1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines BugReporter, a utility class for generating
11 //  PathDiagnostics.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ParentMap.h"
21 #include "clang/AST/StmtCXX.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Analysis/CFG.h"
24 #include "clang/Analysis/CFGStmtMap.h"
25 #include "clang/Analysis/ProgramPoint.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
28 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/IntrusiveRefCntPtr.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <memory>
37 #include <queue>
38 
39 using namespace clang;
40 using namespace ento;
41 
42 #define DEBUG_TYPE "BugReporter"
43 
44 STATISTIC(MaxBugClassSize,
45           "The maximum number of bug reports in the same equivalence class");
46 STATISTIC(MaxValidBugClassSize,
47           "The maximum number of bug reports in the same equivalence class "
48           "where at least one report is valid (not suppressed)");
49 
50 BugReporterVisitor::~BugReporterVisitor() {}
51 
52 void BugReporterContext::anchor() {}
53 
54 //===----------------------------------------------------------------------===//
55 // Helper routines for walking the ExplodedGraph and fetching statements.
56 //===----------------------------------------------------------------------===//
57 
58 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
59   for (N = N->getFirstPred(); N; N = N->getFirstPred())
60     if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
61       return S;
62 
63   return nullptr;
64 }
65 
66 static inline const Stmt*
67 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
68   if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
69     return S;
70 
71   return GetPreviousStmt(N);
72 }
73 
74 //===----------------------------------------------------------------------===//
75 // Diagnostic cleanup.
76 //===----------------------------------------------------------------------===//
77 
78 static PathDiagnosticEventPiece *
79 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
80                             PathDiagnosticEventPiece *Y) {
81   // Prefer diagnostics that come from ConditionBRVisitor over
82   // those that came from TrackConstraintBRVisitor,
83   // unless the one from ConditionBRVisitor is
84   // its generic fallback diagnostic.
85   const void *tagPreferred = ConditionBRVisitor::getTag();
86   const void *tagLesser = TrackConstraintBRVisitor::getTag();
87 
88   if (X->getLocation() != Y->getLocation())
89     return nullptr;
90 
91   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
92     return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X;
93 
94   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
95     return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y;
96 
97   return nullptr;
98 }
99 
100 /// An optimization pass over PathPieces that removes redundant diagnostics
101 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
102 /// BugReporterVisitors use different methods to generate diagnostics, with
103 /// one capable of emitting diagnostics in some cases but not in others.  This
104 /// can lead to redundant diagnostic pieces at the same point in a path.
105 static void removeRedundantMsgs(PathPieces &path) {
106   unsigned N = path.size();
107   if (N < 2)
108     return;
109   // NOTE: this loop intentionally is not using an iterator.  Instead, we
110   // are streaming the path and modifying it in place.  This is done by
111   // grabbing the front, processing it, and if we decide to keep it append
112   // it to the end of the path.  The entire path is processed in this way.
113   for (unsigned i = 0; i < N; ++i) {
114     auto piece = std::move(path.front());
115     path.pop_front();
116 
117     switch (piece->getKind()) {
118       case PathDiagnosticPiece::Call:
119         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
120         break;
121       case PathDiagnosticPiece::Macro:
122         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
123         break;
124       case PathDiagnosticPiece::ControlFlow:
125         break;
126       case PathDiagnosticPiece::Event: {
127         if (i == N-1)
128           break;
129 
130         if (PathDiagnosticEventPiece *nextEvent =
131             dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
132           PathDiagnosticEventPiece *event =
133               cast<PathDiagnosticEventPiece>(piece.get());
134           // Check to see if we should keep one of the two pieces.  If we
135           // come up with a preference, record which piece to keep, and consume
136           // another piece from the path.
137           if (auto *pieceToKeep =
138                   eventsDescribeSameCondition(event, nextEvent)) {
139             piece = std::move(pieceToKeep == event ? piece : path.front());
140             path.pop_front();
141             ++i;
142           }
143         }
144         break;
145       }
146       case PathDiagnosticPiece::Note:
147         break;
148     }
149     path.push_back(std::move(piece));
150   }
151 }
152 
153 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
154 /// function call it represents.
155 typedef llvm::DenseMap<const PathPieces *, const LocationContext *>
156         LocationContextMap;
157 
158 /// Recursively scan through a path and prune out calls and macros pieces
159 /// that aren't needed.  Return true if afterwards the path contains
160 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
161 static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
162                                 LocationContextMap &LCM) {
163   bool containsSomethingInteresting = false;
164   const unsigned N = pieces.size();
165 
166   for (unsigned i = 0 ; i < N ; ++i) {
167     // Remove the front piece from the path.  If it is still something we
168     // want to keep once we are done, we will push it back on the end.
169     auto piece = std::move(pieces.front());
170     pieces.pop_front();
171 
172     switch (piece->getKind()) {
173       case PathDiagnosticPiece::Call: {
174         auto &call = cast<PathDiagnosticCallPiece>(*piece);
175         // Check if the location context is interesting.
176         assert(LCM.count(&call.path));
177         if (R->isInteresting(LCM[&call.path])) {
178           containsSomethingInteresting = true;
179           break;
180         }
181 
182         if (!removeUnneededCalls(call.path, R, LCM))
183           continue;
184 
185         containsSomethingInteresting = true;
186         break;
187       }
188       case PathDiagnosticPiece::Macro: {
189         auto &macro = cast<PathDiagnosticMacroPiece>(*piece);
190         if (!removeUnneededCalls(macro.subPieces, R, LCM))
191           continue;
192         containsSomethingInteresting = true;
193         break;
194       }
195       case PathDiagnosticPiece::Event: {
196         auto &event = cast<PathDiagnosticEventPiece>(*piece);
197 
198         // We never throw away an event, but we do throw it away wholesale
199         // as part of a path if we throw the entire path away.
200         containsSomethingInteresting |= !event.isPrunable();
201         break;
202       }
203       case PathDiagnosticPiece::ControlFlow:
204         break;
205 
206       case PathDiagnosticPiece::Note:
207         break;
208     }
209 
210     pieces.push_back(std::move(piece));
211   }
212 
213   return containsSomethingInteresting;
214 }
215 
216 /// Returns true if the given decl has been implicitly given a body, either by
217 /// the analyzer or by the compiler proper.
218 static bool hasImplicitBody(const Decl *D) {
219   assert(D);
220   return D->isImplicit() || !D->hasBody();
221 }
222 
223 /// Recursively scan through a path and make sure that all call pieces have
224 /// valid locations.
225 static void
226 adjustCallLocations(PathPieces &Pieces,
227                     PathDiagnosticLocation *LastCallLocation = nullptr) {
228   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
229     PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(I->get());
230 
231     if (!Call) {
232       continue;
233     }
234 
235     if (LastCallLocation) {
236       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
237       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
238         Call->callEnter = *LastCallLocation;
239       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
240         Call->callReturn = *LastCallLocation;
241     }
242 
243     // Recursively clean out the subclass.  Keep this call around if
244     // it contains any informative diagnostics.
245     PathDiagnosticLocation *ThisCallLocation;
246     if (Call->callEnterWithin.asLocation().isValid() &&
247         !hasImplicitBody(Call->getCallee()))
248       ThisCallLocation = &Call->callEnterWithin;
249     else
250       ThisCallLocation = &Call->callEnter;
251 
252     assert(ThisCallLocation && "Outermost call has an invalid location");
253     adjustCallLocations(Call->path, ThisCallLocation);
254   }
255 }
256 
257 /// Remove edges in and out of C++ default initializer expressions. These are
258 /// for fields that have in-class initializers, as opposed to being initialized
259 /// explicitly in a constructor or braced list.
260 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
261   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
262     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
263       removeEdgesToDefaultInitializers(C->path);
264 
265     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
266       removeEdgesToDefaultInitializers(M->subPieces);
267 
268     if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
269       const Stmt *Start = CF->getStartLocation().asStmt();
270       const Stmt *End = CF->getEndLocation().asStmt();
271       if (Start && isa<CXXDefaultInitExpr>(Start)) {
272         I = Pieces.erase(I);
273         continue;
274       } else if (End && isa<CXXDefaultInitExpr>(End)) {
275         PathPieces::iterator Next = std::next(I);
276         if (Next != E) {
277           if (auto *NextCF =
278                   dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
279             NextCF->setStartLocation(CF->getStartLocation());
280           }
281         }
282         I = Pieces.erase(I);
283         continue;
284       }
285     }
286 
287     I++;
288   }
289 }
290 
291 /// Remove all pieces with invalid locations as these cannot be serialized.
292 /// We might have pieces with invalid locations as a result of inlining Body
293 /// Farm generated functions.
294 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
295   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
296     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
297       removePiecesWithInvalidLocations(C->path);
298 
299     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
300       removePiecesWithInvalidLocations(M->subPieces);
301 
302     if (!(*I)->getLocation().isValid() ||
303         !(*I)->getLocation().asLocation().isValid()) {
304       I = Pieces.erase(I);
305       continue;
306     }
307     I++;
308   }
309 }
310 
311 //===----------------------------------------------------------------------===//
312 // PathDiagnosticBuilder and its associated routines and helper objects.
313 //===----------------------------------------------------------------------===//
314 
315 namespace {
316 class NodeMapClosure : public BugReport::NodeResolver {
317   InterExplodedGraphMap &M;
318 public:
319   NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
320 
321   const ExplodedNode *getOriginalNode(const ExplodedNode *N) override {
322     return M.lookup(N);
323   }
324 };
325 
326 class PathDiagnosticBuilder : public BugReporterContext {
327   BugReport *R;
328   PathDiagnosticConsumer *PDC;
329   NodeMapClosure NMC;
330 public:
331   const LocationContext *LC;
332 
333   PathDiagnosticBuilder(GRBugReporter &br,
334                         BugReport *r, InterExplodedGraphMap &Backmap,
335                         PathDiagnosticConsumer *pdc)
336     : BugReporterContext(br),
337       R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
338   {}
339 
340   PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
341 
342   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
343                                             const ExplodedNode *N);
344 
345   BugReport *getBugReport() { return R; }
346 
347   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
348 
349   ParentMap& getParentMap() { return LC->getParentMap(); }
350 
351   const Stmt *getParent(const Stmt *S) {
352     return getParentMap().getParent(S);
353   }
354 
355   NodeMapClosure& getNodeResolver() override { return NMC; }
356 
357   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
358 
359   PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
360     return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
361   }
362 
363   bool supportsLogicalOpControlFlow() const {
364     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
365   }
366 };
367 } // end anonymous namespace
368 
369 PathDiagnosticLocation
370 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
371   if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
372     return PathDiagnosticLocation(S, getSourceManager(), LC);
373 
374   return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
375                                                getSourceManager());
376 }
377 
378 PathDiagnosticLocation
379 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
380                                           const ExplodedNode *N) {
381 
382   // Slow, but probably doesn't matter.
383   if (os.str().empty())
384     os << ' ';
385 
386   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
387 
388   if (Loc.asStmt())
389     os << "Execution continues on line "
390        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
391        << '.';
392   else {
393     os << "Execution jumps to the end of the ";
394     const Decl *D = N->getLocationContext()->getDecl();
395     if (isa<ObjCMethodDecl>(D))
396       os << "method";
397     else if (isa<FunctionDecl>(D))
398       os << "function";
399     else {
400       assert(isa<BlockDecl>(D));
401       os << "anonymous block";
402     }
403     os << '.';
404   }
405 
406   return Loc;
407 }
408 
409 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
410   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
411     return PM.getParentIgnoreParens(S);
412 
413   const Stmt *Parent = PM.getParentIgnoreParens(S);
414   if (!Parent)
415     return nullptr;
416 
417   switch (Parent->getStmtClass()) {
418   case Stmt::ForStmtClass:
419   case Stmt::DoStmtClass:
420   case Stmt::WhileStmtClass:
421   case Stmt::ObjCForCollectionStmtClass:
422   case Stmt::CXXForRangeStmtClass:
423     return Parent;
424   default:
425     break;
426   }
427 
428   return nullptr;
429 }
430 
431 static PathDiagnosticLocation
432 getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P,
433                          const LocationContext *LC, bool allowNestedContexts) {
434   if (!S)
435     return PathDiagnosticLocation();
436 
437   while (const Stmt *Parent = getEnclosingParent(S, P)) {
438     switch (Parent->getStmtClass()) {
439       case Stmt::BinaryOperatorClass: {
440         const BinaryOperator *B = cast<BinaryOperator>(Parent);
441         if (B->isLogicalOp())
442           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
443         break;
444       }
445       case Stmt::CompoundStmtClass:
446       case Stmt::StmtExprClass:
447         return PathDiagnosticLocation(S, SMgr, LC);
448       case Stmt::ChooseExprClass:
449         // Similar to '?' if we are referring to condition, just have the edge
450         // point to the entire choose expression.
451         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
452           return PathDiagnosticLocation(Parent, SMgr, LC);
453         else
454           return PathDiagnosticLocation(S, SMgr, LC);
455       case Stmt::BinaryConditionalOperatorClass:
456       case Stmt::ConditionalOperatorClass:
457         // For '?', if we are referring to condition, just have the edge point
458         // to the entire '?' expression.
459         if (allowNestedContexts ||
460             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
461           return PathDiagnosticLocation(Parent, SMgr, LC);
462         else
463           return PathDiagnosticLocation(S, SMgr, LC);
464       case Stmt::CXXForRangeStmtClass:
465         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
466           return PathDiagnosticLocation(S, SMgr, LC);
467         break;
468       case Stmt::DoStmtClass:
469           return PathDiagnosticLocation(S, SMgr, LC);
470       case Stmt::ForStmtClass:
471         if (cast<ForStmt>(Parent)->getBody() == S)
472           return PathDiagnosticLocation(S, SMgr, LC);
473         break;
474       case Stmt::IfStmtClass:
475         if (cast<IfStmt>(Parent)->getCond() != S)
476           return PathDiagnosticLocation(S, SMgr, LC);
477         break;
478       case Stmt::ObjCForCollectionStmtClass:
479         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
480           return PathDiagnosticLocation(S, SMgr, LC);
481         break;
482       case Stmt::WhileStmtClass:
483         if (cast<WhileStmt>(Parent)->getCond() != S)
484           return PathDiagnosticLocation(S, SMgr, LC);
485         break;
486       default:
487         break;
488     }
489 
490     S = Parent;
491   }
492 
493   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
494 
495   return PathDiagnosticLocation(S, SMgr, LC);
496 }
497 
498 PathDiagnosticLocation
499 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
500   assert(S && "Null Stmt passed to getEnclosingStmtLocation");
501   return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC,
502                                     /*allowNestedContexts=*/false);
503 }
504 
505 //===----------------------------------------------------------------------===//
506 // "Visitors only" path diagnostic generation algorithm.
507 //===----------------------------------------------------------------------===//
508 static bool GenerateVisitorsOnlyPathDiagnostic(
509     PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
510     ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
511   // All path generation skips the very first node (the error node).
512   // This is because there is special handling for the end-of-path note.
513   N = N->getFirstPred();
514   if (!N)
515     return true;
516 
517   BugReport *R = PDB.getBugReport();
518   while (const ExplodedNode *Pred = N->getFirstPred()) {
519     for (auto &V : visitors)
520       // Visit all the node pairs, but throw the path pieces away.
521       V->VisitNode(N, Pred, PDB, *R);
522 
523     N = Pred;
524   }
525 
526   return R->isValid();
527 }
528 
529 //===----------------------------------------------------------------------===//
530 // "Minimal" path diagnostic generation algorithm.
531 //===----------------------------------------------------------------------===//
532 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
533 typedef SmallVector<StackDiagPair, 6> StackDiagVector;
534 
535 static void updateStackPiecesWithMessage(PathDiagnosticPiece &P,
536                                          StackDiagVector &CallStack) {
537   // If the piece contains a special message, add it to all the call
538   // pieces on the active stack.
539   if (PathDiagnosticEventPiece *ep = dyn_cast<PathDiagnosticEventPiece>(&P)) {
540 
541     if (ep->hasCallStackHint())
542       for (StackDiagVector::iterator I = CallStack.begin(),
543                                      E = CallStack.end(); I != E; ++I) {
544         PathDiagnosticCallPiece *CP = I->first;
545         const ExplodedNode *N = I->second;
546         std::string stackMsg = ep->getCallStackMessage(N);
547 
548         // The last message on the path to final bug is the most important
549         // one. Since we traverse the path backwards, do not add the message
550         // if one has been previously added.
551         if  (!CP->hasCallStackMessage())
552           CP->setCallStackMessage(stackMsg);
553       }
554   }
555 }
556 
557 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
558 
559 
560 /// Add path diagnostic for statement associated with node \p N
561 /// to diagnostics \p PD.
562 /// Precondition: location associated with \p N is a \c BlockEdge.
563 static void generateMinimalDiagnosticsForBlockEdge(const ExplodedNode *N,
564                                        PathDiagnosticBuilder &PDB,
565                                        PathDiagnostic &PD) {
566 
567   const LocationContext *LC = N->getLocationContext();
568   SourceManager& SMgr = PDB.getSourceManager();
569   BlockEdge BE = N->getLocation().castAs<BlockEdge>();
570   const CFGBlock *Src = BE.getSrc();
571   const CFGBlock *Dst = BE.getDst();
572   const Stmt *T = Src->getTerminator();
573   if (!T)
574     return;
575 
576   auto Start = PathDiagnosticLocation::createBegin(T, SMgr, LC);
577   switch (T->getStmtClass()) {
578   default:
579     break;
580 
581   case Stmt::GotoStmtClass:
582   case Stmt::IndirectGotoStmtClass: {
583     const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
584 
585     if (!S)
586       break;
587 
588     std::string sbuf;
589     llvm::raw_string_ostream os(sbuf);
590     const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
591 
592     os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
593     PD.getActivePath().push_front(
594         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
595     break;
596   }
597 
598   case Stmt::SwitchStmtClass: {
599     // Figure out what case arm we took.
600     std::string sbuf;
601     llvm::raw_string_ostream os(sbuf);
602 
603     if (const Stmt *S = Dst->getLabel()) {
604       PathDiagnosticLocation End(S, SMgr, LC);
605 
606       switch (S->getStmtClass()) {
607       default:
608         os << "No cases match in the switch statement. "
609               "Control jumps to line "
610            << End.asLocation().getExpansionLineNumber();
611         break;
612       case Stmt::DefaultStmtClass:
613         os << "Control jumps to the 'default' case at line "
614            << End.asLocation().getExpansionLineNumber();
615         break;
616 
617       case Stmt::CaseStmtClass: {
618         os << "Control jumps to 'case ";
619         const CaseStmt *Case = cast<CaseStmt>(S);
620         const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
621 
622         // Determine if it is an enum.
623         bool GetRawInt = true;
624 
625         if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
626           // FIXME: Maybe this should be an assertion.  Are there cases
627           // were it is not an EnumConstantDecl?
628           const EnumConstantDecl *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
629 
630           if (D) {
631             GetRawInt = false;
632             os << *D;
633           }
634         }
635 
636         if (GetRawInt)
637           os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
638 
639         os << ":'  at line " << End.asLocation().getExpansionLineNumber();
640         break;
641       }
642       }
643       PD.getActivePath().push_front(
644           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
645                                                            os.str()));
646     } else {
647       os << "'Default' branch taken. ";
648       const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
649       PD.getActivePath().push_front(
650           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
651                                                            os.str()));
652     }
653 
654     break;
655   }
656 
657   case Stmt::BreakStmtClass:
658   case Stmt::ContinueStmtClass: {
659     std::string sbuf;
660     llvm::raw_string_ostream os(sbuf);
661     PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
662     PD.getActivePath().push_front(
663         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
664     break;
665   }
666 
667   // Determine control-flow for ternary '?'.
668   case Stmt::BinaryConditionalOperatorClass:
669   case Stmt::ConditionalOperatorClass: {
670     std::string sbuf;
671     llvm::raw_string_ostream os(sbuf);
672     os << "'?' condition is ";
673 
674     if (*(Src->succ_begin() + 1) == Dst)
675       os << "false";
676     else
677       os << "true";
678 
679     PathDiagnosticLocation End = PDB.ExecutionContinues(N);
680 
681     if (const Stmt *S = End.asStmt())
682       End = PDB.getEnclosingStmtLocation(S);
683 
684     PD.getActivePath().push_front(
685         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
686     break;
687   }
688 
689   // Determine control-flow for short-circuited '&&' and '||'.
690   case Stmt::BinaryOperatorClass: {
691     if (!PDB.supportsLogicalOpControlFlow())
692       break;
693 
694     const BinaryOperator *B = cast<BinaryOperator>(T);
695     std::string sbuf;
696     llvm::raw_string_ostream os(sbuf);
697     os << "Left side of '";
698 
699     if (B->getOpcode() == BO_LAnd) {
700       os << "&&"
701          << "' is ";
702 
703       if (*(Src->succ_begin() + 1) == Dst) {
704         os << "false";
705         PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
706         PathDiagnosticLocation Start =
707             PathDiagnosticLocation::createOperatorLoc(B, SMgr);
708         PD.getActivePath().push_front(
709             std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
710                                                              os.str()));
711       } else {
712         os << "true";
713         PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
714         PathDiagnosticLocation End = PDB.ExecutionContinues(N);
715         PD.getActivePath().push_front(
716             std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
717                                                              os.str()));
718       }
719     } else {
720       assert(B->getOpcode() == BO_LOr);
721       os << "||"
722          << "' is ";
723 
724       if (*(Src->succ_begin() + 1) == Dst) {
725         os << "false";
726         PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
727         PathDiagnosticLocation End = PDB.ExecutionContinues(N);
728         PD.getActivePath().push_front(
729             std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
730                                                              os.str()));
731       } else {
732         os << "true";
733         PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
734         PathDiagnosticLocation Start =
735             PathDiagnosticLocation::createOperatorLoc(B, SMgr);
736         PD.getActivePath().push_front(
737             std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
738                                                              os.str()));
739       }
740     }
741 
742     break;
743   }
744 
745   case Stmt::DoStmtClass: {
746     if (*(Src->succ_begin()) == Dst) {
747       std::string sbuf;
748       llvm::raw_string_ostream os(sbuf);
749 
750       os << "Loop condition is true. ";
751       PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
752 
753       if (const Stmt *S = End.asStmt())
754         End = PDB.getEnclosingStmtLocation(S);
755 
756       PD.getActivePath().push_front(
757           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
758                                                            os.str()));
759     } else {
760       PathDiagnosticLocation End = PDB.ExecutionContinues(N);
761 
762       if (const Stmt *S = End.asStmt())
763         End = PDB.getEnclosingStmtLocation(S);
764 
765       PD.getActivePath().push_front(
766           std::make_shared<PathDiagnosticControlFlowPiece>(
767               Start, End, "Loop condition is false.  Exiting loop"));
768     }
769 
770     break;
771   }
772 
773   case Stmt::WhileStmtClass:
774   case Stmt::ForStmtClass: {
775     if (*(Src->succ_begin() + 1) == Dst) {
776       std::string sbuf;
777       llvm::raw_string_ostream os(sbuf);
778 
779       os << "Loop condition is false. ";
780       PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
781       if (const Stmt *S = End.asStmt())
782         End = PDB.getEnclosingStmtLocation(S);
783 
784       PD.getActivePath().push_front(
785           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
786                                                            os.str()));
787     } else {
788       PathDiagnosticLocation End = PDB.ExecutionContinues(N);
789       if (const Stmt *S = End.asStmt())
790         End = PDB.getEnclosingStmtLocation(S);
791 
792       PD.getActivePath().push_front(
793           std::make_shared<PathDiagnosticControlFlowPiece>(
794               Start, End, "Loop condition is true.  Entering loop body"));
795     }
796 
797     break;
798   }
799 
800   case Stmt::IfStmtClass: {
801     PathDiagnosticLocation End = PDB.ExecutionContinues(N);
802 
803     if (const Stmt *S = End.asStmt())
804       End = PDB.getEnclosingStmtLocation(S);
805 
806     if (*(Src->succ_begin() + 1) == Dst)
807       PD.getActivePath().push_front(
808           std::make_shared<PathDiagnosticControlFlowPiece>(
809               Start, End, "Taking false branch"));
810     else
811       PD.getActivePath().push_front(
812           std::make_shared<PathDiagnosticControlFlowPiece>(
813               Start, End, "Taking true branch"));
814 
815     break;
816   }
817   }
818 }
819 
820 /// Generate minimal diagnostics for node \p N, and write it into path
821 /// diagnostics \p PD.
822 void generateMinimalDiagnosticsForNode(const ExplodedNode *N,
823     PathDiagnosticBuilder &PDB,
824     PathDiagnostic &PD,
825     LocationContextMap &LCM,
826     StackDiagVector &CallStack) {
827 
828   SourceManager &SMgr = PDB.getSourceManager();
829   ProgramPoint P = N->getLocation();
830 
831   if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
832     auto C = PathDiagnosticCallPiece::construct(N, *CE, SMgr);
833     // Record the mapping from call piece to LocationContext.
834     LCM[&C->path] = CE->getCalleeContext();
835     auto *P = C.get();
836     PD.getActivePath().push_front(std::move(C));
837     PD.pushActivePath(&P->path);
838     CallStack.push_back(StackDiagPair(P, N));
839   } else if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
840     // Flush all locations, and pop the active path.
841     bool VisitedEntireCall = PD.isWithinCall();
842     PD.popActivePath();
843 
844     // Either we just added a bunch of stuff to the top-level path, or
845     // we have a previous CallExitEnd.  If the former, it means that the
846     // path terminated within a function call.  We must then take the
847     // current contents of the active path and place it within
848     // a new PathDiagnosticCallPiece.
849     PathDiagnosticCallPiece *C;
850     if (VisitedEntireCall) {
851       C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front().get());
852     } else {
853       const Decl *Caller = CE->getLocationContext()->getDecl();
854       C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
855       // Record the mapping from call piece to LocationContext.
856       LCM[&C->path] = CE->getCalleeContext();
857     }
858 
859     C->setCallee(*CE, SMgr);
860     if (!CallStack.empty()) {
861       assert(CallStack.back().first == C);
862       CallStack.pop_back();
863     }
864   } else if (P.getKind() == ProgramPoint::BlockEdgeKind) {
865     generateMinimalDiagnosticsForBlockEdge(N, PDB, PD);
866   }
867 }
868 
869 static bool GenerateMinimalPathDiagnostic(
870     PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
871     LocationContextMap &LCM,
872     ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
873   const ExplodedNode *NextNode = N->pred_empty()
874                                         ? nullptr : *(N->pred_begin());
875   StackDiagVector CallStack;
876 
877   while (NextNode) {
878     N = NextNode;
879     PDB.LC = N->getLocationContext();
880     NextNode = N->getFirstPred();
881 
882     generateMinimalDiagnosticsForNode(N, PDB, PD, LCM, CallStack);
883 
884     if (NextNode) {
885       // Add diagnostic pieces from custom visitors.
886       BugReport *R = PDB.getBugReport();
887       llvm::FoldingSet<PathDiagnosticPiece> DeduplicationSet;
888       for (auto &V : visitors) {
889         if (auto p = V->VisitNode(N, NextNode, PDB, *R)) {
890           if (DeduplicationSet.GetOrInsertNode(p.get()) != p.get())
891             continue;
892 
893           updateStackPiecesWithMessage(*p, CallStack);
894           PD.getActivePath().push_front(std::move(p));
895         }
896       }
897     }
898   }
899 
900   if (!PDB.getBugReport()->isValid())
901     return false;
902 
903   // After constructing the full PathDiagnostic, do a pass over it to compact
904   // PathDiagnosticPieces that occur within a macro.
905   CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
906   return true;
907 }
908 
909 //===----------------------------------------------------------------------===//
910 // "Extensive" PathDiagnostic generation.
911 //===----------------------------------------------------------------------===//
912 
913 static bool IsControlFlowExpr(const Stmt *S) {
914   const Expr *E = dyn_cast<Expr>(S);
915 
916   if (!E)
917     return false;
918 
919   E = E->IgnoreParenCasts();
920 
921   if (isa<AbstractConditionalOperator>(E))
922     return true;
923 
924   if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
925     if (B->isLogicalOp())
926       return true;
927 
928   return false;
929 }
930 
931 namespace {
932 class ContextLocation : public PathDiagnosticLocation {
933   bool IsDead;
934 public:
935   ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
936     : PathDiagnosticLocation(L), IsDead(isdead) {}
937 
938   void markDead() { IsDead = true; }
939   bool isDead() const { return IsDead; }
940 };
941 
942 static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
943                                               const LocationContext *LC,
944                                               bool firstCharOnly = false) {
945   if (const Stmt *S = L.asStmt()) {
946     const Stmt *Original = S;
947     while (1) {
948       // Adjust the location for some expressions that are best referenced
949       // by one of their subexpressions.
950       switch (S->getStmtClass()) {
951         default:
952           break;
953         case Stmt::ParenExprClass:
954         case Stmt::GenericSelectionExprClass:
955           S = cast<Expr>(S)->IgnoreParens();
956           firstCharOnly = true;
957           continue;
958         case Stmt::BinaryConditionalOperatorClass:
959         case Stmt::ConditionalOperatorClass:
960           S = cast<AbstractConditionalOperator>(S)->getCond();
961           firstCharOnly = true;
962           continue;
963         case Stmt::ChooseExprClass:
964           S = cast<ChooseExpr>(S)->getCond();
965           firstCharOnly = true;
966           continue;
967         case Stmt::BinaryOperatorClass:
968           S = cast<BinaryOperator>(S)->getLHS();
969           firstCharOnly = true;
970           continue;
971       }
972 
973       break;
974     }
975 
976     if (S != Original)
977       L = PathDiagnosticLocation(S, L.getManager(), LC);
978   }
979 
980   if (firstCharOnly)
981     L  = PathDiagnosticLocation::createSingleLocation(L);
982 
983   return L;
984 }
985 
986 class EdgeBuilder {
987   std::vector<ContextLocation> CLocs;
988   typedef std::vector<ContextLocation>::iterator iterator;
989   PathDiagnostic &PD;
990   PathDiagnosticBuilder &PDB;
991   PathDiagnosticLocation PrevLoc;
992 
993   bool IsConsumedExpr(const PathDiagnosticLocation &L);
994 
995   bool containsLocation(const PathDiagnosticLocation &Container,
996                         const PathDiagnosticLocation &Containee);
997 
998   PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
999 
1000 
1001 
1002   void popLocation() {
1003     if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
1004       // For contexts, we only one the first character as the range.
1005       rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
1006     }
1007     CLocs.pop_back();
1008   }
1009 
1010 public:
1011   EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
1012     : PD(pd), PDB(pdb) {
1013 
1014       // If the PathDiagnostic already has pieces, add the enclosing statement
1015       // of the first piece as a context as well.
1016       if (!PD.path.empty()) {
1017         PrevLoc = (*PD.path.begin())->getLocation();
1018 
1019         if (const Stmt *S = PrevLoc.asStmt())
1020           addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1021       }
1022   }
1023 
1024   ~EdgeBuilder() {
1025     while (!CLocs.empty()) popLocation();
1026 
1027     // Finally, add an initial edge from the start location of the first
1028     // statement (if it doesn't already exist).
1029     PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
1030                                                        PDB.LC,
1031                                                        PDB.getSourceManager());
1032     if (L.isValid())
1033       rawAddEdge(L);
1034   }
1035 
1036   void flushLocations() {
1037     while (!CLocs.empty())
1038       popLocation();
1039     PrevLoc = PathDiagnosticLocation();
1040   }
1041 
1042   void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
1043                bool IsPostJump = false);
1044 
1045   void rawAddEdge(PathDiagnosticLocation NewLoc);
1046 
1047   void addContext(const Stmt *S);
1048   void addContext(const PathDiagnosticLocation &L);
1049   void addExtendedContext(const Stmt *S);
1050 };
1051 } // end anonymous namespace
1052 
1053 
1054 PathDiagnosticLocation
1055 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
1056   if (const Stmt *S = L.asStmt()) {
1057     if (IsControlFlowExpr(S))
1058       return L;
1059 
1060     return PDB.getEnclosingStmtLocation(S);
1061   }
1062 
1063   return L;
1064 }
1065 
1066 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1067                                    const PathDiagnosticLocation &Containee) {
1068 
1069   if (Container == Containee)
1070     return true;
1071 
1072   if (Container.asDecl())
1073     return true;
1074 
1075   if (const Stmt *S = Containee.asStmt())
1076     if (const Stmt *ContainerS = Container.asStmt()) {
1077       while (S) {
1078         if (S == ContainerS)
1079           return true;
1080         S = PDB.getParent(S);
1081       }
1082       return false;
1083     }
1084 
1085   // Less accurate: compare using source ranges.
1086   SourceRange ContainerR = Container.asRange();
1087   SourceRange ContaineeR = Containee.asRange();
1088 
1089   SourceManager &SM = PDB.getSourceManager();
1090   SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1091   SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1092   SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1093   SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1094 
1095   unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1096   unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1097   unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1098   unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1099 
1100   assert(ContainerBegLine <= ContainerEndLine);
1101   assert(ContaineeBegLine <= ContaineeEndLine);
1102 
1103   return (ContainerBegLine <= ContaineeBegLine &&
1104           ContainerEndLine >= ContaineeEndLine &&
1105           (ContainerBegLine != ContaineeBegLine ||
1106            SM.getExpansionColumnNumber(ContainerRBeg) <=
1107            SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1108           (ContainerEndLine != ContaineeEndLine ||
1109            SM.getExpansionColumnNumber(ContainerREnd) >=
1110            SM.getExpansionColumnNumber(ContaineeREnd)));
1111 }
1112 
1113 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1114   if (!PrevLoc.isValid()) {
1115     PrevLoc = NewLoc;
1116     return;
1117   }
1118 
1119   const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
1120   const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
1121 
1122   if (PrevLocClean.asLocation().isInvalid()) {
1123     PrevLoc = NewLoc;
1124     return;
1125   }
1126 
1127   if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1128     return;
1129 
1130   // FIXME: Ignore intra-macro edges for now.
1131   if (NewLocClean.asLocation().getExpansionLoc() ==
1132       PrevLocClean.asLocation().getExpansionLoc())
1133     return;
1134 
1135   PD.getActivePath().push_front(
1136       std::make_shared<PathDiagnosticControlFlowPiece>(NewLocClean,
1137                                                        PrevLocClean));
1138   PrevLoc = NewLoc;
1139 }
1140 
1141 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
1142                           bool IsPostJump) {
1143 
1144   if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1145     return;
1146 
1147   const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1148 
1149   while (!CLocs.empty()) {
1150     ContextLocation &TopContextLoc = CLocs.back();
1151 
1152     // Is the top location context the same as the one for the new location?
1153     if (TopContextLoc == CLoc) {
1154       if (alwaysAdd) {
1155         if (IsConsumedExpr(TopContextLoc))
1156           TopContextLoc.markDead();
1157 
1158         rawAddEdge(NewLoc);
1159       }
1160 
1161       if (IsPostJump)
1162         TopContextLoc.markDead();
1163       return;
1164     }
1165 
1166     if (containsLocation(TopContextLoc, CLoc)) {
1167       if (alwaysAdd) {
1168         rawAddEdge(NewLoc);
1169 
1170         if (IsConsumedExpr(CLoc)) {
1171           CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
1172           return;
1173         }
1174       }
1175 
1176       CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
1177       return;
1178     }
1179 
1180     // Context does not contain the location.  Flush it.
1181     popLocation();
1182   }
1183 
1184   // If we reach here, there is no enclosing context.  Just add the edge.
1185   rawAddEdge(NewLoc);
1186 }
1187 
1188 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1189   if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1190     return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1191 
1192   return false;
1193 }
1194 
1195 void EdgeBuilder::addExtendedContext(const Stmt *S) {
1196   if (!S)
1197     return;
1198 
1199   const Stmt *Parent = PDB.getParent(S);
1200   while (Parent) {
1201     if (isa<CompoundStmt>(Parent))
1202       Parent = PDB.getParent(Parent);
1203     else
1204       break;
1205   }
1206 
1207   if (Parent) {
1208     switch (Parent->getStmtClass()) {
1209       case Stmt::DoStmtClass:
1210       case Stmt::ObjCAtSynchronizedStmtClass:
1211         addContext(Parent);
1212       default:
1213         break;
1214     }
1215   }
1216 
1217   addContext(S);
1218 }
1219 
1220 void EdgeBuilder::addContext(const Stmt *S) {
1221   if (!S)
1222     return;
1223 
1224   PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1225   addContext(L);
1226 }
1227 
1228 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1229   while (!CLocs.empty()) {
1230     const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1231 
1232     // Is the top location context the same as the one for the new location?
1233     if (TopContextLoc == L)
1234       return;
1235 
1236     if (containsLocation(TopContextLoc, L)) {
1237       CLocs.push_back(L);
1238       return;
1239     }
1240 
1241     // Context does not contain the location.  Flush it.
1242     popLocation();
1243   }
1244 
1245   CLocs.push_back(L);
1246 }
1247 
1248 // Cone-of-influence: support the reverse propagation of "interesting" symbols
1249 // and values by tracing interesting calculations backwards through evaluated
1250 // expressions along a path.  This is probably overly complicated, but the idea
1251 // is that if an expression computed an "interesting" value, the child
1252 // expressions are are also likely to be "interesting" as well (which then
1253 // propagates to the values they in turn compute).  This reverse propagation
1254 // is needed to track interesting correlations across function call boundaries,
1255 // where formal arguments bind to actual arguments, etc.  This is also needed
1256 // because the constraint solver sometimes simplifies certain symbolic values
1257 // into constants when appropriate, and this complicates reasoning about
1258 // interesting values.
1259 typedef llvm::DenseSet<const Expr *> InterestingExprs;
1260 
1261 static void reversePropagateIntererstingSymbols(BugReport &R,
1262                                                 InterestingExprs &IE,
1263                                                 const ProgramState *State,
1264                                                 const Expr *Ex,
1265                                                 const LocationContext *LCtx) {
1266   SVal V = State->getSVal(Ex, LCtx);
1267   if (!(R.isInteresting(V) || IE.count(Ex)))
1268     return;
1269 
1270   switch (Ex->getStmtClass()) {
1271     default:
1272       if (!isa<CastExpr>(Ex))
1273         break;
1274       // Fall through.
1275     case Stmt::BinaryOperatorClass:
1276     case Stmt::UnaryOperatorClass: {
1277       for (const Stmt *SubStmt : Ex->children()) {
1278         if (const Expr *child = dyn_cast_or_null<Expr>(SubStmt)) {
1279           IE.insert(child);
1280           SVal ChildV = State->getSVal(child, LCtx);
1281           R.markInteresting(ChildV);
1282         }
1283       }
1284       break;
1285     }
1286   }
1287 
1288   R.markInteresting(V);
1289 }
1290 
1291 static void reversePropagateInterestingSymbols(BugReport &R,
1292                                                InterestingExprs &IE,
1293                                                const ProgramState *State,
1294                                                const LocationContext *CalleeCtx,
1295                                                const LocationContext *CallerCtx)
1296 {
1297   // FIXME: Handle non-CallExpr-based CallEvents.
1298   const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1299   const Stmt *CallSite = Callee->getCallSite();
1300   if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1301     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1302       FunctionDecl::param_const_iterator PI = FD->param_begin(),
1303                                          PE = FD->param_end();
1304       CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1305       for (; AI != AE && PI != PE; ++AI, ++PI) {
1306         if (const Expr *ArgE = *AI) {
1307           if (const ParmVarDecl *PD = *PI) {
1308             Loc LV = State->getLValue(PD, CalleeCtx);
1309             if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1310               IE.insert(ArgE);
1311           }
1312         }
1313       }
1314     }
1315   }
1316 }
1317 
1318 
1319 
1320 //===----------------------------------------------------------------------===//
1321 // Functions for determining if a loop was executed 0 times.
1322 //===----------------------------------------------------------------------===//
1323 
1324 static bool isLoop(const Stmt *Term) {
1325   switch (Term->getStmtClass()) {
1326     case Stmt::ForStmtClass:
1327     case Stmt::WhileStmtClass:
1328     case Stmt::ObjCForCollectionStmtClass:
1329     case Stmt::CXXForRangeStmtClass:
1330       return true;
1331     default:
1332       // Note that we intentionally do not include do..while here.
1333       return false;
1334   }
1335 }
1336 
1337 static bool isJumpToFalseBranch(const BlockEdge *BE) {
1338   const CFGBlock *Src = BE->getSrc();
1339   assert(Src->succ_size() == 2);
1340   return (*(Src->succ_begin()+1) == BE->getDst());
1341 }
1342 
1343 /// Return true if the terminator is a loop and the destination is the
1344 /// false branch.
1345 static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
1346   if (!isLoop(Term))
1347     return false;
1348 
1349   // Did we take the false branch?
1350   return isJumpToFalseBranch(BE);
1351 }
1352 
1353 static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
1354   while (SubS) {
1355     if (SubS == S)
1356       return true;
1357     SubS = PM.getParent(SubS);
1358   }
1359   return false;
1360 }
1361 
1362 static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
1363                                      const ExplodedNode *N) {
1364   while (N) {
1365     Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1366     if (SP) {
1367       const Stmt *S = SP->getStmt();
1368       if (!isContainedByStmt(PM, Term, S))
1369         return S;
1370     }
1371     N = N->getFirstPred();
1372   }
1373   return nullptr;
1374 }
1375 
1376 static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
1377   const Stmt *LoopBody = nullptr;
1378   switch (Term->getStmtClass()) {
1379     case Stmt::CXXForRangeStmtClass: {
1380       const CXXForRangeStmt *FR = cast<CXXForRangeStmt>(Term);
1381       if (isContainedByStmt(PM, FR->getInc(), S))
1382         return true;
1383       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1384         return true;
1385       LoopBody = FR->getBody();
1386       break;
1387     }
1388     case Stmt::ForStmtClass: {
1389       const ForStmt *FS = cast<ForStmt>(Term);
1390       if (isContainedByStmt(PM, FS->getInc(), S))
1391         return true;
1392       LoopBody = FS->getBody();
1393       break;
1394     }
1395     case Stmt::ObjCForCollectionStmtClass: {
1396       const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
1397       LoopBody = FC->getBody();
1398       break;
1399     }
1400     case Stmt::WhileStmtClass:
1401       LoopBody = cast<WhileStmt>(Term)->getBody();
1402       break;
1403     default:
1404       return false;
1405   }
1406   return isContainedByStmt(PM, LoopBody, S);
1407 }
1408 
1409 /// Generate extensive diagnostics for statement associated with node \p N,
1410 /// and write it into \p PD.
1411 static void generateExtensiveDiagnosticsForNode(
1412         const ExplodedNode *N,
1413         PathDiagnosticBuilder &PDB,
1414         LocationContextMap &LCM,
1415         EdgeBuilder &EB,
1416         StackDiagVector &CallStack,
1417         PathDiagnostic &PD,
1418         InterestingExprs &IE) {
1419 
1420   const ExplodedNode *NextNode = N->getFirstPred();
1421   ProgramPoint P = N->getLocation();
1422   const SourceManager& SM = PDB.getSourceManager();
1423 
1424   if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1425     if (const Expr *Ex = PS->getStmtAs<Expr>())
1426       reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1427           N->getState().get(), Ex,
1428           N->getLocationContext());
1429     return;
1430   } else if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1431     const Stmt *S = CE->getCalleeContext()->getCallSite();
1432     if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1433       reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1434           N->getState().get(), Ex,
1435           N->getLocationContext());
1436     }
1437 
1438     auto C = PathDiagnosticCallPiece::construct(N, *CE, SM);
1439     LCM[&C->path] = CE->getCalleeContext();
1440 
1441     EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
1442     EB.flushLocations();
1443 
1444     auto *P = C.get();
1445     PD.getActivePath().push_front(std::move(C));
1446     PD.pushActivePath(&P->path);
1447     CallStack.push_back(StackDiagPair(P, N));
1448     return;
1449   } else if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1450 
1451     // Pop the call hierarchy if we are done walking the contents
1452     // of a function call.
1453 
1454     // Add an edge to the start of the function.
1455     const Decl *D = CE->getCalleeContext()->getDecl();
1456     PathDiagnosticLocation pos =
1457       PathDiagnosticLocation::createBegin(D, SM);
1458     EB.addEdge(pos);
1459 
1460     // Flush all locations, and pop the active path.
1461     bool VisitedEntireCall = PD.isWithinCall();
1462     EB.flushLocations();
1463     PD.popActivePath();
1464     PDB.LC = N->getLocationContext();
1465 
1466     // Either we just added a bunch of stuff to the top-level path, or
1467     // we have a previous CallExitEnd.  If the former, it means that the
1468     // path terminated within a function call.  We must then take the
1469     // current contents of the active path and place it within
1470     // a new PathDiagnosticCallPiece.
1471     PathDiagnosticCallPiece *C;
1472     if (VisitedEntireCall) {
1473       C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front().get());
1474     } else {
1475       const Decl *Caller = CE->getLocationContext()->getDecl();
1476       C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1477       LCM[&C->path] = CE->getCalleeContext();
1478     }
1479 
1480     C->setCallee(*CE, SM);
1481     EB.addContext(C->getLocation());
1482 
1483     if (!CallStack.empty()) {
1484       assert(CallStack.back().first == C);
1485       CallStack.pop_back();
1486     }
1487     return;
1488   }
1489 
1490   // Note that is important that we update the LocationContext
1491   // after looking at CallExits.  CallExit basically adds an
1492   // edge in the *caller*, so we don't want to update the LocationContext
1493   // too soon.
1494   PDB.LC = N->getLocationContext();
1495 
1496   if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1497     // Does this represent entering a call?  If so, look at propagating
1498     // interesting symbols across call boundaries.
1499     if (NextNode) {
1500       const LocationContext *CallerCtx = NextNode->getLocationContext();
1501       const LocationContext *CalleeCtx = PDB.LC;
1502       if (CallerCtx != CalleeCtx) {
1503         reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1504             N->getState().get(),
1505             CalleeCtx, CallerCtx);
1506       }
1507     }
1508 
1509     // Are we jumping to the head of a loop?  Add a special diagnostic.
1510     if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1511       PathDiagnosticLocation L(Loop, SM, PDB.LC);
1512       const CompoundStmt *CS = nullptr;
1513 
1514       if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1515         CS = dyn_cast<CompoundStmt>(FS->getBody());
1516       else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1517         CS = dyn_cast<CompoundStmt>(WS->getBody());
1518 
1519       auto p = std::make_shared<PathDiagnosticEventPiece>(
1520           L, "Looping back to the head of the loop");
1521       p->setPrunable(true);
1522 
1523       EB.addEdge(p->getLocation(), true);
1524       PD.getActivePath().push_front(std::move(p));
1525 
1526       if (CS) {
1527         PathDiagnosticLocation BL =
1528           PathDiagnosticLocation::createEndBrace(CS, SM);
1529         EB.addEdge(BL);
1530       }
1531     }
1532 
1533     const CFGBlock *BSrc = BE->getSrc();
1534     ParentMap &PM = PDB.getParentMap();
1535 
1536     if (const Stmt *Term = BSrc->getTerminator()) {
1537       // Are we jumping past the loop body without ever executing the
1538       // loop (because the condition was false)?
1539       if (isLoopJumpPastBody(Term, &*BE) &&
1540           !isInLoopBody(PM,
1541             getStmtBeforeCond(PM,
1542               BSrc->getTerminatorCondition(),
1543               N),
1544             Term)) {
1545         PathDiagnosticLocation L(Term, SM, PDB.LC);
1546         auto PE = std::make_shared<PathDiagnosticEventPiece>(
1547             L, "Loop body executed 0 times");
1548         PE->setPrunable(true);
1549 
1550         EB.addEdge(PE->getLocation(), true);
1551         PD.getActivePath().push_front(std::move(PE));
1552       }
1553 
1554       // In any case, add the terminator as the current statement
1555       // context for control edges.
1556       EB.addContext(Term);
1557     }
1558   } else if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
1559     Optional<CFGElement> First = BE->getFirstElement();
1560     if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
1561       const Stmt *stmt = S->getStmt();
1562       if (IsControlFlowExpr(stmt)) {
1563         // Add the proper context for '&&', '||', and '?'.
1564         EB.addContext(stmt);
1565       }
1566       else
1567         EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1568     }
1569   }
1570 }
1571 
1572 //===----------------------------------------------------------------------===//
1573 // Top-level logic for generating extensive path diagnostics.
1574 //===----------------------------------------------------------------------===//
1575 
1576 static bool GenerateExtensivePathDiagnostic(
1577     PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
1578     LocationContextMap &LCM,
1579     ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
1580   EdgeBuilder EB(PD, PDB);
1581   StackDiagVector CallStack;
1582 
1583   InterestingExprs IE;
1584   const ExplodedNode *NextNode = N->pred_empty() ? nullptr : *(N->pred_begin());
1585   while (NextNode) {
1586     N = NextNode;
1587     NextNode = N->getFirstPred();
1588 
1589     generateExtensiveDiagnosticsForNode(N, PDB, LCM, EB, CallStack, PD, IE);
1590 
1591     if (!NextNode)
1592       continue;
1593 
1594     // Add pieces from custom visitors.
1595     BugReport *R = PDB.getBugReport();
1596     llvm::FoldingSet<PathDiagnosticPiece> DeduplicationSet;
1597     for (auto &V : visitors) {
1598       if (auto p = V->VisitNode(N, NextNode, PDB, *R)) {
1599         if (DeduplicationSet.GetOrInsertNode(p.get()) != p.get())
1600           continue;
1601 
1602         const PathDiagnosticLocation &Loc = p->getLocation();
1603         EB.addEdge(Loc, true);
1604         updateStackPiecesWithMessage(*p, CallStack);
1605         PD.getActivePath().push_front(std::move(p));
1606 
1607         if (const Stmt *S = Loc.asStmt())
1608           EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1609       }
1610     }
1611   }
1612 
1613   return PDB.getBugReport()->isValid();
1614 }
1615 
1616 /// \brief Adds a sanitized control-flow diagnostic edge to a path.
1617 static void addEdgeToPath(PathPieces &path,
1618                           PathDiagnosticLocation &PrevLoc,
1619                           PathDiagnosticLocation NewLoc,
1620                           const LocationContext *LC) {
1621   if (!NewLoc.isValid())
1622     return;
1623 
1624   SourceLocation NewLocL = NewLoc.asLocation();
1625   if (NewLocL.isInvalid())
1626     return;
1627 
1628   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1629     PrevLoc = NewLoc;
1630     return;
1631   }
1632 
1633   // Ignore self-edges, which occur when there are multiple nodes at the same
1634   // statement.
1635   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1636     return;
1637 
1638   path.push_front(
1639       std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
1640   PrevLoc = NewLoc;
1641 }
1642 
1643 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1644 /// which returns the element for ObjCForCollectionStmts.
1645 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1646   const Stmt *S = B->getTerminatorCondition();
1647   if (const ObjCForCollectionStmt *FS =
1648       dyn_cast_or_null<ObjCForCollectionStmt>(S))
1649     return FS->getElement();
1650   return S;
1651 }
1652 
1653 static const char StrEnteringLoop[] = "Entering loop body";
1654 static const char StrLoopBodyZero[] = "Loop body executed 0 times";
1655 static const char StrLoopRangeEmpty[] =
1656   "Loop body skipped when range is empty";
1657 static const char StrLoopCollectionEmpty[] =
1658   "Loop body skipped when collection is empty";
1659 
1660 /// Generate alternate-extensive diagnostics for the node \p N,
1661 /// and write it into \p PD.
1662 static void generateAlternateExtensiveDiagnosticsForNode(const ExplodedNode *N,
1663       PathDiagnostic &PD,
1664       PathDiagnosticLocation &PrevLoc,
1665       PathDiagnosticBuilder &PDB,
1666       LocationContextMap &LCM,
1667       StackDiagVector &CallStack,
1668       InterestingExprs &IE) {
1669   const ExplodedNode *NextNode = N->getFirstPred();
1670   ProgramPoint P = N->getLocation();
1671   const SourceManager& SM = PDB.getSourceManager();
1672 
1673   // Have we encountered an entrance to a call?  It may be
1674   // the case that we have not encountered a matching
1675   // call exit before this point.  This means that the path
1676   // terminated within the call itself.
1677   if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1678     // Add an edge to the start of the function.
1679     const StackFrameContext *CalleeLC = CE->getCalleeContext();
1680     const Decl *D = CalleeLC->getDecl();
1681     // Add the edge only when the callee has body. We jump to the beginning
1682     // of the *declaration*, however we expect it to be followed by the
1683     // body. This isn't the case for autosynthesized property accessors in
1684     // Objective-C. No need for a similar extra check for CallExit points
1685     // because the exit edge comes from a statement (i.e. return),
1686     // not from declaration.
1687     if (D->hasBody())
1688       addEdgeToPath(PD.getActivePath(), PrevLoc,
1689           PathDiagnosticLocation::createBegin(D, SM), CalleeLC);
1690 
1691     // Did we visit an entire call?
1692     bool VisitedEntireCall = PD.isWithinCall();
1693     PD.popActivePath();
1694 
1695     PathDiagnosticCallPiece *C;
1696     if (VisitedEntireCall) {
1697       PathDiagnosticPiece *P = PD.getActivePath().front().get();
1698       C = cast<PathDiagnosticCallPiece>(P);
1699     } else {
1700       const Decl *Caller = CE->getLocationContext()->getDecl();
1701       C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1702 
1703       // Since we just transferred the path over to the call piece,
1704       // reset the mapping from active to location context.
1705       assert(PD.getActivePath().size() == 1 &&
1706           PD.getActivePath().front().get() == C);
1707       LCM[&PD.getActivePath()] = nullptr;
1708 
1709       // Record the location context mapping for the path within
1710       // the call.
1711       assert(LCM[&C->path] == nullptr ||
1712           LCM[&C->path] == CE->getCalleeContext());
1713       LCM[&C->path] = CE->getCalleeContext();
1714 
1715       // If this is the first item in the active path, record
1716       // the new mapping from active path to location context.
1717       const LocationContext *&NewLC = LCM[&PD.getActivePath()];
1718       if (!NewLC)
1719         NewLC = N->getLocationContext();
1720 
1721       PDB.LC = NewLC;
1722     }
1723     C->setCallee(*CE, SM);
1724 
1725     // Update the previous location in the active path.
1726     PrevLoc = C->getLocation();
1727 
1728     if (!CallStack.empty()) {
1729       assert(CallStack.back().first == C);
1730       CallStack.pop_back();
1731     }
1732     return;
1733   }
1734 
1735   // Query the location context here and the previous location
1736   // as processing CallEnter may change the active path.
1737   PDB.LC = N->getLocationContext();
1738 
1739   // Record the mapping from the active path to the location
1740   // context.
1741   assert(!LCM[&PD.getActivePath()] ||
1742       LCM[&PD.getActivePath()] == PDB.LC);
1743   LCM[&PD.getActivePath()] = PDB.LC;
1744 
1745   // Have we encountered an exit from a function call?
1746   if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1747     const Stmt *S = CE->getCalleeContext()->getCallSite();
1748     // Propagate the interesting symbols accordingly.
1749     if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1750       reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1751           N->getState().get(), Ex,
1752           N->getLocationContext());
1753     }
1754 
1755     // We are descending into a call (backwards).  Construct
1756     // a new call piece to contain the path pieces for that call.
1757     auto C = PathDiagnosticCallPiece::construct(N, *CE, SM);
1758 
1759     // Record the location context for this call piece.
1760     LCM[&C->path] = CE->getCalleeContext();
1761 
1762     // Add the edge to the return site.
1763     addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
1764     auto *P = C.get();
1765     PD.getActivePath().push_front(std::move(C));
1766     PrevLoc.invalidate();
1767 
1768     // Make the contents of the call the active path for now.
1769     PD.pushActivePath(&P->path);
1770     CallStack.push_back(StackDiagPair(P, N));
1771   } else if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1772     // For expressions, make sure we propagate the
1773     // interesting symbols correctly.
1774     if (const Expr *Ex = PS->getStmtAs<Expr>())
1775       reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1776           N->getState().get(), Ex,
1777           N->getLocationContext());
1778 
1779     // Add an edge.  If this is an ObjCForCollectionStmt do
1780     // not add an edge here as it appears in the CFG both
1781     // as a terminator and as a terminator condition.
1782     if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1783       PathDiagnosticLocation L =
1784         PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
1785       addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1786     }
1787   } else if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1788     // Does this represent entering a call?  If so, look at propagating
1789     // interesting symbols across call boundaries.
1790     if (NextNode) {
1791       const LocationContext *CallerCtx = NextNode->getLocationContext();
1792       const LocationContext *CalleeCtx = PDB.LC;
1793       if (CallerCtx != CalleeCtx) {
1794         reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1795             N->getState().get(),
1796             CalleeCtx, CallerCtx);
1797       }
1798     }
1799 
1800     // Are we jumping to the head of a loop?  Add a special diagnostic.
1801     if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1802       PathDiagnosticLocation L(Loop, SM, PDB.LC);
1803       const Stmt *Body = nullptr;
1804 
1805       if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1806         Body = FS->getBody();
1807       else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1808         Body = WS->getBody();
1809       else if (const ObjCForCollectionStmt *OFS =
1810           dyn_cast<ObjCForCollectionStmt>(Loop)) {
1811         Body = OFS->getBody();
1812       } else if (const CXXForRangeStmt *FRS =
1813           dyn_cast<CXXForRangeStmt>(Loop)) {
1814         Body = FRS->getBody();
1815       }
1816       // do-while statements are explicitly excluded here
1817 
1818       auto p = std::make_shared<PathDiagnosticEventPiece>(
1819           L, "Looping back to the head "
1820           "of the loop");
1821       p->setPrunable(true);
1822 
1823       addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1824       PD.getActivePath().push_front(std::move(p));
1825 
1826       if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1827         addEdgeToPath(PD.getActivePath(), PrevLoc,
1828             PathDiagnosticLocation::createEndBrace(CS, SM),
1829             PDB.LC);
1830       }
1831     }
1832 
1833     const CFGBlock *BSrc = BE->getSrc();
1834     ParentMap &PM = PDB.getParentMap();
1835 
1836     if (const Stmt *Term = BSrc->getTerminator()) {
1837       // Are we jumping past the loop body without ever executing the
1838       // loop (because the condition was false)?
1839       if (isLoop(Term)) {
1840         const Stmt *TermCond = getTerminatorCondition(BSrc);
1841         bool IsInLoopBody =
1842           isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
1843 
1844         const char *str = nullptr;
1845 
1846         if (isJumpToFalseBranch(&*BE)) {
1847           if (!IsInLoopBody) {
1848             if (isa<ObjCForCollectionStmt>(Term)) {
1849               str = StrLoopCollectionEmpty;
1850             } else if (isa<CXXForRangeStmt>(Term)) {
1851               str = StrLoopRangeEmpty;
1852             } else {
1853               str = StrLoopBodyZero;
1854             }
1855           }
1856         } else {
1857           str = StrEnteringLoop;
1858         }
1859 
1860         if (str) {
1861           PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC);
1862           auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
1863           PE->setPrunable(true);
1864           addEdgeToPath(PD.getActivePath(), PrevLoc,
1865               PE->getLocation(), PDB.LC);
1866           PD.getActivePath().push_front(std::move(PE));
1867         }
1868       } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
1869           isa<GotoStmt>(Term)) {
1870         PathDiagnosticLocation L(Term, SM, PDB.LC);
1871         addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1872       }
1873     }
1874   }
1875 }
1876 
1877 static bool GenerateAlternateExtensivePathDiagnostic(
1878     PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
1879     LocationContextMap &LCM,
1880     ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
1881 
1882   BugReport *report = PDB.getBugReport();
1883   const SourceManager& SM = PDB.getSourceManager();
1884   StackDiagVector CallStack;
1885   InterestingExprs IE;
1886 
1887   PathDiagnosticLocation PrevLoc = PD.getLocation();
1888 
1889   const ExplodedNode *NextNode = N->getFirstPred();
1890   while (NextNode) {
1891     N = NextNode;
1892     NextNode = N->getFirstPred();
1893 
1894     generateAlternateExtensiveDiagnosticsForNode(
1895         N, PD, PrevLoc, PDB, LCM, CallStack, IE);
1896 
1897     if (!NextNode)
1898       continue;
1899 
1900     // Add pieces from custom visitors.
1901     llvm::FoldingSet<PathDiagnosticPiece> DeduplicationSet;
1902     for (auto &V : visitors) {
1903       if (auto p = V->VisitNode(N, NextNode, PDB, *report)) {
1904         if (DeduplicationSet.GetOrInsertNode(p.get()) != p.get())
1905           continue;
1906 
1907         addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1908         updateStackPiecesWithMessage(*p, CallStack);
1909         PD.getActivePath().push_front(std::move(p));
1910       }
1911     }
1912   }
1913 
1914   // Add an edge to the start of the function.
1915   // We'll prune it out later, but it helps make diagnostics more uniform.
1916   const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame();
1917   const Decl *D = CalleeLC->getDecl();
1918   addEdgeToPath(PD.getActivePath(), PrevLoc,
1919                 PathDiagnosticLocation::createBegin(D, SM),
1920                 CalleeLC);
1921 
1922   return report->isValid();
1923 }
1924 
1925 static const Stmt *getLocStmt(PathDiagnosticLocation L) {
1926   if (!L.isValid())
1927     return nullptr;
1928   return L.asStmt();
1929 }
1930 
1931 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1932   if (!S)
1933     return nullptr;
1934 
1935   while (true) {
1936     S = PM.getParentIgnoreParens(S);
1937 
1938     if (!S)
1939       break;
1940 
1941     if (isa<ExprWithCleanups>(S) ||
1942         isa<CXXBindTemporaryExpr>(S) ||
1943         isa<SubstNonTypeTemplateParmExpr>(S))
1944       continue;
1945 
1946     break;
1947   }
1948 
1949   return S;
1950 }
1951 
1952 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1953   switch (S->getStmtClass()) {
1954     case Stmt::BinaryOperatorClass: {
1955       const BinaryOperator *BO = cast<BinaryOperator>(S);
1956       if (!BO->isLogicalOp())
1957         return false;
1958       return BO->getLHS() == Cond || BO->getRHS() == Cond;
1959     }
1960     case Stmt::IfStmtClass:
1961       return cast<IfStmt>(S)->getCond() == Cond;
1962     case Stmt::ForStmtClass:
1963       return cast<ForStmt>(S)->getCond() == Cond;
1964     case Stmt::WhileStmtClass:
1965       return cast<WhileStmt>(S)->getCond() == Cond;
1966     case Stmt::DoStmtClass:
1967       return cast<DoStmt>(S)->getCond() == Cond;
1968     case Stmt::ChooseExprClass:
1969       return cast<ChooseExpr>(S)->getCond() == Cond;
1970     case Stmt::IndirectGotoStmtClass:
1971       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1972     case Stmt::SwitchStmtClass:
1973       return cast<SwitchStmt>(S)->getCond() == Cond;
1974     case Stmt::BinaryConditionalOperatorClass:
1975       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1976     case Stmt::ConditionalOperatorClass: {
1977       const ConditionalOperator *CO = cast<ConditionalOperator>(S);
1978       return CO->getCond() == Cond ||
1979              CO->getLHS() == Cond ||
1980              CO->getRHS() == Cond;
1981     }
1982     case Stmt::ObjCForCollectionStmtClass:
1983       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1984     case Stmt::CXXForRangeStmtClass: {
1985       const CXXForRangeStmt *FRS = cast<CXXForRangeStmt>(S);
1986       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1987     }
1988     default:
1989       return false;
1990   }
1991 }
1992 
1993 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1994   if (const ForStmt *FS = dyn_cast<ForStmt>(FL))
1995     return FS->getInc() == S || FS->getInit() == S;
1996   if (const CXXForRangeStmt *FRS = dyn_cast<CXXForRangeStmt>(FL))
1997     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1998            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1999   return false;
2000 }
2001 
2002 typedef llvm::DenseSet<const PathDiagnosticCallPiece *>
2003         OptimizedCallsSet;
2004 
2005 /// Adds synthetic edges from top-level statements to their subexpressions.
2006 ///
2007 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
2008 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
2009 /// we'd like to see an edge from A to B, then another one from B to B.1.
2010 static void addContextEdges(PathPieces &pieces, SourceManager &SM,
2011                             const ParentMap &PM, const LocationContext *LCtx) {
2012   PathPieces::iterator Prev = pieces.end();
2013   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
2014        Prev = I, ++I) {
2015     PathDiagnosticControlFlowPiece *Piece =
2016         dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
2017 
2018     if (!Piece)
2019       continue;
2020 
2021     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
2022     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
2023 
2024     PathDiagnosticLocation NextSrcContext = SrcLoc;
2025     const Stmt *InnerStmt = nullptr;
2026     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
2027       SrcContexts.push_back(NextSrcContext);
2028       InnerStmt = NextSrcContext.asStmt();
2029       NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx,
2030                                                 /*allowNested=*/true);
2031     }
2032 
2033     // Repeatedly split the edge as necessary.
2034     // This is important for nested logical expressions (||, &&, ?:) where we
2035     // want to show all the levels of context.
2036     while (true) {
2037       const Stmt *Dst = getLocStmt(Piece->getEndLocation());
2038 
2039       // We are looking at an edge. Is the destination within a larger
2040       // expression?
2041       PathDiagnosticLocation DstContext =
2042         getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true);
2043       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
2044         break;
2045 
2046       // If the source is in the same context, we're already good.
2047       if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) !=
2048           SrcContexts.end())
2049         break;
2050 
2051       // Update the subexpression node to point to the context edge.
2052       Piece->setStartLocation(DstContext);
2053 
2054       // Try to extend the previous edge if it's at the same level as the source
2055       // context.
2056       if (Prev != E) {
2057         auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
2058 
2059         if (PrevPiece) {
2060           if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) {
2061             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
2062             if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) {
2063               PrevPiece->setEndLocation(DstContext);
2064               break;
2065             }
2066           }
2067         }
2068       }
2069 
2070       // Otherwise, split the current edge into a context edge and a
2071       // subexpression edge. Note that the context statement may itself have
2072       // context.
2073       auto P =
2074           std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
2075       Piece = P.get();
2076       I = pieces.insert(I, std::move(P));
2077     }
2078   }
2079 }
2080 
2081 /// \brief Move edges from a branch condition to a branch target
2082 ///        when the condition is simple.
2083 ///
2084 /// This restructures some of the work of addContextEdges.  That function
2085 /// creates edges this may destroy, but they work together to create a more
2086 /// aesthetically set of edges around branches.  After the call to
2087 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
2088 /// the branch to the branch condition, and (3) an edge from the branch
2089 /// condition to the branch target.  We keep (1), but may wish to remove (2)
2090 /// and move the source of (3) to the branch if the branch condition is simple.
2091 ///
2092 static void simplifySimpleBranches(PathPieces &pieces) {
2093   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
2094 
2095     auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
2096 
2097     if (!PieceI)
2098       continue;
2099 
2100     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2101     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2102 
2103     if (!s1Start || !s1End)
2104       continue;
2105 
2106     PathPieces::iterator NextI = I; ++NextI;
2107     if (NextI == E)
2108       break;
2109 
2110     PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
2111 
2112     while (true) {
2113       if (NextI == E)
2114         break;
2115 
2116       auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
2117       if (EV) {
2118         StringRef S = EV->getString();
2119         if (S == StrEnteringLoop || S == StrLoopBodyZero ||
2120             S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
2121           ++NextI;
2122           continue;
2123         }
2124         break;
2125       }
2126 
2127       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
2128       break;
2129     }
2130 
2131     if (!PieceNextI)
2132       continue;
2133 
2134     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2135     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2136 
2137     if (!s2Start || !s2End || s1End != s2Start)
2138       continue;
2139 
2140     // We only perform this transformation for specific branch kinds.
2141     // We don't want to do this for do..while, for example.
2142     if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
2143           isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
2144           isa<CXXForRangeStmt>(s1Start)))
2145       continue;
2146 
2147     // Is s1End the branch condition?
2148     if (!isConditionForTerminator(s1Start, s1End))
2149       continue;
2150 
2151     // Perform the hoisting by eliminating (2) and changing the start
2152     // location of (3).
2153     PieceNextI->setStartLocation(PieceI->getStartLocation());
2154     I = pieces.erase(I);
2155   }
2156 }
2157 
2158 /// Returns the number of bytes in the given (character-based) SourceRange.
2159 ///
2160 /// If the locations in the range are not on the same line, returns None.
2161 ///
2162 /// Note that this does not do a precise user-visible character or column count.
2163 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
2164                                               SourceRange Range) {
2165   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
2166                              SM.getExpansionRange(Range.getEnd()).second);
2167 
2168   FileID FID = SM.getFileID(ExpansionRange.getBegin());
2169   if (FID != SM.getFileID(ExpansionRange.getEnd()))
2170     return None;
2171 
2172   bool Invalid;
2173   const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
2174   if (Invalid)
2175     return None;
2176 
2177   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
2178   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
2179   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
2180 
2181   // We're searching the raw bytes of the buffer here, which might include
2182   // escaped newlines and such. That's okay; we're trying to decide whether the
2183   // SourceRange is covering a large or small amount of space in the user's
2184   // editor.
2185   if (Snippet.find_first_of("\r\n") != StringRef::npos)
2186     return None;
2187 
2188   // This isn't Unicode-aware, but it doesn't need to be.
2189   return Snippet.size();
2190 }
2191 
2192 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
2193 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
2194                                               const Stmt *S) {
2195   return getLengthOnSingleLine(SM, S->getSourceRange());
2196 }
2197 
2198 /// Eliminate two-edge cycles created by addContextEdges().
2199 ///
2200 /// Once all the context edges are in place, there are plenty of cases where
2201 /// there's a single edge from a top-level statement to a subexpression,
2202 /// followed by a single path note, and then a reverse edge to get back out to
2203 /// the top level. If the statement is simple enough, the subexpression edges
2204 /// just add noise and make it harder to understand what's going on.
2205 ///
2206 /// This function only removes edges in pairs, because removing only one edge
2207 /// might leave other edges dangling.
2208 ///
2209 /// This will not remove edges in more complicated situations:
2210 /// - if there is more than one "hop" leading to or from a subexpression.
2211 /// - if there is an inlined call between the edges instead of a single event.
2212 /// - if the whole statement is large enough that having subexpression arrows
2213 ///   might be helpful.
2214 static void removeContextCycles(PathPieces &Path, SourceManager &SM,
2215                                 ParentMap &PM) {
2216   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
2217     // Pattern match the current piece and its successor.
2218     PathDiagnosticControlFlowPiece *PieceI =
2219         dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
2220 
2221     if (!PieceI) {
2222       ++I;
2223       continue;
2224     }
2225 
2226     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2227     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2228 
2229     PathPieces::iterator NextI = I; ++NextI;
2230     if (NextI == E)
2231       break;
2232 
2233     PathDiagnosticControlFlowPiece *PieceNextI =
2234         dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
2235 
2236     if (!PieceNextI) {
2237       if (isa<PathDiagnosticEventPiece>(NextI->get())) {
2238         ++NextI;
2239         if (NextI == E)
2240           break;
2241         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
2242       }
2243 
2244       if (!PieceNextI) {
2245         ++I;
2246         continue;
2247       }
2248     }
2249 
2250     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2251     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2252 
2253     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
2254       const size_t MAX_SHORT_LINE_LENGTH = 80;
2255       Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
2256       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
2257         Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
2258         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
2259           Path.erase(I);
2260           I = Path.erase(NextI);
2261           continue;
2262         }
2263       }
2264     }
2265 
2266     ++I;
2267   }
2268 }
2269 
2270 /// \brief Return true if X is contained by Y.
2271 static bool lexicalContains(ParentMap &PM,
2272                             const Stmt *X,
2273                             const Stmt *Y) {
2274   while (X) {
2275     if (X == Y)
2276       return true;
2277     X = PM.getParent(X);
2278   }
2279   return false;
2280 }
2281 
2282 // Remove short edges on the same line less than 3 columns in difference.
2283 static void removePunyEdges(PathPieces &path,
2284                             SourceManager &SM,
2285                             ParentMap &PM) {
2286 
2287   bool erased = false;
2288 
2289   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
2290        erased ? I : ++I) {
2291 
2292     erased = false;
2293 
2294     auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
2295 
2296     if (!PieceI)
2297       continue;
2298 
2299     const Stmt *start = getLocStmt(PieceI->getStartLocation());
2300     const Stmt *end   = getLocStmt(PieceI->getEndLocation());
2301 
2302     if (!start || !end)
2303       continue;
2304 
2305     const Stmt *endParent = PM.getParent(end);
2306     if (!endParent)
2307       continue;
2308 
2309     if (isConditionForTerminator(end, endParent))
2310       continue;
2311 
2312     SourceLocation FirstLoc = start->getLocStart();
2313     SourceLocation SecondLoc = end->getLocStart();
2314 
2315     if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
2316       continue;
2317     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
2318       std::swap(SecondLoc, FirstLoc);
2319 
2320     SourceRange EdgeRange(FirstLoc, SecondLoc);
2321     Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
2322 
2323     // If the statements are on different lines, continue.
2324     if (!ByteWidth)
2325       continue;
2326 
2327     const size_t MAX_PUNY_EDGE_LENGTH = 2;
2328     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
2329       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
2330       // there might not be enough /columns/. A proper user-visible column count
2331       // is probably too expensive, though.
2332       I = path.erase(I);
2333       erased = true;
2334       continue;
2335     }
2336   }
2337 }
2338 
2339 static void removeIdenticalEvents(PathPieces &path) {
2340   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
2341     auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
2342 
2343     if (!PieceI)
2344       continue;
2345 
2346     PathPieces::iterator NextI = I; ++NextI;
2347     if (NextI == E)
2348       return;
2349 
2350     auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
2351 
2352     if (!PieceNextI)
2353       continue;
2354 
2355     // Erase the second piece if it has the same exact message text.
2356     if (PieceI->getString() == PieceNextI->getString()) {
2357       path.erase(NextI);
2358     }
2359   }
2360 }
2361 
2362 static bool optimizeEdges(PathPieces &path, SourceManager &SM,
2363                           OptimizedCallsSet &OCS,
2364                           LocationContextMap &LCM) {
2365   bool hasChanges = false;
2366   const LocationContext *LC = LCM[&path];
2367   assert(LC);
2368   ParentMap &PM = LC->getParentMap();
2369 
2370   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
2371     // Optimize subpaths.
2372     if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
2373       // Record the fact that a call has been optimized so we only do the
2374       // effort once.
2375       if (!OCS.count(CallI)) {
2376         while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
2377         OCS.insert(CallI);
2378       }
2379       ++I;
2380       continue;
2381     }
2382 
2383     // Pattern match the current piece and its successor.
2384     auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
2385 
2386     if (!PieceI) {
2387       ++I;
2388       continue;
2389     }
2390 
2391     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2392     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2393     const Stmt *level1 = getStmtParent(s1Start, PM);
2394     const Stmt *level2 = getStmtParent(s1End, PM);
2395 
2396     PathPieces::iterator NextI = I; ++NextI;
2397     if (NextI == E)
2398       break;
2399 
2400     auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
2401 
2402     if (!PieceNextI) {
2403       ++I;
2404       continue;
2405     }
2406 
2407     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2408     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2409     const Stmt *level3 = getStmtParent(s2Start, PM);
2410     const Stmt *level4 = getStmtParent(s2End, PM);
2411 
2412     // Rule I.
2413     //
2414     // If we have two consecutive control edges whose end/begin locations
2415     // are at the same level (e.g. statements or top-level expressions within
2416     // a compound statement, or siblings share a single ancestor expression),
2417     // then merge them if they have no interesting intermediate event.
2418     //
2419     // For example:
2420     //
2421     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
2422     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
2423     //
2424     // NOTE: this will be limited later in cases where we add barriers
2425     // to prevent this optimization.
2426     //
2427     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
2428       PieceI->setEndLocation(PieceNextI->getEndLocation());
2429       path.erase(NextI);
2430       hasChanges = true;
2431       continue;
2432     }
2433 
2434     // Rule II.
2435     //
2436     // Eliminate edges between subexpressions and parent expressions
2437     // when the subexpression is consumed.
2438     //
2439     // NOTE: this will be limited later in cases where we add barriers
2440     // to prevent this optimization.
2441     //
2442     if (s1End && s1End == s2Start && level2) {
2443       bool removeEdge = false;
2444       // Remove edges into the increment or initialization of a
2445       // loop that have no interleaving event.  This means that
2446       // they aren't interesting.
2447       if (isIncrementOrInitInForLoop(s1End, level2))
2448         removeEdge = true;
2449       // Next only consider edges that are not anchored on
2450       // the condition of a terminator.  This are intermediate edges
2451       // that we might want to trim.
2452       else if (!isConditionForTerminator(level2, s1End)) {
2453         // Trim edges on expressions that are consumed by
2454         // the parent expression.
2455         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
2456           removeEdge = true;
2457         }
2458         // Trim edges where a lexical containment doesn't exist.
2459         // For example:
2460         //
2461         //  X -> Y -> Z
2462         //
2463         // If 'Z' lexically contains Y (it is an ancestor) and
2464         // 'X' does not lexically contain Y (it is a descendant OR
2465         // it has no lexical relationship at all) then trim.
2466         //
2467         // This can eliminate edges where we dive into a subexpression
2468         // and then pop back out, etc.
2469         else if (s1Start && s2End &&
2470                  lexicalContains(PM, s2Start, s2End) &&
2471                  !lexicalContains(PM, s1End, s1Start)) {
2472           removeEdge = true;
2473         }
2474         // Trim edges from a subexpression back to the top level if the
2475         // subexpression is on a different line.
2476         //
2477         // A.1 -> A -> B
2478         // becomes
2479         // A.1 -> B
2480         //
2481         // These edges just look ugly and don't usually add anything.
2482         else if (s1Start && s2End &&
2483                  lexicalContains(PM, s1Start, s1End)) {
2484           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
2485                                 PieceI->getStartLocation().asLocation());
2486           if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
2487             removeEdge = true;
2488         }
2489       }
2490 
2491       if (removeEdge) {
2492         PieceI->setEndLocation(PieceNextI->getEndLocation());
2493         path.erase(NextI);
2494         hasChanges = true;
2495         continue;
2496       }
2497     }
2498 
2499     // Optimize edges for ObjC fast-enumeration loops.
2500     //
2501     // (X -> collection) -> (collection -> element)
2502     //
2503     // becomes:
2504     //
2505     // (X -> element)
2506     if (s1End == s2Start) {
2507       const ObjCForCollectionStmt *FS =
2508         dyn_cast_or_null<ObjCForCollectionStmt>(level3);
2509       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
2510           s2End == FS->getElement()) {
2511         PieceI->setEndLocation(PieceNextI->getEndLocation());
2512         path.erase(NextI);
2513         hasChanges = true;
2514         continue;
2515       }
2516     }
2517 
2518     // No changes at this index?  Move to the next one.
2519     ++I;
2520   }
2521 
2522   if (!hasChanges) {
2523     // Adjust edges into subexpressions to make them more uniform
2524     // and aesthetically pleasing.
2525     addContextEdges(path, SM, PM, LC);
2526     // Remove "cyclical" edges that include one or more context edges.
2527     removeContextCycles(path, SM, PM);
2528     // Hoist edges originating from branch conditions to branches
2529     // for simple branches.
2530     simplifySimpleBranches(path);
2531     // Remove any puny edges left over after primary optimization pass.
2532     removePunyEdges(path, SM, PM);
2533     // Remove identical events.
2534     removeIdenticalEvents(path);
2535   }
2536 
2537   return hasChanges;
2538 }
2539 
2540 /// Drop the very first edge in a path, which should be a function entry edge.
2541 ///
2542 /// If the first edge is not a function entry edge (say, because the first
2543 /// statement had an invalid source location), this function does nothing.
2544 // FIXME: We should just generate invalid edges anyway and have the optimizer
2545 // deal with them.
2546 static void dropFunctionEntryEdge(PathPieces &Path,
2547                                   LocationContextMap &LCM,
2548                                   SourceManager &SM) {
2549   const auto *FirstEdge =
2550       dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
2551   if (!FirstEdge)
2552     return;
2553 
2554   const Decl *D = LCM[&Path]->getDecl();
2555   PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM);
2556   if (FirstEdge->getStartLocation() != EntryLoc)
2557     return;
2558 
2559   Path.pop_front();
2560 }
2561 
2562 
2563 //===----------------------------------------------------------------------===//
2564 // Methods for BugType and subclasses.
2565 //===----------------------------------------------------------------------===//
2566 void BugType::anchor() { }
2567 
2568 void BugType::FlushReports(BugReporter &BR) {}
2569 
2570 void BuiltinBug::anchor() {}
2571 
2572 //===----------------------------------------------------------------------===//
2573 // Methods for BugReport and subclasses.
2574 //===----------------------------------------------------------------------===//
2575 
2576 void BugReport::NodeResolver::anchor() {}
2577 
2578 void BugReport::addVisitor(std::unique_ptr<BugReporterVisitor> visitor) {
2579   if (!visitor)
2580     return;
2581 
2582   llvm::FoldingSetNodeID ID;
2583   visitor->Profile(ID);
2584   void *InsertPos;
2585 
2586   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos))
2587     return;
2588 
2589   CallbacksSet.InsertNode(visitor.get(), InsertPos);
2590   Callbacks.push_back(std::move(visitor));
2591   ++ConfigurationChangeToken;
2592 }
2593 
2594 BugReport::~BugReport() {
2595   while (!interestingSymbols.empty()) {
2596     popInterestingSymbolsAndRegions();
2597   }
2598 }
2599 
2600 const Decl *BugReport::getDeclWithIssue() const {
2601   if (DeclWithIssue)
2602     return DeclWithIssue;
2603 
2604   const ExplodedNode *N = getErrorNode();
2605   if (!N)
2606     return nullptr;
2607 
2608   const LocationContext *LC = N->getLocationContext();
2609   return LC->getCurrentStackFrame()->getDecl();
2610 }
2611 
2612 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2613   hash.AddPointer(&BT);
2614   hash.AddString(Description);
2615   PathDiagnosticLocation UL = getUniqueingLocation();
2616   if (UL.isValid()) {
2617     UL.Profile(hash);
2618   } else if (Location.isValid()) {
2619     Location.Profile(hash);
2620   } else {
2621     assert(ErrorNode);
2622     hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
2623   }
2624 
2625   for (SourceRange range : Ranges) {
2626     if (!range.isValid())
2627       continue;
2628     hash.AddInteger(range.getBegin().getRawEncoding());
2629     hash.AddInteger(range.getEnd().getRawEncoding());
2630   }
2631 }
2632 
2633 void BugReport::markInteresting(SymbolRef sym) {
2634   if (!sym)
2635     return;
2636 
2637   // If the symbol wasn't already in our set, note a configuration change.
2638   if (getInterestingSymbols().insert(sym).second)
2639     ++ConfigurationChangeToken;
2640 
2641   if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
2642     getInterestingRegions().insert(meta->getRegion());
2643 }
2644 
2645 void BugReport::markInteresting(const MemRegion *R) {
2646   if (!R)
2647     return;
2648 
2649   // If the base region wasn't already in our set, note a configuration change.
2650   R = R->getBaseRegion();
2651   if (getInterestingRegions().insert(R).second)
2652     ++ConfigurationChangeToken;
2653 
2654   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2655     getInterestingSymbols().insert(SR->getSymbol());
2656 }
2657 
2658 void BugReport::markInteresting(SVal V) {
2659   markInteresting(V.getAsRegion());
2660   markInteresting(V.getAsSymbol());
2661 }
2662 
2663 void BugReport::markInteresting(const LocationContext *LC) {
2664   if (!LC)
2665     return;
2666   InterestingLocationContexts.insert(LC);
2667 }
2668 
2669 bool BugReport::isInteresting(SVal V) {
2670   return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
2671 }
2672 
2673 bool BugReport::isInteresting(SymbolRef sym) {
2674   if (!sym)
2675     return false;
2676   // We don't currently consider metadata symbols to be interesting
2677   // even if we know their region is interesting. Is that correct behavior?
2678   return getInterestingSymbols().count(sym);
2679 }
2680 
2681 bool BugReport::isInteresting(const MemRegion *R) {
2682   if (!R)
2683     return false;
2684   R = R->getBaseRegion();
2685   bool b = getInterestingRegions().count(R);
2686   if (b)
2687     return true;
2688   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2689     return getInterestingSymbols().count(SR->getSymbol());
2690   return false;
2691 }
2692 
2693 bool BugReport::isInteresting(const LocationContext *LC) {
2694   if (!LC)
2695     return false;
2696   return InterestingLocationContexts.count(LC);
2697 }
2698 
2699 void BugReport::lazyInitializeInterestingSets() {
2700   if (interestingSymbols.empty()) {
2701     interestingSymbols.push_back(new Symbols());
2702     interestingRegions.push_back(new Regions());
2703   }
2704 }
2705 
2706 BugReport::Symbols &BugReport::getInterestingSymbols() {
2707   lazyInitializeInterestingSets();
2708   return *interestingSymbols.back();
2709 }
2710 
2711 BugReport::Regions &BugReport::getInterestingRegions() {
2712   lazyInitializeInterestingSets();
2713   return *interestingRegions.back();
2714 }
2715 
2716 void BugReport::pushInterestingSymbolsAndRegions() {
2717   interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
2718   interestingRegions.push_back(new Regions(getInterestingRegions()));
2719 }
2720 
2721 void BugReport::popInterestingSymbolsAndRegions() {
2722   delete interestingSymbols.pop_back_val();
2723   delete interestingRegions.pop_back_val();
2724 }
2725 
2726 const Stmt *BugReport::getStmt() const {
2727   if (!ErrorNode)
2728     return nullptr;
2729 
2730   ProgramPoint ProgP = ErrorNode->getLocation();
2731   const Stmt *S = nullptr;
2732 
2733   if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2734     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2735     if (BE->getBlock() == &Exit)
2736       S = GetPreviousStmt(ErrorNode);
2737   }
2738   if (!S)
2739     S = PathDiagnosticLocation::getStmt(ErrorNode);
2740 
2741   return S;
2742 }
2743 
2744 llvm::iterator_range<BugReport::ranges_iterator> BugReport::getRanges() {
2745   // If no custom ranges, add the range of the statement corresponding to
2746   // the error node.
2747   if (Ranges.empty()) {
2748     if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
2749       addRange(E->getSourceRange());
2750     else
2751       return llvm::make_range(ranges_iterator(), ranges_iterator());
2752   }
2753 
2754   // User-specified absence of range info.
2755   if (Ranges.size() == 1 && !Ranges.begin()->isValid())
2756     return llvm::make_range(ranges_iterator(), ranges_iterator());
2757 
2758   return llvm::make_range(Ranges.begin(), Ranges.end());
2759 }
2760 
2761 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
2762   if (ErrorNode) {
2763     assert(!Location.isValid() &&
2764      "Either Location or ErrorNode should be specified but not both.");
2765     return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
2766   }
2767 
2768   assert(Location.isValid());
2769   return Location;
2770 }
2771 
2772 //===----------------------------------------------------------------------===//
2773 // Methods for BugReporter and subclasses.
2774 //===----------------------------------------------------------------------===//
2775 
2776 BugReportEquivClass::~BugReportEquivClass() { }
2777 GRBugReporter::~GRBugReporter() { }
2778 BugReporterData::~BugReporterData() {}
2779 
2780 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
2781 
2782 ProgramStateManager&
2783 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
2784 
2785 BugReporter::~BugReporter() {
2786   FlushReports();
2787 
2788   // Free the bug reports we are tracking.
2789   typedef std::vector<BugReportEquivClass *> ContTy;
2790   for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
2791        I != E; ++I) {
2792     delete *I;
2793   }
2794 }
2795 
2796 void BugReporter::FlushReports() {
2797   if (BugTypes.isEmpty())
2798     return;
2799 
2800   // First flush the warnings for each BugType.  This may end up creating new
2801   // warnings and new BugTypes.
2802   // FIXME: Only NSErrorChecker needs BugType's FlushReports.
2803   // Turn NSErrorChecker into a proper checker and remove this.
2804   SmallVector<const BugType *, 16> bugTypes(BugTypes.begin(), BugTypes.end());
2805   for (SmallVectorImpl<const BugType *>::iterator
2806          I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
2807     const_cast<BugType*>(*I)->FlushReports(*this);
2808 
2809   // We need to flush reports in deterministic order to ensure the order
2810   // of the reports is consistent between runs.
2811   typedef std::vector<BugReportEquivClass *> ContVecTy;
2812   for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
2813        EI != EE; ++EI){
2814     BugReportEquivClass& EQ = **EI;
2815     FlushReport(EQ);
2816   }
2817 
2818   // BugReporter owns and deletes only BugTypes created implicitly through
2819   // EmitBasicReport.
2820   // FIXME: There are leaks from checkers that assume that the BugTypes they
2821   // create will be destroyed by the BugReporter.
2822   llvm::DeleteContainerSeconds(StrBugTypes);
2823 
2824   // Remove all references to the BugType objects.
2825   BugTypes = F.getEmptySet();
2826 }
2827 
2828 //===----------------------------------------------------------------------===//
2829 // PathDiagnostics generation.
2830 //===----------------------------------------------------------------------===//
2831 
2832 namespace {
2833 /// A wrapper around a report graph, which contains only a single path, and its
2834 /// node maps.
2835 class ReportGraph {
2836 public:
2837   InterExplodedGraphMap BackMap;
2838   std::unique_ptr<ExplodedGraph> Graph;
2839   const ExplodedNode *ErrorNode;
2840   size_t Index;
2841 };
2842 
2843 /// A wrapper around a trimmed graph and its node maps.
2844 class TrimmedGraph {
2845   InterExplodedGraphMap InverseMap;
2846 
2847   typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
2848   PriorityMapTy PriorityMap;
2849 
2850   typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
2851   SmallVector<NodeIndexPair, 32> ReportNodes;
2852 
2853   std::unique_ptr<ExplodedGraph> G;
2854 
2855   /// A helper class for sorting ExplodedNodes by priority.
2856   template <bool Descending>
2857   class PriorityCompare {
2858     const PriorityMapTy &PriorityMap;
2859 
2860   public:
2861     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2862 
2863     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2864       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2865       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2866       PriorityMapTy::const_iterator E = PriorityMap.end();
2867 
2868       if (LI == E)
2869         return Descending;
2870       if (RI == E)
2871         return !Descending;
2872 
2873       return Descending ? LI->second > RI->second
2874                         : LI->second < RI->second;
2875     }
2876 
2877     bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
2878       return (*this)(LHS.first, RHS.first);
2879     }
2880   };
2881 
2882 public:
2883   TrimmedGraph(const ExplodedGraph *OriginalGraph,
2884                ArrayRef<const ExplodedNode *> Nodes);
2885 
2886   bool popNextReportGraph(ReportGraph &GraphWrapper);
2887 };
2888 }
2889 
2890 TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
2891                            ArrayRef<const ExplodedNode *> Nodes) {
2892   // The trimmed graph is created in the body of the constructor to ensure
2893   // that the DenseMaps have been initialized already.
2894   InterExplodedGraphMap ForwardMap;
2895   G = OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap);
2896 
2897   // Find the (first) error node in the trimmed graph.  We just need to consult
2898   // the node map which maps from nodes in the original graph to nodes
2899   // in the new graph.
2900   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2901 
2902   for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
2903     if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
2904       ReportNodes.push_back(std::make_pair(NewNode, i));
2905       RemainingNodes.insert(NewNode);
2906     }
2907   }
2908 
2909   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2910 
2911   // Perform a forward BFS to find all the shortest paths.
2912   std::queue<const ExplodedNode *> WS;
2913 
2914   assert(G->num_roots() == 1);
2915   WS.push(*G->roots_begin());
2916   unsigned Priority = 0;
2917 
2918   while (!WS.empty()) {
2919     const ExplodedNode *Node = WS.front();
2920     WS.pop();
2921 
2922     PriorityMapTy::iterator PriorityEntry;
2923     bool IsNew;
2924     std::tie(PriorityEntry, IsNew) =
2925       PriorityMap.insert(std::make_pair(Node, Priority));
2926     ++Priority;
2927 
2928     if (!IsNew) {
2929       assert(PriorityEntry->second <= Priority);
2930       continue;
2931     }
2932 
2933     if (RemainingNodes.erase(Node))
2934       if (RemainingNodes.empty())
2935         break;
2936 
2937     for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
2938                                            E = Node->succ_end();
2939          I != E; ++I)
2940       WS.push(*I);
2941   }
2942 
2943   // Sort the error paths from longest to shortest.
2944   std::sort(ReportNodes.begin(), ReportNodes.end(),
2945             PriorityCompare<true>(PriorityMap));
2946 }
2947 
2948 bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
2949   if (ReportNodes.empty())
2950     return false;
2951 
2952   const ExplodedNode *OrigN;
2953   std::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
2954   assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2955          "error node not accessible from root");
2956 
2957   // Create a new graph with a single path.  This is the graph
2958   // that will be returned to the caller.
2959   auto GNew = llvm::make_unique<ExplodedGraph>();
2960   GraphWrapper.BackMap.clear();
2961 
2962   // Now walk from the error node up the BFS path, always taking the
2963   // predeccessor with the lowest number.
2964   ExplodedNode *Succ = nullptr;
2965   while (true) {
2966     // Create the equivalent node in the new graph with the same state
2967     // and location.
2968     ExplodedNode *NewN = GNew->createUncachedNode(OrigN->getLocation(), OrigN->getState(),
2969                                        OrigN->isSink());
2970 
2971     // Store the mapping to the original node.
2972     InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
2973     assert(IMitr != InverseMap.end() && "No mapping to original node.");
2974     GraphWrapper.BackMap[NewN] = IMitr->second;
2975 
2976     // Link up the new node with the previous node.
2977     if (Succ)
2978       Succ->addPredecessor(NewN, *GNew);
2979     else
2980       GraphWrapper.ErrorNode = NewN;
2981 
2982     Succ = NewN;
2983 
2984     // Are we at the final node?
2985     if (OrigN->pred_empty()) {
2986       GNew->addRoot(NewN);
2987       break;
2988     }
2989 
2990     // Find the next predeccessor node.  We choose the node that is marked
2991     // with the lowest BFS number.
2992     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2993                           PriorityCompare<false>(PriorityMap));
2994   }
2995 
2996   GraphWrapper.Graph = std::move(GNew);
2997 
2998   return true;
2999 }
3000 
3001 
3002 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
3003 ///  and collapses PathDiagosticPieces that are expanded by macros.
3004 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
3005   typedef std::vector<
3006       std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>
3007       MacroStackTy;
3008 
3009   typedef std::vector<std::shared_ptr<PathDiagnosticPiece>> PiecesTy;
3010 
3011   MacroStackTy MacroStack;
3012   PiecesTy Pieces;
3013 
3014   for (PathPieces::const_iterator I = path.begin(), E = path.end();
3015        I!=E; ++I) {
3016 
3017     auto &piece = *I;
3018 
3019     // Recursively compact calls.
3020     if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
3021       CompactPathDiagnostic(call->path, SM);
3022     }
3023 
3024     // Get the location of the PathDiagnosticPiece.
3025     const FullSourceLoc Loc = piece->getLocation().asLocation();
3026 
3027     // Determine the instantiation location, which is the location we group
3028     // related PathDiagnosticPieces.
3029     SourceLocation InstantiationLoc = Loc.isMacroID() ?
3030                                       SM.getExpansionLoc(Loc) :
3031                                       SourceLocation();
3032 
3033     if (Loc.isFileID()) {
3034       MacroStack.clear();
3035       Pieces.push_back(piece);
3036       continue;
3037     }
3038 
3039     assert(Loc.isMacroID());
3040 
3041     // Is the PathDiagnosticPiece within the same macro group?
3042     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
3043       MacroStack.back().first->subPieces.push_back(piece);
3044       continue;
3045     }
3046 
3047     // We aren't in the same group.  Are we descending into a new macro
3048     // or are part of an old one?
3049     std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
3050 
3051     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
3052                                           SM.getExpansionLoc(Loc) :
3053                                           SourceLocation();
3054 
3055     // Walk the entire macro stack.
3056     while (!MacroStack.empty()) {
3057       if (InstantiationLoc == MacroStack.back().second) {
3058         MacroGroup = MacroStack.back().first;
3059         break;
3060       }
3061 
3062       if (ParentInstantiationLoc == MacroStack.back().second) {
3063         MacroGroup = MacroStack.back().first;
3064         break;
3065       }
3066 
3067       MacroStack.pop_back();
3068     }
3069 
3070     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
3071       // Create a new macro group and add it to the stack.
3072       auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
3073           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
3074 
3075       if (MacroGroup)
3076         MacroGroup->subPieces.push_back(NewGroup);
3077       else {
3078         assert(InstantiationLoc.isFileID());
3079         Pieces.push_back(NewGroup);
3080       }
3081 
3082       MacroGroup = NewGroup;
3083       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
3084     }
3085 
3086     // Finally, add the PathDiagnosticPiece to the group.
3087     MacroGroup->subPieces.push_back(piece);
3088   }
3089 
3090   // Now take the pieces and construct a new PathDiagnostic.
3091   path.clear();
3092 
3093   path.insert(path.end(), Pieces.begin(), Pieces.end());
3094 }
3095 
3096 bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
3097                                            PathDiagnosticConsumer &PC,
3098                                            ArrayRef<BugReport *> &bugReports) {
3099   assert(!bugReports.empty());
3100 
3101   bool HasValid = false;
3102   bool HasInvalid = false;
3103   SmallVector<const ExplodedNode *, 32> errorNodes;
3104   for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
3105                                       E = bugReports.end(); I != E; ++I) {
3106     if ((*I)->isValid()) {
3107       HasValid = true;
3108       errorNodes.push_back((*I)->getErrorNode());
3109     } else {
3110       // Keep the errorNodes list in sync with the bugReports list.
3111       HasInvalid = true;
3112       errorNodes.push_back(nullptr);
3113     }
3114   }
3115 
3116   // If all the reports have been marked invalid by a previous path generation,
3117   // we're done.
3118   if (!HasValid)
3119     return false;
3120 
3121   typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
3122   PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
3123 
3124   if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
3125     AnalyzerOptions &options = getAnalyzerOptions();
3126     if (options.getBooleanOption("path-diagnostics-alternate", true)) {
3127       ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
3128     }
3129   }
3130 
3131   TrimmedGraph TrimG(&getGraph(), errorNodes);
3132   ReportGraph ErrorGraph;
3133 
3134   while (TrimG.popNextReportGraph(ErrorGraph)) {
3135     // Find the BugReport with the original location.
3136     assert(ErrorGraph.Index < bugReports.size());
3137     BugReport *R = bugReports[ErrorGraph.Index];
3138     assert(R && "No original report found for sliced graph.");
3139     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
3140 
3141     // Start building the path diagnostic...
3142     PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
3143     const ExplodedNode *N = ErrorGraph.ErrorNode;
3144 
3145     // Register additional node visitors.
3146     R->addVisitor(llvm::make_unique<NilReceiverBRVisitor>());
3147     R->addVisitor(llvm::make_unique<ConditionBRVisitor>());
3148     R->addVisitor(llvm::make_unique<LikelyFalsePositiveSuppressionBRVisitor>());
3149     R->addVisitor(llvm::make_unique<CXXSelfAssignmentBRVisitor>());
3150 
3151     BugReport::VisitorList visitors;
3152     unsigned origReportConfigToken, finalReportConfigToken;
3153     LocationContextMap LCM;
3154 
3155     // While generating diagnostics, it's possible the visitors will decide
3156     // new symbols and regions are interesting, or add other visitors based on
3157     // the information they find. If they do, we need to regenerate the path
3158     // based on our new report configuration.
3159     do {
3160       // Get a clean copy of all the visitors.
3161       for (BugReport::visitor_iterator I = R->visitor_begin(),
3162                                        E = R->visitor_end(); I != E; ++I)
3163         visitors.push_back((*I)->clone());
3164 
3165       // Clear out the active path from any previous work.
3166       PD.resetPath();
3167       origReportConfigToken = R->getConfigurationChangeToken();
3168 
3169       // Generate the very last diagnostic piece - the piece is visible before
3170       // the trace is expanded.
3171       std::unique_ptr<PathDiagnosticPiece> LastPiece;
3172       for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
3173           I != E; ++I) {
3174         if (std::unique_ptr<PathDiagnosticPiece> Piece =
3175                 (*I)->getEndPath(PDB, N, *R)) {
3176           assert (!LastPiece &&
3177               "There can only be one final piece in a diagnostic.");
3178           LastPiece = std::move(Piece);
3179         }
3180       }
3181 
3182       if (ActiveScheme != PathDiagnosticConsumer::None) {
3183         if (!LastPiece)
3184           LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
3185         assert(LastPiece);
3186         PD.setEndOfPath(std::move(LastPiece));
3187       }
3188 
3189       // Make sure we get a clean location context map so we don't
3190       // hold onto old mappings.
3191       LCM.clear();
3192 
3193       switch (ActiveScheme) {
3194       case PathDiagnosticConsumer::AlternateExtensive:
3195         GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
3196         break;
3197       case PathDiagnosticConsumer::Extensive:
3198         GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
3199         break;
3200       case PathDiagnosticConsumer::Minimal:
3201         GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
3202         break;
3203       case PathDiagnosticConsumer::None:
3204         GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
3205         break;
3206       }
3207 
3208       // Clean up the visitors we used.
3209       visitors.clear();
3210 
3211       // Did anything change while generating this path?
3212       finalReportConfigToken = R->getConfigurationChangeToken();
3213     } while (finalReportConfigToken != origReportConfigToken);
3214 
3215     if (!R->isValid())
3216       continue;
3217 
3218     // Finally, prune the diagnostic path of uninteresting stuff.
3219     if (!PD.path.empty()) {
3220       if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) {
3221         bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
3222         assert(stillHasNotes);
3223         (void)stillHasNotes;
3224       }
3225 
3226       // Redirect all call pieces to have valid locations.
3227       adjustCallLocations(PD.getMutablePieces());
3228       removePiecesWithInvalidLocations(PD.getMutablePieces());
3229 
3230       if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) {
3231         SourceManager &SM = getSourceManager();
3232 
3233         // Reduce the number of edges from a very conservative set
3234         // to an aesthetically pleasing subset that conveys the
3235         // necessary information.
3236         OptimizedCallsSet OCS;
3237         while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {}
3238 
3239         // Drop the very first function-entry edge. It's not really necessary
3240         // for top-level functions.
3241         dropFunctionEntryEdge(PD.getMutablePieces(), LCM, SM);
3242       }
3243 
3244       // Remove messages that are basically the same, and edges that may not
3245       // make sense.
3246       // We have to do this after edge optimization in the Extensive mode.
3247       removeRedundantMsgs(PD.getMutablePieces());
3248       removeEdgesToDefaultInitializers(PD.getMutablePieces());
3249     }
3250 
3251     // We found a report and didn't suppress it.
3252     return true;
3253   }
3254 
3255   // We suppressed all the reports in this equivalence class.
3256   assert(!HasInvalid && "Inconsistent suppression");
3257   (void)HasInvalid;
3258   return false;
3259 }
3260 
3261 void BugReporter::Register(BugType *BT) {
3262   BugTypes = F.add(BugTypes, BT);
3263 }
3264 
3265 void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
3266   if (const ExplodedNode *E = R->getErrorNode()) {
3267     // An error node must either be a sink or have a tag, otherwise
3268     // it could get reclaimed before the path diagnostic is created.
3269     assert((E->isSink() || E->getLocation().getTag()) &&
3270             "Error node must either be a sink or have a tag");
3271 
3272     const AnalysisDeclContext *DeclCtx =
3273         E->getLocationContext()->getAnalysisDeclContext();
3274     // The source of autosynthesized body can be handcrafted AST or a model
3275     // file. The locations from handcrafted ASTs have no valid source locations
3276     // and have to be discarded. Locations from model files should be preserved
3277     // for processing and reporting.
3278     if (DeclCtx->isBodyAutosynthesized() &&
3279         !DeclCtx->isBodyAutosynthesizedFromModelFile())
3280       return;
3281   }
3282 
3283   bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid();
3284   assert(ValidSourceLoc);
3285   // If we mess up in a release build, we'd still prefer to just drop the bug
3286   // instead of trying to go on.
3287   if (!ValidSourceLoc)
3288     return;
3289 
3290   // Compute the bug report's hash to determine its equivalence class.
3291   llvm::FoldingSetNodeID ID;
3292   R->Profile(ID);
3293 
3294   // Lookup the equivance class.  If there isn't one, create it.
3295   BugType& BT = R->getBugType();
3296   Register(&BT);
3297   void *InsertPos;
3298   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
3299 
3300   if (!EQ) {
3301     EQ = new BugReportEquivClass(std::move(R));
3302     EQClasses.InsertNode(EQ, InsertPos);
3303     EQClassesVector.push_back(EQ);
3304   } else
3305     EQ->AddReport(std::move(R));
3306 }
3307 
3308 
3309 //===----------------------------------------------------------------------===//
3310 // Emitting reports in equivalence classes.
3311 //===----------------------------------------------------------------------===//
3312 
3313 namespace {
3314 struct FRIEC_WLItem {
3315   const ExplodedNode *N;
3316   ExplodedNode::const_succ_iterator I, E;
3317 
3318   FRIEC_WLItem(const ExplodedNode *n)
3319   : N(n), I(N->succ_begin()), E(N->succ_end()) {}
3320 };
3321 }
3322 
3323 static const CFGBlock *findBlockForNode(const ExplodedNode *N) {
3324   ProgramPoint P = N->getLocation();
3325   if (auto BEP = P.getAs<BlockEntrance>())
3326     return BEP->getBlock();
3327 
3328   // Find the node's current statement in the CFG.
3329   if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
3330     return N->getLocationContext()->getAnalysisDeclContext()
3331                                   ->getCFGStmtMap()->getBlock(S);
3332 
3333   return nullptr;
3334 }
3335 
3336 // Returns true if by simply looking at the block, we can be sure that it
3337 // results in a sink during analysis. This is useful to know when the analysis
3338 // was interrupted, and we try to figure out if it would sink eventually.
3339 // There may be many more reasons why a sink would appear during analysis
3340 // (eg. checkers may generate sinks arbitrarily), but here we only consider
3341 // sinks that would be obvious by looking at the CFG.
3342 static bool isImmediateSinkBlock(const CFGBlock *Blk) {
3343   if (Blk->hasNoReturnElement())
3344     return true;
3345 
3346   // FIXME: Throw-expressions are currently generating sinks during analysis:
3347   // they're not supported yet, and also often used for actually terminating
3348   // the program. So we should treat them as sinks in this analysis as well,
3349   // at least for now, but once we have better support for exceptions,
3350   // we'd need to carefully handle the case when the throw is being
3351   // immediately caught.
3352   if (std::any_of(Blk->begin(), Blk->end(), [](const CFGElement &Elm) {
3353         if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>())
3354           if (isa<CXXThrowExpr>(StmtElm->getStmt()))
3355             return true;
3356         return false;
3357       }))
3358     return true;
3359 
3360   return false;
3361 }
3362 
3363 // Returns true if by looking at the CFG surrounding the node's program
3364 // point, we can be sure that any analysis starting from this point would
3365 // eventually end with a sink. We scan the child CFG blocks in a depth-first
3366 // manner and see if all paths eventually end up in an immediate sink block.
3367 static bool isInevitablySinking(const ExplodedNode *N) {
3368   const CFG &Cfg = N->getCFG();
3369 
3370   const CFGBlock *StartBlk = findBlockForNode(N);
3371   if (!StartBlk)
3372     return false;
3373   if (isImmediateSinkBlock(StartBlk))
3374     return true;
3375 
3376   llvm::SmallVector<const CFGBlock *, 32> DFSWorkList;
3377   llvm::SmallPtrSet<const CFGBlock *, 32> Visited;
3378 
3379   DFSWorkList.push_back(StartBlk);
3380   while (!DFSWorkList.empty()) {
3381     const CFGBlock *Blk = DFSWorkList.back();
3382     DFSWorkList.pop_back();
3383     Visited.insert(Blk);
3384 
3385     for (const auto &Succ : Blk->succs()) {
3386       if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) {
3387         if (SuccBlk == &Cfg.getExit()) {
3388           // If at least one path reaches the CFG exit, it means that control is
3389           // returned to the caller. For now, say that we are not sure what
3390           // happens next. If necessary, this can be improved to analyze
3391           // the parent StackFrameContext's call site in a similar manner.
3392           return false;
3393         }
3394 
3395         if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) {
3396           // If the block has reachable child blocks that aren't no-return,
3397           // add them to the worklist.
3398           DFSWorkList.push_back(SuccBlk);
3399         }
3400       }
3401     }
3402   }
3403 
3404   // Nothing reached the exit. It can only mean one thing: there's no return.
3405   return true;
3406 }
3407 
3408 static BugReport *
3409 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
3410                              SmallVectorImpl<BugReport*> &bugReports) {
3411 
3412   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
3413   assert(I != E);
3414   BugType& BT = I->getBugType();
3415 
3416   // If we don't need to suppress any of the nodes because they are
3417   // post-dominated by a sink, simply add all the nodes in the equivalence class
3418   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
3419   if (!BT.isSuppressOnSink()) {
3420     BugReport *R = &*I;
3421     for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
3422       const ExplodedNode *N = I->getErrorNode();
3423       if (N) {
3424         R = &*I;
3425         bugReports.push_back(R);
3426       }
3427     }
3428     return R;
3429   }
3430 
3431   // For bug reports that should be suppressed when all paths are post-dominated
3432   // by a sink node, iterate through the reports in the equivalence class
3433   // until we find one that isn't post-dominated (if one exists).  We use a
3434   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
3435   // this as a recursive function, but we don't want to risk blowing out the
3436   // stack for very long paths.
3437   BugReport *exampleReport = nullptr;
3438 
3439   for (; I != E; ++I) {
3440     const ExplodedNode *errorNode = I->getErrorNode();
3441 
3442     if (!errorNode)
3443       continue;
3444     if (errorNode->isSink()) {
3445       llvm_unreachable(
3446            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
3447     }
3448     // No successors?  By definition this nodes isn't post-dominated by a sink.
3449     if (errorNode->succ_empty()) {
3450       bugReports.push_back(&*I);
3451       if (!exampleReport)
3452         exampleReport = &*I;
3453       continue;
3454     }
3455 
3456     // See if we are in a no-return CFG block. If so, treat this similarly
3457     // to being post-dominated by a sink. This works better when the analysis
3458     // is incomplete and we have never reached the no-return function call(s)
3459     // that we'd inevitably bump into on this path.
3460     if (isInevitablySinking(errorNode))
3461       continue;
3462 
3463     // At this point we know that 'N' is not a sink and it has at least one
3464     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
3465     typedef FRIEC_WLItem WLItem;
3466     typedef SmallVector<WLItem, 10> DFSWorkList;
3467     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3468 
3469     DFSWorkList WL;
3470     WL.push_back(errorNode);
3471     Visited[errorNode] = 1;
3472 
3473     while (!WL.empty()) {
3474       WLItem &WI = WL.back();
3475       assert(!WI.N->succ_empty());
3476 
3477       for (; WI.I != WI.E; ++WI.I) {
3478         const ExplodedNode *Succ = *WI.I;
3479         // End-of-path node?
3480         if (Succ->succ_empty()) {
3481           // If we found an end-of-path node that is not a sink.
3482           if (!Succ->isSink()) {
3483             bugReports.push_back(&*I);
3484             if (!exampleReport)
3485               exampleReport = &*I;
3486             WL.clear();
3487             break;
3488           }
3489           // Found a sink?  Continue on to the next successor.
3490           continue;
3491         }
3492         // Mark the successor as visited.  If it hasn't been explored,
3493         // enqueue it to the DFS worklist.
3494         unsigned &mark = Visited[Succ];
3495         if (!mark) {
3496           mark = 1;
3497           WL.push_back(Succ);
3498           break;
3499         }
3500       }
3501 
3502       // The worklist may have been cleared at this point.  First
3503       // check if it is empty before checking the last item.
3504       if (!WL.empty() && &WL.back() == &WI)
3505         WL.pop_back();
3506     }
3507   }
3508 
3509   // ExampleReport will be NULL if all the nodes in the equivalence class
3510   // were post-dominated by sinks.
3511   return exampleReport;
3512 }
3513 
3514 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3515   SmallVector<BugReport*, 10> bugReports;
3516   BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
3517   if (exampleReport) {
3518     for (PathDiagnosticConsumer *PDC : getPathDiagnosticConsumers()) {
3519       FlushReport(exampleReport, *PDC, bugReports);
3520     }
3521   }
3522 }
3523 
3524 /// Insert all lines participating in the function signature \p Signature
3525 /// into \p ExecutedLines.
3526 static void populateExecutedLinesWithFunctionSignature(
3527     const Decl *Signature, SourceManager &SM,
3528     std::unique_ptr<FilesToLineNumsMap> &ExecutedLines) {
3529 
3530   SourceRange SignatureSourceRange;
3531   const Stmt* Body = Signature->getBody();
3532   if (auto FD = dyn_cast<FunctionDecl>(Signature)) {
3533     SignatureSourceRange = FD->getSourceRange();
3534   } else if (auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
3535     SignatureSourceRange = OD->getSourceRange();
3536   } else {
3537     return;
3538   }
3539   SourceLocation Start = SignatureSourceRange.getBegin();
3540   SourceLocation End = Body ? Body->getSourceRange().getBegin()
3541     : SignatureSourceRange.getEnd();
3542   unsigned StartLine = SM.getExpansionLineNumber(Start);
3543   unsigned EndLine = SM.getExpansionLineNumber(End);
3544 
3545   FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
3546   for (unsigned Line = StartLine; Line <= EndLine; Line++)
3547     ExecutedLines->operator[](FID.getHashValue()).insert(Line);
3548 }
3549 
3550 static void populateExecutedLinesWithStmt(
3551     const Stmt *S, SourceManager &SM,
3552     std::unique_ptr<FilesToLineNumsMap> &ExecutedLines) {
3553   SourceLocation Loc = S->getSourceRange().getBegin();
3554   SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3555   FileID FID = SM.getFileID(ExpansionLoc);
3556   unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
3557   ExecutedLines->operator[](FID.getHashValue()).insert(LineNo);
3558 }
3559 
3560 /// \return all executed lines including function signatures on the path
3561 /// starting from \p N.
3562 static std::unique_ptr<FilesToLineNumsMap>
3563 findExecutedLines(SourceManager &SM, const ExplodedNode *N) {
3564   auto ExecutedLines = llvm::make_unique<FilesToLineNumsMap>();
3565 
3566   while (N) {
3567     if (N->getFirstPred() == nullptr) {
3568 
3569       // First node: show signature of the entrance point.
3570       const Decl *D = N->getLocationContext()->getDecl();
3571       populateExecutedLinesWithFunctionSignature(D, SM, ExecutedLines);
3572 
3573     } else if (auto CE = N->getLocationAs<CallEnter>()) {
3574 
3575       // Inlined function: show signature.
3576       const Decl* D = CE->getCalleeContext()->getDecl();
3577       populateExecutedLinesWithFunctionSignature(D, SM, ExecutedLines);
3578 
3579     } else if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) {
3580       populateExecutedLinesWithStmt(S, SM, ExecutedLines);
3581 
3582       // Show extra context for some parent kinds.
3583       const Stmt *P = N->getParentMap().getParent(S);
3584 
3585       // The path exploration can die before the node with the associated
3586       // return statement is generated, but we do want to show the whole
3587       // return.
3588       if (auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
3589         populateExecutedLinesWithStmt(RS, SM, ExecutedLines);
3590         P = N->getParentMap().getParent(RS);
3591       }
3592 
3593       if (P && (isa<SwitchCase>(P) || isa<LabelStmt>(P)))
3594         populateExecutedLinesWithStmt(P, SM, ExecutedLines);
3595     }
3596 
3597     N = N->getFirstPred();
3598   }
3599   return ExecutedLines;
3600 }
3601 
3602 void BugReporter::FlushReport(BugReport *exampleReport,
3603                               PathDiagnosticConsumer &PD,
3604                               ArrayRef<BugReport*> bugReports) {
3605 
3606   // FIXME: Make sure we use the 'R' for the path that was actually used.
3607   // Probably doesn't make a difference in practice.
3608   BugType& BT = exampleReport->getBugType();
3609 
3610   auto D = llvm::make_unique<PathDiagnostic>(
3611       exampleReport->getBugType().getCheckName(),
3612       exampleReport->getDeclWithIssue(), exampleReport->getBugType().getName(),
3613       exampleReport->getDescription(),
3614       exampleReport->getShortDescription(/*Fallback=*/false), BT.getCategory(),
3615       exampleReport->getUniqueingLocation(), exampleReport->getUniqueingDecl(),
3616       findExecutedLines(getSourceManager(), exampleReport->getErrorNode()));
3617 
3618   if (exampleReport->isPathSensitive()) {
3619     // Generate the full path diagnostic, using the generation scheme
3620     // specified by the PathDiagnosticConsumer. Note that we have to generate
3621     // path diagnostics even for consumers which do not support paths, because
3622     // the BugReporterVisitors may mark this bug as a false positive.
3623     assert(!bugReports.empty());
3624 
3625     MaxBugClassSize.updateMax(bugReports.size());
3626 
3627     if (!generatePathDiagnostic(*D.get(), PD, bugReports))
3628       return;
3629 
3630     MaxValidBugClassSize.updateMax(bugReports.size());
3631 
3632     // Examine the report and see if the last piece is in a header. Reset the
3633     // report location to the last piece in the main source file.
3634     AnalyzerOptions &Opts = getAnalyzerOptions();
3635     if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll)
3636       D->resetDiagnosticLocationToMainFile();
3637   }
3638 
3639   // If the path is empty, generate a single step path with the location
3640   // of the issue.
3641   if (D->path.empty()) {
3642     PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
3643     auto piece = llvm::make_unique<PathDiagnosticEventPiece>(
3644         L, exampleReport->getDescription());
3645     for (SourceRange Range : exampleReport->getRanges())
3646       piece->addRange(Range);
3647     D->setEndOfPath(std::move(piece));
3648   }
3649 
3650   PathPieces &Pieces = D->getMutablePieces();
3651   if (getAnalyzerOptions().shouldDisplayNotesAsEvents()) {
3652     // For path diagnostic consumers that don't support extra notes,
3653     // we may optionally convert those to path notes.
3654     for (auto I = exampleReport->getNotes().rbegin(),
3655               E = exampleReport->getNotes().rend(); I != E; ++I) {
3656       PathDiagnosticNotePiece *Piece = I->get();
3657       auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3658           Piece->getLocation(), Piece->getString());
3659       for (const auto &R: Piece->getRanges())
3660         ConvertedPiece->addRange(R);
3661 
3662       Pieces.push_front(std::move(ConvertedPiece));
3663     }
3664   } else {
3665     for (auto I = exampleReport->getNotes().rbegin(),
3666               E = exampleReport->getNotes().rend(); I != E; ++I)
3667       Pieces.push_front(*I);
3668   }
3669 
3670   // Get the meta data.
3671   const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
3672   for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
3673                                                 e = Meta.end(); i != e; ++i) {
3674     D->addMeta(*i);
3675   }
3676 
3677   PD.HandlePathDiagnostic(std::move(D));
3678 }
3679 
3680 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3681                                   const CheckerBase *Checker,
3682                                   StringRef Name, StringRef Category,
3683                                   StringRef Str, PathDiagnosticLocation Loc,
3684                                   ArrayRef<SourceRange> Ranges) {
3685   EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str,
3686                   Loc, Ranges);
3687 }
3688 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3689                                   CheckName CheckName,
3690                                   StringRef name, StringRef category,
3691                                   StringRef str, PathDiagnosticLocation Loc,
3692                                   ArrayRef<SourceRange> Ranges) {
3693 
3694   // 'BT' is owned by BugReporter.
3695   BugType *BT = getBugTypeForName(CheckName, name, category);
3696   auto R = llvm::make_unique<BugReport>(*BT, str, Loc);
3697   R->setDeclWithIssue(DeclWithIssue);
3698   for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end();
3699        I != E; ++I)
3700     R->addRange(*I);
3701   emitReport(std::move(R));
3702 }
3703 
3704 BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name,
3705                                         StringRef category) {
3706   SmallString<136> fullDesc;
3707   llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3708                                       << ":" << category;
3709   BugType *&BT = StrBugTypes[fullDesc];
3710   if (!BT)
3711     BT = new BugType(CheckName, name, category);
3712   return BT;
3713 }
3714 
3715 LLVM_DUMP_METHOD void PathPieces::dump() const {
3716   unsigned index = 0;
3717   for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
3718     llvm::errs() << "[" << index++ << "]  ";
3719     (*I)->dump();
3720     llvm::errs() << "\n";
3721   }
3722 }
3723 
3724 LLVM_DUMP_METHOD void PathDiagnosticCallPiece::dump() const {
3725   llvm::errs() << "CALL\n--------------\n";
3726 
3727   if (const Stmt *SLoc = getLocStmt(getLocation()))
3728     SLoc->dump();
3729   else if (const NamedDecl *ND = dyn_cast<NamedDecl>(getCallee()))
3730     llvm::errs() << *ND << "\n";
3731   else
3732     getLocation().dump();
3733 }
3734 
3735 LLVM_DUMP_METHOD void PathDiagnosticEventPiece::dump() const {
3736   llvm::errs() << "EVENT\n--------------\n";
3737   llvm::errs() << getString() << "\n";
3738   llvm::errs() << " ---- at ----\n";
3739   getLocation().dump();
3740 }
3741 
3742 LLVM_DUMP_METHOD void PathDiagnosticControlFlowPiece::dump() const {
3743   llvm::errs() << "CONTROL\n--------------\n";
3744   getStartLocation().dump();
3745   llvm::errs() << " ---- to ----\n";
3746   getEndLocation().dump();
3747 }
3748 
3749 LLVM_DUMP_METHOD void PathDiagnosticMacroPiece::dump() const {
3750   llvm::errs() << "MACRO\n--------------\n";
3751   // FIXME: Print which macro is being invoked.
3752 }
3753 
3754 LLVM_DUMP_METHOD void PathDiagnosticNotePiece::dump() const {
3755   llvm::errs() << "NOTE\n--------------\n";
3756   llvm::errs() << getString() << "\n";
3757   llvm::errs() << " ---- at ----\n";
3758   getLocation().dump();
3759 }
3760 
3761 LLVM_DUMP_METHOD void PathDiagnosticLocation::dump() const {
3762   if (!isValid()) {
3763     llvm::errs() << "<INVALID>\n";
3764     return;
3765   }
3766 
3767   switch (K) {
3768   case RangeK:
3769     // FIXME: actually print the range.
3770     llvm::errs() << "<range>\n";
3771     break;
3772   case SingleLocK:
3773     asLocation().dump();
3774     llvm::errs() << "\n";
3775     break;
3776   case StmtK:
3777     if (S)
3778       S->dump();
3779     else
3780       llvm::errs() << "<NULL STMT>\n";
3781     break;
3782   case DeclK:
3783     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D))
3784       llvm::errs() << *ND << "\n";
3785     else if (isa<BlockDecl>(D))
3786       // FIXME: Make this nicer.
3787       llvm::errs() << "<block>\n";
3788     else if (D)
3789       llvm::errs() << "<unknown decl>\n";
3790     else
3791       llvm::errs() << "<NULL DECL>\n";
3792     break;
3793   }
3794 }
3795