1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines BugReporter, a utility class for generating
11 //  PathDiagnostics.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/Analysis/CFG.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Analysis/ProgramPoint.h"
26 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/OwningPtr.h"
32 #include "llvm/ADT/IntrusiveRefCntPtr.h"
33 #include <queue>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 BugReporterVisitor::~BugReporterVisitor() {}
39 
40 void BugReporterContext::anchor() {}
41 
42 //===----------------------------------------------------------------------===//
43 // Helper routines for walking the ExplodedGraph and fetching statements.
44 //===----------------------------------------------------------------------===//
45 
46 static inline const Stmt *GetStmt(const ProgramPoint &P) {
47   if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
48     return SP->getStmt();
49   else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
50     return BE->getSrc()->getTerminator();
51   else if (const CallEnter *CE = dyn_cast<CallEnter>(&P))
52     return CE->getCallExpr();
53   else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&P))
54     return CEE->getCalleeContext()->getCallSite();
55 
56   return 0;
57 }
58 
59 static inline const ExplodedNode*
60 GetPredecessorNode(const ExplodedNode *N) {
61   return N->pred_empty() ? NULL : *(N->pred_begin());
62 }
63 
64 static inline const ExplodedNode*
65 GetSuccessorNode(const ExplodedNode *N) {
66   return N->succ_empty() ? NULL : *(N->succ_begin());
67 }
68 
69 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
70   for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
71     if (const Stmt *S = GetStmt(N->getLocation()))
72       return S;
73 
74   return 0;
75 }
76 
77 static const Stmt *GetNextStmt(const ExplodedNode *N) {
78   for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
79     if (const Stmt *S = GetStmt(N->getLocation())) {
80       // Check if the statement is '?' or '&&'/'||'.  These are "merges",
81       // not actual statement points.
82       switch (S->getStmtClass()) {
83         case Stmt::ChooseExprClass:
84         case Stmt::BinaryConditionalOperatorClass: continue;
85         case Stmt::ConditionalOperatorClass: continue;
86         case Stmt::BinaryOperatorClass: {
87           BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
88           if (Op == BO_LAnd || Op == BO_LOr)
89             continue;
90           break;
91         }
92         default:
93           break;
94       }
95       return S;
96     }
97 
98   return 0;
99 }
100 
101 static inline const Stmt*
102 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
103   if (const Stmt *S = GetStmt(N->getLocation()))
104     return S;
105 
106   return GetPreviousStmt(N);
107 }
108 
109 static inline const Stmt*
110 GetCurrentOrNextStmt(const ExplodedNode *N) {
111   if (const Stmt *S = GetStmt(N->getLocation()))
112     return S;
113 
114   return GetNextStmt(N);
115 }
116 
117 //===----------------------------------------------------------------------===//
118 // Diagnostic cleanup.
119 //===----------------------------------------------------------------------===//
120 
121 /// Recursively scan through a path and prune out calls and macros pieces
122 /// that aren't needed.  Return true if afterwards the path contains
123 /// "interesting stuff" which means it should be pruned from the parent path.
124 static bool RemoveUneededCalls(PathPieces &pieces) {
125   bool containsSomethingInteresting = false;
126   const unsigned N = pieces.size();
127 
128   for (unsigned i = 0 ; i < N ; ++i) {
129     // Remove the front piece from the path.  If it is still something we
130     // want to keep once we are done, we will push it back on the end.
131     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
132     pieces.pop_front();
133 
134     switch (piece->getKind()) {
135       case PathDiagnosticPiece::Call: {
136         PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
137         // Recursively clean out the subclass.  Keep this call around if
138         // it contains any informative diagnostics.
139         if (!RemoveUneededCalls(call->path))
140           continue;
141         containsSomethingInteresting = true;
142         break;
143       }
144       case PathDiagnosticPiece::Macro: {
145         PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
146         if (!RemoveUneededCalls(macro->subPieces))
147           continue;
148         containsSomethingInteresting = true;
149         break;
150       }
151       case PathDiagnosticPiece::Event: {
152         PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
153         // We never throw away an event, but we do throw it away wholesale
154         // as part of a path if we throw the entire path away.
155         if (event->isPrunable())
156           continue;
157         containsSomethingInteresting = true;
158         break;
159       }
160       case PathDiagnosticPiece::ControlFlow:
161         break;
162     }
163 
164     pieces.push_back(piece);
165   }
166 
167   return containsSomethingInteresting;
168 }
169 
170 //===----------------------------------------------------------------------===//
171 // PathDiagnosticBuilder and its associated routines and helper objects.
172 //===----------------------------------------------------------------------===//
173 
174 typedef llvm::DenseMap<const ExplodedNode*,
175 const ExplodedNode*> NodeBackMap;
176 
177 namespace {
178 class NodeMapClosure : public BugReport::NodeResolver {
179   NodeBackMap& M;
180 public:
181   NodeMapClosure(NodeBackMap *m) : M(*m) {}
182   ~NodeMapClosure() {}
183 
184   const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
185     NodeBackMap::iterator I = M.find(N);
186     return I == M.end() ? 0 : I->second;
187   }
188 };
189 
190 class PathDiagnosticBuilder : public BugReporterContext {
191   BugReport *R;
192   PathDiagnosticConsumer *PDC;
193   OwningPtr<ParentMap> PM;
194   NodeMapClosure NMC;
195 public:
196   const LocationContext *LC;
197 
198   PathDiagnosticBuilder(GRBugReporter &br,
199                         BugReport *r, NodeBackMap *Backmap,
200                         PathDiagnosticConsumer *pdc)
201     : BugReporterContext(br),
202       R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
203   {}
204 
205   PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
206 
207   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
208                                             const ExplodedNode *N);
209 
210   BugReport *getBugReport() { return R; }
211 
212   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
213 
214   ParentMap& getParentMap() { return LC->getParentMap(); }
215 
216   const Stmt *getParent(const Stmt *S) {
217     return getParentMap().getParent(S);
218   }
219 
220   virtual NodeMapClosure& getNodeResolver() { return NMC; }
221 
222   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
223 
224   PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
225     return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
226   }
227 
228   bool supportsLogicalOpControlFlow() const {
229     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
230   }
231 };
232 } // end anonymous namespace
233 
234 PathDiagnosticLocation
235 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
236   if (const Stmt *S = GetNextStmt(N))
237     return PathDiagnosticLocation(S, getSourceManager(), LC);
238 
239   return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
240                                                getSourceManager());
241 }
242 
243 PathDiagnosticLocation
244 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
245                                           const ExplodedNode *N) {
246 
247   // Slow, but probably doesn't matter.
248   if (os.str().empty())
249     os << ' ';
250 
251   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
252 
253   if (Loc.asStmt())
254     os << "Execution continues on line "
255        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
256        << '.';
257   else {
258     os << "Execution jumps to the end of the ";
259     const Decl *D = N->getLocationContext()->getDecl();
260     if (isa<ObjCMethodDecl>(D))
261       os << "method";
262     else if (isa<FunctionDecl>(D))
263       os << "function";
264     else {
265       assert(isa<BlockDecl>(D));
266       os << "anonymous block";
267     }
268     os << '.';
269   }
270 
271   return Loc;
272 }
273 
274 static bool IsNested(const Stmt *S, ParentMap &PM) {
275   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
276     return true;
277 
278   const Stmt *Parent = PM.getParentIgnoreParens(S);
279 
280   if (Parent)
281     switch (Parent->getStmtClass()) {
282       case Stmt::ForStmtClass:
283       case Stmt::DoStmtClass:
284       case Stmt::WhileStmtClass:
285         return true;
286       default:
287         break;
288     }
289 
290   return false;
291 }
292 
293 PathDiagnosticLocation
294 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
295   assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
296   ParentMap &P = getParentMap();
297   SourceManager &SMgr = getSourceManager();
298 
299   while (IsNested(S, P)) {
300     const Stmt *Parent = P.getParentIgnoreParens(S);
301 
302     if (!Parent)
303       break;
304 
305     switch (Parent->getStmtClass()) {
306       case Stmt::BinaryOperatorClass: {
307         const BinaryOperator *B = cast<BinaryOperator>(Parent);
308         if (B->isLogicalOp())
309           return PathDiagnosticLocation(S, SMgr, LC);
310         break;
311       }
312       case Stmt::CompoundStmtClass:
313       case Stmt::StmtExprClass:
314         return PathDiagnosticLocation(S, SMgr, LC);
315       case Stmt::ChooseExprClass:
316         // Similar to '?' if we are referring to condition, just have the edge
317         // point to the entire choose expression.
318         if (cast<ChooseExpr>(Parent)->getCond() == S)
319           return PathDiagnosticLocation(Parent, SMgr, LC);
320         else
321           return PathDiagnosticLocation(S, SMgr, LC);
322       case Stmt::BinaryConditionalOperatorClass:
323       case Stmt::ConditionalOperatorClass:
324         // For '?', if we are referring to condition, just have the edge point
325         // to the entire '?' expression.
326         if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
327           return PathDiagnosticLocation(Parent, SMgr, LC);
328         else
329           return PathDiagnosticLocation(S, SMgr, LC);
330       case Stmt::DoStmtClass:
331           return PathDiagnosticLocation(S, SMgr, LC);
332       case Stmt::ForStmtClass:
333         if (cast<ForStmt>(Parent)->getBody() == S)
334           return PathDiagnosticLocation(S, SMgr, LC);
335         break;
336       case Stmt::IfStmtClass:
337         if (cast<IfStmt>(Parent)->getCond() != S)
338           return PathDiagnosticLocation(S, SMgr, LC);
339         break;
340       case Stmt::ObjCForCollectionStmtClass:
341         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
342           return PathDiagnosticLocation(S, SMgr, LC);
343         break;
344       case Stmt::WhileStmtClass:
345         if (cast<WhileStmt>(Parent)->getCond() != S)
346           return PathDiagnosticLocation(S, SMgr, LC);
347         break;
348       default:
349         break;
350     }
351 
352     S = Parent;
353   }
354 
355   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
356 
357   // Special case: DeclStmts can appear in for statement declarations, in which
358   //  case the ForStmt is the context.
359   if (isa<DeclStmt>(S)) {
360     if (const Stmt *Parent = P.getParent(S)) {
361       switch (Parent->getStmtClass()) {
362         case Stmt::ForStmtClass:
363         case Stmt::ObjCForCollectionStmtClass:
364           return PathDiagnosticLocation(Parent, SMgr, LC);
365         default:
366           break;
367       }
368     }
369   }
370   else if (isa<BinaryOperator>(S)) {
371     // Special case: the binary operator represents the initialization
372     // code in a for statement (this can happen when the variable being
373     // initialized is an old variable.
374     if (const ForStmt *FS =
375           dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
376       if (FS->getInit() == S)
377         return PathDiagnosticLocation(FS, SMgr, LC);
378     }
379   }
380 
381   return PathDiagnosticLocation(S, SMgr, LC);
382 }
383 
384 //===----------------------------------------------------------------------===//
385 // "Minimal" path diagnostic generation algorithm.
386 //===----------------------------------------------------------------------===//
387 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
388 typedef SmallVector<StackDiagPair, 6> StackDiagVector;
389 
390 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
391                                          StackDiagVector &CallStack) {
392   // If the piece contains a special message, add it to all the call
393   // pieces on the active stack.
394   if (PathDiagnosticEventPiece *ep =
395         dyn_cast<PathDiagnosticEventPiece>(P)) {
396 
397     if (ep->hasCallStackHint())
398       for (StackDiagVector::iterator I = CallStack.begin(),
399                                      E = CallStack.end(); I != E; ++I) {
400         PathDiagnosticCallPiece *CP = I->first;
401         const ExplodedNode *N = I->second;
402         std::string stackMsg = ep->getCallStackMessage(N);
403 
404         // The last message on the path to final bug is the most important
405         // one. Since we traverse the path backwards, do not add the message
406         // if one has been previously added.
407         if  (!CP->hasCallStackMessage())
408           CP->setCallStackMessage(stackMsg);
409       }
410   }
411 }
412 
413 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
414 
415 static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
416                                           PathDiagnosticBuilder &PDB,
417                                           const ExplodedNode *N,
418                                       ArrayRef<BugReporterVisitor *> visitors) {
419 
420   SourceManager& SMgr = PDB.getSourceManager();
421   const LocationContext *LC = PDB.LC;
422   const ExplodedNode *NextNode = N->pred_empty()
423                                         ? NULL : *(N->pred_begin());
424 
425   StackDiagVector CallStack;
426 
427   while (NextNode) {
428     N = NextNode;
429     PDB.LC = N->getLocationContext();
430     NextNode = GetPredecessorNode(N);
431 
432     ProgramPoint P = N->getLocation();
433 
434     if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
435       PathDiagnosticCallPiece *C =
436         PathDiagnosticCallPiece::construct(N, *CE, SMgr);
437       PD.getActivePath().push_front(C);
438       PD.pushActivePath(&C->path);
439       CallStack.push_back(StackDiagPair(C, N));
440       continue;
441     }
442 
443     if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
444       PD.popActivePath();
445       // The current active path should never be empty.  Either we
446       // just added a bunch of stuff to the top-level path, or
447       // we have a previous CallExitEnd.  If the front of the active
448       // path is not a PathDiagnosticCallPiece, it means that the
449       // path terminated within a function call.  We must then take the
450       // current contents of the active path and place it within
451       // a new PathDiagnosticCallPiece.
452       assert(!PD.getActivePath().empty());
453       PathDiagnosticCallPiece *C =
454         dyn_cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
455       if (!C) {
456         const Decl *Caller = CE->getLocationContext()->getDecl();
457         C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
458       }
459       C->setCallee(*CE, SMgr);
460       if (!CallStack.empty()) {
461         assert(CallStack.back().first == C);
462         CallStack.pop_back();
463       }
464       continue;
465     }
466 
467     if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
468       const CFGBlock *Src = BE->getSrc();
469       const CFGBlock *Dst = BE->getDst();
470       const Stmt *T = Src->getTerminator();
471 
472       if (!T)
473         continue;
474 
475       PathDiagnosticLocation Start =
476         PathDiagnosticLocation::createBegin(T, SMgr,
477                                                 N->getLocationContext());
478 
479       switch (T->getStmtClass()) {
480         default:
481           break;
482 
483         case Stmt::GotoStmtClass:
484         case Stmt::IndirectGotoStmtClass: {
485           const Stmt *S = GetNextStmt(N);
486 
487           if (!S)
488             continue;
489 
490           std::string sbuf;
491           llvm::raw_string_ostream os(sbuf);
492           const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
493 
494           os << "Control jumps to line "
495           << End.asLocation().getExpansionLineNumber();
496           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
497                                                                 os.str()));
498           break;
499         }
500 
501         case Stmt::SwitchStmtClass: {
502           // Figure out what case arm we took.
503           std::string sbuf;
504           llvm::raw_string_ostream os(sbuf);
505 
506           if (const Stmt *S = Dst->getLabel()) {
507             PathDiagnosticLocation End(S, SMgr, LC);
508 
509             switch (S->getStmtClass()) {
510               default:
511                 os << "No cases match in the switch statement. "
512                 "Control jumps to line "
513                 << End.asLocation().getExpansionLineNumber();
514                 break;
515               case Stmt::DefaultStmtClass:
516                 os << "Control jumps to the 'default' case at line "
517                 << End.asLocation().getExpansionLineNumber();
518                 break;
519 
520               case Stmt::CaseStmtClass: {
521                 os << "Control jumps to 'case ";
522                 const CaseStmt *Case = cast<CaseStmt>(S);
523                 const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
524 
525                 // Determine if it is an enum.
526                 bool GetRawInt = true;
527 
528                 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
529                   // FIXME: Maybe this should be an assertion.  Are there cases
530                   // were it is not an EnumConstantDecl?
531                   const EnumConstantDecl *D =
532                     dyn_cast<EnumConstantDecl>(DR->getDecl());
533 
534                   if (D) {
535                     GetRawInt = false;
536                     os << *D;
537                   }
538                 }
539 
540                 if (GetRawInt)
541                   os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
542 
543                 os << ":'  at line "
544                 << End.asLocation().getExpansionLineNumber();
545                 break;
546               }
547             }
548             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
549                                                              os.str()));
550           }
551           else {
552             os << "'Default' branch taken. ";
553             const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
554             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
555                                                              os.str()));
556           }
557 
558           break;
559         }
560 
561         case Stmt::BreakStmtClass:
562         case Stmt::ContinueStmtClass: {
563           std::string sbuf;
564           llvm::raw_string_ostream os(sbuf);
565           PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
566           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
567                                                            os.str()));
568           break;
569         }
570 
571           // Determine control-flow for ternary '?'.
572         case Stmt::BinaryConditionalOperatorClass:
573         case Stmt::ConditionalOperatorClass: {
574           std::string sbuf;
575           llvm::raw_string_ostream os(sbuf);
576           os << "'?' condition is ";
577 
578           if (*(Src->succ_begin()+1) == Dst)
579             os << "false";
580           else
581             os << "true";
582 
583           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
584 
585           if (const Stmt *S = End.asStmt())
586             End = PDB.getEnclosingStmtLocation(S);
587 
588           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
589                                                            os.str()));
590           break;
591         }
592 
593           // Determine control-flow for short-circuited '&&' and '||'.
594         case Stmt::BinaryOperatorClass: {
595           if (!PDB.supportsLogicalOpControlFlow())
596             break;
597 
598           const BinaryOperator *B = cast<BinaryOperator>(T);
599           std::string sbuf;
600           llvm::raw_string_ostream os(sbuf);
601           os << "Left side of '";
602 
603           if (B->getOpcode() == BO_LAnd) {
604             os << "&&" << "' is ";
605 
606             if (*(Src->succ_begin()+1) == Dst) {
607               os << "false";
608               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
609               PathDiagnosticLocation Start =
610                 PathDiagnosticLocation::createOperatorLoc(B, SMgr);
611               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
612                                                                os.str()));
613             }
614             else {
615               os << "true";
616               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
617               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
618               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
619                                                                os.str()));
620             }
621           }
622           else {
623             assert(B->getOpcode() == BO_LOr);
624             os << "||" << "' is ";
625 
626             if (*(Src->succ_begin()+1) == Dst) {
627               os << "false";
628               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
629               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
630               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
631                                                                os.str()));
632             }
633             else {
634               os << "true";
635               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
636               PathDiagnosticLocation Start =
637                 PathDiagnosticLocation::createOperatorLoc(B, SMgr);
638               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
639                                                                os.str()));
640             }
641           }
642 
643           break;
644         }
645 
646         case Stmt::DoStmtClass:  {
647           if (*(Src->succ_begin()) == Dst) {
648             std::string sbuf;
649             llvm::raw_string_ostream os(sbuf);
650 
651             os << "Loop condition is true. ";
652             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
653 
654             if (const Stmt *S = End.asStmt())
655               End = PDB.getEnclosingStmtLocation(S);
656 
657             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
658                                                              os.str()));
659           }
660           else {
661             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
662 
663             if (const Stmt *S = End.asStmt())
664               End = PDB.getEnclosingStmtLocation(S);
665 
666             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
667                               "Loop condition is false.  Exiting loop"));
668           }
669 
670           break;
671         }
672 
673         case Stmt::WhileStmtClass:
674         case Stmt::ForStmtClass: {
675           if (*(Src->succ_begin()+1) == Dst) {
676             std::string sbuf;
677             llvm::raw_string_ostream os(sbuf);
678 
679             os << "Loop condition is false. ";
680             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
681             if (const Stmt *S = End.asStmt())
682               End = PDB.getEnclosingStmtLocation(S);
683 
684             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
685                                                              os.str()));
686           }
687           else {
688             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
689             if (const Stmt *S = End.asStmt())
690               End = PDB.getEnclosingStmtLocation(S);
691 
692             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
693                             "Loop condition is true.  Entering loop body"));
694           }
695 
696           break;
697         }
698 
699         case Stmt::IfStmtClass: {
700           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
701 
702           if (const Stmt *S = End.asStmt())
703             End = PDB.getEnclosingStmtLocation(S);
704 
705           if (*(Src->succ_begin()+1) == Dst)
706             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
707                                                         "Taking false branch"));
708           else
709             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
710                                                          "Taking true branch"));
711 
712           break;
713         }
714       }
715     }
716 
717     if (NextNode) {
718       // Add diagnostic pieces from custom visitors.
719       BugReport *R = PDB.getBugReport();
720       for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
721                                                     E = visitors.end();
722            I != E; ++I) {
723         if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
724           PD.getActivePath().push_front(p);
725           updateStackPiecesWithMessage(p, CallStack);
726         }
727       }
728     }
729   }
730 
731   // After constructing the full PathDiagnostic, do a pass over it to compact
732   // PathDiagnosticPieces that occur within a macro.
733   CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
734 }
735 
736 //===----------------------------------------------------------------------===//
737 // "Extensive" PathDiagnostic generation.
738 //===----------------------------------------------------------------------===//
739 
740 static bool IsControlFlowExpr(const Stmt *S) {
741   const Expr *E = dyn_cast<Expr>(S);
742 
743   if (!E)
744     return false;
745 
746   E = E->IgnoreParenCasts();
747 
748   if (isa<AbstractConditionalOperator>(E))
749     return true;
750 
751   if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
752     if (B->isLogicalOp())
753       return true;
754 
755   return false;
756 }
757 
758 namespace {
759 class ContextLocation : public PathDiagnosticLocation {
760   bool IsDead;
761 public:
762   ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
763     : PathDiagnosticLocation(L), IsDead(isdead) {}
764 
765   void markDead() { IsDead = true; }
766   bool isDead() const { return IsDead; }
767 };
768 
769 class EdgeBuilder {
770   std::vector<ContextLocation> CLocs;
771   typedef std::vector<ContextLocation>::iterator iterator;
772   PathDiagnostic &PD;
773   PathDiagnosticBuilder &PDB;
774   PathDiagnosticLocation PrevLoc;
775 
776   bool IsConsumedExpr(const PathDiagnosticLocation &L);
777 
778   bool containsLocation(const PathDiagnosticLocation &Container,
779                         const PathDiagnosticLocation &Containee);
780 
781   PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
782 
783   PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
784                                          bool firstCharOnly = false) {
785     if (const Stmt *S = L.asStmt()) {
786       const Stmt *Original = S;
787       while (1) {
788         // Adjust the location for some expressions that are best referenced
789         // by one of their subexpressions.
790         switch (S->getStmtClass()) {
791           default:
792             break;
793           case Stmt::ParenExprClass:
794           case Stmt::GenericSelectionExprClass:
795             S = cast<Expr>(S)->IgnoreParens();
796             firstCharOnly = true;
797             continue;
798           case Stmt::BinaryConditionalOperatorClass:
799           case Stmt::ConditionalOperatorClass:
800             S = cast<AbstractConditionalOperator>(S)->getCond();
801             firstCharOnly = true;
802             continue;
803           case Stmt::ChooseExprClass:
804             S = cast<ChooseExpr>(S)->getCond();
805             firstCharOnly = true;
806             continue;
807           case Stmt::BinaryOperatorClass:
808             S = cast<BinaryOperator>(S)->getLHS();
809             firstCharOnly = true;
810             continue;
811         }
812 
813         break;
814       }
815 
816       if (S != Original)
817         L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
818     }
819 
820     if (firstCharOnly)
821       L  = PathDiagnosticLocation::createSingleLocation(L);
822 
823     return L;
824   }
825 
826   void popLocation() {
827     if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
828       // For contexts, we only one the first character as the range.
829       rawAddEdge(cleanUpLocation(CLocs.back(), true));
830     }
831     CLocs.pop_back();
832   }
833 
834 public:
835   EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
836     : PD(pd), PDB(pdb) {
837 
838       // If the PathDiagnostic already has pieces, add the enclosing statement
839       // of the first piece as a context as well.
840       if (!PD.path.empty()) {
841         PrevLoc = (*PD.path.begin())->getLocation();
842 
843         if (const Stmt *S = PrevLoc.asStmt())
844           addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
845       }
846   }
847 
848   ~EdgeBuilder() {
849     while (!CLocs.empty()) popLocation();
850 
851     // Finally, add an initial edge from the start location of the first
852     // statement (if it doesn't already exist).
853     PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
854                                                        PDB.LC,
855                                                        PDB.getSourceManager());
856     if (L.isValid())
857       rawAddEdge(L);
858   }
859 
860   void flushLocations() {
861     while (!CLocs.empty())
862       popLocation();
863     PrevLoc = PathDiagnosticLocation();
864   }
865 
866   void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
867 
868   void rawAddEdge(PathDiagnosticLocation NewLoc);
869 
870   void addContext(const Stmt *S);
871   void addExtendedContext(const Stmt *S);
872 };
873 } // end anonymous namespace
874 
875 
876 PathDiagnosticLocation
877 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
878   if (const Stmt *S = L.asStmt()) {
879     if (IsControlFlowExpr(S))
880       return L;
881 
882     return PDB.getEnclosingStmtLocation(S);
883   }
884 
885   return L;
886 }
887 
888 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
889                                    const PathDiagnosticLocation &Containee) {
890 
891   if (Container == Containee)
892     return true;
893 
894   if (Container.asDecl())
895     return true;
896 
897   if (const Stmt *S = Containee.asStmt())
898     if (const Stmt *ContainerS = Container.asStmt()) {
899       while (S) {
900         if (S == ContainerS)
901           return true;
902         S = PDB.getParent(S);
903       }
904       return false;
905     }
906 
907   // Less accurate: compare using source ranges.
908   SourceRange ContainerR = Container.asRange();
909   SourceRange ContaineeR = Containee.asRange();
910 
911   SourceManager &SM = PDB.getSourceManager();
912   SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
913   SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
914   SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
915   SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
916 
917   unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
918   unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
919   unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
920   unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
921 
922   assert(ContainerBegLine <= ContainerEndLine);
923   assert(ContaineeBegLine <= ContaineeEndLine);
924 
925   return (ContainerBegLine <= ContaineeBegLine &&
926           ContainerEndLine >= ContaineeEndLine &&
927           (ContainerBegLine != ContaineeBegLine ||
928            SM.getExpansionColumnNumber(ContainerRBeg) <=
929            SM.getExpansionColumnNumber(ContaineeRBeg)) &&
930           (ContainerEndLine != ContaineeEndLine ||
931            SM.getExpansionColumnNumber(ContainerREnd) >=
932            SM.getExpansionColumnNumber(ContaineeREnd)));
933 }
934 
935 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
936   if (!PrevLoc.isValid()) {
937     PrevLoc = NewLoc;
938     return;
939   }
940 
941   const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
942   const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
943 
944   if (NewLocClean.asLocation() == PrevLocClean.asLocation())
945     return;
946 
947   // FIXME: Ignore intra-macro edges for now.
948   if (NewLocClean.asLocation().getExpansionLoc() ==
949       PrevLocClean.asLocation().getExpansionLoc())
950     return;
951 
952   PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
953   PrevLoc = NewLoc;
954 }
955 
956 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
957 
958   if (!alwaysAdd && NewLoc.asLocation().isMacroID())
959     return;
960 
961   const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
962 
963   while (!CLocs.empty()) {
964     ContextLocation &TopContextLoc = CLocs.back();
965 
966     // Is the top location context the same as the one for the new location?
967     if (TopContextLoc == CLoc) {
968       if (alwaysAdd) {
969         if (IsConsumedExpr(TopContextLoc) &&
970             !IsControlFlowExpr(TopContextLoc.asStmt()))
971             TopContextLoc.markDead();
972 
973         rawAddEdge(NewLoc);
974       }
975 
976       return;
977     }
978 
979     if (containsLocation(TopContextLoc, CLoc)) {
980       if (alwaysAdd) {
981         rawAddEdge(NewLoc);
982 
983         if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
984           CLocs.push_back(ContextLocation(CLoc, true));
985           return;
986         }
987       }
988 
989       CLocs.push_back(CLoc);
990       return;
991     }
992 
993     // Context does not contain the location.  Flush it.
994     popLocation();
995   }
996 
997   // If we reach here, there is no enclosing context.  Just add the edge.
998   rawAddEdge(NewLoc);
999 }
1000 
1001 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1002   if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1003     return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1004 
1005   return false;
1006 }
1007 
1008 void EdgeBuilder::addExtendedContext(const Stmt *S) {
1009   if (!S)
1010     return;
1011 
1012   const Stmt *Parent = PDB.getParent(S);
1013   while (Parent) {
1014     if (isa<CompoundStmt>(Parent))
1015       Parent = PDB.getParent(Parent);
1016     else
1017       break;
1018   }
1019 
1020   if (Parent) {
1021     switch (Parent->getStmtClass()) {
1022       case Stmt::DoStmtClass:
1023       case Stmt::ObjCAtSynchronizedStmtClass:
1024         addContext(Parent);
1025       default:
1026         break;
1027     }
1028   }
1029 
1030   addContext(S);
1031 }
1032 
1033 void EdgeBuilder::addContext(const Stmt *S) {
1034   if (!S)
1035     return;
1036 
1037   PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1038 
1039   while (!CLocs.empty()) {
1040     const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1041 
1042     // Is the top location context the same as the one for the new location?
1043     if (TopContextLoc == L)
1044       return;
1045 
1046     if (containsLocation(TopContextLoc, L)) {
1047       CLocs.push_back(L);
1048       return;
1049     }
1050 
1051     // Context does not contain the location.  Flush it.
1052     popLocation();
1053   }
1054 
1055   CLocs.push_back(L);
1056 }
1057 
1058 // Cone-of-influence: support the reverse propagation of "interesting" symbols
1059 // and values by tracing interesting calculations backwards through evaluated
1060 // expressions along a path.  This is probably overly complicated, but the idea
1061 // is that if an expression computed an "interesting" value, the child
1062 // expressions are are also likely to be "interesting" as well (which then
1063 // propagates to the values they in turn compute).  This reverse propagation
1064 // is needed to track interesting correlations across function call boundaries,
1065 // where formal arguments bind to actual arguments, etc.  This is also needed
1066 // because the constraint solver sometimes simplifies certain symbolic values
1067 // into constants when appropriate, and this complicates reasoning about
1068 // interesting values.
1069 typedef llvm::DenseSet<const Expr *> InterestingExprs;
1070 
1071 static void reversePropagateIntererstingSymbols(BugReport &R,
1072                                                 InterestingExprs &IE,
1073                                                 const ProgramState *State,
1074                                                 const Expr *Ex,
1075                                                 const LocationContext *LCtx) {
1076   SVal V = State->getSVal(Ex, LCtx);
1077   if (!(R.isInteresting(V) || IE.count(Ex)))
1078     return;
1079 
1080   switch (Ex->getStmtClass()) {
1081     default:
1082       if (!isa<CastExpr>(Ex))
1083         break;
1084       // Fall through.
1085     case Stmt::BinaryOperatorClass:
1086     case Stmt::UnaryOperatorClass: {
1087       for (Stmt::const_child_iterator CI = Ex->child_begin(),
1088             CE = Ex->child_end();
1089             CI != CE; ++CI) {
1090         if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1091           IE.insert(child);
1092           SVal ChildV = State->getSVal(child, LCtx);
1093           R.markInteresting(ChildV);
1094         }
1095         break;
1096       }
1097     }
1098   }
1099 
1100   R.markInteresting(V);
1101 }
1102 
1103 static void reversePropagateInterestingSymbols(BugReport &R,
1104                                                InterestingExprs &IE,
1105                                                const ProgramState *State,
1106                                                const LocationContext *CalleeCtx,
1107                                                const LocationContext *CallerCtx)
1108 {
1109   // FIXME: Handle non-CallExpr-based CallEvents.
1110   const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1111   const Stmt *CallSite = Callee->getCallSite();
1112   if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1113     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1114       FunctionDecl::param_const_iterator PI = FD->param_begin(),
1115                                          PE = FD->param_end();
1116       CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1117       for (; AI != AE && PI != PE; ++AI, ++PI) {
1118         if (const Expr *ArgE = *AI) {
1119           if (const ParmVarDecl *PD = *PI) {
1120             Loc LV = State->getLValue(PD, CalleeCtx);
1121             if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1122               IE.insert(ArgE);
1123           }
1124         }
1125       }
1126     }
1127   }
1128 }
1129 
1130 static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1131                                             PathDiagnosticBuilder &PDB,
1132                                             const ExplodedNode *N,
1133                                       ArrayRef<BugReporterVisitor *> visitors) {
1134   EdgeBuilder EB(PD, PDB);
1135   const SourceManager& SM = PDB.getSourceManager();
1136   StackDiagVector CallStack;
1137   InterestingExprs IE;
1138 
1139   const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1140   while (NextNode) {
1141     N = NextNode;
1142     NextNode = GetPredecessorNode(N);
1143     ProgramPoint P = N->getLocation();
1144 
1145     do {
1146       if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
1147         if (const Expr *Ex = PS->getStmtAs<Expr>())
1148           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1149                                               N->getState().getPtr(), Ex,
1150                                               N->getLocationContext());
1151       }
1152 
1153       if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
1154         const StackFrameContext *LCtx =
1155           CE->getLocationContext()->getCurrentStackFrame();
1156         // FIXME: This needs to handle implicit calls.
1157         if (const Stmt *S = CE->getCalleeContext()->getCallSite()) {
1158           if (const Expr *Ex = dyn_cast<Expr>(S))
1159             reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1160                                                 N->getState().getPtr(), Ex,
1161                                                 N->getLocationContext());
1162           PathDiagnosticLocation Loc(S,
1163                                      PDB.getSourceManager(),
1164                                      LCtx);
1165           EB.addEdge(Loc, true);
1166           EB.flushLocations();
1167           PathDiagnosticCallPiece *C =
1168             PathDiagnosticCallPiece::construct(N, *CE, SM);
1169           PD.getActivePath().push_front(C);
1170           PD.pushActivePath(&C->path);
1171           CallStack.push_back(StackDiagPair(C, N));
1172         }
1173         break;
1174       }
1175 
1176       // Pop the call hierarchy if we are done walking the contents
1177       // of a function call.
1178       if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
1179         // Add an edge to the start of the function.
1180         const Decl *D = CE->getCalleeContext()->getDecl();
1181         PathDiagnosticLocation pos =
1182           PathDiagnosticLocation::createBegin(D, SM);
1183         EB.addEdge(pos);
1184 
1185         // Flush all locations, and pop the active path.
1186         EB.flushLocations();
1187         PD.popActivePath();
1188         assert(!PD.getActivePath().empty());
1189         PDB.LC = N->getLocationContext();
1190 
1191         // The current active path should never be empty.  Either we
1192         // just added a bunch of stuff to the top-level path, or
1193         // we have a previous CallExitEnd.  If the front of the active
1194         // path is not a PathDiagnosticCallPiece, it means that the
1195         // path terminated within a function call.  We must then take the
1196         // current contents of the active path and place it within
1197         // a new PathDiagnosticCallPiece.
1198         PathDiagnosticCallPiece *C =
1199           dyn_cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1200         if (!C) {
1201           const Decl * Caller = CE->getLocationContext()->getDecl();
1202           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1203         }
1204 
1205         // FIXME: We still need a location for implicit calls.
1206         if (CE->getCallExpr()) {
1207           C->setCallee(*CE, SM);
1208           EB.addContext(CE->getCallExpr());
1209         }
1210 
1211         if (!CallStack.empty()) {
1212           assert(CallStack.back().first == C);
1213           CallStack.pop_back();
1214         }
1215         break;
1216       }
1217 
1218       // Note that is important that we update the LocationContext
1219       // after looking at CallExits.  CallExit basically adds an
1220       // edge in the *caller*, so we don't want to update the LocationContext
1221       // too soon.
1222       PDB.LC = N->getLocationContext();
1223 
1224       // Block edges.
1225       if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1226         // Does this represent entering a call?  If so, look at propagating
1227         // interesting symbols across call boundaries.
1228         if (NextNode) {
1229           const LocationContext *CallerCtx = NextNode->getLocationContext();
1230           const LocationContext *CalleeCtx = PDB.LC;
1231           if (CallerCtx != CalleeCtx) {
1232             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1233                                                N->getState().getPtr(),
1234                                                CalleeCtx, CallerCtx);
1235           }
1236         }
1237 
1238         const CFGBlock &Blk = *BE->getSrc();
1239         const Stmt *Term = Blk.getTerminator();
1240 
1241         // Are we jumping to the head of a loop?  Add a special diagnostic.
1242         if (const Stmt *Loop = BE->getDst()->getLoopTarget()) {
1243           PathDiagnosticLocation L(Loop, SM, PDB.LC);
1244           const CompoundStmt *CS = NULL;
1245 
1246           if (!Term) {
1247             if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1248               CS = dyn_cast<CompoundStmt>(FS->getBody());
1249             else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1250               CS = dyn_cast<CompoundStmt>(WS->getBody());
1251           }
1252 
1253           PathDiagnosticEventPiece *p =
1254             new PathDiagnosticEventPiece(L,
1255                                         "Looping back to the head of the loop");
1256           p->setPrunable(true);
1257 
1258           EB.addEdge(p->getLocation(), true);
1259           PD.getActivePath().push_front(p);
1260 
1261           if (CS) {
1262             PathDiagnosticLocation BL =
1263               PathDiagnosticLocation::createEndBrace(CS, SM);
1264             EB.addEdge(BL);
1265           }
1266         }
1267 
1268         if (Term)
1269           EB.addContext(Term);
1270 
1271         break;
1272       }
1273 
1274       if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1275         if (const CFGStmt *S = BE->getFirstElement().getAs<CFGStmt>()) {
1276           const Stmt *stmt = S->getStmt();
1277           if (IsControlFlowExpr(stmt)) {
1278             // Add the proper context for '&&', '||', and '?'.
1279             EB.addContext(stmt);
1280           }
1281           else
1282             EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1283         }
1284 
1285         break;
1286       }
1287 
1288 
1289     } while (0);
1290 
1291     if (!NextNode)
1292       continue;
1293 
1294     // Add pieces from custom visitors.
1295     BugReport *R = PDB.getBugReport();
1296     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1297                                                   E = visitors.end();
1298          I != E; ++I) {
1299       if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1300         const PathDiagnosticLocation &Loc = p->getLocation();
1301         EB.addEdge(Loc, true);
1302         PD.getActivePath().push_front(p);
1303         updateStackPiecesWithMessage(p, CallStack);
1304 
1305         if (const Stmt *S = Loc.asStmt())
1306           EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1307       }
1308     }
1309   }
1310 }
1311 
1312 //===----------------------------------------------------------------------===//
1313 // Methods for BugType and subclasses.
1314 //===----------------------------------------------------------------------===//
1315 BugType::~BugType() { }
1316 
1317 void BugType::FlushReports(BugReporter &BR) {}
1318 
1319 void BuiltinBug::anchor() {}
1320 
1321 //===----------------------------------------------------------------------===//
1322 // Methods for BugReport and subclasses.
1323 //===----------------------------------------------------------------------===//
1324 
1325 void BugReport::NodeResolver::anchor() {}
1326 
1327 void BugReport::addVisitor(BugReporterVisitor* visitor) {
1328   if (!visitor)
1329     return;
1330 
1331   llvm::FoldingSetNodeID ID;
1332   visitor->Profile(ID);
1333   void *InsertPos;
1334 
1335   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
1336     delete visitor;
1337     return;
1338   }
1339 
1340   CallbacksSet.InsertNode(visitor, InsertPos);
1341   Callbacks.push_back(visitor);
1342   ++ConfigurationChangeToken;
1343 }
1344 
1345 BugReport::~BugReport() {
1346   for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
1347     delete *I;
1348   }
1349 }
1350 
1351 const Decl *BugReport::getDeclWithIssue() const {
1352   if (DeclWithIssue)
1353     return DeclWithIssue;
1354 
1355   const ExplodedNode *N = getErrorNode();
1356   if (!N)
1357     return 0;
1358 
1359   const LocationContext *LC = N->getLocationContext();
1360   return LC->getCurrentStackFrame()->getDecl();
1361 }
1362 
1363 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
1364   hash.AddPointer(&BT);
1365   hash.AddString(Description);
1366   if (UniqueingLocation.isValid()) {
1367     UniqueingLocation.Profile(hash);
1368   } else if (Location.isValid()) {
1369     Location.Profile(hash);
1370   } else {
1371     assert(ErrorNode);
1372     hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
1373   }
1374 
1375   for (SmallVectorImpl<SourceRange>::const_iterator I =
1376       Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1377     const SourceRange range = *I;
1378     if (!range.isValid())
1379       continue;
1380     hash.AddInteger(range.getBegin().getRawEncoding());
1381     hash.AddInteger(range.getEnd().getRawEncoding());
1382   }
1383 }
1384 
1385 void BugReport::markInteresting(SymbolRef sym) {
1386   if (!sym)
1387     return;
1388 
1389   // If the symbol wasn't already in our set, note a configuration change.
1390   if (interestingSymbols.insert(sym).second)
1391     ++ConfigurationChangeToken;
1392 
1393   if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
1394     interestingRegions.insert(meta->getRegion());
1395 }
1396 
1397 void BugReport::markInteresting(const MemRegion *R) {
1398   if (!R)
1399     return;
1400 
1401   // If the base region wasn't already in our set, note a configuration change.
1402   R = R->getBaseRegion();
1403   if (interestingRegions.insert(R).second)
1404     ++ConfigurationChangeToken;
1405 
1406   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1407     interestingSymbols.insert(SR->getSymbol());
1408 }
1409 
1410 void BugReport::markInteresting(SVal V) {
1411   markInteresting(V.getAsRegion());
1412   markInteresting(V.getAsSymbol());
1413 }
1414 
1415 bool BugReport::isInteresting(SVal V) const {
1416   return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
1417 }
1418 
1419 bool BugReport::isInteresting(SymbolRef sym) const {
1420   if (!sym)
1421     return false;
1422   // We don't currently consider metadata symbols to be interesting
1423   // even if we know their region is interesting. Is that correct behavior?
1424   return interestingSymbols.count(sym);
1425 }
1426 
1427 bool BugReport::isInteresting(const MemRegion *R) const {
1428   if (!R)
1429     return false;
1430   R = R->getBaseRegion();
1431   bool b = interestingRegions.count(R);
1432   if (b)
1433     return true;
1434   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1435     return interestingSymbols.count(SR->getSymbol());
1436   return false;
1437 }
1438 
1439 
1440 const Stmt *BugReport::getStmt() const {
1441   if (!ErrorNode)
1442     return 0;
1443 
1444   ProgramPoint ProgP = ErrorNode->getLocation();
1445   const Stmt *S = NULL;
1446 
1447   if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
1448     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1449     if (BE->getBlock() == &Exit)
1450       S = GetPreviousStmt(ErrorNode);
1451   }
1452   if (!S)
1453     S = GetStmt(ProgP);
1454 
1455   return S;
1456 }
1457 
1458 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
1459 BugReport::getRanges() {
1460     // If no custom ranges, add the range of the statement corresponding to
1461     // the error node.
1462     if (Ranges.empty()) {
1463       if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
1464         addRange(E->getSourceRange());
1465       else
1466         return std::make_pair(ranges_iterator(), ranges_iterator());
1467     }
1468 
1469     // User-specified absence of range info.
1470     if (Ranges.size() == 1 && !Ranges.begin()->isValid())
1471       return std::make_pair(ranges_iterator(), ranges_iterator());
1472 
1473     return std::make_pair(Ranges.begin(), Ranges.end());
1474 }
1475 
1476 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
1477   if (ErrorNode) {
1478     assert(!Location.isValid() &&
1479      "Either Location or ErrorNode should be specified but not both.");
1480 
1481     if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
1482       const LocationContext *LC = ErrorNode->getLocationContext();
1483 
1484       // For member expressions, return the location of the '.' or '->'.
1485       if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1486         return PathDiagnosticLocation::createMemberLoc(ME, SM);
1487       // For binary operators, return the location of the operator.
1488       if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1489         return PathDiagnosticLocation::createOperatorLoc(B, SM);
1490 
1491       return PathDiagnosticLocation::createBegin(S, SM, LC);
1492     }
1493   } else {
1494     assert(Location.isValid());
1495     return Location;
1496   }
1497 
1498   return PathDiagnosticLocation();
1499 }
1500 
1501 //===----------------------------------------------------------------------===//
1502 // Methods for BugReporter and subclasses.
1503 //===----------------------------------------------------------------------===//
1504 
1505 BugReportEquivClass::~BugReportEquivClass() { }
1506 GRBugReporter::~GRBugReporter() { }
1507 BugReporterData::~BugReporterData() {}
1508 
1509 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1510 
1511 ProgramStateManager&
1512 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1513 
1514 BugReporter::~BugReporter() {
1515   FlushReports();
1516 
1517   // Free the bug reports we are tracking.
1518   typedef std::vector<BugReportEquivClass *> ContTy;
1519   for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
1520        I != E; ++I) {
1521     delete *I;
1522   }
1523 }
1524 
1525 void BugReporter::FlushReports() {
1526   if (BugTypes.isEmpty())
1527     return;
1528 
1529   // First flush the warnings for each BugType.  This may end up creating new
1530   // warnings and new BugTypes.
1531   // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1532   // Turn NSErrorChecker into a proper checker and remove this.
1533   SmallVector<const BugType*, 16> bugTypes;
1534   for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1535     bugTypes.push_back(*I);
1536   for (SmallVector<const BugType*, 16>::iterator
1537          I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1538     const_cast<BugType*>(*I)->FlushReports(*this);
1539 
1540   typedef llvm::FoldingSet<BugReportEquivClass> SetTy;
1541   for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){
1542     BugReportEquivClass& EQ = *EI;
1543     FlushReport(EQ);
1544   }
1545 
1546   // BugReporter owns and deletes only BugTypes created implicitly through
1547   // EmitBasicReport.
1548   // FIXME: There are leaks from checkers that assume that the BugTypes they
1549   // create will be destroyed by the BugReporter.
1550   for (llvm::StringMap<BugType*>::iterator
1551          I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1552     delete I->second;
1553 
1554   // Remove all references to the BugType objects.
1555   BugTypes = F.getEmptySet();
1556 }
1557 
1558 //===----------------------------------------------------------------------===//
1559 // PathDiagnostics generation.
1560 //===----------------------------------------------------------------------===//
1561 
1562 static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1563                  std::pair<ExplodedNode*, unsigned> >
1564 MakeReportGraph(const ExplodedGraph* G,
1565                 SmallVectorImpl<const ExplodedNode*> &nodes) {
1566 
1567   // Create the trimmed graph.  It will contain the shortest paths from the
1568   // error nodes to the root.  In the new graph we should only have one
1569   // error node unless there are two or more error nodes with the same minimum
1570   // path length.
1571   ExplodedGraph* GTrim;
1572   InterExplodedGraphMap* NMap;
1573 
1574   llvm::DenseMap<const void*, const void*> InverseMap;
1575   llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1576                                    &InverseMap);
1577 
1578   // Create owning pointers for GTrim and NMap just to ensure that they are
1579   // released when this function exists.
1580   OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1581   OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1582 
1583   // Find the (first) error node in the trimmed graph.  We just need to consult
1584   // the node map (NMap) which maps from nodes in the original graph to nodes
1585   // in the new graph.
1586 
1587   std::queue<const ExplodedNode*> WS;
1588   typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1589   IndexMapTy IndexMap;
1590 
1591   for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1592     const ExplodedNode *originalNode = nodes[nodeIndex];
1593     if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1594       WS.push(N);
1595       IndexMap[originalNode] = nodeIndex;
1596     }
1597   }
1598 
1599   assert(!WS.empty() && "No error node found in the trimmed graph.");
1600 
1601   // Create a new (third!) graph with a single path.  This is the graph
1602   // that will be returned to the caller.
1603   ExplodedGraph *GNew = new ExplodedGraph();
1604 
1605   // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
1606   // to the root node, and then construct a new graph that contains only
1607   // a single path.
1608   llvm::DenseMap<const void*,unsigned> Visited;
1609 
1610   unsigned cnt = 0;
1611   const ExplodedNode *Root = 0;
1612 
1613   while (!WS.empty()) {
1614     const ExplodedNode *Node = WS.front();
1615     WS.pop();
1616 
1617     if (Visited.find(Node) != Visited.end())
1618       continue;
1619 
1620     Visited[Node] = cnt++;
1621 
1622     if (Node->pred_empty()) {
1623       Root = Node;
1624       break;
1625     }
1626 
1627     for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1628          E=Node->pred_end(); I!=E; ++I)
1629       WS.push(*I);
1630   }
1631 
1632   assert(Root);
1633 
1634   // Now walk from the root down the BFS path, always taking the successor
1635   // with the lowest number.
1636   ExplodedNode *Last = 0, *First = 0;
1637   NodeBackMap *BM = new NodeBackMap();
1638   unsigned NodeIndex = 0;
1639 
1640   for ( const ExplodedNode *N = Root ;;) {
1641     // Lookup the number associated with the current node.
1642     llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1643     assert(I != Visited.end());
1644 
1645     // Create the equivalent node in the new graph with the same state
1646     // and location.
1647     ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
1648 
1649     // Store the mapping to the original node.
1650     llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1651     assert(IMitr != InverseMap.end() && "No mapping to original node.");
1652     (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1653 
1654     // Link up the new node with the previous node.
1655     if (Last)
1656       NewN->addPredecessor(Last, *GNew);
1657 
1658     Last = NewN;
1659 
1660     // Are we at the final node?
1661     IndexMapTy::iterator IMI =
1662       IndexMap.find((const ExplodedNode*)(IMitr->second));
1663     if (IMI != IndexMap.end()) {
1664       First = NewN;
1665       NodeIndex = IMI->second;
1666       break;
1667     }
1668 
1669     // Find the next successor node.  We choose the node that is marked
1670     // with the lowest DFS number.
1671     ExplodedNode::const_succ_iterator SI = N->succ_begin();
1672     ExplodedNode::const_succ_iterator SE = N->succ_end();
1673     N = 0;
1674 
1675     for (unsigned MinVal = 0; SI != SE; ++SI) {
1676 
1677       I = Visited.find(*SI);
1678 
1679       if (I == Visited.end())
1680         continue;
1681 
1682       if (!N || I->second < MinVal) {
1683         N = *SI;
1684         MinVal = I->second;
1685       }
1686     }
1687 
1688     assert(N);
1689   }
1690 
1691   assert(First);
1692 
1693   return std::make_pair(std::make_pair(GNew, BM),
1694                         std::make_pair(First, NodeIndex));
1695 }
1696 
1697 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1698 ///  and collapses PathDiagosticPieces that are expanded by macros.
1699 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
1700   typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
1701                                 SourceLocation> > MacroStackTy;
1702 
1703   typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
1704           PiecesTy;
1705 
1706   MacroStackTy MacroStack;
1707   PiecesTy Pieces;
1708 
1709   for (PathPieces::const_iterator I = path.begin(), E = path.end();
1710        I!=E; ++I) {
1711 
1712     PathDiagnosticPiece *piece = I->getPtr();
1713 
1714     // Recursively compact calls.
1715     if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
1716       CompactPathDiagnostic(call->path, SM);
1717     }
1718 
1719     // Get the location of the PathDiagnosticPiece.
1720     const FullSourceLoc Loc = piece->getLocation().asLocation();
1721 
1722     // Determine the instantiation location, which is the location we group
1723     // related PathDiagnosticPieces.
1724     SourceLocation InstantiationLoc = Loc.isMacroID() ?
1725                                       SM.getExpansionLoc(Loc) :
1726                                       SourceLocation();
1727 
1728     if (Loc.isFileID()) {
1729       MacroStack.clear();
1730       Pieces.push_back(piece);
1731       continue;
1732     }
1733 
1734     assert(Loc.isMacroID());
1735 
1736     // Is the PathDiagnosticPiece within the same macro group?
1737     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1738       MacroStack.back().first->subPieces.push_back(piece);
1739       continue;
1740     }
1741 
1742     // We aren't in the same group.  Are we descending into a new macro
1743     // or are part of an old one?
1744     IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
1745 
1746     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1747                                           SM.getExpansionLoc(Loc) :
1748                                           SourceLocation();
1749 
1750     // Walk the entire macro stack.
1751     while (!MacroStack.empty()) {
1752       if (InstantiationLoc == MacroStack.back().second) {
1753         MacroGroup = MacroStack.back().first;
1754         break;
1755       }
1756 
1757       if (ParentInstantiationLoc == MacroStack.back().second) {
1758         MacroGroup = MacroStack.back().first;
1759         break;
1760       }
1761 
1762       MacroStack.pop_back();
1763     }
1764 
1765     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1766       // Create a new macro group and add it to the stack.
1767       PathDiagnosticMacroPiece *NewGroup =
1768         new PathDiagnosticMacroPiece(
1769           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
1770 
1771       if (MacroGroup)
1772         MacroGroup->subPieces.push_back(NewGroup);
1773       else {
1774         assert(InstantiationLoc.isFileID());
1775         Pieces.push_back(NewGroup);
1776       }
1777 
1778       MacroGroup = NewGroup;
1779       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1780     }
1781 
1782     // Finally, add the PathDiagnosticPiece to the group.
1783     MacroGroup->subPieces.push_back(piece);
1784   }
1785 
1786   // Now take the pieces and construct a new PathDiagnostic.
1787   path.clear();
1788 
1789   for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
1790     path.push_back(*I);
1791 }
1792 
1793 void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
1794                         SmallVectorImpl<BugReport *> &bugReports) {
1795 
1796   assert(!bugReports.empty());
1797   SmallVector<const ExplodedNode *, 10> errorNodes;
1798   for (SmallVectorImpl<BugReport*>::iterator I = bugReports.begin(),
1799     E = bugReports.end(); I != E; ++I) {
1800       errorNodes.push_back((*I)->getErrorNode());
1801   }
1802 
1803   // Construct a new graph that contains only a single path from the error
1804   // node to a root.
1805   const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1806   std::pair<ExplodedNode*, unsigned> >&
1807     GPair = MakeReportGraph(&getGraph(), errorNodes);
1808 
1809   // Find the BugReport with the original location.
1810   assert(GPair.second.second < bugReports.size());
1811   BugReport *R = bugReports[GPair.second.second];
1812   assert(R && "No original report found for sliced graph.");
1813 
1814   OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
1815   OwningPtr<NodeBackMap> BackMap(GPair.first.second);
1816   const ExplodedNode *N = GPair.second.first;
1817 
1818   // Start building the path diagnostic...
1819   PathDiagnosticBuilder PDB(*this, R, BackMap.get(),
1820                             getPathDiagnosticConsumer());
1821 
1822   // Register additional node visitors.
1823   R->addVisitor(new NilReceiverBRVisitor());
1824   R->addVisitor(new ConditionBRVisitor());
1825 
1826   BugReport::VisitorList visitors;
1827   unsigned originalReportConfigToken, finalReportConfigToken;
1828 
1829   // While generating diagnostics, it's possible the visitors will decide
1830   // new symbols and regions are interesting, or add other visitors based on
1831   // the information they find. If they do, we need to regenerate the path
1832   // based on our new report configuration.
1833   do {
1834     // Get a clean copy of all the visitors.
1835     for (BugReport::visitor_iterator I = R->visitor_begin(),
1836                                      E = R->visitor_end(); I != E; ++I)
1837        visitors.push_back((*I)->clone());
1838 
1839     // Clear out the active path from any previous work.
1840     PD.getActivePath().clear();
1841     originalReportConfigToken = R->getConfigurationChangeToken();
1842 
1843     // Generate the very last diagnostic piece - the piece is visible before
1844     // the trace is expanded.
1845     PathDiagnosticPiece *LastPiece = 0;
1846     for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
1847          I != E; ++I) {
1848       if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
1849         assert (!LastPiece &&
1850                 "There can only be one final piece in a diagnostic.");
1851         LastPiece = Piece;
1852       }
1853     }
1854     if (!LastPiece)
1855       LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
1856     if (LastPiece)
1857       PD.getActivePath().push_back(LastPiece);
1858     else
1859       return;
1860 
1861     switch (PDB.getGenerationScheme()) {
1862     case PathDiagnosticConsumer::Extensive:
1863       GenerateExtensivePathDiagnostic(PD, PDB, N, visitors);
1864       break;
1865     case PathDiagnosticConsumer::Minimal:
1866       GenerateMinimalPathDiagnostic(PD, PDB, N, visitors);
1867       break;
1868     }
1869 
1870     // Clean up the visitors we used.
1871     llvm::DeleteContainerPointers(visitors);
1872 
1873     // Did anything change while generating this path?
1874     finalReportConfigToken = R->getConfigurationChangeToken();
1875   } while(finalReportConfigToken != originalReportConfigToken);
1876 
1877   // Finally, prune the diagnostic path of uninteresting stuff.
1878   if (R->shouldPrunePath()) {
1879     bool hasSomethingInteresting = RemoveUneededCalls(PD.getMutablePieces());
1880     assert(hasSomethingInteresting);
1881     (void) hasSomethingInteresting;
1882   }
1883 }
1884 
1885 void BugReporter::Register(BugType *BT) {
1886   BugTypes = F.add(BugTypes, BT);
1887 }
1888 
1889 void BugReporter::EmitReport(BugReport* R) {
1890   // Compute the bug report's hash to determine its equivalence class.
1891   llvm::FoldingSetNodeID ID;
1892   R->Profile(ID);
1893 
1894   // Lookup the equivance class.  If there isn't one, create it.
1895   BugType& BT = R->getBugType();
1896   Register(&BT);
1897   void *InsertPos;
1898   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
1899 
1900   if (!EQ) {
1901     EQ = new BugReportEquivClass(R);
1902     EQClasses.InsertNode(EQ, InsertPos);
1903     EQClassesVector.push_back(EQ);
1904   }
1905   else
1906     EQ->AddReport(R);
1907 }
1908 
1909 
1910 //===----------------------------------------------------------------------===//
1911 // Emitting reports in equivalence classes.
1912 //===----------------------------------------------------------------------===//
1913 
1914 namespace {
1915 struct FRIEC_WLItem {
1916   const ExplodedNode *N;
1917   ExplodedNode::const_succ_iterator I, E;
1918 
1919   FRIEC_WLItem(const ExplodedNode *n)
1920   : N(n), I(N->succ_begin()), E(N->succ_end()) {}
1921 };
1922 }
1923 
1924 static BugReport *
1925 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
1926                              SmallVectorImpl<BugReport*> &bugReports) {
1927 
1928   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
1929   assert(I != E);
1930   BugType& BT = I->getBugType();
1931 
1932   // If we don't need to suppress any of the nodes because they are
1933   // post-dominated by a sink, simply add all the nodes in the equivalence class
1934   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
1935   if (!BT.isSuppressOnSink()) {
1936     BugReport *R = I;
1937     for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
1938       const ExplodedNode *N = I->getErrorNode();
1939       if (N) {
1940         R = I;
1941         bugReports.push_back(R);
1942       }
1943     }
1944     return R;
1945   }
1946 
1947   // For bug reports that should be suppressed when all paths are post-dominated
1948   // by a sink node, iterate through the reports in the equivalence class
1949   // until we find one that isn't post-dominated (if one exists).  We use a
1950   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
1951   // this as a recursive function, but we don't want to risk blowing out the
1952   // stack for very long paths.
1953   BugReport *exampleReport = 0;
1954 
1955   for (; I != E; ++I) {
1956     const ExplodedNode *errorNode = I->getErrorNode();
1957 
1958     if (!errorNode)
1959       continue;
1960     if (errorNode->isSink()) {
1961       llvm_unreachable(
1962            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
1963     }
1964     // No successors?  By definition this nodes isn't post-dominated by a sink.
1965     if (errorNode->succ_empty()) {
1966       bugReports.push_back(I);
1967       if (!exampleReport)
1968         exampleReport = I;
1969       continue;
1970     }
1971 
1972     // At this point we know that 'N' is not a sink and it has at least one
1973     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
1974     typedef FRIEC_WLItem WLItem;
1975     typedef SmallVector<WLItem, 10> DFSWorkList;
1976     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
1977 
1978     DFSWorkList WL;
1979     WL.push_back(errorNode);
1980     Visited[errorNode] = 1;
1981 
1982     while (!WL.empty()) {
1983       WLItem &WI = WL.back();
1984       assert(!WI.N->succ_empty());
1985 
1986       for (; WI.I != WI.E; ++WI.I) {
1987         const ExplodedNode *Succ = *WI.I;
1988         // End-of-path node?
1989         if (Succ->succ_empty()) {
1990           // If we found an end-of-path node that is not a sink.
1991           if (!Succ->isSink()) {
1992             bugReports.push_back(I);
1993             if (!exampleReport)
1994               exampleReport = I;
1995             WL.clear();
1996             break;
1997           }
1998           // Found a sink?  Continue on to the next successor.
1999           continue;
2000         }
2001         // Mark the successor as visited.  If it hasn't been explored,
2002         // enqueue it to the DFS worklist.
2003         unsigned &mark = Visited[Succ];
2004         if (!mark) {
2005           mark = 1;
2006           WL.push_back(Succ);
2007           break;
2008         }
2009       }
2010 
2011       // The worklist may have been cleared at this point.  First
2012       // check if it is empty before checking the last item.
2013       if (!WL.empty() && &WL.back() == &WI)
2014         WL.pop_back();
2015     }
2016   }
2017 
2018   // ExampleReport will be NULL if all the nodes in the equivalence class
2019   // were post-dominated by sinks.
2020   return exampleReport;
2021 }
2022 
2023 //===----------------------------------------------------------------------===//
2024 // DiagnosticCache.  This is a hack to cache analyzer diagnostics.  It
2025 // uses global state, which eventually should go elsewhere.
2026 //===----------------------------------------------------------------------===//
2027 namespace {
2028 class DiagCacheItem : public llvm::FoldingSetNode {
2029   llvm::FoldingSetNodeID ID;
2030 public:
2031   DiagCacheItem(BugReport *R, PathDiagnostic *PD) {
2032     R->Profile(ID);
2033     PD->Profile(ID);
2034   }
2035 
2036   void Profile(llvm::FoldingSetNodeID &id) {
2037     id = ID;
2038   }
2039 
2040   llvm::FoldingSetNodeID &getID() { return ID; }
2041 };
2042 }
2043 
2044 static bool IsCachedDiagnostic(BugReport *R, PathDiagnostic *PD) {
2045   // FIXME: Eventually this diagnostic cache should reside in something
2046   // like AnalysisManager instead of being a static variable.  This is
2047   // really unsafe in the long term.
2048   typedef llvm::FoldingSet<DiagCacheItem> DiagnosticCache;
2049   static DiagnosticCache DC;
2050 
2051   void *InsertPos;
2052   DiagCacheItem *Item = new DiagCacheItem(R, PD);
2053 
2054   if (DC.FindNodeOrInsertPos(Item->getID(), InsertPos)) {
2055     delete Item;
2056     return true;
2057   }
2058 
2059   DC.InsertNode(Item, InsertPos);
2060   return false;
2061 }
2062 
2063 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2064   SmallVector<BugReport*, 10> bugReports;
2065   BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
2066   if (!exampleReport)
2067     return;
2068 
2069   PathDiagnosticConsumer* PD = getPathDiagnosticConsumer();
2070 
2071   // FIXME: Make sure we use the 'R' for the path that was actually used.
2072   // Probably doesn't make a difference in practice.
2073   BugType& BT = exampleReport->getBugType();
2074 
2075   OwningPtr<PathDiagnostic>
2076     D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
2077                          exampleReport->getBugType().getName(),
2078                          !PD || PD->useVerboseDescription()
2079                          ? exampleReport->getDescription()
2080                          : exampleReport->getShortDescription(),
2081                          BT.getCategory()));
2082 
2083   if (!bugReports.empty())
2084     GeneratePathDiagnostic(*D.get(), bugReports);
2085 
2086   // Get the meta data.
2087   const BugReport::ExtraTextList &Meta =
2088                                   exampleReport->getExtraText();
2089   for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
2090                                                 e = Meta.end(); i != e; ++i) {
2091     D->addMeta(*i);
2092   }
2093 
2094   // Emit a summary diagnostic to the regular Diagnostics engine.
2095   BugReport::ranges_iterator Beg, End;
2096   llvm::tie(Beg, End) = exampleReport->getRanges();
2097   DiagnosticsEngine &Diag = getDiagnostic();
2098 
2099   if (!IsCachedDiagnostic(exampleReport, D.get())) {
2100     // Search the description for '%', as that will be interpretted as a
2101     // format character by FormatDiagnostics.
2102     StringRef desc = exampleReport->getShortDescription();
2103 
2104     SmallString<512> TmpStr;
2105     llvm::raw_svector_ostream Out(TmpStr);
2106     for (StringRef::iterator I=desc.begin(), E=desc.end(); I!=E; ++I) {
2107       if (*I == '%')
2108         Out << "%%";
2109       else
2110         Out << *I;
2111     }
2112 
2113     Out.flush();
2114     unsigned ErrorDiag = Diag.getCustomDiagID(DiagnosticsEngine::Warning, TmpStr);
2115 
2116     DiagnosticBuilder diagBuilder = Diag.Report(
2117       exampleReport->getLocation(getSourceManager()).asLocation(), ErrorDiag);
2118     for (BugReport::ranges_iterator I = Beg; I != End; ++I)
2119       diagBuilder << *I;
2120   }
2121 
2122   // Emit a full diagnostic for the path if we have a PathDiagnosticConsumer.
2123   if (!PD)
2124     return;
2125 
2126   if (D->path.empty()) {
2127     PathDiagnosticPiece *piece = new PathDiagnosticEventPiece(
2128                                  exampleReport->getLocation(getSourceManager()),
2129                                  exampleReport->getDescription());
2130     for ( ; Beg != End; ++Beg)
2131       piece->addRange(*Beg);
2132 
2133     D->getActivePath().push_back(piece);
2134   }
2135 
2136   PD->HandlePathDiagnostic(D.take());
2137 }
2138 
2139 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
2140                                   StringRef name,
2141                                   StringRef category,
2142                                   StringRef str, PathDiagnosticLocation Loc,
2143                                   SourceRange* RBeg, unsigned NumRanges) {
2144 
2145   // 'BT' is owned by BugReporter.
2146   BugType *BT = getBugTypeForName(name, category);
2147   BugReport *R = new BugReport(*BT, str, Loc);
2148   R->setDeclWithIssue(DeclWithIssue);
2149   for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
2150   EmitReport(R);
2151 }
2152 
2153 BugType *BugReporter::getBugTypeForName(StringRef name,
2154                                         StringRef category) {
2155   SmallString<136> fullDesc;
2156   llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
2157   llvm::StringMapEntry<BugType *> &
2158       entry = StrBugTypes.GetOrCreateValue(fullDesc);
2159   BugType *BT = entry.getValue();
2160   if (!BT) {
2161     BT = new BugType(name, category);
2162     entry.setValue(BT);
2163   }
2164   return BT;
2165 }
2166