1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines BugReporter, a utility class for generating
11 //  PathDiagnostics.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/Analysis/CFG.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Analysis/ProgramPoint.h"
26 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/OwningPtr.h"
32 #include "llvm/ADT/IntrusiveRefCntPtr.h"
33 #include <queue>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 BugReporterVisitor::~BugReporterVisitor() {}
39 
40 void BugReporterContext::anchor() {}
41 
42 //===----------------------------------------------------------------------===//
43 // Helper routines for walking the ExplodedGraph and fetching statements.
44 //===----------------------------------------------------------------------===//
45 
46 static inline const Stmt *GetStmt(const ProgramPoint &P) {
47   if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
48     return SP->getStmt();
49   else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
50     return BE->getSrc()->getTerminator();
51 
52   return 0;
53 }
54 
55 static inline const ExplodedNode*
56 GetPredecessorNode(const ExplodedNode *N) {
57   return N->pred_empty() ? NULL : *(N->pred_begin());
58 }
59 
60 static inline const ExplodedNode*
61 GetSuccessorNode(const ExplodedNode *N) {
62   return N->succ_empty() ? NULL : *(N->succ_begin());
63 }
64 
65 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
66   for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
67     if (const Stmt *S = GetStmt(N->getLocation()))
68       return S;
69 
70   return 0;
71 }
72 
73 static const Stmt *GetNextStmt(const ExplodedNode *N) {
74   for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
75     if (const Stmt *S = GetStmt(N->getLocation())) {
76       // Check if the statement is '?' or '&&'/'||'.  These are "merges",
77       // not actual statement points.
78       switch (S->getStmtClass()) {
79         case Stmt::ChooseExprClass:
80         case Stmt::BinaryConditionalOperatorClass: continue;
81         case Stmt::ConditionalOperatorClass: continue;
82         case Stmt::BinaryOperatorClass: {
83           BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
84           if (Op == BO_LAnd || Op == BO_LOr)
85             continue;
86           break;
87         }
88         default:
89           break;
90       }
91       return S;
92     }
93 
94   return 0;
95 }
96 
97 static inline const Stmt*
98 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
99   if (const Stmt *S = GetStmt(N->getLocation()))
100     return S;
101 
102   return GetPreviousStmt(N);
103 }
104 
105 static inline const Stmt*
106 GetCurrentOrNextStmt(const ExplodedNode *N) {
107   if (const Stmt *S = GetStmt(N->getLocation()))
108     return S;
109 
110   return GetNextStmt(N);
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // Diagnostic cleanup.
115 //===----------------------------------------------------------------------===//
116 
117 /// Recursively scan through a path and prune out calls and macros pieces
118 /// that aren't needed.  Return true if afterwards the path contains
119 /// "interesting stuff" which means it should be pruned from the parent path.
120 static bool RemoveUneededCalls(PathPieces &pieces) {
121   bool containsSomethingInteresting = false;
122   const unsigned N = pieces.size();
123 
124   for (unsigned i = 0 ; i < N ; ++i) {
125     // Remove the front piece from the path.  If it is still something we
126     // want to keep once we are done, we will push it back on the end.
127     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
128     pieces.pop_front();
129 
130     switch (piece->getKind()) {
131       case PathDiagnosticPiece::Call: {
132         PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
133         // Recursively clean out the subclass.  Keep this call around if
134         // it contains any informative diagnostics.
135         if (!RemoveUneededCalls(call->path))
136           continue;
137         containsSomethingInteresting = true;
138         break;
139       }
140       case PathDiagnosticPiece::Macro: {
141         PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
142         if (!RemoveUneededCalls(macro->subPieces))
143           continue;
144         containsSomethingInteresting = true;
145         break;
146       }
147       case PathDiagnosticPiece::Event: {
148         PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
149         // We never throw away an event, but we do throw it away wholesale
150         // as part of a path if we throw the entire path away.
151         if (event->isPrunable())
152           continue;
153         containsSomethingInteresting = true;
154         break;
155       }
156       case PathDiagnosticPiece::ControlFlow:
157         break;
158     }
159 
160     pieces.push_back(piece);
161   }
162 
163   return containsSomethingInteresting;
164 }
165 
166 //===----------------------------------------------------------------------===//
167 // PathDiagnosticBuilder and its associated routines and helper objects.
168 //===----------------------------------------------------------------------===//
169 
170 typedef llvm::DenseMap<const ExplodedNode*,
171 const ExplodedNode*> NodeBackMap;
172 
173 namespace {
174 class NodeMapClosure : public BugReport::NodeResolver {
175   NodeBackMap& M;
176 public:
177   NodeMapClosure(NodeBackMap *m) : M(*m) {}
178   ~NodeMapClosure() {}
179 
180   const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
181     NodeBackMap::iterator I = M.find(N);
182     return I == M.end() ? 0 : I->second;
183   }
184 };
185 
186 class PathDiagnosticBuilder : public BugReporterContext {
187   BugReport *R;
188   PathDiagnosticConsumer *PDC;
189   OwningPtr<ParentMap> PM;
190   NodeMapClosure NMC;
191 public:
192   const LocationContext *LC;
193 
194   PathDiagnosticBuilder(GRBugReporter &br,
195                         BugReport *r, NodeBackMap *Backmap,
196                         PathDiagnosticConsumer *pdc)
197     : BugReporterContext(br),
198       R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
199   {}
200 
201   PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
202 
203   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
204                                             const ExplodedNode *N);
205 
206   BugReport *getBugReport() { return R; }
207 
208   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
209 
210   ParentMap& getParentMap() { return LC->getParentMap(); }
211 
212   const Stmt *getParent(const Stmt *S) {
213     return getParentMap().getParent(S);
214   }
215 
216   virtual NodeMapClosure& getNodeResolver() { return NMC; }
217 
218   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
219 
220   PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
221     return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
222   }
223 
224   bool supportsLogicalOpControlFlow() const {
225     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
226   }
227 };
228 } // end anonymous namespace
229 
230 PathDiagnosticLocation
231 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
232   if (const Stmt *S = GetNextStmt(N))
233     return PathDiagnosticLocation(S, getSourceManager(), LC);
234 
235   return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
236                                                getSourceManager());
237 }
238 
239 PathDiagnosticLocation
240 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
241                                           const ExplodedNode *N) {
242 
243   // Slow, but probably doesn't matter.
244   if (os.str().empty())
245     os << ' ';
246 
247   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
248 
249   if (Loc.asStmt())
250     os << "Execution continues on line "
251        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
252        << '.';
253   else {
254     os << "Execution jumps to the end of the ";
255     const Decl *D = N->getLocationContext()->getDecl();
256     if (isa<ObjCMethodDecl>(D))
257       os << "method";
258     else if (isa<FunctionDecl>(D))
259       os << "function";
260     else {
261       assert(isa<BlockDecl>(D));
262       os << "anonymous block";
263     }
264     os << '.';
265   }
266 
267   return Loc;
268 }
269 
270 static bool IsNested(const Stmt *S, ParentMap &PM) {
271   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
272     return true;
273 
274   const Stmt *Parent = PM.getParentIgnoreParens(S);
275 
276   if (Parent)
277     switch (Parent->getStmtClass()) {
278       case Stmt::ForStmtClass:
279       case Stmt::DoStmtClass:
280       case Stmt::WhileStmtClass:
281         return true;
282       default:
283         break;
284     }
285 
286   return false;
287 }
288 
289 PathDiagnosticLocation
290 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
291   assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
292   ParentMap &P = getParentMap();
293   SourceManager &SMgr = getSourceManager();
294 
295   while (IsNested(S, P)) {
296     const Stmt *Parent = P.getParentIgnoreParens(S);
297 
298     if (!Parent)
299       break;
300 
301     switch (Parent->getStmtClass()) {
302       case Stmt::BinaryOperatorClass: {
303         const BinaryOperator *B = cast<BinaryOperator>(Parent);
304         if (B->isLogicalOp())
305           return PathDiagnosticLocation(S, SMgr, LC);
306         break;
307       }
308       case Stmt::CompoundStmtClass:
309       case Stmt::StmtExprClass:
310         return PathDiagnosticLocation(S, SMgr, LC);
311       case Stmt::ChooseExprClass:
312         // Similar to '?' if we are referring to condition, just have the edge
313         // point to the entire choose expression.
314         if (cast<ChooseExpr>(Parent)->getCond() == S)
315           return PathDiagnosticLocation(Parent, SMgr, LC);
316         else
317           return PathDiagnosticLocation(S, SMgr, LC);
318       case Stmt::BinaryConditionalOperatorClass:
319       case Stmt::ConditionalOperatorClass:
320         // For '?', if we are referring to condition, just have the edge point
321         // to the entire '?' expression.
322         if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
323           return PathDiagnosticLocation(Parent, SMgr, LC);
324         else
325           return PathDiagnosticLocation(S, SMgr, LC);
326       case Stmt::DoStmtClass:
327           return PathDiagnosticLocation(S, SMgr, LC);
328       case Stmt::ForStmtClass:
329         if (cast<ForStmt>(Parent)->getBody() == S)
330           return PathDiagnosticLocation(S, SMgr, LC);
331         break;
332       case Stmt::IfStmtClass:
333         if (cast<IfStmt>(Parent)->getCond() != S)
334           return PathDiagnosticLocation(S, SMgr, LC);
335         break;
336       case Stmt::ObjCForCollectionStmtClass:
337         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
338           return PathDiagnosticLocation(S, SMgr, LC);
339         break;
340       case Stmt::WhileStmtClass:
341         if (cast<WhileStmt>(Parent)->getCond() != S)
342           return PathDiagnosticLocation(S, SMgr, LC);
343         break;
344       default:
345         break;
346     }
347 
348     S = Parent;
349   }
350 
351   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
352 
353   // Special case: DeclStmts can appear in for statement declarations, in which
354   //  case the ForStmt is the context.
355   if (isa<DeclStmt>(S)) {
356     if (const Stmt *Parent = P.getParent(S)) {
357       switch (Parent->getStmtClass()) {
358         case Stmt::ForStmtClass:
359         case Stmt::ObjCForCollectionStmtClass:
360           return PathDiagnosticLocation(Parent, SMgr, LC);
361         default:
362           break;
363       }
364     }
365   }
366   else if (isa<BinaryOperator>(S)) {
367     // Special case: the binary operator represents the initialization
368     // code in a for statement (this can happen when the variable being
369     // initialized is an old variable.
370     if (const ForStmt *FS =
371           dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
372       if (FS->getInit() == S)
373         return PathDiagnosticLocation(FS, SMgr, LC);
374     }
375   }
376 
377   return PathDiagnosticLocation(S, SMgr, LC);
378 }
379 
380 //===----------------------------------------------------------------------===//
381 // "Minimal" path diagnostic generation algorithm.
382 //===----------------------------------------------------------------------===//
383 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
384 typedef SmallVector<StackDiagPair, 6> StackDiagVector;
385 
386 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
387                                          StackDiagVector &CallStack) {
388   // If the piece contains a special message, add it to all the call
389   // pieces on the active stack.
390   if (PathDiagnosticEventPiece *ep =
391         dyn_cast<PathDiagnosticEventPiece>(P)) {
392 
393     if (ep->hasCallStackHint())
394       for (StackDiagVector::iterator I = CallStack.begin(),
395                                      E = CallStack.end(); I != E; ++I) {
396         PathDiagnosticCallPiece *CP = I->first;
397         const ExplodedNode *N = I->second;
398         std::string stackMsg = ep->getCallStackMessage(N);
399 
400         // The last message on the path to final bug is the most important
401         // one. Since we traverse the path backwards, do not add the message
402         // if one has been previously added.
403         if  (!CP->hasCallStackMessage())
404           CP->setCallStackMessage(stackMsg);
405       }
406   }
407 }
408 
409 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
410 
411 static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
412                                           PathDiagnosticBuilder &PDB,
413                                           const ExplodedNode *N,
414                                       ArrayRef<BugReporterVisitor *> visitors) {
415 
416   SourceManager& SMgr = PDB.getSourceManager();
417   const LocationContext *LC = PDB.LC;
418   const ExplodedNode *NextNode = N->pred_empty()
419                                         ? NULL : *(N->pred_begin());
420 
421   StackDiagVector CallStack;
422 
423   while (NextNode) {
424     N = NextNode;
425     PDB.LC = N->getLocationContext();
426     NextNode = GetPredecessorNode(N);
427 
428     ProgramPoint P = N->getLocation();
429 
430     if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
431       PathDiagnosticCallPiece *C =
432         PathDiagnosticCallPiece::construct(N, *CE, SMgr);
433       PD.getActivePath().push_front(C);
434       PD.pushActivePath(&C->path);
435       CallStack.push_back(StackDiagPair(C, N));
436       continue;
437     }
438 
439     if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
440       PD.popActivePath();
441       // The current active path should never be empty.  Either we
442       // just added a bunch of stuff to the top-level path, or
443       // we have a previous CallExitEnd.  If the front of the active
444       // path is not a PathDiagnosticCallPiece, it means that the
445       // path terminated within a function call.  We must then take the
446       // current contents of the active path and place it within
447       // a new PathDiagnosticCallPiece.
448       assert(!PD.getActivePath().empty());
449       PathDiagnosticCallPiece *C =
450         dyn_cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
451       if (!C) {
452         const Decl *Caller = CE->getLocationContext()->getDecl();
453         C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
454       }
455       C->setCallee(*CE, SMgr);
456       if (!CallStack.empty()) {
457         assert(CallStack.back().first == C);
458         CallStack.pop_back();
459       }
460       continue;
461     }
462 
463     if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
464       const CFGBlock *Src = BE->getSrc();
465       const CFGBlock *Dst = BE->getDst();
466       const Stmt *T = Src->getTerminator();
467 
468       if (!T)
469         continue;
470 
471       PathDiagnosticLocation Start =
472         PathDiagnosticLocation::createBegin(T, SMgr,
473                                                 N->getLocationContext());
474 
475       switch (T->getStmtClass()) {
476         default:
477           break;
478 
479         case Stmt::GotoStmtClass:
480         case Stmt::IndirectGotoStmtClass: {
481           const Stmt *S = GetNextStmt(N);
482 
483           if (!S)
484             continue;
485 
486           std::string sbuf;
487           llvm::raw_string_ostream os(sbuf);
488           const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
489 
490           os << "Control jumps to line "
491           << End.asLocation().getExpansionLineNumber();
492           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
493                                                                 os.str()));
494           break;
495         }
496 
497         case Stmt::SwitchStmtClass: {
498           // Figure out what case arm we took.
499           std::string sbuf;
500           llvm::raw_string_ostream os(sbuf);
501 
502           if (const Stmt *S = Dst->getLabel()) {
503             PathDiagnosticLocation End(S, SMgr, LC);
504 
505             switch (S->getStmtClass()) {
506               default:
507                 os << "No cases match in the switch statement. "
508                 "Control jumps to line "
509                 << End.asLocation().getExpansionLineNumber();
510                 break;
511               case Stmt::DefaultStmtClass:
512                 os << "Control jumps to the 'default' case at line "
513                 << End.asLocation().getExpansionLineNumber();
514                 break;
515 
516               case Stmt::CaseStmtClass: {
517                 os << "Control jumps to 'case ";
518                 const CaseStmt *Case = cast<CaseStmt>(S);
519                 const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
520 
521                 // Determine if it is an enum.
522                 bool GetRawInt = true;
523 
524                 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
525                   // FIXME: Maybe this should be an assertion.  Are there cases
526                   // were it is not an EnumConstantDecl?
527                   const EnumConstantDecl *D =
528                     dyn_cast<EnumConstantDecl>(DR->getDecl());
529 
530                   if (D) {
531                     GetRawInt = false;
532                     os << *D;
533                   }
534                 }
535 
536                 if (GetRawInt)
537                   os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
538 
539                 os << ":'  at line "
540                 << End.asLocation().getExpansionLineNumber();
541                 break;
542               }
543             }
544             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
545                                                              os.str()));
546           }
547           else {
548             os << "'Default' branch taken. ";
549             const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
550             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
551                                                              os.str()));
552           }
553 
554           break;
555         }
556 
557         case Stmt::BreakStmtClass:
558         case Stmt::ContinueStmtClass: {
559           std::string sbuf;
560           llvm::raw_string_ostream os(sbuf);
561           PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
562           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
563                                                            os.str()));
564           break;
565         }
566 
567           // Determine control-flow for ternary '?'.
568         case Stmt::BinaryConditionalOperatorClass:
569         case Stmt::ConditionalOperatorClass: {
570           std::string sbuf;
571           llvm::raw_string_ostream os(sbuf);
572           os << "'?' condition is ";
573 
574           if (*(Src->succ_begin()+1) == Dst)
575             os << "false";
576           else
577             os << "true";
578 
579           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
580 
581           if (const Stmt *S = End.asStmt())
582             End = PDB.getEnclosingStmtLocation(S);
583 
584           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
585                                                            os.str()));
586           break;
587         }
588 
589           // Determine control-flow for short-circuited '&&' and '||'.
590         case Stmt::BinaryOperatorClass: {
591           if (!PDB.supportsLogicalOpControlFlow())
592             break;
593 
594           const BinaryOperator *B = cast<BinaryOperator>(T);
595           std::string sbuf;
596           llvm::raw_string_ostream os(sbuf);
597           os << "Left side of '";
598 
599           if (B->getOpcode() == BO_LAnd) {
600             os << "&&" << "' is ";
601 
602             if (*(Src->succ_begin()+1) == Dst) {
603               os << "false";
604               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
605               PathDiagnosticLocation Start =
606                 PathDiagnosticLocation::createOperatorLoc(B, SMgr);
607               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
608                                                                os.str()));
609             }
610             else {
611               os << "true";
612               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
613               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
614               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
615                                                                os.str()));
616             }
617           }
618           else {
619             assert(B->getOpcode() == BO_LOr);
620             os << "||" << "' is ";
621 
622             if (*(Src->succ_begin()+1) == Dst) {
623               os << "false";
624               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
625               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
626               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
627                                                                os.str()));
628             }
629             else {
630               os << "true";
631               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
632               PathDiagnosticLocation Start =
633                 PathDiagnosticLocation::createOperatorLoc(B, SMgr);
634               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
635                                                                os.str()));
636             }
637           }
638 
639           break;
640         }
641 
642         case Stmt::DoStmtClass:  {
643           if (*(Src->succ_begin()) == Dst) {
644             std::string sbuf;
645             llvm::raw_string_ostream os(sbuf);
646 
647             os << "Loop condition is true. ";
648             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
649 
650             if (const Stmt *S = End.asStmt())
651               End = PDB.getEnclosingStmtLocation(S);
652 
653             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
654                                                              os.str()));
655           }
656           else {
657             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
658 
659             if (const Stmt *S = End.asStmt())
660               End = PDB.getEnclosingStmtLocation(S);
661 
662             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
663                               "Loop condition is false.  Exiting loop"));
664           }
665 
666           break;
667         }
668 
669         case Stmt::WhileStmtClass:
670         case Stmt::ForStmtClass: {
671           if (*(Src->succ_begin()+1) == Dst) {
672             std::string sbuf;
673             llvm::raw_string_ostream os(sbuf);
674 
675             os << "Loop condition is false. ";
676             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
677             if (const Stmt *S = End.asStmt())
678               End = PDB.getEnclosingStmtLocation(S);
679 
680             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
681                                                              os.str()));
682           }
683           else {
684             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
685             if (const Stmt *S = End.asStmt())
686               End = PDB.getEnclosingStmtLocation(S);
687 
688             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
689                             "Loop condition is true.  Entering loop body"));
690           }
691 
692           break;
693         }
694 
695         case Stmt::IfStmtClass: {
696           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
697 
698           if (const Stmt *S = End.asStmt())
699             End = PDB.getEnclosingStmtLocation(S);
700 
701           if (*(Src->succ_begin()+1) == Dst)
702             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
703                                                         "Taking false branch"));
704           else
705             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
706                                                          "Taking true branch"));
707 
708           break;
709         }
710       }
711     }
712 
713     if (NextNode) {
714       // Add diagnostic pieces from custom visitors.
715       BugReport *R = PDB.getBugReport();
716       for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
717                                                     E = visitors.end();
718            I != E; ++I) {
719         if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
720           PD.getActivePath().push_front(p);
721           updateStackPiecesWithMessage(p, CallStack);
722         }
723       }
724     }
725   }
726 
727   // After constructing the full PathDiagnostic, do a pass over it to compact
728   // PathDiagnosticPieces that occur within a macro.
729   CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
730 }
731 
732 //===----------------------------------------------------------------------===//
733 // "Extensive" PathDiagnostic generation.
734 //===----------------------------------------------------------------------===//
735 
736 static bool IsControlFlowExpr(const Stmt *S) {
737   const Expr *E = dyn_cast<Expr>(S);
738 
739   if (!E)
740     return false;
741 
742   E = E->IgnoreParenCasts();
743 
744   if (isa<AbstractConditionalOperator>(E))
745     return true;
746 
747   if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
748     if (B->isLogicalOp())
749       return true;
750 
751   return false;
752 }
753 
754 namespace {
755 class ContextLocation : public PathDiagnosticLocation {
756   bool IsDead;
757 public:
758   ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
759     : PathDiagnosticLocation(L), IsDead(isdead) {}
760 
761   void markDead() { IsDead = true; }
762   bool isDead() const { return IsDead; }
763 };
764 
765 class EdgeBuilder {
766   std::vector<ContextLocation> CLocs;
767   typedef std::vector<ContextLocation>::iterator iterator;
768   PathDiagnostic &PD;
769   PathDiagnosticBuilder &PDB;
770   PathDiagnosticLocation PrevLoc;
771 
772   bool IsConsumedExpr(const PathDiagnosticLocation &L);
773 
774   bool containsLocation(const PathDiagnosticLocation &Container,
775                         const PathDiagnosticLocation &Containee);
776 
777   PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
778 
779   PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
780                                          bool firstCharOnly = false) {
781     if (const Stmt *S = L.asStmt()) {
782       const Stmt *Original = S;
783       while (1) {
784         // Adjust the location for some expressions that are best referenced
785         // by one of their subexpressions.
786         switch (S->getStmtClass()) {
787           default:
788             break;
789           case Stmt::ParenExprClass:
790           case Stmt::GenericSelectionExprClass:
791             S = cast<Expr>(S)->IgnoreParens();
792             firstCharOnly = true;
793             continue;
794           case Stmt::BinaryConditionalOperatorClass:
795           case Stmt::ConditionalOperatorClass:
796             S = cast<AbstractConditionalOperator>(S)->getCond();
797             firstCharOnly = true;
798             continue;
799           case Stmt::ChooseExprClass:
800             S = cast<ChooseExpr>(S)->getCond();
801             firstCharOnly = true;
802             continue;
803           case Stmt::BinaryOperatorClass:
804             S = cast<BinaryOperator>(S)->getLHS();
805             firstCharOnly = true;
806             continue;
807         }
808 
809         break;
810       }
811 
812       if (S != Original)
813         L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
814     }
815 
816     if (firstCharOnly)
817       L  = PathDiagnosticLocation::createSingleLocation(L);
818 
819     return L;
820   }
821 
822   void popLocation() {
823     if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
824       // For contexts, we only one the first character as the range.
825       rawAddEdge(cleanUpLocation(CLocs.back(), true));
826     }
827     CLocs.pop_back();
828   }
829 
830 public:
831   EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
832     : PD(pd), PDB(pdb) {
833 
834       // If the PathDiagnostic already has pieces, add the enclosing statement
835       // of the first piece as a context as well.
836       if (!PD.path.empty()) {
837         PrevLoc = (*PD.path.begin())->getLocation();
838 
839         if (const Stmt *S = PrevLoc.asStmt())
840           addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
841       }
842   }
843 
844   ~EdgeBuilder() {
845     while (!CLocs.empty()) popLocation();
846 
847     // Finally, add an initial edge from the start location of the first
848     // statement (if it doesn't already exist).
849     PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
850                                                        PDB.LC,
851                                                        PDB.getSourceManager());
852     if (L.isValid())
853       rawAddEdge(L);
854   }
855 
856   void flushLocations() {
857     while (!CLocs.empty())
858       popLocation();
859     PrevLoc = PathDiagnosticLocation();
860   }
861 
862   void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
863 
864   void rawAddEdge(PathDiagnosticLocation NewLoc);
865 
866   void addContext(const Stmt *S);
867   void addExtendedContext(const Stmt *S);
868 };
869 } // end anonymous namespace
870 
871 
872 PathDiagnosticLocation
873 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
874   if (const Stmt *S = L.asStmt()) {
875     if (IsControlFlowExpr(S))
876       return L;
877 
878     return PDB.getEnclosingStmtLocation(S);
879   }
880 
881   return L;
882 }
883 
884 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
885                                    const PathDiagnosticLocation &Containee) {
886 
887   if (Container == Containee)
888     return true;
889 
890   if (Container.asDecl())
891     return true;
892 
893   if (const Stmt *S = Containee.asStmt())
894     if (const Stmt *ContainerS = Container.asStmt()) {
895       while (S) {
896         if (S == ContainerS)
897           return true;
898         S = PDB.getParent(S);
899       }
900       return false;
901     }
902 
903   // Less accurate: compare using source ranges.
904   SourceRange ContainerR = Container.asRange();
905   SourceRange ContaineeR = Containee.asRange();
906 
907   SourceManager &SM = PDB.getSourceManager();
908   SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
909   SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
910   SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
911   SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
912 
913   unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
914   unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
915   unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
916   unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
917 
918   assert(ContainerBegLine <= ContainerEndLine);
919   assert(ContaineeBegLine <= ContaineeEndLine);
920 
921   return (ContainerBegLine <= ContaineeBegLine &&
922           ContainerEndLine >= ContaineeEndLine &&
923           (ContainerBegLine != ContaineeBegLine ||
924            SM.getExpansionColumnNumber(ContainerRBeg) <=
925            SM.getExpansionColumnNumber(ContaineeRBeg)) &&
926           (ContainerEndLine != ContaineeEndLine ||
927            SM.getExpansionColumnNumber(ContainerREnd) >=
928            SM.getExpansionColumnNumber(ContaineeREnd)));
929 }
930 
931 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
932   if (!PrevLoc.isValid()) {
933     PrevLoc = NewLoc;
934     return;
935   }
936 
937   const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
938   const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
939 
940   if (NewLocClean.asLocation() == PrevLocClean.asLocation())
941     return;
942 
943   // FIXME: Ignore intra-macro edges for now.
944   if (NewLocClean.asLocation().getExpansionLoc() ==
945       PrevLocClean.asLocation().getExpansionLoc())
946     return;
947 
948   PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
949   PrevLoc = NewLoc;
950 }
951 
952 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
953 
954   if (!alwaysAdd && NewLoc.asLocation().isMacroID())
955     return;
956 
957   const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
958 
959   while (!CLocs.empty()) {
960     ContextLocation &TopContextLoc = CLocs.back();
961 
962     // Is the top location context the same as the one for the new location?
963     if (TopContextLoc == CLoc) {
964       if (alwaysAdd) {
965         if (IsConsumedExpr(TopContextLoc) &&
966             !IsControlFlowExpr(TopContextLoc.asStmt()))
967             TopContextLoc.markDead();
968 
969         rawAddEdge(NewLoc);
970       }
971 
972       return;
973     }
974 
975     if (containsLocation(TopContextLoc, CLoc)) {
976       if (alwaysAdd) {
977         rawAddEdge(NewLoc);
978 
979         if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
980           CLocs.push_back(ContextLocation(CLoc, true));
981           return;
982         }
983       }
984 
985       CLocs.push_back(CLoc);
986       return;
987     }
988 
989     // Context does not contain the location.  Flush it.
990     popLocation();
991   }
992 
993   // If we reach here, there is no enclosing context.  Just add the edge.
994   rawAddEdge(NewLoc);
995 }
996 
997 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
998   if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
999     return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1000 
1001   return false;
1002 }
1003 
1004 void EdgeBuilder::addExtendedContext(const Stmt *S) {
1005   if (!S)
1006     return;
1007 
1008   const Stmt *Parent = PDB.getParent(S);
1009   while (Parent) {
1010     if (isa<CompoundStmt>(Parent))
1011       Parent = PDB.getParent(Parent);
1012     else
1013       break;
1014   }
1015 
1016   if (Parent) {
1017     switch (Parent->getStmtClass()) {
1018       case Stmt::DoStmtClass:
1019       case Stmt::ObjCAtSynchronizedStmtClass:
1020         addContext(Parent);
1021       default:
1022         break;
1023     }
1024   }
1025 
1026   addContext(S);
1027 }
1028 
1029 void EdgeBuilder::addContext(const Stmt *S) {
1030   if (!S)
1031     return;
1032 
1033   PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1034 
1035   while (!CLocs.empty()) {
1036     const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1037 
1038     // Is the top location context the same as the one for the new location?
1039     if (TopContextLoc == L)
1040       return;
1041 
1042     if (containsLocation(TopContextLoc, L)) {
1043       CLocs.push_back(L);
1044       return;
1045     }
1046 
1047     // Context does not contain the location.  Flush it.
1048     popLocation();
1049   }
1050 
1051   CLocs.push_back(L);
1052 }
1053 
1054 // Cone-of-influence: support the reverse propagation of "interesting" symbols
1055 // and values by tracing interesting calculations backwards through evaluated
1056 // expressions along a path.  This is probably overly complicated, but the idea
1057 // is that if an expression computed an "interesting" value, the child
1058 // expressions are are also likely to be "interesting" as well (which then
1059 // propagates to the values they in turn compute).  This reverse propagation
1060 // is needed to track interesting correlations across function call boundaries,
1061 // where formal arguments bind to actual arguments, etc.  This is also needed
1062 // because the constraint solver sometimes simplifies certain symbolic values
1063 // into constants when appropriate, and this complicates reasoning about
1064 // interesting values.
1065 typedef llvm::DenseSet<const Expr *> InterestingExprs;
1066 
1067 static void reversePropagateIntererstingSymbols(BugReport &R,
1068                                                 InterestingExprs &IE,
1069                                                 const ProgramState *State,
1070                                                 const Expr *Ex,
1071                                                 const LocationContext *LCtx) {
1072   SVal V = State->getSVal(Ex, LCtx);
1073   if (!(R.isInteresting(V) || IE.count(Ex)))
1074     return;
1075 
1076   switch (Ex->getStmtClass()) {
1077     default:
1078       if (!isa<CastExpr>(Ex))
1079         break;
1080       // Fall through.
1081     case Stmt::BinaryOperatorClass:
1082     case Stmt::UnaryOperatorClass: {
1083       for (Stmt::const_child_iterator CI = Ex->child_begin(),
1084             CE = Ex->child_end();
1085             CI != CE; ++CI) {
1086         if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1087           IE.insert(child);
1088           SVal ChildV = State->getSVal(child, LCtx);
1089           R.markInteresting(ChildV);
1090         }
1091         break;
1092       }
1093     }
1094   }
1095 
1096   R.markInteresting(V);
1097 }
1098 
1099 static void reversePropagateInterestingSymbols(BugReport &R,
1100                                                InterestingExprs &IE,
1101                                                const ProgramState *State,
1102                                                const LocationContext *CalleeCtx,
1103                                                const LocationContext *CallerCtx)
1104 {
1105   // FIXME: Handle CXXConstructExpr.
1106   // FIXME: Handle calls to blocks.
1107   const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1108   const Stmt *CallSite = Callee->getCallSite();
1109   if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite)) {
1110     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1111       FunctionDecl::param_const_iterator PI = FD->param_begin(),
1112                                          PE = FD->param_end();
1113       CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1114       for (; AI != AE && PI != PE; ++AI, ++PI) {
1115         if (const Expr *ArgE = *AI) {
1116           if (const ParmVarDecl *PD = *PI) {
1117             Loc LV = State->getLValue(PD, CalleeCtx);
1118             if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1119               IE.insert(ArgE);
1120           }
1121         }
1122       }
1123     }
1124   }
1125 }
1126 
1127 static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1128                                             PathDiagnosticBuilder &PDB,
1129                                             const ExplodedNode *N,
1130                                       ArrayRef<BugReporterVisitor *> visitors) {
1131   EdgeBuilder EB(PD, PDB);
1132   const SourceManager& SM = PDB.getSourceManager();
1133   StackDiagVector CallStack;
1134   InterestingExprs IE;
1135 
1136   const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1137   while (NextNode) {
1138     N = NextNode;
1139     NextNode = GetPredecessorNode(N);
1140     ProgramPoint P = N->getLocation();
1141 
1142     do {
1143       if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
1144         if (const Expr *Ex = PS->getStmtAs<Expr>())
1145           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1146                                               N->getState().getPtr(), Ex,
1147                                               N->getLocationContext());
1148       }
1149 
1150       if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
1151         const StackFrameContext *LCtx =
1152         CE->getLocationContext()->getCurrentStackFrame();
1153         PathDiagnosticLocation Loc(CE->getStmt(),
1154                                    PDB.getSourceManager(),
1155                                    LCtx);
1156         EB.addEdge(Loc, true);
1157         EB.flushLocations();
1158         PathDiagnosticCallPiece *C =
1159           PathDiagnosticCallPiece::construct(N, *CE, SM);
1160         PD.getActivePath().push_front(C);
1161         PD.pushActivePath(&C->path);
1162         CallStack.push_back(StackDiagPair(C, N));
1163         break;
1164       }
1165 
1166       // Pop the call hierarchy if we are done walking the contents
1167       // of a function call.
1168       if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
1169         // Add an edge to the start of the function.
1170         const Decl *D = CE->getCalleeContext()->getDecl();
1171         PathDiagnosticLocation pos =
1172           PathDiagnosticLocation::createBegin(D, SM);
1173         EB.addEdge(pos);
1174 
1175         // Flush all locations, and pop the active path.
1176         EB.flushLocations();
1177         PD.popActivePath();
1178         assert(!PD.getActivePath().empty());
1179         PDB.LC = N->getLocationContext();
1180 
1181         // The current active path should never be empty.  Either we
1182         // just added a bunch of stuff to the top-level path, or
1183         // we have a previous CallExitEnd.  If the front of the active
1184         // path is not a PathDiagnosticCallPiece, it means that the
1185         // path terminated within a function call.  We must then take the
1186         // current contents of the active path and place it within
1187         // a new PathDiagnosticCallPiece.
1188         PathDiagnosticCallPiece *C =
1189           dyn_cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1190         if (!C) {
1191           const Decl * Caller = CE->getLocationContext()->getDecl();
1192           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1193         }
1194         C->setCallee(*CE, SM);
1195         EB.addContext(CE->getCallExpr());
1196 
1197         if (!CallStack.empty()) {
1198           assert(CallStack.back().first == C);
1199           CallStack.pop_back();
1200         }
1201         break;
1202       }
1203 
1204       // Note that is important that we update the LocationContext
1205       // after looking at CallExits.  CallExit basically adds an
1206       // edge in the *caller*, so we don't want to update the LocationContext
1207       // too soon.
1208       PDB.LC = N->getLocationContext();
1209 
1210       // Block edges.
1211       if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1212         // Does this represent entering a call?  If so, look at propagating
1213         // interesting symbols across call boundaries.
1214         if (NextNode) {
1215           const LocationContext *CallerCtx = NextNode->getLocationContext();
1216           const LocationContext *CalleeCtx = PDB.LC;
1217           if (CallerCtx != CalleeCtx) {
1218             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1219                                                N->getState().getPtr(),
1220                                                CalleeCtx, CallerCtx);
1221           }
1222         }
1223 
1224         const CFGBlock &Blk = *BE->getSrc();
1225         const Stmt *Term = Blk.getTerminator();
1226 
1227         // Are we jumping to the head of a loop?  Add a special diagnostic.
1228         if (const Stmt *Loop = BE->getDst()->getLoopTarget()) {
1229           PathDiagnosticLocation L(Loop, SM, PDB.LC);
1230           const CompoundStmt *CS = NULL;
1231 
1232           if (!Term) {
1233             if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1234               CS = dyn_cast<CompoundStmt>(FS->getBody());
1235             else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1236               CS = dyn_cast<CompoundStmt>(WS->getBody());
1237           }
1238 
1239           PathDiagnosticEventPiece *p =
1240             new PathDiagnosticEventPiece(L,
1241                                         "Looping back to the head of the loop");
1242           p->setPrunable(true);
1243 
1244           EB.addEdge(p->getLocation(), true);
1245           PD.getActivePath().push_front(p);
1246 
1247           if (CS) {
1248             PathDiagnosticLocation BL =
1249               PathDiagnosticLocation::createEndBrace(CS, SM);
1250             EB.addEdge(BL);
1251           }
1252         }
1253 
1254         if (Term)
1255           EB.addContext(Term);
1256 
1257         break;
1258       }
1259 
1260       if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1261         if (const CFGStmt *S = BE->getFirstElement().getAs<CFGStmt>()) {
1262           const Stmt *stmt = S->getStmt();
1263           if (IsControlFlowExpr(stmt)) {
1264             // Add the proper context for '&&', '||', and '?'.
1265             EB.addContext(stmt);
1266           }
1267           else
1268             EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1269         }
1270 
1271         break;
1272       }
1273 
1274 
1275     } while (0);
1276 
1277     if (!NextNode)
1278       continue;
1279 
1280     // Add pieces from custom visitors.
1281     BugReport *R = PDB.getBugReport();
1282     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1283                                                   E = visitors.end();
1284          I != E; ++I) {
1285       if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1286         const PathDiagnosticLocation &Loc = p->getLocation();
1287         EB.addEdge(Loc, true);
1288         PD.getActivePath().push_front(p);
1289         updateStackPiecesWithMessage(p, CallStack);
1290 
1291         if (const Stmt *S = Loc.asStmt())
1292           EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1293       }
1294     }
1295   }
1296 }
1297 
1298 //===----------------------------------------------------------------------===//
1299 // Methods for BugType and subclasses.
1300 //===----------------------------------------------------------------------===//
1301 BugType::~BugType() { }
1302 
1303 void BugType::FlushReports(BugReporter &BR) {}
1304 
1305 void BuiltinBug::anchor() {}
1306 
1307 //===----------------------------------------------------------------------===//
1308 // Methods for BugReport and subclasses.
1309 //===----------------------------------------------------------------------===//
1310 
1311 void BugReport::NodeResolver::anchor() {}
1312 
1313 void BugReport::addVisitor(BugReporterVisitor* visitor) {
1314   if (!visitor)
1315     return;
1316 
1317   llvm::FoldingSetNodeID ID;
1318   visitor->Profile(ID);
1319   void *InsertPos;
1320 
1321   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
1322     delete visitor;
1323     return;
1324   }
1325 
1326   CallbacksSet.InsertNode(visitor, InsertPos);
1327   Callbacks.push_back(visitor);
1328   ++ConfigurationChangeToken;
1329 }
1330 
1331 BugReport::~BugReport() {
1332   for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
1333     delete *I;
1334   }
1335 }
1336 
1337 const Decl *BugReport::getDeclWithIssue() const {
1338   if (DeclWithIssue)
1339     return DeclWithIssue;
1340 
1341   const ExplodedNode *N = getErrorNode();
1342   if (!N)
1343     return 0;
1344 
1345   const LocationContext *LC = N->getLocationContext();
1346   return LC->getCurrentStackFrame()->getDecl();
1347 }
1348 
1349 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
1350   hash.AddPointer(&BT);
1351   hash.AddString(Description);
1352   if (UniqueingLocation.isValid()) {
1353     UniqueingLocation.Profile(hash);
1354   } else if (Location.isValid()) {
1355     Location.Profile(hash);
1356   } else {
1357     assert(ErrorNode);
1358     hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
1359   }
1360 
1361   for (SmallVectorImpl<SourceRange>::const_iterator I =
1362       Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1363     const SourceRange range = *I;
1364     if (!range.isValid())
1365       continue;
1366     hash.AddInteger(range.getBegin().getRawEncoding());
1367     hash.AddInteger(range.getEnd().getRawEncoding());
1368   }
1369 }
1370 
1371 void BugReport::markInteresting(SymbolRef sym) {
1372   if (!sym)
1373     return;
1374 
1375   // If the symbol wasn't already in our set, note a configuration change.
1376   if (interestingSymbols.insert(sym).second)
1377     ++ConfigurationChangeToken;
1378 
1379   if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
1380     interestingRegions.insert(meta->getRegion());
1381 }
1382 
1383 void BugReport::markInteresting(const MemRegion *R) {
1384   if (!R)
1385     return;
1386 
1387   // If the base region wasn't already in our set, note a configuration change.
1388   R = R->getBaseRegion();
1389   if (interestingRegions.insert(R).second)
1390     ++ConfigurationChangeToken;
1391 
1392   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1393     interestingSymbols.insert(SR->getSymbol());
1394 }
1395 
1396 void BugReport::markInteresting(SVal V) {
1397   markInteresting(V.getAsRegion());
1398   markInteresting(V.getAsSymbol());
1399 }
1400 
1401 bool BugReport::isInteresting(SVal V) const {
1402   return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
1403 }
1404 
1405 bool BugReport::isInteresting(SymbolRef sym) const {
1406   if (!sym)
1407     return false;
1408   // We don't currently consider metadata symbols to be interesting
1409   // even if we know their region is interesting. Is that correct behavior?
1410   return interestingSymbols.count(sym);
1411 }
1412 
1413 bool BugReport::isInteresting(const MemRegion *R) const {
1414   if (!R)
1415     return false;
1416   R = R->getBaseRegion();
1417   bool b = interestingRegions.count(R);
1418   if (b)
1419     return true;
1420   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1421     return interestingSymbols.count(SR->getSymbol());
1422   return false;
1423 }
1424 
1425 
1426 const Stmt *BugReport::getStmt() const {
1427   if (!ErrorNode)
1428     return 0;
1429 
1430   ProgramPoint ProgP = ErrorNode->getLocation();
1431   const Stmt *S = NULL;
1432 
1433   if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
1434     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1435     if (BE->getBlock() == &Exit)
1436       S = GetPreviousStmt(ErrorNode);
1437   }
1438   if (!S)
1439     S = GetStmt(ProgP);
1440 
1441   return S;
1442 }
1443 
1444 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
1445 BugReport::getRanges() {
1446     // If no custom ranges, add the range of the statement corresponding to
1447     // the error node.
1448     if (Ranges.empty()) {
1449       if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
1450         addRange(E->getSourceRange());
1451       else
1452         return std::make_pair(ranges_iterator(), ranges_iterator());
1453     }
1454 
1455     // User-specified absence of range info.
1456     if (Ranges.size() == 1 && !Ranges.begin()->isValid())
1457       return std::make_pair(ranges_iterator(), ranges_iterator());
1458 
1459     return std::make_pair(Ranges.begin(), Ranges.end());
1460 }
1461 
1462 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
1463   if (ErrorNode) {
1464     assert(!Location.isValid() &&
1465      "Either Location or ErrorNode should be specified but not both.");
1466 
1467     if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
1468       const LocationContext *LC = ErrorNode->getLocationContext();
1469 
1470       // For member expressions, return the location of the '.' or '->'.
1471       if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1472         return PathDiagnosticLocation::createMemberLoc(ME, SM);
1473       // For binary operators, return the location of the operator.
1474       if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1475         return PathDiagnosticLocation::createOperatorLoc(B, SM);
1476 
1477       return PathDiagnosticLocation::createBegin(S, SM, LC);
1478     }
1479   } else {
1480     assert(Location.isValid());
1481     return Location;
1482   }
1483 
1484   return PathDiagnosticLocation();
1485 }
1486 
1487 //===----------------------------------------------------------------------===//
1488 // Methods for BugReporter and subclasses.
1489 //===----------------------------------------------------------------------===//
1490 
1491 BugReportEquivClass::~BugReportEquivClass() { }
1492 GRBugReporter::~GRBugReporter() { }
1493 BugReporterData::~BugReporterData() {}
1494 
1495 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1496 
1497 ProgramStateManager&
1498 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1499 
1500 BugReporter::~BugReporter() {
1501   FlushReports();
1502 
1503   // Free the bug reports we are tracking.
1504   typedef std::vector<BugReportEquivClass *> ContTy;
1505   for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
1506        I != E; ++I) {
1507     delete *I;
1508   }
1509 }
1510 
1511 void BugReporter::FlushReports() {
1512   if (BugTypes.isEmpty())
1513     return;
1514 
1515   // First flush the warnings for each BugType.  This may end up creating new
1516   // warnings and new BugTypes.
1517   // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1518   // Turn NSErrorChecker into a proper checker and remove this.
1519   SmallVector<const BugType*, 16> bugTypes;
1520   for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1521     bugTypes.push_back(*I);
1522   for (SmallVector<const BugType*, 16>::iterator
1523          I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1524     const_cast<BugType*>(*I)->FlushReports(*this);
1525 
1526   typedef llvm::FoldingSet<BugReportEquivClass> SetTy;
1527   for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){
1528     BugReportEquivClass& EQ = *EI;
1529     FlushReport(EQ);
1530   }
1531 
1532   // BugReporter owns and deletes only BugTypes created implicitly through
1533   // EmitBasicReport.
1534   // FIXME: There are leaks from checkers that assume that the BugTypes they
1535   // create will be destroyed by the BugReporter.
1536   for (llvm::StringMap<BugType*>::iterator
1537          I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1538     delete I->second;
1539 
1540   // Remove all references to the BugType objects.
1541   BugTypes = F.getEmptySet();
1542 }
1543 
1544 //===----------------------------------------------------------------------===//
1545 // PathDiagnostics generation.
1546 //===----------------------------------------------------------------------===//
1547 
1548 static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1549                  std::pair<ExplodedNode*, unsigned> >
1550 MakeReportGraph(const ExplodedGraph* G,
1551                 SmallVectorImpl<const ExplodedNode*> &nodes) {
1552 
1553   // Create the trimmed graph.  It will contain the shortest paths from the
1554   // error nodes to the root.  In the new graph we should only have one
1555   // error node unless there are two or more error nodes with the same minimum
1556   // path length.
1557   ExplodedGraph* GTrim;
1558   InterExplodedGraphMap* NMap;
1559 
1560   llvm::DenseMap<const void*, const void*> InverseMap;
1561   llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1562                                    &InverseMap);
1563 
1564   // Create owning pointers for GTrim and NMap just to ensure that they are
1565   // released when this function exists.
1566   OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1567   OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1568 
1569   // Find the (first) error node in the trimmed graph.  We just need to consult
1570   // the node map (NMap) which maps from nodes in the original graph to nodes
1571   // in the new graph.
1572 
1573   std::queue<const ExplodedNode*> WS;
1574   typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1575   IndexMapTy IndexMap;
1576 
1577   for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1578     const ExplodedNode *originalNode = nodes[nodeIndex];
1579     if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1580       WS.push(N);
1581       IndexMap[originalNode] = nodeIndex;
1582     }
1583   }
1584 
1585   assert(!WS.empty() && "No error node found in the trimmed graph.");
1586 
1587   // Create a new (third!) graph with a single path.  This is the graph
1588   // that will be returned to the caller.
1589   ExplodedGraph *GNew = new ExplodedGraph();
1590 
1591   // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
1592   // to the root node, and then construct a new graph that contains only
1593   // a single path.
1594   llvm::DenseMap<const void*,unsigned> Visited;
1595 
1596   unsigned cnt = 0;
1597   const ExplodedNode *Root = 0;
1598 
1599   while (!WS.empty()) {
1600     const ExplodedNode *Node = WS.front();
1601     WS.pop();
1602 
1603     if (Visited.find(Node) != Visited.end())
1604       continue;
1605 
1606     Visited[Node] = cnt++;
1607 
1608     if (Node->pred_empty()) {
1609       Root = Node;
1610       break;
1611     }
1612 
1613     for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1614          E=Node->pred_end(); I!=E; ++I)
1615       WS.push(*I);
1616   }
1617 
1618   assert(Root);
1619 
1620   // Now walk from the root down the BFS path, always taking the successor
1621   // with the lowest number.
1622   ExplodedNode *Last = 0, *First = 0;
1623   NodeBackMap *BM = new NodeBackMap();
1624   unsigned NodeIndex = 0;
1625 
1626   for ( const ExplodedNode *N = Root ;;) {
1627     // Lookup the number associated with the current node.
1628     llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1629     assert(I != Visited.end());
1630 
1631     // Create the equivalent node in the new graph with the same state
1632     // and location.
1633     ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
1634 
1635     // Store the mapping to the original node.
1636     llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1637     assert(IMitr != InverseMap.end() && "No mapping to original node.");
1638     (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1639 
1640     // Link up the new node with the previous node.
1641     if (Last)
1642       NewN->addPredecessor(Last, *GNew);
1643 
1644     Last = NewN;
1645 
1646     // Are we at the final node?
1647     IndexMapTy::iterator IMI =
1648       IndexMap.find((const ExplodedNode*)(IMitr->second));
1649     if (IMI != IndexMap.end()) {
1650       First = NewN;
1651       NodeIndex = IMI->second;
1652       break;
1653     }
1654 
1655     // Find the next successor node.  We choose the node that is marked
1656     // with the lowest DFS number.
1657     ExplodedNode::const_succ_iterator SI = N->succ_begin();
1658     ExplodedNode::const_succ_iterator SE = N->succ_end();
1659     N = 0;
1660 
1661     for (unsigned MinVal = 0; SI != SE; ++SI) {
1662 
1663       I = Visited.find(*SI);
1664 
1665       if (I == Visited.end())
1666         continue;
1667 
1668       if (!N || I->second < MinVal) {
1669         N = *SI;
1670         MinVal = I->second;
1671       }
1672     }
1673 
1674     assert(N);
1675   }
1676 
1677   assert(First);
1678 
1679   return std::make_pair(std::make_pair(GNew, BM),
1680                         std::make_pair(First, NodeIndex));
1681 }
1682 
1683 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1684 ///  and collapses PathDiagosticPieces that are expanded by macros.
1685 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
1686   typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
1687                                 SourceLocation> > MacroStackTy;
1688 
1689   typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
1690           PiecesTy;
1691 
1692   MacroStackTy MacroStack;
1693   PiecesTy Pieces;
1694 
1695   for (PathPieces::const_iterator I = path.begin(), E = path.end();
1696        I!=E; ++I) {
1697 
1698     PathDiagnosticPiece *piece = I->getPtr();
1699 
1700     // Recursively compact calls.
1701     if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
1702       CompactPathDiagnostic(call->path, SM);
1703     }
1704 
1705     // Get the location of the PathDiagnosticPiece.
1706     const FullSourceLoc Loc = piece->getLocation().asLocation();
1707 
1708     // Determine the instantiation location, which is the location we group
1709     // related PathDiagnosticPieces.
1710     SourceLocation InstantiationLoc = Loc.isMacroID() ?
1711                                       SM.getExpansionLoc(Loc) :
1712                                       SourceLocation();
1713 
1714     if (Loc.isFileID()) {
1715       MacroStack.clear();
1716       Pieces.push_back(piece);
1717       continue;
1718     }
1719 
1720     assert(Loc.isMacroID());
1721 
1722     // Is the PathDiagnosticPiece within the same macro group?
1723     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1724       MacroStack.back().first->subPieces.push_back(piece);
1725       continue;
1726     }
1727 
1728     // We aren't in the same group.  Are we descending into a new macro
1729     // or are part of an old one?
1730     IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
1731 
1732     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1733                                           SM.getExpansionLoc(Loc) :
1734                                           SourceLocation();
1735 
1736     // Walk the entire macro stack.
1737     while (!MacroStack.empty()) {
1738       if (InstantiationLoc == MacroStack.back().second) {
1739         MacroGroup = MacroStack.back().first;
1740         break;
1741       }
1742 
1743       if (ParentInstantiationLoc == MacroStack.back().second) {
1744         MacroGroup = MacroStack.back().first;
1745         break;
1746       }
1747 
1748       MacroStack.pop_back();
1749     }
1750 
1751     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1752       // Create a new macro group and add it to the stack.
1753       PathDiagnosticMacroPiece *NewGroup =
1754         new PathDiagnosticMacroPiece(
1755           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
1756 
1757       if (MacroGroup)
1758         MacroGroup->subPieces.push_back(NewGroup);
1759       else {
1760         assert(InstantiationLoc.isFileID());
1761         Pieces.push_back(NewGroup);
1762       }
1763 
1764       MacroGroup = NewGroup;
1765       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1766     }
1767 
1768     // Finally, add the PathDiagnosticPiece to the group.
1769     MacroGroup->subPieces.push_back(piece);
1770   }
1771 
1772   // Now take the pieces and construct a new PathDiagnostic.
1773   path.clear();
1774 
1775   for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
1776     path.push_back(*I);
1777 }
1778 
1779 void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
1780                         SmallVectorImpl<BugReport *> &bugReports) {
1781 
1782   assert(!bugReports.empty());
1783   SmallVector<const ExplodedNode *, 10> errorNodes;
1784   for (SmallVectorImpl<BugReport*>::iterator I = bugReports.begin(),
1785     E = bugReports.end(); I != E; ++I) {
1786       errorNodes.push_back((*I)->getErrorNode());
1787   }
1788 
1789   // Construct a new graph that contains only a single path from the error
1790   // node to a root.
1791   const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1792   std::pair<ExplodedNode*, unsigned> >&
1793     GPair = MakeReportGraph(&getGraph(), errorNodes);
1794 
1795   // Find the BugReport with the original location.
1796   assert(GPair.second.second < bugReports.size());
1797   BugReport *R = bugReports[GPair.second.second];
1798   assert(R && "No original report found for sliced graph.");
1799 
1800   OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
1801   OwningPtr<NodeBackMap> BackMap(GPair.first.second);
1802   const ExplodedNode *N = GPair.second.first;
1803 
1804   // Start building the path diagnostic...
1805   PathDiagnosticBuilder PDB(*this, R, BackMap.get(),
1806                             getPathDiagnosticConsumer());
1807 
1808   // Register additional node visitors.
1809   R->addVisitor(new NilReceiverBRVisitor());
1810   R->addVisitor(new ConditionBRVisitor());
1811 
1812   BugReport::VisitorList visitors;
1813   unsigned originalReportConfigToken, finalReportConfigToken;
1814 
1815   // While generating diagnostics, it's possible the visitors will decide
1816   // new symbols and regions are interesting, or add other visitors based on
1817   // the information they find. If they do, we need to regenerate the path
1818   // based on our new report configuration.
1819   do {
1820     // Get a clean copy of all the visitors.
1821     for (BugReport::visitor_iterator I = R->visitor_begin(),
1822                                      E = R->visitor_end(); I != E; ++I)
1823        visitors.push_back((*I)->clone());
1824 
1825     // Clear out the active path from any previous work.
1826     PD.getActivePath().clear();
1827     originalReportConfigToken = R->getConfigurationChangeToken();
1828 
1829     // Generate the very last diagnostic piece - the piece is visible before
1830     // the trace is expanded.
1831     PathDiagnosticPiece *LastPiece = 0;
1832     for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
1833          I != E; ++I) {
1834       if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
1835         assert (!LastPiece &&
1836                 "There can only be one final piece in a diagnostic.");
1837         LastPiece = Piece;
1838       }
1839     }
1840     if (!LastPiece)
1841       LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
1842     if (LastPiece)
1843       PD.getActivePath().push_back(LastPiece);
1844     else
1845       return;
1846 
1847     switch (PDB.getGenerationScheme()) {
1848     case PathDiagnosticConsumer::Extensive:
1849       GenerateExtensivePathDiagnostic(PD, PDB, N, visitors);
1850       break;
1851     case PathDiagnosticConsumer::Minimal:
1852       GenerateMinimalPathDiagnostic(PD, PDB, N, visitors);
1853       break;
1854     }
1855 
1856     // Clean up the visitors we used.
1857     llvm::DeleteContainerPointers(visitors);
1858 
1859     // Did anything change while generating this path?
1860     finalReportConfigToken = R->getConfigurationChangeToken();
1861   } while(finalReportConfigToken != originalReportConfigToken);
1862 
1863   // Finally, prune the diagnostic path of uninteresting stuff.
1864   bool hasSomethingInteresting = RemoveUneededCalls(PD.getMutablePieces());
1865   assert(hasSomethingInteresting);
1866   (void) hasSomethingInteresting;
1867 }
1868 
1869 void BugReporter::Register(BugType *BT) {
1870   BugTypes = F.add(BugTypes, BT);
1871 }
1872 
1873 void BugReporter::EmitReport(BugReport* R) {
1874   // Compute the bug report's hash to determine its equivalence class.
1875   llvm::FoldingSetNodeID ID;
1876   R->Profile(ID);
1877 
1878   // Lookup the equivance class.  If there isn't one, create it.
1879   BugType& BT = R->getBugType();
1880   Register(&BT);
1881   void *InsertPos;
1882   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
1883 
1884   if (!EQ) {
1885     EQ = new BugReportEquivClass(R);
1886     EQClasses.InsertNode(EQ, InsertPos);
1887     EQClassesVector.push_back(EQ);
1888   }
1889   else
1890     EQ->AddReport(R);
1891 }
1892 
1893 
1894 //===----------------------------------------------------------------------===//
1895 // Emitting reports in equivalence classes.
1896 //===----------------------------------------------------------------------===//
1897 
1898 namespace {
1899 struct FRIEC_WLItem {
1900   const ExplodedNode *N;
1901   ExplodedNode::const_succ_iterator I, E;
1902 
1903   FRIEC_WLItem(const ExplodedNode *n)
1904   : N(n), I(N->succ_begin()), E(N->succ_end()) {}
1905 };
1906 }
1907 
1908 static BugReport *
1909 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
1910                              SmallVectorImpl<BugReport*> &bugReports) {
1911 
1912   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
1913   assert(I != E);
1914   BugType& BT = I->getBugType();
1915 
1916   // If we don't need to suppress any of the nodes because they are
1917   // post-dominated by a sink, simply add all the nodes in the equivalence class
1918   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
1919   if (!BT.isSuppressOnSink()) {
1920     BugReport *R = I;
1921     for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
1922       const ExplodedNode *N = I->getErrorNode();
1923       if (N) {
1924         R = I;
1925         bugReports.push_back(R);
1926       }
1927     }
1928     return R;
1929   }
1930 
1931   // For bug reports that should be suppressed when all paths are post-dominated
1932   // by a sink node, iterate through the reports in the equivalence class
1933   // until we find one that isn't post-dominated (if one exists).  We use a
1934   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
1935   // this as a recursive function, but we don't want to risk blowing out the
1936   // stack for very long paths.
1937   BugReport *exampleReport = 0;
1938 
1939   for (; I != E; ++I) {
1940     const ExplodedNode *errorNode = I->getErrorNode();
1941 
1942     if (!errorNode)
1943       continue;
1944     if (errorNode->isSink()) {
1945       llvm_unreachable(
1946            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
1947     }
1948     // No successors?  By definition this nodes isn't post-dominated by a sink.
1949     if (errorNode->succ_empty()) {
1950       bugReports.push_back(I);
1951       if (!exampleReport)
1952         exampleReport = I;
1953       continue;
1954     }
1955 
1956     // At this point we know that 'N' is not a sink and it has at least one
1957     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
1958     typedef FRIEC_WLItem WLItem;
1959     typedef SmallVector<WLItem, 10> DFSWorkList;
1960     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
1961 
1962     DFSWorkList WL;
1963     WL.push_back(errorNode);
1964     Visited[errorNode] = 1;
1965 
1966     while (!WL.empty()) {
1967       WLItem &WI = WL.back();
1968       assert(!WI.N->succ_empty());
1969 
1970       for (; WI.I != WI.E; ++WI.I) {
1971         const ExplodedNode *Succ = *WI.I;
1972         // End-of-path node?
1973         if (Succ->succ_empty()) {
1974           // If we found an end-of-path node that is not a sink.
1975           if (!Succ->isSink()) {
1976             bugReports.push_back(I);
1977             if (!exampleReport)
1978               exampleReport = I;
1979             WL.clear();
1980             break;
1981           }
1982           // Found a sink?  Continue on to the next successor.
1983           continue;
1984         }
1985         // Mark the successor as visited.  If it hasn't been explored,
1986         // enqueue it to the DFS worklist.
1987         unsigned &mark = Visited[Succ];
1988         if (!mark) {
1989           mark = 1;
1990           WL.push_back(Succ);
1991           break;
1992         }
1993       }
1994 
1995       // The worklist may have been cleared at this point.  First
1996       // check if it is empty before checking the last item.
1997       if (!WL.empty() && &WL.back() == &WI)
1998         WL.pop_back();
1999     }
2000   }
2001 
2002   // ExampleReport will be NULL if all the nodes in the equivalence class
2003   // were post-dominated by sinks.
2004   return exampleReport;
2005 }
2006 
2007 //===----------------------------------------------------------------------===//
2008 // DiagnosticCache.  This is a hack to cache analyzer diagnostics.  It
2009 // uses global state, which eventually should go elsewhere.
2010 //===----------------------------------------------------------------------===//
2011 namespace {
2012 class DiagCacheItem : public llvm::FoldingSetNode {
2013   llvm::FoldingSetNodeID ID;
2014 public:
2015   DiagCacheItem(BugReport *R, PathDiagnostic *PD) {
2016     R->Profile(ID);
2017     PD->Profile(ID);
2018   }
2019 
2020   void Profile(llvm::FoldingSetNodeID &id) {
2021     id = ID;
2022   }
2023 
2024   llvm::FoldingSetNodeID &getID() { return ID; }
2025 };
2026 }
2027 
2028 static bool IsCachedDiagnostic(BugReport *R, PathDiagnostic *PD) {
2029   // FIXME: Eventually this diagnostic cache should reside in something
2030   // like AnalysisManager instead of being a static variable.  This is
2031   // really unsafe in the long term.
2032   typedef llvm::FoldingSet<DiagCacheItem> DiagnosticCache;
2033   static DiagnosticCache DC;
2034 
2035   void *InsertPos;
2036   DiagCacheItem *Item = new DiagCacheItem(R, PD);
2037 
2038   if (DC.FindNodeOrInsertPos(Item->getID(), InsertPos)) {
2039     delete Item;
2040     return true;
2041   }
2042 
2043   DC.InsertNode(Item, InsertPos);
2044   return false;
2045 }
2046 
2047 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2048   SmallVector<BugReport*, 10> bugReports;
2049   BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
2050   if (!exampleReport)
2051     return;
2052 
2053   PathDiagnosticConsumer* PD = getPathDiagnosticConsumer();
2054 
2055   // FIXME: Make sure we use the 'R' for the path that was actually used.
2056   // Probably doesn't make a difference in practice.
2057   BugType& BT = exampleReport->getBugType();
2058 
2059   OwningPtr<PathDiagnostic>
2060     D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
2061                          exampleReport->getBugType().getName(),
2062                          !PD || PD->useVerboseDescription()
2063                          ? exampleReport->getDescription()
2064                          : exampleReport->getShortDescription(),
2065                          BT.getCategory()));
2066 
2067   if (!bugReports.empty())
2068     GeneratePathDiagnostic(*D.get(), bugReports);
2069 
2070   // Get the meta data.
2071   const BugReport::ExtraTextList &Meta =
2072                                   exampleReport->getExtraText();
2073   for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
2074                                                 e = Meta.end(); i != e; ++i) {
2075     D->addMeta(*i);
2076   }
2077 
2078   // Emit a summary diagnostic to the regular Diagnostics engine.
2079   BugReport::ranges_iterator Beg, End;
2080   llvm::tie(Beg, End) = exampleReport->getRanges();
2081   DiagnosticsEngine &Diag = getDiagnostic();
2082 
2083   if (!IsCachedDiagnostic(exampleReport, D.get())) {
2084     // Search the description for '%', as that will be interpretted as a
2085     // format character by FormatDiagnostics.
2086     StringRef desc = exampleReport->getShortDescription();
2087 
2088     SmallString<512> TmpStr;
2089     llvm::raw_svector_ostream Out(TmpStr);
2090     for (StringRef::iterator I=desc.begin(), E=desc.end(); I!=E; ++I) {
2091       if (*I == '%')
2092         Out << "%%";
2093       else
2094         Out << *I;
2095     }
2096 
2097     Out.flush();
2098     unsigned ErrorDiag = Diag.getCustomDiagID(DiagnosticsEngine::Warning, TmpStr);
2099 
2100     DiagnosticBuilder diagBuilder = Diag.Report(
2101       exampleReport->getLocation(getSourceManager()).asLocation(), ErrorDiag);
2102     for (BugReport::ranges_iterator I = Beg; I != End; ++I)
2103       diagBuilder << *I;
2104   }
2105 
2106   // Emit a full diagnostic for the path if we have a PathDiagnosticConsumer.
2107   if (!PD)
2108     return;
2109 
2110   if (D->path.empty()) {
2111     PathDiagnosticPiece *piece = new PathDiagnosticEventPiece(
2112                                  exampleReport->getLocation(getSourceManager()),
2113                                  exampleReport->getDescription());
2114     for ( ; Beg != End; ++Beg)
2115       piece->addRange(*Beg);
2116 
2117     D->getActivePath().push_back(piece);
2118   }
2119 
2120   PD->HandlePathDiagnostic(D.take());
2121 }
2122 
2123 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
2124                                   StringRef name,
2125                                   StringRef category,
2126                                   StringRef str, PathDiagnosticLocation Loc,
2127                                   SourceRange* RBeg, unsigned NumRanges) {
2128 
2129   // 'BT' is owned by BugReporter.
2130   BugType *BT = getBugTypeForName(name, category);
2131   BugReport *R = new BugReport(*BT, str, Loc);
2132   R->setDeclWithIssue(DeclWithIssue);
2133   for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
2134   EmitReport(R);
2135 }
2136 
2137 BugType *BugReporter::getBugTypeForName(StringRef name,
2138                                         StringRef category) {
2139   SmallString<136> fullDesc;
2140   llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
2141   llvm::StringMapEntry<BugType *> &
2142       entry = StrBugTypes.GetOrCreateValue(fullDesc);
2143   BugType *BT = entry.getValue();
2144   if (!BT) {
2145     BT = new BugType(name, category);
2146     entry.setValue(BT);
2147   }
2148   return BT;
2149 }
2150