1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines BugReporter, a utility class for generating
11 //  PathDiagnostics.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/Analysis/CFG.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Analysis/ProgramPoint.h"
26 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/OwningPtr.h"
32 #include "llvm/ADT/IntrusiveRefCntPtr.h"
33 #include <queue>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 BugReporterVisitor::~BugReporterVisitor() {}
39 
40 void BugReporterContext::anchor() {}
41 
42 //===----------------------------------------------------------------------===//
43 // Helper routines for walking the ExplodedGraph and fetching statements.
44 //===----------------------------------------------------------------------===//
45 
46 static inline const Stmt *GetStmt(const ProgramPoint &P) {
47   if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
48     return SP->getStmt();
49   else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
50     return BE->getSrc()->getTerminator();
51   else if (const CallEnter *CE = dyn_cast<CallEnter>(&P))
52     return CE->getCallExpr();
53   else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&P))
54     return CEE->getCalleeContext()->getCallSite();
55 
56   return 0;
57 }
58 
59 static inline const ExplodedNode*
60 GetPredecessorNode(const ExplodedNode *N) {
61   return N->pred_empty() ? NULL : *(N->pred_begin());
62 }
63 
64 static inline const ExplodedNode*
65 GetSuccessorNode(const ExplodedNode *N) {
66   return N->succ_empty() ? NULL : *(N->succ_begin());
67 }
68 
69 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
70   for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
71     if (const Stmt *S = GetStmt(N->getLocation()))
72       return S;
73 
74   return 0;
75 }
76 
77 static const Stmt *GetNextStmt(const ExplodedNode *N) {
78   for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
79     if (const Stmt *S = GetStmt(N->getLocation())) {
80       // Check if the statement is '?' or '&&'/'||'.  These are "merges",
81       // not actual statement points.
82       switch (S->getStmtClass()) {
83         case Stmt::ChooseExprClass:
84         case Stmt::BinaryConditionalOperatorClass: continue;
85         case Stmt::ConditionalOperatorClass: continue;
86         case Stmt::BinaryOperatorClass: {
87           BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
88           if (Op == BO_LAnd || Op == BO_LOr)
89             continue;
90           break;
91         }
92         default:
93           break;
94       }
95       return S;
96     }
97 
98   return 0;
99 }
100 
101 static inline const Stmt*
102 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
103   if (const Stmt *S = GetStmt(N->getLocation()))
104     return S;
105 
106   return GetPreviousStmt(N);
107 }
108 
109 static inline const Stmt*
110 GetCurrentOrNextStmt(const ExplodedNode *N) {
111   if (const Stmt *S = GetStmt(N->getLocation()))
112     return S;
113 
114   return GetNextStmt(N);
115 }
116 
117 //===----------------------------------------------------------------------===//
118 // Diagnostic cleanup.
119 //===----------------------------------------------------------------------===//
120 
121 /// Recursively scan through a path and prune out calls and macros pieces
122 /// that aren't needed.  Return true if afterwards the path contains
123 /// "interesting stuff" which means it should be pruned from the parent path.
124 bool BugReporter::RemoveUneededCalls(PathPieces &pieces, BugReport *R) {
125   bool containsSomethingInteresting = false;
126   const unsigned N = pieces.size();
127 
128   for (unsigned i = 0 ; i < N ; ++i) {
129     // Remove the front piece from the path.  If it is still something we
130     // want to keep once we are done, we will push it back on the end.
131     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
132     pieces.pop_front();
133 
134     switch (piece->getKind()) {
135       case PathDiagnosticPiece::Call: {
136         PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
137         // Check if the location context is interesting.
138         assert(LocationContextMap.count(call));
139         if (R->isInteresting(LocationContextMap[call])) {
140           containsSomethingInteresting = true;
141           break;
142         }
143         // Recursively clean out the subclass.  Keep this call around if
144         // it contains any informative diagnostics.
145         if (!RemoveUneededCalls(call->path, R))
146           continue;
147         containsSomethingInteresting = true;
148         break;
149       }
150       case PathDiagnosticPiece::Macro: {
151         PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
152         if (!RemoveUneededCalls(macro->subPieces, R))
153           continue;
154         containsSomethingInteresting = true;
155         break;
156       }
157       case PathDiagnosticPiece::Event: {
158         PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
159         // We never throw away an event, but we do throw it away wholesale
160         // as part of a path if we throw the entire path away.
161         containsSomethingInteresting |= !event->isPrunable();
162         break;
163       }
164       case PathDiagnosticPiece::ControlFlow:
165         break;
166     }
167 
168     pieces.push_back(piece);
169   }
170 
171   return containsSomethingInteresting;
172 }
173 
174 //===----------------------------------------------------------------------===//
175 // PathDiagnosticBuilder and its associated routines and helper objects.
176 //===----------------------------------------------------------------------===//
177 
178 typedef llvm::DenseMap<const ExplodedNode*,
179 const ExplodedNode*> NodeBackMap;
180 
181 namespace {
182 class NodeMapClosure : public BugReport::NodeResolver {
183   NodeBackMap& M;
184 public:
185   NodeMapClosure(NodeBackMap *m) : M(*m) {}
186   ~NodeMapClosure() {}
187 
188   const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
189     NodeBackMap::iterator I = M.find(N);
190     return I == M.end() ? 0 : I->second;
191   }
192 };
193 
194 class PathDiagnosticBuilder : public BugReporterContext {
195   BugReport *R;
196   PathDiagnosticConsumer *PDC;
197   OwningPtr<ParentMap> PM;
198   NodeMapClosure NMC;
199 public:
200   const LocationContext *LC;
201 
202   PathDiagnosticBuilder(GRBugReporter &br,
203                         BugReport *r, NodeBackMap *Backmap,
204                         PathDiagnosticConsumer *pdc)
205     : BugReporterContext(br),
206       R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
207   {}
208 
209   PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
210 
211   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
212                                             const ExplodedNode *N);
213 
214   BugReport *getBugReport() { return R; }
215 
216   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
217 
218   ParentMap& getParentMap() { return LC->getParentMap(); }
219 
220   const Stmt *getParent(const Stmt *S) {
221     return getParentMap().getParent(S);
222   }
223 
224   virtual NodeMapClosure& getNodeResolver() { return NMC; }
225 
226   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
227 
228   PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
229     return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
230   }
231 
232   bool supportsLogicalOpControlFlow() const {
233     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
234   }
235 };
236 } // end anonymous namespace
237 
238 PathDiagnosticLocation
239 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
240   if (const Stmt *S = GetNextStmt(N))
241     return PathDiagnosticLocation(S, getSourceManager(), LC);
242 
243   return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
244                                                getSourceManager());
245 }
246 
247 PathDiagnosticLocation
248 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
249                                           const ExplodedNode *N) {
250 
251   // Slow, but probably doesn't matter.
252   if (os.str().empty())
253     os << ' ';
254 
255   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
256 
257   if (Loc.asStmt())
258     os << "Execution continues on line "
259        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
260        << '.';
261   else {
262     os << "Execution jumps to the end of the ";
263     const Decl *D = N->getLocationContext()->getDecl();
264     if (isa<ObjCMethodDecl>(D))
265       os << "method";
266     else if (isa<FunctionDecl>(D))
267       os << "function";
268     else {
269       assert(isa<BlockDecl>(D));
270       os << "anonymous block";
271     }
272     os << '.';
273   }
274 
275   return Loc;
276 }
277 
278 static bool IsNested(const Stmt *S, ParentMap &PM) {
279   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
280     return true;
281 
282   const Stmt *Parent = PM.getParentIgnoreParens(S);
283 
284   if (Parent)
285     switch (Parent->getStmtClass()) {
286       case Stmt::ForStmtClass:
287       case Stmt::DoStmtClass:
288       case Stmt::WhileStmtClass:
289         return true;
290       default:
291         break;
292     }
293 
294   return false;
295 }
296 
297 PathDiagnosticLocation
298 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
299   assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
300   ParentMap &P = getParentMap();
301   SourceManager &SMgr = getSourceManager();
302 
303   while (IsNested(S, P)) {
304     const Stmt *Parent = P.getParentIgnoreParens(S);
305 
306     if (!Parent)
307       break;
308 
309     switch (Parent->getStmtClass()) {
310       case Stmt::BinaryOperatorClass: {
311         const BinaryOperator *B = cast<BinaryOperator>(Parent);
312         if (B->isLogicalOp())
313           return PathDiagnosticLocation(S, SMgr, LC);
314         break;
315       }
316       case Stmt::CompoundStmtClass:
317       case Stmt::StmtExprClass:
318         return PathDiagnosticLocation(S, SMgr, LC);
319       case Stmt::ChooseExprClass:
320         // Similar to '?' if we are referring to condition, just have the edge
321         // point to the entire choose expression.
322         if (cast<ChooseExpr>(Parent)->getCond() == S)
323           return PathDiagnosticLocation(Parent, SMgr, LC);
324         else
325           return PathDiagnosticLocation(S, SMgr, LC);
326       case Stmt::BinaryConditionalOperatorClass:
327       case Stmt::ConditionalOperatorClass:
328         // For '?', if we are referring to condition, just have the edge point
329         // to the entire '?' expression.
330         if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
331           return PathDiagnosticLocation(Parent, SMgr, LC);
332         else
333           return PathDiagnosticLocation(S, SMgr, LC);
334       case Stmt::DoStmtClass:
335           return PathDiagnosticLocation(S, SMgr, LC);
336       case Stmt::ForStmtClass:
337         if (cast<ForStmt>(Parent)->getBody() == S)
338           return PathDiagnosticLocation(S, SMgr, LC);
339         break;
340       case Stmt::IfStmtClass:
341         if (cast<IfStmt>(Parent)->getCond() != S)
342           return PathDiagnosticLocation(S, SMgr, LC);
343         break;
344       case Stmt::ObjCForCollectionStmtClass:
345         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
346           return PathDiagnosticLocation(S, SMgr, LC);
347         break;
348       case Stmt::WhileStmtClass:
349         if (cast<WhileStmt>(Parent)->getCond() != S)
350           return PathDiagnosticLocation(S, SMgr, LC);
351         break;
352       default:
353         break;
354     }
355 
356     S = Parent;
357   }
358 
359   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
360 
361   // Special case: DeclStmts can appear in for statement declarations, in which
362   //  case the ForStmt is the context.
363   if (isa<DeclStmt>(S)) {
364     if (const Stmt *Parent = P.getParent(S)) {
365       switch (Parent->getStmtClass()) {
366         case Stmt::ForStmtClass:
367         case Stmt::ObjCForCollectionStmtClass:
368           return PathDiagnosticLocation(Parent, SMgr, LC);
369         default:
370           break;
371       }
372     }
373   }
374   else if (isa<BinaryOperator>(S)) {
375     // Special case: the binary operator represents the initialization
376     // code in a for statement (this can happen when the variable being
377     // initialized is an old variable.
378     if (const ForStmt *FS =
379           dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
380       if (FS->getInit() == S)
381         return PathDiagnosticLocation(FS, SMgr, LC);
382     }
383   }
384 
385   return PathDiagnosticLocation(S, SMgr, LC);
386 }
387 
388 //===----------------------------------------------------------------------===//
389 // "Minimal" path diagnostic generation algorithm.
390 //===----------------------------------------------------------------------===//
391 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
392 typedef SmallVector<StackDiagPair, 6> StackDiagVector;
393 
394 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
395                                          StackDiagVector &CallStack) {
396   // If the piece contains a special message, add it to all the call
397   // pieces on the active stack.
398   if (PathDiagnosticEventPiece *ep =
399         dyn_cast<PathDiagnosticEventPiece>(P)) {
400 
401     if (ep->hasCallStackHint())
402       for (StackDiagVector::iterator I = CallStack.begin(),
403                                      E = CallStack.end(); I != E; ++I) {
404         PathDiagnosticCallPiece *CP = I->first;
405         const ExplodedNode *N = I->second;
406         std::string stackMsg = ep->getCallStackMessage(N);
407 
408         // The last message on the path to final bug is the most important
409         // one. Since we traverse the path backwards, do not add the message
410         // if one has been previously added.
411         if  (!CP->hasCallStackMessage())
412           CP->setCallStackMessage(stackMsg);
413       }
414   }
415 }
416 
417 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
418 
419 static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
420                                           PathDiagnosticBuilder &PDB,
421                                           const ExplodedNode *N,
422                                       ArrayRef<BugReporterVisitor *> visitors) {
423 
424   SourceManager& SMgr = PDB.getSourceManager();
425   const LocationContext *LC = PDB.LC;
426   const ExplodedNode *NextNode = N->pred_empty()
427                                         ? NULL : *(N->pred_begin());
428 
429   StackDiagVector CallStack;
430 
431   while (NextNode) {
432     N = NextNode;
433     PDB.LC = N->getLocationContext();
434     NextNode = GetPredecessorNode(N);
435 
436     ProgramPoint P = N->getLocation();
437 
438     do {
439       if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
440         PathDiagnosticCallPiece *C =
441             PathDiagnosticCallPiece::construct(N, *CE, SMgr);
442         GRBugReporter& BR = PDB.getBugReporter();
443         BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
444         PD.getActivePath().push_front(C);
445         PD.pushActivePath(&C->path);
446         CallStack.push_back(StackDiagPair(C, N));
447         break;
448       }
449 
450       if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
451         // Flush all locations, and pop the active path.
452         bool VisitedEntireCall = PD.isWithinCall();
453         PD.popActivePath();
454 
455         // Either we just added a bunch of stuff to the top-level path, or
456         // we have a previous CallExitEnd.  If the former, it means that the
457         // path terminated within a function call.  We must then take the
458         // current contents of the active path and place it within
459         // a new PathDiagnosticCallPiece.
460         PathDiagnosticCallPiece *C;
461         if (VisitedEntireCall) {
462           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
463         } else {
464           const Decl *Caller = CE->getLocationContext()->getDecl();
465           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
466           GRBugReporter& BR = PDB.getBugReporter();
467           BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
468         }
469 
470         C->setCallee(*CE, SMgr);
471         if (!CallStack.empty()) {
472           assert(CallStack.back().first == C);
473           CallStack.pop_back();
474         }
475         break;
476       }
477 
478       if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
479         const CFGBlock *Src = BE->getSrc();
480         const CFGBlock *Dst = BE->getDst();
481         const Stmt *T = Src->getTerminator();
482 
483         if (!T)
484           break;
485 
486         PathDiagnosticLocation Start =
487             PathDiagnosticLocation::createBegin(T, SMgr,
488                 N->getLocationContext());
489 
490         switch (T->getStmtClass()) {
491         default:
492           break;
493 
494         case Stmt::GotoStmtClass:
495         case Stmt::IndirectGotoStmtClass: {
496           const Stmt *S = GetNextStmt(N);
497 
498           if (!S)
499             break;
500 
501           std::string sbuf;
502           llvm::raw_string_ostream os(sbuf);
503           const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
504 
505           os << "Control jumps to line "
506               << End.asLocation().getExpansionLineNumber();
507           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
508               Start, End, os.str()));
509           break;
510         }
511 
512         case Stmt::SwitchStmtClass: {
513           // Figure out what case arm we took.
514           std::string sbuf;
515           llvm::raw_string_ostream os(sbuf);
516 
517           if (const Stmt *S = Dst->getLabel()) {
518             PathDiagnosticLocation End(S, SMgr, LC);
519 
520             switch (S->getStmtClass()) {
521             default:
522               os << "No cases match in the switch statement. "
523               "Control jumps to line "
524               << End.asLocation().getExpansionLineNumber();
525               break;
526             case Stmt::DefaultStmtClass:
527               os << "Control jumps to the 'default' case at line "
528               << End.asLocation().getExpansionLineNumber();
529               break;
530 
531             case Stmt::CaseStmtClass: {
532               os << "Control jumps to 'case ";
533               const CaseStmt *Case = cast<CaseStmt>(S);
534               const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
535 
536               // Determine if it is an enum.
537               bool GetRawInt = true;
538 
539               if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
540                 // FIXME: Maybe this should be an assertion.  Are there cases
541                 // were it is not an EnumConstantDecl?
542                 const EnumConstantDecl *D =
543                     dyn_cast<EnumConstantDecl>(DR->getDecl());
544 
545                 if (D) {
546                   GetRawInt = false;
547                   os << *D;
548                 }
549               }
550 
551               if (GetRawInt)
552                 os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
553 
554               os << ":'  at line "
555                   << End.asLocation().getExpansionLineNumber();
556               break;
557             }
558             }
559             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
560                 Start, End, os.str()));
561           }
562           else {
563             os << "'Default' branch taken. ";
564             const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
565             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
566                 Start, End, os.str()));
567           }
568 
569           break;
570         }
571 
572         case Stmt::BreakStmtClass:
573         case Stmt::ContinueStmtClass: {
574           std::string sbuf;
575           llvm::raw_string_ostream os(sbuf);
576           PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
577           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
578               Start, End, os.str()));
579           break;
580         }
581 
582         // Determine control-flow for ternary '?'.
583         case Stmt::BinaryConditionalOperatorClass:
584         case Stmt::ConditionalOperatorClass: {
585           std::string sbuf;
586           llvm::raw_string_ostream os(sbuf);
587           os << "'?' condition is ";
588 
589           if (*(Src->succ_begin()+1) == Dst)
590             os << "false";
591           else
592             os << "true";
593 
594           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
595 
596           if (const Stmt *S = End.asStmt())
597             End = PDB.getEnclosingStmtLocation(S);
598 
599           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
600               Start, End, os.str()));
601           break;
602         }
603 
604         // Determine control-flow for short-circuited '&&' and '||'.
605         case Stmt::BinaryOperatorClass: {
606           if (!PDB.supportsLogicalOpControlFlow())
607             break;
608 
609           const BinaryOperator *B = cast<BinaryOperator>(T);
610           std::string sbuf;
611           llvm::raw_string_ostream os(sbuf);
612           os << "Left side of '";
613 
614           if (B->getOpcode() == BO_LAnd) {
615             os << "&&" << "' is ";
616 
617             if (*(Src->succ_begin()+1) == Dst) {
618               os << "false";
619               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
620               PathDiagnosticLocation Start =
621                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
622               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
623                   Start, End, os.str()));
624             }
625             else {
626               os << "true";
627               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
628               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
629               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
630                   Start, End, os.str()));
631             }
632           }
633           else {
634             assert(B->getOpcode() == BO_LOr);
635             os << "||" << "' is ";
636 
637             if (*(Src->succ_begin()+1) == Dst) {
638               os << "false";
639               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
640               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
641               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
642                   Start, End, os.str()));
643             }
644             else {
645               os << "true";
646               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
647               PathDiagnosticLocation Start =
648                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
649               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
650                   Start, End, os.str()));
651             }
652           }
653 
654           break;
655         }
656 
657         case Stmt::DoStmtClass:  {
658           if (*(Src->succ_begin()) == Dst) {
659             std::string sbuf;
660             llvm::raw_string_ostream os(sbuf);
661 
662             os << "Loop condition is true. ";
663             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
664 
665             if (const Stmt *S = End.asStmt())
666               End = PDB.getEnclosingStmtLocation(S);
667 
668             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
669                 Start, End, os.str()));
670           }
671           else {
672             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
673 
674             if (const Stmt *S = End.asStmt())
675               End = PDB.getEnclosingStmtLocation(S);
676 
677             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
678                 Start, End, "Loop condition is false.  Exiting loop"));
679           }
680 
681           break;
682         }
683 
684         case Stmt::WhileStmtClass:
685         case Stmt::ForStmtClass: {
686           if (*(Src->succ_begin()+1) == Dst) {
687             std::string sbuf;
688             llvm::raw_string_ostream os(sbuf);
689 
690             os << "Loop condition is false. ";
691             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
692             if (const Stmt *S = End.asStmt())
693               End = PDB.getEnclosingStmtLocation(S);
694 
695             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
696                 Start, End, os.str()));
697           }
698           else {
699             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
700             if (const Stmt *S = End.asStmt())
701               End = PDB.getEnclosingStmtLocation(S);
702 
703             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
704                 Start, End, "Loop condition is true.  Entering loop body"));
705           }
706 
707           break;
708         }
709 
710         case Stmt::IfStmtClass: {
711           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
712 
713           if (const Stmt *S = End.asStmt())
714             End = PDB.getEnclosingStmtLocation(S);
715 
716           if (*(Src->succ_begin()+1) == Dst)
717             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
718                 Start, End, "Taking false branch"));
719           else
720             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
721                 Start, End, "Taking true branch"));
722 
723           break;
724         }
725         }
726       }
727     } while(0);
728 
729     if (NextNode) {
730       // Add diagnostic pieces from custom visitors.
731       BugReport *R = PDB.getBugReport();
732       for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
733                                                     E = visitors.end();
734            I != E; ++I) {
735         if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
736           PD.getActivePath().push_front(p);
737           updateStackPiecesWithMessage(p, CallStack);
738         }
739       }
740     }
741   }
742 
743   // After constructing the full PathDiagnostic, do a pass over it to compact
744   // PathDiagnosticPieces that occur within a macro.
745   CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
746 }
747 
748 //===----------------------------------------------------------------------===//
749 // "Extensive" PathDiagnostic generation.
750 //===----------------------------------------------------------------------===//
751 
752 static bool IsControlFlowExpr(const Stmt *S) {
753   const Expr *E = dyn_cast<Expr>(S);
754 
755   if (!E)
756     return false;
757 
758   E = E->IgnoreParenCasts();
759 
760   if (isa<AbstractConditionalOperator>(E))
761     return true;
762 
763   if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
764     if (B->isLogicalOp())
765       return true;
766 
767   return false;
768 }
769 
770 namespace {
771 class ContextLocation : public PathDiagnosticLocation {
772   bool IsDead;
773 public:
774   ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
775     : PathDiagnosticLocation(L), IsDead(isdead) {}
776 
777   void markDead() { IsDead = true; }
778   bool isDead() const { return IsDead; }
779 };
780 
781 class EdgeBuilder {
782   std::vector<ContextLocation> CLocs;
783   typedef std::vector<ContextLocation>::iterator iterator;
784   PathDiagnostic &PD;
785   PathDiagnosticBuilder &PDB;
786   PathDiagnosticLocation PrevLoc;
787 
788   bool IsConsumedExpr(const PathDiagnosticLocation &L);
789 
790   bool containsLocation(const PathDiagnosticLocation &Container,
791                         const PathDiagnosticLocation &Containee);
792 
793   PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
794 
795   PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
796                                          bool firstCharOnly = false) {
797     if (const Stmt *S = L.asStmt()) {
798       const Stmt *Original = S;
799       while (1) {
800         // Adjust the location for some expressions that are best referenced
801         // by one of their subexpressions.
802         switch (S->getStmtClass()) {
803           default:
804             break;
805           case Stmt::ParenExprClass:
806           case Stmt::GenericSelectionExprClass:
807             S = cast<Expr>(S)->IgnoreParens();
808             firstCharOnly = true;
809             continue;
810           case Stmt::BinaryConditionalOperatorClass:
811           case Stmt::ConditionalOperatorClass:
812             S = cast<AbstractConditionalOperator>(S)->getCond();
813             firstCharOnly = true;
814             continue;
815           case Stmt::ChooseExprClass:
816             S = cast<ChooseExpr>(S)->getCond();
817             firstCharOnly = true;
818             continue;
819           case Stmt::BinaryOperatorClass:
820             S = cast<BinaryOperator>(S)->getLHS();
821             firstCharOnly = true;
822             continue;
823         }
824 
825         break;
826       }
827 
828       if (S != Original)
829         L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
830     }
831 
832     if (firstCharOnly)
833       L  = PathDiagnosticLocation::createSingleLocation(L);
834 
835     return L;
836   }
837 
838   void popLocation() {
839     if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
840       // For contexts, we only one the first character as the range.
841       rawAddEdge(cleanUpLocation(CLocs.back(), true));
842     }
843     CLocs.pop_back();
844   }
845 
846 public:
847   EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
848     : PD(pd), PDB(pdb) {
849 
850       // If the PathDiagnostic already has pieces, add the enclosing statement
851       // of the first piece as a context as well.
852       if (!PD.path.empty()) {
853         PrevLoc = (*PD.path.begin())->getLocation();
854 
855         if (const Stmt *S = PrevLoc.asStmt())
856           addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
857       }
858   }
859 
860   ~EdgeBuilder() {
861     while (!CLocs.empty()) popLocation();
862 
863     // Finally, add an initial edge from the start location of the first
864     // statement (if it doesn't already exist).
865     PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
866                                                        PDB.LC,
867                                                        PDB.getSourceManager());
868     if (L.isValid())
869       rawAddEdge(L);
870   }
871 
872   void flushLocations() {
873     while (!CLocs.empty())
874       popLocation();
875     PrevLoc = PathDiagnosticLocation();
876   }
877 
878   void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
879 
880   void rawAddEdge(PathDiagnosticLocation NewLoc);
881 
882   void addContext(const Stmt *S);
883   void addContext(const PathDiagnosticLocation &L);
884   void addExtendedContext(const Stmt *S);
885 };
886 } // end anonymous namespace
887 
888 
889 PathDiagnosticLocation
890 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
891   if (const Stmt *S = L.asStmt()) {
892     if (IsControlFlowExpr(S))
893       return L;
894 
895     return PDB.getEnclosingStmtLocation(S);
896   }
897 
898   return L;
899 }
900 
901 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
902                                    const PathDiagnosticLocation &Containee) {
903 
904   if (Container == Containee)
905     return true;
906 
907   if (Container.asDecl())
908     return true;
909 
910   if (const Stmt *S = Containee.asStmt())
911     if (const Stmt *ContainerS = Container.asStmt()) {
912       while (S) {
913         if (S == ContainerS)
914           return true;
915         S = PDB.getParent(S);
916       }
917       return false;
918     }
919 
920   // Less accurate: compare using source ranges.
921   SourceRange ContainerR = Container.asRange();
922   SourceRange ContaineeR = Containee.asRange();
923 
924   SourceManager &SM = PDB.getSourceManager();
925   SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
926   SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
927   SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
928   SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
929 
930   unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
931   unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
932   unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
933   unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
934 
935   assert(ContainerBegLine <= ContainerEndLine);
936   assert(ContaineeBegLine <= ContaineeEndLine);
937 
938   return (ContainerBegLine <= ContaineeBegLine &&
939           ContainerEndLine >= ContaineeEndLine &&
940           (ContainerBegLine != ContaineeBegLine ||
941            SM.getExpansionColumnNumber(ContainerRBeg) <=
942            SM.getExpansionColumnNumber(ContaineeRBeg)) &&
943           (ContainerEndLine != ContaineeEndLine ||
944            SM.getExpansionColumnNumber(ContainerREnd) >=
945            SM.getExpansionColumnNumber(ContaineeREnd)));
946 }
947 
948 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
949   if (!PrevLoc.isValid()) {
950     PrevLoc = NewLoc;
951     return;
952   }
953 
954   const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
955   const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
956 
957   if (NewLocClean.asLocation() == PrevLocClean.asLocation())
958     return;
959 
960   // FIXME: Ignore intra-macro edges for now.
961   if (NewLocClean.asLocation().getExpansionLoc() ==
962       PrevLocClean.asLocation().getExpansionLoc())
963     return;
964 
965   PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
966   PrevLoc = NewLoc;
967 }
968 
969 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
970 
971   if (!alwaysAdd && NewLoc.asLocation().isMacroID())
972     return;
973 
974   const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
975 
976   while (!CLocs.empty()) {
977     ContextLocation &TopContextLoc = CLocs.back();
978 
979     // Is the top location context the same as the one for the new location?
980     if (TopContextLoc == CLoc) {
981       if (alwaysAdd) {
982         if (IsConsumedExpr(TopContextLoc) &&
983             !IsControlFlowExpr(TopContextLoc.asStmt()))
984             TopContextLoc.markDead();
985 
986         rawAddEdge(NewLoc);
987       }
988 
989       return;
990     }
991 
992     if (containsLocation(TopContextLoc, CLoc)) {
993       if (alwaysAdd) {
994         rawAddEdge(NewLoc);
995 
996         if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
997           CLocs.push_back(ContextLocation(CLoc, true));
998           return;
999         }
1000       }
1001 
1002       CLocs.push_back(CLoc);
1003       return;
1004     }
1005 
1006     // Context does not contain the location.  Flush it.
1007     popLocation();
1008   }
1009 
1010   // If we reach here, there is no enclosing context.  Just add the edge.
1011   rawAddEdge(NewLoc);
1012 }
1013 
1014 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1015   if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1016     return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1017 
1018   return false;
1019 }
1020 
1021 void EdgeBuilder::addExtendedContext(const Stmt *S) {
1022   if (!S)
1023     return;
1024 
1025   const Stmt *Parent = PDB.getParent(S);
1026   while (Parent) {
1027     if (isa<CompoundStmt>(Parent))
1028       Parent = PDB.getParent(Parent);
1029     else
1030       break;
1031   }
1032 
1033   if (Parent) {
1034     switch (Parent->getStmtClass()) {
1035       case Stmt::DoStmtClass:
1036       case Stmt::ObjCAtSynchronizedStmtClass:
1037         addContext(Parent);
1038       default:
1039         break;
1040     }
1041   }
1042 
1043   addContext(S);
1044 }
1045 
1046 void EdgeBuilder::addContext(const Stmt *S) {
1047   if (!S)
1048     return;
1049 
1050   PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1051   addContext(L);
1052 }
1053 
1054 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1055   while (!CLocs.empty()) {
1056     const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1057 
1058     // Is the top location context the same as the one for the new location?
1059     if (TopContextLoc == L)
1060       return;
1061 
1062     if (containsLocation(TopContextLoc, L)) {
1063       CLocs.push_back(L);
1064       return;
1065     }
1066 
1067     // Context does not contain the location.  Flush it.
1068     popLocation();
1069   }
1070 
1071   CLocs.push_back(L);
1072 }
1073 
1074 // Cone-of-influence: support the reverse propagation of "interesting" symbols
1075 // and values by tracing interesting calculations backwards through evaluated
1076 // expressions along a path.  This is probably overly complicated, but the idea
1077 // is that if an expression computed an "interesting" value, the child
1078 // expressions are are also likely to be "interesting" as well (which then
1079 // propagates to the values they in turn compute).  This reverse propagation
1080 // is needed to track interesting correlations across function call boundaries,
1081 // where formal arguments bind to actual arguments, etc.  This is also needed
1082 // because the constraint solver sometimes simplifies certain symbolic values
1083 // into constants when appropriate, and this complicates reasoning about
1084 // interesting values.
1085 typedef llvm::DenseSet<const Expr *> InterestingExprs;
1086 
1087 static void reversePropagateIntererstingSymbols(BugReport &R,
1088                                                 InterestingExprs &IE,
1089                                                 const ProgramState *State,
1090                                                 const Expr *Ex,
1091                                                 const LocationContext *LCtx) {
1092   SVal V = State->getSVal(Ex, LCtx);
1093   if (!(R.isInteresting(V) || IE.count(Ex)))
1094     return;
1095 
1096   switch (Ex->getStmtClass()) {
1097     default:
1098       if (!isa<CastExpr>(Ex))
1099         break;
1100       // Fall through.
1101     case Stmt::BinaryOperatorClass:
1102     case Stmt::UnaryOperatorClass: {
1103       for (Stmt::const_child_iterator CI = Ex->child_begin(),
1104             CE = Ex->child_end();
1105             CI != CE; ++CI) {
1106         if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1107           IE.insert(child);
1108           SVal ChildV = State->getSVal(child, LCtx);
1109           R.markInteresting(ChildV);
1110         }
1111         break;
1112       }
1113     }
1114   }
1115 
1116   R.markInteresting(V);
1117 }
1118 
1119 static void reversePropagateInterestingSymbols(BugReport &R,
1120                                                InterestingExprs &IE,
1121                                                const ProgramState *State,
1122                                                const LocationContext *CalleeCtx,
1123                                                const LocationContext *CallerCtx)
1124 {
1125   // FIXME: Handle non-CallExpr-based CallEvents.
1126   const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1127   const Stmt *CallSite = Callee->getCallSite();
1128   if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1129     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1130       FunctionDecl::param_const_iterator PI = FD->param_begin(),
1131                                          PE = FD->param_end();
1132       CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1133       for (; AI != AE && PI != PE; ++AI, ++PI) {
1134         if (const Expr *ArgE = *AI) {
1135           if (const ParmVarDecl *PD = *PI) {
1136             Loc LV = State->getLValue(PD, CalleeCtx);
1137             if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1138               IE.insert(ArgE);
1139           }
1140         }
1141       }
1142     }
1143   }
1144 }
1145 
1146 static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1147                                             PathDiagnosticBuilder &PDB,
1148                                             const ExplodedNode *N,
1149                                       ArrayRef<BugReporterVisitor *> visitors) {
1150   EdgeBuilder EB(PD, PDB);
1151   const SourceManager& SM = PDB.getSourceManager();
1152   StackDiagVector CallStack;
1153   InterestingExprs IE;
1154 
1155   const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1156   while (NextNode) {
1157     N = NextNode;
1158     NextNode = GetPredecessorNode(N);
1159     ProgramPoint P = N->getLocation();
1160 
1161     do {
1162       if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
1163         if (const Expr *Ex = PS->getStmtAs<Expr>())
1164           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1165                                               N->getState().getPtr(), Ex,
1166                                               N->getLocationContext());
1167       }
1168 
1169       if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
1170         const Stmt *S = CE->getCalleeContext()->getCallSite();
1171         if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1172             reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1173                                                 N->getState().getPtr(), Ex,
1174                                                 N->getLocationContext());
1175         }
1176 
1177         PathDiagnosticCallPiece *C =
1178           PathDiagnosticCallPiece::construct(N, *CE, SM);
1179         GRBugReporter& BR = PDB.getBugReporter();
1180         BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1181 
1182         EB.addEdge(C->callReturn, true);
1183         EB.flushLocations();
1184 
1185         PD.getActivePath().push_front(C);
1186         PD.pushActivePath(&C->path);
1187         CallStack.push_back(StackDiagPair(C, N));
1188         break;
1189       }
1190 
1191       // Pop the call hierarchy if we are done walking the contents
1192       // of a function call.
1193       if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
1194         // Add an edge to the start of the function.
1195         const Decl *D = CE->getCalleeContext()->getDecl();
1196         PathDiagnosticLocation pos =
1197           PathDiagnosticLocation::createBegin(D, SM);
1198         EB.addEdge(pos);
1199 
1200         // Flush all locations, and pop the active path.
1201         bool VisitedEntireCall = PD.isWithinCall();
1202         EB.flushLocations();
1203         PD.popActivePath();
1204         PDB.LC = N->getLocationContext();
1205 
1206         // Either we just added a bunch of stuff to the top-level path, or
1207         // we have a previous CallExitEnd.  If the former, it means that the
1208         // path terminated within a function call.  We must then take the
1209         // current contents of the active path and place it within
1210         // a new PathDiagnosticCallPiece.
1211         PathDiagnosticCallPiece *C;
1212         if (VisitedEntireCall) {
1213           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1214         } else {
1215           const Decl *Caller = CE->getLocationContext()->getDecl();
1216           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1217           GRBugReporter& BR = PDB.getBugReporter();
1218           BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1219         }
1220 
1221         C->setCallee(*CE, SM);
1222         EB.addContext(C->getLocation());
1223 
1224         if (!CallStack.empty()) {
1225           assert(CallStack.back().first == C);
1226           CallStack.pop_back();
1227         }
1228         break;
1229       }
1230 
1231       // Note that is important that we update the LocationContext
1232       // after looking at CallExits.  CallExit basically adds an
1233       // edge in the *caller*, so we don't want to update the LocationContext
1234       // too soon.
1235       PDB.LC = N->getLocationContext();
1236 
1237       // Block edges.
1238       if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1239         // Does this represent entering a call?  If so, look at propagating
1240         // interesting symbols across call boundaries.
1241         if (NextNode) {
1242           const LocationContext *CallerCtx = NextNode->getLocationContext();
1243           const LocationContext *CalleeCtx = PDB.LC;
1244           if (CallerCtx != CalleeCtx) {
1245             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1246                                                N->getState().getPtr(),
1247                                                CalleeCtx, CallerCtx);
1248           }
1249         }
1250 
1251         // Are we jumping to the head of a loop?  Add a special diagnostic.
1252         if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1253           PathDiagnosticLocation L(Loop, SM, PDB.LC);
1254           const CompoundStmt *CS = NULL;
1255 
1256           if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1257             CS = dyn_cast<CompoundStmt>(FS->getBody());
1258           else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1259             CS = dyn_cast<CompoundStmt>(WS->getBody());
1260 
1261           PathDiagnosticEventPiece *p =
1262             new PathDiagnosticEventPiece(L,
1263                                         "Looping back to the head of the loop");
1264           p->setPrunable(true);
1265 
1266           EB.addEdge(p->getLocation(), true);
1267           PD.getActivePath().push_front(p);
1268 
1269           if (CS) {
1270             PathDiagnosticLocation BL =
1271               PathDiagnosticLocation::createEndBrace(CS, SM);
1272             EB.addEdge(BL);
1273           }
1274         }
1275 
1276         if (const Stmt *Term = BE->getSrc()->getTerminator())
1277           EB.addContext(Term);
1278 
1279         break;
1280       }
1281 
1282       if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1283         CFGElement First = BE->getFirstElement();
1284         if (const CFGStmt *S = First.getAs<CFGStmt>()) {
1285           const Stmt *stmt = S->getStmt();
1286           if (IsControlFlowExpr(stmt)) {
1287             // Add the proper context for '&&', '||', and '?'.
1288             EB.addContext(stmt);
1289           }
1290           else
1291             EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1292         }
1293 
1294         break;
1295       }
1296 
1297 
1298     } while (0);
1299 
1300     if (!NextNode)
1301       continue;
1302 
1303     // Add pieces from custom visitors.
1304     BugReport *R = PDB.getBugReport();
1305     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1306                                                   E = visitors.end();
1307          I != E; ++I) {
1308       if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1309         const PathDiagnosticLocation &Loc = p->getLocation();
1310         EB.addEdge(Loc, true);
1311         PD.getActivePath().push_front(p);
1312         updateStackPiecesWithMessage(p, CallStack);
1313 
1314         if (const Stmt *S = Loc.asStmt())
1315           EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1316       }
1317     }
1318   }
1319 }
1320 
1321 //===----------------------------------------------------------------------===//
1322 // Methods for BugType and subclasses.
1323 //===----------------------------------------------------------------------===//
1324 BugType::~BugType() { }
1325 
1326 void BugType::FlushReports(BugReporter &BR) {}
1327 
1328 void BuiltinBug::anchor() {}
1329 
1330 //===----------------------------------------------------------------------===//
1331 // Methods for BugReport and subclasses.
1332 //===----------------------------------------------------------------------===//
1333 
1334 void BugReport::NodeResolver::anchor() {}
1335 
1336 void BugReport::addVisitor(BugReporterVisitor* visitor) {
1337   if (!visitor)
1338     return;
1339 
1340   llvm::FoldingSetNodeID ID;
1341   visitor->Profile(ID);
1342   void *InsertPos;
1343 
1344   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
1345     delete visitor;
1346     return;
1347   }
1348 
1349   CallbacksSet.InsertNode(visitor, InsertPos);
1350   Callbacks.push_back(visitor);
1351   ++ConfigurationChangeToken;
1352 }
1353 
1354 BugReport::~BugReport() {
1355   for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
1356     delete *I;
1357   }
1358   while (!interestingSymbols.empty()) {
1359     popInterestingSymbolsAndRegions();
1360   }
1361 }
1362 
1363 const Decl *BugReport::getDeclWithIssue() const {
1364   if (DeclWithIssue)
1365     return DeclWithIssue;
1366 
1367   const ExplodedNode *N = getErrorNode();
1368   if (!N)
1369     return 0;
1370 
1371   const LocationContext *LC = N->getLocationContext();
1372   return LC->getCurrentStackFrame()->getDecl();
1373 }
1374 
1375 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
1376   hash.AddPointer(&BT);
1377   hash.AddString(Description);
1378   if (UniqueingLocation.isValid()) {
1379     UniqueingLocation.Profile(hash);
1380   } else if (Location.isValid()) {
1381     Location.Profile(hash);
1382   } else {
1383     assert(ErrorNode);
1384     hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
1385   }
1386 
1387   for (SmallVectorImpl<SourceRange>::const_iterator I =
1388       Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1389     const SourceRange range = *I;
1390     if (!range.isValid())
1391       continue;
1392     hash.AddInteger(range.getBegin().getRawEncoding());
1393     hash.AddInteger(range.getEnd().getRawEncoding());
1394   }
1395 }
1396 
1397 void BugReport::markInteresting(SymbolRef sym) {
1398   if (!sym)
1399     return;
1400 
1401   // If the symbol wasn't already in our set, note a configuration change.
1402   if (getInterestingSymbols().insert(sym).second)
1403     ++ConfigurationChangeToken;
1404 
1405   if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
1406     getInterestingRegions().insert(meta->getRegion());
1407 }
1408 
1409 void BugReport::markInteresting(const MemRegion *R) {
1410   if (!R)
1411     return;
1412 
1413   // If the base region wasn't already in our set, note a configuration change.
1414   R = R->getBaseRegion();
1415   if (getInterestingRegions().insert(R).second)
1416     ++ConfigurationChangeToken;
1417 
1418   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1419     getInterestingSymbols().insert(SR->getSymbol());
1420 }
1421 
1422 void BugReport::markInteresting(SVal V) {
1423   markInteresting(V.getAsRegion());
1424   markInteresting(V.getAsSymbol());
1425 }
1426 
1427 void BugReport::markInteresting(const LocationContext *LC) {
1428   if (!LC)
1429     return;
1430   InterestingLocationContexts.insert(LC);
1431 }
1432 
1433 bool BugReport::isInteresting(SVal V) {
1434   return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
1435 }
1436 
1437 bool BugReport::isInteresting(SymbolRef sym) {
1438   if (!sym)
1439     return false;
1440   // We don't currently consider metadata symbols to be interesting
1441   // even if we know their region is interesting. Is that correct behavior?
1442   return getInterestingSymbols().count(sym);
1443 }
1444 
1445 bool BugReport::isInteresting(const MemRegion *R) {
1446   if (!R)
1447     return false;
1448   R = R->getBaseRegion();
1449   bool b = getInterestingRegions().count(R);
1450   if (b)
1451     return true;
1452   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1453     return getInterestingSymbols().count(SR->getSymbol());
1454   return false;
1455 }
1456 
1457 bool BugReport::isInteresting(const LocationContext *LC) {
1458   if (!LC)
1459     return false;
1460   return InterestingLocationContexts.count(LC);
1461 }
1462 
1463 void BugReport::lazyInitializeInterestingSets() {
1464   if (interestingSymbols.empty()) {
1465     interestingSymbols.push_back(new Symbols());
1466     interestingRegions.push_back(new Regions());
1467   }
1468 }
1469 
1470 BugReport::Symbols &BugReport::getInterestingSymbols() {
1471   lazyInitializeInterestingSets();
1472   return *interestingSymbols.back();
1473 }
1474 
1475 BugReport::Regions &BugReport::getInterestingRegions() {
1476   lazyInitializeInterestingSets();
1477   return *interestingRegions.back();
1478 }
1479 
1480 void BugReport::pushInterestingSymbolsAndRegions() {
1481   interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
1482   interestingRegions.push_back(new Regions(getInterestingRegions()));
1483 }
1484 
1485 void BugReport::popInterestingSymbolsAndRegions() {
1486   delete interestingSymbols.back();
1487   interestingSymbols.pop_back();
1488   delete interestingRegions.back();
1489   interestingRegions.pop_back();
1490 }
1491 
1492 const Stmt *BugReport::getStmt() const {
1493   if (!ErrorNode)
1494     return 0;
1495 
1496   ProgramPoint ProgP = ErrorNode->getLocation();
1497   const Stmt *S = NULL;
1498 
1499   if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
1500     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1501     if (BE->getBlock() == &Exit)
1502       S = GetPreviousStmt(ErrorNode);
1503   }
1504   if (!S)
1505     S = GetStmt(ProgP);
1506 
1507   return S;
1508 }
1509 
1510 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
1511 BugReport::getRanges() {
1512     // If no custom ranges, add the range of the statement corresponding to
1513     // the error node.
1514     if (Ranges.empty()) {
1515       if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
1516         addRange(E->getSourceRange());
1517       else
1518         return std::make_pair(ranges_iterator(), ranges_iterator());
1519     }
1520 
1521     // User-specified absence of range info.
1522     if (Ranges.size() == 1 && !Ranges.begin()->isValid())
1523       return std::make_pair(ranges_iterator(), ranges_iterator());
1524 
1525     return std::make_pair(Ranges.begin(), Ranges.end());
1526 }
1527 
1528 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
1529   if (ErrorNode) {
1530     assert(!Location.isValid() &&
1531      "Either Location or ErrorNode should be specified but not both.");
1532 
1533     if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
1534       const LocationContext *LC = ErrorNode->getLocationContext();
1535 
1536       // For member expressions, return the location of the '.' or '->'.
1537       if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1538         return PathDiagnosticLocation::createMemberLoc(ME, SM);
1539       // For binary operators, return the location of the operator.
1540       if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1541         return PathDiagnosticLocation::createOperatorLoc(B, SM);
1542 
1543       return PathDiagnosticLocation::createBegin(S, SM, LC);
1544     }
1545   } else {
1546     assert(Location.isValid());
1547     return Location;
1548   }
1549 
1550   return PathDiagnosticLocation();
1551 }
1552 
1553 //===----------------------------------------------------------------------===//
1554 // Methods for BugReporter and subclasses.
1555 //===----------------------------------------------------------------------===//
1556 
1557 BugReportEquivClass::~BugReportEquivClass() { }
1558 GRBugReporter::~GRBugReporter() { }
1559 BugReporterData::~BugReporterData() {}
1560 
1561 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1562 
1563 ProgramStateManager&
1564 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1565 
1566 BugReporter::~BugReporter() {
1567   FlushReports();
1568 
1569   // Free the bug reports we are tracking.
1570   typedef std::vector<BugReportEquivClass *> ContTy;
1571   for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
1572        I != E; ++I) {
1573     delete *I;
1574   }
1575 }
1576 
1577 void BugReporter::FlushReports() {
1578   if (BugTypes.isEmpty())
1579     return;
1580 
1581   // First flush the warnings for each BugType.  This may end up creating new
1582   // warnings and new BugTypes.
1583   // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1584   // Turn NSErrorChecker into a proper checker and remove this.
1585   SmallVector<const BugType*, 16> bugTypes;
1586   for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1587     bugTypes.push_back(*I);
1588   for (SmallVector<const BugType*, 16>::iterator
1589          I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1590     const_cast<BugType*>(*I)->FlushReports(*this);
1591 
1592   // We need to flush reports in deterministic order to ensure the order
1593   // of the reports is consistent between runs.
1594   typedef std::vector<BugReportEquivClass *> ContVecTy;
1595   for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
1596        EI != EE; ++EI){
1597     BugReportEquivClass& EQ = **EI;
1598     FlushReport(EQ);
1599   }
1600 
1601   // BugReporter owns and deletes only BugTypes created implicitly through
1602   // EmitBasicReport.
1603   // FIXME: There are leaks from checkers that assume that the BugTypes they
1604   // create will be destroyed by the BugReporter.
1605   for (llvm::StringMap<BugType*>::iterator
1606          I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1607     delete I->second;
1608 
1609   // Remove all references to the BugType objects.
1610   BugTypes = F.getEmptySet();
1611 }
1612 
1613 //===----------------------------------------------------------------------===//
1614 // PathDiagnostics generation.
1615 //===----------------------------------------------------------------------===//
1616 
1617 static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1618                  std::pair<ExplodedNode*, unsigned> >
1619 MakeReportGraph(const ExplodedGraph* G,
1620                 SmallVectorImpl<const ExplodedNode*> &nodes) {
1621 
1622   // Create the trimmed graph.  It will contain the shortest paths from the
1623   // error nodes to the root.  In the new graph we should only have one
1624   // error node unless there are two or more error nodes with the same minimum
1625   // path length.
1626   ExplodedGraph* GTrim;
1627   InterExplodedGraphMap* NMap;
1628 
1629   llvm::DenseMap<const void*, const void*> InverseMap;
1630   llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1631                                    &InverseMap);
1632 
1633   // Create owning pointers for GTrim and NMap just to ensure that they are
1634   // released when this function exists.
1635   OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1636   OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1637 
1638   // Find the (first) error node in the trimmed graph.  We just need to consult
1639   // the node map (NMap) which maps from nodes in the original graph to nodes
1640   // in the new graph.
1641 
1642   std::queue<const ExplodedNode*> WS;
1643   typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1644   IndexMapTy IndexMap;
1645 
1646   for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1647     const ExplodedNode *originalNode = nodes[nodeIndex];
1648     if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1649       WS.push(N);
1650       IndexMap[originalNode] = nodeIndex;
1651     }
1652   }
1653 
1654   assert(!WS.empty() && "No error node found in the trimmed graph.");
1655 
1656   // Create a new (third!) graph with a single path.  This is the graph
1657   // that will be returned to the caller.
1658   ExplodedGraph *GNew = new ExplodedGraph();
1659 
1660   // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
1661   // to the root node, and then construct a new graph that contains only
1662   // a single path.
1663   llvm::DenseMap<const void*,unsigned> Visited;
1664 
1665   unsigned cnt = 0;
1666   const ExplodedNode *Root = 0;
1667 
1668   while (!WS.empty()) {
1669     const ExplodedNode *Node = WS.front();
1670     WS.pop();
1671 
1672     if (Visited.find(Node) != Visited.end())
1673       continue;
1674 
1675     Visited[Node] = cnt++;
1676 
1677     if (Node->pred_empty()) {
1678       Root = Node;
1679       break;
1680     }
1681 
1682     for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1683          E=Node->pred_end(); I!=E; ++I)
1684       WS.push(*I);
1685   }
1686 
1687   assert(Root);
1688 
1689   // Now walk from the root down the BFS path, always taking the successor
1690   // with the lowest number.
1691   ExplodedNode *Last = 0, *First = 0;
1692   NodeBackMap *BM = new NodeBackMap();
1693   unsigned NodeIndex = 0;
1694 
1695   for ( const ExplodedNode *N = Root ;;) {
1696     // Lookup the number associated with the current node.
1697     llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1698     assert(I != Visited.end());
1699 
1700     // Create the equivalent node in the new graph with the same state
1701     // and location.
1702     ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
1703 
1704     // Store the mapping to the original node.
1705     llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1706     assert(IMitr != InverseMap.end() && "No mapping to original node.");
1707     (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1708 
1709     // Link up the new node with the previous node.
1710     if (Last)
1711       NewN->addPredecessor(Last, *GNew);
1712 
1713     Last = NewN;
1714 
1715     // Are we at the final node?
1716     IndexMapTy::iterator IMI =
1717       IndexMap.find((const ExplodedNode*)(IMitr->second));
1718     if (IMI != IndexMap.end()) {
1719       First = NewN;
1720       NodeIndex = IMI->second;
1721       break;
1722     }
1723 
1724     // Find the next successor node.  We choose the node that is marked
1725     // with the lowest DFS number.
1726     ExplodedNode::const_succ_iterator SI = N->succ_begin();
1727     ExplodedNode::const_succ_iterator SE = N->succ_end();
1728     N = 0;
1729 
1730     for (unsigned MinVal = 0; SI != SE; ++SI) {
1731 
1732       I = Visited.find(*SI);
1733 
1734       if (I == Visited.end())
1735         continue;
1736 
1737       if (!N || I->second < MinVal) {
1738         N = *SI;
1739         MinVal = I->second;
1740       }
1741     }
1742 
1743     assert(N);
1744   }
1745 
1746   assert(First);
1747 
1748   return std::make_pair(std::make_pair(GNew, BM),
1749                         std::make_pair(First, NodeIndex));
1750 }
1751 
1752 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1753 ///  and collapses PathDiagosticPieces that are expanded by macros.
1754 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
1755   typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
1756                                 SourceLocation> > MacroStackTy;
1757 
1758   typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
1759           PiecesTy;
1760 
1761   MacroStackTy MacroStack;
1762   PiecesTy Pieces;
1763 
1764   for (PathPieces::const_iterator I = path.begin(), E = path.end();
1765        I!=E; ++I) {
1766 
1767     PathDiagnosticPiece *piece = I->getPtr();
1768 
1769     // Recursively compact calls.
1770     if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
1771       CompactPathDiagnostic(call->path, SM);
1772     }
1773 
1774     // Get the location of the PathDiagnosticPiece.
1775     const FullSourceLoc Loc = piece->getLocation().asLocation();
1776 
1777     // Determine the instantiation location, which is the location we group
1778     // related PathDiagnosticPieces.
1779     SourceLocation InstantiationLoc = Loc.isMacroID() ?
1780                                       SM.getExpansionLoc(Loc) :
1781                                       SourceLocation();
1782 
1783     if (Loc.isFileID()) {
1784       MacroStack.clear();
1785       Pieces.push_back(piece);
1786       continue;
1787     }
1788 
1789     assert(Loc.isMacroID());
1790 
1791     // Is the PathDiagnosticPiece within the same macro group?
1792     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1793       MacroStack.back().first->subPieces.push_back(piece);
1794       continue;
1795     }
1796 
1797     // We aren't in the same group.  Are we descending into a new macro
1798     // or are part of an old one?
1799     IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
1800 
1801     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1802                                           SM.getExpansionLoc(Loc) :
1803                                           SourceLocation();
1804 
1805     // Walk the entire macro stack.
1806     while (!MacroStack.empty()) {
1807       if (InstantiationLoc == MacroStack.back().second) {
1808         MacroGroup = MacroStack.back().first;
1809         break;
1810       }
1811 
1812       if (ParentInstantiationLoc == MacroStack.back().second) {
1813         MacroGroup = MacroStack.back().first;
1814         break;
1815       }
1816 
1817       MacroStack.pop_back();
1818     }
1819 
1820     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1821       // Create a new macro group and add it to the stack.
1822       PathDiagnosticMacroPiece *NewGroup =
1823         new PathDiagnosticMacroPiece(
1824           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
1825 
1826       if (MacroGroup)
1827         MacroGroup->subPieces.push_back(NewGroup);
1828       else {
1829         assert(InstantiationLoc.isFileID());
1830         Pieces.push_back(NewGroup);
1831       }
1832 
1833       MacroGroup = NewGroup;
1834       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1835     }
1836 
1837     // Finally, add the PathDiagnosticPiece to the group.
1838     MacroGroup->subPieces.push_back(piece);
1839   }
1840 
1841   // Now take the pieces and construct a new PathDiagnostic.
1842   path.clear();
1843 
1844   for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
1845     path.push_back(*I);
1846 }
1847 
1848 void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
1849                                            PathDiagnosticConsumer &PC,
1850                                            ArrayRef<BugReport *> &bugReports) {
1851 
1852   assert(!bugReports.empty());
1853   SmallVector<const ExplodedNode *, 10> errorNodes;
1854   for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
1855                                       E = bugReports.end(); I != E; ++I) {
1856       errorNodes.push_back((*I)->getErrorNode());
1857   }
1858 
1859   // Construct a new graph that contains only a single path from the error
1860   // node to a root.
1861   const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1862   std::pair<ExplodedNode*, unsigned> >&
1863     GPair = MakeReportGraph(&getGraph(), errorNodes);
1864 
1865   // Find the BugReport with the original location.
1866   assert(GPair.second.second < bugReports.size());
1867   BugReport *R = bugReports[GPair.second.second];
1868   assert(R && "No original report found for sliced graph.");
1869 
1870   OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
1871   OwningPtr<NodeBackMap> BackMap(GPair.first.second);
1872   const ExplodedNode *N = GPair.second.first;
1873 
1874   // Start building the path diagnostic...
1875   PathDiagnosticBuilder PDB(*this, R, BackMap.get(), &PC);
1876 
1877   // Register additional node visitors.
1878   R->addVisitor(new NilReceiverBRVisitor());
1879   R->addVisitor(new ConditionBRVisitor());
1880 
1881   BugReport::VisitorList visitors;
1882   unsigned originalReportConfigToken, finalReportConfigToken;
1883 
1884   // While generating diagnostics, it's possible the visitors will decide
1885   // new symbols and regions are interesting, or add other visitors based on
1886   // the information they find. If they do, we need to regenerate the path
1887   // based on our new report configuration.
1888   do {
1889     // Get a clean copy of all the visitors.
1890     for (BugReport::visitor_iterator I = R->visitor_begin(),
1891                                      E = R->visitor_end(); I != E; ++I)
1892        visitors.push_back((*I)->clone());
1893 
1894     // Clear out the active path from any previous work.
1895     PD.resetPath();
1896     originalReportConfigToken = R->getConfigurationChangeToken();
1897 
1898     // Generate the very last diagnostic piece - the piece is visible before
1899     // the trace is expanded.
1900     PathDiagnosticPiece *LastPiece = 0;
1901     for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
1902          I != E; ++I) {
1903       if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
1904         assert (!LastPiece &&
1905                 "There can only be one final piece in a diagnostic.");
1906         LastPiece = Piece;
1907       }
1908     }
1909     if (!LastPiece)
1910       LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
1911     if (LastPiece)
1912       PD.setEndOfPath(LastPiece);
1913     else
1914       return;
1915 
1916     switch (PDB.getGenerationScheme()) {
1917     case PathDiagnosticConsumer::Extensive:
1918       GenerateExtensivePathDiagnostic(PD, PDB, N, visitors);
1919       break;
1920     case PathDiagnosticConsumer::Minimal:
1921       GenerateMinimalPathDiagnostic(PD, PDB, N, visitors);
1922       break;
1923     case PathDiagnosticConsumer::None:
1924       llvm_unreachable("PathDiagnosticConsumer::None should never appear here");
1925     }
1926 
1927     // Clean up the visitors we used.
1928     llvm::DeleteContainerPointers(visitors);
1929 
1930     // Did anything change while generating this path?
1931     finalReportConfigToken = R->getConfigurationChangeToken();
1932   } while(finalReportConfigToken != originalReportConfigToken);
1933 
1934   // Finally, prune the diagnostic path of uninteresting stuff.
1935   if (R->shouldPrunePath()) {
1936     bool hasSomethingInteresting = RemoveUneededCalls(PD.getMutablePieces(), R);
1937     assert(hasSomethingInteresting);
1938     (void) hasSomethingInteresting;
1939   }
1940 }
1941 
1942 void BugReporter::Register(BugType *BT) {
1943   BugTypes = F.add(BugTypes, BT);
1944 }
1945 
1946 void BugReporter::EmitReport(BugReport* R) {
1947   // Compute the bug report's hash to determine its equivalence class.
1948   llvm::FoldingSetNodeID ID;
1949   R->Profile(ID);
1950 
1951   // Lookup the equivance class.  If there isn't one, create it.
1952   BugType& BT = R->getBugType();
1953   Register(&BT);
1954   void *InsertPos;
1955   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
1956 
1957   if (!EQ) {
1958     EQ = new BugReportEquivClass(R);
1959     EQClasses.InsertNode(EQ, InsertPos);
1960     EQClassesVector.push_back(EQ);
1961   }
1962   else
1963     EQ->AddReport(R);
1964 }
1965 
1966 
1967 //===----------------------------------------------------------------------===//
1968 // Emitting reports in equivalence classes.
1969 //===----------------------------------------------------------------------===//
1970 
1971 namespace {
1972 struct FRIEC_WLItem {
1973   const ExplodedNode *N;
1974   ExplodedNode::const_succ_iterator I, E;
1975 
1976   FRIEC_WLItem(const ExplodedNode *n)
1977   : N(n), I(N->succ_begin()), E(N->succ_end()) {}
1978 };
1979 }
1980 
1981 static BugReport *
1982 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
1983                              SmallVectorImpl<BugReport*> &bugReports) {
1984 
1985   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
1986   assert(I != E);
1987   BugType& BT = I->getBugType();
1988 
1989   // If we don't need to suppress any of the nodes because they are
1990   // post-dominated by a sink, simply add all the nodes in the equivalence class
1991   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
1992   if (!BT.isSuppressOnSink()) {
1993     BugReport *R = I;
1994     for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
1995       const ExplodedNode *N = I->getErrorNode();
1996       if (N) {
1997         R = I;
1998         bugReports.push_back(R);
1999       }
2000     }
2001     return R;
2002   }
2003 
2004   // For bug reports that should be suppressed when all paths are post-dominated
2005   // by a sink node, iterate through the reports in the equivalence class
2006   // until we find one that isn't post-dominated (if one exists).  We use a
2007   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2008   // this as a recursive function, but we don't want to risk blowing out the
2009   // stack for very long paths.
2010   BugReport *exampleReport = 0;
2011 
2012   for (; I != E; ++I) {
2013     const ExplodedNode *errorNode = I->getErrorNode();
2014 
2015     if (!errorNode)
2016       continue;
2017     if (errorNode->isSink()) {
2018       llvm_unreachable(
2019            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2020     }
2021     // No successors?  By definition this nodes isn't post-dominated by a sink.
2022     if (errorNode->succ_empty()) {
2023       bugReports.push_back(I);
2024       if (!exampleReport)
2025         exampleReport = I;
2026       continue;
2027     }
2028 
2029     // At this point we know that 'N' is not a sink and it has at least one
2030     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
2031     typedef FRIEC_WLItem WLItem;
2032     typedef SmallVector<WLItem, 10> DFSWorkList;
2033     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2034 
2035     DFSWorkList WL;
2036     WL.push_back(errorNode);
2037     Visited[errorNode] = 1;
2038 
2039     while (!WL.empty()) {
2040       WLItem &WI = WL.back();
2041       assert(!WI.N->succ_empty());
2042 
2043       for (; WI.I != WI.E; ++WI.I) {
2044         const ExplodedNode *Succ = *WI.I;
2045         // End-of-path node?
2046         if (Succ->succ_empty()) {
2047           // If we found an end-of-path node that is not a sink.
2048           if (!Succ->isSink()) {
2049             bugReports.push_back(I);
2050             if (!exampleReport)
2051               exampleReport = I;
2052             WL.clear();
2053             break;
2054           }
2055           // Found a sink?  Continue on to the next successor.
2056           continue;
2057         }
2058         // Mark the successor as visited.  If it hasn't been explored,
2059         // enqueue it to the DFS worklist.
2060         unsigned &mark = Visited[Succ];
2061         if (!mark) {
2062           mark = 1;
2063           WL.push_back(Succ);
2064           break;
2065         }
2066       }
2067 
2068       // The worklist may have been cleared at this point.  First
2069       // check if it is empty before checking the last item.
2070       if (!WL.empty() && &WL.back() == &WI)
2071         WL.pop_back();
2072     }
2073   }
2074 
2075   // ExampleReport will be NULL if all the nodes in the equivalence class
2076   // were post-dominated by sinks.
2077   return exampleReport;
2078 }
2079 
2080 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2081   SmallVector<BugReport*, 10> bugReports;
2082   BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
2083   if (exampleReport) {
2084     const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
2085     for (PathDiagnosticConsumers::const_iterator I=C.begin(),
2086                                                  E=C.end(); I != E; ++I) {
2087       FlushReport(exampleReport, **I, bugReports);
2088     }
2089   }
2090 }
2091 
2092 void BugReporter::FlushReport(BugReport *exampleReport,
2093                               PathDiagnosticConsumer &PD,
2094                               ArrayRef<BugReport*> bugReports) {
2095 
2096   // FIXME: Make sure we use the 'R' for the path that was actually used.
2097   // Probably doesn't make a difference in practice.
2098   BugType& BT = exampleReport->getBugType();
2099 
2100   OwningPtr<PathDiagnostic>
2101     D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
2102                          exampleReport->getBugType().getName(),
2103                          exampleReport->getDescription(),
2104                          exampleReport->getShortDescription(/*Fallback=*/false),
2105                          BT.getCategory()));
2106 
2107   // Generate the full path diagnostic, using the generation scheme
2108   // specified by the PathDiagnosticConsumer.
2109   if (PD.getGenerationScheme() != PathDiagnosticConsumer::None) {
2110     if (!bugReports.empty())
2111       GeneratePathDiagnostic(*D.get(), PD, bugReports);
2112   }
2113 
2114   // If the path is empty, generate a single step path with the location
2115   // of the issue.
2116   if (D->path.empty()) {
2117     PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
2118     PathDiagnosticPiece *piece =
2119       new PathDiagnosticEventPiece(L, exampleReport->getDescription());
2120     BugReport::ranges_iterator Beg, End;
2121     llvm::tie(Beg, End) = exampleReport->getRanges();
2122     for ( ; Beg != End; ++Beg)
2123       piece->addRange(*Beg);
2124     D->setEndOfPath(piece);
2125   }
2126 
2127   // Get the meta data.
2128   const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
2129   for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
2130                                                 e = Meta.end(); i != e; ++i) {
2131     D->addMeta(*i);
2132   }
2133 
2134   PD.HandlePathDiagnostic(D.take());
2135 }
2136 
2137 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
2138                                   StringRef name,
2139                                   StringRef category,
2140                                   StringRef str, PathDiagnosticLocation Loc,
2141                                   SourceRange* RBeg, unsigned NumRanges) {
2142 
2143   // 'BT' is owned by BugReporter.
2144   BugType *BT = getBugTypeForName(name, category);
2145   BugReport *R = new BugReport(*BT, str, Loc);
2146   R->setDeclWithIssue(DeclWithIssue);
2147   for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
2148   EmitReport(R);
2149 }
2150 
2151 BugType *BugReporter::getBugTypeForName(StringRef name,
2152                                         StringRef category) {
2153   SmallString<136> fullDesc;
2154   llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
2155   llvm::StringMapEntry<BugType *> &
2156       entry = StrBugTypes.GetOrCreateValue(fullDesc);
2157   BugType *BT = entry.getValue();
2158   if (!BT) {
2159     BT = new BugType(name, category);
2160     entry.setValue(BT);
2161   }
2162   return BT;
2163 }
2164