1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines BugReporter, a utility class for generating
11 //  PathDiagnostics.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/Analysis/CFG.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Analysis/ProgramPoint.h"
26 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/OwningPtr.h"
32 #include "llvm/ADT/IntrusiveRefCntPtr.h"
33 #include <queue>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 BugReporterVisitor::~BugReporterVisitor() {}
39 
40 void BugReporterContext::anchor() {}
41 
42 //===----------------------------------------------------------------------===//
43 // Helper routines for walking the ExplodedGraph and fetching statements.
44 //===----------------------------------------------------------------------===//
45 
46 static inline const Stmt *GetStmt(const ProgramPoint &P) {
47   if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
48     return SP->getStmt();
49   else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
50     return BE->getSrc()->getTerminator();
51   else if (const CallEnter *CE = dyn_cast<CallEnter>(&P))
52     return CE->getCallExpr();
53   else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&P))
54     return CEE->getCalleeContext()->getCallSite();
55 
56   return 0;
57 }
58 
59 static inline const ExplodedNode*
60 GetPredecessorNode(const ExplodedNode *N) {
61   return N->pred_empty() ? NULL : *(N->pred_begin());
62 }
63 
64 static inline const ExplodedNode*
65 GetSuccessorNode(const ExplodedNode *N) {
66   return N->succ_empty() ? NULL : *(N->succ_begin());
67 }
68 
69 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
70   for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
71     if (const Stmt *S = GetStmt(N->getLocation()))
72       return S;
73 
74   return 0;
75 }
76 
77 static const Stmt *GetNextStmt(const ExplodedNode *N) {
78   for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
79     if (const Stmt *S = GetStmt(N->getLocation())) {
80       // Check if the statement is '?' or '&&'/'||'.  These are "merges",
81       // not actual statement points.
82       switch (S->getStmtClass()) {
83         case Stmt::ChooseExprClass:
84         case Stmt::BinaryConditionalOperatorClass: continue;
85         case Stmt::ConditionalOperatorClass: continue;
86         case Stmt::BinaryOperatorClass: {
87           BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
88           if (Op == BO_LAnd || Op == BO_LOr)
89             continue;
90           break;
91         }
92         default:
93           break;
94       }
95       return S;
96     }
97 
98   return 0;
99 }
100 
101 static inline const Stmt*
102 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
103   if (const Stmt *S = GetStmt(N->getLocation()))
104     return S;
105 
106   return GetPreviousStmt(N);
107 }
108 
109 static inline const Stmt*
110 GetCurrentOrNextStmt(const ExplodedNode *N) {
111   if (const Stmt *S = GetStmt(N->getLocation()))
112     return S;
113 
114   return GetNextStmt(N);
115 }
116 
117 //===----------------------------------------------------------------------===//
118 // Diagnostic cleanup.
119 //===----------------------------------------------------------------------===//
120 
121 /// Recursively scan through a path and prune out calls and macros pieces
122 /// that aren't needed.  Return true if afterwards the path contains
123 /// "interesting stuff" which means it should be pruned from the parent path.
124 static bool RemoveUneededCalls(PathPieces &pieces) {
125   bool containsSomethingInteresting = false;
126   const unsigned N = pieces.size();
127 
128   for (unsigned i = 0 ; i < N ; ++i) {
129     // Remove the front piece from the path.  If it is still something we
130     // want to keep once we are done, we will push it back on the end.
131     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
132     pieces.pop_front();
133 
134     switch (piece->getKind()) {
135       case PathDiagnosticPiece::Call: {
136         PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
137         // Recursively clean out the subclass.  Keep this call around if
138         // it contains any informative diagnostics.
139         if (!RemoveUneededCalls(call->path))
140           continue;
141         containsSomethingInteresting = true;
142         break;
143       }
144       case PathDiagnosticPiece::Macro: {
145         PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
146         if (!RemoveUneededCalls(macro->subPieces))
147           continue;
148         containsSomethingInteresting = true;
149         break;
150       }
151       case PathDiagnosticPiece::Event: {
152         PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
153         // We never throw away an event, but we do throw it away wholesale
154         // as part of a path if we throw the entire path away.
155         if (event->isPrunable())
156           continue;
157         containsSomethingInteresting = true;
158         break;
159       }
160       case PathDiagnosticPiece::ControlFlow:
161         break;
162     }
163 
164     pieces.push_back(piece);
165   }
166 
167   return containsSomethingInteresting;
168 }
169 
170 //===----------------------------------------------------------------------===//
171 // PathDiagnosticBuilder and its associated routines and helper objects.
172 //===----------------------------------------------------------------------===//
173 
174 typedef llvm::DenseMap<const ExplodedNode*,
175 const ExplodedNode*> NodeBackMap;
176 
177 namespace {
178 class NodeMapClosure : public BugReport::NodeResolver {
179   NodeBackMap& M;
180 public:
181   NodeMapClosure(NodeBackMap *m) : M(*m) {}
182   ~NodeMapClosure() {}
183 
184   const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
185     NodeBackMap::iterator I = M.find(N);
186     return I == M.end() ? 0 : I->second;
187   }
188 };
189 
190 class PathDiagnosticBuilder : public BugReporterContext {
191   BugReport *R;
192   PathDiagnosticConsumer *PDC;
193   OwningPtr<ParentMap> PM;
194   NodeMapClosure NMC;
195 public:
196   const LocationContext *LC;
197 
198   PathDiagnosticBuilder(GRBugReporter &br,
199                         BugReport *r, NodeBackMap *Backmap,
200                         PathDiagnosticConsumer *pdc)
201     : BugReporterContext(br),
202       R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
203   {}
204 
205   PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
206 
207   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
208                                             const ExplodedNode *N);
209 
210   BugReport *getBugReport() { return R; }
211 
212   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
213 
214   ParentMap& getParentMap() { return LC->getParentMap(); }
215 
216   const Stmt *getParent(const Stmt *S) {
217     return getParentMap().getParent(S);
218   }
219 
220   virtual NodeMapClosure& getNodeResolver() { return NMC; }
221 
222   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
223 
224   PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
225     return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
226   }
227 
228   bool supportsLogicalOpControlFlow() const {
229     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
230   }
231 };
232 } // end anonymous namespace
233 
234 PathDiagnosticLocation
235 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
236   if (const Stmt *S = GetNextStmt(N))
237     return PathDiagnosticLocation(S, getSourceManager(), LC);
238 
239   return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
240                                                getSourceManager());
241 }
242 
243 PathDiagnosticLocation
244 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
245                                           const ExplodedNode *N) {
246 
247   // Slow, but probably doesn't matter.
248   if (os.str().empty())
249     os << ' ';
250 
251   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
252 
253   if (Loc.asStmt())
254     os << "Execution continues on line "
255        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
256        << '.';
257   else {
258     os << "Execution jumps to the end of the ";
259     const Decl *D = N->getLocationContext()->getDecl();
260     if (isa<ObjCMethodDecl>(D))
261       os << "method";
262     else if (isa<FunctionDecl>(D))
263       os << "function";
264     else {
265       assert(isa<BlockDecl>(D));
266       os << "anonymous block";
267     }
268     os << '.';
269   }
270 
271   return Loc;
272 }
273 
274 static bool IsNested(const Stmt *S, ParentMap &PM) {
275   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
276     return true;
277 
278   const Stmt *Parent = PM.getParentIgnoreParens(S);
279 
280   if (Parent)
281     switch (Parent->getStmtClass()) {
282       case Stmt::ForStmtClass:
283       case Stmt::DoStmtClass:
284       case Stmt::WhileStmtClass:
285         return true;
286       default:
287         break;
288     }
289 
290   return false;
291 }
292 
293 PathDiagnosticLocation
294 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
295   assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
296   ParentMap &P = getParentMap();
297   SourceManager &SMgr = getSourceManager();
298 
299   while (IsNested(S, P)) {
300     const Stmt *Parent = P.getParentIgnoreParens(S);
301 
302     if (!Parent)
303       break;
304 
305     switch (Parent->getStmtClass()) {
306       case Stmt::BinaryOperatorClass: {
307         const BinaryOperator *B = cast<BinaryOperator>(Parent);
308         if (B->isLogicalOp())
309           return PathDiagnosticLocation(S, SMgr, LC);
310         break;
311       }
312       case Stmt::CompoundStmtClass:
313       case Stmt::StmtExprClass:
314         return PathDiagnosticLocation(S, SMgr, LC);
315       case Stmt::ChooseExprClass:
316         // Similar to '?' if we are referring to condition, just have the edge
317         // point to the entire choose expression.
318         if (cast<ChooseExpr>(Parent)->getCond() == S)
319           return PathDiagnosticLocation(Parent, SMgr, LC);
320         else
321           return PathDiagnosticLocation(S, SMgr, LC);
322       case Stmt::BinaryConditionalOperatorClass:
323       case Stmt::ConditionalOperatorClass:
324         // For '?', if we are referring to condition, just have the edge point
325         // to the entire '?' expression.
326         if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
327           return PathDiagnosticLocation(Parent, SMgr, LC);
328         else
329           return PathDiagnosticLocation(S, SMgr, LC);
330       case Stmt::DoStmtClass:
331           return PathDiagnosticLocation(S, SMgr, LC);
332       case Stmt::ForStmtClass:
333         if (cast<ForStmt>(Parent)->getBody() == S)
334           return PathDiagnosticLocation(S, SMgr, LC);
335         break;
336       case Stmt::IfStmtClass:
337         if (cast<IfStmt>(Parent)->getCond() != S)
338           return PathDiagnosticLocation(S, SMgr, LC);
339         break;
340       case Stmt::ObjCForCollectionStmtClass:
341         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
342           return PathDiagnosticLocation(S, SMgr, LC);
343         break;
344       case Stmt::WhileStmtClass:
345         if (cast<WhileStmt>(Parent)->getCond() != S)
346           return PathDiagnosticLocation(S, SMgr, LC);
347         break;
348       default:
349         break;
350     }
351 
352     S = Parent;
353   }
354 
355   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
356 
357   // Special case: DeclStmts can appear in for statement declarations, in which
358   //  case the ForStmt is the context.
359   if (isa<DeclStmt>(S)) {
360     if (const Stmt *Parent = P.getParent(S)) {
361       switch (Parent->getStmtClass()) {
362         case Stmt::ForStmtClass:
363         case Stmt::ObjCForCollectionStmtClass:
364           return PathDiagnosticLocation(Parent, SMgr, LC);
365         default:
366           break;
367       }
368     }
369   }
370   else if (isa<BinaryOperator>(S)) {
371     // Special case: the binary operator represents the initialization
372     // code in a for statement (this can happen when the variable being
373     // initialized is an old variable.
374     if (const ForStmt *FS =
375           dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
376       if (FS->getInit() == S)
377         return PathDiagnosticLocation(FS, SMgr, LC);
378     }
379   }
380 
381   return PathDiagnosticLocation(S, SMgr, LC);
382 }
383 
384 //===----------------------------------------------------------------------===//
385 // "Minimal" path diagnostic generation algorithm.
386 //===----------------------------------------------------------------------===//
387 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
388 typedef SmallVector<StackDiagPair, 6> StackDiagVector;
389 
390 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
391                                          StackDiagVector &CallStack) {
392   // If the piece contains a special message, add it to all the call
393   // pieces on the active stack.
394   if (PathDiagnosticEventPiece *ep =
395         dyn_cast<PathDiagnosticEventPiece>(P)) {
396 
397     if (ep->hasCallStackHint())
398       for (StackDiagVector::iterator I = CallStack.begin(),
399                                      E = CallStack.end(); I != E; ++I) {
400         PathDiagnosticCallPiece *CP = I->first;
401         const ExplodedNode *N = I->second;
402         std::string stackMsg = ep->getCallStackMessage(N);
403 
404         // The last message on the path to final bug is the most important
405         // one. Since we traverse the path backwards, do not add the message
406         // if one has been previously added.
407         if  (!CP->hasCallStackMessage())
408           CP->setCallStackMessage(stackMsg);
409       }
410   }
411 }
412 
413 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
414 
415 static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
416                                           PathDiagnosticBuilder &PDB,
417                                           const ExplodedNode *N,
418                                       ArrayRef<BugReporterVisitor *> visitors) {
419 
420   SourceManager& SMgr = PDB.getSourceManager();
421   const LocationContext *LC = PDB.LC;
422   const ExplodedNode *NextNode = N->pred_empty()
423                                         ? NULL : *(N->pred_begin());
424 
425   StackDiagVector CallStack;
426 
427   while (NextNode) {
428     N = NextNode;
429     PDB.LC = N->getLocationContext();
430     NextNode = GetPredecessorNode(N);
431 
432     ProgramPoint P = N->getLocation();
433 
434     if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
435       PathDiagnosticCallPiece *C =
436         PathDiagnosticCallPiece::construct(N, *CE, SMgr);
437       PD.getActivePath().push_front(C);
438       PD.pushActivePath(&C->path);
439       CallStack.push_back(StackDiagPair(C, N));
440       continue;
441     }
442 
443     if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
444       // Flush all locations, and pop the active path.
445       bool VisitedEntireCall = PD.isWithinCall();
446       PD.popActivePath();
447 
448       // Either we just added a bunch of stuff to the top-level path, or
449       // we have a previous CallExitEnd.  If the former, it means that the
450       // path terminated within a function call.  We must then take the
451       // current contents of the active path and place it within
452       // a new PathDiagnosticCallPiece.
453       PathDiagnosticCallPiece *C;
454       if (VisitedEntireCall) {
455         C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
456       } else {
457         const Decl *Caller = CE->getLocationContext()->getDecl();
458         C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
459       }
460 
461       C->setCallee(*CE, SMgr);
462       if (!CallStack.empty()) {
463         assert(CallStack.back().first == C);
464         CallStack.pop_back();
465       }
466       continue;
467     }
468 
469     if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
470       const CFGBlock *Src = BE->getSrc();
471       const CFGBlock *Dst = BE->getDst();
472       const Stmt *T = Src->getTerminator();
473 
474       if (!T)
475         continue;
476 
477       PathDiagnosticLocation Start =
478         PathDiagnosticLocation::createBegin(T, SMgr,
479                                                 N->getLocationContext());
480 
481       switch (T->getStmtClass()) {
482         default:
483           break;
484 
485         case Stmt::GotoStmtClass:
486         case Stmt::IndirectGotoStmtClass: {
487           const Stmt *S = GetNextStmt(N);
488 
489           if (!S)
490             continue;
491 
492           std::string sbuf;
493           llvm::raw_string_ostream os(sbuf);
494           const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
495 
496           os << "Control jumps to line "
497           << End.asLocation().getExpansionLineNumber();
498           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
499                                                                 os.str()));
500           break;
501         }
502 
503         case Stmt::SwitchStmtClass: {
504           // Figure out what case arm we took.
505           std::string sbuf;
506           llvm::raw_string_ostream os(sbuf);
507 
508           if (const Stmt *S = Dst->getLabel()) {
509             PathDiagnosticLocation End(S, SMgr, LC);
510 
511             switch (S->getStmtClass()) {
512               default:
513                 os << "No cases match in the switch statement. "
514                 "Control jumps to line "
515                 << End.asLocation().getExpansionLineNumber();
516                 break;
517               case Stmt::DefaultStmtClass:
518                 os << "Control jumps to the 'default' case at line "
519                 << End.asLocation().getExpansionLineNumber();
520                 break;
521 
522               case Stmt::CaseStmtClass: {
523                 os << "Control jumps to 'case ";
524                 const CaseStmt *Case = cast<CaseStmt>(S);
525                 const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
526 
527                 // Determine if it is an enum.
528                 bool GetRawInt = true;
529 
530                 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
531                   // FIXME: Maybe this should be an assertion.  Are there cases
532                   // were it is not an EnumConstantDecl?
533                   const EnumConstantDecl *D =
534                     dyn_cast<EnumConstantDecl>(DR->getDecl());
535 
536                   if (D) {
537                     GetRawInt = false;
538                     os << *D;
539                   }
540                 }
541 
542                 if (GetRawInt)
543                   os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
544 
545                 os << ":'  at line "
546                 << End.asLocation().getExpansionLineNumber();
547                 break;
548               }
549             }
550             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
551                                                              os.str()));
552           }
553           else {
554             os << "'Default' branch taken. ";
555             const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
556             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
557                                                              os.str()));
558           }
559 
560           break;
561         }
562 
563         case Stmt::BreakStmtClass:
564         case Stmt::ContinueStmtClass: {
565           std::string sbuf;
566           llvm::raw_string_ostream os(sbuf);
567           PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
568           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
569                                                            os.str()));
570           break;
571         }
572 
573           // Determine control-flow for ternary '?'.
574         case Stmt::BinaryConditionalOperatorClass:
575         case Stmt::ConditionalOperatorClass: {
576           std::string sbuf;
577           llvm::raw_string_ostream os(sbuf);
578           os << "'?' condition is ";
579 
580           if (*(Src->succ_begin()+1) == Dst)
581             os << "false";
582           else
583             os << "true";
584 
585           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
586 
587           if (const Stmt *S = End.asStmt())
588             End = PDB.getEnclosingStmtLocation(S);
589 
590           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
591                                                            os.str()));
592           break;
593         }
594 
595           // Determine control-flow for short-circuited '&&' and '||'.
596         case Stmt::BinaryOperatorClass: {
597           if (!PDB.supportsLogicalOpControlFlow())
598             break;
599 
600           const BinaryOperator *B = cast<BinaryOperator>(T);
601           std::string sbuf;
602           llvm::raw_string_ostream os(sbuf);
603           os << "Left side of '";
604 
605           if (B->getOpcode() == BO_LAnd) {
606             os << "&&" << "' is ";
607 
608             if (*(Src->succ_begin()+1) == Dst) {
609               os << "false";
610               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
611               PathDiagnosticLocation Start =
612                 PathDiagnosticLocation::createOperatorLoc(B, SMgr);
613               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
614                                                                os.str()));
615             }
616             else {
617               os << "true";
618               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
619               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
620               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
621                                                                os.str()));
622             }
623           }
624           else {
625             assert(B->getOpcode() == BO_LOr);
626             os << "||" << "' is ";
627 
628             if (*(Src->succ_begin()+1) == Dst) {
629               os << "false";
630               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
631               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
632               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
633                                                                os.str()));
634             }
635             else {
636               os << "true";
637               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
638               PathDiagnosticLocation Start =
639                 PathDiagnosticLocation::createOperatorLoc(B, SMgr);
640               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
641                                                                os.str()));
642             }
643           }
644 
645           break;
646         }
647 
648         case Stmt::DoStmtClass:  {
649           if (*(Src->succ_begin()) == Dst) {
650             std::string sbuf;
651             llvm::raw_string_ostream os(sbuf);
652 
653             os << "Loop condition is true. ";
654             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
655 
656             if (const Stmt *S = End.asStmt())
657               End = PDB.getEnclosingStmtLocation(S);
658 
659             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
660                                                              os.str()));
661           }
662           else {
663             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
664 
665             if (const Stmt *S = End.asStmt())
666               End = PDB.getEnclosingStmtLocation(S);
667 
668             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
669                               "Loop condition is false.  Exiting loop"));
670           }
671 
672           break;
673         }
674 
675         case Stmt::WhileStmtClass:
676         case Stmt::ForStmtClass: {
677           if (*(Src->succ_begin()+1) == Dst) {
678             std::string sbuf;
679             llvm::raw_string_ostream os(sbuf);
680 
681             os << "Loop condition is false. ";
682             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
683             if (const Stmt *S = End.asStmt())
684               End = PDB.getEnclosingStmtLocation(S);
685 
686             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
687                                                              os.str()));
688           }
689           else {
690             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
691             if (const Stmt *S = End.asStmt())
692               End = PDB.getEnclosingStmtLocation(S);
693 
694             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
695                             "Loop condition is true.  Entering loop body"));
696           }
697 
698           break;
699         }
700 
701         case Stmt::IfStmtClass: {
702           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
703 
704           if (const Stmt *S = End.asStmt())
705             End = PDB.getEnclosingStmtLocation(S);
706 
707           if (*(Src->succ_begin()+1) == Dst)
708             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
709                                                         "Taking false branch"));
710           else
711             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
712                                                          "Taking true branch"));
713 
714           break;
715         }
716       }
717     }
718 
719     if (NextNode) {
720       // Add diagnostic pieces from custom visitors.
721       BugReport *R = PDB.getBugReport();
722       for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
723                                                     E = visitors.end();
724            I != E; ++I) {
725         if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
726           PD.getActivePath().push_front(p);
727           updateStackPiecesWithMessage(p, CallStack);
728         }
729       }
730     }
731   }
732 
733   // After constructing the full PathDiagnostic, do a pass over it to compact
734   // PathDiagnosticPieces that occur within a macro.
735   CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
736 }
737 
738 //===----------------------------------------------------------------------===//
739 // "Extensive" PathDiagnostic generation.
740 //===----------------------------------------------------------------------===//
741 
742 static bool IsControlFlowExpr(const Stmt *S) {
743   const Expr *E = dyn_cast<Expr>(S);
744 
745   if (!E)
746     return false;
747 
748   E = E->IgnoreParenCasts();
749 
750   if (isa<AbstractConditionalOperator>(E))
751     return true;
752 
753   if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
754     if (B->isLogicalOp())
755       return true;
756 
757   return false;
758 }
759 
760 namespace {
761 class ContextLocation : public PathDiagnosticLocation {
762   bool IsDead;
763 public:
764   ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
765     : PathDiagnosticLocation(L), IsDead(isdead) {}
766 
767   void markDead() { IsDead = true; }
768   bool isDead() const { return IsDead; }
769 };
770 
771 class EdgeBuilder {
772   std::vector<ContextLocation> CLocs;
773   typedef std::vector<ContextLocation>::iterator iterator;
774   PathDiagnostic &PD;
775   PathDiagnosticBuilder &PDB;
776   PathDiagnosticLocation PrevLoc;
777 
778   bool IsConsumedExpr(const PathDiagnosticLocation &L);
779 
780   bool containsLocation(const PathDiagnosticLocation &Container,
781                         const PathDiagnosticLocation &Containee);
782 
783   PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
784 
785   PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
786                                          bool firstCharOnly = false) {
787     if (const Stmt *S = L.asStmt()) {
788       const Stmt *Original = S;
789       while (1) {
790         // Adjust the location for some expressions that are best referenced
791         // by one of their subexpressions.
792         switch (S->getStmtClass()) {
793           default:
794             break;
795           case Stmt::ParenExprClass:
796           case Stmt::GenericSelectionExprClass:
797             S = cast<Expr>(S)->IgnoreParens();
798             firstCharOnly = true;
799             continue;
800           case Stmt::BinaryConditionalOperatorClass:
801           case Stmt::ConditionalOperatorClass:
802             S = cast<AbstractConditionalOperator>(S)->getCond();
803             firstCharOnly = true;
804             continue;
805           case Stmt::ChooseExprClass:
806             S = cast<ChooseExpr>(S)->getCond();
807             firstCharOnly = true;
808             continue;
809           case Stmt::BinaryOperatorClass:
810             S = cast<BinaryOperator>(S)->getLHS();
811             firstCharOnly = true;
812             continue;
813         }
814 
815         break;
816       }
817 
818       if (S != Original)
819         L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
820     }
821 
822     if (firstCharOnly)
823       L  = PathDiagnosticLocation::createSingleLocation(L);
824 
825     return L;
826   }
827 
828   void popLocation() {
829     if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
830       // For contexts, we only one the first character as the range.
831       rawAddEdge(cleanUpLocation(CLocs.back(), true));
832     }
833     CLocs.pop_back();
834   }
835 
836 public:
837   EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
838     : PD(pd), PDB(pdb) {
839 
840       // If the PathDiagnostic already has pieces, add the enclosing statement
841       // of the first piece as a context as well.
842       if (!PD.path.empty()) {
843         PrevLoc = (*PD.path.begin())->getLocation();
844 
845         if (const Stmt *S = PrevLoc.asStmt())
846           addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
847       }
848   }
849 
850   ~EdgeBuilder() {
851     while (!CLocs.empty()) popLocation();
852 
853     // Finally, add an initial edge from the start location of the first
854     // statement (if it doesn't already exist).
855     PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
856                                                        PDB.LC,
857                                                        PDB.getSourceManager());
858     if (L.isValid())
859       rawAddEdge(L);
860   }
861 
862   void flushLocations() {
863     while (!CLocs.empty())
864       popLocation();
865     PrevLoc = PathDiagnosticLocation();
866   }
867 
868   void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
869 
870   void rawAddEdge(PathDiagnosticLocation NewLoc);
871 
872   void addContext(const Stmt *S);
873   void addContext(const PathDiagnosticLocation &L);
874   void addExtendedContext(const Stmt *S);
875 };
876 } // end anonymous namespace
877 
878 
879 PathDiagnosticLocation
880 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
881   if (const Stmt *S = L.asStmt()) {
882     if (IsControlFlowExpr(S))
883       return L;
884 
885     return PDB.getEnclosingStmtLocation(S);
886   }
887 
888   return L;
889 }
890 
891 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
892                                    const PathDiagnosticLocation &Containee) {
893 
894   if (Container == Containee)
895     return true;
896 
897   if (Container.asDecl())
898     return true;
899 
900   if (const Stmt *S = Containee.asStmt())
901     if (const Stmt *ContainerS = Container.asStmt()) {
902       while (S) {
903         if (S == ContainerS)
904           return true;
905         S = PDB.getParent(S);
906       }
907       return false;
908     }
909 
910   // Less accurate: compare using source ranges.
911   SourceRange ContainerR = Container.asRange();
912   SourceRange ContaineeR = Containee.asRange();
913 
914   SourceManager &SM = PDB.getSourceManager();
915   SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
916   SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
917   SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
918   SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
919 
920   unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
921   unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
922   unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
923   unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
924 
925   assert(ContainerBegLine <= ContainerEndLine);
926   assert(ContaineeBegLine <= ContaineeEndLine);
927 
928   return (ContainerBegLine <= ContaineeBegLine &&
929           ContainerEndLine >= ContaineeEndLine &&
930           (ContainerBegLine != ContaineeBegLine ||
931            SM.getExpansionColumnNumber(ContainerRBeg) <=
932            SM.getExpansionColumnNumber(ContaineeRBeg)) &&
933           (ContainerEndLine != ContaineeEndLine ||
934            SM.getExpansionColumnNumber(ContainerREnd) >=
935            SM.getExpansionColumnNumber(ContaineeREnd)));
936 }
937 
938 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
939   if (!PrevLoc.isValid()) {
940     PrevLoc = NewLoc;
941     return;
942   }
943 
944   const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
945   const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
946 
947   if (NewLocClean.asLocation() == PrevLocClean.asLocation())
948     return;
949 
950   // FIXME: Ignore intra-macro edges for now.
951   if (NewLocClean.asLocation().getExpansionLoc() ==
952       PrevLocClean.asLocation().getExpansionLoc())
953     return;
954 
955   PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
956   PrevLoc = NewLoc;
957 }
958 
959 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
960 
961   if (!alwaysAdd && NewLoc.asLocation().isMacroID())
962     return;
963 
964   const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
965 
966   while (!CLocs.empty()) {
967     ContextLocation &TopContextLoc = CLocs.back();
968 
969     // Is the top location context the same as the one for the new location?
970     if (TopContextLoc == CLoc) {
971       if (alwaysAdd) {
972         if (IsConsumedExpr(TopContextLoc) &&
973             !IsControlFlowExpr(TopContextLoc.asStmt()))
974             TopContextLoc.markDead();
975 
976         rawAddEdge(NewLoc);
977       }
978 
979       return;
980     }
981 
982     if (containsLocation(TopContextLoc, CLoc)) {
983       if (alwaysAdd) {
984         rawAddEdge(NewLoc);
985 
986         if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
987           CLocs.push_back(ContextLocation(CLoc, true));
988           return;
989         }
990       }
991 
992       CLocs.push_back(CLoc);
993       return;
994     }
995 
996     // Context does not contain the location.  Flush it.
997     popLocation();
998   }
999 
1000   // If we reach here, there is no enclosing context.  Just add the edge.
1001   rawAddEdge(NewLoc);
1002 }
1003 
1004 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1005   if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1006     return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1007 
1008   return false;
1009 }
1010 
1011 void EdgeBuilder::addExtendedContext(const Stmt *S) {
1012   if (!S)
1013     return;
1014 
1015   const Stmt *Parent = PDB.getParent(S);
1016   while (Parent) {
1017     if (isa<CompoundStmt>(Parent))
1018       Parent = PDB.getParent(Parent);
1019     else
1020       break;
1021   }
1022 
1023   if (Parent) {
1024     switch (Parent->getStmtClass()) {
1025       case Stmt::DoStmtClass:
1026       case Stmt::ObjCAtSynchronizedStmtClass:
1027         addContext(Parent);
1028       default:
1029         break;
1030     }
1031   }
1032 
1033   addContext(S);
1034 }
1035 
1036 void EdgeBuilder::addContext(const Stmt *S) {
1037   if (!S)
1038     return;
1039 
1040   PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1041   addContext(L);
1042 }
1043 
1044 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1045   while (!CLocs.empty()) {
1046     const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1047 
1048     // Is the top location context the same as the one for the new location?
1049     if (TopContextLoc == L)
1050       return;
1051 
1052     if (containsLocation(TopContextLoc, L)) {
1053       CLocs.push_back(L);
1054       return;
1055     }
1056 
1057     // Context does not contain the location.  Flush it.
1058     popLocation();
1059   }
1060 
1061   CLocs.push_back(L);
1062 }
1063 
1064 // Cone-of-influence: support the reverse propagation of "interesting" symbols
1065 // and values by tracing interesting calculations backwards through evaluated
1066 // expressions along a path.  This is probably overly complicated, but the idea
1067 // is that if an expression computed an "interesting" value, the child
1068 // expressions are are also likely to be "interesting" as well (which then
1069 // propagates to the values they in turn compute).  This reverse propagation
1070 // is needed to track interesting correlations across function call boundaries,
1071 // where formal arguments bind to actual arguments, etc.  This is also needed
1072 // because the constraint solver sometimes simplifies certain symbolic values
1073 // into constants when appropriate, and this complicates reasoning about
1074 // interesting values.
1075 typedef llvm::DenseSet<const Expr *> InterestingExprs;
1076 
1077 static void reversePropagateIntererstingSymbols(BugReport &R,
1078                                                 InterestingExprs &IE,
1079                                                 const ProgramState *State,
1080                                                 const Expr *Ex,
1081                                                 const LocationContext *LCtx) {
1082   SVal V = State->getSVal(Ex, LCtx);
1083   if (!(R.isInteresting(V) || IE.count(Ex)))
1084     return;
1085 
1086   switch (Ex->getStmtClass()) {
1087     default:
1088       if (!isa<CastExpr>(Ex))
1089         break;
1090       // Fall through.
1091     case Stmt::BinaryOperatorClass:
1092     case Stmt::UnaryOperatorClass: {
1093       for (Stmt::const_child_iterator CI = Ex->child_begin(),
1094             CE = Ex->child_end();
1095             CI != CE; ++CI) {
1096         if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1097           IE.insert(child);
1098           SVal ChildV = State->getSVal(child, LCtx);
1099           R.markInteresting(ChildV);
1100         }
1101         break;
1102       }
1103     }
1104   }
1105 
1106   R.markInteresting(V);
1107 }
1108 
1109 static void reversePropagateInterestingSymbols(BugReport &R,
1110                                                InterestingExprs &IE,
1111                                                const ProgramState *State,
1112                                                const LocationContext *CalleeCtx,
1113                                                const LocationContext *CallerCtx)
1114 {
1115   // FIXME: Handle non-CallExpr-based CallEvents.
1116   const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1117   const Stmt *CallSite = Callee->getCallSite();
1118   if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1119     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1120       FunctionDecl::param_const_iterator PI = FD->param_begin(),
1121                                          PE = FD->param_end();
1122       CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1123       for (; AI != AE && PI != PE; ++AI, ++PI) {
1124         if (const Expr *ArgE = *AI) {
1125           if (const ParmVarDecl *PD = *PI) {
1126             Loc LV = State->getLValue(PD, CalleeCtx);
1127             if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1128               IE.insert(ArgE);
1129           }
1130         }
1131       }
1132     }
1133   }
1134 }
1135 
1136 static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1137                                             PathDiagnosticBuilder &PDB,
1138                                             const ExplodedNode *N,
1139                                       ArrayRef<BugReporterVisitor *> visitors) {
1140   EdgeBuilder EB(PD, PDB);
1141   const SourceManager& SM = PDB.getSourceManager();
1142   StackDiagVector CallStack;
1143   InterestingExprs IE;
1144 
1145   const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1146   while (NextNode) {
1147     N = NextNode;
1148     NextNode = GetPredecessorNode(N);
1149     ProgramPoint P = N->getLocation();
1150 
1151     do {
1152       if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
1153         if (const Expr *Ex = PS->getStmtAs<Expr>())
1154           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1155                                               N->getState().getPtr(), Ex,
1156                                               N->getLocationContext());
1157       }
1158 
1159       if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
1160         const Stmt *S = CE->getCalleeContext()->getCallSite();
1161         if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1162             reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1163                                                 N->getState().getPtr(), Ex,
1164                                                 N->getLocationContext());
1165         }
1166 
1167         PathDiagnosticCallPiece *C =
1168           PathDiagnosticCallPiece::construct(N, *CE, SM);
1169 
1170         EB.addEdge(C->callReturn, true);
1171         EB.flushLocations();
1172 
1173         PD.getActivePath().push_front(C);
1174         PD.pushActivePath(&C->path);
1175         CallStack.push_back(StackDiagPair(C, N));
1176         break;
1177       }
1178 
1179       // Pop the call hierarchy if we are done walking the contents
1180       // of a function call.
1181       if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
1182         // Add an edge to the start of the function.
1183         const Decl *D = CE->getCalleeContext()->getDecl();
1184         PathDiagnosticLocation pos =
1185           PathDiagnosticLocation::createBegin(D, SM);
1186         EB.addEdge(pos);
1187 
1188         // Flush all locations, and pop the active path.
1189         bool VisitedEntireCall = PD.isWithinCall();
1190         EB.flushLocations();
1191         PD.popActivePath();
1192         PDB.LC = N->getLocationContext();
1193 
1194         // Either we just added a bunch of stuff to the top-level path, or
1195         // we have a previous CallExitEnd.  If the former, it means that the
1196         // path terminated within a function call.  We must then take the
1197         // current contents of the active path and place it within
1198         // a new PathDiagnosticCallPiece.
1199         PathDiagnosticCallPiece *C;
1200         if (VisitedEntireCall) {
1201           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1202         } else {
1203           const Decl *Caller = CE->getLocationContext()->getDecl();
1204           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1205         }
1206 
1207         C->setCallee(*CE, SM);
1208         EB.addContext(C->getLocation());
1209 
1210         if (!CallStack.empty()) {
1211           assert(CallStack.back().first == C);
1212           CallStack.pop_back();
1213         }
1214         break;
1215       }
1216 
1217       // Note that is important that we update the LocationContext
1218       // after looking at CallExits.  CallExit basically adds an
1219       // edge in the *caller*, so we don't want to update the LocationContext
1220       // too soon.
1221       PDB.LC = N->getLocationContext();
1222 
1223       // Block edges.
1224       if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1225         // Does this represent entering a call?  If so, look at propagating
1226         // interesting symbols across call boundaries.
1227         if (NextNode) {
1228           const LocationContext *CallerCtx = NextNode->getLocationContext();
1229           const LocationContext *CalleeCtx = PDB.LC;
1230           if (CallerCtx != CalleeCtx) {
1231             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1232                                                N->getState().getPtr(),
1233                                                CalleeCtx, CallerCtx);
1234           }
1235         }
1236 
1237         const CFGBlock &Blk = *BE->getSrc();
1238         const Stmt *Term = Blk.getTerminator();
1239 
1240         // Are we jumping to the head of a loop?  Add a special diagnostic.
1241         if (const Stmt *Loop = BE->getDst()->getLoopTarget()) {
1242           PathDiagnosticLocation L(Loop, SM, PDB.LC);
1243           const CompoundStmt *CS = NULL;
1244 
1245           if (!Term) {
1246             if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1247               CS = dyn_cast<CompoundStmt>(FS->getBody());
1248             else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1249               CS = dyn_cast<CompoundStmt>(WS->getBody());
1250           }
1251 
1252           PathDiagnosticEventPiece *p =
1253             new PathDiagnosticEventPiece(L,
1254                                         "Looping back to the head of the loop");
1255           p->setPrunable(true);
1256 
1257           EB.addEdge(p->getLocation(), true);
1258           PD.getActivePath().push_front(p);
1259 
1260           if (CS) {
1261             PathDiagnosticLocation BL =
1262               PathDiagnosticLocation::createEndBrace(CS, SM);
1263             EB.addEdge(BL);
1264           }
1265         }
1266 
1267         if (Term)
1268           EB.addContext(Term);
1269 
1270         break;
1271       }
1272 
1273       if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1274         if (const CFGStmt *S = BE->getFirstElement().getAs<CFGStmt>()) {
1275           const Stmt *stmt = S->getStmt();
1276           if (IsControlFlowExpr(stmt)) {
1277             // Add the proper context for '&&', '||', and '?'.
1278             EB.addContext(stmt);
1279           }
1280           else
1281             EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1282         }
1283 
1284         break;
1285       }
1286 
1287 
1288     } while (0);
1289 
1290     if (!NextNode)
1291       continue;
1292 
1293     // Add pieces from custom visitors.
1294     BugReport *R = PDB.getBugReport();
1295     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1296                                                   E = visitors.end();
1297          I != E; ++I) {
1298       if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1299         const PathDiagnosticLocation &Loc = p->getLocation();
1300         EB.addEdge(Loc, true);
1301         PD.getActivePath().push_front(p);
1302         updateStackPiecesWithMessage(p, CallStack);
1303 
1304         if (const Stmt *S = Loc.asStmt())
1305           EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1306       }
1307     }
1308   }
1309 }
1310 
1311 //===----------------------------------------------------------------------===//
1312 // Methods for BugType and subclasses.
1313 //===----------------------------------------------------------------------===//
1314 BugType::~BugType() { }
1315 
1316 void BugType::FlushReports(BugReporter &BR) {}
1317 
1318 void BuiltinBug::anchor() {}
1319 
1320 //===----------------------------------------------------------------------===//
1321 // Methods for BugReport and subclasses.
1322 //===----------------------------------------------------------------------===//
1323 
1324 void BugReport::NodeResolver::anchor() {}
1325 
1326 void BugReport::addVisitor(BugReporterVisitor* visitor) {
1327   if (!visitor)
1328     return;
1329 
1330   llvm::FoldingSetNodeID ID;
1331   visitor->Profile(ID);
1332   void *InsertPos;
1333 
1334   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
1335     delete visitor;
1336     return;
1337   }
1338 
1339   CallbacksSet.InsertNode(visitor, InsertPos);
1340   Callbacks.push_back(visitor);
1341   ++ConfigurationChangeToken;
1342 }
1343 
1344 BugReport::~BugReport() {
1345   for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
1346     delete *I;
1347   }
1348   while (!interestingSymbols.empty()) {
1349     popInterestingSymbolsAndRegions();
1350   }
1351 }
1352 
1353 const Decl *BugReport::getDeclWithIssue() const {
1354   if (DeclWithIssue)
1355     return DeclWithIssue;
1356 
1357   const ExplodedNode *N = getErrorNode();
1358   if (!N)
1359     return 0;
1360 
1361   const LocationContext *LC = N->getLocationContext();
1362   return LC->getCurrentStackFrame()->getDecl();
1363 }
1364 
1365 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
1366   hash.AddPointer(&BT);
1367   hash.AddString(Description);
1368   if (UniqueingLocation.isValid()) {
1369     UniqueingLocation.Profile(hash);
1370   } else if (Location.isValid()) {
1371     Location.Profile(hash);
1372   } else {
1373     assert(ErrorNode);
1374     hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
1375   }
1376 
1377   for (SmallVectorImpl<SourceRange>::const_iterator I =
1378       Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1379     const SourceRange range = *I;
1380     if (!range.isValid())
1381       continue;
1382     hash.AddInteger(range.getBegin().getRawEncoding());
1383     hash.AddInteger(range.getEnd().getRawEncoding());
1384   }
1385 }
1386 
1387 void BugReport::markInteresting(SymbolRef sym) {
1388   if (!sym)
1389     return;
1390 
1391   // If the symbol wasn't already in our set, note a configuration change.
1392   if (getInterestingSymbols().insert(sym).second)
1393     ++ConfigurationChangeToken;
1394 
1395   if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
1396     getInterestingRegions().insert(meta->getRegion());
1397 }
1398 
1399 void BugReport::markInteresting(const MemRegion *R) {
1400   if (!R)
1401     return;
1402 
1403   // If the base region wasn't already in our set, note a configuration change.
1404   R = R->getBaseRegion();
1405   if (getInterestingRegions().insert(R).second)
1406     ++ConfigurationChangeToken;
1407 
1408   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1409     getInterestingSymbols().insert(SR->getSymbol());
1410 }
1411 
1412 void BugReport::markInteresting(SVal V) {
1413   markInteresting(V.getAsRegion());
1414   markInteresting(V.getAsSymbol());
1415 }
1416 
1417 bool BugReport::isInteresting(SVal V) {
1418   return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
1419 }
1420 
1421 bool BugReport::isInteresting(SymbolRef sym) {
1422   if (!sym)
1423     return false;
1424   // We don't currently consider metadata symbols to be interesting
1425   // even if we know their region is interesting. Is that correct behavior?
1426   return getInterestingSymbols().count(sym);
1427 }
1428 
1429 bool BugReport::isInteresting(const MemRegion *R) {
1430   if (!R)
1431     return false;
1432   R = R->getBaseRegion();
1433   bool b = getInterestingRegions().count(R);
1434   if (b)
1435     return true;
1436   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1437     return getInterestingSymbols().count(SR->getSymbol());
1438   return false;
1439 }
1440 
1441 void BugReport::lazyInitializeInterestingSets() {
1442   if (interestingSymbols.empty()) {
1443     interestingSymbols.push_back(new Symbols());
1444     interestingRegions.push_back(new Regions());
1445   }
1446 }
1447 
1448 BugReport::Symbols &BugReport::getInterestingSymbols() {
1449   lazyInitializeInterestingSets();
1450   return *interestingSymbols.back();
1451 }
1452 
1453 BugReport::Regions &BugReport::getInterestingRegions() {
1454   lazyInitializeInterestingSets();
1455   return *interestingRegions.back();
1456 }
1457 
1458 void BugReport::pushInterestingSymbolsAndRegions() {
1459   interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
1460   interestingRegions.push_back(new Regions(getInterestingRegions()));
1461 }
1462 
1463 void BugReport::popInterestingSymbolsAndRegions() {
1464   delete interestingSymbols.back();
1465   interestingSymbols.pop_back();
1466   delete interestingRegions.back();
1467   interestingRegions.pop_back();
1468 }
1469 
1470 const Stmt *BugReport::getStmt() const {
1471   if (!ErrorNode)
1472     return 0;
1473 
1474   ProgramPoint ProgP = ErrorNode->getLocation();
1475   const Stmt *S = NULL;
1476 
1477   if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
1478     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1479     if (BE->getBlock() == &Exit)
1480       S = GetPreviousStmt(ErrorNode);
1481   }
1482   if (!S)
1483     S = GetStmt(ProgP);
1484 
1485   return S;
1486 }
1487 
1488 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
1489 BugReport::getRanges() {
1490     // If no custom ranges, add the range of the statement corresponding to
1491     // the error node.
1492     if (Ranges.empty()) {
1493       if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
1494         addRange(E->getSourceRange());
1495       else
1496         return std::make_pair(ranges_iterator(), ranges_iterator());
1497     }
1498 
1499     // User-specified absence of range info.
1500     if (Ranges.size() == 1 && !Ranges.begin()->isValid())
1501       return std::make_pair(ranges_iterator(), ranges_iterator());
1502 
1503     return std::make_pair(Ranges.begin(), Ranges.end());
1504 }
1505 
1506 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
1507   if (ErrorNode) {
1508     assert(!Location.isValid() &&
1509      "Either Location or ErrorNode should be specified but not both.");
1510 
1511     if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
1512       const LocationContext *LC = ErrorNode->getLocationContext();
1513 
1514       // For member expressions, return the location of the '.' or '->'.
1515       if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1516         return PathDiagnosticLocation::createMemberLoc(ME, SM);
1517       // For binary operators, return the location of the operator.
1518       if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1519         return PathDiagnosticLocation::createOperatorLoc(B, SM);
1520 
1521       return PathDiagnosticLocation::createBegin(S, SM, LC);
1522     }
1523   } else {
1524     assert(Location.isValid());
1525     return Location;
1526   }
1527 
1528   return PathDiagnosticLocation();
1529 }
1530 
1531 //===----------------------------------------------------------------------===//
1532 // Methods for BugReporter and subclasses.
1533 //===----------------------------------------------------------------------===//
1534 
1535 BugReportEquivClass::~BugReportEquivClass() { }
1536 GRBugReporter::~GRBugReporter() { }
1537 BugReporterData::~BugReporterData() {}
1538 
1539 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1540 
1541 ProgramStateManager&
1542 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1543 
1544 BugReporter::~BugReporter() {
1545   FlushReports();
1546 
1547   // Free the bug reports we are tracking.
1548   typedef std::vector<BugReportEquivClass *> ContTy;
1549   for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
1550        I != E; ++I) {
1551     delete *I;
1552   }
1553 }
1554 
1555 void BugReporter::FlushReports() {
1556   if (BugTypes.isEmpty())
1557     return;
1558 
1559   // First flush the warnings for each BugType.  This may end up creating new
1560   // warnings and new BugTypes.
1561   // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1562   // Turn NSErrorChecker into a proper checker and remove this.
1563   SmallVector<const BugType*, 16> bugTypes;
1564   for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1565     bugTypes.push_back(*I);
1566   for (SmallVector<const BugType*, 16>::iterator
1567          I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1568     const_cast<BugType*>(*I)->FlushReports(*this);
1569 
1570   // We need to flush reports in deterministic order to ensure the order
1571   // of the reports is consistent between runs.
1572   typedef std::vector<BugReportEquivClass *> ContVecTy;
1573   for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
1574        EI != EE; ++EI){
1575     BugReportEquivClass& EQ = **EI;
1576     FlushReport(EQ);
1577   }
1578 
1579   // BugReporter owns and deletes only BugTypes created implicitly through
1580   // EmitBasicReport.
1581   // FIXME: There are leaks from checkers that assume that the BugTypes they
1582   // create will be destroyed by the BugReporter.
1583   for (llvm::StringMap<BugType*>::iterator
1584          I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1585     delete I->second;
1586 
1587   // Remove all references to the BugType objects.
1588   BugTypes = F.getEmptySet();
1589 }
1590 
1591 //===----------------------------------------------------------------------===//
1592 // PathDiagnostics generation.
1593 //===----------------------------------------------------------------------===//
1594 
1595 static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1596                  std::pair<ExplodedNode*, unsigned> >
1597 MakeReportGraph(const ExplodedGraph* G,
1598                 SmallVectorImpl<const ExplodedNode*> &nodes) {
1599 
1600   // Create the trimmed graph.  It will contain the shortest paths from the
1601   // error nodes to the root.  In the new graph we should only have one
1602   // error node unless there are two or more error nodes with the same minimum
1603   // path length.
1604   ExplodedGraph* GTrim;
1605   InterExplodedGraphMap* NMap;
1606 
1607   llvm::DenseMap<const void*, const void*> InverseMap;
1608   llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1609                                    &InverseMap);
1610 
1611   // Create owning pointers for GTrim and NMap just to ensure that they are
1612   // released when this function exists.
1613   OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1614   OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1615 
1616   // Find the (first) error node in the trimmed graph.  We just need to consult
1617   // the node map (NMap) which maps from nodes in the original graph to nodes
1618   // in the new graph.
1619 
1620   std::queue<const ExplodedNode*> WS;
1621   typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1622   IndexMapTy IndexMap;
1623 
1624   for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1625     const ExplodedNode *originalNode = nodes[nodeIndex];
1626     if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1627       WS.push(N);
1628       IndexMap[originalNode] = nodeIndex;
1629     }
1630   }
1631 
1632   assert(!WS.empty() && "No error node found in the trimmed graph.");
1633 
1634   // Create a new (third!) graph with a single path.  This is the graph
1635   // that will be returned to the caller.
1636   ExplodedGraph *GNew = new ExplodedGraph();
1637 
1638   // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
1639   // to the root node, and then construct a new graph that contains only
1640   // a single path.
1641   llvm::DenseMap<const void*,unsigned> Visited;
1642 
1643   unsigned cnt = 0;
1644   const ExplodedNode *Root = 0;
1645 
1646   while (!WS.empty()) {
1647     const ExplodedNode *Node = WS.front();
1648     WS.pop();
1649 
1650     if (Visited.find(Node) != Visited.end())
1651       continue;
1652 
1653     Visited[Node] = cnt++;
1654 
1655     if (Node->pred_empty()) {
1656       Root = Node;
1657       break;
1658     }
1659 
1660     for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1661          E=Node->pred_end(); I!=E; ++I)
1662       WS.push(*I);
1663   }
1664 
1665   assert(Root);
1666 
1667   // Now walk from the root down the BFS path, always taking the successor
1668   // with the lowest number.
1669   ExplodedNode *Last = 0, *First = 0;
1670   NodeBackMap *BM = new NodeBackMap();
1671   unsigned NodeIndex = 0;
1672 
1673   for ( const ExplodedNode *N = Root ;;) {
1674     // Lookup the number associated with the current node.
1675     llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1676     assert(I != Visited.end());
1677 
1678     // Create the equivalent node in the new graph with the same state
1679     // and location.
1680     ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
1681 
1682     // Store the mapping to the original node.
1683     llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1684     assert(IMitr != InverseMap.end() && "No mapping to original node.");
1685     (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1686 
1687     // Link up the new node with the previous node.
1688     if (Last)
1689       NewN->addPredecessor(Last, *GNew);
1690 
1691     Last = NewN;
1692 
1693     // Are we at the final node?
1694     IndexMapTy::iterator IMI =
1695       IndexMap.find((const ExplodedNode*)(IMitr->second));
1696     if (IMI != IndexMap.end()) {
1697       First = NewN;
1698       NodeIndex = IMI->second;
1699       break;
1700     }
1701 
1702     // Find the next successor node.  We choose the node that is marked
1703     // with the lowest DFS number.
1704     ExplodedNode::const_succ_iterator SI = N->succ_begin();
1705     ExplodedNode::const_succ_iterator SE = N->succ_end();
1706     N = 0;
1707 
1708     for (unsigned MinVal = 0; SI != SE; ++SI) {
1709 
1710       I = Visited.find(*SI);
1711 
1712       if (I == Visited.end())
1713         continue;
1714 
1715       if (!N || I->second < MinVal) {
1716         N = *SI;
1717         MinVal = I->second;
1718       }
1719     }
1720 
1721     assert(N);
1722   }
1723 
1724   assert(First);
1725 
1726   return std::make_pair(std::make_pair(GNew, BM),
1727                         std::make_pair(First, NodeIndex));
1728 }
1729 
1730 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1731 ///  and collapses PathDiagosticPieces that are expanded by macros.
1732 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
1733   typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
1734                                 SourceLocation> > MacroStackTy;
1735 
1736   typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
1737           PiecesTy;
1738 
1739   MacroStackTy MacroStack;
1740   PiecesTy Pieces;
1741 
1742   for (PathPieces::const_iterator I = path.begin(), E = path.end();
1743        I!=E; ++I) {
1744 
1745     PathDiagnosticPiece *piece = I->getPtr();
1746 
1747     // Recursively compact calls.
1748     if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
1749       CompactPathDiagnostic(call->path, SM);
1750     }
1751 
1752     // Get the location of the PathDiagnosticPiece.
1753     const FullSourceLoc Loc = piece->getLocation().asLocation();
1754 
1755     // Determine the instantiation location, which is the location we group
1756     // related PathDiagnosticPieces.
1757     SourceLocation InstantiationLoc = Loc.isMacroID() ?
1758                                       SM.getExpansionLoc(Loc) :
1759                                       SourceLocation();
1760 
1761     if (Loc.isFileID()) {
1762       MacroStack.clear();
1763       Pieces.push_back(piece);
1764       continue;
1765     }
1766 
1767     assert(Loc.isMacroID());
1768 
1769     // Is the PathDiagnosticPiece within the same macro group?
1770     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1771       MacroStack.back().first->subPieces.push_back(piece);
1772       continue;
1773     }
1774 
1775     // We aren't in the same group.  Are we descending into a new macro
1776     // or are part of an old one?
1777     IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
1778 
1779     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1780                                           SM.getExpansionLoc(Loc) :
1781                                           SourceLocation();
1782 
1783     // Walk the entire macro stack.
1784     while (!MacroStack.empty()) {
1785       if (InstantiationLoc == MacroStack.back().second) {
1786         MacroGroup = MacroStack.back().first;
1787         break;
1788       }
1789 
1790       if (ParentInstantiationLoc == MacroStack.back().second) {
1791         MacroGroup = MacroStack.back().first;
1792         break;
1793       }
1794 
1795       MacroStack.pop_back();
1796     }
1797 
1798     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1799       // Create a new macro group and add it to the stack.
1800       PathDiagnosticMacroPiece *NewGroup =
1801         new PathDiagnosticMacroPiece(
1802           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
1803 
1804       if (MacroGroup)
1805         MacroGroup->subPieces.push_back(NewGroup);
1806       else {
1807         assert(InstantiationLoc.isFileID());
1808         Pieces.push_back(NewGroup);
1809       }
1810 
1811       MacroGroup = NewGroup;
1812       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1813     }
1814 
1815     // Finally, add the PathDiagnosticPiece to the group.
1816     MacroGroup->subPieces.push_back(piece);
1817   }
1818 
1819   // Now take the pieces and construct a new PathDiagnostic.
1820   path.clear();
1821 
1822   for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
1823     path.push_back(*I);
1824 }
1825 
1826 void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
1827                                            PathDiagnosticConsumer &PC,
1828                                            ArrayRef<BugReport *> &bugReports) {
1829 
1830   assert(!bugReports.empty());
1831   SmallVector<const ExplodedNode *, 10> errorNodes;
1832   for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
1833                                       E = bugReports.end(); I != E; ++I) {
1834       errorNodes.push_back((*I)->getErrorNode());
1835   }
1836 
1837   // Construct a new graph that contains only a single path from the error
1838   // node to a root.
1839   const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1840   std::pair<ExplodedNode*, unsigned> >&
1841     GPair = MakeReportGraph(&getGraph(), errorNodes);
1842 
1843   // Find the BugReport with the original location.
1844   assert(GPair.second.second < bugReports.size());
1845   BugReport *R = bugReports[GPair.second.second];
1846   assert(R && "No original report found for sliced graph.");
1847 
1848   OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
1849   OwningPtr<NodeBackMap> BackMap(GPair.first.second);
1850   const ExplodedNode *N = GPair.second.first;
1851 
1852   // Start building the path diagnostic...
1853   PathDiagnosticBuilder PDB(*this, R, BackMap.get(), &PC);
1854 
1855   // Register additional node visitors.
1856   R->addVisitor(new NilReceiverBRVisitor());
1857   R->addVisitor(new ConditionBRVisitor());
1858 
1859   BugReport::VisitorList visitors;
1860   unsigned originalReportConfigToken, finalReportConfigToken;
1861 
1862   // While generating diagnostics, it's possible the visitors will decide
1863   // new symbols and regions are interesting, or add other visitors based on
1864   // the information they find. If they do, we need to regenerate the path
1865   // based on our new report configuration.
1866   do {
1867     // Get a clean copy of all the visitors.
1868     for (BugReport::visitor_iterator I = R->visitor_begin(),
1869                                      E = R->visitor_end(); I != E; ++I)
1870        visitors.push_back((*I)->clone());
1871 
1872     // Clear out the active path from any previous work.
1873     PD.getActivePath().clear();
1874     originalReportConfigToken = R->getConfigurationChangeToken();
1875 
1876     // Generate the very last diagnostic piece - the piece is visible before
1877     // the trace is expanded.
1878     PathDiagnosticPiece *LastPiece = 0;
1879     for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
1880          I != E; ++I) {
1881       if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
1882         assert (!LastPiece &&
1883                 "There can only be one final piece in a diagnostic.");
1884         LastPiece = Piece;
1885       }
1886     }
1887     if (!LastPiece)
1888       LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
1889     if (LastPiece)
1890       PD.getActivePath().push_back(LastPiece);
1891     else
1892       return;
1893 
1894     switch (PDB.getGenerationScheme()) {
1895     case PathDiagnosticConsumer::Extensive:
1896       GenerateExtensivePathDiagnostic(PD, PDB, N, visitors);
1897       break;
1898     case PathDiagnosticConsumer::Minimal:
1899       GenerateMinimalPathDiagnostic(PD, PDB, N, visitors);
1900       break;
1901     case PathDiagnosticConsumer::None:
1902       llvm_unreachable("PathDiagnosticConsumer::None should never appear here");
1903     }
1904 
1905     // Clean up the visitors we used.
1906     llvm::DeleteContainerPointers(visitors);
1907 
1908     // Did anything change while generating this path?
1909     finalReportConfigToken = R->getConfigurationChangeToken();
1910   } while(finalReportConfigToken != originalReportConfigToken);
1911 
1912   // Finally, prune the diagnostic path of uninteresting stuff.
1913   if (R->shouldPrunePath()) {
1914     bool hasSomethingInteresting = RemoveUneededCalls(PD.getMutablePieces());
1915     assert(hasSomethingInteresting);
1916     (void) hasSomethingInteresting;
1917   }
1918 }
1919 
1920 void BugReporter::Register(BugType *BT) {
1921   BugTypes = F.add(BugTypes, BT);
1922 }
1923 
1924 void BugReporter::EmitReport(BugReport* R) {
1925   // Compute the bug report's hash to determine its equivalence class.
1926   llvm::FoldingSetNodeID ID;
1927   R->Profile(ID);
1928 
1929   // Lookup the equivance class.  If there isn't one, create it.
1930   BugType& BT = R->getBugType();
1931   Register(&BT);
1932   void *InsertPos;
1933   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
1934 
1935   if (!EQ) {
1936     EQ = new BugReportEquivClass(R);
1937     EQClasses.InsertNode(EQ, InsertPos);
1938     EQClassesVector.push_back(EQ);
1939   }
1940   else
1941     EQ->AddReport(R);
1942 }
1943 
1944 
1945 //===----------------------------------------------------------------------===//
1946 // Emitting reports in equivalence classes.
1947 //===----------------------------------------------------------------------===//
1948 
1949 namespace {
1950 struct FRIEC_WLItem {
1951   const ExplodedNode *N;
1952   ExplodedNode::const_succ_iterator I, E;
1953 
1954   FRIEC_WLItem(const ExplodedNode *n)
1955   : N(n), I(N->succ_begin()), E(N->succ_end()) {}
1956 };
1957 }
1958 
1959 static BugReport *
1960 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
1961                              SmallVectorImpl<BugReport*> &bugReports) {
1962 
1963   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
1964   assert(I != E);
1965   BugType& BT = I->getBugType();
1966 
1967   // If we don't need to suppress any of the nodes because they are
1968   // post-dominated by a sink, simply add all the nodes in the equivalence class
1969   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
1970   if (!BT.isSuppressOnSink()) {
1971     BugReport *R = I;
1972     for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
1973       const ExplodedNode *N = I->getErrorNode();
1974       if (N) {
1975         R = I;
1976         bugReports.push_back(R);
1977       }
1978     }
1979     return R;
1980   }
1981 
1982   // For bug reports that should be suppressed when all paths are post-dominated
1983   // by a sink node, iterate through the reports in the equivalence class
1984   // until we find one that isn't post-dominated (if one exists).  We use a
1985   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
1986   // this as a recursive function, but we don't want to risk blowing out the
1987   // stack for very long paths.
1988   BugReport *exampleReport = 0;
1989 
1990   for (; I != E; ++I) {
1991     const ExplodedNode *errorNode = I->getErrorNode();
1992 
1993     if (!errorNode)
1994       continue;
1995     if (errorNode->isSink()) {
1996       llvm_unreachable(
1997            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
1998     }
1999     // No successors?  By definition this nodes isn't post-dominated by a sink.
2000     if (errorNode->succ_empty()) {
2001       bugReports.push_back(I);
2002       if (!exampleReport)
2003         exampleReport = I;
2004       continue;
2005     }
2006 
2007     // At this point we know that 'N' is not a sink and it has at least one
2008     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
2009     typedef FRIEC_WLItem WLItem;
2010     typedef SmallVector<WLItem, 10> DFSWorkList;
2011     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2012 
2013     DFSWorkList WL;
2014     WL.push_back(errorNode);
2015     Visited[errorNode] = 1;
2016 
2017     while (!WL.empty()) {
2018       WLItem &WI = WL.back();
2019       assert(!WI.N->succ_empty());
2020 
2021       for (; WI.I != WI.E; ++WI.I) {
2022         const ExplodedNode *Succ = *WI.I;
2023         // End-of-path node?
2024         if (Succ->succ_empty()) {
2025           // If we found an end-of-path node that is not a sink.
2026           if (!Succ->isSink()) {
2027             bugReports.push_back(I);
2028             if (!exampleReport)
2029               exampleReport = I;
2030             WL.clear();
2031             break;
2032           }
2033           // Found a sink?  Continue on to the next successor.
2034           continue;
2035         }
2036         // Mark the successor as visited.  If it hasn't been explored,
2037         // enqueue it to the DFS worklist.
2038         unsigned &mark = Visited[Succ];
2039         if (!mark) {
2040           mark = 1;
2041           WL.push_back(Succ);
2042           break;
2043         }
2044       }
2045 
2046       // The worklist may have been cleared at this point.  First
2047       // check if it is empty before checking the last item.
2048       if (!WL.empty() && &WL.back() == &WI)
2049         WL.pop_back();
2050     }
2051   }
2052 
2053   // ExampleReport will be NULL if all the nodes in the equivalence class
2054   // were post-dominated by sinks.
2055   return exampleReport;
2056 }
2057 
2058 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2059   SmallVector<BugReport*, 10> bugReports;
2060   BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
2061   if (exampleReport) {
2062     const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
2063     for (PathDiagnosticConsumers::const_iterator I=C.begin(),
2064                                                  E=C.end(); I != E; ++I) {
2065       FlushReport(exampleReport, **I, bugReports);
2066     }
2067   }
2068 }
2069 
2070 void BugReporter::FlushReport(BugReport *exampleReport,
2071                               PathDiagnosticConsumer &PD,
2072                               ArrayRef<BugReport*> bugReports) {
2073 
2074   // FIXME: Make sure we use the 'R' for the path that was actually used.
2075   // Probably doesn't make a difference in practice.
2076   BugType& BT = exampleReport->getBugType();
2077 
2078   OwningPtr<PathDiagnostic>
2079     D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
2080                          exampleReport->getBugType().getName(),
2081                          PD.useVerboseDescription()
2082                          ? exampleReport->getDescription()
2083                          : exampleReport->getShortDescription(),
2084                          BT.getCategory()));
2085 
2086   // Generate the full path diagnostic, using the generation scheme
2087   // specified by the PathDiagnosticConsumer.
2088   if (PD.getGenerationScheme() != PathDiagnosticConsumer::None) {
2089     if (!bugReports.empty())
2090       GeneratePathDiagnostic(*D.get(), PD, bugReports);
2091   }
2092 
2093   // If the path is empty, generate a single step path with the location
2094   // of the issue.
2095   if (D->path.empty()) {
2096     PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
2097     PathDiagnosticPiece *piece =
2098       new PathDiagnosticEventPiece(L, exampleReport->getDescription());
2099     BugReport::ranges_iterator Beg, End;
2100     llvm::tie(Beg, End) = exampleReport->getRanges();
2101     for ( ; Beg != End; ++Beg)
2102       piece->addRange(*Beg);
2103     D->getActivePath().push_back(piece);
2104   }
2105 
2106   // Get the meta data.
2107   const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
2108   for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
2109                                                 e = Meta.end(); i != e; ++i) {
2110     D->addMeta(*i);
2111   }
2112 
2113   PD.HandlePathDiagnostic(D.take());
2114 }
2115 
2116 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
2117                                   StringRef name,
2118                                   StringRef category,
2119                                   StringRef str, PathDiagnosticLocation Loc,
2120                                   SourceRange* RBeg, unsigned NumRanges) {
2121 
2122   // 'BT' is owned by BugReporter.
2123   BugType *BT = getBugTypeForName(name, category);
2124   BugReport *R = new BugReport(*BT, str, Loc);
2125   R->setDeclWithIssue(DeclWithIssue);
2126   for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
2127   EmitReport(R);
2128 }
2129 
2130 BugType *BugReporter::getBugTypeForName(StringRef name,
2131                                         StringRef category) {
2132   SmallString<136> fullDesc;
2133   llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
2134   llvm::StringMapEntry<BugType *> &
2135       entry = StrBugTypes.GetOrCreateValue(fullDesc);
2136   BugType *BT = entry.getValue();
2137   if (!BT) {
2138     BT = new BugType(name, category);
2139     entry.setValue(BT);
2140   }
2141   return BT;
2142 }
2143