1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines BugReporter, a utility class for generating 10 // PathDiagnostics. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 15 #include "clang/AST/Decl.h" 16 #include "clang/AST/DeclBase.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ParentMap.h" 21 #include "clang/AST/Stmt.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/AST/StmtObjC.h" 24 #include "clang/Analysis/AnalysisDeclContext.h" 25 #include "clang/Analysis/CFG.h" 26 #include "clang/Analysis/CFGStmtMap.h" 27 #include "clang/Analysis/ProgramPoint.h" 28 #include "clang/Basic/LLVM.h" 29 #include "clang/Basic/SourceLocation.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" 32 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" 33 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 34 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 35 #include "clang/StaticAnalyzer/Core/Checker.h" 36 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 37 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 43 #include "llvm/ADT/ArrayRef.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/DenseSet.h" 46 #include "llvm/ADT/FoldingSet.h" 47 #include "llvm/ADT/None.h" 48 #include "llvm/ADT/Optional.h" 49 #include "llvm/ADT/STLExtras.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/SmallString.h" 52 #include "llvm/ADT/SmallVector.h" 53 #include "llvm/ADT/Statistic.h" 54 #include "llvm/ADT/StringRef.h" 55 #include "llvm/ADT/iterator_range.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/MemoryBuffer.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstddef> 64 #include <iterator> 65 #include <memory> 66 #include <queue> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace clang; 73 using namespace ento; 74 75 #define DEBUG_TYPE "BugReporter" 76 77 STATISTIC(MaxBugClassSize, 78 "The maximum number of bug reports in the same equivalence class"); 79 STATISTIC(MaxValidBugClassSize, 80 "The maximum number of bug reports in the same equivalence class " 81 "where at least one report is valid (not suppressed)"); 82 83 BugReporterVisitor::~BugReporterVisitor() = default; 84 85 void BugReporterContext::anchor() {} 86 87 //===----------------------------------------------------------------------===// 88 // Helper routines for walking the ExplodedGraph and fetching statements. 89 //===----------------------------------------------------------------------===// 90 91 static const Stmt *GetPreviousStmt(const ExplodedNode *N) { 92 for (N = N->getFirstPred(); N; N = N->getFirstPred()) 93 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 94 return S; 95 96 return nullptr; 97 } 98 99 static inline const Stmt* 100 GetCurrentOrPreviousStmt(const ExplodedNode *N) { 101 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 102 return S; 103 104 return GetPreviousStmt(N); 105 } 106 107 //===----------------------------------------------------------------------===// 108 // Diagnostic cleanup. 109 //===----------------------------------------------------------------------===// 110 111 static PathDiagnosticEventPiece * 112 eventsDescribeSameCondition(PathDiagnosticEventPiece *X, 113 PathDiagnosticEventPiece *Y) { 114 // Prefer diagnostics that come from ConditionBRVisitor over 115 // those that came from TrackConstraintBRVisitor, 116 // unless the one from ConditionBRVisitor is 117 // its generic fallback diagnostic. 118 const void *tagPreferred = ConditionBRVisitor::getTag(); 119 const void *tagLesser = TrackConstraintBRVisitor::getTag(); 120 121 if (X->getLocation() != Y->getLocation()) 122 return nullptr; 123 124 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) 125 return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X; 126 127 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) 128 return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y; 129 130 return nullptr; 131 } 132 133 /// An optimization pass over PathPieces that removes redundant diagnostics 134 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both 135 /// BugReporterVisitors use different methods to generate diagnostics, with 136 /// one capable of emitting diagnostics in some cases but not in others. This 137 /// can lead to redundant diagnostic pieces at the same point in a path. 138 static void removeRedundantMsgs(PathPieces &path) { 139 unsigned N = path.size(); 140 if (N < 2) 141 return; 142 // NOTE: this loop intentionally is not using an iterator. Instead, we 143 // are streaming the path and modifying it in place. This is done by 144 // grabbing the front, processing it, and if we decide to keep it append 145 // it to the end of the path. The entire path is processed in this way. 146 for (unsigned i = 0; i < N; ++i) { 147 auto piece = std::move(path.front()); 148 path.pop_front(); 149 150 switch (piece->getKind()) { 151 case PathDiagnosticPiece::Call: 152 removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path); 153 break; 154 case PathDiagnosticPiece::Macro: 155 removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces); 156 break; 157 case PathDiagnosticPiece::ControlFlow: 158 break; 159 case PathDiagnosticPiece::Event: { 160 if (i == N-1) 161 break; 162 163 if (auto *nextEvent = 164 dyn_cast<PathDiagnosticEventPiece>(path.front().get())) { 165 auto *event = cast<PathDiagnosticEventPiece>(piece.get()); 166 // Check to see if we should keep one of the two pieces. If we 167 // come up with a preference, record which piece to keep, and consume 168 // another piece from the path. 169 if (auto *pieceToKeep = 170 eventsDescribeSameCondition(event, nextEvent)) { 171 piece = std::move(pieceToKeep == event ? piece : path.front()); 172 path.pop_front(); 173 ++i; 174 } 175 } 176 break; 177 } 178 case PathDiagnosticPiece::Note: 179 break; 180 } 181 path.push_back(std::move(piece)); 182 } 183 } 184 185 /// A map from PathDiagnosticPiece to the LocationContext of the inlined 186 /// function call it represents. 187 using LocationContextMap = 188 llvm::DenseMap<const PathPieces *, const LocationContext *>; 189 190 /// Recursively scan through a path and prune out calls and macros pieces 191 /// that aren't needed. Return true if afterwards the path contains 192 /// "interesting stuff" which means it shouldn't be pruned from the parent path. 193 static bool removeUnneededCalls(PathPieces &pieces, BugReport *R, 194 LocationContextMap &LCM, 195 bool IsInteresting = false) { 196 bool containsSomethingInteresting = IsInteresting; 197 const unsigned N = pieces.size(); 198 199 for (unsigned i = 0 ; i < N ; ++i) { 200 // Remove the front piece from the path. If it is still something we 201 // want to keep once we are done, we will push it back on the end. 202 auto piece = std::move(pieces.front()); 203 pieces.pop_front(); 204 205 switch (piece->getKind()) { 206 case PathDiagnosticPiece::Call: { 207 auto &call = cast<PathDiagnosticCallPiece>(*piece); 208 // Check if the location context is interesting. 209 assert(LCM.count(&call.path)); 210 if (!removeUnneededCalls(call.path, R, LCM, 211 R->isInteresting(LCM[&call.path]))) 212 continue; 213 214 containsSomethingInteresting = true; 215 break; 216 } 217 case PathDiagnosticPiece::Macro: { 218 auto ¯o = cast<PathDiagnosticMacroPiece>(*piece); 219 if (!removeUnneededCalls(macro.subPieces, R, LCM, IsInteresting)) 220 continue; 221 containsSomethingInteresting = true; 222 break; 223 } 224 case PathDiagnosticPiece::Event: { 225 auto &event = cast<PathDiagnosticEventPiece>(*piece); 226 227 // We never throw away an event, but we do throw it away wholesale 228 // as part of a path if we throw the entire path away. 229 containsSomethingInteresting |= !event.isPrunable(); 230 break; 231 } 232 case PathDiagnosticPiece::ControlFlow: 233 break; 234 235 case PathDiagnosticPiece::Note: 236 break; 237 } 238 239 pieces.push_back(std::move(piece)); 240 } 241 242 return containsSomethingInteresting; 243 } 244 245 /// Returns true if the given decl has been implicitly given a body, either by 246 /// the analyzer or by the compiler proper. 247 static bool hasImplicitBody(const Decl *D) { 248 assert(D); 249 return D->isImplicit() || !D->hasBody(); 250 } 251 252 /// Recursively scan through a path and make sure that all call pieces have 253 /// valid locations. 254 static void 255 adjustCallLocations(PathPieces &Pieces, 256 PathDiagnosticLocation *LastCallLocation = nullptr) { 257 for (const auto &I : Pieces) { 258 auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get()); 259 260 if (!Call) 261 continue; 262 263 if (LastCallLocation) { 264 bool CallerIsImplicit = hasImplicitBody(Call->getCaller()); 265 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid()) 266 Call->callEnter = *LastCallLocation; 267 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid()) 268 Call->callReturn = *LastCallLocation; 269 } 270 271 // Recursively clean out the subclass. Keep this call around if 272 // it contains any informative diagnostics. 273 PathDiagnosticLocation *ThisCallLocation; 274 if (Call->callEnterWithin.asLocation().isValid() && 275 !hasImplicitBody(Call->getCallee())) 276 ThisCallLocation = &Call->callEnterWithin; 277 else 278 ThisCallLocation = &Call->callEnter; 279 280 assert(ThisCallLocation && "Outermost call has an invalid location"); 281 adjustCallLocations(Call->path, ThisCallLocation); 282 } 283 } 284 285 /// Remove edges in and out of C++ default initializer expressions. These are 286 /// for fields that have in-class initializers, as opposed to being initialized 287 /// explicitly in a constructor or braced list. 288 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) { 289 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 290 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 291 removeEdgesToDefaultInitializers(C->path); 292 293 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 294 removeEdgesToDefaultInitializers(M->subPieces); 295 296 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) { 297 const Stmt *Start = CF->getStartLocation().asStmt(); 298 const Stmt *End = CF->getEndLocation().asStmt(); 299 if (Start && isa<CXXDefaultInitExpr>(Start)) { 300 I = Pieces.erase(I); 301 continue; 302 } else if (End && isa<CXXDefaultInitExpr>(End)) { 303 PathPieces::iterator Next = std::next(I); 304 if (Next != E) { 305 if (auto *NextCF = 306 dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) { 307 NextCF->setStartLocation(CF->getStartLocation()); 308 } 309 } 310 I = Pieces.erase(I); 311 continue; 312 } 313 } 314 315 I++; 316 } 317 } 318 319 /// Remove all pieces with invalid locations as these cannot be serialized. 320 /// We might have pieces with invalid locations as a result of inlining Body 321 /// Farm generated functions. 322 static void removePiecesWithInvalidLocations(PathPieces &Pieces) { 323 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 324 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 325 removePiecesWithInvalidLocations(C->path); 326 327 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 328 removePiecesWithInvalidLocations(M->subPieces); 329 330 if (!(*I)->getLocation().isValid() || 331 !(*I)->getLocation().asLocation().isValid()) { 332 I = Pieces.erase(I); 333 continue; 334 } 335 I++; 336 } 337 } 338 339 //===----------------------------------------------------------------------===// 340 // PathDiagnosticBuilder and its associated routines and helper objects. 341 //===----------------------------------------------------------------------===// 342 343 namespace { 344 345 class PathDiagnosticBuilder : public BugReporterContext { 346 BugReport *R; 347 PathDiagnosticConsumer *PDC; 348 349 public: 350 const LocationContext *LC; 351 352 PathDiagnosticBuilder(GRBugReporter &br, 353 BugReport *r, InterExplodedGraphMap &Backmap, 354 PathDiagnosticConsumer *pdc) 355 : BugReporterContext(br, Backmap), R(r), PDC(pdc), 356 LC(r->getErrorNode()->getLocationContext()) {} 357 358 PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N); 359 360 PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os, 361 const ExplodedNode *N); 362 363 BugReport *getBugReport() { return R; } 364 365 Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); } 366 367 ParentMap& getParentMap() { return LC->getParentMap(); } 368 369 const Stmt *getParent(const Stmt *S) { 370 return getParentMap().getParent(S); 371 } 372 373 PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S); 374 375 PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const { 376 return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Minimal; 377 } 378 379 bool supportsLogicalOpControlFlow() const { 380 return PDC ? PDC->supportsLogicalOpControlFlow() : true; 381 } 382 }; 383 384 } // namespace 385 386 PathDiagnosticLocation 387 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) { 388 if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N)) 389 return PathDiagnosticLocation(S, getSourceManager(), LC); 390 391 return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(), 392 getSourceManager()); 393 } 394 395 PathDiagnosticLocation 396 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os, 397 const ExplodedNode *N) { 398 // Slow, but probably doesn't matter. 399 if (os.str().empty()) 400 os << ' '; 401 402 const PathDiagnosticLocation &Loc = ExecutionContinues(N); 403 404 if (Loc.asStmt()) 405 os << "Execution continues on line " 406 << getSourceManager().getExpansionLineNumber(Loc.asLocation()) 407 << '.'; 408 else { 409 os << "Execution jumps to the end of the "; 410 const Decl *D = N->getLocationContext()->getDecl(); 411 if (isa<ObjCMethodDecl>(D)) 412 os << "method"; 413 else if (isa<FunctionDecl>(D)) 414 os << "function"; 415 else { 416 assert(isa<BlockDecl>(D)); 417 os << "anonymous block"; 418 } 419 os << '.'; 420 } 421 422 return Loc; 423 } 424 425 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) { 426 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) 427 return PM.getParentIgnoreParens(S); 428 429 const Stmt *Parent = PM.getParentIgnoreParens(S); 430 if (!Parent) 431 return nullptr; 432 433 switch (Parent->getStmtClass()) { 434 case Stmt::ForStmtClass: 435 case Stmt::DoStmtClass: 436 case Stmt::WhileStmtClass: 437 case Stmt::ObjCForCollectionStmtClass: 438 case Stmt::CXXForRangeStmtClass: 439 return Parent; 440 default: 441 break; 442 } 443 444 return nullptr; 445 } 446 447 static PathDiagnosticLocation 448 getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P, 449 const LocationContext *LC, bool allowNestedContexts) { 450 if (!S) 451 return {}; 452 453 while (const Stmt *Parent = getEnclosingParent(S, P)) { 454 switch (Parent->getStmtClass()) { 455 case Stmt::BinaryOperatorClass: { 456 const auto *B = cast<BinaryOperator>(Parent); 457 if (B->isLogicalOp()) 458 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC); 459 break; 460 } 461 case Stmt::CompoundStmtClass: 462 case Stmt::StmtExprClass: 463 return PathDiagnosticLocation(S, SMgr, LC); 464 case Stmt::ChooseExprClass: 465 // Similar to '?' if we are referring to condition, just have the edge 466 // point to the entire choose expression. 467 if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S) 468 return PathDiagnosticLocation(Parent, SMgr, LC); 469 else 470 return PathDiagnosticLocation(S, SMgr, LC); 471 case Stmt::BinaryConditionalOperatorClass: 472 case Stmt::ConditionalOperatorClass: 473 // For '?', if we are referring to condition, just have the edge point 474 // to the entire '?' expression. 475 if (allowNestedContexts || 476 cast<AbstractConditionalOperator>(Parent)->getCond() == S) 477 return PathDiagnosticLocation(Parent, SMgr, LC); 478 else 479 return PathDiagnosticLocation(S, SMgr, LC); 480 case Stmt::CXXForRangeStmtClass: 481 if (cast<CXXForRangeStmt>(Parent)->getBody() == S) 482 return PathDiagnosticLocation(S, SMgr, LC); 483 break; 484 case Stmt::DoStmtClass: 485 return PathDiagnosticLocation(S, SMgr, LC); 486 case Stmt::ForStmtClass: 487 if (cast<ForStmt>(Parent)->getBody() == S) 488 return PathDiagnosticLocation(S, SMgr, LC); 489 break; 490 case Stmt::IfStmtClass: 491 if (cast<IfStmt>(Parent)->getCond() != S) 492 return PathDiagnosticLocation(S, SMgr, LC); 493 break; 494 case Stmt::ObjCForCollectionStmtClass: 495 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) 496 return PathDiagnosticLocation(S, SMgr, LC); 497 break; 498 case Stmt::WhileStmtClass: 499 if (cast<WhileStmt>(Parent)->getCond() != S) 500 return PathDiagnosticLocation(S, SMgr, LC); 501 break; 502 default: 503 break; 504 } 505 506 S = Parent; 507 } 508 509 assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); 510 511 return PathDiagnosticLocation(S, SMgr, LC); 512 } 513 514 PathDiagnosticLocation 515 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) { 516 assert(S && "Null Stmt passed to getEnclosingStmtLocation"); 517 return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC, 518 /*allowNestedContexts=*/false); 519 } 520 521 //===----------------------------------------------------------------------===// 522 // "Minimal" path diagnostic generation algorithm. 523 //===----------------------------------------------------------------------===// 524 using StackDiagPair = 525 std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>; 526 using StackDiagVector = SmallVector<StackDiagPair, 6>; 527 528 static void updateStackPiecesWithMessage(PathDiagnosticPiece &P, 529 StackDiagVector &CallStack) { 530 // If the piece contains a special message, add it to all the call 531 // pieces on the active stack. 532 if (auto *ep = dyn_cast<PathDiagnosticEventPiece>(&P)) { 533 if (ep->hasCallStackHint()) 534 for (const auto &I : CallStack) { 535 PathDiagnosticCallPiece *CP = I.first; 536 const ExplodedNode *N = I.second; 537 std::string stackMsg = ep->getCallStackMessage(N); 538 539 // The last message on the path to final bug is the most important 540 // one. Since we traverse the path backwards, do not add the message 541 // if one has been previously added. 542 if (!CP->hasCallStackMessage()) 543 CP->setCallStackMessage(stackMsg); 544 } 545 } 546 } 547 548 static void CompactMacroExpandedPieces(PathPieces &path, 549 const SourceManager& SM); 550 551 552 std::shared_ptr<PathDiagnosticControlFlowPiece> generateDiagForSwitchOP( 553 const ExplodedNode *N, 554 const CFGBlock *Dst, 555 const SourceManager &SM, 556 const LocationContext *LC, 557 PathDiagnosticBuilder &PDB, 558 PathDiagnosticLocation &Start 559 ) { 560 // Figure out what case arm we took. 561 std::string sbuf; 562 llvm::raw_string_ostream os(sbuf); 563 PathDiagnosticLocation End; 564 565 if (const Stmt *S = Dst->getLabel()) { 566 End = PathDiagnosticLocation(S, SM, LC); 567 568 switch (S->getStmtClass()) { 569 default: 570 os << "No cases match in the switch statement. " 571 "Control jumps to line " 572 << End.asLocation().getExpansionLineNumber(); 573 break; 574 case Stmt::DefaultStmtClass: 575 os << "Control jumps to the 'default' case at line " 576 << End.asLocation().getExpansionLineNumber(); 577 break; 578 579 case Stmt::CaseStmtClass: { 580 os << "Control jumps to 'case "; 581 const auto *Case = cast<CaseStmt>(S); 582 const Expr *LHS = Case->getLHS()->IgnoreParenCasts(); 583 584 // Determine if it is an enum. 585 bool GetRawInt = true; 586 587 if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) { 588 // FIXME: Maybe this should be an assertion. Are there cases 589 // were it is not an EnumConstantDecl? 590 const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl()); 591 592 if (D) { 593 GetRawInt = false; 594 os << *D; 595 } 596 } 597 598 if (GetRawInt) 599 os << LHS->EvaluateKnownConstInt(PDB.getASTContext()); 600 601 os << ":' at line " << End.asLocation().getExpansionLineNumber(); 602 break; 603 } 604 } 605 } else { 606 os << "'Default' branch taken. "; 607 End = PDB.ExecutionContinues(os, N); 608 } 609 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 610 os.str()); 611 } 612 613 614 std::shared_ptr<PathDiagnosticControlFlowPiece> generateDiagForGotoOP( 615 const Stmt *S, 616 PathDiagnosticBuilder &PDB, 617 PathDiagnosticLocation &Start) { 618 std::string sbuf; 619 llvm::raw_string_ostream os(sbuf); 620 const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S); 621 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber(); 622 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()); 623 624 } 625 626 std::shared_ptr<PathDiagnosticControlFlowPiece> generateDiagForBinaryOP( 627 const ExplodedNode *N, 628 const Stmt *T, 629 const CFGBlock *Src, 630 const CFGBlock *Dst, 631 const SourceManager &SM, 632 PathDiagnosticBuilder &PDB, 633 const LocationContext *LC) { 634 const auto *B = cast<BinaryOperator>(T); 635 std::string sbuf; 636 llvm::raw_string_ostream os(sbuf); 637 os << "Left side of '"; 638 PathDiagnosticLocation Start, End; 639 640 if (B->getOpcode() == BO_LAnd) { 641 os << "&&" 642 << "' is "; 643 644 if (*(Src->succ_begin() + 1) == Dst) { 645 os << "false"; 646 End = PathDiagnosticLocation(B->getLHS(), SM, LC); 647 Start = 648 PathDiagnosticLocation::createOperatorLoc(B, SM); 649 } else { 650 os << "true"; 651 Start = PathDiagnosticLocation(B->getLHS(), SM, LC); 652 End = PDB.ExecutionContinues(N); 653 } 654 } else { 655 assert(B->getOpcode() == BO_LOr); 656 os << "||" 657 << "' is "; 658 659 if (*(Src->succ_begin() + 1) == Dst) { 660 os << "false"; 661 Start = PathDiagnosticLocation(B->getLHS(), SM, LC); 662 End = PDB.ExecutionContinues(N); 663 } else { 664 os << "true"; 665 End = PathDiagnosticLocation(B->getLHS(), SM, LC); 666 Start = 667 PathDiagnosticLocation::createOperatorLoc(B, SM); 668 } 669 } 670 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 671 os.str()); 672 } 673 674 void generateMinimalDiagForBlockEdge(const ExplodedNode *N, BlockEdge BE, 675 const SourceManager &SM, 676 PathDiagnosticBuilder &PDB, 677 PathDiagnostic &PD) { 678 const LocationContext *LC = N->getLocationContext(); 679 const CFGBlock *Src = BE.getSrc(); 680 const CFGBlock *Dst = BE.getDst(); 681 const Stmt *T = Src->getTerminator(); 682 if (!T) 683 return; 684 685 auto Start = PathDiagnosticLocation::createBegin(T, SM, LC); 686 switch (T->getStmtClass()) { 687 default: 688 break; 689 690 case Stmt::GotoStmtClass: 691 case Stmt::IndirectGotoStmtClass: { 692 if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N)) 693 PD.getActivePath().push_front(generateDiagForGotoOP(S, PDB, Start)); 694 break; 695 } 696 697 case Stmt::SwitchStmtClass: { 698 PD.getActivePath().push_front( 699 generateDiagForSwitchOP(N, Dst, SM, LC, PDB, Start)); 700 break; 701 } 702 703 case Stmt::BreakStmtClass: 704 case Stmt::ContinueStmtClass: { 705 std::string sbuf; 706 llvm::raw_string_ostream os(sbuf); 707 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 708 PD.getActivePath().push_front( 709 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 710 break; 711 } 712 713 // Determine control-flow for ternary '?'. 714 case Stmt::BinaryConditionalOperatorClass: 715 case Stmt::ConditionalOperatorClass: { 716 std::string sbuf; 717 llvm::raw_string_ostream os(sbuf); 718 os << "'?' condition is "; 719 720 if (*(Src->succ_begin() + 1) == Dst) 721 os << "false"; 722 else 723 os << "true"; 724 725 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 726 727 if (const Stmt *S = End.asStmt()) 728 End = PDB.getEnclosingStmtLocation(S); 729 730 PD.getActivePath().push_front( 731 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 732 break; 733 } 734 735 // Determine control-flow for short-circuited '&&' and '||'. 736 case Stmt::BinaryOperatorClass: { 737 if (!PDB.supportsLogicalOpControlFlow()) 738 break; 739 740 std::shared_ptr<PathDiagnosticControlFlowPiece> Diag = 741 generateDiagForBinaryOP(N, T, Src, Dst, SM, PDB, LC); 742 PD.getActivePath().push_front(Diag); 743 break; 744 } 745 746 case Stmt::DoStmtClass: 747 if (*(Src->succ_begin()) == Dst) { 748 std::string sbuf; 749 llvm::raw_string_ostream os(sbuf); 750 751 os << "Loop condition is true. "; 752 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 753 754 if (const Stmt *S = End.asStmt()) 755 End = PDB.getEnclosingStmtLocation(S); 756 757 PD.getActivePath().push_front( 758 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 759 os.str())); 760 } else { 761 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 762 763 if (const Stmt *S = End.asStmt()) 764 End = PDB.getEnclosingStmtLocation(S); 765 766 PD.getActivePath().push_front( 767 std::make_shared<PathDiagnosticControlFlowPiece>( 768 Start, End, "Loop condition is false. Exiting loop")); 769 } 770 break; 771 772 case Stmt::WhileStmtClass: 773 case Stmt::ForStmtClass: 774 if (*(Src->succ_begin() + 1) == Dst) { 775 std::string sbuf; 776 llvm::raw_string_ostream os(sbuf); 777 778 os << "Loop condition is false. "; 779 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 780 if (const Stmt *S = End.asStmt()) 781 End = PDB.getEnclosingStmtLocation(S); 782 783 PD.getActivePath().push_front( 784 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 785 os.str())); 786 } else { 787 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 788 if (const Stmt *S = End.asStmt()) 789 End = PDB.getEnclosingStmtLocation(S); 790 791 PD.getActivePath().push_front( 792 std::make_shared<PathDiagnosticControlFlowPiece>( 793 Start, End, "Loop condition is true. Entering loop body")); 794 } 795 796 break; 797 798 case Stmt::IfStmtClass: { 799 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 800 801 if (const Stmt *S = End.asStmt()) 802 End = PDB.getEnclosingStmtLocation(S); 803 804 if (*(Src->succ_begin() + 1) == Dst) 805 PD.getActivePath().push_front( 806 std::make_shared<PathDiagnosticControlFlowPiece>( 807 Start, End, "Taking false branch")); 808 else 809 PD.getActivePath().push_front( 810 std::make_shared<PathDiagnosticControlFlowPiece>( 811 Start, End, "Taking true branch")); 812 813 break; 814 } 815 } 816 } 817 818 // Cone-of-influence: support the reverse propagation of "interesting" symbols 819 // and values by tracing interesting calculations backwards through evaluated 820 // expressions along a path. This is probably overly complicated, but the idea 821 // is that if an expression computed an "interesting" value, the child 822 // expressions are also likely to be "interesting" as well (which then 823 // propagates to the values they in turn compute). This reverse propagation 824 // is needed to track interesting correlations across function call boundaries, 825 // where formal arguments bind to actual arguments, etc. This is also needed 826 // because the constraint solver sometimes simplifies certain symbolic values 827 // into constants when appropriate, and this complicates reasoning about 828 // interesting values. 829 using InterestingExprs = llvm::DenseSet<const Expr *>; 830 831 static void reversePropagateIntererstingSymbols(BugReport &R, 832 InterestingExprs &IE, 833 const ProgramState *State, 834 const Expr *Ex, 835 const LocationContext *LCtx) { 836 SVal V = State->getSVal(Ex, LCtx); 837 if (!(R.isInteresting(V) || IE.count(Ex))) 838 return; 839 840 switch (Ex->getStmtClass()) { 841 default: 842 if (!isa<CastExpr>(Ex)) 843 break; 844 LLVM_FALLTHROUGH; 845 case Stmt::BinaryOperatorClass: 846 case Stmt::UnaryOperatorClass: { 847 for (const Stmt *SubStmt : Ex->children()) { 848 if (const auto *child = dyn_cast_or_null<Expr>(SubStmt)) { 849 IE.insert(child); 850 SVal ChildV = State->getSVal(child, LCtx); 851 R.markInteresting(ChildV); 852 } 853 } 854 break; 855 } 856 } 857 858 R.markInteresting(V); 859 } 860 861 static void reversePropagateInterestingSymbols(BugReport &R, 862 InterestingExprs &IE, 863 const ProgramState *State, 864 const LocationContext *CalleeCtx) 865 { 866 // FIXME: Handle non-CallExpr-based CallEvents. 867 const StackFrameContext *Callee = CalleeCtx->getStackFrame(); 868 const Stmt *CallSite = Callee->getCallSite(); 869 if (const auto *CE = dyn_cast_or_null<CallExpr>(CallSite)) { 870 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) { 871 FunctionDecl::param_const_iterator PI = FD->param_begin(), 872 PE = FD->param_end(); 873 CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); 874 for (; AI != AE && PI != PE; ++AI, ++PI) { 875 if (const Expr *ArgE = *AI) { 876 if (const ParmVarDecl *PD = *PI) { 877 Loc LV = State->getLValue(PD, CalleeCtx); 878 if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV))) 879 IE.insert(ArgE); 880 } 881 } 882 } 883 } 884 } 885 } 886 887 //===----------------------------------------------------------------------===// 888 // Functions for determining if a loop was executed 0 times. 889 //===----------------------------------------------------------------------===// 890 891 static bool isLoop(const Stmt *Term) { 892 switch (Term->getStmtClass()) { 893 case Stmt::ForStmtClass: 894 case Stmt::WhileStmtClass: 895 case Stmt::ObjCForCollectionStmtClass: 896 case Stmt::CXXForRangeStmtClass: 897 return true; 898 default: 899 // Note that we intentionally do not include do..while here. 900 return false; 901 } 902 } 903 904 static bool isJumpToFalseBranch(const BlockEdge *BE) { 905 const CFGBlock *Src = BE->getSrc(); 906 assert(Src->succ_size() == 2); 907 return (*(Src->succ_begin()+1) == BE->getDst()); 908 } 909 910 static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) { 911 while (SubS) { 912 if (SubS == S) 913 return true; 914 SubS = PM.getParent(SubS); 915 } 916 return false; 917 } 918 919 static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term, 920 const ExplodedNode *N) { 921 while (N) { 922 Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>(); 923 if (SP) { 924 const Stmt *S = SP->getStmt(); 925 if (!isContainedByStmt(PM, Term, S)) 926 return S; 927 } 928 N = N->getFirstPred(); 929 } 930 return nullptr; 931 } 932 933 static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) { 934 const Stmt *LoopBody = nullptr; 935 switch (Term->getStmtClass()) { 936 case Stmt::CXXForRangeStmtClass: { 937 const auto *FR = cast<CXXForRangeStmt>(Term); 938 if (isContainedByStmt(PM, FR->getInc(), S)) 939 return true; 940 if (isContainedByStmt(PM, FR->getLoopVarStmt(), S)) 941 return true; 942 LoopBody = FR->getBody(); 943 break; 944 } 945 case Stmt::ForStmtClass: { 946 const auto *FS = cast<ForStmt>(Term); 947 if (isContainedByStmt(PM, FS->getInc(), S)) 948 return true; 949 LoopBody = FS->getBody(); 950 break; 951 } 952 case Stmt::ObjCForCollectionStmtClass: { 953 const auto *FC = cast<ObjCForCollectionStmt>(Term); 954 LoopBody = FC->getBody(); 955 break; 956 } 957 case Stmt::WhileStmtClass: 958 LoopBody = cast<WhileStmt>(Term)->getBody(); 959 break; 960 default: 961 return false; 962 } 963 return isContainedByStmt(PM, LoopBody, S); 964 } 965 966 /// Adds a sanitized control-flow diagnostic edge to a path. 967 static void addEdgeToPath(PathPieces &path, 968 PathDiagnosticLocation &PrevLoc, 969 PathDiagnosticLocation NewLoc) { 970 if (!NewLoc.isValid()) 971 return; 972 973 SourceLocation NewLocL = NewLoc.asLocation(); 974 if (NewLocL.isInvalid()) 975 return; 976 977 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) { 978 PrevLoc = NewLoc; 979 return; 980 } 981 982 // Ignore self-edges, which occur when there are multiple nodes at the same 983 // statement. 984 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt()) 985 return; 986 987 path.push_front( 988 std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc)); 989 PrevLoc = NewLoc; 990 } 991 992 /// A customized wrapper for CFGBlock::getTerminatorCondition() 993 /// which returns the element for ObjCForCollectionStmts. 994 static const Stmt *getTerminatorCondition(const CFGBlock *B) { 995 const Stmt *S = B->getTerminatorCondition(); 996 if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S)) 997 return FS->getElement(); 998 return S; 999 } 1000 1001 static const char StrEnteringLoop[] = "Entering loop body"; 1002 static const char StrLoopBodyZero[] = "Loop body executed 0 times"; 1003 static const char StrLoopRangeEmpty[] = 1004 "Loop body skipped when range is empty"; 1005 static const char StrLoopCollectionEmpty[] = 1006 "Loop body skipped when collection is empty"; 1007 1008 static std::unique_ptr<FilesToLineNumsMap> 1009 findExecutedLines(SourceManager &SM, const ExplodedNode *N); 1010 1011 /// Generate diagnostics for the node \p N, 1012 /// and write it into \p PD. 1013 /// \p AddPathEdges Whether diagnostic consumer can generate path arrows 1014 /// showing both row and column. 1015 static void generatePathDiagnosticsForNode(const ExplodedNode *N, 1016 PathDiagnostic &PD, 1017 PathDiagnosticLocation &PrevLoc, 1018 PathDiagnosticBuilder &PDB, 1019 LocationContextMap &LCM, 1020 StackDiagVector &CallStack, 1021 InterestingExprs &IE, 1022 bool AddPathEdges) { 1023 ProgramPoint P = N->getLocation(); 1024 const SourceManager& SM = PDB.getSourceManager(); 1025 1026 // Have we encountered an entrance to a call? It may be 1027 // the case that we have not encountered a matching 1028 // call exit before this point. This means that the path 1029 // terminated within the call itself. 1030 if (auto CE = P.getAs<CallEnter>()) { 1031 1032 if (AddPathEdges) { 1033 // Add an edge to the start of the function. 1034 const StackFrameContext *CalleeLC = CE->getCalleeContext(); 1035 const Decl *D = CalleeLC->getDecl(); 1036 // Add the edge only when the callee has body. We jump to the beginning 1037 // of the *declaration*, however we expect it to be followed by the 1038 // body. This isn't the case for autosynthesized property accessors in 1039 // Objective-C. No need for a similar extra check for CallExit points 1040 // because the exit edge comes from a statement (i.e. return), 1041 // not from declaration. 1042 if (D->hasBody()) 1043 addEdgeToPath(PD.getActivePath(), PrevLoc, 1044 PathDiagnosticLocation::createBegin(D, SM)); 1045 } 1046 1047 // Did we visit an entire call? 1048 bool VisitedEntireCall = PD.isWithinCall(); 1049 PD.popActivePath(); 1050 1051 PathDiagnosticCallPiece *C; 1052 if (VisitedEntireCall) { 1053 C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front().get()); 1054 } else { 1055 const Decl *Caller = CE->getLocationContext()->getDecl(); 1056 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 1057 1058 if (AddPathEdges) { 1059 // Since we just transferred the path over to the call piece, 1060 // reset the mapping from active to location context. 1061 assert(PD.getActivePath().size() == 1 && 1062 PD.getActivePath().front().get() == C); 1063 LCM[&PD.getActivePath()] = nullptr; 1064 } 1065 1066 // Record the location context mapping for the path within 1067 // the call. 1068 assert(LCM[&C->path] == nullptr || 1069 LCM[&C->path] == CE->getCalleeContext()); 1070 LCM[&C->path] = CE->getCalleeContext(); 1071 1072 // If this is the first item in the active path, record 1073 // the new mapping from active path to location context. 1074 const LocationContext *&NewLC = LCM[&PD.getActivePath()]; 1075 if (!NewLC) 1076 NewLC = N->getLocationContext(); 1077 1078 PDB.LC = NewLC; 1079 } 1080 C->setCallee(*CE, SM); 1081 1082 // Update the previous location in the active path. 1083 PrevLoc = C->getLocation(); 1084 1085 if (!CallStack.empty()) { 1086 assert(CallStack.back().first == C); 1087 CallStack.pop_back(); 1088 } 1089 return; 1090 } 1091 1092 1093 if (AddPathEdges) { 1094 // Query the location context here and the previous location 1095 // as processing CallEnter may change the active path. 1096 PDB.LC = N->getLocationContext(); 1097 1098 // Record the mapping from the active path to the location 1099 // context. 1100 assert(!LCM[&PD.getActivePath()] || LCM[&PD.getActivePath()] == PDB.LC); 1101 LCM[&PD.getActivePath()] = PDB.LC; 1102 } 1103 1104 // Have we encountered an exit from a function call? 1105 if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 1106 1107 // We are descending into a call (backwards). Construct 1108 // a new call piece to contain the path pieces for that call. 1109 auto C = PathDiagnosticCallPiece::construct(*CE, SM); 1110 // Record the mapping from call piece to LocationContext. 1111 LCM[&C->path] = CE->getCalleeContext(); 1112 1113 if (AddPathEdges) { 1114 const Stmt *S = CE->getCalleeContext()->getCallSite(); 1115 // Propagate the interesting symbols accordingly. 1116 if (const auto *Ex = dyn_cast_or_null<Expr>(S)) { 1117 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1118 N->getState().get(), Ex, 1119 N->getLocationContext()); 1120 } 1121 // Add the edge to the return site. 1122 addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn); 1123 PrevLoc.invalidate(); 1124 } 1125 1126 auto *P = C.get(); 1127 PD.getActivePath().push_front(std::move(C)); 1128 1129 // Make the contents of the call the active path for now. 1130 PD.pushActivePath(&P->path); 1131 CallStack.push_back(StackDiagPair(P, N)); 1132 return; 1133 } 1134 1135 if (auto PS = P.getAs<PostStmt>()) { 1136 if (!AddPathEdges) 1137 return; 1138 1139 // For expressions, make sure we propagate the 1140 // interesting symbols correctly. 1141 if (const Expr *Ex = PS->getStmtAs<Expr>()) 1142 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1143 N->getState().get(), Ex, 1144 N->getLocationContext()); 1145 1146 // Add an edge. If this is an ObjCForCollectionStmt do 1147 // not add an edge here as it appears in the CFG both 1148 // as a terminator and as a terminator condition. 1149 if (!isa<ObjCForCollectionStmt>(PS->getStmt())) { 1150 PathDiagnosticLocation L = 1151 PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC); 1152 addEdgeToPath(PD.getActivePath(), PrevLoc, L); 1153 } 1154 1155 } else if (auto BE = P.getAs<BlockEdge>()) { 1156 1157 if (!AddPathEdges) { 1158 generateMinimalDiagForBlockEdge(N, *BE, SM, PDB, PD); 1159 return; 1160 } 1161 1162 // Does this represent entering a call? If so, look at propagating 1163 // interesting symbols across call boundaries. 1164 if (const ExplodedNode *NextNode = N->getFirstPred()) { 1165 const LocationContext *CallerCtx = NextNode->getLocationContext(); 1166 const LocationContext *CalleeCtx = PDB.LC; 1167 if (CallerCtx != CalleeCtx && AddPathEdges) { 1168 reversePropagateInterestingSymbols(*PDB.getBugReport(), IE, 1169 N->getState().get(), CalleeCtx); 1170 } 1171 } 1172 1173 // Are we jumping to the head of a loop? Add a special diagnostic. 1174 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { 1175 PathDiagnosticLocation L(Loop, SM, PDB.LC); 1176 const Stmt *Body = nullptr; 1177 1178 if (const auto *FS = dyn_cast<ForStmt>(Loop)) 1179 Body = FS->getBody(); 1180 else if (const auto *WS = dyn_cast<WhileStmt>(Loop)) 1181 Body = WS->getBody(); 1182 else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) { 1183 Body = OFS->getBody(); 1184 } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) { 1185 Body = FRS->getBody(); 1186 } 1187 // do-while statements are explicitly excluded here 1188 1189 auto p = std::make_shared<PathDiagnosticEventPiece>( 1190 L, "Looping back to the head " 1191 "of the loop"); 1192 p->setPrunable(true); 1193 1194 addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation()); 1195 PD.getActivePath().push_front(std::move(p)); 1196 1197 if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 1198 addEdgeToPath(PD.getActivePath(), PrevLoc, 1199 PathDiagnosticLocation::createEndBrace(CS, SM)); 1200 } 1201 } 1202 1203 const CFGBlock *BSrc = BE->getSrc(); 1204 ParentMap &PM = PDB.getParentMap(); 1205 1206 if (const Stmt *Term = BSrc->getTerminator()) { 1207 // Are we jumping past the loop body without ever executing the 1208 // loop (because the condition was false)? 1209 if (isLoop(Term)) { 1210 const Stmt *TermCond = getTerminatorCondition(BSrc); 1211 bool IsInLoopBody = 1212 isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term); 1213 1214 const char *str = nullptr; 1215 1216 if (isJumpToFalseBranch(&*BE)) { 1217 if (!IsInLoopBody) { 1218 if (isa<ObjCForCollectionStmt>(Term)) { 1219 str = StrLoopCollectionEmpty; 1220 } else if (isa<CXXForRangeStmt>(Term)) { 1221 str = StrLoopRangeEmpty; 1222 } else { 1223 str = StrLoopBodyZero; 1224 } 1225 } 1226 } else { 1227 str = StrEnteringLoop; 1228 } 1229 1230 if (str) { 1231 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC); 1232 auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str); 1233 PE->setPrunable(true); 1234 addEdgeToPath(PD.getActivePath(), PrevLoc, 1235 PE->getLocation()); 1236 PD.getActivePath().push_front(std::move(PE)); 1237 } 1238 } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) || 1239 isa<GotoStmt>(Term)) { 1240 PathDiagnosticLocation L(Term, SM, PDB.LC); 1241 addEdgeToPath(PD.getActivePath(), PrevLoc, L); 1242 } 1243 } 1244 } 1245 } 1246 1247 static std::unique_ptr<PathDiagnostic> 1248 generateEmptyDiagnosticForReport(BugReport *R, SourceManager &SM) { 1249 const BugType &BT = R->getBugType(); 1250 return llvm::make_unique<PathDiagnostic>( 1251 R->getBugType().getCheckName(), R->getDeclWithIssue(), 1252 R->getBugType().getName(), R->getDescription(), 1253 R->getShortDescription(/*Fallback=*/false), BT.getCategory(), 1254 R->getUniqueingLocation(), R->getUniqueingDecl(), 1255 findExecutedLines(SM, R->getErrorNode())); 1256 } 1257 1258 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) { 1259 if (!S) 1260 return nullptr; 1261 1262 while (true) { 1263 S = PM.getParentIgnoreParens(S); 1264 1265 if (!S) 1266 break; 1267 1268 if (isa<FullExpr>(S) || 1269 isa<CXXBindTemporaryExpr>(S) || 1270 isa<SubstNonTypeTemplateParmExpr>(S)) 1271 continue; 1272 1273 break; 1274 } 1275 1276 return S; 1277 } 1278 1279 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { 1280 switch (S->getStmtClass()) { 1281 case Stmt::BinaryOperatorClass: { 1282 const auto *BO = cast<BinaryOperator>(S); 1283 if (!BO->isLogicalOp()) 1284 return false; 1285 return BO->getLHS() == Cond || BO->getRHS() == Cond; 1286 } 1287 case Stmt::IfStmtClass: 1288 return cast<IfStmt>(S)->getCond() == Cond; 1289 case Stmt::ForStmtClass: 1290 return cast<ForStmt>(S)->getCond() == Cond; 1291 case Stmt::WhileStmtClass: 1292 return cast<WhileStmt>(S)->getCond() == Cond; 1293 case Stmt::DoStmtClass: 1294 return cast<DoStmt>(S)->getCond() == Cond; 1295 case Stmt::ChooseExprClass: 1296 return cast<ChooseExpr>(S)->getCond() == Cond; 1297 case Stmt::IndirectGotoStmtClass: 1298 return cast<IndirectGotoStmt>(S)->getTarget() == Cond; 1299 case Stmt::SwitchStmtClass: 1300 return cast<SwitchStmt>(S)->getCond() == Cond; 1301 case Stmt::BinaryConditionalOperatorClass: 1302 return cast<BinaryConditionalOperator>(S)->getCond() == Cond; 1303 case Stmt::ConditionalOperatorClass: { 1304 const auto *CO = cast<ConditionalOperator>(S); 1305 return CO->getCond() == Cond || 1306 CO->getLHS() == Cond || 1307 CO->getRHS() == Cond; 1308 } 1309 case Stmt::ObjCForCollectionStmtClass: 1310 return cast<ObjCForCollectionStmt>(S)->getElement() == Cond; 1311 case Stmt::CXXForRangeStmtClass: { 1312 const auto *FRS = cast<CXXForRangeStmt>(S); 1313 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond; 1314 } 1315 default: 1316 return false; 1317 } 1318 } 1319 1320 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) { 1321 if (const auto *FS = dyn_cast<ForStmt>(FL)) 1322 return FS->getInc() == S || FS->getInit() == S; 1323 if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL)) 1324 return FRS->getInc() == S || FRS->getRangeStmt() == S || 1325 FRS->getLoopVarStmt() || FRS->getRangeInit() == S; 1326 return false; 1327 } 1328 1329 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>; 1330 1331 /// Adds synthetic edges from top-level statements to their subexpressions. 1332 /// 1333 /// This avoids a "swoosh" effect, where an edge from a top-level statement A 1334 /// points to a sub-expression B.1 that's not at the start of B. In these cases, 1335 /// we'd like to see an edge from A to B, then another one from B to B.1. 1336 static void addContextEdges(PathPieces &pieces, SourceManager &SM, 1337 const ParentMap &PM, const LocationContext *LCtx) { 1338 PathPieces::iterator Prev = pieces.end(); 1339 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E; 1340 Prev = I, ++I) { 1341 auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1342 1343 if (!Piece) 1344 continue; 1345 1346 PathDiagnosticLocation SrcLoc = Piece->getStartLocation(); 1347 SmallVector<PathDiagnosticLocation, 4> SrcContexts; 1348 1349 PathDiagnosticLocation NextSrcContext = SrcLoc; 1350 const Stmt *InnerStmt = nullptr; 1351 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) { 1352 SrcContexts.push_back(NextSrcContext); 1353 InnerStmt = NextSrcContext.asStmt(); 1354 NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx, 1355 /*allowNested=*/true); 1356 } 1357 1358 // Repeatedly split the edge as necessary. 1359 // This is important for nested logical expressions (||, &&, ?:) where we 1360 // want to show all the levels of context. 1361 while (true) { 1362 const Stmt *Dst = Piece->getEndLocation().getStmtOrNull(); 1363 1364 // We are looking at an edge. Is the destination within a larger 1365 // expression? 1366 PathDiagnosticLocation DstContext = 1367 getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true); 1368 if (!DstContext.isValid() || DstContext.asStmt() == Dst) 1369 break; 1370 1371 // If the source is in the same context, we're already good. 1372 if (llvm::find(SrcContexts, DstContext) != SrcContexts.end()) 1373 break; 1374 1375 // Update the subexpression node to point to the context edge. 1376 Piece->setStartLocation(DstContext); 1377 1378 // Try to extend the previous edge if it's at the same level as the source 1379 // context. 1380 if (Prev != E) { 1381 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get()); 1382 1383 if (PrevPiece) { 1384 if (const Stmt *PrevSrc = 1385 PrevPiece->getStartLocation().getStmtOrNull()) { 1386 const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM); 1387 if (PrevSrcParent == 1388 getStmtParent(DstContext.getStmtOrNull(), PM)) { 1389 PrevPiece->setEndLocation(DstContext); 1390 break; 1391 } 1392 } 1393 } 1394 } 1395 1396 // Otherwise, split the current edge into a context edge and a 1397 // subexpression edge. Note that the context statement may itself have 1398 // context. 1399 auto P = 1400 std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext); 1401 Piece = P.get(); 1402 I = pieces.insert(I, std::move(P)); 1403 } 1404 } 1405 } 1406 1407 /// Move edges from a branch condition to a branch target 1408 /// when the condition is simple. 1409 /// 1410 /// This restructures some of the work of addContextEdges. That function 1411 /// creates edges this may destroy, but they work together to create a more 1412 /// aesthetically set of edges around branches. After the call to 1413 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from 1414 /// the branch to the branch condition, and (3) an edge from the branch 1415 /// condition to the branch target. We keep (1), but may wish to remove (2) 1416 /// and move the source of (3) to the branch if the branch condition is simple. 1417 static void simplifySimpleBranches(PathPieces &pieces) { 1418 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) { 1419 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1420 1421 if (!PieceI) 1422 continue; 1423 1424 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1425 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1426 1427 if (!s1Start || !s1End) 1428 continue; 1429 1430 PathPieces::iterator NextI = I; ++NextI; 1431 if (NextI == E) 1432 break; 1433 1434 PathDiagnosticControlFlowPiece *PieceNextI = nullptr; 1435 1436 while (true) { 1437 if (NextI == E) 1438 break; 1439 1440 const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 1441 if (EV) { 1442 StringRef S = EV->getString(); 1443 if (S == StrEnteringLoop || S == StrLoopBodyZero || 1444 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) { 1445 ++NextI; 1446 continue; 1447 } 1448 break; 1449 } 1450 1451 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1452 break; 1453 } 1454 1455 if (!PieceNextI) 1456 continue; 1457 1458 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1459 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1460 1461 if (!s2Start || !s2End || s1End != s2Start) 1462 continue; 1463 1464 // We only perform this transformation for specific branch kinds. 1465 // We don't want to do this for do..while, for example. 1466 if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) || 1467 isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) || 1468 isa<CXXForRangeStmt>(s1Start))) 1469 continue; 1470 1471 // Is s1End the branch condition? 1472 if (!isConditionForTerminator(s1Start, s1End)) 1473 continue; 1474 1475 // Perform the hoisting by eliminating (2) and changing the start 1476 // location of (3). 1477 PieceNextI->setStartLocation(PieceI->getStartLocation()); 1478 I = pieces.erase(I); 1479 } 1480 } 1481 1482 /// Returns the number of bytes in the given (character-based) SourceRange. 1483 /// 1484 /// If the locations in the range are not on the same line, returns None. 1485 /// 1486 /// Note that this does not do a precise user-visible character or column count. 1487 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM, 1488 SourceRange Range) { 1489 SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()), 1490 SM.getExpansionRange(Range.getEnd()).getEnd()); 1491 1492 FileID FID = SM.getFileID(ExpansionRange.getBegin()); 1493 if (FID != SM.getFileID(ExpansionRange.getEnd())) 1494 return None; 1495 1496 bool Invalid; 1497 const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid); 1498 if (Invalid) 1499 return None; 1500 1501 unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin()); 1502 unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd()); 1503 StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset); 1504 1505 // We're searching the raw bytes of the buffer here, which might include 1506 // escaped newlines and such. That's okay; we're trying to decide whether the 1507 // SourceRange is covering a large or small amount of space in the user's 1508 // editor. 1509 if (Snippet.find_first_of("\r\n") != StringRef::npos) 1510 return None; 1511 1512 // This isn't Unicode-aware, but it doesn't need to be. 1513 return Snippet.size(); 1514 } 1515 1516 /// \sa getLengthOnSingleLine(SourceManager, SourceRange) 1517 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM, 1518 const Stmt *S) { 1519 return getLengthOnSingleLine(SM, S->getSourceRange()); 1520 } 1521 1522 /// Eliminate two-edge cycles created by addContextEdges(). 1523 /// 1524 /// Once all the context edges are in place, there are plenty of cases where 1525 /// there's a single edge from a top-level statement to a subexpression, 1526 /// followed by a single path note, and then a reverse edge to get back out to 1527 /// the top level. If the statement is simple enough, the subexpression edges 1528 /// just add noise and make it harder to understand what's going on. 1529 /// 1530 /// This function only removes edges in pairs, because removing only one edge 1531 /// might leave other edges dangling. 1532 /// 1533 /// This will not remove edges in more complicated situations: 1534 /// - if there is more than one "hop" leading to or from a subexpression. 1535 /// - if there is an inlined call between the edges instead of a single event. 1536 /// - if the whole statement is large enough that having subexpression arrows 1537 /// might be helpful. 1538 static void removeContextCycles(PathPieces &Path, SourceManager &SM) { 1539 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) { 1540 // Pattern match the current piece and its successor. 1541 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1542 1543 if (!PieceI) { 1544 ++I; 1545 continue; 1546 } 1547 1548 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1549 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1550 1551 PathPieces::iterator NextI = I; ++NextI; 1552 if (NextI == E) 1553 break; 1554 1555 const auto *PieceNextI = 1556 dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1557 1558 if (!PieceNextI) { 1559 if (isa<PathDiagnosticEventPiece>(NextI->get())) { 1560 ++NextI; 1561 if (NextI == E) 1562 break; 1563 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1564 } 1565 1566 if (!PieceNextI) { 1567 ++I; 1568 continue; 1569 } 1570 } 1571 1572 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1573 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1574 1575 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) { 1576 const size_t MAX_SHORT_LINE_LENGTH = 80; 1577 Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start); 1578 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) { 1579 Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start); 1580 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) { 1581 Path.erase(I); 1582 I = Path.erase(NextI); 1583 continue; 1584 } 1585 } 1586 } 1587 1588 ++I; 1589 } 1590 } 1591 1592 /// Return true if X is contained by Y. 1593 static bool lexicalContains(ParentMap &PM, const Stmt *X, const Stmt *Y) { 1594 while (X) { 1595 if (X == Y) 1596 return true; 1597 X = PM.getParent(X); 1598 } 1599 return false; 1600 } 1601 1602 // Remove short edges on the same line less than 3 columns in difference. 1603 static void removePunyEdges(PathPieces &path, SourceManager &SM, 1604 ParentMap &PM) { 1605 bool erased = false; 1606 1607 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; 1608 erased ? I : ++I) { 1609 erased = false; 1610 1611 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1612 1613 if (!PieceI) 1614 continue; 1615 1616 const Stmt *start = PieceI->getStartLocation().getStmtOrNull(); 1617 const Stmt *end = PieceI->getEndLocation().getStmtOrNull(); 1618 1619 if (!start || !end) 1620 continue; 1621 1622 const Stmt *endParent = PM.getParent(end); 1623 if (!endParent) 1624 continue; 1625 1626 if (isConditionForTerminator(end, endParent)) 1627 continue; 1628 1629 SourceLocation FirstLoc = start->getBeginLoc(); 1630 SourceLocation SecondLoc = end->getBeginLoc(); 1631 1632 if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc)) 1633 continue; 1634 if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc)) 1635 std::swap(SecondLoc, FirstLoc); 1636 1637 SourceRange EdgeRange(FirstLoc, SecondLoc); 1638 Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange); 1639 1640 // If the statements are on different lines, continue. 1641 if (!ByteWidth) 1642 continue; 1643 1644 const size_t MAX_PUNY_EDGE_LENGTH = 2; 1645 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) { 1646 // FIXME: There are enough /bytes/ between the endpoints of the edge, but 1647 // there might not be enough /columns/. A proper user-visible column count 1648 // is probably too expensive, though. 1649 I = path.erase(I); 1650 erased = true; 1651 continue; 1652 } 1653 } 1654 } 1655 1656 static void removeIdenticalEvents(PathPieces &path) { 1657 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) { 1658 const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get()); 1659 1660 if (!PieceI) 1661 continue; 1662 1663 PathPieces::iterator NextI = I; ++NextI; 1664 if (NextI == E) 1665 return; 1666 1667 const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 1668 1669 if (!PieceNextI) 1670 continue; 1671 1672 // Erase the second piece if it has the same exact message text. 1673 if (PieceI->getString() == PieceNextI->getString()) { 1674 path.erase(NextI); 1675 } 1676 } 1677 } 1678 1679 static bool optimizeEdges(PathPieces &path, SourceManager &SM, 1680 OptimizedCallsSet &OCS, 1681 LocationContextMap &LCM) { 1682 bool hasChanges = false; 1683 const LocationContext *LC = LCM[&path]; 1684 assert(LC); 1685 ParentMap &PM = LC->getParentMap(); 1686 1687 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { 1688 // Optimize subpaths. 1689 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) { 1690 // Record the fact that a call has been optimized so we only do the 1691 // effort once. 1692 if (!OCS.count(CallI)) { 1693 while (optimizeEdges(CallI->path, SM, OCS, LCM)) {} 1694 OCS.insert(CallI); 1695 } 1696 ++I; 1697 continue; 1698 } 1699 1700 // Pattern match the current piece and its successor. 1701 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1702 1703 if (!PieceI) { 1704 ++I; 1705 continue; 1706 } 1707 1708 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1709 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1710 const Stmt *level1 = getStmtParent(s1Start, PM); 1711 const Stmt *level2 = getStmtParent(s1End, PM); 1712 1713 PathPieces::iterator NextI = I; ++NextI; 1714 if (NextI == E) 1715 break; 1716 1717 const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1718 1719 if (!PieceNextI) { 1720 ++I; 1721 continue; 1722 } 1723 1724 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1725 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1726 const Stmt *level3 = getStmtParent(s2Start, PM); 1727 const Stmt *level4 = getStmtParent(s2End, PM); 1728 1729 // Rule I. 1730 // 1731 // If we have two consecutive control edges whose end/begin locations 1732 // are at the same level (e.g. statements or top-level expressions within 1733 // a compound statement, or siblings share a single ancestor expression), 1734 // then merge them if they have no interesting intermediate event. 1735 // 1736 // For example: 1737 // 1738 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common 1739 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. 1740 // 1741 // NOTE: this will be limited later in cases where we add barriers 1742 // to prevent this optimization. 1743 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { 1744 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1745 path.erase(NextI); 1746 hasChanges = true; 1747 continue; 1748 } 1749 1750 // Rule II. 1751 // 1752 // Eliminate edges between subexpressions and parent expressions 1753 // when the subexpression is consumed. 1754 // 1755 // NOTE: this will be limited later in cases where we add barriers 1756 // to prevent this optimization. 1757 if (s1End && s1End == s2Start && level2) { 1758 bool removeEdge = false; 1759 // Remove edges into the increment or initialization of a 1760 // loop that have no interleaving event. This means that 1761 // they aren't interesting. 1762 if (isIncrementOrInitInForLoop(s1End, level2)) 1763 removeEdge = true; 1764 // Next only consider edges that are not anchored on 1765 // the condition of a terminator. This are intermediate edges 1766 // that we might want to trim. 1767 else if (!isConditionForTerminator(level2, s1End)) { 1768 // Trim edges on expressions that are consumed by 1769 // the parent expression. 1770 if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) { 1771 removeEdge = true; 1772 } 1773 // Trim edges where a lexical containment doesn't exist. 1774 // For example: 1775 // 1776 // X -> Y -> Z 1777 // 1778 // If 'Z' lexically contains Y (it is an ancestor) and 1779 // 'X' does not lexically contain Y (it is a descendant OR 1780 // it has no lexical relationship at all) then trim. 1781 // 1782 // This can eliminate edges where we dive into a subexpression 1783 // and then pop back out, etc. 1784 else if (s1Start && s2End && 1785 lexicalContains(PM, s2Start, s2End) && 1786 !lexicalContains(PM, s1End, s1Start)) { 1787 removeEdge = true; 1788 } 1789 // Trim edges from a subexpression back to the top level if the 1790 // subexpression is on a different line. 1791 // 1792 // A.1 -> A -> B 1793 // becomes 1794 // A.1 -> B 1795 // 1796 // These edges just look ugly and don't usually add anything. 1797 else if (s1Start && s2End && 1798 lexicalContains(PM, s1Start, s1End)) { 1799 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(), 1800 PieceI->getStartLocation().asLocation()); 1801 if (!getLengthOnSingleLine(SM, EdgeRange).hasValue()) 1802 removeEdge = true; 1803 } 1804 } 1805 1806 if (removeEdge) { 1807 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1808 path.erase(NextI); 1809 hasChanges = true; 1810 continue; 1811 } 1812 } 1813 1814 // Optimize edges for ObjC fast-enumeration loops. 1815 // 1816 // (X -> collection) -> (collection -> element) 1817 // 1818 // becomes: 1819 // 1820 // (X -> element) 1821 if (s1End == s2Start) { 1822 const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3); 1823 if (FS && FS->getCollection()->IgnoreParens() == s2Start && 1824 s2End == FS->getElement()) { 1825 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1826 path.erase(NextI); 1827 hasChanges = true; 1828 continue; 1829 } 1830 } 1831 1832 // No changes at this index? Move to the next one. 1833 ++I; 1834 } 1835 1836 if (!hasChanges) { 1837 // Adjust edges into subexpressions to make them more uniform 1838 // and aesthetically pleasing. 1839 addContextEdges(path, SM, PM, LC); 1840 // Remove "cyclical" edges that include one or more context edges. 1841 removeContextCycles(path, SM); 1842 // Hoist edges originating from branch conditions to branches 1843 // for simple branches. 1844 simplifySimpleBranches(path); 1845 // Remove any puny edges left over after primary optimization pass. 1846 removePunyEdges(path, SM, PM); 1847 // Remove identical events. 1848 removeIdenticalEvents(path); 1849 } 1850 1851 return hasChanges; 1852 } 1853 1854 /// Drop the very first edge in a path, which should be a function entry edge. 1855 /// 1856 /// If the first edge is not a function entry edge (say, because the first 1857 /// statement had an invalid source location), this function does nothing. 1858 // FIXME: We should just generate invalid edges anyway and have the optimizer 1859 // deal with them. 1860 static void dropFunctionEntryEdge(PathPieces &Path, LocationContextMap &LCM, 1861 SourceManager &SM) { 1862 const auto *FirstEdge = 1863 dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get()); 1864 if (!FirstEdge) 1865 return; 1866 1867 const Decl *D = LCM[&Path]->getDecl(); 1868 PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM); 1869 if (FirstEdge->getStartLocation() != EntryLoc) 1870 return; 1871 1872 Path.pop_front(); 1873 } 1874 1875 using VisitorsDiagnosticsTy = llvm::DenseMap<const ExplodedNode *, 1876 std::vector<std::shared_ptr<PathDiagnosticPiece>>>; 1877 1878 /// Populate executes lines with lines containing at least one diagnostics. 1879 static void updateExecutedLinesWithDiagnosticPieces( 1880 PathDiagnostic &PD) { 1881 1882 PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true); 1883 FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines(); 1884 1885 for (const auto &P : path) { 1886 FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc(); 1887 FileID FID = Loc.getFileID(); 1888 unsigned LineNo = Loc.getLineNumber(); 1889 assert(FID.isValid()); 1890 ExecutedLines[FID].insert(LineNo); 1891 } 1892 } 1893 1894 /// This function is responsible for generating diagnostic pieces that are 1895 /// *not* provided by bug report visitors. 1896 /// These diagnostics may differ depending on the consumer's settings, 1897 /// and are therefore constructed separately for each consumer. 1898 /// 1899 /// There are two path diagnostics generation modes: with adding edges (used 1900 /// for plists) and without (used for HTML and text). 1901 /// When edges are added (\p ActiveScheme is Extensive), 1902 /// the path is modified to insert artificially generated 1903 /// edges. 1904 /// Otherwise, more detailed diagnostics is emitted for block edges, explaining 1905 /// the transitions in words. 1906 static std::unique_ptr<PathDiagnostic> generatePathDiagnosticForConsumer( 1907 PathDiagnosticConsumer::PathGenerationScheme ActiveScheme, 1908 PathDiagnosticBuilder &PDB, 1909 const ExplodedNode *ErrorNode, 1910 const VisitorsDiagnosticsTy &VisitorsDiagnostics) { 1911 1912 bool GenerateDiagnostics = (ActiveScheme != PathDiagnosticConsumer::None); 1913 bool AddPathEdges = (ActiveScheme == PathDiagnosticConsumer::Extensive); 1914 SourceManager &SM = PDB.getSourceManager(); 1915 BugReport *R = PDB.getBugReport(); 1916 AnalyzerOptions &Opts = PDB.getBugReporter().getAnalyzerOptions(); 1917 StackDiagVector CallStack; 1918 InterestingExprs IE; 1919 LocationContextMap LCM; 1920 std::unique_ptr<PathDiagnostic> PD = generateEmptyDiagnosticForReport(R, SM); 1921 1922 if (GenerateDiagnostics) { 1923 auto EndNotes = VisitorsDiagnostics.find(ErrorNode); 1924 std::shared_ptr<PathDiagnosticPiece> LastPiece; 1925 if (EndNotes != VisitorsDiagnostics.end()) { 1926 assert(!EndNotes->second.empty()); 1927 LastPiece = EndNotes->second[0]; 1928 } else { 1929 LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, ErrorNode, *R); 1930 } 1931 PD->setEndOfPath(LastPiece); 1932 } 1933 1934 PathDiagnosticLocation PrevLoc = PD->getLocation(); 1935 const ExplodedNode *NextNode = ErrorNode->getFirstPred(); 1936 while (NextNode) { 1937 if (GenerateDiagnostics) 1938 generatePathDiagnosticsForNode( 1939 NextNode, *PD, PrevLoc, PDB, LCM, CallStack, IE, AddPathEdges); 1940 1941 auto VisitorNotes = VisitorsDiagnostics.find(NextNode); 1942 NextNode = NextNode->getFirstPred(); 1943 if (!GenerateDiagnostics || VisitorNotes == VisitorsDiagnostics.end()) 1944 continue; 1945 1946 // This is a workaround due to inability to put shared PathDiagnosticPiece 1947 // into a FoldingSet. 1948 std::set<llvm::FoldingSetNodeID> DeduplicationSet; 1949 1950 // Add pieces from custom visitors. 1951 for (const auto &Note : VisitorNotes->second) { 1952 llvm::FoldingSetNodeID ID; 1953 Note->Profile(ID); 1954 auto P = DeduplicationSet.insert(ID); 1955 if (!P.second) 1956 continue; 1957 1958 if (AddPathEdges) 1959 addEdgeToPath(PD->getActivePath(), PrevLoc, Note->getLocation()); 1960 updateStackPiecesWithMessage(*Note, CallStack); 1961 PD->getActivePath().push_front(Note); 1962 } 1963 } 1964 1965 if (AddPathEdges) { 1966 // Add an edge to the start of the function. 1967 // We'll prune it out later, but it helps make diagnostics more uniform. 1968 const StackFrameContext *CalleeLC = PDB.LC->getStackFrame(); 1969 const Decl *D = CalleeLC->getDecl(); 1970 addEdgeToPath(PD->getActivePath(), PrevLoc, 1971 PathDiagnosticLocation::createBegin(D, SM)); 1972 } 1973 1974 1975 // Finally, prune the diagnostic path of uninteresting stuff. 1976 if (!PD->path.empty()) { 1977 if (R->shouldPrunePath() && Opts.ShouldPrunePaths) { 1978 bool stillHasNotes = 1979 removeUnneededCalls(PD->getMutablePieces(), R, LCM); 1980 assert(stillHasNotes); 1981 (void)stillHasNotes; 1982 } 1983 1984 // Redirect all call pieces to have valid locations. 1985 adjustCallLocations(PD->getMutablePieces()); 1986 removePiecesWithInvalidLocations(PD->getMutablePieces()); 1987 1988 if (AddPathEdges) { 1989 1990 // Reduce the number of edges from a very conservative set 1991 // to an aesthetically pleasing subset that conveys the 1992 // necessary information. 1993 OptimizedCallsSet OCS; 1994 while (optimizeEdges(PD->getMutablePieces(), SM, OCS, LCM)) {} 1995 1996 // Drop the very first function-entry edge. It's not really necessary 1997 // for top-level functions. 1998 dropFunctionEntryEdge(PD->getMutablePieces(), LCM, SM); 1999 } 2000 2001 // Remove messages that are basically the same, and edges that may not 2002 // make sense. 2003 // We have to do this after edge optimization in the Extensive mode. 2004 removeRedundantMsgs(PD->getMutablePieces()); 2005 removeEdgesToDefaultInitializers(PD->getMutablePieces()); 2006 } 2007 2008 if (GenerateDiagnostics && Opts.ShouldDisplayMacroExpansions) 2009 CompactMacroExpandedPieces(PD->getMutablePieces(), SM); 2010 2011 return PD; 2012 } 2013 2014 2015 //===----------------------------------------------------------------------===// 2016 // Methods for BugType and subclasses. 2017 //===----------------------------------------------------------------------===// 2018 2019 void BugType::anchor() {} 2020 2021 void BuiltinBug::anchor() {} 2022 2023 //===----------------------------------------------------------------------===// 2024 // Methods for BugReport and subclasses. 2025 //===----------------------------------------------------------------------===// 2026 2027 void BugReport::NodeResolver::anchor() {} 2028 2029 void BugReport::addVisitor(std::unique_ptr<BugReporterVisitor> visitor) { 2030 if (!visitor) 2031 return; 2032 2033 llvm::FoldingSetNodeID ID; 2034 visitor->Profile(ID); 2035 2036 void *InsertPos = nullptr; 2037 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) { 2038 return; 2039 } 2040 2041 Callbacks.push_back(std::move(visitor)); 2042 } 2043 2044 void BugReport::clearVisitors() { 2045 Callbacks.clear(); 2046 } 2047 2048 BugReport::~BugReport() { 2049 while (!interestingSymbols.empty()) { 2050 popInterestingSymbolsAndRegions(); 2051 } 2052 } 2053 2054 const Decl *BugReport::getDeclWithIssue() const { 2055 if (DeclWithIssue) 2056 return DeclWithIssue; 2057 2058 const ExplodedNode *N = getErrorNode(); 2059 if (!N) 2060 return nullptr; 2061 2062 const LocationContext *LC = N->getLocationContext(); 2063 return LC->getStackFrame()->getDecl(); 2064 } 2065 2066 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const { 2067 hash.AddPointer(&BT); 2068 hash.AddString(Description); 2069 PathDiagnosticLocation UL = getUniqueingLocation(); 2070 if (UL.isValid()) { 2071 UL.Profile(hash); 2072 } else if (Location.isValid()) { 2073 Location.Profile(hash); 2074 } else { 2075 assert(ErrorNode); 2076 hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode)); 2077 } 2078 2079 for (SourceRange range : Ranges) { 2080 if (!range.isValid()) 2081 continue; 2082 hash.AddInteger(range.getBegin().getRawEncoding()); 2083 hash.AddInteger(range.getEnd().getRawEncoding()); 2084 } 2085 } 2086 2087 void BugReport::markInteresting(SymbolRef sym) { 2088 if (!sym) 2089 return; 2090 2091 getInterestingSymbols().insert(sym); 2092 2093 if (const auto *meta = dyn_cast<SymbolMetadata>(sym)) 2094 getInterestingRegions().insert(meta->getRegion()); 2095 } 2096 2097 void BugReport::markInteresting(const MemRegion *R) { 2098 if (!R) 2099 return; 2100 2101 R = R->getBaseRegion(); 2102 getInterestingRegions().insert(R); 2103 2104 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2105 getInterestingSymbols().insert(SR->getSymbol()); 2106 } 2107 2108 void BugReport::markInteresting(SVal V) { 2109 markInteresting(V.getAsRegion()); 2110 markInteresting(V.getAsSymbol()); 2111 } 2112 2113 void BugReport::markInteresting(const LocationContext *LC) { 2114 if (!LC) 2115 return; 2116 InterestingLocationContexts.insert(LC); 2117 } 2118 2119 bool BugReport::isInteresting(SVal V) { 2120 return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol()); 2121 } 2122 2123 bool BugReport::isInteresting(SymbolRef sym) { 2124 if (!sym) 2125 return false; 2126 // We don't currently consider metadata symbols to be interesting 2127 // even if we know their region is interesting. Is that correct behavior? 2128 return getInterestingSymbols().count(sym); 2129 } 2130 2131 bool BugReport::isInteresting(const MemRegion *R) { 2132 if (!R) 2133 return false; 2134 R = R->getBaseRegion(); 2135 bool b = getInterestingRegions().count(R); 2136 if (b) 2137 return true; 2138 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2139 return getInterestingSymbols().count(SR->getSymbol()); 2140 return false; 2141 } 2142 2143 bool BugReport::isInteresting(const LocationContext *LC) { 2144 if (!LC) 2145 return false; 2146 return InterestingLocationContexts.count(LC); 2147 } 2148 2149 void BugReport::lazyInitializeInterestingSets() { 2150 if (interestingSymbols.empty()) { 2151 interestingSymbols.push_back(new Symbols()); 2152 interestingRegions.push_back(new Regions()); 2153 } 2154 } 2155 2156 BugReport::Symbols &BugReport::getInterestingSymbols() { 2157 lazyInitializeInterestingSets(); 2158 return *interestingSymbols.back(); 2159 } 2160 2161 BugReport::Regions &BugReport::getInterestingRegions() { 2162 lazyInitializeInterestingSets(); 2163 return *interestingRegions.back(); 2164 } 2165 2166 void BugReport::pushInterestingSymbolsAndRegions() { 2167 interestingSymbols.push_back(new Symbols(getInterestingSymbols())); 2168 interestingRegions.push_back(new Regions(getInterestingRegions())); 2169 } 2170 2171 void BugReport::popInterestingSymbolsAndRegions() { 2172 delete interestingSymbols.pop_back_val(); 2173 delete interestingRegions.pop_back_val(); 2174 } 2175 2176 const Stmt *BugReport::getStmt() const { 2177 if (!ErrorNode) 2178 return nullptr; 2179 2180 ProgramPoint ProgP = ErrorNode->getLocation(); 2181 const Stmt *S = nullptr; 2182 2183 if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) { 2184 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); 2185 if (BE->getBlock() == &Exit) 2186 S = GetPreviousStmt(ErrorNode); 2187 } 2188 if (!S) 2189 S = PathDiagnosticLocation::getStmt(ErrorNode); 2190 2191 return S; 2192 } 2193 2194 llvm::iterator_range<BugReport::ranges_iterator> BugReport::getRanges() { 2195 // If no custom ranges, add the range of the statement corresponding to 2196 // the error node. 2197 if (Ranges.empty()) { 2198 if (const auto *E = dyn_cast_or_null<Expr>(getStmt())) 2199 addRange(E->getSourceRange()); 2200 else 2201 return llvm::make_range(ranges_iterator(), ranges_iterator()); 2202 } 2203 2204 // User-specified absence of range info. 2205 if (Ranges.size() == 1 && !Ranges.begin()->isValid()) 2206 return llvm::make_range(ranges_iterator(), ranges_iterator()); 2207 2208 return llvm::make_range(Ranges.begin(), Ranges.end()); 2209 } 2210 2211 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const { 2212 if (ErrorNode) { 2213 assert(!Location.isValid() && 2214 "Either Location or ErrorNode should be specified but not both."); 2215 return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM); 2216 } 2217 2218 assert(Location.isValid()); 2219 return Location; 2220 } 2221 2222 //===----------------------------------------------------------------------===// 2223 // Methods for BugReporter and subclasses. 2224 //===----------------------------------------------------------------------===// 2225 2226 BugReportEquivClass::~BugReportEquivClass() = default; 2227 2228 GRBugReporter::~GRBugReporter() = default; 2229 2230 BugReporterData::~BugReporterData() = default; 2231 2232 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); } 2233 2234 ProgramStateManager& 2235 GRBugReporter::getStateManager() { return Eng.getStateManager(); } 2236 2237 BugReporter::~BugReporter() { 2238 FlushReports(); 2239 2240 // Free the bug reports we are tracking. 2241 for (const auto I : EQClassesVector) 2242 delete I; 2243 } 2244 2245 void BugReporter::FlushReports() { 2246 if (BugTypes.isEmpty()) 2247 return; 2248 2249 // We need to flush reports in deterministic order to ensure the order 2250 // of the reports is consistent between runs. 2251 for (const auto EQ : EQClassesVector) 2252 FlushReport(*EQ); 2253 2254 // BugReporter owns and deletes only BugTypes created implicitly through 2255 // EmitBasicReport. 2256 // FIXME: There are leaks from checkers that assume that the BugTypes they 2257 // create will be destroyed by the BugReporter. 2258 llvm::DeleteContainerSeconds(StrBugTypes); 2259 2260 // Remove all references to the BugType objects. 2261 BugTypes = F.getEmptySet(); 2262 } 2263 2264 //===----------------------------------------------------------------------===// 2265 // PathDiagnostics generation. 2266 //===----------------------------------------------------------------------===// 2267 2268 namespace { 2269 2270 /// A wrapper around a report graph, which contains only a single path, and its 2271 /// node maps. 2272 class ReportGraph { 2273 public: 2274 InterExplodedGraphMap BackMap; 2275 std::unique_ptr<ExplodedGraph> Graph; 2276 const ExplodedNode *ErrorNode; 2277 size_t Index; 2278 }; 2279 2280 /// A wrapper around a trimmed graph and its node maps. 2281 class TrimmedGraph { 2282 InterExplodedGraphMap InverseMap; 2283 2284 using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>; 2285 2286 PriorityMapTy PriorityMap; 2287 2288 using NodeIndexPair = std::pair<const ExplodedNode *, size_t>; 2289 2290 SmallVector<NodeIndexPair, 32> ReportNodes; 2291 2292 std::unique_ptr<ExplodedGraph> G; 2293 2294 /// A helper class for sorting ExplodedNodes by priority. 2295 template <bool Descending> 2296 class PriorityCompare { 2297 const PriorityMapTy &PriorityMap; 2298 2299 public: 2300 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {} 2301 2302 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const { 2303 PriorityMapTy::const_iterator LI = PriorityMap.find(LHS); 2304 PriorityMapTy::const_iterator RI = PriorityMap.find(RHS); 2305 PriorityMapTy::const_iterator E = PriorityMap.end(); 2306 2307 if (LI == E) 2308 return Descending; 2309 if (RI == E) 2310 return !Descending; 2311 2312 return Descending ? LI->second > RI->second 2313 : LI->second < RI->second; 2314 } 2315 2316 bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const { 2317 return (*this)(LHS.first, RHS.first); 2318 } 2319 }; 2320 2321 public: 2322 TrimmedGraph(const ExplodedGraph *OriginalGraph, 2323 ArrayRef<const ExplodedNode *> Nodes); 2324 2325 bool popNextReportGraph(ReportGraph &GraphWrapper); 2326 }; 2327 2328 } // namespace 2329 2330 TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph, 2331 ArrayRef<const ExplodedNode *> Nodes) { 2332 // The trimmed graph is created in the body of the constructor to ensure 2333 // that the DenseMaps have been initialized already. 2334 InterExplodedGraphMap ForwardMap; 2335 G = OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap); 2336 2337 // Find the (first) error node in the trimmed graph. We just need to consult 2338 // the node map which maps from nodes in the original graph to nodes 2339 // in the new graph. 2340 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes; 2341 2342 for (unsigned i = 0, count = Nodes.size(); i < count; ++i) { 2343 if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) { 2344 ReportNodes.push_back(std::make_pair(NewNode, i)); 2345 RemainingNodes.insert(NewNode); 2346 } 2347 } 2348 2349 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph"); 2350 2351 // Perform a forward BFS to find all the shortest paths. 2352 std::queue<const ExplodedNode *> WS; 2353 2354 assert(G->num_roots() == 1); 2355 WS.push(*G->roots_begin()); 2356 unsigned Priority = 0; 2357 2358 while (!WS.empty()) { 2359 const ExplodedNode *Node = WS.front(); 2360 WS.pop(); 2361 2362 PriorityMapTy::iterator PriorityEntry; 2363 bool IsNew; 2364 std::tie(PriorityEntry, IsNew) = 2365 PriorityMap.insert(std::make_pair(Node, Priority)); 2366 ++Priority; 2367 2368 if (!IsNew) { 2369 assert(PriorityEntry->second <= Priority); 2370 continue; 2371 } 2372 2373 if (RemainingNodes.erase(Node)) 2374 if (RemainingNodes.empty()) 2375 break; 2376 2377 for (ExplodedNode::const_pred_iterator I = Node->succ_begin(), 2378 E = Node->succ_end(); 2379 I != E; ++I) 2380 WS.push(*I); 2381 } 2382 2383 // Sort the error paths from longest to shortest. 2384 llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap)); 2385 } 2386 2387 bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) { 2388 if (ReportNodes.empty()) 2389 return false; 2390 2391 const ExplodedNode *OrigN; 2392 std::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val(); 2393 assert(PriorityMap.find(OrigN) != PriorityMap.end() && 2394 "error node not accessible from root"); 2395 2396 // Create a new graph with a single path. This is the graph 2397 // that will be returned to the caller. 2398 auto GNew = llvm::make_unique<ExplodedGraph>(); 2399 GraphWrapper.BackMap.clear(); 2400 2401 // Now walk from the error node up the BFS path, always taking the 2402 // predeccessor with the lowest number. 2403 ExplodedNode *Succ = nullptr; 2404 while (true) { 2405 // Create the equivalent node in the new graph with the same state 2406 // and location. 2407 ExplodedNode *NewN = GNew->createUncachedNode(OrigN->getLocation(), OrigN->getState(), 2408 OrigN->isSink()); 2409 2410 // Store the mapping to the original node. 2411 InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN); 2412 assert(IMitr != InverseMap.end() && "No mapping to original node."); 2413 GraphWrapper.BackMap[NewN] = IMitr->second; 2414 2415 // Link up the new node with the previous node. 2416 if (Succ) 2417 Succ->addPredecessor(NewN, *GNew); 2418 else 2419 GraphWrapper.ErrorNode = NewN; 2420 2421 Succ = NewN; 2422 2423 // Are we at the final node? 2424 if (OrigN->pred_empty()) { 2425 GNew->addRoot(NewN); 2426 break; 2427 } 2428 2429 // Find the next predeccessor node. We choose the node that is marked 2430 // with the lowest BFS number. 2431 OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(), 2432 PriorityCompare<false>(PriorityMap)); 2433 } 2434 2435 GraphWrapper.Graph = std::move(GNew); 2436 2437 return true; 2438 } 2439 2440 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic 2441 /// object and collapses PathDiagosticPieces that are expanded by macros. 2442 static void CompactMacroExpandedPieces(PathPieces &path, 2443 const SourceManager& SM) { 2444 using MacroStackTy = 2445 std::vector< 2446 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>; 2447 2448 using PiecesTy = std::vector<std::shared_ptr<PathDiagnosticPiece>>; 2449 2450 MacroStackTy MacroStack; 2451 PiecesTy Pieces; 2452 2453 for (PathPieces::const_iterator I = path.begin(), E = path.end(); 2454 I != E; ++I) { 2455 const auto &piece = *I; 2456 2457 // Recursively compact calls. 2458 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) { 2459 CompactMacroExpandedPieces(call->path, SM); 2460 } 2461 2462 // Get the location of the PathDiagnosticPiece. 2463 const FullSourceLoc Loc = piece->getLocation().asLocation(); 2464 2465 // Determine the instantiation location, which is the location we group 2466 // related PathDiagnosticPieces. 2467 SourceLocation InstantiationLoc = Loc.isMacroID() ? 2468 SM.getExpansionLoc(Loc) : 2469 SourceLocation(); 2470 2471 if (Loc.isFileID()) { 2472 MacroStack.clear(); 2473 Pieces.push_back(piece); 2474 continue; 2475 } 2476 2477 assert(Loc.isMacroID()); 2478 2479 // Is the PathDiagnosticPiece within the same macro group? 2480 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { 2481 MacroStack.back().first->subPieces.push_back(piece); 2482 continue; 2483 } 2484 2485 // We aren't in the same group. Are we descending into a new macro 2486 // or are part of an old one? 2487 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup; 2488 2489 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? 2490 SM.getExpansionLoc(Loc) : 2491 SourceLocation(); 2492 2493 // Walk the entire macro stack. 2494 while (!MacroStack.empty()) { 2495 if (InstantiationLoc == MacroStack.back().second) { 2496 MacroGroup = MacroStack.back().first; 2497 break; 2498 } 2499 2500 if (ParentInstantiationLoc == MacroStack.back().second) { 2501 MacroGroup = MacroStack.back().first; 2502 break; 2503 } 2504 2505 MacroStack.pop_back(); 2506 } 2507 2508 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { 2509 // Create a new macro group and add it to the stack. 2510 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>( 2511 PathDiagnosticLocation::createSingleLocation(piece->getLocation())); 2512 2513 if (MacroGroup) 2514 MacroGroup->subPieces.push_back(NewGroup); 2515 else { 2516 assert(InstantiationLoc.isFileID()); 2517 Pieces.push_back(NewGroup); 2518 } 2519 2520 MacroGroup = NewGroup; 2521 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); 2522 } 2523 2524 // Finally, add the PathDiagnosticPiece to the group. 2525 MacroGroup->subPieces.push_back(piece); 2526 } 2527 2528 // Now take the pieces and construct a new PathDiagnostic. 2529 path.clear(); 2530 2531 path.insert(path.end(), Pieces.begin(), Pieces.end()); 2532 } 2533 2534 /// Generate notes from all visitors. 2535 /// Notes associated with {@code ErrorNode} are generated using 2536 /// {@code getEndPath}, and the rest are generated with {@code VisitNode}. 2537 static std::unique_ptr<VisitorsDiagnosticsTy> 2538 generateVisitorsDiagnostics(BugReport *R, const ExplodedNode *ErrorNode, 2539 BugReporterContext &BRC) { 2540 auto Notes = llvm::make_unique<VisitorsDiagnosticsTy>(); 2541 BugReport::VisitorList visitors; 2542 2543 // Run visitors on all nodes starting from the node *before* the last one. 2544 // The last node is reserved for notes generated with {@code getEndPath}. 2545 const ExplodedNode *NextNode = ErrorNode->getFirstPred(); 2546 while (NextNode) { 2547 2548 // At each iteration, move all visitors from report to visitor list. 2549 for (BugReport::visitor_iterator I = R->visitor_begin(), 2550 E = R->visitor_end(); 2551 I != E; ++I) { 2552 visitors.push_back(std::move(*I)); 2553 } 2554 R->clearVisitors(); 2555 2556 const ExplodedNode *Pred = NextNode->getFirstPred(); 2557 if (!Pred) { 2558 std::shared_ptr<PathDiagnosticPiece> LastPiece; 2559 for (auto &V : visitors) { 2560 V->finalizeVisitor(BRC, ErrorNode, *R); 2561 2562 if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) { 2563 assert(!LastPiece && 2564 "There can only be one final piece in a diagnostic."); 2565 LastPiece = std::move(Piece); 2566 (*Notes)[ErrorNode].push_back(LastPiece); 2567 } 2568 } 2569 break; 2570 } 2571 2572 for (auto &V : visitors) { 2573 auto P = V->VisitNode(NextNode, BRC, *R); 2574 if (P) 2575 (*Notes)[NextNode].push_back(std::move(P)); 2576 } 2577 2578 if (!R->isValid()) 2579 break; 2580 2581 NextNode = Pred; 2582 } 2583 2584 return Notes; 2585 } 2586 2587 /// Find a non-invalidated report for a given equivalence class, 2588 /// and return together with a cache of visitors notes. 2589 /// If none found, return a nullptr paired with an empty cache. 2590 static 2591 std::pair<BugReport*, std::unique_ptr<VisitorsDiagnosticsTy>> findValidReport( 2592 TrimmedGraph &TrimG, 2593 ReportGraph &ErrorGraph, 2594 ArrayRef<BugReport *> &bugReports, 2595 AnalyzerOptions &Opts, 2596 GRBugReporter &Reporter) { 2597 2598 while (TrimG.popNextReportGraph(ErrorGraph)) { 2599 // Find the BugReport with the original location. 2600 assert(ErrorGraph.Index < bugReports.size()); 2601 BugReport *R = bugReports[ErrorGraph.Index]; 2602 assert(R && "No original report found for sliced graph."); 2603 assert(R->isValid() && "Report selected by trimmed graph marked invalid."); 2604 const ExplodedNode *ErrorNode = ErrorGraph.ErrorNode; 2605 2606 // Register refutation visitors first, if they mark the bug invalid no 2607 // further analysis is required 2608 R->addVisitor(llvm::make_unique<LikelyFalsePositiveSuppressionBRVisitor>()); 2609 2610 // Register additional node visitors. 2611 R->addVisitor(llvm::make_unique<NilReceiverBRVisitor>()); 2612 R->addVisitor(llvm::make_unique<ConditionBRVisitor>()); 2613 R->addVisitor(llvm::make_unique<CXXSelfAssignmentBRVisitor>()); 2614 2615 BugReporterContext BRC(Reporter, ErrorGraph.BackMap); 2616 2617 // Run all visitors on a given graph, once. 2618 std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes = 2619 generateVisitorsDiagnostics(R, ErrorNode, BRC); 2620 2621 if (R->isValid()) { 2622 if (Opts.ShouldCrosscheckWithZ3) { 2623 // If crosscheck is enabled, remove all visitors, add the refutation 2624 // visitor and check again 2625 R->clearVisitors(); 2626 R->addVisitor(llvm::make_unique<FalsePositiveRefutationBRVisitor>()); 2627 2628 // We don't overrite the notes inserted by other visitors because the 2629 // refutation manager does not add any new note to the path 2630 generateVisitorsDiagnostics(R, ErrorGraph.ErrorNode, BRC); 2631 } 2632 2633 // Check if the bug is still valid 2634 if (R->isValid()) 2635 return std::make_pair(R, std::move(visitorNotes)); 2636 } 2637 } 2638 2639 return std::make_pair(nullptr, llvm::make_unique<VisitorsDiagnosticsTy>()); 2640 } 2641 2642 std::unique_ptr<DiagnosticForConsumerMapTy> 2643 GRBugReporter::generatePathDiagnostics( 2644 ArrayRef<PathDiagnosticConsumer *> consumers, 2645 ArrayRef<BugReport *> &bugReports) { 2646 assert(!bugReports.empty()); 2647 2648 auto Out = llvm::make_unique<DiagnosticForConsumerMapTy>(); 2649 bool HasValid = false; 2650 SmallVector<const ExplodedNode *, 32> errorNodes; 2651 for (const auto I : bugReports) { 2652 if (I->isValid()) { 2653 HasValid = true; 2654 errorNodes.push_back(I->getErrorNode()); 2655 } else { 2656 // Keep the errorNodes list in sync with the bugReports list. 2657 errorNodes.push_back(nullptr); 2658 } 2659 } 2660 2661 // If all the reports have been marked invalid by a previous path generation, 2662 // we're done. 2663 if (!HasValid) 2664 return Out; 2665 2666 TrimmedGraph TrimG(&getGraph(), errorNodes); 2667 ReportGraph ErrorGraph; 2668 auto ReportInfo = findValidReport(TrimG, ErrorGraph, bugReports, 2669 getAnalyzerOptions(), *this); 2670 BugReport *R = ReportInfo.first; 2671 2672 if (R && R->isValid()) { 2673 const ExplodedNode *ErrorNode = ErrorGraph.ErrorNode; 2674 for (PathDiagnosticConsumer *PC : consumers) { 2675 PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, PC); 2676 std::unique_ptr<PathDiagnostic> PD = generatePathDiagnosticForConsumer( 2677 PC->getGenerationScheme(), PDB, ErrorNode, *ReportInfo.second); 2678 (*Out)[PC] = std::move(PD); 2679 } 2680 } 2681 2682 return Out; 2683 } 2684 2685 void BugReporter::Register(const BugType *BT) { 2686 BugTypes = F.add(BugTypes, BT); 2687 } 2688 2689 void BugReporter::emitReport(std::unique_ptr<BugReport> R) { 2690 if (const ExplodedNode *E = R->getErrorNode()) { 2691 // An error node must either be a sink or have a tag, otherwise 2692 // it could get reclaimed before the path diagnostic is created. 2693 assert((E->isSink() || E->getLocation().getTag()) && 2694 "Error node must either be a sink or have a tag"); 2695 2696 const AnalysisDeclContext *DeclCtx = 2697 E->getLocationContext()->getAnalysisDeclContext(); 2698 // The source of autosynthesized body can be handcrafted AST or a model 2699 // file. The locations from handcrafted ASTs have no valid source locations 2700 // and have to be discarded. Locations from model files should be preserved 2701 // for processing and reporting. 2702 if (DeclCtx->isBodyAutosynthesized() && 2703 !DeclCtx->isBodyAutosynthesizedFromModelFile()) 2704 return; 2705 } 2706 2707 bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid(); 2708 assert(ValidSourceLoc); 2709 // If we mess up in a release build, we'd still prefer to just drop the bug 2710 // instead of trying to go on. 2711 if (!ValidSourceLoc) 2712 return; 2713 2714 // Compute the bug report's hash to determine its equivalence class. 2715 llvm::FoldingSetNodeID ID; 2716 R->Profile(ID); 2717 2718 // Lookup the equivance class. If there isn't one, create it. 2719 const BugType& BT = R->getBugType(); 2720 Register(&BT); 2721 void *InsertPos; 2722 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); 2723 2724 if (!EQ) { 2725 EQ = new BugReportEquivClass(std::move(R)); 2726 EQClasses.InsertNode(EQ, InsertPos); 2727 EQClassesVector.push_back(EQ); 2728 } else 2729 EQ->AddReport(std::move(R)); 2730 } 2731 2732 //===----------------------------------------------------------------------===// 2733 // Emitting reports in equivalence classes. 2734 //===----------------------------------------------------------------------===// 2735 2736 namespace { 2737 2738 struct FRIEC_WLItem { 2739 const ExplodedNode *N; 2740 ExplodedNode::const_succ_iterator I, E; 2741 2742 FRIEC_WLItem(const ExplodedNode *n) 2743 : N(n), I(N->succ_begin()), E(N->succ_end()) {} 2744 }; 2745 2746 } // namespace 2747 2748 static const CFGBlock *findBlockForNode(const ExplodedNode *N) { 2749 ProgramPoint P = N->getLocation(); 2750 if (auto BEP = P.getAs<BlockEntrance>()) 2751 return BEP->getBlock(); 2752 2753 // Find the node's current statement in the CFG. 2754 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 2755 return N->getLocationContext()->getAnalysisDeclContext() 2756 ->getCFGStmtMap()->getBlock(S); 2757 2758 return nullptr; 2759 } 2760 2761 // Returns true if by simply looking at the block, we can be sure that it 2762 // results in a sink during analysis. This is useful to know when the analysis 2763 // was interrupted, and we try to figure out if it would sink eventually. 2764 // There may be many more reasons why a sink would appear during analysis 2765 // (eg. checkers may generate sinks arbitrarily), but here we only consider 2766 // sinks that would be obvious by looking at the CFG. 2767 static bool isImmediateSinkBlock(const CFGBlock *Blk) { 2768 if (Blk->hasNoReturnElement()) 2769 return true; 2770 2771 // FIXME: Throw-expressions are currently generating sinks during analysis: 2772 // they're not supported yet, and also often used for actually terminating 2773 // the program. So we should treat them as sinks in this analysis as well, 2774 // at least for now, but once we have better support for exceptions, 2775 // we'd need to carefully handle the case when the throw is being 2776 // immediately caught. 2777 if (std::any_of(Blk->begin(), Blk->end(), [](const CFGElement &Elm) { 2778 if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>()) 2779 if (isa<CXXThrowExpr>(StmtElm->getStmt())) 2780 return true; 2781 return false; 2782 })) 2783 return true; 2784 2785 return false; 2786 } 2787 2788 // Returns true if by looking at the CFG surrounding the node's program 2789 // point, we can be sure that any analysis starting from this point would 2790 // eventually end with a sink. We scan the child CFG blocks in a depth-first 2791 // manner and see if all paths eventually end up in an immediate sink block. 2792 static bool isInevitablySinking(const ExplodedNode *N) { 2793 const CFG &Cfg = N->getCFG(); 2794 2795 const CFGBlock *StartBlk = findBlockForNode(N); 2796 if (!StartBlk) 2797 return false; 2798 if (isImmediateSinkBlock(StartBlk)) 2799 return true; 2800 2801 llvm::SmallVector<const CFGBlock *, 32> DFSWorkList; 2802 llvm::SmallPtrSet<const CFGBlock *, 32> Visited; 2803 2804 DFSWorkList.push_back(StartBlk); 2805 while (!DFSWorkList.empty()) { 2806 const CFGBlock *Blk = DFSWorkList.back(); 2807 DFSWorkList.pop_back(); 2808 Visited.insert(Blk); 2809 2810 // If at least one path reaches the CFG exit, it means that control is 2811 // returned to the caller. For now, say that we are not sure what 2812 // happens next. If necessary, this can be improved to analyze 2813 // the parent StackFrameContext's call site in a similar manner. 2814 if (Blk == &Cfg.getExit()) 2815 return false; 2816 2817 for (const auto &Succ : Blk->succs()) { 2818 if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) { 2819 if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) { 2820 // If the block has reachable child blocks that aren't no-return, 2821 // add them to the worklist. 2822 DFSWorkList.push_back(SuccBlk); 2823 } 2824 } 2825 } 2826 } 2827 2828 // Nothing reached the exit. It can only mean one thing: there's no return. 2829 return true; 2830 } 2831 2832 static BugReport * 2833 FindReportInEquivalenceClass(BugReportEquivClass& EQ, 2834 SmallVectorImpl<BugReport*> &bugReports) { 2835 BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end(); 2836 assert(I != E); 2837 const BugType& BT = I->getBugType(); 2838 2839 // If we don't need to suppress any of the nodes because they are 2840 // post-dominated by a sink, simply add all the nodes in the equivalence class 2841 // to 'Nodes'. Any of the reports will serve as a "representative" report. 2842 if (!BT.isSuppressOnSink()) { 2843 BugReport *R = &*I; 2844 for (auto &I : EQ) { 2845 const ExplodedNode *N = I.getErrorNode(); 2846 if (N) { 2847 R = &I; 2848 bugReports.push_back(R); 2849 } 2850 } 2851 return R; 2852 } 2853 2854 // For bug reports that should be suppressed when all paths are post-dominated 2855 // by a sink node, iterate through the reports in the equivalence class 2856 // until we find one that isn't post-dominated (if one exists). We use a 2857 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write 2858 // this as a recursive function, but we don't want to risk blowing out the 2859 // stack for very long paths. 2860 BugReport *exampleReport = nullptr; 2861 2862 for (; I != E; ++I) { 2863 const ExplodedNode *errorNode = I->getErrorNode(); 2864 2865 if (!errorNode) 2866 continue; 2867 if (errorNode->isSink()) { 2868 llvm_unreachable( 2869 "BugType::isSuppressSink() should not be 'true' for sink end nodes"); 2870 } 2871 // No successors? By definition this nodes isn't post-dominated by a sink. 2872 if (errorNode->succ_empty()) { 2873 bugReports.push_back(&*I); 2874 if (!exampleReport) 2875 exampleReport = &*I; 2876 continue; 2877 } 2878 2879 // See if we are in a no-return CFG block. If so, treat this similarly 2880 // to being post-dominated by a sink. This works better when the analysis 2881 // is incomplete and we have never reached the no-return function call(s) 2882 // that we'd inevitably bump into on this path. 2883 if (isInevitablySinking(errorNode)) 2884 continue; 2885 2886 // At this point we know that 'N' is not a sink and it has at least one 2887 // successor. Use a DFS worklist to find a non-sink end-of-path node. 2888 using WLItem = FRIEC_WLItem; 2889 using DFSWorkList = SmallVector<WLItem, 10>; 2890 2891 llvm::DenseMap<const ExplodedNode *, unsigned> Visited; 2892 2893 DFSWorkList WL; 2894 WL.push_back(errorNode); 2895 Visited[errorNode] = 1; 2896 2897 while (!WL.empty()) { 2898 WLItem &WI = WL.back(); 2899 assert(!WI.N->succ_empty()); 2900 2901 for (; WI.I != WI.E; ++WI.I) { 2902 const ExplodedNode *Succ = *WI.I; 2903 // End-of-path node? 2904 if (Succ->succ_empty()) { 2905 // If we found an end-of-path node that is not a sink. 2906 if (!Succ->isSink()) { 2907 bugReports.push_back(&*I); 2908 if (!exampleReport) 2909 exampleReport = &*I; 2910 WL.clear(); 2911 break; 2912 } 2913 // Found a sink? Continue on to the next successor. 2914 continue; 2915 } 2916 // Mark the successor as visited. If it hasn't been explored, 2917 // enqueue it to the DFS worklist. 2918 unsigned &mark = Visited[Succ]; 2919 if (!mark) { 2920 mark = 1; 2921 WL.push_back(Succ); 2922 break; 2923 } 2924 } 2925 2926 // The worklist may have been cleared at this point. First 2927 // check if it is empty before checking the last item. 2928 if (!WL.empty() && &WL.back() == &WI) 2929 WL.pop_back(); 2930 } 2931 } 2932 2933 // ExampleReport will be NULL if all the nodes in the equivalence class 2934 // were post-dominated by sinks. 2935 return exampleReport; 2936 } 2937 2938 void BugReporter::FlushReport(BugReportEquivClass& EQ) { 2939 SmallVector<BugReport*, 10> bugReports; 2940 BugReport *report = FindReportInEquivalenceClass(EQ, bugReports); 2941 if (!report) 2942 return; 2943 2944 ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers(); 2945 std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics = 2946 generateDiagnosticForConsumerMap(report, Consumers, bugReports); 2947 2948 for (auto &P : *Diagnostics) { 2949 PathDiagnosticConsumer *Consumer = P.first; 2950 std::unique_ptr<PathDiagnostic> &PD = P.second; 2951 2952 // If the path is empty, generate a single step path with the location 2953 // of the issue. 2954 if (PD->path.empty()) { 2955 PathDiagnosticLocation L = report->getLocation(getSourceManager()); 2956 auto piece = llvm::make_unique<PathDiagnosticEventPiece>( 2957 L, report->getDescription()); 2958 for (SourceRange Range : report->getRanges()) 2959 piece->addRange(Range); 2960 PD->setEndOfPath(std::move(piece)); 2961 } 2962 2963 PathPieces &Pieces = PD->getMutablePieces(); 2964 if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) { 2965 // For path diagnostic consumers that don't support extra notes, 2966 // we may optionally convert those to path notes. 2967 for (auto I = report->getNotes().rbegin(), 2968 E = report->getNotes().rend(); I != E; ++I) { 2969 PathDiagnosticNotePiece *Piece = I->get(); 2970 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>( 2971 Piece->getLocation(), Piece->getString()); 2972 for (const auto &R: Piece->getRanges()) 2973 ConvertedPiece->addRange(R); 2974 2975 Pieces.push_front(std::move(ConvertedPiece)); 2976 } 2977 } else { 2978 for (auto I = report->getNotes().rbegin(), 2979 E = report->getNotes().rend(); I != E; ++I) 2980 Pieces.push_front(*I); 2981 } 2982 2983 // Get the meta data. 2984 const BugReport::ExtraTextList &Meta = report->getExtraText(); 2985 for (const auto &i : Meta) 2986 PD->addMeta(i); 2987 2988 updateExecutedLinesWithDiagnosticPieces(*PD); 2989 Consumer->HandlePathDiagnostic(std::move(PD)); 2990 } 2991 } 2992 2993 /// Insert all lines participating in the function signature \p Signature 2994 /// into \p ExecutedLines. 2995 static void populateExecutedLinesWithFunctionSignature( 2996 const Decl *Signature, SourceManager &SM, 2997 FilesToLineNumsMap &ExecutedLines) { 2998 SourceRange SignatureSourceRange; 2999 const Stmt* Body = Signature->getBody(); 3000 if (const auto FD = dyn_cast<FunctionDecl>(Signature)) { 3001 SignatureSourceRange = FD->getSourceRange(); 3002 } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) { 3003 SignatureSourceRange = OD->getSourceRange(); 3004 } else { 3005 return; 3006 } 3007 SourceLocation Start = SignatureSourceRange.getBegin(); 3008 SourceLocation End = Body ? Body->getSourceRange().getBegin() 3009 : SignatureSourceRange.getEnd(); 3010 if (!Start.isValid() || !End.isValid()) 3011 return; 3012 unsigned StartLine = SM.getExpansionLineNumber(Start); 3013 unsigned EndLine = SM.getExpansionLineNumber(End); 3014 3015 FileID FID = SM.getFileID(SM.getExpansionLoc(Start)); 3016 for (unsigned Line = StartLine; Line <= EndLine; Line++) 3017 ExecutedLines[FID].insert(Line); 3018 } 3019 3020 static void populateExecutedLinesWithStmt( 3021 const Stmt *S, SourceManager &SM, 3022 FilesToLineNumsMap &ExecutedLines) { 3023 SourceLocation Loc = S->getSourceRange().getBegin(); 3024 if (!Loc.isValid()) 3025 return; 3026 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc); 3027 FileID FID = SM.getFileID(ExpansionLoc); 3028 unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc); 3029 ExecutedLines[FID].insert(LineNo); 3030 } 3031 3032 /// \return all executed lines including function signatures on the path 3033 /// starting from \p N. 3034 static std::unique_ptr<FilesToLineNumsMap> 3035 findExecutedLines(SourceManager &SM, const ExplodedNode *N) { 3036 auto ExecutedLines = llvm::make_unique<FilesToLineNumsMap>(); 3037 3038 while (N) { 3039 if (N->getFirstPred() == nullptr) { 3040 // First node: show signature of the entrance point. 3041 const Decl *D = N->getLocationContext()->getDecl(); 3042 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); 3043 } else if (auto CE = N->getLocationAs<CallEnter>()) { 3044 // Inlined function: show signature. 3045 const Decl* D = CE->getCalleeContext()->getDecl(); 3046 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); 3047 } else if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) { 3048 populateExecutedLinesWithStmt(S, SM, *ExecutedLines); 3049 3050 // Show extra context for some parent kinds. 3051 const Stmt *P = N->getParentMap().getParent(S); 3052 3053 // The path exploration can die before the node with the associated 3054 // return statement is generated, but we do want to show the whole 3055 // return. 3056 if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) { 3057 populateExecutedLinesWithStmt(RS, SM, *ExecutedLines); 3058 P = N->getParentMap().getParent(RS); 3059 } 3060 3061 if (P && (isa<SwitchCase>(P) || isa<LabelStmt>(P))) 3062 populateExecutedLinesWithStmt(P, SM, *ExecutedLines); 3063 } 3064 3065 N = N->getFirstPred(); 3066 } 3067 return ExecutedLines; 3068 } 3069 3070 std::unique_ptr<DiagnosticForConsumerMapTy> 3071 BugReporter::generateDiagnosticForConsumerMap( 3072 BugReport *report, ArrayRef<PathDiagnosticConsumer *> consumers, 3073 ArrayRef<BugReport *> bugReports) { 3074 3075 if (!report->isPathSensitive()) { 3076 auto Out = llvm::make_unique<DiagnosticForConsumerMapTy>(); 3077 for (auto *Consumer : consumers) 3078 (*Out)[Consumer] = generateEmptyDiagnosticForReport(report, 3079 getSourceManager()); 3080 return Out; 3081 } 3082 3083 // Generate the full path sensitive diagnostic, using the generation scheme 3084 // specified by the PathDiagnosticConsumer. Note that we have to generate 3085 // path diagnostics even for consumers which do not support paths, because 3086 // the BugReporterVisitors may mark this bug as a false positive. 3087 assert(!bugReports.empty()); 3088 MaxBugClassSize.updateMax(bugReports.size()); 3089 std::unique_ptr<DiagnosticForConsumerMapTy> Out = 3090 generatePathDiagnostics(consumers, bugReports); 3091 3092 if (Out->empty()) 3093 return Out; 3094 3095 MaxValidBugClassSize.updateMax(bugReports.size()); 3096 3097 // Examine the report and see if the last piece is in a header. Reset the 3098 // report location to the last piece in the main source file. 3099 AnalyzerOptions &Opts = getAnalyzerOptions(); 3100 for (auto const &P : *Out) 3101 if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll) 3102 P.second->resetDiagnosticLocationToMainFile(); 3103 3104 return Out; 3105 } 3106 3107 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3108 const CheckerBase *Checker, 3109 StringRef Name, StringRef Category, 3110 StringRef Str, PathDiagnosticLocation Loc, 3111 ArrayRef<SourceRange> Ranges) { 3112 EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str, 3113 Loc, Ranges); 3114 } 3115 3116 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3117 CheckName CheckName, 3118 StringRef name, StringRef category, 3119 StringRef str, PathDiagnosticLocation Loc, 3120 ArrayRef<SourceRange> Ranges) { 3121 // 'BT' is owned by BugReporter. 3122 BugType *BT = getBugTypeForName(CheckName, name, category); 3123 auto R = llvm::make_unique<BugReport>(*BT, str, Loc); 3124 R->setDeclWithIssue(DeclWithIssue); 3125 for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end(); 3126 I != E; ++I) 3127 R->addRange(*I); 3128 emitReport(std::move(R)); 3129 } 3130 3131 BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name, 3132 StringRef category) { 3133 SmallString<136> fullDesc; 3134 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name 3135 << ":" << category; 3136 BugType *&BT = StrBugTypes[fullDesc]; 3137 if (!BT) 3138 BT = new BugType(CheckName, name, category); 3139 return BT; 3140 } 3141