraph.Index]; 3138 assert(R && "No original report found for sliced graph."); 3139 assert(R->isValid() && "Report selected by trimmed graph marked invalid."); 3140 3141 // Start building the path diagnostic... 3142 PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC); 3143 const ExplodedNode *N = ErrorGraph.ErrorNode; 3144 3145 // Register additional node visitors. 3146 R->addVisitor(llvm::make_unique<NilReceiverBRVisitor>()); 3147 R->addVisitor(llvm::make_unique<ConditionBRVisitor>()); 3148 R->addVisitor(llvm::make_unique<LikelyFalsePositiveSuppressionBRVisitor>()); 3149 R->addVisitor(llvm::make_unique<CXXSelfAssignmentBRVisitor>()); 3150 3151 BugReport::VisitorList visitors; 3152 unsigned origReportConfigToken, finalReportConfigToken; 3153 LocationContextMap LCM; 3154 3155 // While generating diagnostics, it's possible the visitors will decide 3156 // new symbols and regions are interesting, or add other visitors based on 3157 // the information they find. If they do, we need to regenerate the path 3158 // based on our new report configuration. 3159 do { 3160 // Get a clean copy of all the visitors. 3161 for (BugReport::visitor_iterator I = R->visitor_begin(), 3162 E = R->visitor_end(); I != E; ++I) 3163 visitors.push_back((*I)->clone()); 3164 3165 // Clear out the active path from any previous work. 3166 PD.resetPath(); 3167 origReportConfigToken = R->getConfigurationChangeToken(); 3168 3169 // Generate the very last diagnostic piece - the piece is visible before 3170 // the trace is expanded. 3171 std::unique_ptr<PathDiagnosticPiece> LastPiece; 3172 for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end(); 3173 I != E; ++I) { 3174 if (std::unique_ptr<PathDiagnosticPiece> Piece = 3175 (*I)->getEndPath(PDB, N, *R)) { 3176 assert (!LastPiece && 3177 "There can only be one final piece in a diagnostic."); 3178 LastPiece = std::move(Piece); 3179 } 3180 } 3181 3182 if (ActiveScheme != PathDiagnosticConsumer::None) { 3183 if (!LastPiece) 3184 LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R); 3185 assert(LastPiece); 3186 PD.setEndOfPath(std::move(LastPiece)); 3187 } 3188 3189 // Make sure we get a clean location context map so we don't 3190 // hold onto old mappings. 3191 LCM.clear(); 3192 3193 switch (ActiveScheme) { 3194 case PathDiagnosticConsumer::AlternateExtensive: 3195 GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors); 3196 break; 3197 case PathDiagnosticConsumer::Extensive: 3198 GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors); 3199 break; 3200 case PathDiagnosticConsumer::Minimal: 3201 GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors); 3202 break; 3203 case PathDiagnosticConsumer::None: 3204 GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors); 3205 break; 3206 } 3207 3208 // Clean up the visitors we used. 3209 visitors.clear(); 3210 3211 // Did anything change while generating this path? 3212 finalReportConfigToken = R->getConfigurationChangeToken(); 3213 } while (finalReportConfigToken != origReportConfigToken); 3214 3215 if (!R->isValid()) 3216 continue; 3217 3218 // Finally, prune the diagnostic path of uninteresting stuff. 3219 if (!PD.path.empty()) { 3220 if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) { 3221 bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM); 3222 assert(stillHasNotes); 3223 (void)stillHasNotes; 3224 } 3225 3226 // Redirect all call pieces to have valid locations. 3227 adjustCallLocations(PD.getMutablePieces()); 3228 removePiecesWithInvalidLocations(PD.getMutablePieces()); 3229 3230 if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) { 3231 SourceManager &SM = getSourceManager(); 3232 3233 // Reduce the number of edges from a very conservative set 3234 // to an aesthetically pleasing subset that conveys the 3235 // necessary information. 3236 OptimizedCallsSet OCS; 3237 while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {} 3238 3239 // Drop the very first function-entry edge. It's not really necessary 3240 // for top-level functions. 3241 dropFunctionEntryEdge(PD.getMutablePieces(), LCM, SM); 3242 } 3243 3244 // Remove messages that are basically the same, and edges that may not 3245 // make sense. 3246 // We have to do this after edge optimization in the Extensive mode. 3247 removeRedundantMsgs(PD.getMutablePieces()); 3248 removeEdgesToDefaultInitializers(PD.getMutablePieces()); 3249 } 3250 3251 // We found a report and didn't suppress it. 3252 return true; 3253 } 3254 3255 // We suppressed all the reports in this equivalence class. 3256 assert(!HasInvalid && "Inconsistent suppression"); 3257 (void)HasInvalid; 3258 return false; 3259 } 3260 3261 void BugReporter::Register(BugType *BT) { 3262 BugTypes = F.add(BugTypes, BT); 3263 } 3264 3265 void BugReporter::emitReport(std::unique_ptr<BugReport> R) { 3266 if (const ExplodedNode *E = R->getErrorNode()) { 3267 // An error node must either be a sink or have a tag, otherwise 3268 // it could get reclaimed before the path diagnostic is created. 3269 assert((E->isSink() || E->getLocation().getTag()) && 3270 "Error node must either be a sink or have a tag"); 3271 3272 const AnalysisDeclContext *DeclCtx = 3273 E->getLocationContext()->getAnalysisDeclContext(); 3274 // The source of autosynthesized body can be handcrafted AST or a model 3275 // file. The locations from handcrafted ASTs have no valid source locations 3276 // and have to be discarded. Locations from model files should be preserved 3277 // for processing and reporting. 3278 if (DeclCtx->isBodyAutosynthesized() && 3279 !DeclCtx->isBodyAutosynthesizedFromModelFile()) 3280 return; 3281 } 3282 3283 bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid(); 3284 assert(ValidSourceLoc); 3285 // If we mess up in a release build, we'd still prefer to just drop the bug 3286 // instead of trying to go on. 3287 if (!ValidSourceLoc) 3288 return; 3289 3290 // Compute the bug report's hash to determine its equivalence class. 3291 llvm::FoldingSetNodeID ID; 3292 R->Profile(ID); 3293 3294 // Lookup the equivance class. If there isn't one, create it. 3295 BugType& BT = R->getBugType(); 3296 Register(&BT); 3297 void *InsertPos; 3298 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); 3299 3300 if (!EQ) { 3301 EQ = new BugReportEquivClass(std::move(R)); 3302 EQClasses.InsertNode(EQ, InsertPos); 3303 EQClassesVector.push_back(EQ); 3304 } else 3305 EQ->AddReport(std::move(R)); 3306 } 3307 3308 3309 //===----------------------------------------------------------------------===// 3310 // Emitting reports in equivalence classes. 3311 //===----------------------------------------------------------------------===// 3312 3313 namespace { 3314 struct FRIEC_WLItem { 3315 const ExplodedNode *N; 3316 ExplodedNode::const_succ_iterator I, E; 3317 3318 FRIEC_WLItem(const ExplodedNode *n) 3319 : N(n), I(N->succ_begin()), E(N->succ_end()) {} 3320 }; 3321 } 3322 3323 static const CFGBlock *findBlockForNode(const ExplodedNode *N) { 3324 ProgramPoint P = N->getLocation(); 3325 if (auto BEP = P.getAs<BlockEntrance>()) 3326 return BEP->getBlock(); 3327 3328 // Find the node's current statement in the CFG. 3329 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 3330 return N->getLocationContext()->getAnalysisDeclContext() 3331 ->getCFGStmtMap()->getBlock(S); 3332 3333 return nullptr; 3334 } 3335 3336 // Returns true if by simply looking at the block, we can be sure that it 3337 // results in a sink during analysis. This is useful to know when the analysis 3338 // was interrupted, and we try to figure out if it would sink eventually. 3339 // There may be many more reasons why a sink would appear during analysis 3340 // (eg. checkers may generate sinks arbitrarily), but here we only consider 3341 // sinks that would be obvious by looking at the CFG. 3342 static bool isImmediateSinkBlock(const CFGBlock *Blk) { 3343 if (Blk->hasNoReturnElement()) 3344 return true; 3345 3346 // FIXME: Throw-expressions are currently generating sinks during analysis: 3347 // they're not supported yet, and also often used for actually terminating 3348 // the program. So we should treat them as sinks in this analysis as well, 3349 // at least for now, but once we have better support for exceptions, 3350 // we'd need to carefully handle the case when the throw is being 3351 // immediately caught. 3352 if (std::any_of(Blk->begin(), Blk->end(), [](const CFGElement &Elm) { 3353 if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>()) 3354 if (isa<CXXThrowExpr>(StmtElm->getStmt())) 3355 return true; 3356 return false; 3357 })) 3358 return true; 3359 3360 return false; 3361 } 3362 3363 // Returns true if by looking at the CFG surrounding the node's program 3364 // point, we can be sure that any analysis starting from this point would 3365 // eventually end with a sink. We scan the child CFG blocks in a depth-first 3366 // manner and see if all paths eventually end up in an immediate sink block. 3367 static bool isInevitablySinking(const ExplodedNode *N) { 3368 const CFG &Cfg = N->getCFG(); 3369 3370 const CFGBlock *StartBlk = findBlockForNode(N); 3371 if (!StartBlk) 3372 return false; 3373 if (isImmediateSinkBlock(StartBlk)) 3374 return true; 3375 3376 llvm::SmallVector<const CFGBlock *, 32> DFSWorkList; 3377 llvm::SmallPtrSet<const CFGBlock *, 32> Visited; 3378 3379 DFSWorkList.push_back(StartBlk); 3380 while (!DFSWorkList.empty()) { 3381 const CFGBlock *Blk = DFSWorkList.back(); 3382 DFSWorkList.pop_back(); 3383 Visited.insert(Blk); 3384 3385 for (const auto &Succ : Blk->succs()) { 3386 if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) { 3387 if (SuccBlk == &Cfg.getExit()) { 3388 // If at least one path reaches the CFG exit, it means that control is 3389 // returned to the caller. For now, say that we are not sure what 3390 // happens next. If necessary, this can be improved to analyze 3391 // the parent StackFrameContext's call site in a similar manner. 3392 return false; 3393 } 3394 3395 if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) { 3396 // If the block has reachable child blocks that aren't no-return, 3397 // add them to the worklist. 3398 DFSWorkList.push_back(SuccBlk); 3399 } 3400 } 3401 } 3402 } 3403 3404 // Nothing reached the exit. It can only mean one thing: there's no return. 3405 return true; 3406 } 3407 3408 static BugReport * 3409 FindReportInEquivalenceClass(BugReportEquivClass& EQ, 3410 SmallVectorImpl<BugReport*> &bugReports) { 3411 3412 BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end(); 3413 assert(I != E); 3414 BugType& BT = I->getBugType(); 3415 3416 // If we don't need to suppress any of the nodes because they are 3417 // post-dominated by a sink, simply add all the nodes in the equivalence class 3418 // to 'Nodes'. Any of the reports will serve as a "representative" report. 3419 if (!BT.isSuppressOnSink()) { 3420 BugReport *R = &*I; 3421 for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) { 3422 const ExplodedNode *N = I->getErrorNode(); 3423 if (N) { 3424 R = &*I; 3425 bugReports.push_back(R); 3426 } 3427 } 3428 return R; 3429 } 3430 3431 // For bug reports that should be suppressed when all paths are post-dominated 3432 // by a sink node, iterate through the reports in the equivalence class 3433 // until we find one that isn't post-dominated (if one exists). We use a 3434 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write 3435 // this as a recursive function, but we don't want to risk blowing out the 3436 // stack for very long paths. 3437 BugReport *exampleReport = nullptr; 3438 3439 for (; I != E; ++I) { 3440 const ExplodedNode *errorNode = I->getErrorNode(); 3441 3442 if (!errorNode) 3443 continue; 3444 if (errorNode->isSink()) { 3445 llvm_unreachable( 3446 "BugType::isSuppressSink() should not be 'true' for sink end nodes"); 3447 } 3448 // No successors? By definition this nodes isn't post-dominated by a sink. 3449 if (errorNode->succ_empty()) { 3450 bugReports.push_back(&*I); 3451 if (!exampleReport) 3452 exampleReport = &*I; 3453 continue; 3454 } 3455 3456 // See if we are in a no-return CFG block. If so, treat this similarly 3457 // to being post-dominated by a sink. This works better when the analysis 3458 // is incomplete and we have never reached the no-return function call(s) 3459 // that we'd inevitably bump into on this path. 3460 if (isInevitablySinking(errorNode)) 3461 continue; 3462 3463 // At this point we know that 'N' is not a sink and it has at least one 3464 // successor. Use a DFS worklist to find a non-sink end-of-path node. 3465 typedef FRIEC_WLItem WLItem; 3466 typedef SmallVector<WLItem, 10> DFSWorkList; 3467 llvm::DenseMap<const ExplodedNode *, unsigned> Visited; 3468 3469 DFSWorkList WL; 3470 WL.push_back(errorNode); 3471 Visited[errorNode] = 1; 3472 3473 while (!WL.empty()) { 3474 WLItem &WI = WL.back(); 3475 assert(!WI.N->succ_empty()); 3476 3477 for (; WI.I != WI.E; ++WI.I) { 3478 const ExplodedNode *Succ = *WI.I; 3479 // End-of-path node? 3480 if (Succ->succ_empty()) { 3481 // If we found an end-of-path node that is not a sink. 3482 if (!Succ->isSink()) { 3483 bugReports.push_back(&*I); 3484 if (!exampleReport) 3485 exampleReport = &*I; 3486 WL.clear(); 3487 break; 3488 } 3489 // Found a sink? Continue on to the next successor. 3490 continue; 3491 } 3492 // Mark the successor as visited. If it hasn't been explored, 3493 // enqueue it to the DFS worklist. 3494 unsigned &mark = Visited[Succ]; 3495 if (!mark) { 3496 mark = 1; 3497 WL.push_back(Succ); 3498 break; 3499 } 3500 } 3501 3502 // The worklist may have been cleared at this point. First 3503 // check if it is empty before checking the last item. 3504 if (!WL.empty() && &WL.back() == &WI) 3505 WL.pop_back(); 3506 } 3507 } 3508 3509 // ExampleReport will be NULL if all the nodes in the equivalence class 3510 // were post-dominated by sinks. 3511 return exampleReport; 3512 } 3513 3514 void BugReporter::FlushReport(BugReportEquivClass& EQ) { 3515 SmallVector<BugReport*, 10> bugReports; 3516 BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports); 3517 if (exampleReport) { 3518 for (PathDiagnosticConsumer *PDC : getPathDiagnosticConsumers()) { 3519 FlushReport(exampleReport, *PDC, bugReports); 3520 } 3521 } 3522 } 3523 3524 /// Insert all lines participating in the function signature \p Signature 3525 /// into \p ExecutedLines. 3526 static void populateExecutedLinesWithFunctionSignature( 3527 const Decl *Signature, SourceManager &SM, 3528 std::unique_ptr<FilesToLineNumsMap> &ExecutedLines) { 3529 3530 SourceRange SignatureSourceRange; 3531 const Stmt* Body = Signature->getBody(); 3532 if (auto FD = dyn_cast<FunctionDecl>(Signature)) { 3533 SignatureSourceRange = FD->getSourceRange(); 3534 } else if (auto OD = dyn_cast<ObjCMethodDecl>(Signature)) { 3535 SignatureSourceRange = OD->getSourceRange(); 3536 } else { 3537 return; 3538 } 3539 SourceLocation Start = SignatureSourceRange.getBegin(); 3540 SourceLocation End = Body ? Body->getSourceRange().getBegin() 3541 : SignatureSourceRange.getEnd(); 3542 unsigned StartLine = SM.getExpansionLineNumber(Start); 3543 unsigned EndLine = SM.getExpansionLineNumber(End); 3544 3545 FileID FID = SM.getFileID(SM.getExpansionLoc(Start)); 3546 for (unsigned Line = StartLine; Line <= EndLine; Line++) 3547 ExecutedLines->operator[](FID.getHashValue()).insert(Line); 3548 } 3549 3550 static void populateExecutedLinesWithStmt( 3551 const Stmt *S, SourceManager &SM, 3552 std::unique_ptr<FilesToLineNumsMap> &ExecutedLines) { 3553 SourceLocation Loc = S->getSourceRange().getBegin(); 3554 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc); 3555 FileID FID = SM.getFileID(ExpansionLoc); 3556 unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc); 3557 ExecutedLines->operator[](FID.getHashValue()).insert(LineNo); 3558 } 3559 3560 /// \return all executed lines including function signatures on the path 3561 /// starting from \p N. 3562 static std::unique_ptr<FilesToLineNumsMap> 3563 findExecutedLines(SourceManager &SM, const ExplodedNode *N) { 3564 auto ExecutedLines = llvm::make_unique<FilesToLineNumsMap>(); 3565 3566 while (N) { 3567 if (N->getFirstPred() == nullptr) { 3568 3569 // First node: show signature of the entrance point. 3570 const Decl *D = N->getLocationContext()->getDecl(); 3571 populateExecutedLinesWithFunctionSignature(D, SM, ExecutedLines); 3572 3573 } else if (auto CE = N->getLocationAs<CallEnter>()) { 3574 3575 // Inlined function: show signature. 3576 const Decl* D = CE->getCalleeContext()->getDecl(); 3577 populateExecutedLinesWithFunctionSignature(D, SM, ExecutedLines); 3578 3579 } else if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) { 3580 populateExecutedLinesWithStmt(S, SM, ExecutedLines); 3581 3582 // Show extra context for some parent kinds. 3583 const Stmt *P = N->getParentMap().getParent(S); 3584 3585 // The path exploration can die before the node with the associated 3586 // return statement is generated, but we do want to show the whole 3587 // return. 3588 if (auto *RS = dyn_cast_or_null<ReturnStmt>(P)) { 3589 populateExecutedLinesWithStmt(RS, SM, ExecutedLines); 3590 P = N->getParentMap().getParent(RS); 3591 } 3592 3593 if (P && (isa<SwitchCase>(P) || isa<LabelStmt>(P))) 3594 populateExecutedLinesWithStmt(P, SM, ExecutedLines); 3595 } 3596 3597 N = N->getFirstPred(); 3598 } 3599 return ExecutedLines; 3600 } 3601 3602 void BugReporter::FlushReport(BugReport *exampleReport, 3603 PathDiagnosticConsumer &PD, 3604 ArrayRef<BugReport*> bugReports) { 3605 3606 // FIXME: Make sure we use the 'R' for the path that was actually used. 3607 // Probably doesn't make a difference in practice. 3608 BugType& BT = exampleReport->getBugType(); 3609 3610 auto D = llvm::make_unique<PathDiagnostic>( 3611 exampleReport->getBugType().getCheckName(), 3612 exampleReport->getDeclWithIssue(), exampleReport->getBugType().getName(), 3613 exampleReport->getDescription(), 3614 exampleReport->getShortDescription(/*Fallback=*/false), BT.getCategory(), 3615 exampleReport->getUniqueingLocation(), exampleReport->getUniqueingDecl(), 3616 findExecutedLines(getSourceManager(), exampleReport->getErrorNode())); 3617 3618 if (exampleReport->isPathSensitive()) { 3619 // Generate the full path diagnostic, using the generation scheme 3620 // specified by the PathDiagnosticConsumer. Note that we have to generate 3621 // path diagnostics even for consumers which do not support paths, because 3622 // the BugReporterVisitors may mark this bug as a false positive. 3623 assert(!bugReports.empty()); 3624 3625 MaxBugClassSize.updateMax(bugReports.size()); 3626 3627 if (!generatePathDiagnostic(*D.get(), PD, bugReports)) 3628 return; 3629 3630 MaxValidBugClassSize.updateMax(bugReports.size()); 3631 3632 // Examine the report and see if the last piece is in a header. Reset the 3633 // report location to the last piece in the main source file. 3634 AnalyzerOptions &Opts = getAnalyzerOptions(); 3635 if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll) 3636 D->resetDiagnosticLocationToMainFile(); 3637 } 3638 3639 // If the path is empty, generate a single step path with the location 3640 // of the issue. 3641 if (D->path.empty()) { 3642 PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager()); 3643 auto piece = llvm::make_unique<PathDiagnosticEventPiece>( 3644 L, exampleReport->getDescription()); 3645 for (SourceRange Range : exampleReport->getRanges()) 3646 piece->addRange(Range); 3647 D->setEndOfPath(std::move(piece)); 3648 } 3649 3650 PathPieces &Pieces = D->getMutablePieces(); 3651 if (getAnalyzerOptions().shouldDisplayNotesAsEvents()) { 3652 // For path diagnostic consumers that don't support extra notes, 3653 // we may optionally convert those to path notes. 3654 for (auto I = exampleReport->getNotes().rbegin(), 3655 E = exampleReport->getNotes().rend(); I != E; ++I) { 3656 PathDiagnosticNotePiece *Piece = I->get(); 3657 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>( 3658 Piece->getLocation(), Piece->getString()); 3659 for (const auto &R: Piece->getRanges()) 3660 ConvertedPiece->addRange(R); 3661 3662 Pieces.push_front(std::move(ConvertedPiece)); 3663 } 3664 } else { 3665 for (auto I = exampleReport->getNotes().rbegin(), 3666 E = exampleReport->getNotes().rend(); I != E; ++I) 3667 Pieces.push_front(*I); 3668 } 3669 3670 // Get the meta data. 3671 const BugReport::ExtraTextList &Meta = exampleReport->getExtraText(); 3672 for (BugReport::ExtraTextList::const_iterator i = Meta.begin(), 3673 e = Meta.end(); i != e; ++i) { 3674 D->addMeta(*i); 3675 } 3676 3677 PD.HandlePathDiagnostic(std::move(D)); 3678 } 3679 3680 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3681 const CheckerBase *Checker, 3682 StringRef Name, StringRef Category, 3683 StringRef Str, PathDiagnosticLocation Loc, 3684 ArrayRef<SourceRange> Ranges) { 3685 EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str, 3686 Loc, Ranges); 3687 } 3688 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3689 CheckName CheckName, 3690 StringRef name, StringRef category, 3691 StringRef str, PathDiagnosticLocation Loc, 3692 ArrayRef<SourceRange> Ranges) { 3693 3694 // 'BT' is owned by BugReporter. 3695 BugType *BT = getBugTypeForName(CheckName, name, category); 3696 auto R = llvm::make_unique<BugReport>(*BT, str, Loc); 3697 R->setDeclWithIssue(DeclWithIssue); 3698 for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end(); 3699 I != E; ++I) 3700 R->addRange(*I); 3701 emitReport(std::move(R)); 3702 } 3703 3704 BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name, 3705 StringRef category) { 3706 SmallString<136> fullDesc; 3707 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name 3708 << ":" << category; 3709 BugType *&BT = StrBugTypes[fullDesc]; 3710 if (!BT) 3711 BT = new BugType(CheckName, name, category); 3712 return BT; 3713 } 3714 3715 LLVM_DUMP_METHOD void PathPieces::dump() const { 3716 unsigned index = 0; 3717 for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) { 3718 llvm::errs() << "[" << index++ << "] "; 3719 (*I)->dump(); 3720 llvm::errs() << "\n"; 3721 } 3722 } 3723 3724 LLVM_DUMP_METHOD void PathDiagnosticCallPiece::dump() const { 3725 llvm::errs() << "CALL\n--------------\n"; 3726 3727 if (const Stmt *SLoc = getLocStmt(getLocation())) 3728 SLoc->dump(); 3729 else if (const NamedDecl *ND = dyn_cast<NamedDecl>(getCallee())) 3730 llvm::errs() << *ND << "\n"; 3731 else 3732 getLocation().dump(); 3733 } 3734 3735 LLVM_DUMP_METHOD void PathDiagnosticEventPiece::dump() const { 3736 llvm::errs() << "EVENT\n--------------\n"; 3737 llvm::errs() << getString() << "\n"; 3738 llvm::errs() << " ---- at ----\n"; 3739 getLocation().dump(); 3740 } 3741 3742 LLVM_DUMP_METHOD void PathDiagnosticControlFlowPiece::dump() const { 3743 llvm::errs() << "CONTROL\n--------------\n"; 3744 getStartLocation().dump(); 3745 llvm::errs() << " ---- to ----\n"; 3746 getEndLocation().dump(); 3747 } 3748 3749 LLVM_DUMP_METHOD void PathDiagnosticMacroPiece::dump() const { 3750 llvm::errs() << "MACRO\n--------------\n"; 3751 // FIXME: Print which macro is being invoked. 3752 } 3753 3754 LLVM_DUMP_METHOD void PathDiagnosticNotePiece::dump() const { 3755 llvm::errs() << "NOTE\n--------------\n"; 3756 llvm::errs() << getString() << "\n"; 3757 llvm::errs() << " ---- at ----\n"; 3758 getLocation().dump(); 3759 } 3760 3761 LLVM_DUMP_METHOD void PathDiagnosticLocation::dump() const { 3762 if (!isValid()) { 3763 llvm::errs() << "<INVALID>\n"; 3764 return; 3765 } 3766 3767 switch (K) { 3768 case RangeK: 3769 // FIXME: actually print the range. 3770 llvm::errs() << "<range>\n"; 3771 break; 3772 case SingleLocK: 3773 asLocation().dump(); 3774 llvm::errs() << "\n"; 3775 break; 3776 case StmtK: 3777 if (S) 3778 S->dump(); 3779 else 3780 llvm::errs() << "<NULL STMT>\n"; 3781 break; 3782 case DeclK: 3783 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D)) 3784 llvm::errs() << *ND << "\n"; 3785 else if (isa<BlockDecl>(D)) 3786 // FIXME: Make this nicer. 3787 llvm::errs() << "<block>\n"; 3788 else if (D) 3789 llvm::errs() << "<unknown decl>\n"; 3790 else 3791 llvm::errs() << "<NULL DECL>\n"; 3792 break; 3793 } 3794 } 3795