1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines BugReporter, a utility class for generating 11 // PathDiagnostics. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclBase.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/ParentMap.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/AST/StmtObjC.h" 25 #include "clang/Analysis/AnalysisDeclContext.h" 26 #include "clang/Analysis/CFG.h" 27 #include "clang/Analysis/CFGStmtMap.h" 28 #include "clang/Analysis/ProgramPoint.h" 29 #include "clang/Basic/LLVM.h" 30 #include "clang/Basic/SourceLocation.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" 33 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" 34 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 35 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 36 #include "clang/StaticAnalyzer/Core/Checker.h" 37 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 43 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 44 #include "llvm/ADT/ArrayRef.h" 45 #include "llvm/ADT/DenseMap.h" 46 #include "llvm/ADT/DenseSet.h" 47 #include "llvm/ADT/FoldingSet.h" 48 #include "llvm/ADT/None.h" 49 #include "llvm/ADT/Optional.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallString.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringRef.h" 56 #include "llvm/ADT/iterator_range.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MemoryBuffer.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstddef> 65 #include <iterator> 66 #include <memory> 67 #include <queue> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 #include <vector> 72 73 using namespace clang; 74 using namespace ento; 75 76 #define DEBUG_TYPE "BugReporter" 77 78 STATISTIC(MaxBugClassSize, 79 "The maximum number of bug reports in the same equivalence class"); 80 STATISTIC(MaxValidBugClassSize, 81 "The maximum number of bug reports in the same equivalence class " 82 "where at least one report is valid (not suppressed)"); 83 84 BugReporterVisitor::~BugReporterVisitor() = default; 85 86 void BugReporterContext::anchor() {} 87 88 //===----------------------------------------------------------------------===// 89 // Helper routines for walking the ExplodedGraph and fetching statements. 90 //===----------------------------------------------------------------------===// 91 92 static const Stmt *GetPreviousStmt(const ExplodedNode *N) { 93 for (N = N->getFirstPred(); N; N = N->getFirstPred()) 94 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 95 return S; 96 97 return nullptr; 98 } 99 100 static inline const Stmt* 101 GetCurrentOrPreviousStmt(const ExplodedNode *N) { 102 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 103 return S; 104 105 return GetPreviousStmt(N); 106 } 107 108 //===----------------------------------------------------------------------===// 109 // Diagnostic cleanup. 110 //===----------------------------------------------------------------------===// 111 112 static PathDiagnosticEventPiece * 113 eventsDescribeSameCondition(PathDiagnosticEventPiece *X, 114 PathDiagnosticEventPiece *Y) { 115 // Prefer diagnostics that come from ConditionBRVisitor over 116 // those that came from TrackConstraintBRVisitor, 117 // unless the one from ConditionBRVisitor is 118 // its generic fallback diagnostic. 119 const void *tagPreferred = ConditionBRVisitor::getTag(); 120 const void *tagLesser = TrackConstraintBRVisitor::getTag(); 121 122 if (X->getLocation() != Y->getLocation()) 123 return nullptr; 124 125 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) 126 return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X; 127 128 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) 129 return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y; 130 131 return nullptr; 132 } 133 134 /// An optimization pass over PathPieces that removes redundant diagnostics 135 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both 136 /// BugReporterVisitors use different methods to generate diagnostics, with 137 /// one capable of emitting diagnostics in some cases but not in others. This 138 /// can lead to redundant diagnostic pieces at the same point in a path. 139 static void removeRedundantMsgs(PathPieces &path) { 140 unsigned N = path.size(); 141 if (N < 2) 142 return; 143 // NOTE: this loop intentionally is not using an iterator. Instead, we 144 // are streaming the path and modifying it in place. This is done by 145 // grabbing the front, processing it, and if we decide to keep it append 146 // it to the end of the path. The entire path is processed in this way. 147 for (unsigned i = 0; i < N; ++i) { 148 auto piece = std::move(path.front()); 149 path.pop_front(); 150 151 switch (piece->getKind()) { 152 case PathDiagnosticPiece::Call: 153 removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path); 154 break; 155 case PathDiagnosticPiece::Macro: 156 removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces); 157 break; 158 case PathDiagnosticPiece::ControlFlow: 159 break; 160 case PathDiagnosticPiece::Event: { 161 if (i == N-1) 162 break; 163 164 if (auto *nextEvent = 165 dyn_cast<PathDiagnosticEventPiece>(path.front().get())) { 166 auto *event = cast<PathDiagnosticEventPiece>(piece.get()); 167 // Check to see if we should keep one of the two pieces. If we 168 // come up with a preference, record which piece to keep, and consume 169 // another piece from the path. 170 if (auto *pieceToKeep = 171 eventsDescribeSameCondition(event, nextEvent)) { 172 piece = std::move(pieceToKeep == event ? piece : path.front()); 173 path.pop_front(); 174 ++i; 175 } 176 } 177 break; 178 } 179 case PathDiagnosticPiece::Note: 180 break; 181 } 182 path.push_back(std::move(piece)); 183 } 184 } 185 186 /// A map from PathDiagnosticPiece to the LocationContext of the inlined 187 /// function call it represents. 188 using LocationContextMap = 189 llvm::DenseMap<const PathPieces *, const LocationContext *>; 190 191 /// Recursively scan through a path and prune out calls and macros pieces 192 /// that aren't needed. Return true if afterwards the path contains 193 /// "interesting stuff" which means it shouldn't be pruned from the parent path. 194 static bool removeUnneededCalls(PathPieces &pieces, BugReport *R, 195 LocationContextMap &LCM, 196 bool IsInteresting = false) { 197 bool containsSomethingInteresting = IsInteresting; 198 const unsigned N = pieces.size(); 199 200 for (unsigned i = 0 ; i < N ; ++i) { 201 // Remove the front piece from the path. If it is still something we 202 // want to keep once we are done, we will push it back on the end. 203 auto piece = std::move(pieces.front()); 204 pieces.pop_front(); 205 206 switch (piece->getKind()) { 207 case PathDiagnosticPiece::Call: { 208 auto &call = cast<PathDiagnosticCallPiece>(*piece); 209 // Check if the location context is interesting. 210 assert(LCM.count(&call.path)); 211 if (!removeUnneededCalls(call.path, R, LCM, 212 R->isInteresting(LCM[&call.path]))) 213 continue; 214 215 containsSomethingInteresting = true; 216 break; 217 } 218 case PathDiagnosticPiece::Macro: { 219 auto ¯o = cast<PathDiagnosticMacroPiece>(*piece); 220 if (!removeUnneededCalls(macro.subPieces, R, LCM, IsInteresting)) 221 continue; 222 containsSomethingInteresting = true; 223 break; 224 } 225 case PathDiagnosticPiece::Event: { 226 auto &event = cast<PathDiagnosticEventPiece>(*piece); 227 228 // We never throw away an event, but we do throw it away wholesale 229 // as part of a path if we throw the entire path away. 230 containsSomethingInteresting |= !event.isPrunable(); 231 break; 232 } 233 case PathDiagnosticPiece::ControlFlow: 234 break; 235 236 case PathDiagnosticPiece::Note: 237 break; 238 } 239 240 pieces.push_back(std::move(piece)); 241 } 242 243 return containsSomethingInteresting; 244 } 245 246 /// Returns true if the given decl has been implicitly given a body, either by 247 /// the analyzer or by the compiler proper. 248 static bool hasImplicitBody(const Decl *D) { 249 assert(D); 250 return D->isImplicit() || !D->hasBody(); 251 } 252 253 /// Recursively scan through a path and make sure that all call pieces have 254 /// valid locations. 255 static void 256 adjustCallLocations(PathPieces &Pieces, 257 PathDiagnosticLocation *LastCallLocation = nullptr) { 258 for (const auto &I : Pieces) { 259 auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get()); 260 261 if (!Call) 262 continue; 263 264 if (LastCallLocation) { 265 bool CallerIsImplicit = hasImplicitBody(Call->getCaller()); 266 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid()) 267 Call->callEnter = *LastCallLocation; 268 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid()) 269 Call->callReturn = *LastCallLocation; 270 } 271 272 // Recursively clean out the subclass. Keep this call around if 273 // it contains any informative diagnostics. 274 PathDiagnosticLocation *ThisCallLocation; 275 if (Call->callEnterWithin.asLocation().isValid() && 276 !hasImplicitBody(Call->getCallee())) 277 ThisCallLocation = &Call->callEnterWithin; 278 else 279 ThisCallLocation = &Call->callEnter; 280 281 assert(ThisCallLocation && "Outermost call has an invalid location"); 282 adjustCallLocations(Call->path, ThisCallLocation); 283 } 284 } 285 286 /// Remove edges in and out of C++ default initializer expressions. These are 287 /// for fields that have in-class initializers, as opposed to being initialized 288 /// explicitly in a constructor or braced list. 289 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) { 290 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 291 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 292 removeEdgesToDefaultInitializers(C->path); 293 294 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 295 removeEdgesToDefaultInitializers(M->subPieces); 296 297 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) { 298 const Stmt *Start = CF->getStartLocation().asStmt(); 299 const Stmt *End = CF->getEndLocation().asStmt(); 300 if (Start && isa<CXXDefaultInitExpr>(Start)) { 301 I = Pieces.erase(I); 302 continue; 303 } else if (End && isa<CXXDefaultInitExpr>(End)) { 304 PathPieces::iterator Next = std::next(I); 305 if (Next != E) { 306 if (auto *NextCF = 307 dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) { 308 NextCF->setStartLocation(CF->getStartLocation()); 309 } 310 } 311 I = Pieces.erase(I); 312 continue; 313 } 314 } 315 316 I++; 317 } 318 } 319 320 /// Remove all pieces with invalid locations as these cannot be serialized. 321 /// We might have pieces with invalid locations as a result of inlining Body 322 /// Farm generated functions. 323 static void removePiecesWithInvalidLocations(PathPieces &Pieces) { 324 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 325 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 326 removePiecesWithInvalidLocations(C->path); 327 328 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 329 removePiecesWithInvalidLocations(M->subPieces); 330 331 if (!(*I)->getLocation().isValid() || 332 !(*I)->getLocation().asLocation().isValid()) { 333 I = Pieces.erase(I); 334 continue; 335 } 336 I++; 337 } 338 } 339 340 //===----------------------------------------------------------------------===// 341 // PathDiagnosticBuilder and its associated routines and helper objects. 342 //===----------------------------------------------------------------------===// 343 344 namespace { 345 346 class NodeMapClosure : public BugReport::NodeResolver { 347 InterExplodedGraphMap &M; 348 349 public: 350 NodeMapClosure(InterExplodedGraphMap &m) : M(m) {} 351 352 const ExplodedNode *getOriginalNode(const ExplodedNode *N) override { 353 return M.lookup(N); 354 } 355 }; 356 357 class PathDiagnosticBuilder : public BugReporterContext { 358 BugReport *R; 359 PathDiagnosticConsumer *PDC; 360 NodeMapClosure NMC; 361 362 public: 363 const LocationContext *LC; 364 365 PathDiagnosticBuilder(GRBugReporter &br, 366 BugReport *r, InterExplodedGraphMap &Backmap, 367 PathDiagnosticConsumer *pdc) 368 : BugReporterContext(br), R(r), PDC(pdc), NMC(Backmap), 369 LC(r->getErrorNode()->getLocationContext()) {} 370 371 PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N); 372 373 PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os, 374 const ExplodedNode *N); 375 376 BugReport *getBugReport() { return R; } 377 378 Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); } 379 380 ParentMap& getParentMap() { return LC->getParentMap(); } 381 382 const Stmt *getParent(const Stmt *S) { 383 return getParentMap().getParent(S); 384 } 385 386 NodeMapClosure& getNodeResolver() override { return NMC; } 387 388 PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S); 389 390 PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const { 391 return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive; 392 } 393 394 bool supportsLogicalOpControlFlow() const { 395 return PDC ? PDC->supportsLogicalOpControlFlow() : true; 396 } 397 }; 398 399 } // namespace 400 401 PathDiagnosticLocation 402 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) { 403 if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N)) 404 return PathDiagnosticLocation(S, getSourceManager(), LC); 405 406 return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(), 407 getSourceManager()); 408 } 409 410 PathDiagnosticLocation 411 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os, 412 const ExplodedNode *N) { 413 // Slow, but probably doesn't matter. 414 if (os.str().empty()) 415 os << ' '; 416 417 const PathDiagnosticLocation &Loc = ExecutionContinues(N); 418 419 if (Loc.asStmt()) 420 os << "Execution continues on line " 421 << getSourceManager().getExpansionLineNumber(Loc.asLocation()) 422 << '.'; 423 else { 424 os << "Execution jumps to the end of the "; 425 const Decl *D = N->getLocationContext()->getDecl(); 426 if (isa<ObjCMethodDecl>(D)) 427 os << "method"; 428 else if (isa<FunctionDecl>(D)) 429 os << "function"; 430 else { 431 assert(isa<BlockDecl>(D)); 432 os << "anonymous block"; 433 } 434 os << '.'; 435 } 436 437 return Loc; 438 } 439 440 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) { 441 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) 442 return PM.getParentIgnoreParens(S); 443 444 const Stmt *Parent = PM.getParentIgnoreParens(S); 445 if (!Parent) 446 return nullptr; 447 448 switch (Parent->getStmtClass()) { 449 case Stmt::ForStmtClass: 450 case Stmt::DoStmtClass: 451 case Stmt::WhileStmtClass: 452 case Stmt::ObjCForCollectionStmtClass: 453 case Stmt::CXXForRangeStmtClass: 454 return Parent; 455 default: 456 break; 457 } 458 459 return nullptr; 460 } 461 462 static PathDiagnosticLocation 463 getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P, 464 const LocationContext *LC, bool allowNestedContexts) { 465 if (!S) 466 return {}; 467 468 while (const Stmt *Parent = getEnclosingParent(S, P)) { 469 switch (Parent->getStmtClass()) { 470 case Stmt::BinaryOperatorClass: { 471 const auto *B = cast<BinaryOperator>(Parent); 472 if (B->isLogicalOp()) 473 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC); 474 break; 475 } 476 case Stmt::CompoundStmtClass: 477 case Stmt::StmtExprClass: 478 return PathDiagnosticLocation(S, SMgr, LC); 479 case Stmt::ChooseExprClass: 480 // Similar to '?' if we are referring to condition, just have the edge 481 // point to the entire choose expression. 482 if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S) 483 return PathDiagnosticLocation(Parent, SMgr, LC); 484 else 485 return PathDiagnosticLocation(S, SMgr, LC); 486 case Stmt::BinaryConditionalOperatorClass: 487 case Stmt::ConditionalOperatorClass: 488 // For '?', if we are referring to condition, just have the edge point 489 // to the entire '?' expression. 490 if (allowNestedContexts || 491 cast<AbstractConditionalOperator>(Parent)->getCond() == S) 492 return PathDiagnosticLocation(Parent, SMgr, LC); 493 else 494 return PathDiagnosticLocation(S, SMgr, LC); 495 case Stmt::CXXForRangeStmtClass: 496 if (cast<CXXForRangeStmt>(Parent)->getBody() == S) 497 return PathDiagnosticLocation(S, SMgr, LC); 498 break; 499 case Stmt::DoStmtClass: 500 return PathDiagnosticLocation(S, SMgr, LC); 501 case Stmt::ForStmtClass: 502 if (cast<ForStmt>(Parent)->getBody() == S) 503 return PathDiagnosticLocation(S, SMgr, LC); 504 break; 505 case Stmt::IfStmtClass: 506 if (cast<IfStmt>(Parent)->getCond() != S) 507 return PathDiagnosticLocation(S, SMgr, LC); 508 break; 509 case Stmt::ObjCForCollectionStmtClass: 510 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) 511 return PathDiagnosticLocation(S, SMgr, LC); 512 break; 513 case Stmt::WhileStmtClass: 514 if (cast<WhileStmt>(Parent)->getCond() != S) 515 return PathDiagnosticLocation(S, SMgr, LC); 516 break; 517 default: 518 break; 519 } 520 521 S = Parent; 522 } 523 524 assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); 525 526 return PathDiagnosticLocation(S, SMgr, LC); 527 } 528 529 PathDiagnosticLocation 530 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) { 531 assert(S && "Null Stmt passed to getEnclosingStmtLocation"); 532 return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC, 533 /*allowNestedContexts=*/false); 534 } 535 536 //===----------------------------------------------------------------------===// 537 // "Visitors only" path diagnostic generation algorithm. 538 //===----------------------------------------------------------------------===// 539 static bool GenerateVisitorsOnlyPathDiagnostic( 540 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 541 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 542 // All path generation skips the very first node (the error node). 543 // This is because there is special handling for the end-of-path note. 544 N = N->getFirstPred(); 545 if (!N) 546 return true; 547 548 BugReport *R = PDB.getBugReport(); 549 while (const ExplodedNode *Pred = N->getFirstPred()) { 550 for (auto &V : visitors) 551 // Visit all the node pairs, but throw the path pieces away. 552 V->VisitNode(N, Pred, PDB, *R); 553 554 N = Pred; 555 } 556 557 return R->isValid(); 558 } 559 560 //===----------------------------------------------------------------------===// 561 // "Minimal" path diagnostic generation algorithm. 562 //===----------------------------------------------------------------------===// 563 using StackDiagPair = 564 std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>; 565 using StackDiagVector = SmallVector<StackDiagPair, 6>; 566 567 static void updateStackPiecesWithMessage(PathDiagnosticPiece &P, 568 StackDiagVector &CallStack) { 569 // If the piece contains a special message, add it to all the call 570 // pieces on the active stack. 571 if (auto *ep = dyn_cast<PathDiagnosticEventPiece>(&P)) { 572 if (ep->hasCallStackHint()) 573 for (const auto &I : CallStack) { 574 PathDiagnosticCallPiece *CP = I.first; 575 const ExplodedNode *N = I.second; 576 std::string stackMsg = ep->getCallStackMessage(N); 577 578 // The last message on the path to final bug is the most important 579 // one. Since we traverse the path backwards, do not add the message 580 // if one has been previously added. 581 if (!CP->hasCallStackMessage()) 582 CP->setCallStackMessage(stackMsg); 583 } 584 } 585 } 586 587 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM); 588 589 /// Add path diagnostic for statement associated with node \p N 590 /// to diagnostics \p PD. 591 /// Precondition: location associated with \p N is a \c BlockEdge. 592 static void generateMinimalDiagnosticsForBlockEdge(const ExplodedNode *N, 593 PathDiagnosticBuilder &PDB, 594 PathDiagnostic &PD) { 595 const LocationContext *LC = N->getLocationContext(); 596 SourceManager& SMgr = PDB.getSourceManager(); 597 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 598 const CFGBlock *Src = BE.getSrc(); 599 const CFGBlock *Dst = BE.getDst(); 600 const Stmt *T = Src->getTerminator(); 601 if (!T) 602 return; 603 604 auto Start = PathDiagnosticLocation::createBegin(T, SMgr, LC); 605 switch (T->getStmtClass()) { 606 default: 607 break; 608 609 case Stmt::GotoStmtClass: 610 case Stmt::IndirectGotoStmtClass: { 611 const Stmt *S = PathDiagnosticLocation::getNextStmt(N); 612 613 if (!S) 614 break; 615 616 std::string sbuf; 617 llvm::raw_string_ostream os(sbuf); 618 const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S); 619 620 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber(); 621 PD.getActivePath().push_front( 622 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 623 break; 624 } 625 626 case Stmt::SwitchStmtClass: { 627 // Figure out what case arm we took. 628 std::string sbuf; 629 llvm::raw_string_ostream os(sbuf); 630 631 if (const Stmt *S = Dst->getLabel()) { 632 PathDiagnosticLocation End(S, SMgr, LC); 633 634 switch (S->getStmtClass()) { 635 default: 636 os << "No cases match in the switch statement. " 637 "Control jumps to line " 638 << End.asLocation().getExpansionLineNumber(); 639 break; 640 case Stmt::DefaultStmtClass: 641 os << "Control jumps to the 'default' case at line " 642 << End.asLocation().getExpansionLineNumber(); 643 break; 644 645 case Stmt::CaseStmtClass: { 646 os << "Control jumps to 'case "; 647 const auto *Case = cast<CaseStmt>(S); 648 const Expr *LHS = Case->getLHS()->IgnoreParenCasts(); 649 650 // Determine if it is an enum. 651 bool GetRawInt = true; 652 653 if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) { 654 // FIXME: Maybe this should be an assertion. Are there cases 655 // were it is not an EnumConstantDecl? 656 const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl()); 657 658 if (D) { 659 GetRawInt = false; 660 os << *D; 661 } 662 } 663 664 if (GetRawInt) 665 os << LHS->EvaluateKnownConstInt(PDB.getASTContext()); 666 667 os << ":' at line " << End.asLocation().getExpansionLineNumber(); 668 break; 669 } 670 } 671 PD.getActivePath().push_front( 672 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 673 os.str())); 674 } else { 675 os << "'Default' branch taken. "; 676 const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N); 677 PD.getActivePath().push_front( 678 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 679 os.str())); 680 } 681 682 break; 683 } 684 685 case Stmt::BreakStmtClass: 686 case Stmt::ContinueStmtClass: { 687 std::string sbuf; 688 llvm::raw_string_ostream os(sbuf); 689 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 690 PD.getActivePath().push_front( 691 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 692 break; 693 } 694 695 // Determine control-flow for ternary '?'. 696 case Stmt::BinaryConditionalOperatorClass: 697 case Stmt::ConditionalOperatorClass: { 698 std::string sbuf; 699 llvm::raw_string_ostream os(sbuf); 700 os << "'?' condition is "; 701 702 if (*(Src->succ_begin() + 1) == Dst) 703 os << "false"; 704 else 705 os << "true"; 706 707 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 708 709 if (const Stmt *S = End.asStmt()) 710 End = PDB.getEnclosingStmtLocation(S); 711 712 PD.getActivePath().push_front( 713 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 714 break; 715 } 716 717 // Determine control-flow for short-circuited '&&' and '||'. 718 case Stmt::BinaryOperatorClass: { 719 if (!PDB.supportsLogicalOpControlFlow()) 720 break; 721 722 const auto *B = cast<BinaryOperator>(T); 723 std::string sbuf; 724 llvm::raw_string_ostream os(sbuf); 725 os << "Left side of '"; 726 727 if (B->getOpcode() == BO_LAnd) { 728 os << "&&" 729 << "' is "; 730 731 if (*(Src->succ_begin() + 1) == Dst) { 732 os << "false"; 733 PathDiagnosticLocation End(B->getLHS(), SMgr, LC); 734 PathDiagnosticLocation Start = 735 PathDiagnosticLocation::createOperatorLoc(B, SMgr); 736 PD.getActivePath().push_front( 737 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 738 os.str())); 739 } else { 740 os << "true"; 741 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); 742 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 743 PD.getActivePath().push_front( 744 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 745 os.str())); 746 } 747 } else { 748 assert(B->getOpcode() == BO_LOr); 749 os << "||" 750 << "' is "; 751 752 if (*(Src->succ_begin() + 1) == Dst) { 753 os << "false"; 754 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); 755 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 756 PD.getActivePath().push_front( 757 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 758 os.str())); 759 } else { 760 os << "true"; 761 PathDiagnosticLocation End(B->getLHS(), SMgr, LC); 762 PathDiagnosticLocation Start = 763 PathDiagnosticLocation::createOperatorLoc(B, SMgr); 764 PD.getActivePath().push_front( 765 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 766 os.str())); 767 } 768 } 769 770 break; 771 } 772 773 case Stmt::DoStmtClass: 774 if (*(Src->succ_begin()) == Dst) { 775 std::string sbuf; 776 llvm::raw_string_ostream os(sbuf); 777 778 os << "Loop condition is true. "; 779 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 780 781 if (const Stmt *S = End.asStmt()) 782 End = PDB.getEnclosingStmtLocation(S); 783 784 PD.getActivePath().push_front( 785 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 786 os.str())); 787 } else { 788 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 789 790 if (const Stmt *S = End.asStmt()) 791 End = PDB.getEnclosingStmtLocation(S); 792 793 PD.getActivePath().push_front( 794 std::make_shared<PathDiagnosticControlFlowPiece>( 795 Start, End, "Loop condition is false. Exiting loop")); 796 } 797 break; 798 799 case Stmt::WhileStmtClass: 800 case Stmt::ForStmtClass: 801 if (*(Src->succ_begin() + 1) == Dst) { 802 std::string sbuf; 803 llvm::raw_string_ostream os(sbuf); 804 805 os << "Loop condition is false. "; 806 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 807 if (const Stmt *S = End.asStmt()) 808 End = PDB.getEnclosingStmtLocation(S); 809 810 PD.getActivePath().push_front( 811 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 812 os.str())); 813 } else { 814 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 815 if (const Stmt *S = End.asStmt()) 816 End = PDB.getEnclosingStmtLocation(S); 817 818 PD.getActivePath().push_front( 819 std::make_shared<PathDiagnosticControlFlowPiece>( 820 Start, End, "Loop condition is true. Entering loop body")); 821 } 822 823 break; 824 825 case Stmt::IfStmtClass: { 826 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 827 828 if (const Stmt *S = End.asStmt()) 829 End = PDB.getEnclosingStmtLocation(S); 830 831 if (*(Src->succ_begin() + 1) == Dst) 832 PD.getActivePath().push_front( 833 std::make_shared<PathDiagnosticControlFlowPiece>( 834 Start, End, "Taking false branch")); 835 else 836 PD.getActivePath().push_front( 837 std::make_shared<PathDiagnosticControlFlowPiece>( 838 Start, End, "Taking true branch")); 839 840 break; 841 } 842 } 843 } 844 845 /// Generate minimal diagnostics for node \p N, and write it into path 846 /// diagnostics \p PD. 847 void generateMinimalDiagnosticsForNode(const ExplodedNode *N, 848 PathDiagnosticBuilder &PDB, 849 PathDiagnostic &PD, 850 LocationContextMap &LCM, 851 StackDiagVector &CallStack) { 852 SourceManager &SMgr = PDB.getSourceManager(); 853 ProgramPoint P = N->getLocation(); 854 855 if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 856 auto C = PathDiagnosticCallPiece::construct(N, *CE, SMgr); 857 // Record the mapping from call piece to LocationContext. 858 LCM[&C->path] = CE->getCalleeContext(); 859 auto *P = C.get(); 860 PD.getActivePath().push_front(std::move(C)); 861 PD.pushActivePath(&P->path); 862 CallStack.push_back(StackDiagPair(P, N)); 863 } else if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { 864 // Flush all locations, and pop the active path. 865 bool VisitedEntireCall = PD.isWithinCall(); 866 PD.popActivePath(); 867 868 // Either we just added a bunch of stuff to the top-level path, or 869 // we have a previous CallExitEnd. If the former, it means that the 870 // path terminated within a function call. We must then take the 871 // current contents of the active path and place it within 872 // a new PathDiagnosticCallPiece. 873 PathDiagnosticCallPiece *C; 874 if (VisitedEntireCall) { 875 C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front().get()); 876 } else { 877 const Decl *Caller = CE->getLocationContext()->getDecl(); 878 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 879 // Record the mapping from call piece to LocationContext. 880 LCM[&C->path] = CE->getCalleeContext(); 881 } 882 883 C->setCallee(*CE, SMgr); 884 if (!CallStack.empty()) { 885 assert(CallStack.back().first == C); 886 CallStack.pop_back(); 887 } 888 } else if (P.getKind() == ProgramPoint::BlockEdgeKind) { 889 generateMinimalDiagnosticsForBlockEdge(N, PDB, PD); 890 } 891 } 892 893 static bool GenerateMinimalPathDiagnostic( 894 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 895 LocationContextMap &LCM, 896 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 897 const ExplodedNode *NextNode = N->pred_empty() 898 ? nullptr : *(N->pred_begin()); 899 StackDiagVector CallStack; 900 901 while (NextNode) { 902 N = NextNode; 903 PDB.LC = N->getLocationContext(); 904 NextNode = N->getFirstPred(); 905 906 generateMinimalDiagnosticsForNode(N, PDB, PD, LCM, CallStack); 907 908 if (NextNode) { 909 // Add diagnostic pieces from custom visitors. 910 BugReport *R = PDB.getBugReport(); 911 llvm::FoldingSet<PathDiagnosticPiece> DeduplicationSet; 912 for (auto &V : visitors) { 913 if (auto p = V->VisitNode(N, NextNode, PDB, *R)) { 914 if (DeduplicationSet.GetOrInsertNode(p.get()) != p.get()) 915 continue; 916 917 updateStackPiecesWithMessage(*p, CallStack); 918 PD.getActivePath().push_front(std::move(p)); 919 } 920 } 921 } 922 } 923 924 if (!PDB.getBugReport()->isValid()) 925 return false; 926 927 // After constructing the full PathDiagnostic, do a pass over it to compact 928 // PathDiagnosticPieces that occur within a macro. 929 CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager()); 930 return true; 931 } 932 933 //===----------------------------------------------------------------------===// 934 // "Extensive" PathDiagnostic generation. 935 //===----------------------------------------------------------------------===// 936 937 static bool IsControlFlowExpr(const Stmt *S) { 938 const auto *E = dyn_cast<Expr>(S); 939 940 if (!E) 941 return false; 942 943 E = E->IgnoreParenCasts(); 944 945 if (isa<AbstractConditionalOperator>(E)) 946 return true; 947 948 if (const auto *B = dyn_cast<BinaryOperator>(E)) 949 if (B->isLogicalOp()) 950 return true; 951 952 return false; 953 } 954 955 namespace { 956 957 class ContextLocation : public PathDiagnosticLocation { 958 bool IsDead; 959 960 public: 961 ContextLocation(const PathDiagnosticLocation &L, bool isdead = false) 962 : PathDiagnosticLocation(L), IsDead(isdead) {} 963 964 void markDead() { IsDead = true; } 965 bool isDead() const { return IsDead; } 966 }; 967 968 } // namespace 969 970 static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L, 971 const LocationContext *LC, 972 bool firstCharOnly = false) { 973 if (const Stmt *S = L.asStmt()) { 974 const Stmt *Original = S; 975 while (true) { 976 // Adjust the location for some expressions that are best referenced 977 // by one of their subexpressions. 978 switch (S->getStmtClass()) { 979 default: 980 break; 981 case Stmt::ParenExprClass: 982 case Stmt::GenericSelectionExprClass: 983 S = cast<Expr>(S)->IgnoreParens(); 984 firstCharOnly = true; 985 continue; 986 case Stmt::BinaryConditionalOperatorClass: 987 case Stmt::ConditionalOperatorClass: 988 S = cast<AbstractConditionalOperator>(S)->getCond(); 989 firstCharOnly = true; 990 continue; 991 case Stmt::ChooseExprClass: 992 S = cast<ChooseExpr>(S)->getCond(); 993 firstCharOnly = true; 994 continue; 995 case Stmt::BinaryOperatorClass: 996 S = cast<BinaryOperator>(S)->getLHS(); 997 firstCharOnly = true; 998 continue; 999 } 1000 break; 1001 } 1002 1003 if (S != Original) 1004 L = PathDiagnosticLocation(S, L.getManager(), LC); 1005 } 1006 1007 if (firstCharOnly) 1008 L = PathDiagnosticLocation::createSingleLocation(L); 1009 1010 return L; 1011 } 1012 1013 namespace { 1014 1015 class EdgeBuilder { 1016 std::vector<ContextLocation> CLocs; 1017 1018 using iterator = std::vector<ContextLocation>::iterator; 1019 1020 PathDiagnostic &PD; 1021 PathDiagnosticBuilder &PDB; 1022 PathDiagnosticLocation PrevLoc; 1023 1024 bool IsConsumedExpr(const PathDiagnosticLocation &L); 1025 1026 bool containsLocation(const PathDiagnosticLocation &Container, 1027 const PathDiagnosticLocation &Containee); 1028 1029 PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L); 1030 1031 void popLocation() { 1032 if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) { 1033 // For contexts, we only one the first character as the range. 1034 rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true)); 1035 } 1036 CLocs.pop_back(); 1037 } 1038 1039 public: 1040 EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb) 1041 : PD(pd), PDB(pdb) { 1042 // If the PathDiagnostic already has pieces, add the enclosing statement 1043 // of the first piece as a context as well. 1044 if (!PD.path.empty()) { 1045 PrevLoc = (*PD.path.begin())->getLocation(); 1046 1047 if (const Stmt *S = PrevLoc.asStmt()) 1048 addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); 1049 } 1050 } 1051 1052 ~EdgeBuilder() { 1053 while (!CLocs.empty()) popLocation(); 1054 1055 // Finally, add an initial edge from the start location of the first 1056 // statement (if it doesn't already exist). 1057 PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin( 1058 PDB.LC, 1059 PDB.getSourceManager()); 1060 if (L.isValid()) 1061 rawAddEdge(L); 1062 } 1063 1064 void flushLocations() { 1065 while (!CLocs.empty()) 1066 popLocation(); 1067 PrevLoc = PathDiagnosticLocation(); 1068 } 1069 1070 void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false, 1071 bool IsPostJump = false); 1072 1073 void rawAddEdge(PathDiagnosticLocation NewLoc); 1074 1075 void addContext(const Stmt *S); 1076 void addContext(const PathDiagnosticLocation &L); 1077 void addExtendedContext(const Stmt *S); 1078 }; 1079 1080 } // namespace 1081 1082 PathDiagnosticLocation 1083 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) { 1084 if (const Stmt *S = L.asStmt()) { 1085 if (IsControlFlowExpr(S)) 1086 return L; 1087 1088 return PDB.getEnclosingStmtLocation(S); 1089 } 1090 1091 return L; 1092 } 1093 1094 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container, 1095 const PathDiagnosticLocation &Containee) { 1096 if (Container == Containee) 1097 return true; 1098 1099 if (Container.asDecl()) 1100 return true; 1101 1102 if (const Stmt *S = Containee.asStmt()) 1103 if (const Stmt *ContainerS = Container.asStmt()) { 1104 while (S) { 1105 if (S == ContainerS) 1106 return true; 1107 S = PDB.getParent(S); 1108 } 1109 return false; 1110 } 1111 1112 // Less accurate: compare using source ranges. 1113 SourceRange ContainerR = Container.asRange(); 1114 SourceRange ContaineeR = Containee.asRange(); 1115 1116 SourceManager &SM = PDB.getSourceManager(); 1117 SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin()); 1118 SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd()); 1119 SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin()); 1120 SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd()); 1121 1122 unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg); 1123 unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd); 1124 unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg); 1125 unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd); 1126 1127 assert(ContainerBegLine <= ContainerEndLine); 1128 assert(ContaineeBegLine <= ContaineeEndLine); 1129 1130 return (ContainerBegLine <= ContaineeBegLine && 1131 ContainerEndLine >= ContaineeEndLine && 1132 (ContainerBegLine != ContaineeBegLine || 1133 SM.getExpansionColumnNumber(ContainerRBeg) <= 1134 SM.getExpansionColumnNumber(ContaineeRBeg)) && 1135 (ContainerEndLine != ContaineeEndLine || 1136 SM.getExpansionColumnNumber(ContainerREnd) >= 1137 SM.getExpansionColumnNumber(ContaineeREnd))); 1138 } 1139 1140 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) { 1141 if (!PrevLoc.isValid()) { 1142 PrevLoc = NewLoc; 1143 return; 1144 } 1145 1146 const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC); 1147 const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC); 1148 1149 if (PrevLocClean.asLocation().isInvalid()) { 1150 PrevLoc = NewLoc; 1151 return; 1152 } 1153 1154 if (NewLocClean.asLocation() == PrevLocClean.asLocation()) 1155 return; 1156 1157 // FIXME: Ignore intra-macro edges for now. 1158 if (NewLocClean.asLocation().getExpansionLoc() == 1159 PrevLocClean.asLocation().getExpansionLoc()) 1160 return; 1161 1162 PD.getActivePath().push_front( 1163 std::make_shared<PathDiagnosticControlFlowPiece>(NewLocClean, 1164 PrevLocClean)); 1165 PrevLoc = NewLoc; 1166 } 1167 1168 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd, 1169 bool IsPostJump) { 1170 if (!alwaysAdd && NewLoc.asLocation().isMacroID()) 1171 return; 1172 1173 const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc); 1174 1175 while (!CLocs.empty()) { 1176 ContextLocation &TopContextLoc = CLocs.back(); 1177 1178 // Is the top location context the same as the one for the new location? 1179 if (TopContextLoc == CLoc) { 1180 if (alwaysAdd) { 1181 if (IsConsumedExpr(TopContextLoc)) 1182 TopContextLoc.markDead(); 1183 1184 rawAddEdge(NewLoc); 1185 } 1186 1187 if (IsPostJump) 1188 TopContextLoc.markDead(); 1189 return; 1190 } 1191 1192 if (containsLocation(TopContextLoc, CLoc)) { 1193 if (alwaysAdd) { 1194 rawAddEdge(NewLoc); 1195 1196 if (IsConsumedExpr(CLoc)) { 1197 CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true)); 1198 return; 1199 } 1200 } 1201 1202 CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump)); 1203 return; 1204 } 1205 1206 // Context does not contain the location. Flush it. 1207 popLocation(); 1208 } 1209 1210 // If we reach here, there is no enclosing context. Just add the edge. 1211 rawAddEdge(NewLoc); 1212 } 1213 1214 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) { 1215 if (const auto *X = dyn_cast_or_null<Expr>(L.asStmt())) 1216 return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X); 1217 1218 return false; 1219 } 1220 1221 void EdgeBuilder::addExtendedContext(const Stmt *S) { 1222 if (!S) 1223 return; 1224 1225 const Stmt *Parent = PDB.getParent(S); 1226 while (Parent) { 1227 if (isa<CompoundStmt>(Parent)) 1228 Parent = PDB.getParent(Parent); 1229 else 1230 break; 1231 } 1232 1233 if (Parent) { 1234 switch (Parent->getStmtClass()) { 1235 case Stmt::DoStmtClass: 1236 case Stmt::ObjCAtSynchronizedStmtClass: 1237 addContext(Parent); 1238 break; 1239 default: 1240 break; 1241 } 1242 } 1243 1244 addContext(S); 1245 } 1246 1247 void EdgeBuilder::addContext(const Stmt *S) { 1248 if (!S) 1249 return; 1250 1251 PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC); 1252 addContext(L); 1253 } 1254 1255 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) { 1256 while (!CLocs.empty()) { 1257 const PathDiagnosticLocation &TopContextLoc = CLocs.back(); 1258 1259 // Is the top location context the same as the one for the new location? 1260 if (TopContextLoc == L) 1261 return; 1262 1263 if (containsLocation(TopContextLoc, L)) { 1264 CLocs.push_back(L); 1265 return; 1266 } 1267 1268 // Context does not contain the location. Flush it. 1269 popLocation(); 1270 } 1271 1272 CLocs.push_back(L); 1273 } 1274 1275 // Cone-of-influence: support the reverse propagation of "interesting" symbols 1276 // and values by tracing interesting calculations backwards through evaluated 1277 // expressions along a path. This is probably overly complicated, but the idea 1278 // is that if an expression computed an "interesting" value, the child 1279 // expressions are are also likely to be "interesting" as well (which then 1280 // propagates to the values they in turn compute). This reverse propagation 1281 // is needed to track interesting correlations across function call boundaries, 1282 // where formal arguments bind to actual arguments, etc. This is also needed 1283 // because the constraint solver sometimes simplifies certain symbolic values 1284 // into constants when appropriate, and this complicates reasoning about 1285 // interesting values. 1286 using InterestingExprs = llvm::DenseSet<const Expr *>; 1287 1288 static void reversePropagateIntererstingSymbols(BugReport &R, 1289 InterestingExprs &IE, 1290 const ProgramState *State, 1291 const Expr *Ex, 1292 const LocationContext *LCtx) { 1293 SVal V = State->getSVal(Ex, LCtx); 1294 if (!(R.isInteresting(V) || IE.count(Ex))) 1295 return; 1296 1297 switch (Ex->getStmtClass()) { 1298 default: 1299 if (!isa<CastExpr>(Ex)) 1300 break; 1301 // Fall through. 1302 case Stmt::BinaryOperatorClass: 1303 case Stmt::UnaryOperatorClass: { 1304 for (const Stmt *SubStmt : Ex->children()) { 1305 if (const auto *child = dyn_cast_or_null<Expr>(SubStmt)) { 1306 IE.insert(child); 1307 SVal ChildV = State->getSVal(child, LCtx); 1308 R.markInteresting(ChildV); 1309 } 1310 } 1311 break; 1312 } 1313 } 1314 1315 R.markInteresting(V); 1316 } 1317 1318 static void reversePropagateInterestingSymbols(BugReport &R, 1319 InterestingExprs &IE, 1320 const ProgramState *State, 1321 const LocationContext *CalleeCtx, 1322 const LocationContext *CallerCtx) 1323 { 1324 // FIXME: Handle non-CallExpr-based CallEvents. 1325 const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame(); 1326 const Stmt *CallSite = Callee->getCallSite(); 1327 if (const auto *CE = dyn_cast_or_null<CallExpr>(CallSite)) { 1328 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) { 1329 FunctionDecl::param_const_iterator PI = FD->param_begin(), 1330 PE = FD->param_end(); 1331 CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); 1332 for (; AI != AE && PI != PE; ++AI, ++PI) { 1333 if (const Expr *ArgE = *AI) { 1334 if (const ParmVarDecl *PD = *PI) { 1335 Loc LV = State->getLValue(PD, CalleeCtx); 1336 if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV))) 1337 IE.insert(ArgE); 1338 } 1339 } 1340 } 1341 } 1342 } 1343 } 1344 1345 //===----------------------------------------------------------------------===// 1346 // Functions for determining if a loop was executed 0 times. 1347 //===----------------------------------------------------------------------===// 1348 1349 static bool isLoop(const Stmt *Term) { 1350 switch (Term->getStmtClass()) { 1351 case Stmt::ForStmtClass: 1352 case Stmt::WhileStmtClass: 1353 case Stmt::ObjCForCollectionStmtClass: 1354 case Stmt::CXXForRangeStmtClass: 1355 return true; 1356 default: 1357 // Note that we intentionally do not include do..while here. 1358 return false; 1359 } 1360 } 1361 1362 static bool isJumpToFalseBranch(const BlockEdge *BE) { 1363 const CFGBlock *Src = BE->getSrc(); 1364 assert(Src->succ_size() == 2); 1365 return (*(Src->succ_begin()+1) == BE->getDst()); 1366 } 1367 1368 /// Return true if the terminator is a loop and the destination is the 1369 /// false branch. 1370 static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) { 1371 if (!isLoop(Term)) 1372 return false; 1373 1374 // Did we take the false branch? 1375 return isJumpToFalseBranch(BE); 1376 } 1377 1378 static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) { 1379 while (SubS) { 1380 if (SubS == S) 1381 return true; 1382 SubS = PM.getParent(SubS); 1383 } 1384 return false; 1385 } 1386 1387 static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term, 1388 const ExplodedNode *N) { 1389 while (N) { 1390 Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>(); 1391 if (SP) { 1392 const Stmt *S = SP->getStmt(); 1393 if (!isContainedByStmt(PM, Term, S)) 1394 return S; 1395 } 1396 N = N->getFirstPred(); 1397 } 1398 return nullptr; 1399 } 1400 1401 static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) { 1402 const Stmt *LoopBody = nullptr; 1403 switch (Term->getStmtClass()) { 1404 case Stmt::CXXForRangeStmtClass: { 1405 const auto *FR = cast<CXXForRangeStmt>(Term); 1406 if (isContainedByStmt(PM, FR->getInc(), S)) 1407 return true; 1408 if (isContainedByStmt(PM, FR->getLoopVarStmt(), S)) 1409 return true; 1410 LoopBody = FR->getBody(); 1411 break; 1412 } 1413 case Stmt::ForStmtClass: { 1414 const auto *FS = cast<ForStmt>(Term); 1415 if (isContainedByStmt(PM, FS->getInc(), S)) 1416 return true; 1417 LoopBody = FS->getBody(); 1418 break; 1419 } 1420 case Stmt::ObjCForCollectionStmtClass: { 1421 const auto *FC = cast<ObjCForCollectionStmt>(Term); 1422 LoopBody = FC->getBody(); 1423 break; 1424 } 1425 case Stmt::WhileStmtClass: 1426 LoopBody = cast<WhileStmt>(Term)->getBody(); 1427 break; 1428 default: 1429 return false; 1430 } 1431 return isContainedByStmt(PM, LoopBody, S); 1432 } 1433 1434 /// Generate extensive diagnostics for statement associated with node \p N, 1435 /// and write it into \p PD. 1436 static void generateExtensiveDiagnosticsForNode( 1437 const ExplodedNode *N, 1438 PathDiagnosticBuilder &PDB, 1439 LocationContextMap &LCM, 1440 EdgeBuilder &EB, 1441 StackDiagVector &CallStack, 1442 PathDiagnostic &PD, 1443 InterestingExprs &IE) { 1444 const ExplodedNode *NextNode = N->getFirstPred(); 1445 ProgramPoint P = N->getLocation(); 1446 const SourceManager& SM = PDB.getSourceManager(); 1447 1448 if (Optional<PostStmt> PS = P.getAs<PostStmt>()) { 1449 if (const Expr *Ex = PS->getStmtAs<Expr>()) 1450 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1451 N->getState().get(), Ex, 1452 N->getLocationContext()); 1453 return; 1454 } else if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 1455 const Stmt *S = CE->getCalleeContext()->getCallSite(); 1456 if (const auto *Ex = dyn_cast_or_null<Expr>(S)) { 1457 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1458 N->getState().get(), Ex, 1459 N->getLocationContext()); 1460 } 1461 1462 auto C = PathDiagnosticCallPiece::construct(N, *CE, SM); 1463 LCM[&C->path] = CE->getCalleeContext(); 1464 1465 EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true); 1466 EB.flushLocations(); 1467 1468 auto *P = C.get(); 1469 PD.getActivePath().push_front(std::move(C)); 1470 PD.pushActivePath(&P->path); 1471 CallStack.push_back(StackDiagPair(P, N)); 1472 return; 1473 } else if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { 1474 // Pop the call hierarchy if we are done walking the contents 1475 // of a function call. 1476 1477 // Add an edge to the start of the function. 1478 const Decl *D = CE->getCalleeContext()->getDecl(); 1479 PathDiagnosticLocation pos = 1480 PathDiagnosticLocation::createBegin(D, SM); 1481 EB.addEdge(pos); 1482 1483 // Flush all locations, and pop the active path. 1484 bool VisitedEntireCall = PD.isWithinCall(); 1485 EB.flushLocations(); 1486 PD.popActivePath(); 1487 PDB.LC = N->getLocationContext(); 1488 1489 // Either we just added a bunch of stuff to the top-level path, or 1490 // we have a previous CallExitEnd. If the former, it means that the 1491 // path terminated within a function call. We must then take the 1492 // current contents of the active path and place it within 1493 // a new PathDiagnosticCallPiece. 1494 PathDiagnosticCallPiece *C; 1495 if (VisitedEntireCall) { 1496 C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front().get()); 1497 } else { 1498 const Decl *Caller = CE->getLocationContext()->getDecl(); 1499 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 1500 LCM[&C->path] = CE->getCalleeContext(); 1501 } 1502 1503 C->setCallee(*CE, SM); 1504 EB.addContext(C->getLocation()); 1505 1506 if (!CallStack.empty()) { 1507 assert(CallStack.back().first == C); 1508 CallStack.pop_back(); 1509 } 1510 return; 1511 } 1512 1513 // Note that is important that we update the LocationContext 1514 // after looking at CallExits. CallExit basically adds an 1515 // edge in the *caller*, so we don't want to update the LocationContext 1516 // too soon. 1517 PDB.LC = N->getLocationContext(); 1518 1519 if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) { 1520 // Does this represent entering a call? If so, look at propagating 1521 // interesting symbols across call boundaries. 1522 if (NextNode) { 1523 const LocationContext *CallerCtx = NextNode->getLocationContext(); 1524 const LocationContext *CalleeCtx = PDB.LC; 1525 if (CallerCtx != CalleeCtx) { 1526 reversePropagateInterestingSymbols(*PDB.getBugReport(), IE, 1527 N->getState().get(), 1528 CalleeCtx, CallerCtx); 1529 } 1530 } 1531 1532 // Are we jumping to the head of a loop? Add a special diagnostic. 1533 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { 1534 PathDiagnosticLocation L(Loop, SM, PDB.LC); 1535 const CompoundStmt *CS = nullptr; 1536 1537 if (const auto *FS = dyn_cast<ForStmt>(Loop)) 1538 CS = dyn_cast<CompoundStmt>(FS->getBody()); 1539 else if (const auto *WS = dyn_cast<WhileStmt>(Loop)) 1540 CS = dyn_cast<CompoundStmt>(WS->getBody()); 1541 1542 auto p = std::make_shared<PathDiagnosticEventPiece>( 1543 L, "Looping back to the head of the loop"); 1544 p->setPrunable(true); 1545 1546 EB.addEdge(p->getLocation(), true); 1547 PD.getActivePath().push_front(std::move(p)); 1548 1549 if (CS) { 1550 PathDiagnosticLocation BL = 1551 PathDiagnosticLocation::createEndBrace(CS, SM); 1552 EB.addEdge(BL); 1553 } 1554 } 1555 1556 const CFGBlock *BSrc = BE->getSrc(); 1557 ParentMap &PM = PDB.getParentMap(); 1558 1559 if (const Stmt *Term = BSrc->getTerminator()) { 1560 // Are we jumping past the loop body without ever executing the 1561 // loop (because the condition was false)? 1562 if (isLoopJumpPastBody(Term, &*BE) && 1563 !isInLoopBody(PM, 1564 getStmtBeforeCond(PM, 1565 BSrc->getTerminatorCondition(), 1566 N), 1567 Term)) { 1568 PathDiagnosticLocation L(Term, SM, PDB.LC); 1569 auto PE = std::make_shared<PathDiagnosticEventPiece>( 1570 L, "Loop body executed 0 times"); 1571 PE->setPrunable(true); 1572 1573 EB.addEdge(PE->getLocation(), true); 1574 PD.getActivePath().push_front(std::move(PE)); 1575 } 1576 1577 // In any case, add the terminator as the current statement 1578 // context for control edges. 1579 EB.addContext(Term); 1580 } 1581 } else if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) { 1582 Optional<CFGElement> First = BE->getFirstElement(); 1583 if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) { 1584 const Stmt *stmt = S->getStmt(); 1585 if (IsControlFlowExpr(stmt)) { 1586 // Add the proper context for '&&', '||', and '?'. 1587 EB.addContext(stmt); 1588 } 1589 else 1590 EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt()); 1591 } 1592 } 1593 } 1594 1595 //===----------------------------------------------------------------------===// 1596 // Top-level logic for generating extensive path diagnostics. 1597 //===----------------------------------------------------------------------===// 1598 1599 static bool GenerateExtensivePathDiagnostic( 1600 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 1601 LocationContextMap &LCM, 1602 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 1603 EdgeBuilder EB(PD, PDB); 1604 StackDiagVector CallStack; 1605 1606 InterestingExprs IE; 1607 const ExplodedNode *NextNode = N->pred_empty() ? nullptr : *(N->pred_begin()); 1608 while (NextNode) { 1609 N = NextNode; 1610 NextNode = N->getFirstPred(); 1611 1612 generateExtensiveDiagnosticsForNode(N, PDB, LCM, EB, CallStack, PD, IE); 1613 1614 if (!NextNode) 1615 continue; 1616 1617 // Add pieces from custom visitors. 1618 BugReport *R = PDB.getBugReport(); 1619 llvm::FoldingSet<PathDiagnosticPiece> DeduplicationSet; 1620 for (auto &V : visitors) { 1621 if (auto p = V->VisitNode(N, NextNode, PDB, *R)) { 1622 if (DeduplicationSet.GetOrInsertNode(p.get()) != p.get()) 1623 continue; 1624 1625 const PathDiagnosticLocation &Loc = p->getLocation(); 1626 EB.addEdge(Loc, true); 1627 updateStackPiecesWithMessage(*p, CallStack); 1628 PD.getActivePath().push_front(std::move(p)); 1629 1630 if (const Stmt *S = Loc.asStmt()) 1631 EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); 1632 } 1633 } 1634 } 1635 1636 return PDB.getBugReport()->isValid(); 1637 } 1638 1639 /// \brief Adds a sanitized control-flow diagnostic edge to a path. 1640 static void addEdgeToPath(PathPieces &path, 1641 PathDiagnosticLocation &PrevLoc, 1642 PathDiagnosticLocation NewLoc, 1643 const LocationContext *LC) { 1644 if (!NewLoc.isValid()) 1645 return; 1646 1647 SourceLocation NewLocL = NewLoc.asLocation(); 1648 if (NewLocL.isInvalid()) 1649 return; 1650 1651 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) { 1652 PrevLoc = NewLoc; 1653 return; 1654 } 1655 1656 // Ignore self-edges, which occur when there are multiple nodes at the same 1657 // statement. 1658 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt()) 1659 return; 1660 1661 path.push_front( 1662 std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc)); 1663 PrevLoc = NewLoc; 1664 } 1665 1666 /// A customized wrapper for CFGBlock::getTerminatorCondition() 1667 /// which returns the element for ObjCForCollectionStmts. 1668 static const Stmt *getTerminatorCondition(const CFGBlock *B) { 1669 const Stmt *S = B->getTerminatorCondition(); 1670 if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S)) 1671 return FS->getElement(); 1672 return S; 1673 } 1674 1675 static const char StrEnteringLoop[] = "Entering loop body"; 1676 static const char StrLoopBodyZero[] = "Loop body executed 0 times"; 1677 static const char StrLoopRangeEmpty[] = 1678 "Loop body skipped when range is empty"; 1679 static const char StrLoopCollectionEmpty[] = 1680 "Loop body skipped when collection is empty"; 1681 1682 /// Generate alternate-extensive diagnostics for the node \p N, 1683 /// and write it into \p PD. 1684 static void generateAlternateExtensiveDiagnosticsForNode(const ExplodedNode *N, 1685 PathDiagnostic &PD, 1686 PathDiagnosticLocation &PrevLoc, 1687 PathDiagnosticBuilder &PDB, 1688 LocationContextMap &LCM, 1689 StackDiagVector &CallStack, 1690 InterestingExprs &IE) { 1691 const ExplodedNode *NextNode = N->getFirstPred(); 1692 ProgramPoint P = N->getLocation(); 1693 const SourceManager& SM = PDB.getSourceManager(); 1694 1695 // Have we encountered an entrance to a call? It may be 1696 // the case that we have not encountered a matching 1697 // call exit before this point. This means that the path 1698 // terminated within the call itself. 1699 if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { 1700 // Add an edge to the start of the function. 1701 const StackFrameContext *CalleeLC = CE->getCalleeContext(); 1702 const Decl *D = CalleeLC->getDecl(); 1703 // Add the edge only when the callee has body. We jump to the beginning 1704 // of the *declaration*, however we expect it to be followed by the 1705 // body. This isn't the case for autosynthesized property accessors in 1706 // Objective-C. No need for a similar extra check for CallExit points 1707 // because the exit edge comes from a statement (i.e. return), 1708 // not from declaration. 1709 if (D->hasBody()) 1710 addEdgeToPath(PD.getActivePath(), PrevLoc, 1711 PathDiagnosticLocation::createBegin(D, SM), CalleeLC); 1712 1713 // Did we visit an entire call? 1714 bool VisitedEntireCall = PD.isWithinCall(); 1715 PD.popActivePath(); 1716 1717 PathDiagnosticCallPiece *C; 1718 if (VisitedEntireCall) { 1719 PathDiagnosticPiece *P = PD.getActivePath().front().get(); 1720 C = cast<PathDiagnosticCallPiece>(P); 1721 } else { 1722 const Decl *Caller = CE->getLocationContext()->getDecl(); 1723 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 1724 1725 // Since we just transferred the path over to the call piece, 1726 // reset the mapping from active to location context. 1727 assert(PD.getActivePath().size() == 1 && 1728 PD.getActivePath().front().get() == C); 1729 LCM[&PD.getActivePath()] = nullptr; 1730 1731 // Record the location context mapping for the path within 1732 // the call. 1733 assert(LCM[&C->path] == nullptr || 1734 LCM[&C->path] == CE->getCalleeContext()); 1735 LCM[&C->path] = CE->getCalleeContext(); 1736 1737 // If this is the first item in the active path, record 1738 // the new mapping from active path to location context. 1739 const LocationContext *&NewLC = LCM[&PD.getActivePath()]; 1740 if (!NewLC) 1741 NewLC = N->getLocationContext(); 1742 1743 PDB.LC = NewLC; 1744 } 1745 C->setCallee(*CE, SM); 1746 1747 // Update the previous location in the active path. 1748 PrevLoc = C->getLocation(); 1749 1750 if (!CallStack.empty()) { 1751 assert(CallStack.back().first == C); 1752 CallStack.pop_back(); 1753 } 1754 return; 1755 } 1756 1757 // Query the location context here and the previous location 1758 // as processing CallEnter may change the active path. 1759 PDB.LC = N->getLocationContext(); 1760 1761 // Record the mapping from the active path to the location 1762 // context. 1763 assert(!LCM[&PD.getActivePath()] || 1764 LCM[&PD.getActivePath()] == PDB.LC); 1765 LCM[&PD.getActivePath()] = PDB.LC; 1766 1767 // Have we encountered an exit from a function call? 1768 if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 1769 const Stmt *S = CE->getCalleeContext()->getCallSite(); 1770 // Propagate the interesting symbols accordingly. 1771 if (const auto *Ex = dyn_cast_or_null<Expr>(S)) { 1772 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1773 N->getState().get(), Ex, 1774 N->getLocationContext()); 1775 } 1776 1777 // We are descending into a call (backwards). Construct 1778 // a new call piece to contain the path pieces for that call. 1779 auto C = PathDiagnosticCallPiece::construct(N, *CE, SM); 1780 1781 // Record the location context for this call piece. 1782 LCM[&C->path] = CE->getCalleeContext(); 1783 1784 // Add the edge to the return site. 1785 addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC); 1786 auto *P = C.get(); 1787 PD.getActivePath().push_front(std::move(C)); 1788 PrevLoc.invalidate(); 1789 1790 // Make the contents of the call the active path for now. 1791 PD.pushActivePath(&P->path); 1792 CallStack.push_back(StackDiagPair(P, N)); 1793 } else if (Optional<PostStmt> PS = P.getAs<PostStmt>()) { 1794 // For expressions, make sure we propagate the 1795 // interesting symbols correctly. 1796 if (const Expr *Ex = PS->getStmtAs<Expr>()) 1797 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1798 N->getState().get(), Ex, 1799 N->getLocationContext()); 1800 1801 // Add an edge. If this is an ObjCForCollectionStmt do 1802 // not add an edge here as it appears in the CFG both 1803 // as a terminator and as a terminator condition. 1804 if (!isa<ObjCForCollectionStmt>(PS->getStmt())) { 1805 PathDiagnosticLocation L = 1806 PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC); 1807 addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC); 1808 } 1809 } else if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) { 1810 // Does this represent entering a call? If so, look at propagating 1811 // interesting symbols across call boundaries. 1812 if (NextNode) { 1813 const LocationContext *CallerCtx = NextNode->getLocationContext(); 1814 const LocationContext *CalleeCtx = PDB.LC; 1815 if (CallerCtx != CalleeCtx) { 1816 reversePropagateInterestingSymbols(*PDB.getBugReport(), IE, 1817 N->getState().get(), 1818 CalleeCtx, CallerCtx); 1819 } 1820 } 1821 1822 // Are we jumping to the head of a loop? Add a special diagnostic. 1823 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { 1824 PathDiagnosticLocation L(Loop, SM, PDB.LC); 1825 const Stmt *Body = nullptr; 1826 1827 if (const auto *FS = dyn_cast<ForStmt>(Loop)) 1828 Body = FS->getBody(); 1829 else if (const auto *WS = dyn_cast<WhileStmt>(Loop)) 1830 Body = WS->getBody(); 1831 else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) { 1832 Body = OFS->getBody(); 1833 } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) { 1834 Body = FRS->getBody(); 1835 } 1836 // do-while statements are explicitly excluded here 1837 1838 auto p = std::make_shared<PathDiagnosticEventPiece>( 1839 L, "Looping back to the head " 1840 "of the loop"); 1841 p->setPrunable(true); 1842 1843 addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC); 1844 PD.getActivePath().push_front(std::move(p)); 1845 1846 if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 1847 addEdgeToPath(PD.getActivePath(), PrevLoc, 1848 PathDiagnosticLocation::createEndBrace(CS, SM), 1849 PDB.LC); 1850 } 1851 } 1852 1853 const CFGBlock *BSrc = BE->getSrc(); 1854 ParentMap &PM = PDB.getParentMap(); 1855 1856 if (const Stmt *Term = BSrc->getTerminator()) { 1857 // Are we jumping past the loop body without ever executing the 1858 // loop (because the condition was false)? 1859 if (isLoop(Term)) { 1860 const Stmt *TermCond = getTerminatorCondition(BSrc); 1861 bool IsInLoopBody = 1862 isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term); 1863 1864 const char *str = nullptr; 1865 1866 if (isJumpToFalseBranch(&*BE)) { 1867 if (!IsInLoopBody) { 1868 if (isa<ObjCForCollectionStmt>(Term)) { 1869 str = StrLoopCollectionEmpty; 1870 } else if (isa<CXXForRangeStmt>(Term)) { 1871 str = StrLoopRangeEmpty; 1872 } else { 1873 str = StrLoopBodyZero; 1874 } 1875 } 1876 } else { 1877 str = StrEnteringLoop; 1878 } 1879 1880 if (str) { 1881 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC); 1882 auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str); 1883 PE->setPrunable(true); 1884 addEdgeToPath(PD.getActivePath(), PrevLoc, 1885 PE->getLocation(), PDB.LC); 1886 PD.getActivePath().push_front(std::move(PE)); 1887 } 1888 } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) || 1889 isa<GotoStmt>(Term)) { 1890 PathDiagnosticLocation L(Term, SM, PDB.LC); 1891 addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC); 1892 } 1893 } 1894 } 1895 } 1896 1897 static bool GenerateAlternateExtensivePathDiagnostic( 1898 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 1899 LocationContextMap &LCM, 1900 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 1901 BugReport *report = PDB.getBugReport(); 1902 const SourceManager& SM = PDB.getSourceManager(); 1903 StackDiagVector CallStack; 1904 InterestingExprs IE; 1905 1906 PathDiagnosticLocation PrevLoc = PD.getLocation(); 1907 1908 const ExplodedNode *NextNode = N->getFirstPred(); 1909 while (NextNode) { 1910 N = NextNode; 1911 NextNode = N->getFirstPred(); 1912 1913 generateAlternateExtensiveDiagnosticsForNode( 1914 N, PD, PrevLoc, PDB, LCM, CallStack, IE); 1915 1916 if (!NextNode) 1917 continue; 1918 1919 // Add pieces from custom visitors. 1920 llvm::FoldingSet<PathDiagnosticPiece> DeduplicationSet; 1921 for (auto &V : visitors) { 1922 if (auto p = V->VisitNode(N, NextNode, PDB, *report)) { 1923 if (DeduplicationSet.GetOrInsertNode(p.get()) != p.get()) 1924 continue; 1925 1926 addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC); 1927 updateStackPiecesWithMessage(*p, CallStack); 1928 PD.getActivePath().push_front(std::move(p)); 1929 } 1930 } 1931 } 1932 1933 // Add an edge to the start of the function. 1934 // We'll prune it out later, but it helps make diagnostics more uniform. 1935 const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame(); 1936 const Decl *D = CalleeLC->getDecl(); 1937 addEdgeToPath(PD.getActivePath(), PrevLoc, 1938 PathDiagnosticLocation::createBegin(D, SM), 1939 CalleeLC); 1940 1941 return report->isValid(); 1942 } 1943 1944 static const Stmt *getLocStmt(PathDiagnosticLocation L) { 1945 if (!L.isValid()) 1946 return nullptr; 1947 return L.asStmt(); 1948 } 1949 1950 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) { 1951 if (!S) 1952 return nullptr; 1953 1954 while (true) { 1955 S = PM.getParentIgnoreParens(S); 1956 1957 if (!S) 1958 break; 1959 1960 if (isa<ExprWithCleanups>(S) || 1961 isa<CXXBindTemporaryExpr>(S) || 1962 isa<SubstNonTypeTemplateParmExpr>(S)) 1963 continue; 1964 1965 break; 1966 } 1967 1968 return S; 1969 } 1970 1971 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { 1972 switch (S->getStmtClass()) { 1973 case Stmt::BinaryOperatorClass: { 1974 const auto *BO = cast<BinaryOperator>(S); 1975 if (!BO->isLogicalOp()) 1976 return false; 1977 return BO->getLHS() == Cond || BO->getRHS() == Cond; 1978 } 1979 case Stmt::IfStmtClass: 1980 return cast<IfStmt>(S)->getCond() == Cond; 1981 case Stmt::ForStmtClass: 1982 return cast<ForStmt>(S)->getCond() == Cond; 1983 case Stmt::WhileStmtClass: 1984 return cast<WhileStmt>(S)->getCond() == Cond; 1985 case Stmt::DoStmtClass: 1986 return cast<DoStmt>(S)->getCond() == Cond; 1987 case Stmt::ChooseExprClass: 1988 return cast<ChooseExpr>(S)->getCond() == Cond; 1989 case Stmt::IndirectGotoStmtClass: 1990 return cast<IndirectGotoStmt>(S)->getTarget() == Cond; 1991 case Stmt::SwitchStmtClass: 1992 return cast<SwitchStmt>(S)->getCond() == Cond; 1993 case Stmt::BinaryConditionalOperatorClass: 1994 return cast<BinaryConditionalOperator>(S)->getCond() == Cond; 1995 case Stmt::ConditionalOperatorClass: { 1996 const auto *CO = cast<ConditionalOperator>(S); 1997 return CO->getCond() == Cond || 1998 CO->getLHS() == Cond || 1999 CO->getRHS() == Cond; 2000 } 2001 case Stmt::ObjCForCollectionStmtClass: 2002 return cast<ObjCForCollectionStmt>(S)->getElement() == Cond; 2003 case Stmt::CXXForRangeStmtClass: { 2004 const auto *FRS = cast<CXXForRangeStmt>(S); 2005 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond; 2006 } 2007 default: 2008 return false; 2009 } 2010 } 2011 2012 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) { 2013 if (const auto *FS = dyn_cast<ForStmt>(FL)) 2014 return FS->getInc() == S || FS->getInit() == S; 2015 if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL)) 2016 return FRS->getInc() == S || FRS->getRangeStmt() == S || 2017 FRS->getLoopVarStmt() || FRS->getRangeInit() == S; 2018 return false; 2019 } 2020 2021 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>; 2022 2023 /// Adds synthetic edges from top-level statements to their subexpressions. 2024 /// 2025 /// This avoids a "swoosh" effect, where an edge from a top-level statement A 2026 /// points to a sub-expression B.1 that's not at the start of B. In these cases, 2027 /// we'd like to see an edge from A to B, then another one from B to B.1. 2028 static void addContextEdges(PathPieces &pieces, SourceManager &SM, 2029 const ParentMap &PM, const LocationContext *LCtx) { 2030 PathPieces::iterator Prev = pieces.end(); 2031 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E; 2032 Prev = I, ++I) { 2033 auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 2034 2035 if (!Piece) 2036 continue; 2037 2038 PathDiagnosticLocation SrcLoc = Piece->getStartLocation(); 2039 SmallVector<PathDiagnosticLocation, 4> SrcContexts; 2040 2041 PathDiagnosticLocation NextSrcContext = SrcLoc; 2042 const Stmt *InnerStmt = nullptr; 2043 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) { 2044 SrcContexts.push_back(NextSrcContext); 2045 InnerStmt = NextSrcContext.asStmt(); 2046 NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx, 2047 /*allowNested=*/true); 2048 } 2049 2050 // Repeatedly split the edge as necessary. 2051 // This is important for nested logical expressions (||, &&, ?:) where we 2052 // want to show all the levels of context. 2053 while (true) { 2054 const Stmt *Dst = getLocStmt(Piece->getEndLocation()); 2055 2056 // We are looking at an edge. Is the destination within a larger 2057 // expression? 2058 PathDiagnosticLocation DstContext = 2059 getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true); 2060 if (!DstContext.isValid() || DstContext.asStmt() == Dst) 2061 break; 2062 2063 // If the source is in the same context, we're already good. 2064 if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) != 2065 SrcContexts.end()) 2066 break; 2067 2068 // Update the subexpression node to point to the context edge. 2069 Piece->setStartLocation(DstContext); 2070 2071 // Try to extend the previous edge if it's at the same level as the source 2072 // context. 2073 if (Prev != E) { 2074 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get()); 2075 2076 if (PrevPiece) { 2077 if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) { 2078 const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM); 2079 if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) { 2080 PrevPiece->setEndLocation(DstContext); 2081 break; 2082 } 2083 } 2084 } 2085 } 2086 2087 // Otherwise, split the current edge into a context edge and a 2088 // subexpression edge. Note that the context statement may itself have 2089 // context. 2090 auto P = 2091 std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext); 2092 Piece = P.get(); 2093 I = pieces.insert(I, std::move(P)); 2094 } 2095 } 2096 } 2097 2098 /// \brief Move edges from a branch condition to a branch target 2099 /// when the condition is simple. 2100 /// 2101 /// This restructures some of the work of addContextEdges. That function 2102 /// creates edges this may destroy, but they work together to create a more 2103 /// aesthetically set of edges around branches. After the call to 2104 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from 2105 /// the branch to the branch condition, and (3) an edge from the branch 2106 /// condition to the branch target. We keep (1), but may wish to remove (2) 2107 /// and move the source of (3) to the branch if the branch condition is simple. 2108 static void simplifySimpleBranches(PathPieces &pieces) { 2109 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) { 2110 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 2111 2112 if (!PieceI) 2113 continue; 2114 2115 const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); 2116 const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); 2117 2118 if (!s1Start || !s1End) 2119 continue; 2120 2121 PathPieces::iterator NextI = I; ++NextI; 2122 if (NextI == E) 2123 break; 2124 2125 PathDiagnosticControlFlowPiece *PieceNextI = nullptr; 2126 2127 while (true) { 2128 if (NextI == E) 2129 break; 2130 2131 const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 2132 if (EV) { 2133 StringRef S = EV->getString(); 2134 if (S == StrEnteringLoop || S == StrLoopBodyZero || 2135 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) { 2136 ++NextI; 2137 continue; 2138 } 2139 break; 2140 } 2141 2142 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 2143 break; 2144 } 2145 2146 if (!PieceNextI) 2147 continue; 2148 2149 const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); 2150 const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); 2151 2152 if (!s2Start || !s2End || s1End != s2Start) 2153 continue; 2154 2155 // We only perform this transformation for specific branch kinds. 2156 // We don't want to do this for do..while, for example. 2157 if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) || 2158 isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) || 2159 isa<CXXForRangeStmt>(s1Start))) 2160 continue; 2161 2162 // Is s1End the branch condition? 2163 if (!isConditionForTerminator(s1Start, s1End)) 2164 continue; 2165 2166 // Perform the hoisting by eliminating (2) and changing the start 2167 // location of (3). 2168 PieceNextI->setStartLocation(PieceI->getStartLocation()); 2169 I = pieces.erase(I); 2170 } 2171 } 2172 2173 /// Returns the number of bytes in the given (character-based) SourceRange. 2174 /// 2175 /// If the locations in the range are not on the same line, returns None. 2176 /// 2177 /// Note that this does not do a precise user-visible character or column count. 2178 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM, 2179 SourceRange Range) { 2180 SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()), 2181 SM.getExpansionRange(Range.getEnd()).second); 2182 2183 FileID FID = SM.getFileID(ExpansionRange.getBegin()); 2184 if (FID != SM.getFileID(ExpansionRange.getEnd())) 2185 return None; 2186 2187 bool Invalid; 2188 const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid); 2189 if (Invalid) 2190 return None; 2191 2192 unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin()); 2193 unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd()); 2194 StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset); 2195 2196 // We're searching the raw bytes of the buffer here, which might include 2197 // escaped newlines and such. That's okay; we're trying to decide whether the 2198 // SourceRange is covering a large or small amount of space in the user's 2199 // editor. 2200 if (Snippet.find_first_of("\r\n") != StringRef::npos) 2201 return None; 2202 2203 // This isn't Unicode-aware, but it doesn't need to be. 2204 return Snippet.size(); 2205 } 2206 2207 /// \sa getLengthOnSingleLine(SourceManager, SourceRange) 2208 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM, 2209 const Stmt *S) { 2210 return getLengthOnSingleLine(SM, S->getSourceRange()); 2211 } 2212 2213 /// Eliminate two-edge cycles created by addContextEdges(). 2214 /// 2215 /// Once all the context edges are in place, there are plenty of cases where 2216 /// there's a single edge from a top-level statement to a subexpression, 2217 /// followed by a single path note, and then a reverse edge to get back out to 2218 /// the top level. If the statement is simple enough, the subexpression edges 2219 /// just add noise and make it harder to understand what's going on. 2220 /// 2221 /// This function only removes edges in pairs, because removing only one edge 2222 /// might leave other edges dangling. 2223 /// 2224 /// This will not remove edges in more complicated situations: 2225 /// - if there is more than one "hop" leading to or from a subexpression. 2226 /// - if there is an inlined call between the edges instead of a single event. 2227 /// - if the whole statement is large enough that having subexpression arrows 2228 /// might be helpful. 2229 static void removeContextCycles(PathPieces &Path, SourceManager &SM, 2230 ParentMap &PM) { 2231 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) { 2232 // Pattern match the current piece and its successor. 2233 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 2234 2235 if (!PieceI) { 2236 ++I; 2237 continue; 2238 } 2239 2240 const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); 2241 const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); 2242 2243 PathPieces::iterator NextI = I; ++NextI; 2244 if (NextI == E) 2245 break; 2246 2247 const auto *PieceNextI = 2248 dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 2249 2250 if (!PieceNextI) { 2251 if (isa<PathDiagnosticEventPiece>(NextI->get())) { 2252 ++NextI; 2253 if (NextI == E) 2254 break; 2255 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 2256 } 2257 2258 if (!PieceNextI) { 2259 ++I; 2260 continue; 2261 } 2262 } 2263 2264 const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); 2265 const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); 2266 2267 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) { 2268 const size_t MAX_SHORT_LINE_LENGTH = 80; 2269 Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start); 2270 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) { 2271 Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start); 2272 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) { 2273 Path.erase(I); 2274 I = Path.erase(NextI); 2275 continue; 2276 } 2277 } 2278 } 2279 2280 ++I; 2281 } 2282 } 2283 2284 /// \brief Return true if X is contained by Y. 2285 static bool lexicalContains(ParentMap &PM, const Stmt *X, const Stmt *Y) { 2286 while (X) { 2287 if (X == Y) 2288 return true; 2289 X = PM.getParent(X); 2290 } 2291 return false; 2292 } 2293 2294 // Remove short edges on the same line less than 3 columns in difference. 2295 static void removePunyEdges(PathPieces &path, SourceManager &SM, 2296 ParentMap &PM) { 2297 bool erased = false; 2298 2299 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; 2300 erased ? I : ++I) { 2301 erased = false; 2302 2303 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 2304 2305 if (!PieceI) 2306 continue; 2307 2308 const Stmt *start = getLocStmt(PieceI->getStartLocation()); 2309 const Stmt *end = getLocStmt(PieceI->getEndLocation()); 2310 2311 if (!start || !end) 2312 continue; 2313 2314 const Stmt *endParent = PM.getParent(end); 2315 if (!endParent) 2316 continue; 2317 2318 if (isConditionForTerminator(end, endParent)) 2319 continue; 2320 2321 SourceLocation FirstLoc = start->getLocStart(); 2322 SourceLocation SecondLoc = end->getLocStart(); 2323 2324 if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc)) 2325 continue; 2326 if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc)) 2327 std::swap(SecondLoc, FirstLoc); 2328 2329 SourceRange EdgeRange(FirstLoc, SecondLoc); 2330 Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange); 2331 2332 // If the statements are on different lines, continue. 2333 if (!ByteWidth) 2334 continue; 2335 2336 const size_t MAX_PUNY_EDGE_LENGTH = 2; 2337 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) { 2338 // FIXME: There are enough /bytes/ between the endpoints of the edge, but 2339 // there might not be enough /columns/. A proper user-visible column count 2340 // is probably too expensive, though. 2341 I = path.erase(I); 2342 erased = true; 2343 continue; 2344 } 2345 } 2346 } 2347 2348 static void removeIdenticalEvents(PathPieces &path) { 2349 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) { 2350 const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get()); 2351 2352 if (!PieceI) 2353 continue; 2354 2355 PathPieces::iterator NextI = I; ++NextI; 2356 if (NextI == E) 2357 return; 2358 2359 const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 2360 2361 if (!PieceNextI) 2362 continue; 2363 2364 // Erase the second piece if it has the same exact message text. 2365 if (PieceI->getString() == PieceNextI->getString()) { 2366 path.erase(NextI); 2367 } 2368 } 2369 } 2370 2371 static bool optimizeEdges(PathPieces &path, SourceManager &SM, 2372 OptimizedCallsSet &OCS, 2373 LocationContextMap &LCM) { 2374 bool hasChanges = false; 2375 const LocationContext *LC = LCM[&path]; 2376 assert(LC); 2377 ParentMap &PM = LC->getParentMap(); 2378 2379 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { 2380 // Optimize subpaths. 2381 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) { 2382 // Record the fact that a call has been optimized so we only do the 2383 // effort once. 2384 if (!OCS.count(CallI)) { 2385 while (optimizeEdges(CallI->path, SM, OCS, LCM)) {} 2386 OCS.insert(CallI); 2387 } 2388 ++I; 2389 continue; 2390 } 2391 2392 // Pattern match the current piece and its successor. 2393 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 2394 2395 if (!PieceI) { 2396 ++I; 2397 continue; 2398 } 2399 2400 const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); 2401 const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); 2402 const Stmt *level1 = getStmtParent(s1Start, PM); 2403 const Stmt *level2 = getStmtParent(s1End, PM); 2404 2405 PathPieces::iterator NextI = I; ++NextI; 2406 if (NextI == E) 2407 break; 2408 2409 const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 2410 2411 if (!PieceNextI) { 2412 ++I; 2413 continue; 2414 } 2415 2416 const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); 2417 const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); 2418 const Stmt *level3 = getStmtParent(s2Start, PM); 2419 const Stmt *level4 = getStmtParent(s2End, PM); 2420 2421 // Rule I. 2422 // 2423 // If we have two consecutive control edges whose end/begin locations 2424 // are at the same level (e.g. statements or top-level expressions within 2425 // a compound statement, or siblings share a single ancestor expression), 2426 // then merge them if they have no interesting intermediate event. 2427 // 2428 // For example: 2429 // 2430 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common 2431 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. 2432 // 2433 // NOTE: this will be limited later in cases where we add barriers 2434 // to prevent this optimization. 2435 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { 2436 PieceI->setEndLocation(PieceNextI->getEndLocation()); 2437 path.erase(NextI); 2438 hasChanges = true; 2439 continue; 2440 } 2441 2442 // Rule II. 2443 // 2444 // Eliminate edges between subexpressions and parent expressions 2445 // when the subexpression is consumed. 2446 // 2447 // NOTE: this will be limited later in cases where we add barriers 2448 // to prevent this optimization. 2449 if (s1End && s1End == s2Start && level2) { 2450 bool removeEdge = false; 2451 // Remove edges into the increment or initialization of a 2452 // loop that have no interleaving event. This means that 2453 // they aren't interesting. 2454 if (isIncrementOrInitInForLoop(s1End, level2)) 2455 removeEdge = true; 2456 // Next only consider edges that are not anchored on 2457 // the condition of a terminator. This are intermediate edges 2458 // that we might want to trim. 2459 else if (!isConditionForTerminator(level2, s1End)) { 2460 // Trim edges on expressions that are consumed by 2461 // the parent expression. 2462 if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) { 2463 removeEdge = true; 2464 } 2465 // Trim edges where a lexical containment doesn't exist. 2466 // For example: 2467 // 2468 // X -> Y -> Z 2469 // 2470 // If 'Z' lexically contains Y (it is an ancestor) and 2471 // 'X' does not lexically contain Y (it is a descendant OR 2472 // it has no lexical relationship at all) then trim. 2473 // 2474 // This can eliminate edges where we dive into a subexpression 2475 // and then pop back out, etc. 2476 else if (s1Start && s2End && 2477 lexicalContains(PM, s2Start, s2End) && 2478 !lexicalContains(PM, s1End, s1Start)) { 2479 removeEdge = true; 2480 } 2481 // Trim edges from a subexpression back to the top level if the 2482 // subexpression is on a different line. 2483 // 2484 // A.1 -> A -> B 2485 // becomes 2486 // A.1 -> B 2487 // 2488 // These edges just look ugly and don't usually add anything. 2489 else if (s1Start && s2End && 2490 lexicalContains(PM, s1Start, s1End)) { 2491 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(), 2492 PieceI->getStartLocation().asLocation()); 2493 if (!getLengthOnSingleLine(SM, EdgeRange).hasValue()) 2494 removeEdge = true; 2495 } 2496 } 2497 2498 if (removeEdge) { 2499 PieceI->setEndLocation(PieceNextI->getEndLocation()); 2500 path.erase(NextI); 2501 hasChanges = true; 2502 continue; 2503 } 2504 } 2505 2506 // Optimize edges for ObjC fast-enumeration loops. 2507 // 2508 // (X -> collection) -> (collection -> element) 2509 // 2510 // becomes: 2511 // 2512 // (X -> element) 2513 if (s1End == s2Start) { 2514 const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3); 2515 if (FS && FS->getCollection()->IgnoreParens() == s2Start && 2516 s2End == FS->getElement()) { 2517 PieceI->setEndLocation(PieceNextI->getEndLocation()); 2518 path.erase(NextI); 2519 hasChanges = true; 2520 continue; 2521 } 2522 } 2523 2524 // No changes at this index? Move to the next one. 2525 ++I; 2526 } 2527 2528 if (!hasChanges) { 2529 // Adjust edges into subexpressions to make them more uniform 2530 // and aesthetically pleasing. 2531 addContextEdges(path, SM, PM, LC); 2532 // Remove "cyclical" edges that include one or more context edges. 2533 removeContextCycles(path, SM, PM); 2534 // Hoist edges originating from branch conditions to branches 2535 // for simple branches. 2536 simplifySimpleBranches(path); 2537 // Remove any puny edges left over after primary optimization pass. 2538 removePunyEdges(path, SM, PM); 2539 // Remove identical events. 2540 removeIdenticalEvents(path); 2541 } 2542 2543 return hasChanges; 2544 } 2545 2546 /// Drop the very first edge in a path, which should be a function entry edge. 2547 /// 2548 /// If the first edge is not a function entry edge (say, because the first 2549 /// statement had an invalid source location), this function does nothing. 2550 // FIXME: We should just generate invalid edges anyway and have the optimizer 2551 // deal with them. 2552 static void dropFunctionEntryEdge(PathPieces &Path, LocationContextMap &LCM, 2553 SourceManager &SM) { 2554 const auto *FirstEdge = 2555 dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get()); 2556 if (!FirstEdge) 2557 return; 2558 2559 const Decl *D = LCM[&Path]->getDecl(); 2560 PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM); 2561 if (FirstEdge->getStartLocation() != EntryLoc) 2562 return; 2563 2564 Path.pop_front(); 2565 } 2566 2567 //===----------------------------------------------------------------------===// 2568 // Methods for BugType and subclasses. 2569 //===----------------------------------------------------------------------===// 2570 2571 void BugType::anchor() {} 2572 2573 void BugType::FlushReports(BugReporter &BR) {} 2574 2575 void BuiltinBug::anchor() {} 2576 2577 //===----------------------------------------------------------------------===// 2578 // Methods for BugReport and subclasses. 2579 //===----------------------------------------------------------------------===// 2580 2581 void BugReport::NodeResolver::anchor() {} 2582 2583 void BugReport::addVisitor(std::unique_ptr<BugReporterVisitor> visitor) { 2584 if (!visitor) 2585 return; 2586 2587 llvm::FoldingSetNodeID ID; 2588 visitor->Profile(ID); 2589 void *InsertPos; 2590 2591 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) 2592 return; 2593 2594 CallbacksSet.InsertNode(visitor.get(), InsertPos); 2595 Callbacks.push_back(std::move(visitor)); 2596 ++ConfigurationChangeToken; 2597 } 2598 2599 BugReport::~BugReport() { 2600 while (!interestingSymbols.empty()) { 2601 popInterestingSymbolsAndRegions(); 2602 } 2603 } 2604 2605 const Decl *BugReport::getDeclWithIssue() const { 2606 if (DeclWithIssue) 2607 return DeclWithIssue; 2608 2609 const ExplodedNode *N = getErrorNode(); 2610 if (!N) 2611 return nullptr; 2612 2613 const LocationContext *LC = N->getLocationContext(); 2614 return LC->getCurrentStackFrame()->getDecl(); 2615 } 2616 2617 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const { 2618 hash.AddPointer(&BT); 2619 hash.AddString(Description); 2620 PathDiagnosticLocation UL = getUniqueingLocation(); 2621 if (UL.isValid()) { 2622 UL.Profile(hash); 2623 } else if (Location.isValid()) { 2624 Location.Profile(hash); 2625 } else { 2626 assert(ErrorNode); 2627 hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode)); 2628 } 2629 2630 for (SourceRange range : Ranges) { 2631 if (!range.isValid()) 2632 continue; 2633 hash.AddInteger(range.getBegin().getRawEncoding()); 2634 hash.AddInteger(range.getEnd().getRawEncoding()); 2635 } 2636 } 2637 2638 void BugReport::markInteresting(SymbolRef sym) { 2639 if (!sym) 2640 return; 2641 2642 // If the symbol wasn't already in our set, note a configuration change. 2643 if (getInterestingSymbols().insert(sym).second) 2644 ++ConfigurationChangeToken; 2645 2646 if (const auto *meta = dyn_cast<SymbolMetadata>(sym)) 2647 getInterestingRegions().insert(meta->getRegion()); 2648 } 2649 2650 void BugReport::markInteresting(const MemRegion *R) { 2651 if (!R) 2652 return; 2653 2654 // If the base region wasn't already in our set, note a configuration change. 2655 R = R->getBaseRegion(); 2656 if (getInterestingRegions().insert(R).second) 2657 ++ConfigurationChangeToken; 2658 2659 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2660 getInterestingSymbols().insert(SR->getSymbol()); 2661 } 2662 2663 void BugReport::markInteresting(SVal V) { 2664 markInteresting(V.getAsRegion()); 2665 markInteresting(V.getAsSymbol()); 2666 } 2667 2668 void BugReport::markInteresting(const LocationContext *LC) { 2669 if (!LC) 2670 return; 2671 InterestingLocationContexts.insert(LC); 2672 } 2673 2674 bool BugReport::isInteresting(SVal V) { 2675 return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol()); 2676 } 2677 2678 bool BugReport::isInteresting(SymbolRef sym) { 2679 if (!sym) 2680 return false; 2681 // We don't currently consider metadata symbols to be interesting 2682 // even if we know their region is interesting. Is that correct behavior? 2683 return getInterestingSymbols().count(sym); 2684 } 2685 2686 bool BugReport::isInteresting(const MemRegion *R) { 2687 if (!R) 2688 return false; 2689 R = R->getBaseRegion(); 2690 bool b = getInterestingRegions().count(R); 2691 if (b) 2692 return true; 2693 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2694 return getInterestingSymbols().count(SR->getSymbol()); 2695 return false; 2696 } 2697 2698 bool BugReport::isInteresting(const LocationContext *LC) { 2699 if (!LC) 2700 return false; 2701 return InterestingLocationContexts.count(LC); 2702 } 2703 2704 void BugReport::lazyInitializeInterestingSets() { 2705 if (interestingSymbols.empty()) { 2706 interestingSymbols.push_back(new Symbols()); 2707 interestingRegions.push_back(new Regions()); 2708 } 2709 } 2710 2711 BugReport::Symbols &BugReport::getInterestingSymbols() { 2712 lazyInitializeInterestingSets(); 2713 return *interestingSymbols.back(); 2714 } 2715 2716 BugReport::Regions &BugReport::getInterestingRegions() { 2717 lazyInitializeInterestingSets(); 2718 return *interestingRegions.back(); 2719 } 2720 2721 void BugReport::pushInterestingSymbolsAndRegions() { 2722 interestingSymbols.push_back(new Symbols(getInterestingSymbols())); 2723 interestingRegions.push_back(new Regions(getInterestingRegions())); 2724 } 2725 2726 void BugReport::popInterestingSymbolsAndRegions() { 2727 delete interestingSymbols.pop_back_val(); 2728 delete interestingRegions.pop_back_val(); 2729 } 2730 2731 const Stmt *BugReport::getStmt() const { 2732 if (!ErrorNode) 2733 return nullptr; 2734 2735 ProgramPoint ProgP = ErrorNode->getLocation(); 2736 const Stmt *S = nullptr; 2737 2738 if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) { 2739 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); 2740 if (BE->getBlock() == &Exit) 2741 S = GetPreviousStmt(ErrorNode); 2742 } 2743 if (!S) 2744 S = PathDiagnosticLocation::getStmt(ErrorNode); 2745 2746 return S; 2747 } 2748 2749 llvm::iterator_range<BugReport::ranges_iterator> BugReport::getRanges() { 2750 // If no custom ranges, add the range of the statement corresponding to 2751 // the error node. 2752 if (Ranges.empty()) { 2753 if (const auto *E = dyn_cast_or_null<Expr>(getStmt())) 2754 addRange(E->getSourceRange()); 2755 else 2756 return llvm::make_range(ranges_iterator(), ranges_iterator()); 2757 } 2758 2759 // User-specified absence of range info. 2760 if (Ranges.size() == 1 && !Ranges.begin()->isValid()) 2761 return llvm::make_range(ranges_iterator(), ranges_iterator()); 2762 2763 return llvm::make_range(Ranges.begin(), Ranges.end()); 2764 } 2765 2766 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const { 2767 if (ErrorNode) { 2768 assert(!Location.isValid() && 2769 "Either Location or ErrorNode should be specified but not both."); 2770 return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM); 2771 } 2772 2773 assert(Location.isValid()); 2774 return Location; 2775 } 2776 2777 //===----------------------------------------------------------------------===// 2778 // Methods for BugReporter and subclasses. 2779 //===----------------------------------------------------------------------===// 2780 2781 BugReportEquivClass::~BugReportEquivClass() = default; 2782 2783 GRBugReporter::~GRBugReporter() = default; 2784 2785 BugReporterData::~BugReporterData() = default; 2786 2787 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); } 2788 2789 ProgramStateManager& 2790 GRBugReporter::getStateManager() { return Eng.getStateManager(); } 2791 2792 BugReporter::~BugReporter() { 2793 FlushReports(); 2794 2795 // Free the bug reports we are tracking. 2796 for (const auto I : EQClassesVector) 2797 delete I; 2798 } 2799 2800 void BugReporter::FlushReports() { 2801 if (BugTypes.isEmpty()) 2802 return; 2803 2804 // First flush the warnings for each BugType. This may end up creating new 2805 // warnings and new BugTypes. 2806 // FIXME: Only NSErrorChecker needs BugType's FlushReports. 2807 // Turn NSErrorChecker into a proper checker and remove this. 2808 SmallVector<const BugType *, 16> bugTypes(BugTypes.begin(), BugTypes.end()); 2809 for (const auto I : bugTypes) 2810 const_cast<BugType*>(I)->FlushReports(*this); 2811 2812 // We need to flush reports in deterministic order to ensure the order 2813 // of the reports is consistent between runs. 2814 for (const auto EQ : EQClassesVector) 2815 FlushReport(*EQ); 2816 2817 // BugReporter owns and deletes only BugTypes created implicitly through 2818 // EmitBasicReport. 2819 // FIXME: There are leaks from checkers that assume that the BugTypes they 2820 // create will be destroyed by the BugReporter. 2821 llvm::DeleteContainerSeconds(StrBugTypes); 2822 2823 // Remove all references to the BugType objects. 2824 BugTypes = F.getEmptySet(); 2825 } 2826 2827 //===----------------------------------------------------------------------===// 2828 // PathDiagnostics generation. 2829 //===----------------------------------------------------------------------===// 2830 2831 namespace { 2832 2833 /// A wrapper around a report graph, which contains only a single path, and its 2834 /// node maps. 2835 class ReportGraph { 2836 public: 2837 InterExplodedGraphMap BackMap; 2838 std::unique_ptr<ExplodedGraph> Graph; 2839 const ExplodedNode *ErrorNode; 2840 size_t Index; 2841 }; 2842 2843 /// A wrapper around a trimmed graph and its node maps. 2844 class TrimmedGraph { 2845 InterExplodedGraphMap InverseMap; 2846 2847 using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>; 2848 2849 PriorityMapTy PriorityMap; 2850 2851 using NodeIndexPair = std::pair<const ExplodedNode *, size_t>; 2852 2853 SmallVector<NodeIndexPair, 32> ReportNodes; 2854 2855 std::unique_ptr<ExplodedGraph> G; 2856 2857 /// A helper class for sorting ExplodedNodes by priority. 2858 template <bool Descending> 2859 class PriorityCompare { 2860 const PriorityMapTy &PriorityMap; 2861 2862 public: 2863 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {} 2864 2865 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const { 2866 PriorityMapTy::const_iterator LI = PriorityMap.find(LHS); 2867 PriorityMapTy::const_iterator RI = PriorityMap.find(RHS); 2868 PriorityMapTy::const_iterator E = PriorityMap.end(); 2869 2870 if (LI == E) 2871 return Descending; 2872 if (RI == E) 2873 return !Descending; 2874 2875 return Descending ? LI->second > RI->second 2876 : LI->second < RI->second; 2877 } 2878 2879 bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const { 2880 return (*this)(LHS.first, RHS.first); 2881 } 2882 }; 2883 2884 public: 2885 TrimmedGraph(const ExplodedGraph *OriginalGraph, 2886 ArrayRef<const ExplodedNode *> Nodes); 2887 2888 bool popNextReportGraph(ReportGraph &GraphWrapper); 2889 }; 2890 2891 } // namespace 2892 2893 TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph, 2894 ArrayRef<const ExplodedNode *> Nodes) { 2895 // The trimmed graph is created in the body of the constructor to ensure 2896 // that the DenseMaps have been initialized already. 2897 InterExplodedGraphMap ForwardMap; 2898 G = OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap); 2899 2900 // Find the (first) error node in the trimmed graph. We just need to consult 2901 // the node map which maps from nodes in the original graph to nodes 2902 // in the new graph. 2903 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes; 2904 2905 for (unsigned i = 0, count = Nodes.size(); i < count; ++i) { 2906 if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) { 2907 ReportNodes.push_back(std::make_pair(NewNode, i)); 2908 RemainingNodes.insert(NewNode); 2909 } 2910 } 2911 2912 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph"); 2913 2914 // Perform a forward BFS to find all the shortest paths. 2915 std::queue<const ExplodedNode *> WS; 2916 2917 assert(G->num_roots() == 1); 2918 WS.push(*G->roots_begin()); 2919 unsigned Priority = 0; 2920 2921 while (!WS.empty()) { 2922 const ExplodedNode *Node = WS.front(); 2923 WS.pop(); 2924 2925 PriorityMapTy::iterator PriorityEntry; 2926 bool IsNew; 2927 std::tie(PriorityEntry, IsNew) = 2928 PriorityMap.insert(std::make_pair(Node, Priority)); 2929 ++Priority; 2930 2931 if (!IsNew) { 2932 assert(PriorityEntry->second <= Priority); 2933 continue; 2934 } 2935 2936 if (RemainingNodes.erase(Node)) 2937 if (RemainingNodes.empty()) 2938 break; 2939 2940 for (ExplodedNode::const_pred_iterator I = Node->succ_begin(), 2941 E = Node->succ_end(); 2942 I != E; ++I) 2943 WS.push(*I); 2944 } 2945 2946 // Sort the error paths from longest to shortest. 2947 llvm::sort(ReportNodes.begin(), ReportNodes.end(), 2948 PriorityCompare<true>(PriorityMap)); 2949 } 2950 2951 bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) { 2952 if (ReportNodes.empty()) 2953 return false; 2954 2955 const ExplodedNode *OrigN; 2956 std::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val(); 2957 assert(PriorityMap.find(OrigN) != PriorityMap.end() && 2958 "error node not accessible from root"); 2959 2960 // Create a new graph with a single path. This is the graph 2961 // that will be returned to the caller. 2962 auto GNew = llvm::make_unique<ExplodedGraph>(); 2963 GraphWrapper.BackMap.clear(); 2964 2965 // Now walk from the error node up the BFS path, always taking the 2966 // predeccessor with the lowest number. 2967 ExplodedNode *Succ = nullptr; 2968 while (true) { 2969 // Create the equivalent node in the new graph with the same state 2970 // and location. 2971 ExplodedNode *NewN = GNew->createUncachedNode(OrigN->getLocation(), OrigN->getState(), 2972 OrigN->isSink()); 2973 2974 // Store the mapping to the original node. 2975 InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN); 2976 assert(IMitr != InverseMap.end() && "No mapping to original node."); 2977 GraphWrapper.BackMap[NewN] = IMitr->second; 2978 2979 // Link up the new node with the previous node. 2980 if (Succ) 2981 Succ->addPredecessor(NewN, *GNew); 2982 else 2983 GraphWrapper.ErrorNode = NewN; 2984 2985 Succ = NewN; 2986 2987 // Are we at the final node? 2988 if (OrigN->pred_empty()) { 2989 GNew->addRoot(NewN); 2990 break; 2991 } 2992 2993 // Find the next predeccessor node. We choose the node that is marked 2994 // with the lowest BFS number. 2995 OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(), 2996 PriorityCompare<false>(PriorityMap)); 2997 } 2998 2999 GraphWrapper.Graph = std::move(GNew); 3000 3001 return true; 3002 } 3003 3004 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object 3005 /// and collapses PathDiagosticPieces that are expanded by macros. 3006 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) { 3007 using MacroStackTy = 3008 std::vector< 3009 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>; 3010 3011 using PiecesTy = std::vector<std::shared_ptr<PathDiagnosticPiece>>; 3012 3013 MacroStackTy MacroStack; 3014 PiecesTy Pieces; 3015 3016 for (PathPieces::const_iterator I = path.begin(), E = path.end(); 3017 I != E; ++I) { 3018 const auto &piece = *I; 3019 3020 // Recursively compact calls. 3021 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) { 3022 CompactPathDiagnostic(call->path, SM); 3023 } 3024 3025 // Get the location of the PathDiagnosticPiece. 3026 const FullSourceLoc Loc = piece->getLocation().asLocation(); 3027 3028 // Determine the instantiation location, which is the location we group 3029 // related PathDiagnosticPieces. 3030 SourceLocation InstantiationLoc = Loc.isMacroID() ? 3031 SM.getExpansionLoc(Loc) : 3032 SourceLocation(); 3033 3034 if (Loc.isFileID()) { 3035 MacroStack.clear(); 3036 Pieces.push_back(piece); 3037 continue; 3038 } 3039 3040 assert(Loc.isMacroID()); 3041 3042 // Is the PathDiagnosticPiece within the same macro group? 3043 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { 3044 MacroStack.back().first->subPieces.push_back(piece); 3045 continue; 3046 } 3047 3048 // We aren't in the same group. Are we descending into a new macro 3049 // or are part of an old one? 3050 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup; 3051 3052 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? 3053 SM.getExpansionLoc(Loc) : 3054 SourceLocation(); 3055 3056 // Walk the entire macro stack. 3057 while (!MacroStack.empty()) { 3058 if (InstantiationLoc == MacroStack.back().second) { 3059 MacroGroup = MacroStack.back().first; 3060 break; 3061 } 3062 3063 if (ParentInstantiationLoc == MacroStack.back().second) { 3064 MacroGroup = MacroStack.back().first; 3065 break; 3066 } 3067 3068 MacroStack.pop_back(); 3069 } 3070 3071 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { 3072 // Create a new macro group and add it to the stack. 3073 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>( 3074 PathDiagnosticLocation::createSingleLocation(piece->getLocation())); 3075 3076 if (MacroGroup) 3077 MacroGroup->subPieces.push_back(NewGroup); 3078 else { 3079 assert(InstantiationLoc.isFileID()); 3080 Pieces.push_back(NewGroup); 3081 } 3082 3083 MacroGroup = NewGroup; 3084 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); 3085 } 3086 3087 // Finally, add the PathDiagnosticPiece to the group. 3088 MacroGroup->subPieces.push_back(piece); 3089 } 3090 3091 // Now take the pieces and construct a new PathDiagnostic. 3092 path.clear(); 3093 3094 path.insert(path.end(), Pieces.begin(), Pieces.end()); 3095 } 3096 3097 bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD, 3098 PathDiagnosticConsumer &PC, 3099 ArrayRef<BugReport *> &bugReports) { 3100 assert(!bugReports.empty()); 3101 3102 bool HasValid = false; 3103 bool HasInvalid = false; 3104 SmallVector<const ExplodedNode *, 32> errorNodes; 3105 for (const auto I : bugReports) { 3106 if (I->isValid()) { 3107 HasValid = true; 3108 errorNodes.push_back(I->getErrorNode()); 3109 } else { 3110 // Keep the errorNodes list in sync with the bugReports list. 3111 HasInvalid = true; 3112 errorNodes.push_back(nullptr); 3113 } 3114 } 3115 3116 // If all the reports have been marked invalid by a previous path generation, 3117 // we're done. 3118 if (!HasValid) 3119 return false; 3120 3121 using PathGenerationScheme = PathDiagnosticConsumer::PathGenerationScheme; 3122 3123 PathGenerationScheme ActiveScheme = PC.getGenerationScheme(); 3124 3125 if (ActiveScheme == PathDiagnosticConsumer::Extensive) { 3126 AnalyzerOptions &options = getAnalyzerOptions(); 3127 if (options.getBooleanOption("path-diagnostics-alternate", true)) { 3128 ActiveScheme = PathDiagnosticConsumer::AlternateExtensive; 3129 } 3130 } 3131 3132 TrimmedGraph TrimG(&getGraph(), errorNodes); 3133 ReportGraph ErrorGraph; 3134 3135 while (TrimG.popNextReportGraph(ErrorGraph)) { 3136 // Find the BugReport with the original location. 3137 assert(ErrorGraph.Index < bugReports.size()); 3138 BugReport *R = bugReports[ErrorGraph.Index]; 3139 assert(R && "No original report found for sliced graph."); 3140 assert(R->isValid() && "Report selected by trimmed graph marked invalid."); 3141 3142 // Start building the path diagnostic... 3143 PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC); 3144 const ExplodedNode *N = ErrorGraph.ErrorNode; 3145 3146 // Register additional node visitors. 3147 R->addVisitor(llvm::make_unique<NilReceiverBRVisitor>()); 3148 R->addVisitor(llvm::make_unique<ConditionBRVisitor>()); 3149 R->addVisitor(llvm::make_unique<LikelyFalsePositiveSuppressionBRVisitor>()); 3150 R->addVisitor(llvm::make_unique<CXXSelfAssignmentBRVisitor>()); 3151 3152 BugReport::VisitorList visitors; 3153 unsigned origReportConfigToken, finalReportConfigToken; 3154 LocationContextMap LCM; 3155 3156 // While generating diagnostics, it's possible the visitors will decide 3157 // new symbols and regions are interesting, or add other visitors based on 3158 // the information they find. If they do, we need to regenerate the path 3159 // based on our new report configuration. 3160 do { 3161 // Get a clean copy of all the visitors. 3162 for (BugReport::visitor_iterator I = R->visitor_begin(), 3163 E = R->visitor_end(); I != E; ++I) 3164 visitors.push_back((*I)->clone()); 3165 3166 // Clear out the active path from any previous work. 3167 PD.resetPath(); 3168 origReportConfigToken = R->getConfigurationChangeToken(); 3169 3170 // Generate the very last diagnostic piece - the piece is visible before 3171 // the trace is expanded. 3172 std::unique_ptr<PathDiagnosticPiece> LastPiece; 3173 for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end(); 3174 I != E; ++I) { 3175 if (std::unique_ptr<PathDiagnosticPiece> Piece = 3176 (*I)->getEndPath(PDB, N, *R)) { 3177 assert(!LastPiece && 3178 "There can only be one final piece in a diagnostic."); 3179 LastPiece = std::move(Piece); 3180 } 3181 } 3182 3183 if (ActiveScheme != PathDiagnosticConsumer::None) { 3184 if (!LastPiece) 3185 LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R); 3186 assert(LastPiece); 3187 PD.setEndOfPath(std::move(LastPiece)); 3188 } 3189 3190 // Make sure we get a clean location context map so we don't 3191 // hold onto old mappings. 3192 LCM.clear(); 3193 3194 switch (ActiveScheme) { 3195 case PathDiagnosticConsumer::AlternateExtensive: 3196 GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors); 3197 break; 3198 case PathDiagnosticConsumer::Extensive: 3199 GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors); 3200 break; 3201 case PathDiagnosticConsumer::Minimal: 3202 GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors); 3203 break; 3204 case PathDiagnosticConsumer::None: 3205 GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors); 3206 break; 3207 } 3208 3209 // Clean up the visitors we used. 3210 visitors.clear(); 3211 3212 // Did anything change while generating this path? 3213 finalReportConfigToken = R->getConfigurationChangeToken(); 3214 } while (finalReportConfigToken != origReportConfigToken); 3215 3216 if (!R->isValid()) 3217 continue; 3218 3219 // Finally, prune the diagnostic path of uninteresting stuff. 3220 if (!PD.path.empty()) { 3221 if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) { 3222 bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM); 3223 assert(stillHasNotes); 3224 (void)stillHasNotes; 3225 } 3226 3227 // Redirect all call pieces to have valid locations. 3228 adjustCallLocations(PD.getMutablePieces()); 3229 removePiecesWithInvalidLocations(PD.getMutablePieces()); 3230 3231 if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) { 3232 SourceManager &SM = getSourceManager(); 3233 3234 // Reduce the number of edges from a very conservative set 3235 // to an aesthetically pleasing subset that conveys the 3236 // necessary information. 3237 OptimizedCallsSet OCS; 3238 while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {} 3239 3240 // Drop the very first function-entry edge. It's not really necessary 3241 // for top-level functions. 3242 dropFunctionEntryEdge(PD.getMutablePieces(), LCM, SM); 3243 } 3244 3245 // Remove messages that are basically the same, and edges that may not 3246 // make sense. 3247 // We have to do this after edge optimization in the Extensive mode. 3248 removeRedundantMsgs(PD.getMutablePieces()); 3249 removeEdgesToDefaultInitializers(PD.getMutablePieces()); 3250 } 3251 3252 // We found a report and didn't suppress it. 3253 return true; 3254 } 3255 3256 // We suppressed all the reports in this equivalence class. 3257 assert(!HasInvalid && "Inconsistent suppression"); 3258 (void)HasInvalid; 3259 return false; 3260 } 3261 3262 void BugReporter::Register(BugType *BT) { 3263 BugTypes = F.add(BugTypes, BT); 3264 } 3265 3266 void BugReporter::emitReport(std::unique_ptr<BugReport> R) { 3267 if (const ExplodedNode *E = R->getErrorNode()) { 3268 // An error node must either be a sink or have a tag, otherwise 3269 // it could get reclaimed before the path diagnostic is created. 3270 assert((E->isSink() || E->getLocation().getTag()) && 3271 "Error node must either be a sink or have a tag"); 3272 3273 const AnalysisDeclContext *DeclCtx = 3274 E->getLocationContext()->getAnalysisDeclContext(); 3275 // The source of autosynthesized body can be handcrafted AST or a model 3276 // file. The locations from handcrafted ASTs have no valid source locations 3277 // and have to be discarded. Locations from model files should be preserved 3278 // for processing and reporting. 3279 if (DeclCtx->isBodyAutosynthesized() && 3280 !DeclCtx->isBodyAutosynthesizedFromModelFile()) 3281 return; 3282 } 3283 3284 bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid(); 3285 assert(ValidSourceLoc); 3286 // If we mess up in a release build, we'd still prefer to just drop the bug 3287 // instead of trying to go on. 3288 if (!ValidSourceLoc) 3289 return; 3290 3291 // Compute the bug report's hash to determine its equivalence class. 3292 llvm::FoldingSetNodeID ID; 3293 R->Profile(ID); 3294 3295 // Lookup the equivance class. If there isn't one, create it. 3296 BugType& BT = R->getBugType(); 3297 Register(&BT); 3298 void *InsertPos; 3299 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); 3300 3301 if (!EQ) { 3302 EQ = new BugReportEquivClass(std::move(R)); 3303 EQClasses.InsertNode(EQ, InsertPos); 3304 EQClassesVector.push_back(EQ); 3305 } else 3306 EQ->AddReport(std::move(R)); 3307 } 3308 3309 //===----------------------------------------------------------------------===// 3310 // Emitting reports in equivalence classes. 3311 //===----------------------------------------------------------------------===// 3312 3313 namespace { 3314 3315 struct FRIEC_WLItem { 3316 const ExplodedNode *N; 3317 ExplodedNode::const_succ_iterator I, E; 3318 3319 FRIEC_WLItem(const ExplodedNode *n) 3320 : N(n), I(N->succ_begin()), E(N->succ_end()) {} 3321 }; 3322 3323 } // namespace 3324 3325 static const CFGBlock *findBlockForNode(const ExplodedNode *N) { 3326 ProgramPoint P = N->getLocation(); 3327 if (auto BEP = P.getAs<BlockEntrance>()) 3328 return BEP->getBlock(); 3329 3330 // Find the node's current statement in the CFG. 3331 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 3332 return N->getLocationContext()->getAnalysisDeclContext() 3333 ->getCFGStmtMap()->getBlock(S); 3334 3335 return nullptr; 3336 } 3337 3338 // Returns true if by simply looking at the block, we can be sure that it 3339 // results in a sink during analysis. This is useful to know when the analysis 3340 // was interrupted, and we try to figure out if it would sink eventually. 3341 // There may be many more reasons why a sink would appear during analysis 3342 // (eg. checkers may generate sinks arbitrarily), but here we only consider 3343 // sinks that would be obvious by looking at the CFG. 3344 static bool isImmediateSinkBlock(const CFGBlock *Blk) { 3345 if (Blk->hasNoReturnElement()) 3346 return true; 3347 3348 // FIXME: Throw-expressions are currently generating sinks during analysis: 3349 // they're not supported yet, and also often used for actually terminating 3350 // the program. So we should treat them as sinks in this analysis as well, 3351 // at least for now, but once we have better support for exceptions, 3352 // we'd need to carefully handle the case when the throw is being 3353 // immediately caught. 3354 if (std::any_of(Blk->begin(), Blk->end(), [](const CFGElement &Elm) { 3355 if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>()) 3356 if (isa<CXXThrowExpr>(StmtElm->getStmt())) 3357 return true; 3358 return false; 3359 })) 3360 return true; 3361 3362 return false; 3363 } 3364 3365 // Returns true if by looking at the CFG surrounding the node's program 3366 // point, we can be sure that any analysis starting from this point would 3367 // eventually end with a sink. We scan the child CFG blocks in a depth-first 3368 // manner and see if all paths eventually end up in an immediate sink block. 3369 static bool isInevitablySinking(const ExplodedNode *N) { 3370 const CFG &Cfg = N->getCFG(); 3371 3372 const CFGBlock *StartBlk = findBlockForNode(N); 3373 if (!StartBlk) 3374 return false; 3375 if (isImmediateSinkBlock(StartBlk)) 3376 return true; 3377 3378 llvm::SmallVector<const CFGBlock *, 32> DFSWorkList; 3379 llvm::SmallPtrSet<const CFGBlock *, 32> Visited; 3380 3381 DFSWorkList.push_back(StartBlk); 3382 while (!DFSWorkList.empty()) { 3383 const CFGBlock *Blk = DFSWorkList.back(); 3384 DFSWorkList.pop_back(); 3385 Visited.insert(Blk); 3386 3387 for (const auto &Succ : Blk->succs()) { 3388 if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) { 3389 if (SuccBlk == &Cfg.getExit()) { 3390 // If at least one path reaches the CFG exit, it means that control is 3391 // returned to the caller. For now, say that we are not sure what 3392 // happens next. If necessary, this can be improved to analyze 3393 // the parent StackFrameContext's call site in a similar manner. 3394 return false; 3395 } 3396 3397 if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) { 3398 // If the block has reachable child blocks that aren't no-return, 3399 // add them to the worklist. 3400 DFSWorkList.push_back(SuccBlk); 3401 } 3402 } 3403 } 3404 } 3405 3406 // Nothing reached the exit. It can only mean one thing: there's no return. 3407 return true; 3408 } 3409 3410 static BugReport * 3411 FindReportInEquivalenceClass(BugReportEquivClass& EQ, 3412 SmallVectorImpl<BugReport*> &bugReports) { 3413 BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end(); 3414 assert(I != E); 3415 BugType& BT = I->getBugType(); 3416 3417 // If we don't need to suppress any of the nodes because they are 3418 // post-dominated by a sink, simply add all the nodes in the equivalence class 3419 // to 'Nodes'. Any of the reports will serve as a "representative" report. 3420 if (!BT.isSuppressOnSink()) { 3421 BugReport *R = &*I; 3422 for (auto &I : EQ) { 3423 const ExplodedNode *N = I.getErrorNode(); 3424 if (N) { 3425 R = &I; 3426 bugReports.push_back(R); 3427 } 3428 } 3429 return R; 3430 } 3431 3432 // For bug reports that should be suppressed when all paths are post-dominated 3433 // by a sink node, iterate through the reports in the equivalence class 3434 // until we find one that isn't post-dominated (if one exists). We use a 3435 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write 3436 // this as a recursive function, but we don't want to risk blowing out the 3437 // stack for very long paths. 3438 BugReport *exampleReport = nullptr; 3439 3440 for (; I != E; ++I) { 3441 const ExplodedNode *errorNode = I->getErrorNode(); 3442 3443 if (!errorNode) 3444 continue; 3445 if (errorNode->isSink()) { 3446 llvm_unreachable( 3447 "BugType::isSuppressSink() should not be 'true' for sink end nodes"); 3448 } 3449 // No successors? By definition this nodes isn't post-dominated by a sink. 3450 if (errorNode->succ_empty()) { 3451 bugReports.push_back(&*I); 3452 if (!exampleReport) 3453 exampleReport = &*I; 3454 continue; 3455 } 3456 3457 // See if we are in a no-return CFG block. If so, treat this similarly 3458 // to being post-dominated by a sink. This works better when the analysis 3459 // is incomplete and we have never reached the no-return function call(s) 3460 // that we'd inevitably bump into on this path. 3461 if (isInevitablySinking(errorNode)) 3462 continue; 3463 3464 // At this point we know that 'N' is not a sink and it has at least one 3465 // successor. Use a DFS worklist to find a non-sink end-of-path node. 3466 using WLItem = FRIEC_WLItem; 3467 using DFSWorkList = SmallVector<WLItem, 10>; 3468 3469 llvm::DenseMap<const ExplodedNode *, unsigned> Visited; 3470 3471 DFSWorkList WL; 3472 WL.push_back(errorNode); 3473 Visited[errorNode] = 1; 3474 3475 while (!WL.empty()) { 3476 WLItem &WI = WL.back(); 3477 assert(!WI.N->succ_empty()); 3478 3479 for (; WI.I != WI.E; ++WI.I) { 3480 const ExplodedNode *Succ = *WI.I; 3481 // End-of-path node? 3482 if (Succ->succ_empty()) { 3483 // If we found an end-of-path node that is not a sink. 3484 if (!Succ->isSink()) { 3485 bugReports.push_back(&*I); 3486 if (!exampleReport) 3487 exampleReport = &*I; 3488 WL.clear(); 3489 break; 3490 } 3491 // Found a sink? Continue on to the next successor. 3492 continue; 3493 } 3494 // Mark the successor as visited. If it hasn't been explored, 3495 // enqueue it to the DFS worklist. 3496 unsigned &mark = Visited[Succ]; 3497 if (!mark) { 3498 mark = 1; 3499 WL.push_back(Succ); 3500 break; 3501 } 3502 } 3503 3504 // The worklist may have been cleared at this point. First 3505 // check if it is empty before checking the last item. 3506 if (!WL.empty() && &WL.back() == &WI) 3507 WL.pop_back(); 3508 } 3509 } 3510 3511 // ExampleReport will be NULL if all the nodes in the equivalence class 3512 // were post-dominated by sinks. 3513 return exampleReport; 3514 } 3515 3516 void BugReporter::FlushReport(BugReportEquivClass& EQ) { 3517 SmallVector<BugReport*, 10> bugReports; 3518 BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports); 3519 if (exampleReport) { 3520 for (PathDiagnosticConsumer *PDC : getPathDiagnosticConsumers()) { 3521 FlushReport(exampleReport, *PDC, bugReports); 3522 } 3523 } 3524 } 3525 3526 /// Insert all lines participating in the function signature \p Signature 3527 /// into \p ExecutedLines. 3528 static void populateExecutedLinesWithFunctionSignature( 3529 const Decl *Signature, SourceManager &SM, 3530 std::unique_ptr<FilesToLineNumsMap> &ExecutedLines) { 3531 SourceRange SignatureSourceRange; 3532 const Stmt* Body = Signature->getBody(); 3533 if (const auto FD = dyn_cast<FunctionDecl>(Signature)) { 3534 SignatureSourceRange = FD->getSourceRange(); 3535 } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) { 3536 SignatureSourceRange = OD->getSourceRange(); 3537 } else { 3538 return; 3539 } 3540 SourceLocation Start = SignatureSourceRange.getBegin(); 3541 SourceLocation End = Body ? Body->getSourceRange().getBegin() 3542 : SignatureSourceRange.getEnd(); 3543 unsigned StartLine = SM.getExpansionLineNumber(Start); 3544 unsigned EndLine = SM.getExpansionLineNumber(End); 3545 3546 FileID FID = SM.getFileID(SM.getExpansionLoc(Start)); 3547 for (unsigned Line = StartLine; Line <= EndLine; Line++) 3548 ExecutedLines->operator[](FID.getHashValue()).insert(Line); 3549 } 3550 3551 static void populateExecutedLinesWithStmt( 3552 const Stmt *S, SourceManager &SM, 3553 std::unique_ptr<FilesToLineNumsMap> &ExecutedLines) { 3554 SourceLocation Loc = S->getSourceRange().getBegin(); 3555 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc); 3556 FileID FID = SM.getFileID(ExpansionLoc); 3557 unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc); 3558 ExecutedLines->operator[](FID.getHashValue()).insert(LineNo); 3559 } 3560 3561 /// \return all executed lines including function signatures on the path 3562 /// starting from \p N. 3563 static std::unique_ptr<FilesToLineNumsMap> 3564 findExecutedLines(SourceManager &SM, const ExplodedNode *N) { 3565 auto ExecutedLines = llvm::make_unique<FilesToLineNumsMap>(); 3566 3567 while (N) { 3568 if (N->getFirstPred() == nullptr) { 3569 // First node: show signature of the entrance point. 3570 const Decl *D = N->getLocationContext()->getDecl(); 3571 populateExecutedLinesWithFunctionSignature(D, SM, ExecutedLines); 3572 } else if (auto CE = N->getLocationAs<CallEnter>()) { 3573 // Inlined function: show signature. 3574 const Decl* D = CE->getCalleeContext()->getDecl(); 3575 populateExecutedLinesWithFunctionSignature(D, SM, ExecutedLines); 3576 } else if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) { 3577 populateExecutedLinesWithStmt(S, SM, ExecutedLines); 3578 3579 // Show extra context for some parent kinds. 3580 const Stmt *P = N->getParentMap().getParent(S); 3581 3582 // The path exploration can die before the node with the associated 3583 // return statement is generated, but we do want to show the whole 3584 // return. 3585 if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) { 3586 populateExecutedLinesWithStmt(RS, SM, ExecutedLines); 3587 P = N->getParentMap().getParent(RS); 3588 } 3589 3590 if (P && (isa<SwitchCase>(P) || isa<LabelStmt>(P))) 3591 populateExecutedLinesWithStmt(P, SM, ExecutedLines); 3592 } 3593 3594 N = N->getFirstPred(); 3595 } 3596 return ExecutedLines; 3597 } 3598 3599 void BugReporter::FlushReport(BugReport *exampleReport, 3600 PathDiagnosticConsumer &PD, 3601 ArrayRef<BugReport*> bugReports) { 3602 // FIXME: Make sure we use the 'R' for the path that was actually used. 3603 // Probably doesn't make a difference in practice. 3604 BugType& BT = exampleReport->getBugType(); 3605 3606 auto D = llvm::make_unique<PathDiagnostic>( 3607 exampleReport->getBugType().getCheckName(), 3608 exampleReport->getDeclWithIssue(), exampleReport->getBugType().getName(), 3609 exampleReport->getDescription(), 3610 exampleReport->getShortDescription(/*Fallback=*/false), BT.getCategory(), 3611 exampleReport->getUniqueingLocation(), exampleReport->getUniqueingDecl(), 3612 findExecutedLines(getSourceManager(), exampleReport->getErrorNode())); 3613 3614 if (exampleReport->isPathSensitive()) { 3615 // Generate the full path diagnostic, using the generation scheme 3616 // specified by the PathDiagnosticConsumer. Note that we have to generate 3617 // path diagnostics even for consumers which do not support paths, because 3618 // the BugReporterVisitors may mark this bug as a false positive. 3619 assert(!bugReports.empty()); 3620 3621 MaxBugClassSize.updateMax(bugReports.size()); 3622 3623 if (!generatePathDiagnostic(*D.get(), PD, bugReports)) 3624 return; 3625 3626 MaxValidBugClassSize.updateMax(bugReports.size()); 3627 3628 // Examine the report and see if the last piece is in a header. Reset the 3629 // report location to the last piece in the main source file. 3630 AnalyzerOptions &Opts = getAnalyzerOptions(); 3631 if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll) 3632 D->resetDiagnosticLocationToMainFile(); 3633 } 3634 3635 // If the path is empty, generate a single step path with the location 3636 // of the issue. 3637 if (D->path.empty()) { 3638 PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager()); 3639 auto piece = llvm::make_unique<PathDiagnosticEventPiece>( 3640 L, exampleReport->getDescription()); 3641 for (SourceRange Range : exampleReport->getRanges()) 3642 piece->addRange(Range); 3643 D->setEndOfPath(std::move(piece)); 3644 } 3645 3646 PathPieces &Pieces = D->getMutablePieces(); 3647 if (getAnalyzerOptions().shouldDisplayNotesAsEvents()) { 3648 // For path diagnostic consumers that don't support extra notes, 3649 // we may optionally convert those to path notes. 3650 for (auto I = exampleReport->getNotes().rbegin(), 3651 E = exampleReport->getNotes().rend(); I != E; ++I) { 3652 PathDiagnosticNotePiece *Piece = I->get(); 3653 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>( 3654 Piece->getLocation(), Piece->getString()); 3655 for (const auto &R: Piece->getRanges()) 3656 ConvertedPiece->addRange(R); 3657 3658 Pieces.push_front(std::move(ConvertedPiece)); 3659 } 3660 } else { 3661 for (auto I = exampleReport->getNotes().rbegin(), 3662 E = exampleReport->getNotes().rend(); I != E; ++I) 3663 Pieces.push_front(*I); 3664 } 3665 3666 // Get the meta data. 3667 const BugReport::ExtraTextList &Meta = exampleReport->getExtraText(); 3668 for (const auto &i : Meta) 3669 D->addMeta(i); 3670 3671 PD.HandlePathDiagnostic(std::move(D)); 3672 } 3673 3674 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3675 const CheckerBase *Checker, 3676 StringRef Name, StringRef Category, 3677 StringRef Str, PathDiagnosticLocation Loc, 3678 ArrayRef<SourceRange> Ranges) { 3679 EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str, 3680 Loc, Ranges); 3681 } 3682 3683 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3684 CheckName CheckName, 3685 StringRef name, StringRef category, 3686 StringRef str, PathDiagnosticLocation Loc, 3687 ArrayRef<SourceRange> Ranges) { 3688 // 'BT' is owned by BugReporter. 3689 BugType *BT = getBugTypeForName(CheckName, name, category); 3690 auto R = llvm::make_unique<BugReport>(*BT, str, Loc); 3691 R->setDeclWithIssue(DeclWithIssue); 3692 for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end(); 3693 I != E; ++I) 3694 R->addRange(*I); 3695 emitReport(std::move(R)); 3696 } 3697 3698 BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name, 3699 StringRef category) { 3700 SmallString<136> fullDesc; 3701 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name 3702 << ":" << category; 3703 BugType *&BT = StrBugTypes[fullDesc]; 3704 if (!BT) 3705 BT = new BugType(CheckName, name, category); 3706 return BT; 3707 } 3708 3709 LLVM_DUMP_METHOD void PathPieces::dump() const { 3710 unsigned index = 0; 3711 for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) { 3712 llvm::errs() << "[" << index++ << "] "; 3713 (*I)->dump(); 3714 llvm::errs() << "\n"; 3715 } 3716 } 3717 3718 LLVM_DUMP_METHOD void PathDiagnosticCallPiece::dump() const { 3719 llvm::errs() << "CALL\n--------------\n"; 3720 3721 if (const Stmt *SLoc = getLocStmt(getLocation())) 3722 SLoc->dump(); 3723 else if (const auto *ND = dyn_cast<NamedDecl>(getCallee())) 3724 llvm::errs() << *ND << "\n"; 3725 else 3726 getLocation().dump(); 3727 } 3728 3729 LLVM_DUMP_METHOD void PathDiagnosticEventPiece::dump() const { 3730 llvm::errs() << "EVENT\n--------------\n"; 3731 llvm::errs() << getString() << "\n"; 3732 llvm::errs() << " ---- at ----\n"; 3733 getLocation().dump(); 3734 } 3735 3736 LLVM_DUMP_METHOD void PathDiagnosticControlFlowPiece::dump() const { 3737 llvm::errs() << "CONTROL\n--------------\n"; 3738 getStartLocation().dump(); 3739 llvm::errs() << " ---- to ----\n"; 3740 getEndLocation().dump(); 3741 } 3742 3743 LLVM_DUMP_METHOD void PathDiagnosticMacroPiece::dump() const { 3744 llvm::errs() << "MACRO\n--------------\n"; 3745 // FIXME: Print which macro is being invoked. 3746 } 3747 3748 LLVM_DUMP_METHOD void PathDiagnosticNotePiece::dump() const { 3749 llvm::errs() << "NOTE\n--------------\n"; 3750 llvm::errs() << getString() << "\n"; 3751 llvm::errs() << " ---- at ----\n"; 3752 getLocation().dump(); 3753 } 3754 3755 LLVM_DUMP_METHOD void PathDiagnosticLocation::dump() const { 3756 if (!isValid()) { 3757 llvm::errs() << "<INVALID>\n"; 3758 return; 3759 } 3760 3761 switch (K) { 3762 case RangeK: 3763 // FIXME: actually print the range. 3764 llvm::errs() << "<range>\n"; 3765 break; 3766 case SingleLocK: 3767 asLocation().dump(); 3768 llvm::errs() << "\n"; 3769 break; 3770 case StmtK: 3771 if (S) 3772 S->dump(); 3773 else 3774 llvm::errs() << "<NULL STMT>\n"; 3775 break; 3776 case DeclK: 3777 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 3778 llvm::errs() << *ND << "\n"; 3779 else if (isa<BlockDecl>(D)) 3780 // FIXME: Make this nicer. 3781 llvm::errs() << "<block>\n"; 3782 else if (D) 3783 llvm::errs() << "<unknown decl>\n"; 3784 else 3785 llvm::errs() << "<NULL DECL>\n"; 3786 break; 3787 } 3788 } 3789