1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines BugReporter, a utility class for generating 10 // PathDiagnostics. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 15 #include "clang/AST/Decl.h" 16 #include "clang/AST/DeclBase.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ParentMap.h" 21 #include "clang/AST/Stmt.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/AST/StmtObjC.h" 24 #include "clang/Analysis/AnalysisDeclContext.h" 25 #include "clang/Analysis/CFG.h" 26 #include "clang/Analysis/CFGStmtMap.h" 27 #include "clang/Analysis/ProgramPoint.h" 28 #include "clang/Basic/LLVM.h" 29 #include "clang/Basic/SourceLocation.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" 32 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" 33 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 34 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 35 #include "clang/StaticAnalyzer/Core/Checker.h" 36 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 37 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 39 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 40 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 41 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 42 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 43 #include "llvm/ADT/ArrayRef.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/DenseSet.h" 46 #include "llvm/ADT/FoldingSet.h" 47 #include "llvm/ADT/None.h" 48 #include "llvm/ADT/Optional.h" 49 #include "llvm/ADT/STLExtras.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/SmallString.h" 52 #include "llvm/ADT/SmallVector.h" 53 #include "llvm/ADT/Statistic.h" 54 #include "llvm/ADT/StringRef.h" 55 #include "llvm/ADT/iterator_range.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/MemoryBuffer.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstddef> 64 #include <iterator> 65 #include <memory> 66 #include <queue> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace clang; 73 using namespace ento; 74 using namespace llvm; 75 76 #define DEBUG_TYPE "BugReporter" 77 78 STATISTIC(MaxBugClassSize, 79 "The maximum number of bug reports in the same equivalence class"); 80 STATISTIC(MaxValidBugClassSize, 81 "The maximum number of bug reports in the same equivalence class " 82 "where at least one report is valid (not suppressed)"); 83 84 BugReporterVisitor::~BugReporterVisitor() = default; 85 86 void BugReporterContext::anchor() {} 87 88 //===----------------------------------------------------------------------===// 89 // PathDiagnosticBuilder and its associated routines and helper objects. 90 //===----------------------------------------------------------------------===// 91 92 namespace { 93 94 /// A (CallPiece, node assiciated with its CallEnter) pair. 95 using CallWithEntry = 96 std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>; 97 using CallWithEntryStack = SmallVector<CallWithEntry, 6>; 98 99 /// Map from each node to the diagnostic pieces visitors emit for them. 100 using VisitorsDiagnosticsTy = 101 llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>; 102 103 /// A map from PathDiagnosticPiece to the LocationContext of the inlined 104 /// function call it represents. 105 using LocationContextMap = 106 llvm::DenseMap<const PathPieces *, const LocationContext *>; 107 108 /// A helper class that contains everything needed to construct a 109 /// PathDiagnostic object. It does no much more then providing convenient 110 /// getters and some well placed asserts for extra security. 111 class PathDiagnosticConstruct { 112 /// The consumer we're constructing the bug report for. 113 const PathDiagnosticConsumer *Consumer; 114 /// Our current position in the bug path, which is owned by 115 /// PathDiagnosticBuilder. 116 const ExplodedNode *CurrentNode; 117 /// A mapping from parts of the bug path (for example, a function call, which 118 /// would span backwards from a CallExit to a CallEnter with the nodes in 119 /// between them) with the location contexts it is associated with. 120 LocationContextMap LCM; 121 const SourceManager &SM; 122 123 public: 124 /// We keep stack of calls to functions as we're ascending the bug path. 125 /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use 126 /// that instead? 127 CallWithEntryStack CallStack; 128 /// The bug report we're constructing. For ease of use, this field is kept 129 /// public, though some "shortcut" getters are provided for commonly used 130 /// methods of PathDiagnostic. 131 std::unique_ptr<PathDiagnostic> PD; 132 133 public: 134 PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC, 135 const ExplodedNode *ErrorNode, 136 const PathSensitiveBugReport *R); 137 138 /// \returns the location context associated with the current position in the 139 /// bug path. 140 const LocationContext *getCurrLocationContext() const { 141 assert(CurrentNode && "Already reached the root!"); 142 return CurrentNode->getLocationContext(); 143 } 144 145 /// Same as getCurrLocationContext (they should always return the same 146 /// location context), but works after reaching the root of the bug path as 147 /// well. 148 const LocationContext *getLocationContextForActivePath() const { 149 return LCM.find(&PD->getActivePath())->getSecond(); 150 } 151 152 const ExplodedNode *getCurrentNode() const { return CurrentNode; } 153 154 /// Steps the current node to its predecessor. 155 /// \returns whether we reached the root of the bug path. 156 bool ascendToPrevNode() { 157 CurrentNode = CurrentNode->getFirstPred(); 158 return static_cast<bool>(CurrentNode); 159 } 160 161 const ParentMap &getParentMap() const { 162 return getCurrLocationContext()->getParentMap(); 163 } 164 165 const SourceManager &getSourceManager() const { return SM; } 166 167 const Stmt *getParent(const Stmt *S) const { 168 return getParentMap().getParent(S); 169 } 170 171 void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) { 172 assert(Path && LC); 173 LCM[Path] = LC; 174 } 175 176 const LocationContext *getLocationContextFor(const PathPieces *Path) const { 177 assert(LCM.count(Path) && 178 "Failed to find the context associated with these pieces!"); 179 return LCM.find(Path)->getSecond(); 180 } 181 182 bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); } 183 184 PathPieces &getActivePath() { return PD->getActivePath(); } 185 PathPieces &getMutablePieces() { return PD->getMutablePieces(); } 186 187 bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); } 188 bool shouldGenerateDiagnostics() const { 189 return Consumer->shouldGenerateDiagnostics(); 190 } 191 bool supportsLogicalOpControlFlow() const { 192 return Consumer->supportsLogicalOpControlFlow(); 193 } 194 }; 195 196 /// Contains every contextual information needed for constructing a 197 /// PathDiagnostic object for a given bug report. This class and its fields are 198 /// immutable, and passes a BugReportConstruct object around during the 199 /// construction. 200 class PathDiagnosticBuilder : public BugReporterContext { 201 /// A linear path from the error node to the root. 202 std::unique_ptr<const ExplodedGraph> BugPath; 203 /// The bug report we're describing. Visitors create their diagnostics with 204 /// them being the last entities being able to modify it (for example, 205 /// changing interestingness here would cause inconsistencies as to how this 206 /// file and visitors construct diagnostics), hence its const. 207 const PathSensitiveBugReport *R; 208 /// The leaf of the bug path. This isn't the same as the bug reports error 209 /// node, which refers to the *original* graph, not the bug path. 210 const ExplodedNode *const ErrorNode; 211 /// The diagnostic pieces visitors emitted, which is expected to be collected 212 /// by the time this builder is constructed. 213 std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics; 214 215 public: 216 /// Find a non-invalidated report for a given equivalence class, and returns 217 /// a PathDiagnosticBuilder able to construct bug reports for different 218 /// consumers. Returns None if no valid report is found. 219 static Optional<PathDiagnosticBuilder> 220 findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports, 221 PathSensitiveBugReporter &Reporter); 222 223 PathDiagnosticBuilder( 224 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath, 225 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, 226 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics); 227 228 /// This function is responsible for generating diagnostic pieces that are 229 /// *not* provided by bug report visitors. 230 /// These diagnostics may differ depending on the consumer's settings, 231 /// and are therefore constructed separately for each consumer. 232 /// 233 /// There are two path diagnostics generation modes: with adding edges (used 234 /// for plists) and without (used for HTML and text). When edges are added, 235 /// the path is modified to insert artificially generated edges. 236 /// Otherwise, more detailed diagnostics is emitted for block edges, 237 /// explaining the transitions in words. 238 std::unique_ptr<PathDiagnostic> 239 generate(const PathDiagnosticConsumer *PDC) const; 240 241 private: 242 void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C, 243 PathDiagnosticLocation &PrevLoc) const; 244 245 void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C, 246 BlockEdge BE) const; 247 248 PathDiagnosticPieceRef 249 generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S, 250 PathDiagnosticLocation &Start) const; 251 252 PathDiagnosticPieceRef 253 generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst, 254 PathDiagnosticLocation &Start) const; 255 256 PathDiagnosticPieceRef 257 generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T, 258 const CFGBlock *Src, const CFGBlock *DstC) const; 259 260 PathDiagnosticLocation 261 ExecutionContinues(const PathDiagnosticConstruct &C) const; 262 263 PathDiagnosticLocation 264 ExecutionContinues(llvm::raw_string_ostream &os, 265 const PathDiagnosticConstruct &C) const; 266 267 const PathSensitiveBugReport *getBugReport() const { return R; } 268 }; 269 270 } // namespace 271 272 //===----------------------------------------------------------------------===// 273 // Helper routines for walking the ExplodedGraph and fetching statements. 274 //===----------------------------------------------------------------------===// 275 276 static const Stmt *GetPreviousStmt(const ExplodedNode *N) { 277 for (N = N->getFirstPred(); N; N = N->getFirstPred()) 278 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 279 return S; 280 281 return nullptr; 282 } 283 284 static inline const Stmt* 285 GetCurrentOrPreviousStmt(const ExplodedNode *N) { 286 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 287 return S; 288 289 return GetPreviousStmt(N); 290 } 291 292 //===----------------------------------------------------------------------===// 293 // Diagnostic cleanup. 294 //===----------------------------------------------------------------------===// 295 296 static PathDiagnosticEventPiece * 297 eventsDescribeSameCondition(PathDiagnosticEventPiece *X, 298 PathDiagnosticEventPiece *Y) { 299 // Prefer diagnostics that come from ConditionBRVisitor over 300 // those that came from TrackConstraintBRVisitor, 301 // unless the one from ConditionBRVisitor is 302 // its generic fallback diagnostic. 303 const void *tagPreferred = ConditionBRVisitor::getTag(); 304 const void *tagLesser = TrackConstraintBRVisitor::getTag(); 305 306 if (X->getLocation() != Y->getLocation()) 307 return nullptr; 308 309 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) 310 return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X; 311 312 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) 313 return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y; 314 315 return nullptr; 316 } 317 318 /// An optimization pass over PathPieces that removes redundant diagnostics 319 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both 320 /// BugReporterVisitors use different methods to generate diagnostics, with 321 /// one capable of emitting diagnostics in some cases but not in others. This 322 /// can lead to redundant diagnostic pieces at the same point in a path. 323 static void removeRedundantMsgs(PathPieces &path) { 324 unsigned N = path.size(); 325 if (N < 2) 326 return; 327 // NOTE: this loop intentionally is not using an iterator. Instead, we 328 // are streaming the path and modifying it in place. This is done by 329 // grabbing the front, processing it, and if we decide to keep it append 330 // it to the end of the path. The entire path is processed in this way. 331 for (unsigned i = 0; i < N; ++i) { 332 auto piece = std::move(path.front()); 333 path.pop_front(); 334 335 switch (piece->getKind()) { 336 case PathDiagnosticPiece::Call: 337 removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path); 338 break; 339 case PathDiagnosticPiece::Macro: 340 removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces); 341 break; 342 case PathDiagnosticPiece::Event: { 343 if (i == N-1) 344 break; 345 346 if (auto *nextEvent = 347 dyn_cast<PathDiagnosticEventPiece>(path.front().get())) { 348 auto *event = cast<PathDiagnosticEventPiece>(piece.get()); 349 // Check to see if we should keep one of the two pieces. If we 350 // come up with a preference, record which piece to keep, and consume 351 // another piece from the path. 352 if (auto *pieceToKeep = 353 eventsDescribeSameCondition(event, nextEvent)) { 354 piece = std::move(pieceToKeep == event ? piece : path.front()); 355 path.pop_front(); 356 ++i; 357 } 358 } 359 break; 360 } 361 case PathDiagnosticPiece::ControlFlow: 362 case PathDiagnosticPiece::Note: 363 case PathDiagnosticPiece::PopUp: 364 break; 365 } 366 path.push_back(std::move(piece)); 367 } 368 } 369 370 /// Recursively scan through a path and prune out calls and macros pieces 371 /// that aren't needed. Return true if afterwards the path contains 372 /// "interesting stuff" which means it shouldn't be pruned from the parent path. 373 static bool removeUnneededCalls(const PathDiagnosticConstruct &C, 374 PathPieces &pieces, 375 const PathSensitiveBugReport *R, 376 bool IsInteresting = false) { 377 bool containsSomethingInteresting = IsInteresting; 378 const unsigned N = pieces.size(); 379 380 for (unsigned i = 0 ; i < N ; ++i) { 381 // Remove the front piece from the path. If it is still something we 382 // want to keep once we are done, we will push it back on the end. 383 auto piece = std::move(pieces.front()); 384 pieces.pop_front(); 385 386 switch (piece->getKind()) { 387 case PathDiagnosticPiece::Call: { 388 auto &call = cast<PathDiagnosticCallPiece>(*piece); 389 // Check if the location context is interesting. 390 if (!removeUnneededCalls( 391 C, call.path, R, 392 R->isInteresting(C.getLocationContextFor(&call.path)))) 393 continue; 394 395 containsSomethingInteresting = true; 396 break; 397 } 398 case PathDiagnosticPiece::Macro: { 399 auto ¯o = cast<PathDiagnosticMacroPiece>(*piece); 400 if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting)) 401 continue; 402 containsSomethingInteresting = true; 403 break; 404 } 405 case PathDiagnosticPiece::Event: { 406 auto &event = cast<PathDiagnosticEventPiece>(*piece); 407 408 // We never throw away an event, but we do throw it away wholesale 409 // as part of a path if we throw the entire path away. 410 containsSomethingInteresting |= !event.isPrunable(); 411 break; 412 } 413 case PathDiagnosticPiece::ControlFlow: 414 case PathDiagnosticPiece::Note: 415 case PathDiagnosticPiece::PopUp: 416 break; 417 } 418 419 pieces.push_back(std::move(piece)); 420 } 421 422 return containsSomethingInteresting; 423 } 424 425 /// Same logic as above to remove extra pieces. 426 static void removePopUpNotes(PathPieces &Path) { 427 for (unsigned int i = 0; i < Path.size(); ++i) { 428 auto Piece = std::move(Path.front()); 429 Path.pop_front(); 430 if (!isa<PathDiagnosticPopUpPiece>(*Piece)) 431 Path.push_back(std::move(Piece)); 432 } 433 } 434 435 /// Returns true if the given decl has been implicitly given a body, either by 436 /// the analyzer or by the compiler proper. 437 static bool hasImplicitBody(const Decl *D) { 438 assert(D); 439 return D->isImplicit() || !D->hasBody(); 440 } 441 442 /// Recursively scan through a path and make sure that all call pieces have 443 /// valid locations. 444 static void 445 adjustCallLocations(PathPieces &Pieces, 446 PathDiagnosticLocation *LastCallLocation = nullptr) { 447 for (const auto &I : Pieces) { 448 auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get()); 449 450 if (!Call) 451 continue; 452 453 if (LastCallLocation) { 454 bool CallerIsImplicit = hasImplicitBody(Call->getCaller()); 455 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid()) 456 Call->callEnter = *LastCallLocation; 457 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid()) 458 Call->callReturn = *LastCallLocation; 459 } 460 461 // Recursively clean out the subclass. Keep this call around if 462 // it contains any informative diagnostics. 463 PathDiagnosticLocation *ThisCallLocation; 464 if (Call->callEnterWithin.asLocation().isValid() && 465 !hasImplicitBody(Call->getCallee())) 466 ThisCallLocation = &Call->callEnterWithin; 467 else 468 ThisCallLocation = &Call->callEnter; 469 470 assert(ThisCallLocation && "Outermost call has an invalid location"); 471 adjustCallLocations(Call->path, ThisCallLocation); 472 } 473 } 474 475 /// Remove edges in and out of C++ default initializer expressions. These are 476 /// for fields that have in-class initializers, as opposed to being initialized 477 /// explicitly in a constructor or braced list. 478 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) { 479 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 480 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 481 removeEdgesToDefaultInitializers(C->path); 482 483 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 484 removeEdgesToDefaultInitializers(M->subPieces); 485 486 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) { 487 const Stmt *Start = CF->getStartLocation().asStmt(); 488 const Stmt *End = CF->getEndLocation().asStmt(); 489 if (Start && isa<CXXDefaultInitExpr>(Start)) { 490 I = Pieces.erase(I); 491 continue; 492 } else if (End && isa<CXXDefaultInitExpr>(End)) { 493 PathPieces::iterator Next = std::next(I); 494 if (Next != E) { 495 if (auto *NextCF = 496 dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) { 497 NextCF->setStartLocation(CF->getStartLocation()); 498 } 499 } 500 I = Pieces.erase(I); 501 continue; 502 } 503 } 504 505 I++; 506 } 507 } 508 509 /// Remove all pieces with invalid locations as these cannot be serialized. 510 /// We might have pieces with invalid locations as a result of inlining Body 511 /// Farm generated functions. 512 static void removePiecesWithInvalidLocations(PathPieces &Pieces) { 513 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 514 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get())) 515 removePiecesWithInvalidLocations(C->path); 516 517 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get())) 518 removePiecesWithInvalidLocations(M->subPieces); 519 520 if (!(*I)->getLocation().isValid() || 521 !(*I)->getLocation().asLocation().isValid()) { 522 I = Pieces.erase(I); 523 continue; 524 } 525 I++; 526 } 527 } 528 529 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( 530 const PathDiagnosticConstruct &C) const { 531 if (const Stmt *S = PathDiagnosticLocation::getNextStmt(C.getCurrentNode())) 532 return PathDiagnosticLocation(S, getSourceManager(), 533 C.getCurrLocationContext()); 534 535 return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(), 536 getSourceManager()); 537 } 538 539 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues( 540 llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const { 541 // Slow, but probably doesn't matter. 542 if (os.str().empty()) 543 os << ' '; 544 545 const PathDiagnosticLocation &Loc = ExecutionContinues(C); 546 547 if (Loc.asStmt()) 548 os << "Execution continues on line " 549 << getSourceManager().getExpansionLineNumber(Loc.asLocation()) 550 << '.'; 551 else { 552 os << "Execution jumps to the end of the "; 553 const Decl *D = C.getCurrLocationContext()->getDecl(); 554 if (isa<ObjCMethodDecl>(D)) 555 os << "method"; 556 else if (isa<FunctionDecl>(D)) 557 os << "function"; 558 else { 559 assert(isa<BlockDecl>(D)); 560 os << "anonymous block"; 561 } 562 os << '.'; 563 } 564 565 return Loc; 566 } 567 568 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) { 569 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) 570 return PM.getParentIgnoreParens(S); 571 572 const Stmt *Parent = PM.getParentIgnoreParens(S); 573 if (!Parent) 574 return nullptr; 575 576 switch (Parent->getStmtClass()) { 577 case Stmt::ForStmtClass: 578 case Stmt::DoStmtClass: 579 case Stmt::WhileStmtClass: 580 case Stmt::ObjCForCollectionStmtClass: 581 case Stmt::CXXForRangeStmtClass: 582 return Parent; 583 default: 584 break; 585 } 586 587 return nullptr; 588 } 589 590 static PathDiagnosticLocation 591 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC, 592 bool allowNestedContexts = false) { 593 if (!S) 594 return {}; 595 596 const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager(); 597 598 while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) { 599 switch (Parent->getStmtClass()) { 600 case Stmt::BinaryOperatorClass: { 601 const auto *B = cast<BinaryOperator>(Parent); 602 if (B->isLogicalOp()) 603 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC); 604 break; 605 } 606 case Stmt::CompoundStmtClass: 607 case Stmt::StmtExprClass: 608 return PathDiagnosticLocation(S, SMgr, LC); 609 case Stmt::ChooseExprClass: 610 // Similar to '?' if we are referring to condition, just have the edge 611 // point to the entire choose expression. 612 if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S) 613 return PathDiagnosticLocation(Parent, SMgr, LC); 614 else 615 return PathDiagnosticLocation(S, SMgr, LC); 616 case Stmt::BinaryConditionalOperatorClass: 617 case Stmt::ConditionalOperatorClass: 618 // For '?', if we are referring to condition, just have the edge point 619 // to the entire '?' expression. 620 if (allowNestedContexts || 621 cast<AbstractConditionalOperator>(Parent)->getCond() == S) 622 return PathDiagnosticLocation(Parent, SMgr, LC); 623 else 624 return PathDiagnosticLocation(S, SMgr, LC); 625 case Stmt::CXXForRangeStmtClass: 626 if (cast<CXXForRangeStmt>(Parent)->getBody() == S) 627 return PathDiagnosticLocation(S, SMgr, LC); 628 break; 629 case Stmt::DoStmtClass: 630 return PathDiagnosticLocation(S, SMgr, LC); 631 case Stmt::ForStmtClass: 632 if (cast<ForStmt>(Parent)->getBody() == S) 633 return PathDiagnosticLocation(S, SMgr, LC); 634 break; 635 case Stmt::IfStmtClass: 636 if (cast<IfStmt>(Parent)->getCond() != S) 637 return PathDiagnosticLocation(S, SMgr, LC); 638 break; 639 case Stmt::ObjCForCollectionStmtClass: 640 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) 641 return PathDiagnosticLocation(S, SMgr, LC); 642 break; 643 case Stmt::WhileStmtClass: 644 if (cast<WhileStmt>(Parent)->getCond() != S) 645 return PathDiagnosticLocation(S, SMgr, LC); 646 break; 647 default: 648 break; 649 } 650 651 S = Parent; 652 } 653 654 assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); 655 656 return PathDiagnosticLocation(S, SMgr, LC); 657 } 658 659 //===----------------------------------------------------------------------===// 660 // "Minimal" path diagnostic generation algorithm. 661 //===----------------------------------------------------------------------===// 662 663 /// If the piece contains a special message, add it to all the call pieces on 664 /// the active stack. For exampler, my_malloc allocated memory, so MallocChecker 665 /// will construct an event at the call to malloc(), and add a stack hint that 666 /// an allocated memory was returned. We'll use this hint to construct a message 667 /// when returning from the call to my_malloc 668 /// 669 /// void *my_malloc() { return malloc(sizeof(int)); } 670 /// void fishy() { 671 /// void *ptr = my_malloc(); // returned allocated memory 672 /// } // leak 673 static void updateStackPiecesWithMessage(PathDiagnosticPiece &P, 674 const CallWithEntryStack &CallStack) { 675 if (auto *ep = dyn_cast<PathDiagnosticEventPiece>(&P)) { 676 if (ep->hasCallStackHint()) 677 for (const auto &I : CallStack) { 678 PathDiagnosticCallPiece *CP = I.first; 679 const ExplodedNode *N = I.second; 680 std::string stackMsg = ep->getCallStackMessage(N); 681 682 // The last message on the path to final bug is the most important 683 // one. Since we traverse the path backwards, do not add the message 684 // if one has been previously added. 685 if (!CP->hasCallStackMessage()) 686 CP->setCallStackMessage(stackMsg); 687 } 688 } 689 } 690 691 static void CompactMacroExpandedPieces(PathPieces &path, 692 const SourceManager& SM); 693 694 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP( 695 const PathDiagnosticConstruct &C, const CFGBlock *Dst, 696 PathDiagnosticLocation &Start) const { 697 698 const SourceManager &SM = getSourceManager(); 699 // Figure out what case arm we took. 700 std::string sbuf; 701 llvm::raw_string_ostream os(sbuf); 702 PathDiagnosticLocation End; 703 704 if (const Stmt *S = Dst->getLabel()) { 705 End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext()); 706 707 switch (S->getStmtClass()) { 708 default: 709 os << "No cases match in the switch statement. " 710 "Control jumps to line " 711 << End.asLocation().getExpansionLineNumber(); 712 break; 713 case Stmt::DefaultStmtClass: 714 os << "Control jumps to the 'default' case at line " 715 << End.asLocation().getExpansionLineNumber(); 716 break; 717 718 case Stmt::CaseStmtClass: { 719 os << "Control jumps to 'case "; 720 const auto *Case = cast<CaseStmt>(S); 721 const Expr *LHS = Case->getLHS()->IgnoreParenCasts(); 722 723 // Determine if it is an enum. 724 bool GetRawInt = true; 725 726 if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) { 727 // FIXME: Maybe this should be an assertion. Are there cases 728 // were it is not an EnumConstantDecl? 729 const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl()); 730 731 if (D) { 732 GetRawInt = false; 733 os << *D; 734 } 735 } 736 737 if (GetRawInt) 738 os << LHS->EvaluateKnownConstInt(getASTContext()); 739 740 os << ":' at line " << End.asLocation().getExpansionLineNumber(); 741 break; 742 } 743 } 744 } else { 745 os << "'Default' branch taken. "; 746 End = ExecutionContinues(os, C); 747 } 748 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 749 os.str()); 750 } 751 752 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP( 753 const PathDiagnosticConstruct &C, const Stmt *S, 754 PathDiagnosticLocation &Start) const { 755 std::string sbuf; 756 llvm::raw_string_ostream os(sbuf); 757 const PathDiagnosticLocation &End = 758 getEnclosingStmtLocation(S, C.getCurrLocationContext()); 759 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber(); 760 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()); 761 } 762 763 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP( 764 const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src, 765 const CFGBlock *Dst) const { 766 767 const SourceManager &SM = getSourceManager(); 768 769 const auto *B = cast<BinaryOperator>(T); 770 std::string sbuf; 771 llvm::raw_string_ostream os(sbuf); 772 os << "Left side of '"; 773 PathDiagnosticLocation Start, End; 774 775 if (B->getOpcode() == BO_LAnd) { 776 os << "&&" 777 << "' is "; 778 779 if (*(Src->succ_begin() + 1) == Dst) { 780 os << "false"; 781 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 782 Start = 783 PathDiagnosticLocation::createOperatorLoc(B, SM); 784 } else { 785 os << "true"; 786 Start = 787 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 788 End = ExecutionContinues(C); 789 } 790 } else { 791 assert(B->getOpcode() == BO_LOr); 792 os << "||" 793 << "' is "; 794 795 if (*(Src->succ_begin() + 1) == Dst) { 796 os << "false"; 797 Start = 798 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 799 End = ExecutionContinues(C); 800 } else { 801 os << "true"; 802 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext()); 803 Start = 804 PathDiagnosticLocation::createOperatorLoc(B, SM); 805 } 806 } 807 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 808 os.str()); 809 } 810 811 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge( 812 PathDiagnosticConstruct &C, BlockEdge BE) const { 813 const SourceManager &SM = getSourceManager(); 814 const LocationContext *LC = C.getCurrLocationContext(); 815 const CFGBlock *Src = BE.getSrc(); 816 const CFGBlock *Dst = BE.getDst(); 817 const Stmt *T = Src->getTerminatorStmt(); 818 if (!T) 819 return; 820 821 auto Start = PathDiagnosticLocation::createBegin(T, SM, LC); 822 switch (T->getStmtClass()) { 823 default: 824 break; 825 826 case Stmt::GotoStmtClass: 827 case Stmt::IndirectGotoStmtClass: { 828 if (const Stmt *S = PathDiagnosticLocation::getNextStmt(C.getCurrentNode())) 829 C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start)); 830 break; 831 } 832 833 case Stmt::SwitchStmtClass: { 834 C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start)); 835 break; 836 } 837 838 case Stmt::BreakStmtClass: 839 case Stmt::ContinueStmtClass: { 840 std::string sbuf; 841 llvm::raw_string_ostream os(sbuf); 842 PathDiagnosticLocation End = ExecutionContinues(os, C); 843 C.getActivePath().push_front( 844 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 845 break; 846 } 847 848 // Determine control-flow for ternary '?'. 849 case Stmt::BinaryConditionalOperatorClass: 850 case Stmt::ConditionalOperatorClass: { 851 std::string sbuf; 852 llvm::raw_string_ostream os(sbuf); 853 os << "'?' condition is "; 854 855 if (*(Src->succ_begin() + 1) == Dst) 856 os << "false"; 857 else 858 os << "true"; 859 860 PathDiagnosticLocation End = ExecutionContinues(C); 861 862 if (const Stmt *S = End.asStmt()) 863 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 864 865 C.getActivePath().push_front( 866 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str())); 867 break; 868 } 869 870 // Determine control-flow for short-circuited '&&' and '||'. 871 case Stmt::BinaryOperatorClass: { 872 if (!C.supportsLogicalOpControlFlow()) 873 break; 874 875 C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst)); 876 break; 877 } 878 879 case Stmt::DoStmtClass: 880 if (*(Src->succ_begin()) == Dst) { 881 std::string sbuf; 882 llvm::raw_string_ostream os(sbuf); 883 884 os << "Loop condition is true. "; 885 PathDiagnosticLocation End = ExecutionContinues(os, C); 886 887 if (const Stmt *S = End.asStmt()) 888 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 889 890 C.getActivePath().push_front( 891 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 892 os.str())); 893 } else { 894 PathDiagnosticLocation End = ExecutionContinues(C); 895 896 if (const Stmt *S = End.asStmt()) 897 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 898 899 C.getActivePath().push_front( 900 std::make_shared<PathDiagnosticControlFlowPiece>( 901 Start, End, "Loop condition is false. Exiting loop")); 902 } 903 break; 904 905 case Stmt::WhileStmtClass: 906 case Stmt::ForStmtClass: 907 if (*(Src->succ_begin() + 1) == Dst) { 908 std::string sbuf; 909 llvm::raw_string_ostream os(sbuf); 910 911 os << "Loop condition is false. "; 912 PathDiagnosticLocation End = ExecutionContinues(os, C); 913 if (const Stmt *S = End.asStmt()) 914 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 915 916 C.getActivePath().push_front( 917 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, 918 os.str())); 919 } else { 920 PathDiagnosticLocation End = ExecutionContinues(C); 921 if (const Stmt *S = End.asStmt()) 922 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 923 924 C.getActivePath().push_front( 925 std::make_shared<PathDiagnosticControlFlowPiece>( 926 Start, End, "Loop condition is true. Entering loop body")); 927 } 928 929 break; 930 931 case Stmt::IfStmtClass: { 932 PathDiagnosticLocation End = ExecutionContinues(C); 933 934 if (const Stmt *S = End.asStmt()) 935 End = getEnclosingStmtLocation(S, C.getCurrLocationContext()); 936 937 if (*(Src->succ_begin() + 1) == Dst) 938 C.getActivePath().push_front( 939 std::make_shared<PathDiagnosticControlFlowPiece>( 940 Start, End, "Taking false branch")); 941 else 942 C.getActivePath().push_front( 943 std::make_shared<PathDiagnosticControlFlowPiece>( 944 Start, End, "Taking true branch")); 945 946 break; 947 } 948 } 949 } 950 951 //===----------------------------------------------------------------------===// 952 // Functions for determining if a loop was executed 0 times. 953 //===----------------------------------------------------------------------===// 954 955 static bool isLoop(const Stmt *Term) { 956 switch (Term->getStmtClass()) { 957 case Stmt::ForStmtClass: 958 case Stmt::WhileStmtClass: 959 case Stmt::ObjCForCollectionStmtClass: 960 case Stmt::CXXForRangeStmtClass: 961 return true; 962 default: 963 // Note that we intentionally do not include do..while here. 964 return false; 965 } 966 } 967 968 static bool isJumpToFalseBranch(const BlockEdge *BE) { 969 const CFGBlock *Src = BE->getSrc(); 970 assert(Src->succ_size() == 2); 971 return (*(Src->succ_begin()+1) == BE->getDst()); 972 } 973 974 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S, 975 const Stmt *SubS) { 976 while (SubS) { 977 if (SubS == S) 978 return true; 979 SubS = PM.getParent(SubS); 980 } 981 return false; 982 } 983 984 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term, 985 const ExplodedNode *N) { 986 while (N) { 987 Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>(); 988 if (SP) { 989 const Stmt *S = SP->getStmt(); 990 if (!isContainedByStmt(PM, Term, S)) 991 return S; 992 } 993 N = N->getFirstPred(); 994 } 995 return nullptr; 996 } 997 998 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) { 999 const Stmt *LoopBody = nullptr; 1000 switch (Term->getStmtClass()) { 1001 case Stmt::CXXForRangeStmtClass: { 1002 const auto *FR = cast<CXXForRangeStmt>(Term); 1003 if (isContainedByStmt(PM, FR->getInc(), S)) 1004 return true; 1005 if (isContainedByStmt(PM, FR->getLoopVarStmt(), S)) 1006 return true; 1007 LoopBody = FR->getBody(); 1008 break; 1009 } 1010 case Stmt::ForStmtClass: { 1011 const auto *FS = cast<ForStmt>(Term); 1012 if (isContainedByStmt(PM, FS->getInc(), S)) 1013 return true; 1014 LoopBody = FS->getBody(); 1015 break; 1016 } 1017 case Stmt::ObjCForCollectionStmtClass: { 1018 const auto *FC = cast<ObjCForCollectionStmt>(Term); 1019 LoopBody = FC->getBody(); 1020 break; 1021 } 1022 case Stmt::WhileStmtClass: 1023 LoopBody = cast<WhileStmt>(Term)->getBody(); 1024 break; 1025 default: 1026 return false; 1027 } 1028 return isContainedByStmt(PM, LoopBody, S); 1029 } 1030 1031 /// Adds a sanitized control-flow diagnostic edge to a path. 1032 static void addEdgeToPath(PathPieces &path, 1033 PathDiagnosticLocation &PrevLoc, 1034 PathDiagnosticLocation NewLoc) { 1035 if (!NewLoc.isValid()) 1036 return; 1037 1038 SourceLocation NewLocL = NewLoc.asLocation(); 1039 if (NewLocL.isInvalid()) 1040 return; 1041 1042 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) { 1043 PrevLoc = NewLoc; 1044 return; 1045 } 1046 1047 // Ignore self-edges, which occur when there are multiple nodes at the same 1048 // statement. 1049 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt()) 1050 return; 1051 1052 path.push_front( 1053 std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc)); 1054 PrevLoc = NewLoc; 1055 } 1056 1057 /// A customized wrapper for CFGBlock::getTerminatorCondition() 1058 /// which returns the element for ObjCForCollectionStmts. 1059 static const Stmt *getTerminatorCondition(const CFGBlock *B) { 1060 const Stmt *S = B->getTerminatorCondition(); 1061 if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S)) 1062 return FS->getElement(); 1063 return S; 1064 } 1065 1066 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body"; 1067 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times"; 1068 constexpr llvm::StringLiteral StrLoopRangeEmpty = 1069 "Loop body skipped when range is empty"; 1070 constexpr llvm::StringLiteral StrLoopCollectionEmpty = 1071 "Loop body skipped when collection is empty"; 1072 1073 static std::unique_ptr<FilesToLineNumsMap> 1074 findExecutedLines(const SourceManager &SM, const ExplodedNode *N); 1075 1076 void PathDiagnosticBuilder::generatePathDiagnosticsForNode( 1077 PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const { 1078 ProgramPoint P = C.getCurrentNode()->getLocation(); 1079 const SourceManager &SM = getSourceManager(); 1080 1081 // Have we encountered an entrance to a call? It may be 1082 // the case that we have not encountered a matching 1083 // call exit before this point. This means that the path 1084 // terminated within the call itself. 1085 if (auto CE = P.getAs<CallEnter>()) { 1086 1087 if (C.shouldAddPathEdges()) { 1088 // Add an edge to the start of the function. 1089 const StackFrameContext *CalleeLC = CE->getCalleeContext(); 1090 const Decl *D = CalleeLC->getDecl(); 1091 // Add the edge only when the callee has body. We jump to the beginning 1092 // of the *declaration*, however we expect it to be followed by the 1093 // body. This isn't the case for autosynthesized property accessors in 1094 // Objective-C. No need for a similar extra check for CallExit points 1095 // because the exit edge comes from a statement (i.e. return), 1096 // not from declaration. 1097 if (D->hasBody()) 1098 addEdgeToPath(C.getActivePath(), PrevLoc, 1099 PathDiagnosticLocation::createBegin(D, SM)); 1100 } 1101 1102 // Did we visit an entire call? 1103 bool VisitedEntireCall = C.PD->isWithinCall(); 1104 C.PD->popActivePath(); 1105 1106 PathDiagnosticCallPiece *Call; 1107 if (VisitedEntireCall) { 1108 Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get()); 1109 } else { 1110 // The path terminated within a nested location context, create a new 1111 // call piece to encapsulate the rest of the path pieces. 1112 const Decl *Caller = CE->getLocationContext()->getDecl(); 1113 Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller); 1114 assert(C.getActivePath().size() == 1 && 1115 C.getActivePath().front().get() == Call); 1116 1117 // Since we just transferred the path over to the call piece, reset the 1118 // mapping of the active path to the current location context. 1119 assert(C.isInLocCtxMap(&C.getActivePath()) && 1120 "When we ascend to a previously unvisited call, the active path's " 1121 "address shouldn't change, but rather should be compacted into " 1122 "a single CallEvent!"); 1123 C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext()); 1124 1125 // Record the location context mapping for the path within the call. 1126 assert(!C.isInLocCtxMap(&Call->path) && 1127 "When we ascend to a previously unvisited call, this must be the " 1128 "first time we encounter the caller context!"); 1129 C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); 1130 } 1131 Call->setCallee(*CE, SM); 1132 1133 // Update the previous location in the active path. 1134 PrevLoc = Call->getLocation(); 1135 1136 if (!C.CallStack.empty()) { 1137 assert(C.CallStack.back().first == Call); 1138 C.CallStack.pop_back(); 1139 } 1140 return; 1141 } 1142 1143 assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() && 1144 "The current position in the bug path is out of sync with the " 1145 "location context associated with the active path!"); 1146 1147 // Have we encountered an exit from a function call? 1148 if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 1149 1150 // We are descending into a call (backwards). Construct 1151 // a new call piece to contain the path pieces for that call. 1152 auto Call = PathDiagnosticCallPiece::construct(*CE, SM); 1153 // Record the mapping from call piece to LocationContext. 1154 assert(!C.isInLocCtxMap(&Call->path) && 1155 "We just entered a call, this must've been the first time we " 1156 "encounter its context!"); 1157 C.updateLocCtxMap(&Call->path, CE->getCalleeContext()); 1158 1159 if (C.shouldAddPathEdges()) { 1160 // Add the edge to the return site. 1161 addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn); 1162 PrevLoc.invalidate(); 1163 } 1164 1165 auto *P = Call.get(); 1166 C.getActivePath().push_front(std::move(Call)); 1167 1168 // Make the contents of the call the active path for now. 1169 C.PD->pushActivePath(&P->path); 1170 C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode())); 1171 return; 1172 } 1173 1174 if (auto PS = P.getAs<PostStmt>()) { 1175 if (!C.shouldAddPathEdges()) 1176 return; 1177 1178 // Add an edge. If this is an ObjCForCollectionStmt do 1179 // not add an edge here as it appears in the CFG both 1180 // as a terminator and as a terminator condition. 1181 if (!isa<ObjCForCollectionStmt>(PS->getStmt())) { 1182 PathDiagnosticLocation L = 1183 PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext()); 1184 addEdgeToPath(C.getActivePath(), PrevLoc, L); 1185 } 1186 1187 } else if (auto BE = P.getAs<BlockEdge>()) { 1188 1189 if (!C.shouldAddPathEdges()) { 1190 generateMinimalDiagForBlockEdge(C, *BE); 1191 return; 1192 } 1193 1194 // Are we jumping to the head of a loop? Add a special diagnostic. 1195 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { 1196 PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext()); 1197 const Stmt *Body = nullptr; 1198 1199 if (const auto *FS = dyn_cast<ForStmt>(Loop)) 1200 Body = FS->getBody(); 1201 else if (const auto *WS = dyn_cast<WhileStmt>(Loop)) 1202 Body = WS->getBody(); 1203 else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) { 1204 Body = OFS->getBody(); 1205 } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) { 1206 Body = FRS->getBody(); 1207 } 1208 // do-while statements are explicitly excluded here 1209 1210 auto p = std::make_shared<PathDiagnosticEventPiece>( 1211 L, "Looping back to the head " 1212 "of the loop"); 1213 p->setPrunable(true); 1214 1215 addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation()); 1216 C.getActivePath().push_front(std::move(p)); 1217 1218 if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 1219 addEdgeToPath(C.getActivePath(), PrevLoc, 1220 PathDiagnosticLocation::createEndBrace(CS, SM)); 1221 } 1222 } 1223 1224 const CFGBlock *BSrc = BE->getSrc(); 1225 const ParentMap &PM = C.getParentMap(); 1226 1227 if (const Stmt *Term = BSrc->getTerminatorStmt()) { 1228 // Are we jumping past the loop body without ever executing the 1229 // loop (because the condition was false)? 1230 if (isLoop(Term)) { 1231 const Stmt *TermCond = getTerminatorCondition(BSrc); 1232 bool IsInLoopBody = isInLoopBody( 1233 PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term); 1234 1235 StringRef str; 1236 1237 if (isJumpToFalseBranch(&*BE)) { 1238 if (!IsInLoopBody) { 1239 if (isa<ObjCForCollectionStmt>(Term)) { 1240 str = StrLoopCollectionEmpty; 1241 } else if (isa<CXXForRangeStmt>(Term)) { 1242 str = StrLoopRangeEmpty; 1243 } else { 1244 str = StrLoopBodyZero; 1245 } 1246 } 1247 } else { 1248 str = StrEnteringLoop; 1249 } 1250 1251 if (!str.empty()) { 1252 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, 1253 C.getCurrLocationContext()); 1254 auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str); 1255 PE->setPrunable(true); 1256 addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation()); 1257 C.getActivePath().push_front(std::move(PE)); 1258 } 1259 } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) || 1260 isa<GotoStmt>(Term)) { 1261 PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext()); 1262 addEdgeToPath(C.getActivePath(), PrevLoc, L); 1263 } 1264 } 1265 } 1266 } 1267 1268 static std::unique_ptr<PathDiagnostic> 1269 generateDiagnosticForBasicReport(const BasicBugReport *R) { 1270 const BugType &BT = R->getBugType(); 1271 return std::make_unique<PathDiagnostic>( 1272 BT.getCheckName(), R->getDeclWithIssue(), BT.getName(), 1273 R->getDescription(), R->getShortDescription(/*UseFallback=*/false), 1274 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), 1275 std::make_unique<FilesToLineNumsMap>()); 1276 } 1277 1278 static std::unique_ptr<PathDiagnostic> 1279 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R, 1280 const SourceManager &SM) { 1281 const BugType &BT = R->getBugType(); 1282 return std::make_unique<PathDiagnostic>( 1283 BT.getCheckName(), R->getDeclWithIssue(), BT.getName(), 1284 R->getDescription(), R->getShortDescription(/*UseFallback=*/false), 1285 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(), 1286 findExecutedLines(SM, R->getErrorNode())); 1287 } 1288 1289 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) { 1290 if (!S) 1291 return nullptr; 1292 1293 while (true) { 1294 S = PM.getParentIgnoreParens(S); 1295 1296 if (!S) 1297 break; 1298 1299 if (isa<FullExpr>(S) || 1300 isa<CXXBindTemporaryExpr>(S) || 1301 isa<SubstNonTypeTemplateParmExpr>(S)) 1302 continue; 1303 1304 break; 1305 } 1306 1307 return S; 1308 } 1309 1310 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { 1311 switch (S->getStmtClass()) { 1312 case Stmt::BinaryOperatorClass: { 1313 const auto *BO = cast<BinaryOperator>(S); 1314 if (!BO->isLogicalOp()) 1315 return false; 1316 return BO->getLHS() == Cond || BO->getRHS() == Cond; 1317 } 1318 case Stmt::IfStmtClass: 1319 return cast<IfStmt>(S)->getCond() == Cond; 1320 case Stmt::ForStmtClass: 1321 return cast<ForStmt>(S)->getCond() == Cond; 1322 case Stmt::WhileStmtClass: 1323 return cast<WhileStmt>(S)->getCond() == Cond; 1324 case Stmt::DoStmtClass: 1325 return cast<DoStmt>(S)->getCond() == Cond; 1326 case Stmt::ChooseExprClass: 1327 return cast<ChooseExpr>(S)->getCond() == Cond; 1328 case Stmt::IndirectGotoStmtClass: 1329 return cast<IndirectGotoStmt>(S)->getTarget() == Cond; 1330 case Stmt::SwitchStmtClass: 1331 return cast<SwitchStmt>(S)->getCond() == Cond; 1332 case Stmt::BinaryConditionalOperatorClass: 1333 return cast<BinaryConditionalOperator>(S)->getCond() == Cond; 1334 case Stmt::ConditionalOperatorClass: { 1335 const auto *CO = cast<ConditionalOperator>(S); 1336 return CO->getCond() == Cond || 1337 CO->getLHS() == Cond || 1338 CO->getRHS() == Cond; 1339 } 1340 case Stmt::ObjCForCollectionStmtClass: 1341 return cast<ObjCForCollectionStmt>(S)->getElement() == Cond; 1342 case Stmt::CXXForRangeStmtClass: { 1343 const auto *FRS = cast<CXXForRangeStmt>(S); 1344 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond; 1345 } 1346 default: 1347 return false; 1348 } 1349 } 1350 1351 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) { 1352 if (const auto *FS = dyn_cast<ForStmt>(FL)) 1353 return FS->getInc() == S || FS->getInit() == S; 1354 if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL)) 1355 return FRS->getInc() == S || FRS->getRangeStmt() == S || 1356 FRS->getLoopVarStmt() || FRS->getRangeInit() == S; 1357 return false; 1358 } 1359 1360 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>; 1361 1362 /// Adds synthetic edges from top-level statements to their subexpressions. 1363 /// 1364 /// This avoids a "swoosh" effect, where an edge from a top-level statement A 1365 /// points to a sub-expression B.1 that's not at the start of B. In these cases, 1366 /// we'd like to see an edge from A to B, then another one from B to B.1. 1367 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) { 1368 const ParentMap &PM = LC->getParentMap(); 1369 PathPieces::iterator Prev = pieces.end(); 1370 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E; 1371 Prev = I, ++I) { 1372 auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1373 1374 if (!Piece) 1375 continue; 1376 1377 PathDiagnosticLocation SrcLoc = Piece->getStartLocation(); 1378 SmallVector<PathDiagnosticLocation, 4> SrcContexts; 1379 1380 PathDiagnosticLocation NextSrcContext = SrcLoc; 1381 const Stmt *InnerStmt = nullptr; 1382 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) { 1383 SrcContexts.push_back(NextSrcContext); 1384 InnerStmt = NextSrcContext.asStmt(); 1385 NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC, 1386 /*allowNested=*/true); 1387 } 1388 1389 // Repeatedly split the edge as necessary. 1390 // This is important for nested logical expressions (||, &&, ?:) where we 1391 // want to show all the levels of context. 1392 while (true) { 1393 const Stmt *Dst = Piece->getEndLocation().getStmtOrNull(); 1394 1395 // We are looking at an edge. Is the destination within a larger 1396 // expression? 1397 PathDiagnosticLocation DstContext = 1398 getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true); 1399 if (!DstContext.isValid() || DstContext.asStmt() == Dst) 1400 break; 1401 1402 // If the source is in the same context, we're already good. 1403 if (llvm::find(SrcContexts, DstContext) != SrcContexts.end()) 1404 break; 1405 1406 // Update the subexpression node to point to the context edge. 1407 Piece->setStartLocation(DstContext); 1408 1409 // Try to extend the previous edge if it's at the same level as the source 1410 // context. 1411 if (Prev != E) { 1412 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get()); 1413 1414 if (PrevPiece) { 1415 if (const Stmt *PrevSrc = 1416 PrevPiece->getStartLocation().getStmtOrNull()) { 1417 const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM); 1418 if (PrevSrcParent == 1419 getStmtParent(DstContext.getStmtOrNull(), PM)) { 1420 PrevPiece->setEndLocation(DstContext); 1421 break; 1422 } 1423 } 1424 } 1425 } 1426 1427 // Otherwise, split the current edge into a context edge and a 1428 // subexpression edge. Note that the context statement may itself have 1429 // context. 1430 auto P = 1431 std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext); 1432 Piece = P.get(); 1433 I = pieces.insert(I, std::move(P)); 1434 } 1435 } 1436 } 1437 1438 /// Move edges from a branch condition to a branch target 1439 /// when the condition is simple. 1440 /// 1441 /// This restructures some of the work of addContextEdges. That function 1442 /// creates edges this may destroy, but they work together to create a more 1443 /// aesthetically set of edges around branches. After the call to 1444 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from 1445 /// the branch to the branch condition, and (3) an edge from the branch 1446 /// condition to the branch target. We keep (1), but may wish to remove (2) 1447 /// and move the source of (3) to the branch if the branch condition is simple. 1448 static void simplifySimpleBranches(PathPieces &pieces) { 1449 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) { 1450 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1451 1452 if (!PieceI) 1453 continue; 1454 1455 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1456 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1457 1458 if (!s1Start || !s1End) 1459 continue; 1460 1461 PathPieces::iterator NextI = I; ++NextI; 1462 if (NextI == E) 1463 break; 1464 1465 PathDiagnosticControlFlowPiece *PieceNextI = nullptr; 1466 1467 while (true) { 1468 if (NextI == E) 1469 break; 1470 1471 const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 1472 if (EV) { 1473 StringRef S = EV->getString(); 1474 if (S == StrEnteringLoop || S == StrLoopBodyZero || 1475 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) { 1476 ++NextI; 1477 continue; 1478 } 1479 break; 1480 } 1481 1482 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1483 break; 1484 } 1485 1486 if (!PieceNextI) 1487 continue; 1488 1489 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1490 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1491 1492 if (!s2Start || !s2End || s1End != s2Start) 1493 continue; 1494 1495 // We only perform this transformation for specific branch kinds. 1496 // We don't want to do this for do..while, for example. 1497 if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) || 1498 isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) || 1499 isa<CXXForRangeStmt>(s1Start))) 1500 continue; 1501 1502 // Is s1End the branch condition? 1503 if (!isConditionForTerminator(s1Start, s1End)) 1504 continue; 1505 1506 // Perform the hoisting by eliminating (2) and changing the start 1507 // location of (3). 1508 PieceNextI->setStartLocation(PieceI->getStartLocation()); 1509 I = pieces.erase(I); 1510 } 1511 } 1512 1513 /// Returns the number of bytes in the given (character-based) SourceRange. 1514 /// 1515 /// If the locations in the range are not on the same line, returns None. 1516 /// 1517 /// Note that this does not do a precise user-visible character or column count. 1518 static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM, 1519 SourceRange Range) { 1520 SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()), 1521 SM.getExpansionRange(Range.getEnd()).getEnd()); 1522 1523 FileID FID = SM.getFileID(ExpansionRange.getBegin()); 1524 if (FID != SM.getFileID(ExpansionRange.getEnd())) 1525 return None; 1526 1527 bool Invalid; 1528 const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid); 1529 if (Invalid) 1530 return None; 1531 1532 unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin()); 1533 unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd()); 1534 StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset); 1535 1536 // We're searching the raw bytes of the buffer here, which might include 1537 // escaped newlines and such. That's okay; we're trying to decide whether the 1538 // SourceRange is covering a large or small amount of space in the user's 1539 // editor. 1540 if (Snippet.find_first_of("\r\n") != StringRef::npos) 1541 return None; 1542 1543 // This isn't Unicode-aware, but it doesn't need to be. 1544 return Snippet.size(); 1545 } 1546 1547 /// \sa getLengthOnSingleLine(SourceManager, SourceRange) 1548 static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM, 1549 const Stmt *S) { 1550 return getLengthOnSingleLine(SM, S->getSourceRange()); 1551 } 1552 1553 /// Eliminate two-edge cycles created by addContextEdges(). 1554 /// 1555 /// Once all the context edges are in place, there are plenty of cases where 1556 /// there's a single edge from a top-level statement to a subexpression, 1557 /// followed by a single path note, and then a reverse edge to get back out to 1558 /// the top level. If the statement is simple enough, the subexpression edges 1559 /// just add noise and make it harder to understand what's going on. 1560 /// 1561 /// This function only removes edges in pairs, because removing only one edge 1562 /// might leave other edges dangling. 1563 /// 1564 /// This will not remove edges in more complicated situations: 1565 /// - if there is more than one "hop" leading to or from a subexpression. 1566 /// - if there is an inlined call between the edges instead of a single event. 1567 /// - if the whole statement is large enough that having subexpression arrows 1568 /// might be helpful. 1569 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) { 1570 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) { 1571 // Pattern match the current piece and its successor. 1572 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1573 1574 if (!PieceI) { 1575 ++I; 1576 continue; 1577 } 1578 1579 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1580 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1581 1582 PathPieces::iterator NextI = I; ++NextI; 1583 if (NextI == E) 1584 break; 1585 1586 const auto *PieceNextI = 1587 dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1588 1589 if (!PieceNextI) { 1590 if (isa<PathDiagnosticEventPiece>(NextI->get())) { 1591 ++NextI; 1592 if (NextI == E) 1593 break; 1594 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1595 } 1596 1597 if (!PieceNextI) { 1598 ++I; 1599 continue; 1600 } 1601 } 1602 1603 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1604 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1605 1606 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) { 1607 const size_t MAX_SHORT_LINE_LENGTH = 80; 1608 Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start); 1609 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) { 1610 Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start); 1611 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) { 1612 Path.erase(I); 1613 I = Path.erase(NextI); 1614 continue; 1615 } 1616 } 1617 } 1618 1619 ++I; 1620 } 1621 } 1622 1623 /// Return true if X is contained by Y. 1624 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) { 1625 while (X) { 1626 if (X == Y) 1627 return true; 1628 X = PM.getParent(X); 1629 } 1630 return false; 1631 } 1632 1633 // Remove short edges on the same line less than 3 columns in difference. 1634 static void removePunyEdges(PathPieces &path, const SourceManager &SM, 1635 const ParentMap &PM) { 1636 bool erased = false; 1637 1638 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; 1639 erased ? I : ++I) { 1640 erased = false; 1641 1642 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1643 1644 if (!PieceI) 1645 continue; 1646 1647 const Stmt *start = PieceI->getStartLocation().getStmtOrNull(); 1648 const Stmt *end = PieceI->getEndLocation().getStmtOrNull(); 1649 1650 if (!start || !end) 1651 continue; 1652 1653 const Stmt *endParent = PM.getParent(end); 1654 if (!endParent) 1655 continue; 1656 1657 if (isConditionForTerminator(end, endParent)) 1658 continue; 1659 1660 SourceLocation FirstLoc = start->getBeginLoc(); 1661 SourceLocation SecondLoc = end->getBeginLoc(); 1662 1663 if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc)) 1664 continue; 1665 if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc)) 1666 std::swap(SecondLoc, FirstLoc); 1667 1668 SourceRange EdgeRange(FirstLoc, SecondLoc); 1669 Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange); 1670 1671 // If the statements are on different lines, continue. 1672 if (!ByteWidth) 1673 continue; 1674 1675 const size_t MAX_PUNY_EDGE_LENGTH = 2; 1676 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) { 1677 // FIXME: There are enough /bytes/ between the endpoints of the edge, but 1678 // there might not be enough /columns/. A proper user-visible column count 1679 // is probably too expensive, though. 1680 I = path.erase(I); 1681 erased = true; 1682 continue; 1683 } 1684 } 1685 } 1686 1687 static void removeIdenticalEvents(PathPieces &path) { 1688 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) { 1689 const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get()); 1690 1691 if (!PieceI) 1692 continue; 1693 1694 PathPieces::iterator NextI = I; ++NextI; 1695 if (NextI == E) 1696 return; 1697 1698 const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get()); 1699 1700 if (!PieceNextI) 1701 continue; 1702 1703 // Erase the second piece if it has the same exact message text. 1704 if (PieceI->getString() == PieceNextI->getString()) { 1705 path.erase(NextI); 1706 } 1707 } 1708 } 1709 1710 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path, 1711 OptimizedCallsSet &OCS) { 1712 bool hasChanges = false; 1713 const LocationContext *LC = C.getLocationContextFor(&path); 1714 assert(LC); 1715 const ParentMap &PM = LC->getParentMap(); 1716 const SourceManager &SM = C.getSourceManager(); 1717 1718 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { 1719 // Optimize subpaths. 1720 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) { 1721 // Record the fact that a call has been optimized so we only do the 1722 // effort once. 1723 if (!OCS.count(CallI)) { 1724 while (optimizeEdges(C, CallI->path, OCS)) { 1725 } 1726 OCS.insert(CallI); 1727 } 1728 ++I; 1729 continue; 1730 } 1731 1732 // Pattern match the current piece and its successor. 1733 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get()); 1734 1735 if (!PieceI) { 1736 ++I; 1737 continue; 1738 } 1739 1740 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull(); 1741 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull(); 1742 const Stmt *level1 = getStmtParent(s1Start, PM); 1743 const Stmt *level2 = getStmtParent(s1End, PM); 1744 1745 PathPieces::iterator NextI = I; ++NextI; 1746 if (NextI == E) 1747 break; 1748 1749 const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get()); 1750 1751 if (!PieceNextI) { 1752 ++I; 1753 continue; 1754 } 1755 1756 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull(); 1757 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull(); 1758 const Stmt *level3 = getStmtParent(s2Start, PM); 1759 const Stmt *level4 = getStmtParent(s2End, PM); 1760 1761 // Rule I. 1762 // 1763 // If we have two consecutive control edges whose end/begin locations 1764 // are at the same level (e.g. statements or top-level expressions within 1765 // a compound statement, or siblings share a single ancestor expression), 1766 // then merge them if they have no interesting intermediate event. 1767 // 1768 // For example: 1769 // 1770 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common 1771 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. 1772 // 1773 // NOTE: this will be limited later in cases where we add barriers 1774 // to prevent this optimization. 1775 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { 1776 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1777 path.erase(NextI); 1778 hasChanges = true; 1779 continue; 1780 } 1781 1782 // Rule II. 1783 // 1784 // Eliminate edges between subexpressions and parent expressions 1785 // when the subexpression is consumed. 1786 // 1787 // NOTE: this will be limited later in cases where we add barriers 1788 // to prevent this optimization. 1789 if (s1End && s1End == s2Start && level2) { 1790 bool removeEdge = false; 1791 // Remove edges into the increment or initialization of a 1792 // loop that have no interleaving event. This means that 1793 // they aren't interesting. 1794 if (isIncrementOrInitInForLoop(s1End, level2)) 1795 removeEdge = true; 1796 // Next only consider edges that are not anchored on 1797 // the condition of a terminator. This are intermediate edges 1798 // that we might want to trim. 1799 else if (!isConditionForTerminator(level2, s1End)) { 1800 // Trim edges on expressions that are consumed by 1801 // the parent expression. 1802 if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) { 1803 removeEdge = true; 1804 } 1805 // Trim edges where a lexical containment doesn't exist. 1806 // For example: 1807 // 1808 // X -> Y -> Z 1809 // 1810 // If 'Z' lexically contains Y (it is an ancestor) and 1811 // 'X' does not lexically contain Y (it is a descendant OR 1812 // it has no lexical relationship at all) then trim. 1813 // 1814 // This can eliminate edges where we dive into a subexpression 1815 // and then pop back out, etc. 1816 else if (s1Start && s2End && 1817 lexicalContains(PM, s2Start, s2End) && 1818 !lexicalContains(PM, s1End, s1Start)) { 1819 removeEdge = true; 1820 } 1821 // Trim edges from a subexpression back to the top level if the 1822 // subexpression is on a different line. 1823 // 1824 // A.1 -> A -> B 1825 // becomes 1826 // A.1 -> B 1827 // 1828 // These edges just look ugly and don't usually add anything. 1829 else if (s1Start && s2End && 1830 lexicalContains(PM, s1Start, s1End)) { 1831 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(), 1832 PieceI->getStartLocation().asLocation()); 1833 if (!getLengthOnSingleLine(SM, EdgeRange).hasValue()) 1834 removeEdge = true; 1835 } 1836 } 1837 1838 if (removeEdge) { 1839 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1840 path.erase(NextI); 1841 hasChanges = true; 1842 continue; 1843 } 1844 } 1845 1846 // Optimize edges for ObjC fast-enumeration loops. 1847 // 1848 // (X -> collection) -> (collection -> element) 1849 // 1850 // becomes: 1851 // 1852 // (X -> element) 1853 if (s1End == s2Start) { 1854 const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3); 1855 if (FS && FS->getCollection()->IgnoreParens() == s2Start && 1856 s2End == FS->getElement()) { 1857 PieceI->setEndLocation(PieceNextI->getEndLocation()); 1858 path.erase(NextI); 1859 hasChanges = true; 1860 continue; 1861 } 1862 } 1863 1864 // No changes at this index? Move to the next one. 1865 ++I; 1866 } 1867 1868 if (!hasChanges) { 1869 // Adjust edges into subexpressions to make them more uniform 1870 // and aesthetically pleasing. 1871 addContextEdges(path, LC); 1872 // Remove "cyclical" edges that include one or more context edges. 1873 removeContextCycles(path, SM); 1874 // Hoist edges originating from branch conditions to branches 1875 // for simple branches. 1876 simplifySimpleBranches(path); 1877 // Remove any puny edges left over after primary optimization pass. 1878 removePunyEdges(path, SM, PM); 1879 // Remove identical events. 1880 removeIdenticalEvents(path); 1881 } 1882 1883 return hasChanges; 1884 } 1885 1886 /// Drop the very first edge in a path, which should be a function entry edge. 1887 /// 1888 /// If the first edge is not a function entry edge (say, because the first 1889 /// statement had an invalid source location), this function does nothing. 1890 // FIXME: We should just generate invalid edges anyway and have the optimizer 1891 // deal with them. 1892 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C, 1893 PathPieces &Path) { 1894 const auto *FirstEdge = 1895 dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get()); 1896 if (!FirstEdge) 1897 return; 1898 1899 const Decl *D = C.getLocationContextFor(&Path)->getDecl(); 1900 PathDiagnosticLocation EntryLoc = 1901 PathDiagnosticLocation::createBegin(D, C.getSourceManager()); 1902 if (FirstEdge->getStartLocation() != EntryLoc) 1903 return; 1904 1905 Path.pop_front(); 1906 } 1907 1908 /// Populate executes lines with lines containing at least one diagnostics. 1909 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) { 1910 1911 PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true); 1912 FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines(); 1913 1914 for (const auto &P : path) { 1915 FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc(); 1916 FileID FID = Loc.getFileID(); 1917 unsigned LineNo = Loc.getLineNumber(); 1918 assert(FID.isValid()); 1919 ExecutedLines[FID].insert(LineNo); 1920 } 1921 } 1922 1923 PathDiagnosticConstruct::PathDiagnosticConstruct( 1924 const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode, 1925 const PathSensitiveBugReport *R) 1926 : Consumer(PDC), CurrentNode(ErrorNode), 1927 SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()), 1928 PD(generateEmptyDiagnosticForReport(R, getSourceManager())) { 1929 LCM[&PD->getActivePath()] = ErrorNode->getLocationContext(); 1930 } 1931 1932 PathDiagnosticBuilder::PathDiagnosticBuilder( 1933 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath, 1934 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode, 1935 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics) 1936 : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r), 1937 ErrorNode(ErrorNode), 1938 VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {} 1939 1940 std::unique_ptr<PathDiagnostic> 1941 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const { 1942 PathDiagnosticConstruct Construct(PDC, ErrorNode, R); 1943 1944 const SourceManager &SM = getSourceManager(); 1945 const AnalyzerOptions &Opts = getAnalyzerOptions(); 1946 StringRef ErrorTag = ErrorNode->getLocation().getTag()->getTagDescription(); 1947 1948 // See whether we need to silence the checker/package. 1949 // FIXME: This will not work if the report was emitted with an incorrect tag. 1950 for (const std::string &CheckerOrPackage : Opts.SilencedCheckersAndPackages) { 1951 if (ErrorTag.startswith(CheckerOrPackage)) 1952 return nullptr; 1953 } 1954 1955 if (!PDC->shouldGenerateDiagnostics()) 1956 return generateEmptyDiagnosticForReport(R, getSourceManager()); 1957 1958 // Construct the final (warning) event for the bug report. 1959 auto EndNotes = VisitorsDiagnostics->find(ErrorNode); 1960 PathDiagnosticPieceRef LastPiece; 1961 if (EndNotes != VisitorsDiagnostics->end()) { 1962 assert(!EndNotes->second.empty()); 1963 LastPiece = EndNotes->second[0]; 1964 } else { 1965 LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode, 1966 *getBugReport()); 1967 } 1968 Construct.PD->setEndOfPath(LastPiece); 1969 1970 PathDiagnosticLocation PrevLoc = Construct.PD->getLocation(); 1971 // From the error node to the root, ascend the bug path and construct the bug 1972 // report. 1973 while (Construct.ascendToPrevNode()) { 1974 generatePathDiagnosticsForNode(Construct, PrevLoc); 1975 1976 auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode()); 1977 if (VisitorNotes == VisitorsDiagnostics->end()) 1978 continue; 1979 1980 // This is a workaround due to inability to put shared PathDiagnosticPiece 1981 // into a FoldingSet. 1982 std::set<llvm::FoldingSetNodeID> DeduplicationSet; 1983 1984 // Add pieces from custom visitors. 1985 for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) { 1986 llvm::FoldingSetNodeID ID; 1987 Note->Profile(ID); 1988 if (!DeduplicationSet.insert(ID).second) 1989 continue; 1990 1991 if (PDC->shouldAddPathEdges()) 1992 addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation()); 1993 updateStackPiecesWithMessage(*Note, Construct.CallStack); 1994 Construct.getActivePath().push_front(Note); 1995 } 1996 } 1997 1998 if (PDC->shouldAddPathEdges()) { 1999 // Add an edge to the start of the function. 2000 // We'll prune it out later, but it helps make diagnostics more uniform. 2001 const StackFrameContext *CalleeLC = 2002 Construct.getLocationContextForActivePath()->getStackFrame(); 2003 const Decl *D = CalleeLC->getDecl(); 2004 addEdgeToPath(Construct.getActivePath(), PrevLoc, 2005 PathDiagnosticLocation::createBegin(D, SM)); 2006 } 2007 2008 2009 // Finally, prune the diagnostic path of uninteresting stuff. 2010 if (!Construct.PD->path.empty()) { 2011 if (R->shouldPrunePath() && Opts.ShouldPrunePaths) { 2012 bool stillHasNotes = 2013 removeUnneededCalls(Construct, Construct.getMutablePieces(), R); 2014 assert(stillHasNotes); 2015 (void)stillHasNotes; 2016 } 2017 2018 // Remove pop-up notes if needed. 2019 if (!Opts.ShouldAddPopUpNotes) 2020 removePopUpNotes(Construct.getMutablePieces()); 2021 2022 // Redirect all call pieces to have valid locations. 2023 adjustCallLocations(Construct.getMutablePieces()); 2024 removePiecesWithInvalidLocations(Construct.getMutablePieces()); 2025 2026 if (PDC->shouldAddPathEdges()) { 2027 2028 // Reduce the number of edges from a very conservative set 2029 // to an aesthetically pleasing subset that conveys the 2030 // necessary information. 2031 OptimizedCallsSet OCS; 2032 while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) { 2033 } 2034 2035 // Drop the very first function-entry edge. It's not really necessary 2036 // for top-level functions. 2037 dropFunctionEntryEdge(Construct, Construct.getMutablePieces()); 2038 } 2039 2040 // Remove messages that are basically the same, and edges that may not 2041 // make sense. 2042 // We have to do this after edge optimization in the Extensive mode. 2043 removeRedundantMsgs(Construct.getMutablePieces()); 2044 removeEdgesToDefaultInitializers(Construct.getMutablePieces()); 2045 } 2046 2047 if (Opts.ShouldDisplayMacroExpansions) 2048 CompactMacroExpandedPieces(Construct.getMutablePieces(), SM); 2049 2050 return std::move(Construct.PD); 2051 } 2052 2053 //===----------------------------------------------------------------------===// 2054 // Methods for BugType and subclasses. 2055 //===----------------------------------------------------------------------===// 2056 2057 void BugType::anchor() {} 2058 2059 void BuiltinBug::anchor() {} 2060 2061 //===----------------------------------------------------------------------===// 2062 // Methods for BugReport and subclasses. 2063 //===----------------------------------------------------------------------===// 2064 2065 void PathSensitiveBugReport::addVisitor( 2066 std::unique_ptr<BugReporterVisitor> visitor) { 2067 if (!visitor) 2068 return; 2069 2070 llvm::FoldingSetNodeID ID; 2071 visitor->Profile(ID); 2072 2073 void *InsertPos = nullptr; 2074 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) { 2075 return; 2076 } 2077 2078 Callbacks.push_back(std::move(visitor)); 2079 } 2080 2081 void PathSensitiveBugReport::clearVisitors() { 2082 Callbacks.clear(); 2083 } 2084 2085 const Decl *PathSensitiveBugReport::getDeclWithIssue() const { 2086 const ExplodedNode *N = getErrorNode(); 2087 if (!N) 2088 return nullptr; 2089 2090 const LocationContext *LC = N->getLocationContext(); 2091 return LC->getStackFrame()->getDecl(); 2092 } 2093 2094 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const { 2095 hash.AddInteger(static_cast<int>(getKind())); 2096 hash.AddPointer(&BT); 2097 hash.AddString(Description); 2098 assert(Location.isValid()); 2099 Location.Profile(hash); 2100 2101 for (SourceRange range : Ranges) { 2102 if (!range.isValid()) 2103 continue; 2104 hash.AddInteger(range.getBegin().getRawEncoding()); 2105 hash.AddInteger(range.getEnd().getRawEncoding()); 2106 } 2107 } 2108 2109 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const { 2110 hash.AddInteger(static_cast<int>(getKind())); 2111 hash.AddPointer(&BT); 2112 hash.AddString(Description); 2113 PathDiagnosticLocation UL = getUniqueingLocation(); 2114 if (UL.isValid()) { 2115 UL.Profile(hash); 2116 } else { 2117 assert(ErrorNode); 2118 hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode)); 2119 } 2120 2121 for (SourceRange range : Ranges) { 2122 if (!range.isValid()) 2123 continue; 2124 hash.AddInteger(range.getBegin().getRawEncoding()); 2125 hash.AddInteger(range.getEnd().getRawEncoding()); 2126 } 2127 } 2128 2129 template <class T> 2130 static void insertToInterestingnessMap( 2131 llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val, 2132 bugreporter::TrackingKind TKind) { 2133 auto Result = InterestingnessMap.insert({Val, TKind}); 2134 2135 if (Result.second) 2136 return; 2137 2138 // Even if this symbol/region was already marked as interesting as a 2139 // condition, if we later mark it as interesting again but with 2140 // thorough tracking, overwrite it. Entities marked with thorough 2141 // interestiness are the most important (or most interesting, if you will), 2142 // and we wouldn't like to downplay their importance. 2143 2144 switch (TKind) { 2145 case bugreporter::TrackingKind::Thorough: 2146 Result.first->getSecond() = bugreporter::TrackingKind::Thorough; 2147 return; 2148 case bugreporter::TrackingKind::Condition: 2149 return; 2150 } 2151 2152 llvm_unreachable( 2153 "BugReport::markInteresting currently can only handle 2 different " 2154 "tracking kinds! Please define what tracking kind should this entitiy" 2155 "have, if it was already marked as interesting with a different kind!"); 2156 } 2157 2158 void PathSensitiveBugReport::markInteresting(SymbolRef sym, 2159 bugreporter::TrackingKind TKind) { 2160 if (!sym) 2161 return; 2162 2163 insertToInterestingnessMap(InterestingSymbols, sym, TKind); 2164 2165 if (const auto *meta = dyn_cast<SymbolMetadata>(sym)) 2166 markInteresting(meta->getRegion(), TKind); 2167 } 2168 2169 void PathSensitiveBugReport::markInteresting(const MemRegion *R, 2170 bugreporter::TrackingKind TKind) { 2171 if (!R) 2172 return; 2173 2174 R = R->getBaseRegion(); 2175 insertToInterestingnessMap(InterestingRegions, R, TKind); 2176 2177 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2178 markInteresting(SR->getSymbol(), TKind); 2179 } 2180 2181 void PathSensitiveBugReport::markInteresting(SVal V, 2182 bugreporter::TrackingKind TKind) { 2183 markInteresting(V.getAsRegion(), TKind); 2184 markInteresting(V.getAsSymbol(), TKind); 2185 } 2186 2187 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) { 2188 if (!LC) 2189 return; 2190 InterestingLocationContexts.insert(LC); 2191 } 2192 2193 Optional<bugreporter::TrackingKind> 2194 PathSensitiveBugReport::getInterestingnessKind(SVal V) const { 2195 auto RKind = getInterestingnessKind(V.getAsRegion()); 2196 auto SKind = getInterestingnessKind(V.getAsSymbol()); 2197 if (!RKind) 2198 return SKind; 2199 if (!SKind) 2200 return RKind; 2201 2202 // If either is marked with throrough tracking, return that, we wouldn't like 2203 // to downplay a note's importance by 'only' mentioning it as a condition. 2204 switch(*RKind) { 2205 case bugreporter::TrackingKind::Thorough: 2206 return RKind; 2207 case bugreporter::TrackingKind::Condition: 2208 return SKind; 2209 } 2210 2211 llvm_unreachable( 2212 "BugReport::getInterestingnessKind currently can only handle 2 different " 2213 "tracking kinds! Please define what tracking kind should we return here " 2214 "when the kind of getAsRegion() and getAsSymbol() is different!"); 2215 return None; 2216 } 2217 2218 Optional<bugreporter::TrackingKind> 2219 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const { 2220 if (!sym) 2221 return None; 2222 // We don't currently consider metadata symbols to be interesting 2223 // even if we know their region is interesting. Is that correct behavior? 2224 auto It = InterestingSymbols.find(sym); 2225 if (It == InterestingSymbols.end()) 2226 return None; 2227 return It->getSecond(); 2228 } 2229 2230 Optional<bugreporter::TrackingKind> 2231 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const { 2232 if (!R) 2233 return None; 2234 2235 R = R->getBaseRegion(); 2236 auto It = InterestingRegions.find(R); 2237 if (It != InterestingRegions.end()) 2238 return It->getSecond(); 2239 2240 if (const auto *SR = dyn_cast<SymbolicRegion>(R)) 2241 return getInterestingnessKind(SR->getSymbol()); 2242 return None; 2243 } 2244 2245 bool PathSensitiveBugReport::isInteresting(SVal V) const { 2246 return getInterestingnessKind(V).hasValue(); 2247 } 2248 2249 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const { 2250 return getInterestingnessKind(sym).hasValue(); 2251 } 2252 2253 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const { 2254 return getInterestingnessKind(R).hasValue(); 2255 } 2256 2257 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC) const { 2258 if (!LC) 2259 return false; 2260 return InterestingLocationContexts.count(LC); 2261 } 2262 2263 const Stmt *PathSensitiveBugReport::getStmt() const { 2264 if (!ErrorNode) 2265 return nullptr; 2266 2267 ProgramPoint ProgP = ErrorNode->getLocation(); 2268 const Stmt *S = nullptr; 2269 2270 if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) { 2271 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); 2272 if (BE->getBlock() == &Exit) 2273 S = GetPreviousStmt(ErrorNode); 2274 } 2275 if (!S) 2276 S = PathDiagnosticLocation::getStmt(ErrorNode); 2277 2278 return S; 2279 } 2280 2281 ArrayRef<SourceRange> 2282 PathSensitiveBugReport::getRanges() const { 2283 // If no custom ranges, add the range of the statement corresponding to 2284 // the error node. 2285 if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt())) 2286 return ErrorNodeRange; 2287 2288 return Ranges; 2289 } 2290 2291 PathDiagnosticLocation 2292 PathSensitiveBugReport::getLocation() const { 2293 return PathDiagnosticLocation::createEndOfPath(ErrorNode); 2294 } 2295 2296 //===----------------------------------------------------------------------===// 2297 // Methods for BugReporter and subclasses. 2298 //===----------------------------------------------------------------------===// 2299 2300 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const { 2301 return Eng.getGraph(); 2302 } 2303 2304 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const { 2305 return Eng.getStateManager(); 2306 } 2307 2308 BugReporter::~BugReporter() { 2309 // Make sure reports are flushed. 2310 assert(StrBugTypes.empty() && 2311 "Destroying BugReporter before diagnostics are emitted!"); 2312 2313 // Free the bug reports we are tracking. 2314 for (const auto I : EQClassesVector) 2315 delete I; 2316 } 2317 2318 void BugReporter::FlushReports() { 2319 // We need to flush reports in deterministic order to ensure the order 2320 // of the reports is consistent between runs. 2321 for (const auto EQ : EQClassesVector) 2322 FlushReport(*EQ); 2323 2324 // BugReporter owns and deletes only BugTypes created implicitly through 2325 // EmitBasicReport. 2326 // FIXME: There are leaks from checkers that assume that the BugTypes they 2327 // create will be destroyed by the BugReporter. 2328 llvm::DeleteContainerSeconds(StrBugTypes); 2329 } 2330 2331 //===----------------------------------------------------------------------===// 2332 // PathDiagnostics generation. 2333 //===----------------------------------------------------------------------===// 2334 2335 namespace { 2336 2337 /// A wrapper around an ExplodedGraph that contains a single path from the root 2338 /// to the error node. 2339 class BugPathInfo { 2340 public: 2341 std::unique_ptr<ExplodedGraph> BugPath; 2342 PathSensitiveBugReport *Report; 2343 const ExplodedNode *ErrorNode; 2344 }; 2345 2346 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can 2347 /// conveniently retrieve bug paths from a single error node to the root. 2348 class BugPathGetter { 2349 std::unique_ptr<ExplodedGraph> TrimmedGraph; 2350 2351 using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>; 2352 2353 /// Assign each node with its distance from the root. 2354 PriorityMapTy PriorityMap; 2355 2356 /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph, 2357 /// we need to pair it to the error node of the constructed trimmed graph. 2358 using ReportNewNodePair = 2359 std::pair<PathSensitiveBugReport *, const ExplodedNode *>; 2360 SmallVector<ReportNewNodePair, 32> ReportNodes; 2361 2362 BugPathInfo CurrentBugPath; 2363 2364 /// A helper class for sorting ExplodedNodes by priority. 2365 template <bool Descending> 2366 class PriorityCompare { 2367 const PriorityMapTy &PriorityMap; 2368 2369 public: 2370 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {} 2371 2372 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const { 2373 PriorityMapTy::const_iterator LI = PriorityMap.find(LHS); 2374 PriorityMapTy::const_iterator RI = PriorityMap.find(RHS); 2375 PriorityMapTy::const_iterator E = PriorityMap.end(); 2376 2377 if (LI == E) 2378 return Descending; 2379 if (RI == E) 2380 return !Descending; 2381 2382 return Descending ? LI->second > RI->second 2383 : LI->second < RI->second; 2384 } 2385 2386 bool operator()(const ReportNewNodePair &LHS, 2387 const ReportNewNodePair &RHS) const { 2388 return (*this)(LHS.second, RHS.second); 2389 } 2390 }; 2391 2392 public: 2393 BugPathGetter(const ExplodedGraph *OriginalGraph, 2394 ArrayRef<PathSensitiveBugReport *> &bugReports); 2395 2396 BugPathInfo *getNextBugPath(); 2397 }; 2398 2399 } // namespace 2400 2401 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph, 2402 ArrayRef<PathSensitiveBugReport *> &bugReports) { 2403 SmallVector<const ExplodedNode *, 32> Nodes; 2404 for (const auto I : bugReports) { 2405 assert(I->isValid() && 2406 "We only allow BugReporterVisitors and BugReporter itself to " 2407 "invalidate reports!"); 2408 Nodes.emplace_back(I->getErrorNode()); 2409 } 2410 2411 // The trimmed graph is created in the body of the constructor to ensure 2412 // that the DenseMaps have been initialized already. 2413 InterExplodedGraphMap ForwardMap; 2414 TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap); 2415 2416 // Find the (first) error node in the trimmed graph. We just need to consult 2417 // the node map which maps from nodes in the original graph to nodes 2418 // in the new graph. 2419 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes; 2420 2421 for (PathSensitiveBugReport *Report : bugReports) { 2422 const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode()); 2423 assert(NewNode && 2424 "Failed to construct a trimmed graph that contains this error " 2425 "node!"); 2426 ReportNodes.emplace_back(Report, NewNode); 2427 RemainingNodes.insert(NewNode); 2428 } 2429 2430 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph"); 2431 2432 // Perform a forward BFS to find all the shortest paths. 2433 std::queue<const ExplodedNode *> WS; 2434 2435 assert(TrimmedGraph->num_roots() == 1); 2436 WS.push(*TrimmedGraph->roots_begin()); 2437 unsigned Priority = 0; 2438 2439 while (!WS.empty()) { 2440 const ExplodedNode *Node = WS.front(); 2441 WS.pop(); 2442 2443 PriorityMapTy::iterator PriorityEntry; 2444 bool IsNew; 2445 std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority}); 2446 ++Priority; 2447 2448 if (!IsNew) { 2449 assert(PriorityEntry->second <= Priority); 2450 continue; 2451 } 2452 2453 if (RemainingNodes.erase(Node)) 2454 if (RemainingNodes.empty()) 2455 break; 2456 2457 for (const ExplodedNode *Succ : Node->succs()) 2458 WS.push(Succ); 2459 } 2460 2461 // Sort the error paths from longest to shortest. 2462 llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap)); 2463 } 2464 2465 BugPathInfo *BugPathGetter::getNextBugPath() { 2466 if (ReportNodes.empty()) 2467 return nullptr; 2468 2469 const ExplodedNode *OrigN; 2470 std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val(); 2471 assert(PriorityMap.find(OrigN) != PriorityMap.end() && 2472 "error node not accessible from root"); 2473 2474 // Create a new graph with a single path. This is the graph that will be 2475 // returned to the caller. 2476 auto GNew = std::make_unique<ExplodedGraph>(); 2477 2478 // Now walk from the error node up the BFS path, always taking the 2479 // predeccessor with the lowest number. 2480 ExplodedNode *Succ = nullptr; 2481 while (true) { 2482 // Create the equivalent node in the new graph with the same state 2483 // and location. 2484 ExplodedNode *NewN = GNew->createUncachedNode( 2485 OrigN->getLocation(), OrigN->getState(), OrigN->isSink()); 2486 2487 // Link up the new node with the previous node. 2488 if (Succ) 2489 Succ->addPredecessor(NewN, *GNew); 2490 else 2491 CurrentBugPath.ErrorNode = NewN; 2492 2493 Succ = NewN; 2494 2495 // Are we at the final node? 2496 if (OrigN->pred_empty()) { 2497 GNew->addRoot(NewN); 2498 break; 2499 } 2500 2501 // Find the next predeccessor node. We choose the node that is marked 2502 // with the lowest BFS number. 2503 OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(), 2504 PriorityCompare<false>(PriorityMap)); 2505 } 2506 2507 CurrentBugPath.BugPath = std::move(GNew); 2508 2509 return &CurrentBugPath; 2510 } 2511 2512 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic 2513 /// object and collapses PathDiagosticPieces that are expanded by macros. 2514 static void CompactMacroExpandedPieces(PathPieces &path, 2515 const SourceManager& SM) { 2516 using MacroStackTy = std::vector< 2517 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>; 2518 2519 using PiecesTy = std::vector<PathDiagnosticPieceRef>; 2520 2521 MacroStackTy MacroStack; 2522 PiecesTy Pieces; 2523 2524 for (PathPieces::const_iterator I = path.begin(), E = path.end(); 2525 I != E; ++I) { 2526 const auto &piece = *I; 2527 2528 // Recursively compact calls. 2529 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) { 2530 CompactMacroExpandedPieces(call->path, SM); 2531 } 2532 2533 // Get the location of the PathDiagnosticPiece. 2534 const FullSourceLoc Loc = piece->getLocation().asLocation(); 2535 2536 // Determine the instantiation location, which is the location we group 2537 // related PathDiagnosticPieces. 2538 SourceLocation InstantiationLoc = Loc.isMacroID() ? 2539 SM.getExpansionLoc(Loc) : 2540 SourceLocation(); 2541 2542 if (Loc.isFileID()) { 2543 MacroStack.clear(); 2544 Pieces.push_back(piece); 2545 continue; 2546 } 2547 2548 assert(Loc.isMacroID()); 2549 2550 // Is the PathDiagnosticPiece within the same macro group? 2551 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { 2552 MacroStack.back().first->subPieces.push_back(piece); 2553 continue; 2554 } 2555 2556 // We aren't in the same group. Are we descending into a new macro 2557 // or are part of an old one? 2558 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup; 2559 2560 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? 2561 SM.getExpansionLoc(Loc) : 2562 SourceLocation(); 2563 2564 // Walk the entire macro stack. 2565 while (!MacroStack.empty()) { 2566 if (InstantiationLoc == MacroStack.back().second) { 2567 MacroGroup = MacroStack.back().first; 2568 break; 2569 } 2570 2571 if (ParentInstantiationLoc == MacroStack.back().second) { 2572 MacroGroup = MacroStack.back().first; 2573 break; 2574 } 2575 2576 MacroStack.pop_back(); 2577 } 2578 2579 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { 2580 // Create a new macro group and add it to the stack. 2581 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>( 2582 PathDiagnosticLocation::createSingleLocation(piece->getLocation())); 2583 2584 if (MacroGroup) 2585 MacroGroup->subPieces.push_back(NewGroup); 2586 else { 2587 assert(InstantiationLoc.isFileID()); 2588 Pieces.push_back(NewGroup); 2589 } 2590 2591 MacroGroup = NewGroup; 2592 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); 2593 } 2594 2595 // Finally, add the PathDiagnosticPiece to the group. 2596 MacroGroup->subPieces.push_back(piece); 2597 } 2598 2599 // Now take the pieces and construct a new PathDiagnostic. 2600 path.clear(); 2601 2602 path.insert(path.end(), Pieces.begin(), Pieces.end()); 2603 } 2604 2605 /// Generate notes from all visitors. 2606 /// Notes associated with {@code ErrorNode} are generated using 2607 /// {@code getEndPath}, and the rest are generated with {@code VisitNode}. 2608 static std::unique_ptr<VisitorsDiagnosticsTy> 2609 generateVisitorsDiagnostics(PathSensitiveBugReport *R, 2610 const ExplodedNode *ErrorNode, 2611 BugReporterContext &BRC) { 2612 std::unique_ptr<VisitorsDiagnosticsTy> Notes = 2613 std::make_unique<VisitorsDiagnosticsTy>(); 2614 PathSensitiveBugReport::VisitorList visitors; 2615 2616 // Run visitors on all nodes starting from the node *before* the last one. 2617 // The last node is reserved for notes generated with {@code getEndPath}. 2618 const ExplodedNode *NextNode = ErrorNode->getFirstPred(); 2619 while (NextNode) { 2620 2621 // At each iteration, move all visitors from report to visitor list. This is 2622 // important, because the Profile() functions of the visitors make sure that 2623 // a visitor isn't added multiple times for the same node, but it's fine 2624 // to add the a visitor with Profile() for different nodes (e.g. tracking 2625 // a region at different points of the symbolic execution). 2626 for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors()) 2627 visitors.push_back(std::move(Visitor)); 2628 2629 R->clearVisitors(); 2630 2631 const ExplodedNode *Pred = NextNode->getFirstPred(); 2632 if (!Pred) { 2633 PathDiagnosticPieceRef LastPiece; 2634 for (auto &V : visitors) { 2635 V->finalizeVisitor(BRC, ErrorNode, *R); 2636 2637 if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) { 2638 assert(!LastPiece && 2639 "There can only be one final piece in a diagnostic."); 2640 assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event && 2641 "The final piece must contain a message!"); 2642 LastPiece = std::move(Piece); 2643 (*Notes)[ErrorNode].push_back(LastPiece); 2644 } 2645 } 2646 break; 2647 } 2648 2649 for (auto &V : visitors) { 2650 auto P = V->VisitNode(NextNode, BRC, *R); 2651 if (P) 2652 (*Notes)[NextNode].push_back(std::move(P)); 2653 } 2654 2655 if (!R->isValid()) 2656 break; 2657 2658 NextNode = Pred; 2659 } 2660 2661 return Notes; 2662 } 2663 2664 Optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport( 2665 ArrayRef<PathSensitiveBugReport *> &bugReports, 2666 PathSensitiveBugReporter &Reporter) { 2667 2668 BugPathGetter BugGraph(&Reporter.getGraph(), bugReports); 2669 2670 while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) { 2671 // Find the BugReport with the original location. 2672 PathSensitiveBugReport *R = BugPath->Report; 2673 assert(R && "No original report found for sliced graph."); 2674 assert(R->isValid() && "Report selected by trimmed graph marked invalid."); 2675 const ExplodedNode *ErrorNode = BugPath->ErrorNode; 2676 2677 // Register refutation visitors first, if they mark the bug invalid no 2678 // further analysis is required 2679 R->addVisitor(std::make_unique<LikelyFalsePositiveSuppressionBRVisitor>()); 2680 2681 // Register additional node visitors. 2682 R->addVisitor(std::make_unique<NilReceiverBRVisitor>()); 2683 R->addVisitor(std::make_unique<ConditionBRVisitor>()); 2684 R->addVisitor(std::make_unique<TagVisitor>()); 2685 2686 BugReporterContext BRC(Reporter); 2687 2688 // Run all visitors on a given graph, once. 2689 std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes = 2690 generateVisitorsDiagnostics(R, ErrorNode, BRC); 2691 2692 if (R->isValid()) { 2693 if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) { 2694 // If crosscheck is enabled, remove all visitors, add the refutation 2695 // visitor and check again 2696 R->clearVisitors(); 2697 R->addVisitor(std::make_unique<FalsePositiveRefutationBRVisitor>()); 2698 2699 // We don't overrite the notes inserted by other visitors because the 2700 // refutation manager does not add any new note to the path 2701 generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC); 2702 } 2703 2704 // Check if the bug is still valid 2705 if (R->isValid()) 2706 return PathDiagnosticBuilder( 2707 std::move(BRC), std::move(BugPath->BugPath), BugPath->Report, 2708 BugPath->ErrorNode, std::move(visitorNotes)); 2709 } 2710 } 2711 2712 return {}; 2713 } 2714 2715 std::unique_ptr<DiagnosticForConsumerMapTy> 2716 PathSensitiveBugReporter::generatePathDiagnostics( 2717 ArrayRef<PathDiagnosticConsumer *> consumers, 2718 ArrayRef<PathSensitiveBugReport *> &bugReports) { 2719 assert(!bugReports.empty()); 2720 2721 auto Out = std::make_unique<DiagnosticForConsumerMapTy>(); 2722 2723 Optional<PathDiagnosticBuilder> PDB = 2724 PathDiagnosticBuilder::findValidReport(bugReports, *this); 2725 2726 if (PDB) { 2727 for (PathDiagnosticConsumer *PC : consumers) { 2728 if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) { 2729 (*Out)[PC] = std::move(PD); 2730 } 2731 } 2732 } 2733 2734 return Out; 2735 } 2736 2737 void BugReporter::emitReport(std::unique_ptr<BugReport> R) { 2738 bool ValidSourceLoc = R->getLocation().isValid(); 2739 assert(ValidSourceLoc); 2740 // If we mess up in a release build, we'd still prefer to just drop the bug 2741 // instead of trying to go on. 2742 if (!ValidSourceLoc) 2743 return; 2744 2745 // Compute the bug report's hash to determine its equivalence class. 2746 llvm::FoldingSetNodeID ID; 2747 R->Profile(ID); 2748 2749 // Lookup the equivance class. If there isn't one, create it. 2750 void *InsertPos; 2751 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); 2752 2753 if (!EQ) { 2754 EQ = new BugReportEquivClass(std::move(R)); 2755 EQClasses.InsertNode(EQ, InsertPos); 2756 EQClassesVector.push_back(EQ); 2757 } else 2758 EQ->AddReport(std::move(R)); 2759 } 2760 2761 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) { 2762 if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get())) 2763 if (const ExplodedNode *E = PR->getErrorNode()) { 2764 // An error node must either be a sink or have a tag, otherwise 2765 // it could get reclaimed before the path diagnostic is created. 2766 assert((E->isSink() || E->getLocation().getTag()) && 2767 "Error node must either be a sink or have a tag"); 2768 2769 const AnalysisDeclContext *DeclCtx = 2770 E->getLocationContext()->getAnalysisDeclContext(); 2771 // The source of autosynthesized body can be handcrafted AST or a model 2772 // file. The locations from handcrafted ASTs have no valid source 2773 // locations and have to be discarded. Locations from model files should 2774 // be preserved for processing and reporting. 2775 if (DeclCtx->isBodyAutosynthesized() && 2776 !DeclCtx->isBodyAutosynthesizedFromModelFile()) 2777 return; 2778 } 2779 2780 BugReporter::emitReport(std::move(R)); 2781 } 2782 2783 //===----------------------------------------------------------------------===// 2784 // Emitting reports in equivalence classes. 2785 //===----------------------------------------------------------------------===// 2786 2787 namespace { 2788 2789 struct FRIEC_WLItem { 2790 const ExplodedNode *N; 2791 ExplodedNode::const_succ_iterator I, E; 2792 2793 FRIEC_WLItem(const ExplodedNode *n) 2794 : N(n), I(N->succ_begin()), E(N->succ_end()) {} 2795 }; 2796 2797 } // namespace 2798 2799 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass( 2800 BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) { 2801 BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end(); 2802 assert(I != E); 2803 const BugType& BT = I->getBugType(); 2804 2805 // If we don't need to suppress any of the nodes because they are 2806 // post-dominated by a sink, simply add all the nodes in the equivalence class 2807 // to 'Nodes'. Any of the reports will serve as a "representative" report. 2808 if (!BT.isSuppressOnSink()) { 2809 BugReport *R = &*I; 2810 for (auto &I : EQ) { 2811 if (auto *PR = dyn_cast<PathSensitiveBugReport>(&I)) { 2812 R = PR; 2813 bugReports.push_back(PR); 2814 } 2815 } 2816 return R; 2817 } 2818 2819 // For bug reports that should be suppressed when all paths are post-dominated 2820 // by a sink node, iterate through the reports in the equivalence class 2821 // until we find one that isn't post-dominated (if one exists). We use a 2822 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write 2823 // this as a recursive function, but we don't want to risk blowing out the 2824 // stack for very long paths. 2825 BugReport *exampleReport = nullptr; 2826 2827 for (; I != E; ++I) { 2828 auto *R = dyn_cast<PathSensitiveBugReport>(&*I); 2829 if (!R) 2830 continue; 2831 2832 const ExplodedNode *errorNode = R->getErrorNode(); 2833 if (errorNode->isSink()) { 2834 llvm_unreachable( 2835 "BugType::isSuppressSink() should not be 'true' for sink end nodes"); 2836 } 2837 // No successors? By definition this nodes isn't post-dominated by a sink. 2838 if (errorNode->succ_empty()) { 2839 bugReports.push_back(R); 2840 if (!exampleReport) 2841 exampleReport = R; 2842 continue; 2843 } 2844 2845 // See if we are in a no-return CFG block. If so, treat this similarly 2846 // to being post-dominated by a sink. This works better when the analysis 2847 // is incomplete and we have never reached the no-return function call(s) 2848 // that we'd inevitably bump into on this path. 2849 if (const CFGBlock *ErrorB = errorNode->getCFGBlock()) 2850 if (ErrorB->isInevitablySinking()) 2851 continue; 2852 2853 // At this point we know that 'N' is not a sink and it has at least one 2854 // successor. Use a DFS worklist to find a non-sink end-of-path node. 2855 using WLItem = FRIEC_WLItem; 2856 using DFSWorkList = SmallVector<WLItem, 10>; 2857 2858 llvm::DenseMap<const ExplodedNode *, unsigned> Visited; 2859 2860 DFSWorkList WL; 2861 WL.push_back(errorNode); 2862 Visited[errorNode] = 1; 2863 2864 while (!WL.empty()) { 2865 WLItem &WI = WL.back(); 2866 assert(!WI.N->succ_empty()); 2867 2868 for (; WI.I != WI.E; ++WI.I) { 2869 const ExplodedNode *Succ = *WI.I; 2870 // End-of-path node? 2871 if (Succ->succ_empty()) { 2872 // If we found an end-of-path node that is not a sink. 2873 if (!Succ->isSink()) { 2874 bugReports.push_back(R); 2875 if (!exampleReport) 2876 exampleReport = R; 2877 WL.clear(); 2878 break; 2879 } 2880 // Found a sink? Continue on to the next successor. 2881 continue; 2882 } 2883 // Mark the successor as visited. If it hasn't been explored, 2884 // enqueue it to the DFS worklist. 2885 unsigned &mark = Visited[Succ]; 2886 if (!mark) { 2887 mark = 1; 2888 WL.push_back(Succ); 2889 break; 2890 } 2891 } 2892 2893 // The worklist may have been cleared at this point. First 2894 // check if it is empty before checking the last item. 2895 if (!WL.empty() && &WL.back() == &WI) 2896 WL.pop_back(); 2897 } 2898 } 2899 2900 // ExampleReport will be NULL if all the nodes in the equivalence class 2901 // were post-dominated by sinks. 2902 return exampleReport; 2903 } 2904 2905 void BugReporter::FlushReport(BugReportEquivClass& EQ) { 2906 SmallVector<BugReport*, 10> bugReports; 2907 BugReport *report = findReportInEquivalenceClass(EQ, bugReports); 2908 if (!report) 2909 return; 2910 2911 ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers(); 2912 std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics = 2913 generateDiagnosticForConsumerMap(report, Consumers, bugReports); 2914 2915 for (auto &P : *Diagnostics) { 2916 PathDiagnosticConsumer *Consumer = P.first; 2917 std::unique_ptr<PathDiagnostic> &PD = P.second; 2918 2919 // If the path is empty, generate a single step path with the location 2920 // of the issue. 2921 if (PD->path.empty()) { 2922 PathDiagnosticLocation L = report->getLocation(); 2923 auto piece = std::make_unique<PathDiagnosticEventPiece>( 2924 L, report->getDescription()); 2925 for (SourceRange Range : report->getRanges()) 2926 piece->addRange(Range); 2927 PD->setEndOfPath(std::move(piece)); 2928 } 2929 2930 PathPieces &Pieces = PD->getMutablePieces(); 2931 if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) { 2932 // For path diagnostic consumers that don't support extra notes, 2933 // we may optionally convert those to path notes. 2934 for (auto I = report->getNotes().rbegin(), 2935 E = report->getNotes().rend(); I != E; ++I) { 2936 PathDiagnosticNotePiece *Piece = I->get(); 2937 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>( 2938 Piece->getLocation(), Piece->getString()); 2939 for (const auto &R: Piece->getRanges()) 2940 ConvertedPiece->addRange(R); 2941 2942 Pieces.push_front(std::move(ConvertedPiece)); 2943 } 2944 } else { 2945 for (auto I = report->getNotes().rbegin(), 2946 E = report->getNotes().rend(); I != E; ++I) 2947 Pieces.push_front(*I); 2948 } 2949 2950 for (const auto &I : report->getFixits()) 2951 Pieces.back()->addFixit(I); 2952 2953 updateExecutedLinesWithDiagnosticPieces(*PD); 2954 Consumer->HandlePathDiagnostic(std::move(PD)); 2955 } 2956 } 2957 2958 /// Insert all lines participating in the function signature \p Signature 2959 /// into \p ExecutedLines. 2960 static void populateExecutedLinesWithFunctionSignature( 2961 const Decl *Signature, const SourceManager &SM, 2962 FilesToLineNumsMap &ExecutedLines) { 2963 SourceRange SignatureSourceRange; 2964 const Stmt* Body = Signature->getBody(); 2965 if (const auto FD = dyn_cast<FunctionDecl>(Signature)) { 2966 SignatureSourceRange = FD->getSourceRange(); 2967 } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) { 2968 SignatureSourceRange = OD->getSourceRange(); 2969 } else { 2970 return; 2971 } 2972 SourceLocation Start = SignatureSourceRange.getBegin(); 2973 SourceLocation End = Body ? Body->getSourceRange().getBegin() 2974 : SignatureSourceRange.getEnd(); 2975 if (!Start.isValid() || !End.isValid()) 2976 return; 2977 unsigned StartLine = SM.getExpansionLineNumber(Start); 2978 unsigned EndLine = SM.getExpansionLineNumber(End); 2979 2980 FileID FID = SM.getFileID(SM.getExpansionLoc(Start)); 2981 for (unsigned Line = StartLine; Line <= EndLine; Line++) 2982 ExecutedLines[FID].insert(Line); 2983 } 2984 2985 static void populateExecutedLinesWithStmt( 2986 const Stmt *S, const SourceManager &SM, 2987 FilesToLineNumsMap &ExecutedLines) { 2988 SourceLocation Loc = S->getSourceRange().getBegin(); 2989 if (!Loc.isValid()) 2990 return; 2991 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc); 2992 FileID FID = SM.getFileID(ExpansionLoc); 2993 unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc); 2994 ExecutedLines[FID].insert(LineNo); 2995 } 2996 2997 /// \return all executed lines including function signatures on the path 2998 /// starting from \p N. 2999 static std::unique_ptr<FilesToLineNumsMap> 3000 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) { 3001 auto ExecutedLines = std::make_unique<FilesToLineNumsMap>(); 3002 3003 while (N) { 3004 if (N->getFirstPred() == nullptr) { 3005 // First node: show signature of the entrance point. 3006 const Decl *D = N->getLocationContext()->getDecl(); 3007 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); 3008 } else if (auto CE = N->getLocationAs<CallEnter>()) { 3009 // Inlined function: show signature. 3010 const Decl* D = CE->getCalleeContext()->getDecl(); 3011 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines); 3012 } else if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) { 3013 populateExecutedLinesWithStmt(S, SM, *ExecutedLines); 3014 3015 // Show extra context for some parent kinds. 3016 const Stmt *P = N->getParentMap().getParent(S); 3017 3018 // The path exploration can die before the node with the associated 3019 // return statement is generated, but we do want to show the whole 3020 // return. 3021 if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) { 3022 populateExecutedLinesWithStmt(RS, SM, *ExecutedLines); 3023 P = N->getParentMap().getParent(RS); 3024 } 3025 3026 if (P && (isa<SwitchCase>(P) || isa<LabelStmt>(P))) 3027 populateExecutedLinesWithStmt(P, SM, *ExecutedLines); 3028 } 3029 3030 N = N->getFirstPred(); 3031 } 3032 return ExecutedLines; 3033 } 3034 3035 std::unique_ptr<DiagnosticForConsumerMapTy> 3036 BugReporter::generateDiagnosticForConsumerMap( 3037 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers, 3038 ArrayRef<BugReport *> bugReports) { 3039 auto *basicReport = cast<BasicBugReport>(exampleReport); 3040 auto Out = std::make_unique<DiagnosticForConsumerMapTy>(); 3041 for (auto *Consumer : consumers) 3042 (*Out)[Consumer] = generateDiagnosticForBasicReport(basicReport); 3043 return Out; 3044 } 3045 3046 std::unique_ptr<DiagnosticForConsumerMapTy> 3047 PathSensitiveBugReporter::generateDiagnosticForConsumerMap( 3048 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers, 3049 ArrayRef<BugReport *> bugReports) { 3050 std::vector<BasicBugReport *> BasicBugReports; 3051 std::vector<PathSensitiveBugReport *> PathSensitiveBugReports; 3052 if (isa<BasicBugReport>(exampleReport)) 3053 return BugReporter::generateDiagnosticForConsumerMap(exampleReport, 3054 consumers, bugReports); 3055 3056 // Generate the full path sensitive diagnostic, using the generation scheme 3057 // specified by the PathDiagnosticConsumer. Note that we have to generate 3058 // path diagnostics even for consumers which do not support paths, because 3059 // the BugReporterVisitors may mark this bug as a false positive. 3060 assert(!bugReports.empty()); 3061 MaxBugClassSize.updateMax(bugReports.size()); 3062 3063 // Avoid copying the whole array because there may be a lot of reports. 3064 ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports( 3065 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()), 3066 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end())); 3067 std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics( 3068 consumers, convertedArrayOfReports); 3069 3070 if (Out->empty()) 3071 return Out; 3072 3073 MaxValidBugClassSize.updateMax(bugReports.size()); 3074 3075 // Examine the report and see if the last piece is in a header. Reset the 3076 // report location to the last piece in the main source file. 3077 const AnalyzerOptions &Opts = getAnalyzerOptions(); 3078 for (auto const &P : *Out) 3079 if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll) 3080 P.second->resetDiagnosticLocationToMainFile(); 3081 3082 return Out; 3083 } 3084 3085 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3086 const CheckerBase *Checker, StringRef Name, 3087 StringRef Category, StringRef Str, 3088 PathDiagnosticLocation Loc, 3089 ArrayRef<SourceRange> Ranges, 3090 ArrayRef<FixItHint> Fixits) { 3091 EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str, 3092 Loc, Ranges, Fixits); 3093 } 3094 3095 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3096 CheckName CheckName, 3097 StringRef name, StringRef category, 3098 StringRef str, PathDiagnosticLocation Loc, 3099 ArrayRef<SourceRange> Ranges, 3100 ArrayRef<FixItHint> Fixits) { 3101 // 'BT' is owned by BugReporter. 3102 BugType *BT = getBugTypeForName(CheckName, name, category); 3103 auto R = std::make_unique<BasicBugReport>(*BT, str, Loc); 3104 R->setDeclWithIssue(DeclWithIssue); 3105 for (const auto &SR : Ranges) 3106 R->addRange(SR); 3107 for (const auto &FH : Fixits) 3108 R->addFixItHint(FH); 3109 emitReport(std::move(R)); 3110 } 3111 3112 BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name, 3113 StringRef category) { 3114 SmallString<136> fullDesc; 3115 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name 3116 << ":" << category; 3117 BugType *&BT = StrBugTypes[fullDesc]; 3118 if (!BT) 3119 BT = new BugType(CheckName, name, category); 3120 return BT; 3121 } 3122