1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines malloc/free checker, which checks for potential memory 11 // leaks, double free, and use-after-free problems. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Basic/SourceManager.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/Checker.h" 23 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include <climits> 33 #include <utility> 34 35 using namespace clang; 36 using namespace ento; 37 38 namespace { 39 40 // Used to check correspondence between allocators and deallocators. 41 enum AllocationFamily { 42 AF_None, 43 AF_Malloc, 44 AF_CXXNew, 45 AF_CXXNewArray, 46 AF_IfNameIndex, 47 AF_Alloca 48 }; 49 50 class RefState { 51 enum Kind { // Reference to allocated memory. 52 Allocated, 53 // Reference to zero-allocated memory. 54 AllocatedOfSizeZero, 55 // Reference to released/freed memory. 56 Released, 57 // The responsibility for freeing resources has transferred from 58 // this reference. A relinquished symbol should not be freed. 59 Relinquished, 60 // We are no longer guaranteed to have observed all manipulations 61 // of this pointer/memory. For example, it could have been 62 // passed as a parameter to an opaque function. 63 Escaped 64 }; 65 66 const Stmt *S; 67 unsigned K : 3; // Kind enum, but stored as a bitfield. 68 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 69 // family. 70 71 RefState(Kind k, const Stmt *s, unsigned family) 72 : S(s), K(k), Family(family) { 73 assert(family != AF_None); 74 } 75 public: 76 bool isAllocated() const { return K == Allocated; } 77 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 78 bool isReleased() const { return K == Released; } 79 bool isRelinquished() const { return K == Relinquished; } 80 bool isEscaped() const { return K == Escaped; } 81 AllocationFamily getAllocationFamily() const { 82 return (AllocationFamily)Family; 83 } 84 const Stmt *getStmt() const { return S; } 85 86 bool operator==(const RefState &X) const { 87 return K == X.K && S == X.S && Family == X.Family; 88 } 89 90 static RefState getAllocated(unsigned family, const Stmt *s) { 91 return RefState(Allocated, s, family); 92 } 93 static RefState getAllocatedOfSizeZero(const RefState *RS) { 94 return RefState(AllocatedOfSizeZero, RS->getStmt(), 95 RS->getAllocationFamily()); 96 } 97 static RefState getReleased(unsigned family, const Stmt *s) { 98 return RefState(Released, s, family); 99 } 100 static RefState getRelinquished(unsigned family, const Stmt *s) { 101 return RefState(Relinquished, s, family); 102 } 103 static RefState getEscaped(const RefState *RS) { 104 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 105 } 106 107 void Profile(llvm::FoldingSetNodeID &ID) const { 108 ID.AddInteger(K); 109 ID.AddPointer(S); 110 ID.AddInteger(Family); 111 } 112 113 void dump(raw_ostream &OS) const { 114 switch (static_cast<Kind>(K)) { 115 #define CASE(ID) case ID: OS << #ID; break; 116 CASE(Allocated) 117 CASE(AllocatedOfSizeZero) 118 CASE(Released) 119 CASE(Relinquished) 120 CASE(Escaped) 121 } 122 } 123 124 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 125 }; 126 127 enum ReallocPairKind { 128 RPToBeFreedAfterFailure, 129 // The symbol has been freed when reallocation failed. 130 RPIsFreeOnFailure, 131 // The symbol does not need to be freed after reallocation fails. 132 RPDoNotTrackAfterFailure 133 }; 134 135 /// \class ReallocPair 136 /// \brief Stores information about the symbol being reallocated by a call to 137 /// 'realloc' to allow modeling failed reallocation later in the path. 138 struct ReallocPair { 139 // \brief The symbol which realloc reallocated. 140 SymbolRef ReallocatedSym; 141 ReallocPairKind Kind; 142 143 ReallocPair(SymbolRef S, ReallocPairKind K) : 144 ReallocatedSym(S), Kind(K) {} 145 void Profile(llvm::FoldingSetNodeID &ID) const { 146 ID.AddInteger(Kind); 147 ID.AddPointer(ReallocatedSym); 148 } 149 bool operator==(const ReallocPair &X) const { 150 return ReallocatedSym == X.ReallocatedSym && 151 Kind == X.Kind; 152 } 153 }; 154 155 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 156 157 class MallocChecker : public Checker<check::DeadSymbols, 158 check::PointerEscape, 159 check::ConstPointerEscape, 160 check::PreStmt<ReturnStmt>, 161 check::PreCall, 162 check::PostStmt<CallExpr>, 163 check::PostStmt<CXXNewExpr>, 164 check::PreStmt<CXXDeleteExpr>, 165 check::PostStmt<BlockExpr>, 166 check::PostObjCMessage, 167 check::Location, 168 eval::Assume> 169 { 170 public: 171 MallocChecker() 172 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), 173 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), 174 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), 175 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), 176 II_if_nameindex(nullptr), II_if_freenameindex(nullptr), 177 II_wcsdup(nullptr), II_win_wcsdup(nullptr) {} 178 179 /// In pessimistic mode, the checker assumes that it does not know which 180 /// functions might free the memory. 181 enum CheckKind { 182 CK_MallocChecker, 183 CK_NewDeleteChecker, 184 CK_NewDeleteLeaksChecker, 185 CK_MismatchedDeallocatorChecker, 186 CK_NumCheckKinds 187 }; 188 189 enum class MemoryOperationKind { 190 MOK_Allocate, 191 MOK_Free, 192 MOK_Any 193 }; 194 195 DefaultBool IsOptimistic; 196 197 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 198 CheckName CheckNames[CK_NumCheckKinds]; 199 200 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 201 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 202 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 203 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 204 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 205 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 206 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 207 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 208 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 209 bool Assumption) const; 210 void checkLocation(SVal l, bool isLoad, const Stmt *S, 211 CheckerContext &C) const; 212 213 ProgramStateRef checkPointerEscape(ProgramStateRef State, 214 const InvalidatedSymbols &Escaped, 215 const CallEvent *Call, 216 PointerEscapeKind Kind) const; 217 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 218 const InvalidatedSymbols &Escaped, 219 const CallEvent *Call, 220 PointerEscapeKind Kind) const; 221 222 void printState(raw_ostream &Out, ProgramStateRef State, 223 const char *NL, const char *Sep) const override; 224 225 private: 226 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 227 mutable std::unique_ptr<BugType> BT_DoubleDelete; 228 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 229 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 230 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 231 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 232 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 233 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 234 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 235 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, 236 *II_realloc, *II_calloc, *II_valloc, *II_reallocf, 237 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, 238 *II_if_nameindex, *II_if_freenameindex, *II_wcsdup, 239 *II_win_wcsdup; 240 mutable Optional<uint64_t> KernelZeroFlagVal; 241 242 void initIdentifierInfo(ASTContext &C) const; 243 244 /// \brief Determine family of a deallocation expression. 245 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 246 247 /// \brief Print names of allocators and deallocators. 248 /// 249 /// \returns true on success. 250 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 251 const Expr *E) const; 252 253 /// \brief Print expected name of an allocator based on the deallocator's 254 /// family derived from the DeallocExpr. 255 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 256 const Expr *DeallocExpr) const; 257 /// \brief Print expected name of a deallocator based on the allocator's 258 /// family. 259 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 260 261 ///@{ 262 /// Check if this is one of the functions which can allocate/reallocate memory 263 /// pointed to by one of its arguments. 264 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 265 bool isCMemFunction(const FunctionDecl *FD, 266 ASTContext &C, 267 AllocationFamily Family, 268 MemoryOperationKind MemKind) const; 269 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 270 ///@} 271 272 /// \brief Perform a zero-allocation check. 273 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 274 const unsigned AllocationSizeArg, 275 ProgramStateRef State) const; 276 277 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 278 const CallExpr *CE, 279 const OwnershipAttr* Att, 280 ProgramStateRef State) const; 281 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 282 const Expr *SizeEx, SVal Init, 283 ProgramStateRef State, 284 AllocationFamily Family = AF_Malloc); 285 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 286 SVal SizeEx, SVal Init, 287 ProgramStateRef State, 288 AllocationFamily Family = AF_Malloc); 289 290 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 291 ProgramStateRef State); 292 293 // Check if this malloc() for special flags. At present that means M_ZERO or 294 // __GFP_ZERO (in which case, treat it like calloc). 295 llvm::Optional<ProgramStateRef> 296 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 297 const ProgramStateRef &State) const; 298 299 /// Update the RefState to reflect the new memory allocation. 300 static ProgramStateRef 301 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 302 AllocationFamily Family = AF_Malloc); 303 304 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 305 const OwnershipAttr* Att, 306 ProgramStateRef State) const; 307 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 308 ProgramStateRef state, unsigned Num, 309 bool Hold, 310 bool &ReleasedAllocated, 311 bool ReturnsNullOnFailure = false) const; 312 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 313 const Expr *ParentExpr, 314 ProgramStateRef State, 315 bool Hold, 316 bool &ReleasedAllocated, 317 bool ReturnsNullOnFailure = false) const; 318 319 ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE, 320 bool FreesMemOnFailure, 321 ProgramStateRef State) const; 322 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 323 ProgramStateRef State); 324 325 ///\brief Check if the memory associated with this symbol was released. 326 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 327 328 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 329 330 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 331 const Stmt *S) const; 332 333 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 334 335 /// Check if the function is known free memory, or if it is 336 /// "interesting" and should be modeled explicitly. 337 /// 338 /// \param [out] EscapingSymbol A function might not free memory in general, 339 /// but could be known to free a particular symbol. In this case, false is 340 /// returned and the single escaping symbol is returned through the out 341 /// parameter. 342 /// 343 /// We assume that pointers do not escape through calls to system functions 344 /// not handled by this checker. 345 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 346 ProgramStateRef State, 347 SymbolRef &EscapingSymbol) const; 348 349 // Implementation of the checkPointerEscape callabcks. 350 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 351 const InvalidatedSymbols &Escaped, 352 const CallEvent *Call, 353 PointerEscapeKind Kind, 354 bool(*CheckRefState)(const RefState*)) const; 355 356 ///@{ 357 /// Tells if a given family/call/symbol is tracked by the current checker. 358 /// Sets CheckKind to the kind of the checker responsible for this 359 /// family/call/symbol. 360 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 361 bool IsALeakCheck = false) const; 362 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 363 const Stmt *AllocDeallocStmt, 364 bool IsALeakCheck = false) const; 365 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 366 bool IsALeakCheck = false) const; 367 ///@} 368 static bool SummarizeValue(raw_ostream &os, SVal V); 369 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 370 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 371 const Expr *DeallocExpr) const; 372 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 373 SourceRange Range) const; 374 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 375 const Expr *DeallocExpr, const RefState *RS, 376 SymbolRef Sym, bool OwnershipTransferred) const; 377 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 378 const Expr *DeallocExpr, 379 const Expr *AllocExpr = nullptr) const; 380 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 381 SymbolRef Sym) const; 382 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 383 SymbolRef Sym, SymbolRef PrevSym) const; 384 385 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 386 387 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 388 SymbolRef Sym) const; 389 390 /// Find the location of the allocation for Sym on the path leading to the 391 /// exploded node N. 392 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 393 CheckerContext &C) const; 394 395 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 396 397 /// The bug visitor which allows us to print extra diagnostics along the 398 /// BugReport path. For example, showing the allocation site of the leaked 399 /// region. 400 class MallocBugVisitor final 401 : public BugReporterVisitorImpl<MallocBugVisitor> { 402 protected: 403 enum NotificationMode { 404 Normal, 405 ReallocationFailed 406 }; 407 408 // The allocated region symbol tracked by the main analysis. 409 SymbolRef Sym; 410 411 // The mode we are in, i.e. what kind of diagnostics will be emitted. 412 NotificationMode Mode; 413 414 // A symbol from when the primary region should have been reallocated. 415 SymbolRef FailedReallocSymbol; 416 417 bool IsLeak; 418 419 public: 420 MallocBugVisitor(SymbolRef S, bool isLeak = false) 421 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {} 422 423 void Profile(llvm::FoldingSetNodeID &ID) const override { 424 static int X = 0; 425 ID.AddPointer(&X); 426 ID.AddPointer(Sym); 427 } 428 429 inline bool isAllocated(const RefState *S, const RefState *SPrev, 430 const Stmt *Stmt) { 431 // Did not track -> allocated. Other state (released) -> allocated. 432 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 433 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 434 (!SPrev || !(SPrev->isAllocated() || 435 SPrev->isAllocatedOfSizeZero()))); 436 } 437 438 inline bool isReleased(const RefState *S, const RefState *SPrev, 439 const Stmt *Stmt) { 440 // Did not track -> released. Other state (allocated) -> released. 441 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) && 442 (S && S->isReleased()) && (!SPrev || !SPrev->isReleased())); 443 } 444 445 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 446 const Stmt *Stmt) { 447 // Did not track -> relinquished. Other state (allocated) -> relinquished. 448 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 449 isa<ObjCPropertyRefExpr>(Stmt)) && 450 (S && S->isRelinquished()) && 451 (!SPrev || !SPrev->isRelinquished())); 452 } 453 454 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 455 const Stmt *Stmt) { 456 // If the expression is not a call, and the state change is 457 // released -> allocated, it must be the realloc return value 458 // check. If we have to handle more cases here, it might be cleaner just 459 // to track this extra bit in the state itself. 460 return ((!Stmt || !isa<CallExpr>(Stmt)) && 461 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 462 (SPrev && !(SPrev->isAllocated() || 463 SPrev->isAllocatedOfSizeZero()))); 464 } 465 466 PathDiagnosticPiece *VisitNode(const ExplodedNode *N, 467 const ExplodedNode *PrevN, 468 BugReporterContext &BRC, 469 BugReport &BR) override; 470 471 std::unique_ptr<PathDiagnosticPiece> 472 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 473 BugReport &BR) override { 474 if (!IsLeak) 475 return nullptr; 476 477 PathDiagnosticLocation L = 478 PathDiagnosticLocation::createEndOfPath(EndPathNode, 479 BRC.getSourceManager()); 480 // Do not add the statement itself as a range in case of leak. 481 return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(), 482 false); 483 } 484 485 private: 486 class StackHintGeneratorForReallocationFailed 487 : public StackHintGeneratorForSymbol { 488 public: 489 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 490 : StackHintGeneratorForSymbol(S, M) {} 491 492 std::string getMessageForArg(const Expr *ArgE, 493 unsigned ArgIndex) override { 494 // Printed parameters start at 1, not 0. 495 ++ArgIndex; 496 497 SmallString<200> buf; 498 llvm::raw_svector_ostream os(buf); 499 500 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 501 << " parameter failed"; 502 503 return os.str(); 504 } 505 506 std::string getMessageForReturn(const CallExpr *CallExpr) override { 507 return "Reallocation of returned value failed"; 508 } 509 }; 510 }; 511 }; 512 } // end anonymous namespace 513 514 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 515 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 516 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 517 518 // A map from the freed symbol to the symbol representing the return value of 519 // the free function. 520 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 521 522 namespace { 523 class StopTrackingCallback final : public SymbolVisitor { 524 ProgramStateRef state; 525 public: 526 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 527 ProgramStateRef getState() const { return state; } 528 529 bool VisitSymbol(SymbolRef sym) override { 530 state = state->remove<RegionState>(sym); 531 return true; 532 } 533 }; 534 } // end anonymous namespace 535 536 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 537 if (II_malloc) 538 return; 539 II_alloca = &Ctx.Idents.get("alloca"); 540 II_malloc = &Ctx.Idents.get("malloc"); 541 II_free = &Ctx.Idents.get("free"); 542 II_realloc = &Ctx.Idents.get("realloc"); 543 II_reallocf = &Ctx.Idents.get("reallocf"); 544 II_calloc = &Ctx.Idents.get("calloc"); 545 II_valloc = &Ctx.Idents.get("valloc"); 546 II_strdup = &Ctx.Idents.get("strdup"); 547 II_strndup = &Ctx.Idents.get("strndup"); 548 II_wcsdup = &Ctx.Idents.get("wcsdup"); 549 II_kmalloc = &Ctx.Idents.get("kmalloc"); 550 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 551 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 552 553 //MSVC uses `_`-prefixed instead, so we check for them too. 554 II_win_strdup = &Ctx.Idents.get("_strdup"); 555 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 556 II_win_alloca = &Ctx.Idents.get("_alloca"); 557 } 558 559 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 560 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 561 return true; 562 563 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 564 return true; 565 566 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 567 return true; 568 569 if (isStandardNewDelete(FD, C)) 570 return true; 571 572 return false; 573 } 574 575 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 576 ASTContext &C, 577 AllocationFamily Family, 578 MemoryOperationKind MemKind) const { 579 if (!FD) 580 return false; 581 582 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 583 MemKind == MemoryOperationKind::MOK_Free); 584 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 585 MemKind == MemoryOperationKind::MOK_Allocate); 586 587 if (FD->getKind() == Decl::Function) { 588 const IdentifierInfo *FunI = FD->getIdentifier(); 589 initIdentifierInfo(C); 590 591 if (Family == AF_Malloc && CheckFree) { 592 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf) 593 return true; 594 } 595 596 if (Family == AF_Malloc && CheckAlloc) { 597 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 598 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 599 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 600 FunI == II_win_wcsdup || FunI == II_kmalloc) 601 return true; 602 } 603 604 if (Family == AF_IfNameIndex && CheckFree) { 605 if (FunI == II_if_freenameindex) 606 return true; 607 } 608 609 if (Family == AF_IfNameIndex && CheckAlloc) { 610 if (FunI == II_if_nameindex) 611 return true; 612 } 613 614 if (Family == AF_Alloca && CheckAlloc) { 615 if (FunI == II_alloca || FunI == II_win_alloca) 616 return true; 617 } 618 } 619 620 if (Family != AF_Malloc) 621 return false; 622 623 if (IsOptimistic && FD->hasAttrs()) { 624 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 625 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 626 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 627 if (CheckFree) 628 return true; 629 } else if (OwnKind == OwnershipAttr::Returns) { 630 if (CheckAlloc) 631 return true; 632 } 633 } 634 } 635 636 return false; 637 } 638 639 // Tells if the callee is one of the following: 640 // 1) A global non-placement new/delete operator function. 641 // 2) A global placement operator function with the single placement argument 642 // of type std::nothrow_t. 643 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 644 ASTContext &C) const { 645 if (!FD) 646 return false; 647 648 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 649 if (Kind != OO_New && Kind != OO_Array_New && 650 Kind != OO_Delete && Kind != OO_Array_Delete) 651 return false; 652 653 // Skip all operator new/delete methods. 654 if (isa<CXXMethodDecl>(FD)) 655 return false; 656 657 // Return true if tested operator is a standard placement nothrow operator. 658 if (FD->getNumParams() == 2) { 659 QualType T = FD->getParamDecl(1)->getType(); 660 if (const IdentifierInfo *II = T.getBaseTypeIdentifier()) 661 return II->getName().equals("nothrow_t"); 662 } 663 664 // Skip placement operators. 665 if (FD->getNumParams() != 1 || FD->isVariadic()) 666 return false; 667 668 // One of the standard new/new[]/delete/delete[] non-placement operators. 669 return true; 670 } 671 672 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 673 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 674 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 675 // 676 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 677 // 678 // One of the possible flags is M_ZERO, which means 'give me back an 679 // allocation which is already zeroed', like calloc. 680 681 // 2-argument kmalloc(), as used in the Linux kernel: 682 // 683 // void *kmalloc(size_t size, gfp_t flags); 684 // 685 // Has the similar flag value __GFP_ZERO. 686 687 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 688 // code could be shared. 689 690 ASTContext &Ctx = C.getASTContext(); 691 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 692 693 if (!KernelZeroFlagVal.hasValue()) { 694 if (OS == llvm::Triple::FreeBSD) 695 KernelZeroFlagVal = 0x0100; 696 else if (OS == llvm::Triple::NetBSD) 697 KernelZeroFlagVal = 0x0002; 698 else if (OS == llvm::Triple::OpenBSD) 699 KernelZeroFlagVal = 0x0008; 700 else if (OS == llvm::Triple::Linux) 701 // __GFP_ZERO 702 KernelZeroFlagVal = 0x8000; 703 else 704 // FIXME: We need a more general way of getting the M_ZERO value. 705 // See also: O_CREAT in UnixAPIChecker.cpp. 706 707 // Fall back to normal malloc behavior on platforms where we don't 708 // know M_ZERO. 709 return None; 710 } 711 712 // We treat the last argument as the flags argument, and callers fall-back to 713 // normal malloc on a None return. This works for the FreeBSD kernel malloc 714 // as well as Linux kmalloc. 715 if (CE->getNumArgs() < 2) 716 return None; 717 718 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 719 const SVal V = State->getSVal(FlagsEx, C.getLocationContext()); 720 if (!V.getAs<NonLoc>()) { 721 // The case where 'V' can be a location can only be due to a bad header, 722 // so in this case bail out. 723 return None; 724 } 725 726 NonLoc Flags = V.castAs<NonLoc>(); 727 NonLoc ZeroFlag = C.getSValBuilder() 728 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 729 .castAs<NonLoc>(); 730 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 731 Flags, ZeroFlag, 732 FlagsEx->getType()); 733 if (MaskedFlagsUC.isUnknownOrUndef()) 734 return None; 735 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 736 737 // Check if maskedFlags is non-zero. 738 ProgramStateRef TrueState, FalseState; 739 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 740 741 // If M_ZERO is set, treat this like calloc (initialized). 742 if (TrueState && !FalseState) { 743 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 744 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 745 } 746 747 return None; 748 } 749 750 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 751 if (C.wasInlined) 752 return; 753 754 const FunctionDecl *FD = C.getCalleeDecl(CE); 755 if (!FD) 756 return; 757 758 ProgramStateRef State = C.getState(); 759 bool ReleasedAllocatedMemory = false; 760 761 if (FD->getKind() == Decl::Function) { 762 initIdentifierInfo(C.getASTContext()); 763 IdentifierInfo *FunI = FD->getIdentifier(); 764 765 if (FunI == II_malloc) { 766 if (CE->getNumArgs() < 1) 767 return; 768 if (CE->getNumArgs() < 3) { 769 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 770 if (CE->getNumArgs() == 1) 771 State = ProcessZeroAllocation(C, CE, 0, State); 772 } else if (CE->getNumArgs() == 3) { 773 llvm::Optional<ProgramStateRef> MaybeState = 774 performKernelMalloc(CE, C, State); 775 if (MaybeState.hasValue()) 776 State = MaybeState.getValue(); 777 else 778 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 779 } 780 } else if (FunI == II_kmalloc) { 781 if (CE->getNumArgs() < 1) 782 return; 783 llvm::Optional<ProgramStateRef> MaybeState = 784 performKernelMalloc(CE, C, State); 785 if (MaybeState.hasValue()) 786 State = MaybeState.getValue(); 787 else 788 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 789 } else if (FunI == II_valloc) { 790 if (CE->getNumArgs() < 1) 791 return; 792 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 793 State = ProcessZeroAllocation(C, CE, 0, State); 794 } else if (FunI == II_realloc) { 795 State = ReallocMem(C, CE, false, State); 796 State = ProcessZeroAllocation(C, CE, 1, State); 797 } else if (FunI == II_reallocf) { 798 State = ReallocMem(C, CE, true, State); 799 State = ProcessZeroAllocation(C, CE, 1, State); 800 } else if (FunI == II_calloc) { 801 State = CallocMem(C, CE, State); 802 State = ProcessZeroAllocation(C, CE, 0, State); 803 State = ProcessZeroAllocation(C, CE, 1, State); 804 } else if (FunI == II_free) { 805 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 806 } else if (FunI == II_strdup || FunI == II_win_strdup || 807 FunI == II_wcsdup || FunI == II_win_wcsdup) { 808 State = MallocUpdateRefState(C, CE, State); 809 } else if (FunI == II_strndup) { 810 State = MallocUpdateRefState(C, CE, State); 811 } else if (FunI == II_alloca || FunI == II_win_alloca) { 812 if (CE->getNumArgs() < 1) 813 return; 814 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 815 AF_Alloca); 816 State = ProcessZeroAllocation(C, CE, 0, State); 817 } else if (isStandardNewDelete(FD, C.getASTContext())) { 818 // Process direct calls to operator new/new[]/delete/delete[] functions 819 // as distinct from new/new[]/delete/delete[] expressions that are 820 // processed by the checkPostStmt callbacks for CXXNewExpr and 821 // CXXDeleteExpr. 822 OverloadedOperatorKind K = FD->getOverloadedOperator(); 823 if (K == OO_New) { 824 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 825 AF_CXXNew); 826 State = ProcessZeroAllocation(C, CE, 0, State); 827 } 828 else if (K == OO_Array_New) { 829 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 830 AF_CXXNewArray); 831 State = ProcessZeroAllocation(C, CE, 0, State); 832 } 833 else if (K == OO_Delete || K == OO_Array_Delete) 834 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 835 else 836 llvm_unreachable("not a new/delete operator"); 837 } else if (FunI == II_if_nameindex) { 838 // Should we model this differently? We can allocate a fixed number of 839 // elements with zeros in the last one. 840 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 841 AF_IfNameIndex); 842 } else if (FunI == II_if_freenameindex) { 843 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 844 } 845 } 846 847 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 848 // Check all the attributes, if there are any. 849 // There can be multiple of these attributes. 850 if (FD->hasAttrs()) 851 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 852 switch (I->getOwnKind()) { 853 case OwnershipAttr::Returns: 854 State = MallocMemReturnsAttr(C, CE, I, State); 855 break; 856 case OwnershipAttr::Takes: 857 case OwnershipAttr::Holds: 858 State = FreeMemAttr(C, CE, I, State); 859 break; 860 } 861 } 862 } 863 C.addTransition(State); 864 } 865 866 // Performs a 0-sized allocations check. 867 ProgramStateRef MallocChecker::ProcessZeroAllocation(CheckerContext &C, 868 const Expr *E, 869 const unsigned AllocationSizeArg, 870 ProgramStateRef State) const { 871 if (!State) 872 return nullptr; 873 874 const Expr *Arg = nullptr; 875 876 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 877 Arg = CE->getArg(AllocationSizeArg); 878 } 879 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 880 if (NE->isArray()) 881 Arg = NE->getArraySize(); 882 else 883 return State; 884 } 885 else 886 llvm_unreachable("not a CallExpr or CXXNewExpr"); 887 888 assert(Arg); 889 890 Optional<DefinedSVal> DefArgVal = 891 State->getSVal(Arg, C.getLocationContext()).getAs<DefinedSVal>(); 892 893 if (!DefArgVal) 894 return State; 895 896 // Check if the allocation size is 0. 897 ProgramStateRef TrueState, FalseState; 898 SValBuilder &SvalBuilder = C.getSValBuilder(); 899 DefinedSVal Zero = 900 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 901 902 std::tie(TrueState, FalseState) = 903 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 904 905 if (TrueState && !FalseState) { 906 SVal retVal = State->getSVal(E, C.getLocationContext()); 907 SymbolRef Sym = retVal.getAsLocSymbol(); 908 if (!Sym) 909 return State; 910 911 const RefState *RS = State->get<RegionState>(Sym); 912 if (RS) { 913 if (RS->isAllocated()) 914 return TrueState->set<RegionState>(Sym, 915 RefState::getAllocatedOfSizeZero(RS)); 916 else 917 return State; 918 } else { 919 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 920 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 921 // tracked. Add zero-reallocated Sym to the state to catch references 922 // to zero-allocated memory. 923 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 924 } 925 } 926 927 // Assume the value is non-zero going forward. 928 assert(FalseState); 929 return FalseState; 930 } 931 932 static QualType getDeepPointeeType(QualType T) { 933 QualType Result = T, PointeeType = T->getPointeeType(); 934 while (!PointeeType.isNull()) { 935 Result = PointeeType; 936 PointeeType = PointeeType->getPointeeType(); 937 } 938 return Result; 939 } 940 941 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 942 943 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 944 if (!ConstructE) 945 return false; 946 947 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 948 return false; 949 950 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 951 952 // Iterate over the constructor parameters. 953 for (const auto *CtorParam : CtorD->parameters()) { 954 955 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 956 if (CtorParamPointeeT.isNull()) 957 continue; 958 959 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 960 961 if (CtorParamPointeeT->getAsCXXRecordDecl()) 962 return true; 963 } 964 965 return false; 966 } 967 968 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 969 CheckerContext &C) const { 970 971 if (NE->getNumPlacementArgs()) 972 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(), 973 E = NE->placement_arg_end(); I != E; ++I) 974 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol()) 975 checkUseAfterFree(Sym, C, *I); 976 977 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 978 return; 979 980 ParentMap &PM = C.getLocationContext()->getParentMap(); 981 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 982 return; 983 984 ProgramStateRef State = C.getState(); 985 // The return value from operator new is bound to a specified initialization 986 // value (if any) and we don't want to loose this value. So we call 987 // MallocUpdateRefState() instead of MallocMemAux() which breakes the 988 // existing binding. 989 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 990 : AF_CXXNew); 991 State = addExtentSize(C, NE, State); 992 State = ProcessZeroAllocation(C, NE, 0, State); 993 C.addTransition(State); 994 } 995 996 // Sets the extent value of the MemRegion allocated by 997 // new expression NE to its size in Bytes. 998 // 999 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1000 const CXXNewExpr *NE, 1001 ProgramStateRef State) { 1002 if (!State) 1003 return nullptr; 1004 SValBuilder &svalBuilder = C.getSValBuilder(); 1005 SVal ElementCount; 1006 const LocationContext *LCtx = C.getLocationContext(); 1007 const SubRegion *Region; 1008 if (NE->isArray()) { 1009 const Expr *SizeExpr = NE->getArraySize(); 1010 ElementCount = State->getSVal(SizeExpr, C.getLocationContext()); 1011 // Store the extent size for the (symbolic)region 1012 // containing the elements. 1013 Region = (State->getSVal(NE, LCtx)) 1014 .getAsRegion() 1015 ->getAs<SubRegion>() 1016 ->getSuperRegion() 1017 ->getAs<SubRegion>(); 1018 } else { 1019 ElementCount = svalBuilder.makeIntVal(1, true); 1020 Region = (State->getSVal(NE, LCtx)).getAsRegion()->getAs<SubRegion>(); 1021 } 1022 assert(Region); 1023 1024 // Set the region's extent equal to the Size in Bytes. 1025 QualType ElementType = NE->getAllocatedType(); 1026 ASTContext &AstContext = C.getASTContext(); 1027 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1028 1029 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1030 ElementCount.getAs<DefinedOrUnknownSVal>()) { 1031 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1032 // size in Bytes = ElementCount*TypeSize 1033 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1034 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1035 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1036 svalBuilder.getArrayIndexType()); 1037 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1038 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1039 State = State->assume(extentMatchesSize, true); 1040 } 1041 return State; 1042 } 1043 1044 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1045 CheckerContext &C) const { 1046 1047 if (!ChecksEnabled[CK_NewDeleteChecker]) 1048 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1049 checkUseAfterFree(Sym, C, DE->getArgument()); 1050 1051 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 1052 return; 1053 1054 ProgramStateRef State = C.getState(); 1055 bool ReleasedAllocated; 1056 State = FreeMemAux(C, DE->getArgument(), DE, State, 1057 /*Hold*/false, ReleasedAllocated); 1058 1059 C.addTransition(State); 1060 } 1061 1062 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1063 // If the first selector piece is one of the names below, assume that the 1064 // object takes ownership of the memory, promising to eventually deallocate it 1065 // with free(). 1066 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1067 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1068 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1069 return FirstSlot == "dataWithBytesNoCopy" || 1070 FirstSlot == "initWithBytesNoCopy" || 1071 FirstSlot == "initWithCharactersNoCopy"; 1072 } 1073 1074 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1075 Selector S = Call.getSelector(); 1076 1077 // FIXME: We should not rely on fully-constrained symbols being folded. 1078 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1079 if (S.getNameForSlot(i).equals("freeWhenDone")) 1080 return !Call.getArgSVal(i).isZeroConstant(); 1081 1082 return None; 1083 } 1084 1085 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1086 CheckerContext &C) const { 1087 if (C.wasInlined) 1088 return; 1089 1090 if (!isKnownDeallocObjCMethodName(Call)) 1091 return; 1092 1093 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1094 if (!*FreeWhenDone) 1095 return; 1096 1097 bool ReleasedAllocatedMemory; 1098 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1099 Call.getOriginExpr(), C.getState(), 1100 /*Hold=*/true, ReleasedAllocatedMemory, 1101 /*RetNullOnFailure=*/true); 1102 1103 C.addTransition(State); 1104 } 1105 1106 ProgramStateRef 1107 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1108 const OwnershipAttr *Att, 1109 ProgramStateRef State) const { 1110 if (!State) 1111 return nullptr; 1112 1113 if (Att->getModule() != II_malloc) 1114 return nullptr; 1115 1116 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1117 if (I != E) { 1118 return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State); 1119 } 1120 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1121 } 1122 1123 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1124 const CallExpr *CE, 1125 const Expr *SizeEx, SVal Init, 1126 ProgramStateRef State, 1127 AllocationFamily Family) { 1128 if (!State) 1129 return nullptr; 1130 1131 return MallocMemAux(C, CE, State->getSVal(SizeEx, C.getLocationContext()), 1132 Init, State, Family); 1133 } 1134 1135 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1136 const CallExpr *CE, 1137 SVal Size, SVal Init, 1138 ProgramStateRef State, 1139 AllocationFamily Family) { 1140 if (!State) 1141 return nullptr; 1142 1143 // We expect the malloc functions to return a pointer. 1144 if (!Loc::isLocType(CE->getType())) 1145 return nullptr; 1146 1147 // Bind the return value to the symbolic value from the heap region. 1148 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1149 // side effects other than what we model here. 1150 unsigned Count = C.blockCount(); 1151 SValBuilder &svalBuilder = C.getSValBuilder(); 1152 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1153 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1154 .castAs<DefinedSVal>(); 1155 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1156 1157 // Fill the region with the initialization value. 1158 State = State->bindDefault(RetVal, Init); 1159 1160 // Set the region's extent equal to the Size parameter. 1161 const SymbolicRegion *R = 1162 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1163 if (!R) 1164 return nullptr; 1165 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1166 Size.getAs<DefinedOrUnknownSVal>()) { 1167 SValBuilder &svalBuilder = C.getSValBuilder(); 1168 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1169 DefinedOrUnknownSVal extentMatchesSize = 1170 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1171 1172 State = State->assume(extentMatchesSize, true); 1173 assert(State); 1174 } 1175 1176 return MallocUpdateRefState(C, CE, State, Family); 1177 } 1178 1179 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1180 const Expr *E, 1181 ProgramStateRef State, 1182 AllocationFamily Family) { 1183 if (!State) 1184 return nullptr; 1185 1186 // Get the return value. 1187 SVal retVal = State->getSVal(E, C.getLocationContext()); 1188 1189 // We expect the malloc functions to return a pointer. 1190 if (!retVal.getAs<Loc>()) 1191 return nullptr; 1192 1193 SymbolRef Sym = retVal.getAsLocSymbol(); 1194 assert(Sym); 1195 1196 // Set the symbol's state to Allocated. 1197 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1198 } 1199 1200 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1201 const CallExpr *CE, 1202 const OwnershipAttr *Att, 1203 ProgramStateRef State) const { 1204 if (!State) 1205 return nullptr; 1206 1207 if (Att->getModule() != II_malloc) 1208 return nullptr; 1209 1210 bool ReleasedAllocated = false; 1211 1212 for (const auto &Arg : Att->args()) { 1213 ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg, 1214 Att->getOwnKind() == OwnershipAttr::Holds, 1215 ReleasedAllocated); 1216 if (StateI) 1217 State = StateI; 1218 } 1219 return State; 1220 } 1221 1222 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1223 const CallExpr *CE, 1224 ProgramStateRef State, 1225 unsigned Num, 1226 bool Hold, 1227 bool &ReleasedAllocated, 1228 bool ReturnsNullOnFailure) const { 1229 if (!State) 1230 return nullptr; 1231 1232 if (CE->getNumArgs() < (Num + 1)) 1233 return nullptr; 1234 1235 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1236 ReleasedAllocated, ReturnsNullOnFailure); 1237 } 1238 1239 /// Checks if the previous call to free on the given symbol failed - if free 1240 /// failed, returns true. Also, returns the corresponding return value symbol. 1241 static bool didPreviousFreeFail(ProgramStateRef State, 1242 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1243 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1244 if (Ret) { 1245 assert(*Ret && "We should not store the null return symbol"); 1246 ConstraintManager &CMgr = State->getConstraintManager(); 1247 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1248 RetStatusSymbol = *Ret; 1249 return FreeFailed.isConstrainedTrue(); 1250 } 1251 return false; 1252 } 1253 1254 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1255 const Stmt *S) const { 1256 if (!S) 1257 return AF_None; 1258 1259 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1260 const FunctionDecl *FD = C.getCalleeDecl(CE); 1261 1262 if (!FD) 1263 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1264 1265 ASTContext &Ctx = C.getASTContext(); 1266 1267 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1268 return AF_Malloc; 1269 1270 if (isStandardNewDelete(FD, Ctx)) { 1271 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1272 if (Kind == OO_New || Kind == OO_Delete) 1273 return AF_CXXNew; 1274 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1275 return AF_CXXNewArray; 1276 } 1277 1278 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1279 return AF_IfNameIndex; 1280 1281 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1282 return AF_Alloca; 1283 1284 return AF_None; 1285 } 1286 1287 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1288 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1289 1290 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1291 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1292 1293 if (isa<ObjCMessageExpr>(S)) 1294 return AF_Malloc; 1295 1296 return AF_None; 1297 } 1298 1299 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1300 const Expr *E) const { 1301 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1302 // FIXME: This doesn't handle indirect calls. 1303 const FunctionDecl *FD = CE->getDirectCallee(); 1304 if (!FD) 1305 return false; 1306 1307 os << *FD; 1308 if (!FD->isOverloadedOperator()) 1309 os << "()"; 1310 return true; 1311 } 1312 1313 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1314 if (Msg->isInstanceMessage()) 1315 os << "-"; 1316 else 1317 os << "+"; 1318 Msg->getSelector().print(os); 1319 return true; 1320 } 1321 1322 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1323 os << "'" 1324 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1325 << "'"; 1326 return true; 1327 } 1328 1329 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1330 os << "'" 1331 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1332 << "'"; 1333 return true; 1334 } 1335 1336 return false; 1337 } 1338 1339 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1340 const Expr *E) const { 1341 AllocationFamily Family = getAllocationFamily(C, E); 1342 1343 switch(Family) { 1344 case AF_Malloc: os << "malloc()"; return; 1345 case AF_CXXNew: os << "'new'"; return; 1346 case AF_CXXNewArray: os << "'new[]'"; return; 1347 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1348 case AF_Alloca: 1349 case AF_None: llvm_unreachable("not a deallocation expression"); 1350 } 1351 } 1352 1353 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1354 AllocationFamily Family) const { 1355 switch(Family) { 1356 case AF_Malloc: os << "free()"; return; 1357 case AF_CXXNew: os << "'delete'"; return; 1358 case AF_CXXNewArray: os << "'delete[]'"; return; 1359 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1360 case AF_Alloca: 1361 case AF_None: llvm_unreachable("suspicious argument"); 1362 } 1363 } 1364 1365 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1366 const Expr *ArgExpr, 1367 const Expr *ParentExpr, 1368 ProgramStateRef State, 1369 bool Hold, 1370 bool &ReleasedAllocated, 1371 bool ReturnsNullOnFailure) const { 1372 1373 if (!State) 1374 return nullptr; 1375 1376 SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext()); 1377 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1378 return nullptr; 1379 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1380 1381 // Check for null dereferences. 1382 if (!location.getAs<Loc>()) 1383 return nullptr; 1384 1385 // The explicit NULL case, no operation is performed. 1386 ProgramStateRef notNullState, nullState; 1387 std::tie(notNullState, nullState) = State->assume(location); 1388 if (nullState && !notNullState) 1389 return nullptr; 1390 1391 // Unknown values could easily be okay 1392 // Undefined values are handled elsewhere 1393 if (ArgVal.isUnknownOrUndef()) 1394 return nullptr; 1395 1396 const MemRegion *R = ArgVal.getAsRegion(); 1397 1398 // Nonlocs can't be freed, of course. 1399 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1400 if (!R) { 1401 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1402 return nullptr; 1403 } 1404 1405 R = R->StripCasts(); 1406 1407 // Blocks might show up as heap data, but should not be free()d 1408 if (isa<BlockDataRegion>(R)) { 1409 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1410 return nullptr; 1411 } 1412 1413 const MemSpaceRegion *MS = R->getMemorySpace(); 1414 1415 // Parameters, locals, statics, globals, and memory returned by 1416 // __builtin_alloca() shouldn't be freed. 1417 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1418 // FIXME: at the time this code was written, malloc() regions were 1419 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1420 // This means that there isn't actually anything from HeapSpaceRegion 1421 // that should be freed, even though we allow it here. 1422 // Of course, free() can work on memory allocated outside the current 1423 // function, so UnknownSpaceRegion is always a possibility. 1424 // False negatives are better than false positives. 1425 1426 if (isa<AllocaRegion>(R)) 1427 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1428 else 1429 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1430 1431 return nullptr; 1432 } 1433 1434 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1435 // Various cases could lead to non-symbol values here. 1436 // For now, ignore them. 1437 if (!SrBase) 1438 return nullptr; 1439 1440 SymbolRef SymBase = SrBase->getSymbol(); 1441 const RefState *RsBase = State->get<RegionState>(SymBase); 1442 SymbolRef PreviousRetStatusSymbol = nullptr; 1443 1444 if (RsBase) { 1445 1446 // Memory returned by alloca() shouldn't be freed. 1447 if (RsBase->getAllocationFamily() == AF_Alloca) { 1448 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1449 return nullptr; 1450 } 1451 1452 // Check for double free first. 1453 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1454 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1455 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1456 SymBase, PreviousRetStatusSymbol); 1457 return nullptr; 1458 1459 // If the pointer is allocated or escaped, but we are now trying to free it, 1460 // check that the call to free is proper. 1461 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1462 RsBase->isEscaped()) { 1463 1464 // Check if an expected deallocation function matches the real one. 1465 bool DeallocMatchesAlloc = 1466 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1467 if (!DeallocMatchesAlloc) { 1468 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1469 ParentExpr, RsBase, SymBase, Hold); 1470 return nullptr; 1471 } 1472 1473 // Check if the memory location being freed is the actual location 1474 // allocated, or an offset. 1475 RegionOffset Offset = R->getAsOffset(); 1476 if (Offset.isValid() && 1477 !Offset.hasSymbolicOffset() && 1478 Offset.getOffset() != 0) { 1479 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1480 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1481 AllocExpr); 1482 return nullptr; 1483 } 1484 } 1485 } 1486 1487 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1488 RsBase->isAllocatedOfSizeZero()); 1489 1490 // Clean out the info on previous call to free return info. 1491 State = State->remove<FreeReturnValue>(SymBase); 1492 1493 // Keep track of the return value. If it is NULL, we will know that free 1494 // failed. 1495 if (ReturnsNullOnFailure) { 1496 SVal RetVal = C.getSVal(ParentExpr); 1497 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1498 if (RetStatusSymbol) { 1499 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1500 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1501 } 1502 } 1503 1504 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1505 : getAllocationFamily(C, ParentExpr); 1506 // Normal free. 1507 if (Hold) 1508 return State->set<RegionState>(SymBase, 1509 RefState::getRelinquished(Family, 1510 ParentExpr)); 1511 1512 return State->set<RegionState>(SymBase, 1513 RefState::getReleased(Family, ParentExpr)); 1514 } 1515 1516 Optional<MallocChecker::CheckKind> 1517 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1518 bool IsALeakCheck) const { 1519 switch (Family) { 1520 case AF_Malloc: 1521 case AF_Alloca: 1522 case AF_IfNameIndex: { 1523 if (ChecksEnabled[CK_MallocChecker]) 1524 return CK_MallocChecker; 1525 1526 return Optional<MallocChecker::CheckKind>(); 1527 } 1528 case AF_CXXNew: 1529 case AF_CXXNewArray: { 1530 if (IsALeakCheck) { 1531 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1532 return CK_NewDeleteLeaksChecker; 1533 } 1534 else { 1535 if (ChecksEnabled[CK_NewDeleteChecker]) 1536 return CK_NewDeleteChecker; 1537 } 1538 return Optional<MallocChecker::CheckKind>(); 1539 } 1540 case AF_None: { 1541 llvm_unreachable("no family"); 1542 } 1543 } 1544 llvm_unreachable("unhandled family"); 1545 } 1546 1547 Optional<MallocChecker::CheckKind> 1548 MallocChecker::getCheckIfTracked(CheckerContext &C, 1549 const Stmt *AllocDeallocStmt, 1550 bool IsALeakCheck) const { 1551 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1552 IsALeakCheck); 1553 } 1554 1555 Optional<MallocChecker::CheckKind> 1556 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1557 bool IsALeakCheck) const { 1558 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1559 return CK_MallocChecker; 1560 1561 const RefState *RS = C.getState()->get<RegionState>(Sym); 1562 assert(RS); 1563 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1564 } 1565 1566 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1567 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1568 os << "an integer (" << IntVal->getValue() << ")"; 1569 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1570 os << "a constant address (" << ConstAddr->getValue() << ")"; 1571 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1572 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1573 else 1574 return false; 1575 1576 return true; 1577 } 1578 1579 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1580 const MemRegion *MR) { 1581 switch (MR->getKind()) { 1582 case MemRegion::FunctionCodeRegionKind: { 1583 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1584 if (FD) 1585 os << "the address of the function '" << *FD << '\''; 1586 else 1587 os << "the address of a function"; 1588 return true; 1589 } 1590 case MemRegion::BlockCodeRegionKind: 1591 os << "block text"; 1592 return true; 1593 case MemRegion::BlockDataRegionKind: 1594 // FIXME: where the block came from? 1595 os << "a block"; 1596 return true; 1597 default: { 1598 const MemSpaceRegion *MS = MR->getMemorySpace(); 1599 1600 if (isa<StackLocalsSpaceRegion>(MS)) { 1601 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1602 const VarDecl *VD; 1603 if (VR) 1604 VD = VR->getDecl(); 1605 else 1606 VD = nullptr; 1607 1608 if (VD) 1609 os << "the address of the local variable '" << VD->getName() << "'"; 1610 else 1611 os << "the address of a local stack variable"; 1612 return true; 1613 } 1614 1615 if (isa<StackArgumentsSpaceRegion>(MS)) { 1616 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1617 const VarDecl *VD; 1618 if (VR) 1619 VD = VR->getDecl(); 1620 else 1621 VD = nullptr; 1622 1623 if (VD) 1624 os << "the address of the parameter '" << VD->getName() << "'"; 1625 else 1626 os << "the address of a parameter"; 1627 return true; 1628 } 1629 1630 if (isa<GlobalsSpaceRegion>(MS)) { 1631 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1632 const VarDecl *VD; 1633 if (VR) 1634 VD = VR->getDecl(); 1635 else 1636 VD = nullptr; 1637 1638 if (VD) { 1639 if (VD->isStaticLocal()) 1640 os << "the address of the static variable '" << VD->getName() << "'"; 1641 else 1642 os << "the address of the global variable '" << VD->getName() << "'"; 1643 } else 1644 os << "the address of a global variable"; 1645 return true; 1646 } 1647 1648 return false; 1649 } 1650 } 1651 } 1652 1653 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1654 SourceRange Range, 1655 const Expr *DeallocExpr) const { 1656 1657 if (!ChecksEnabled[CK_MallocChecker] && 1658 !ChecksEnabled[CK_NewDeleteChecker]) 1659 return; 1660 1661 Optional<MallocChecker::CheckKind> CheckKind = 1662 getCheckIfTracked(C, DeallocExpr); 1663 if (!CheckKind.hasValue()) 1664 return; 1665 1666 if (ExplodedNode *N = C.generateErrorNode()) { 1667 if (!BT_BadFree[*CheckKind]) 1668 BT_BadFree[*CheckKind].reset( 1669 new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error")); 1670 1671 SmallString<100> buf; 1672 llvm::raw_svector_ostream os(buf); 1673 1674 const MemRegion *MR = ArgVal.getAsRegion(); 1675 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1676 MR = ER->getSuperRegion(); 1677 1678 os << "Argument to "; 1679 if (!printAllocDeallocName(os, C, DeallocExpr)) 1680 os << "deallocator"; 1681 1682 os << " is "; 1683 bool Summarized = MR ? SummarizeRegion(os, MR) 1684 : SummarizeValue(os, ArgVal); 1685 if (Summarized) 1686 os << ", which is not memory allocated by "; 1687 else 1688 os << "not memory allocated by "; 1689 1690 printExpectedAllocName(os, C, DeallocExpr); 1691 1692 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 1693 R->markInteresting(MR); 1694 R->addRange(Range); 1695 C.emitReport(std::move(R)); 1696 } 1697 } 1698 1699 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1700 SourceRange Range) const { 1701 1702 Optional<MallocChecker::CheckKind> CheckKind; 1703 1704 if (ChecksEnabled[CK_MallocChecker]) 1705 CheckKind = CK_MallocChecker; 1706 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1707 CheckKind = CK_MismatchedDeallocatorChecker; 1708 else 1709 return; 1710 1711 if (ExplodedNode *N = C.generateErrorNode()) { 1712 if (!BT_FreeAlloca[*CheckKind]) 1713 BT_FreeAlloca[*CheckKind].reset( 1714 new BugType(CheckNames[*CheckKind], "Free alloca()", "Memory Error")); 1715 1716 auto R = llvm::make_unique<BugReport>( 1717 *BT_FreeAlloca[*CheckKind], 1718 "Memory allocated by alloca() should not be deallocated", N); 1719 R->markInteresting(ArgVal.getAsRegion()); 1720 R->addRange(Range); 1721 C.emitReport(std::move(R)); 1722 } 1723 } 1724 1725 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1726 SourceRange Range, 1727 const Expr *DeallocExpr, 1728 const RefState *RS, 1729 SymbolRef Sym, 1730 bool OwnershipTransferred) const { 1731 1732 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1733 return; 1734 1735 if (ExplodedNode *N = C.generateErrorNode()) { 1736 if (!BT_MismatchedDealloc) 1737 BT_MismatchedDealloc.reset( 1738 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1739 "Bad deallocator", "Memory Error")); 1740 1741 SmallString<100> buf; 1742 llvm::raw_svector_ostream os(buf); 1743 1744 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1745 SmallString<20> AllocBuf; 1746 llvm::raw_svector_ostream AllocOs(AllocBuf); 1747 SmallString<20> DeallocBuf; 1748 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1749 1750 if (OwnershipTransferred) { 1751 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1752 os << DeallocOs.str() << " cannot"; 1753 else 1754 os << "Cannot"; 1755 1756 os << " take ownership of memory"; 1757 1758 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1759 os << " allocated by " << AllocOs.str(); 1760 } else { 1761 os << "Memory"; 1762 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1763 os << " allocated by " << AllocOs.str(); 1764 1765 os << " should be deallocated by "; 1766 printExpectedDeallocName(os, RS->getAllocationFamily()); 1767 1768 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1769 os << ", not " << DeallocOs.str(); 1770 } 1771 1772 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 1773 R->markInteresting(Sym); 1774 R->addRange(Range); 1775 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1776 C.emitReport(std::move(R)); 1777 } 1778 } 1779 1780 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1781 SourceRange Range, const Expr *DeallocExpr, 1782 const Expr *AllocExpr) const { 1783 1784 1785 if (!ChecksEnabled[CK_MallocChecker] && 1786 !ChecksEnabled[CK_NewDeleteChecker]) 1787 return; 1788 1789 Optional<MallocChecker::CheckKind> CheckKind = 1790 getCheckIfTracked(C, AllocExpr); 1791 if (!CheckKind.hasValue()) 1792 return; 1793 1794 ExplodedNode *N = C.generateErrorNode(); 1795 if (!N) 1796 return; 1797 1798 if (!BT_OffsetFree[*CheckKind]) 1799 BT_OffsetFree[*CheckKind].reset( 1800 new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error")); 1801 1802 SmallString<100> buf; 1803 llvm::raw_svector_ostream os(buf); 1804 SmallString<20> AllocNameBuf; 1805 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1806 1807 const MemRegion *MR = ArgVal.getAsRegion(); 1808 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1809 1810 RegionOffset Offset = MR->getAsOffset(); 1811 assert((Offset.isValid() && 1812 !Offset.hasSymbolicOffset() && 1813 Offset.getOffset() != 0) && 1814 "Only symbols with a valid offset can have offset free errors"); 1815 1816 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1817 1818 os << "Argument to "; 1819 if (!printAllocDeallocName(os, C, DeallocExpr)) 1820 os << "deallocator"; 1821 os << " is offset by " 1822 << offsetBytes 1823 << " " 1824 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1825 << " from the start of "; 1826 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1827 os << "memory allocated by " << AllocNameOs.str(); 1828 else 1829 os << "allocated memory"; 1830 1831 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 1832 R->markInteresting(MR->getBaseRegion()); 1833 R->addRange(Range); 1834 C.emitReport(std::move(R)); 1835 } 1836 1837 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1838 SymbolRef Sym) const { 1839 1840 if (!ChecksEnabled[CK_MallocChecker] && 1841 !ChecksEnabled[CK_NewDeleteChecker]) 1842 return; 1843 1844 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1845 if (!CheckKind.hasValue()) 1846 return; 1847 1848 if (ExplodedNode *N = C.generateErrorNode()) { 1849 if (!BT_UseFree[*CheckKind]) 1850 BT_UseFree[*CheckKind].reset(new BugType( 1851 CheckNames[*CheckKind], "Use-after-free", "Memory Error")); 1852 1853 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 1854 "Use of memory after it is freed", N); 1855 1856 R->markInteresting(Sym); 1857 R->addRange(Range); 1858 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1859 C.emitReport(std::move(R)); 1860 } 1861 } 1862 1863 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 1864 bool Released, SymbolRef Sym, 1865 SymbolRef PrevSym) const { 1866 1867 if (!ChecksEnabled[CK_MallocChecker] && 1868 !ChecksEnabled[CK_NewDeleteChecker]) 1869 return; 1870 1871 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1872 if (!CheckKind.hasValue()) 1873 return; 1874 1875 if (ExplodedNode *N = C.generateErrorNode()) { 1876 if (!BT_DoubleFree[*CheckKind]) 1877 BT_DoubleFree[*CheckKind].reset( 1878 new BugType(CheckNames[*CheckKind], "Double free", "Memory Error")); 1879 1880 auto R = llvm::make_unique<BugReport>( 1881 *BT_DoubleFree[*CheckKind], 1882 (Released ? "Attempt to free released memory" 1883 : "Attempt to free non-owned memory"), 1884 N); 1885 R->addRange(Range); 1886 R->markInteresting(Sym); 1887 if (PrevSym) 1888 R->markInteresting(PrevSym); 1889 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1890 C.emitReport(std::move(R)); 1891 } 1892 } 1893 1894 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 1895 1896 if (!ChecksEnabled[CK_NewDeleteChecker]) 1897 return; 1898 1899 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1900 if (!CheckKind.hasValue()) 1901 return; 1902 1903 if (ExplodedNode *N = C.generateErrorNode()) { 1904 if (!BT_DoubleDelete) 1905 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 1906 "Double delete", "Memory Error")); 1907 1908 auto R = llvm::make_unique<BugReport>( 1909 *BT_DoubleDelete, "Attempt to delete released memory", N); 1910 1911 R->markInteresting(Sym); 1912 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1913 C.emitReport(std::move(R)); 1914 } 1915 } 1916 1917 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 1918 SourceRange Range, 1919 SymbolRef Sym) const { 1920 1921 if (!ChecksEnabled[CK_MallocChecker] && 1922 !ChecksEnabled[CK_NewDeleteChecker]) 1923 return; 1924 1925 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1926 1927 if (!CheckKind.hasValue()) 1928 return; 1929 1930 if (ExplodedNode *N = C.generateErrorNode()) { 1931 if (!BT_UseZerroAllocated[*CheckKind]) 1932 BT_UseZerroAllocated[*CheckKind].reset(new BugType( 1933 CheckNames[*CheckKind], "Use of zero allocated", "Memory Error")); 1934 1935 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 1936 "Use of zero-allocated memory", N); 1937 1938 R->addRange(Range); 1939 if (Sym) { 1940 R->markInteresting(Sym); 1941 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1942 } 1943 C.emitReport(std::move(R)); 1944 } 1945 } 1946 1947 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C, 1948 const CallExpr *CE, 1949 bool FreesOnFail, 1950 ProgramStateRef State) const { 1951 if (!State) 1952 return nullptr; 1953 1954 if (CE->getNumArgs() < 2) 1955 return nullptr; 1956 1957 const Expr *arg0Expr = CE->getArg(0); 1958 const LocationContext *LCtx = C.getLocationContext(); 1959 SVal Arg0Val = State->getSVal(arg0Expr, LCtx); 1960 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 1961 return nullptr; 1962 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 1963 1964 SValBuilder &svalBuilder = C.getSValBuilder(); 1965 1966 DefinedOrUnknownSVal PtrEQ = 1967 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 1968 1969 // Get the size argument. If there is no size arg then give up. 1970 const Expr *Arg1 = CE->getArg(1); 1971 if (!Arg1) 1972 return nullptr; 1973 1974 // Get the value of the size argument. 1975 SVal Arg1ValG = State->getSVal(Arg1, LCtx); 1976 if (!Arg1ValG.getAs<DefinedOrUnknownSVal>()) 1977 return nullptr; 1978 DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>(); 1979 1980 // Compare the size argument to 0. 1981 DefinedOrUnknownSVal SizeZero = 1982 svalBuilder.evalEQ(State, Arg1Val, 1983 svalBuilder.makeIntValWithPtrWidth(0, false)); 1984 1985 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 1986 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 1987 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 1988 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 1989 // We only assume exceptional states if they are definitely true; if the 1990 // state is under-constrained, assume regular realloc behavior. 1991 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 1992 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 1993 1994 // If the ptr is NULL and the size is not 0, the call is equivalent to 1995 // malloc(size). 1996 if ( PrtIsNull && !SizeIsZero) { 1997 ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1), 1998 UndefinedVal(), StatePtrIsNull); 1999 return stateMalloc; 2000 } 2001 2002 if (PrtIsNull && SizeIsZero) 2003 return State; 2004 2005 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2006 assert(!PrtIsNull); 2007 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2008 SVal RetVal = State->getSVal(CE, LCtx); 2009 SymbolRef ToPtr = RetVal.getAsSymbol(); 2010 if (!FromPtr || !ToPtr) 2011 return nullptr; 2012 2013 bool ReleasedAllocated = false; 2014 2015 // If the size is 0, free the memory. 2016 if (SizeIsZero) 2017 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2018 false, ReleasedAllocated)){ 2019 // The semantics of the return value are: 2020 // If size was equal to 0, either NULL or a pointer suitable to be passed 2021 // to free() is returned. We just free the input pointer and do not add 2022 // any constrains on the output pointer. 2023 return stateFree; 2024 } 2025 2026 // Default behavior. 2027 if (ProgramStateRef stateFree = 2028 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 2029 2030 ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1), 2031 UnknownVal(), stateFree); 2032 if (!stateRealloc) 2033 return nullptr; 2034 2035 ReallocPairKind Kind = RPToBeFreedAfterFailure; 2036 if (FreesOnFail) 2037 Kind = RPIsFreeOnFailure; 2038 else if (!ReleasedAllocated) 2039 Kind = RPDoNotTrackAfterFailure; 2040 2041 // Record the info about the reallocated symbol so that we could properly 2042 // process failed reallocation. 2043 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2044 ReallocPair(FromPtr, Kind)); 2045 // The reallocated symbol should stay alive for as long as the new symbol. 2046 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2047 return stateRealloc; 2048 } 2049 return nullptr; 2050 } 2051 2052 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2053 ProgramStateRef State) { 2054 if (!State) 2055 return nullptr; 2056 2057 if (CE->getNumArgs() < 2) 2058 return nullptr; 2059 2060 SValBuilder &svalBuilder = C.getSValBuilder(); 2061 const LocationContext *LCtx = C.getLocationContext(); 2062 SVal count = State->getSVal(CE->getArg(0), LCtx); 2063 SVal elementSize = State->getSVal(CE->getArg(1), LCtx); 2064 SVal TotalSize = svalBuilder.evalBinOp(State, BO_Mul, count, elementSize, 2065 svalBuilder.getContext().getSizeType()); 2066 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2067 2068 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2069 } 2070 2071 LeakInfo 2072 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2073 CheckerContext &C) const { 2074 const LocationContext *LeakContext = N->getLocationContext(); 2075 // Walk the ExplodedGraph backwards and find the first node that referred to 2076 // the tracked symbol. 2077 const ExplodedNode *AllocNode = N; 2078 const MemRegion *ReferenceRegion = nullptr; 2079 2080 while (N) { 2081 ProgramStateRef State = N->getState(); 2082 if (!State->get<RegionState>(Sym)) 2083 break; 2084 2085 // Find the most recent expression bound to the symbol in the current 2086 // context. 2087 if (!ReferenceRegion) { 2088 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2089 SVal Val = State->getSVal(MR); 2090 if (Val.getAsLocSymbol() == Sym) { 2091 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2092 // Do not show local variables belonging to a function other than 2093 // where the error is reported. 2094 if (!VR || 2095 (VR->getStackFrame() == LeakContext->getCurrentStackFrame())) 2096 ReferenceRegion = MR; 2097 } 2098 } 2099 } 2100 2101 // Allocation node, is the last node in the current or parent context in 2102 // which the symbol was tracked. 2103 const LocationContext *NContext = N->getLocationContext(); 2104 if (NContext == LeakContext || 2105 NContext->isParentOf(LeakContext)) 2106 AllocNode = N; 2107 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2108 } 2109 2110 return LeakInfo(AllocNode, ReferenceRegion); 2111 } 2112 2113 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2114 CheckerContext &C) const { 2115 2116 if (!ChecksEnabled[CK_MallocChecker] && 2117 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2118 return; 2119 2120 const RefState *RS = C.getState()->get<RegionState>(Sym); 2121 assert(RS && "cannot leak an untracked symbol"); 2122 AllocationFamily Family = RS->getAllocationFamily(); 2123 2124 if (Family == AF_Alloca) 2125 return; 2126 2127 Optional<MallocChecker::CheckKind> 2128 CheckKind = getCheckIfTracked(Family, true); 2129 2130 if (!CheckKind.hasValue()) 2131 return; 2132 2133 assert(N); 2134 if (!BT_Leak[*CheckKind]) { 2135 BT_Leak[*CheckKind].reset( 2136 new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error")); 2137 // Leaks should not be reported if they are post-dominated by a sink: 2138 // (1) Sinks are higher importance bugs. 2139 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2140 // with __noreturn functions such as assert() or exit(). We choose not 2141 // to report leaks on such paths. 2142 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2143 } 2144 2145 // Most bug reports are cached at the location where they occurred. 2146 // With leaks, we want to unique them by the location where they were 2147 // allocated, and only report a single path. 2148 PathDiagnosticLocation LocUsedForUniqueing; 2149 const ExplodedNode *AllocNode = nullptr; 2150 const MemRegion *Region = nullptr; 2151 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2152 2153 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2154 if (AllocationStmt) 2155 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2156 C.getSourceManager(), 2157 AllocNode->getLocationContext()); 2158 2159 SmallString<200> buf; 2160 llvm::raw_svector_ostream os(buf); 2161 if (Region && Region->canPrintPretty()) { 2162 os << "Potential leak of memory pointed to by "; 2163 Region->printPretty(os); 2164 } else { 2165 os << "Potential memory leak"; 2166 } 2167 2168 auto R = llvm::make_unique<BugReport>( 2169 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2170 AllocNode->getLocationContext()->getDecl()); 2171 R->markInteresting(Sym); 2172 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2173 C.emitReport(std::move(R)); 2174 } 2175 2176 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2177 CheckerContext &C) const 2178 { 2179 if (!SymReaper.hasDeadSymbols()) 2180 return; 2181 2182 ProgramStateRef state = C.getState(); 2183 RegionStateTy RS = state->get<RegionState>(); 2184 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2185 2186 SmallVector<SymbolRef, 2> Errors; 2187 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2188 if (SymReaper.isDead(I->first)) { 2189 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2190 Errors.push_back(I->first); 2191 // Remove the dead symbol from the map. 2192 RS = F.remove(RS, I->first); 2193 2194 } 2195 } 2196 2197 // Cleanup the Realloc Pairs Map. 2198 ReallocPairsTy RP = state->get<ReallocPairs>(); 2199 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2200 if (SymReaper.isDead(I->first) || 2201 SymReaper.isDead(I->second.ReallocatedSym)) { 2202 state = state->remove<ReallocPairs>(I->first); 2203 } 2204 } 2205 2206 // Cleanup the FreeReturnValue Map. 2207 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2208 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2209 if (SymReaper.isDead(I->first) || 2210 SymReaper.isDead(I->second)) { 2211 state = state->remove<FreeReturnValue>(I->first); 2212 } 2213 } 2214 2215 // Generate leak node. 2216 ExplodedNode *N = C.getPredecessor(); 2217 if (!Errors.empty()) { 2218 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2219 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2220 if (N) { 2221 for (SmallVectorImpl<SymbolRef>::iterator 2222 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2223 reportLeak(*I, N, C); 2224 } 2225 } 2226 } 2227 2228 C.addTransition(state->set<RegionState>(RS), N); 2229 } 2230 2231 void MallocChecker::checkPreCall(const CallEvent &Call, 2232 CheckerContext &C) const { 2233 2234 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2235 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2236 if (!Sym || checkDoubleDelete(Sym, C)) 2237 return; 2238 } 2239 2240 // We will check for double free in the post visit. 2241 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2242 const FunctionDecl *FD = FC->getDecl(); 2243 if (!FD) 2244 return; 2245 2246 ASTContext &Ctx = C.getASTContext(); 2247 if (ChecksEnabled[CK_MallocChecker] && 2248 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2249 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2250 MemoryOperationKind::MOK_Free))) 2251 return; 2252 2253 if (ChecksEnabled[CK_NewDeleteChecker] && 2254 isStandardNewDelete(FD, Ctx)) 2255 return; 2256 } 2257 2258 // Check if the callee of a method is deleted. 2259 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2260 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2261 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2262 return; 2263 } 2264 2265 // Check arguments for being used after free. 2266 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2267 SVal ArgSVal = Call.getArgSVal(I); 2268 if (ArgSVal.getAs<Loc>()) { 2269 SymbolRef Sym = ArgSVal.getAsSymbol(); 2270 if (!Sym) 2271 continue; 2272 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2273 return; 2274 } 2275 } 2276 } 2277 2278 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { 2279 const Expr *E = S->getRetValue(); 2280 if (!E) 2281 return; 2282 2283 // Check if we are returning a symbol. 2284 ProgramStateRef State = C.getState(); 2285 SVal RetVal = State->getSVal(E, C.getLocationContext()); 2286 SymbolRef Sym = RetVal.getAsSymbol(); 2287 if (!Sym) 2288 // If we are returning a field of the allocated struct or an array element, 2289 // the callee could still free the memory. 2290 // TODO: This logic should be a part of generic symbol escape callback. 2291 if (const MemRegion *MR = RetVal.getAsRegion()) 2292 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2293 if (const SymbolicRegion *BMR = 2294 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2295 Sym = BMR->getSymbol(); 2296 2297 // Check if we are returning freed memory. 2298 if (Sym) 2299 checkUseAfterFree(Sym, C, E); 2300 } 2301 2302 // TODO: Blocks should be either inlined or should call invalidate regions 2303 // upon invocation. After that's in place, special casing here will not be 2304 // needed. 2305 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2306 CheckerContext &C) const { 2307 2308 // Scan the BlockDecRefExprs for any object the retain count checker 2309 // may be tracking. 2310 if (!BE->getBlockDecl()->hasCaptures()) 2311 return; 2312 2313 ProgramStateRef state = C.getState(); 2314 const BlockDataRegion *R = 2315 cast<BlockDataRegion>(state->getSVal(BE, 2316 C.getLocationContext()).getAsRegion()); 2317 2318 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2319 E = R->referenced_vars_end(); 2320 2321 if (I == E) 2322 return; 2323 2324 SmallVector<const MemRegion*, 10> Regions; 2325 const LocationContext *LC = C.getLocationContext(); 2326 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2327 2328 for ( ; I != E; ++I) { 2329 const VarRegion *VR = I.getCapturedRegion(); 2330 if (VR->getSuperRegion() == R) { 2331 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2332 } 2333 Regions.push_back(VR); 2334 } 2335 2336 state = 2337 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), 2338 Regions.data() + Regions.size()).getState(); 2339 C.addTransition(state); 2340 } 2341 2342 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2343 assert(Sym); 2344 const RefState *RS = C.getState()->get<RegionState>(Sym); 2345 return (RS && RS->isReleased()); 2346 } 2347 2348 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2349 const Stmt *S) const { 2350 2351 if (isReleased(Sym, C)) { 2352 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2353 return true; 2354 } 2355 2356 return false; 2357 } 2358 2359 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2360 const Stmt *S) const { 2361 assert(Sym); 2362 2363 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2364 if (RS->isAllocatedOfSizeZero()) 2365 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2366 } 2367 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2368 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2369 } 2370 } 2371 2372 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2373 2374 if (isReleased(Sym, C)) { 2375 ReportDoubleDelete(C, Sym); 2376 return true; 2377 } 2378 return false; 2379 } 2380 2381 // Check if the location is a freed symbolic region. 2382 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2383 CheckerContext &C) const { 2384 SymbolRef Sym = l.getLocSymbolInBase(); 2385 if (Sym) { 2386 checkUseAfterFree(Sym, C, S); 2387 checkUseZeroAllocated(Sym, C, S); 2388 } 2389 } 2390 2391 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2392 // it - assuming that allocation failed on this path. 2393 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2394 SVal Cond, 2395 bool Assumption) const { 2396 RegionStateTy RS = state->get<RegionState>(); 2397 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2398 // If the symbol is assumed to be NULL, remove it from consideration. 2399 ConstraintManager &CMgr = state->getConstraintManager(); 2400 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2401 if (AllocFailed.isConstrainedTrue()) 2402 state = state->remove<RegionState>(I.getKey()); 2403 } 2404 2405 // Realloc returns 0 when reallocation fails, which means that we should 2406 // restore the state of the pointer being reallocated. 2407 ReallocPairsTy RP = state->get<ReallocPairs>(); 2408 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2409 // If the symbol is assumed to be NULL, remove it from consideration. 2410 ConstraintManager &CMgr = state->getConstraintManager(); 2411 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2412 if (!AllocFailed.isConstrainedTrue()) 2413 continue; 2414 2415 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2416 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2417 if (RS->isReleased()) { 2418 if (I.getData().Kind == RPToBeFreedAfterFailure) 2419 state = state->set<RegionState>(ReallocSym, 2420 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2421 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2422 state = state->remove<RegionState>(ReallocSym); 2423 else 2424 assert(I.getData().Kind == RPIsFreeOnFailure); 2425 } 2426 } 2427 state = state->remove<ReallocPairs>(I.getKey()); 2428 } 2429 2430 return state; 2431 } 2432 2433 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2434 const CallEvent *Call, 2435 ProgramStateRef State, 2436 SymbolRef &EscapingSymbol) const { 2437 assert(Call); 2438 EscapingSymbol = nullptr; 2439 2440 // For now, assume that any C++ or block call can free memory. 2441 // TODO: If we want to be more optimistic here, we'll need to make sure that 2442 // regions escape to C++ containers. They seem to do that even now, but for 2443 // mysterious reasons. 2444 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2445 return true; 2446 2447 // Check Objective-C messages by selector name. 2448 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2449 // If it's not a framework call, or if it takes a callback, assume it 2450 // can free memory. 2451 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2452 return true; 2453 2454 // If it's a method we know about, handle it explicitly post-call. 2455 // This should happen before the "freeWhenDone" check below. 2456 if (isKnownDeallocObjCMethodName(*Msg)) 2457 return false; 2458 2459 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2460 // about, we can't be sure that the object will use free() to deallocate the 2461 // memory, so we can't model it explicitly. The best we can do is use it to 2462 // decide whether the pointer escapes. 2463 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2464 return *FreeWhenDone; 2465 2466 // If the first selector piece ends with "NoCopy", and there is no 2467 // "freeWhenDone" parameter set to zero, we know ownership is being 2468 // transferred. Again, though, we can't be sure that the object will use 2469 // free() to deallocate the memory, so we can't model it explicitly. 2470 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2471 if (FirstSlot.endswith("NoCopy")) 2472 return true; 2473 2474 // If the first selector starts with addPointer, insertPointer, 2475 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2476 // This is similar to C++ containers (vector); we still might want to check 2477 // that the pointers get freed by following the container itself. 2478 if (FirstSlot.startswith("addPointer") || 2479 FirstSlot.startswith("insertPointer") || 2480 FirstSlot.startswith("replacePointer") || 2481 FirstSlot.equals("valueWithPointer")) { 2482 return true; 2483 } 2484 2485 // We should escape receiver on call to 'init'. This is especially relevant 2486 // to the receiver, as the corresponding symbol is usually not referenced 2487 // after the call. 2488 if (Msg->getMethodFamily() == OMF_init) { 2489 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2490 return true; 2491 } 2492 2493 // Otherwise, assume that the method does not free memory. 2494 // Most framework methods do not free memory. 2495 return false; 2496 } 2497 2498 // At this point the only thing left to handle is straight function calls. 2499 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2500 if (!FD) 2501 return true; 2502 2503 ASTContext &ASTC = State->getStateManager().getContext(); 2504 2505 // If it's one of the allocation functions we can reason about, we model 2506 // its behavior explicitly. 2507 if (isMemFunction(FD, ASTC)) 2508 return false; 2509 2510 // If it's not a system call, assume it frees memory. 2511 if (!Call->isInSystemHeader()) 2512 return true; 2513 2514 // White list the system functions whose arguments escape. 2515 const IdentifierInfo *II = FD->getIdentifier(); 2516 if (!II) 2517 return true; 2518 StringRef FName = II->getName(); 2519 2520 // White list the 'XXXNoCopy' CoreFoundation functions. 2521 // We specifically check these before 2522 if (FName.endswith("NoCopy")) { 2523 // Look for the deallocator argument. We know that the memory ownership 2524 // is not transferred only if the deallocator argument is 2525 // 'kCFAllocatorNull'. 2526 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2527 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2528 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2529 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2530 if (DeallocatorName == "kCFAllocatorNull") 2531 return false; 2532 } 2533 } 2534 return true; 2535 } 2536 2537 // Associating streams with malloced buffers. The pointer can escape if 2538 // 'closefn' is specified (and if that function does free memory), 2539 // but it will not if closefn is not specified. 2540 // Currently, we do not inspect the 'closefn' function (PR12101). 2541 if (FName == "funopen") 2542 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2543 return false; 2544 2545 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2546 // these leaks might be intentional when setting the buffer for stdio. 2547 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2548 if (FName == "setbuf" || FName =="setbuffer" || 2549 FName == "setlinebuf" || FName == "setvbuf") { 2550 if (Call->getNumArgs() >= 1) { 2551 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2552 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2553 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2554 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2555 return true; 2556 } 2557 } 2558 2559 // A bunch of other functions which either take ownership of a pointer or 2560 // wrap the result up in a struct or object, meaning it can be freed later. 2561 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2562 // but the Malloc checker cannot differentiate between them. The right way 2563 // of doing this would be to implement a pointer escapes callback. 2564 if (FName == "CGBitmapContextCreate" || 2565 FName == "CGBitmapContextCreateWithData" || 2566 FName == "CVPixelBufferCreateWithBytes" || 2567 FName == "CVPixelBufferCreateWithPlanarBytes" || 2568 FName == "OSAtomicEnqueue") { 2569 return true; 2570 } 2571 2572 if (FName == "postEvent" && 2573 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2574 return true; 2575 } 2576 2577 if (FName == "postEvent" && 2578 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2579 return true; 2580 } 2581 2582 // Handle cases where we know a buffer's /address/ can escape. 2583 // Note that the above checks handle some special cases where we know that 2584 // even though the address escapes, it's still our responsibility to free the 2585 // buffer. 2586 if (Call->argumentsMayEscape()) 2587 return true; 2588 2589 // Otherwise, assume that the function does not free memory. 2590 // Most system calls do not free the memory. 2591 return false; 2592 } 2593 2594 static bool retTrue(const RefState *RS) { 2595 return true; 2596 } 2597 2598 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2599 return (RS->getAllocationFamily() == AF_CXXNewArray || 2600 RS->getAllocationFamily() == AF_CXXNew); 2601 } 2602 2603 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2604 const InvalidatedSymbols &Escaped, 2605 const CallEvent *Call, 2606 PointerEscapeKind Kind) const { 2607 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2608 } 2609 2610 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2611 const InvalidatedSymbols &Escaped, 2612 const CallEvent *Call, 2613 PointerEscapeKind Kind) const { 2614 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2615 &checkIfNewOrNewArrayFamily); 2616 } 2617 2618 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2619 const InvalidatedSymbols &Escaped, 2620 const CallEvent *Call, 2621 PointerEscapeKind Kind, 2622 bool(*CheckRefState)(const RefState*)) const { 2623 // If we know that the call does not free memory, or we want to process the 2624 // call later, keep tracking the top level arguments. 2625 SymbolRef EscapingSymbol = nullptr; 2626 if (Kind == PSK_DirectEscapeOnCall && 2627 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2628 EscapingSymbol) && 2629 !EscapingSymbol) { 2630 return State; 2631 } 2632 2633 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2634 E = Escaped.end(); 2635 I != E; ++I) { 2636 SymbolRef sym = *I; 2637 2638 if (EscapingSymbol && EscapingSymbol != sym) 2639 continue; 2640 2641 if (const RefState *RS = State->get<RegionState>(sym)) { 2642 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2643 CheckRefState(RS)) { 2644 State = State->remove<RegionState>(sym); 2645 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2646 } 2647 } 2648 } 2649 return State; 2650 } 2651 2652 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2653 ProgramStateRef prevState) { 2654 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2655 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2656 2657 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2658 I != E; ++I) { 2659 SymbolRef sym = I.getKey(); 2660 if (!currMap.lookup(sym)) 2661 return sym; 2662 } 2663 2664 return nullptr; 2665 } 2666 2667 PathDiagnosticPiece * 2668 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N, 2669 const ExplodedNode *PrevN, 2670 BugReporterContext &BRC, 2671 BugReport &BR) { 2672 ProgramStateRef state = N->getState(); 2673 ProgramStateRef statePrev = PrevN->getState(); 2674 2675 const RefState *RS = state->get<RegionState>(Sym); 2676 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2677 if (!RS) 2678 return nullptr; 2679 2680 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2681 if (!S) 2682 return nullptr; 2683 2684 // FIXME: We will eventually need to handle non-statement-based events 2685 // (__attribute__((cleanup))). 2686 2687 // Find out if this is an interesting point and what is the kind. 2688 const char *Msg = nullptr; 2689 StackHintGeneratorForSymbol *StackHint = nullptr; 2690 if (Mode == Normal) { 2691 if (isAllocated(RS, RSPrev, S)) { 2692 Msg = "Memory is allocated"; 2693 StackHint = new StackHintGeneratorForSymbol(Sym, 2694 "Returned allocated memory"); 2695 } else if (isReleased(RS, RSPrev, S)) { 2696 Msg = "Memory is released"; 2697 StackHint = new StackHintGeneratorForSymbol(Sym, 2698 "Returning; memory was released"); 2699 } else if (isRelinquished(RS, RSPrev, S)) { 2700 Msg = "Memory ownership is transferred"; 2701 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 2702 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 2703 Mode = ReallocationFailed; 2704 Msg = "Reallocation failed"; 2705 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 2706 "Reallocation failed"); 2707 2708 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 2709 // Is it possible to fail two reallocs WITHOUT testing in between? 2710 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 2711 "We only support one failed realloc at a time."); 2712 BR.markInteresting(sym); 2713 FailedReallocSymbol = sym; 2714 } 2715 } 2716 2717 // We are in a special mode if a reallocation failed later in the path. 2718 } else if (Mode == ReallocationFailed) { 2719 assert(FailedReallocSymbol && "No symbol to look for."); 2720 2721 // Is this is the first appearance of the reallocated symbol? 2722 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 2723 // We're at the reallocation point. 2724 Msg = "Attempt to reallocate memory"; 2725 StackHint = new StackHintGeneratorForSymbol(Sym, 2726 "Returned reallocated memory"); 2727 FailedReallocSymbol = nullptr; 2728 Mode = Normal; 2729 } 2730 } 2731 2732 if (!Msg) 2733 return nullptr; 2734 assert(StackHint); 2735 2736 // Generate the extra diagnostic. 2737 PathDiagnosticLocation Pos(S, BRC.getSourceManager(), 2738 N->getLocationContext()); 2739 return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint); 2740 } 2741 2742 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 2743 const char *NL, const char *Sep) const { 2744 2745 RegionStateTy RS = State->get<RegionState>(); 2746 2747 if (!RS.isEmpty()) { 2748 Out << Sep << "MallocChecker :" << NL; 2749 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2750 const RefState *RefS = State->get<RegionState>(I.getKey()); 2751 AllocationFamily Family = RefS->getAllocationFamily(); 2752 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2753 if (!CheckKind.hasValue()) 2754 CheckKind = getCheckIfTracked(Family, true); 2755 2756 I.getKey()->dumpToStream(Out); 2757 Out << " : "; 2758 I.getData().dump(Out); 2759 if (CheckKind.hasValue()) 2760 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 2761 Out << NL; 2762 } 2763 } 2764 } 2765 2766 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 2767 registerCStringCheckerBasic(mgr); 2768 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 2769 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( 2770 "Optimistic", false, checker); 2771 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 2772 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 2773 mgr.getCurrentCheckName(); 2774 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 2775 // checker. 2776 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) 2777 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 2778 } 2779 2780 #define REGISTER_CHECKER(name) \ 2781 void ento::register##name(CheckerManager &mgr) { \ 2782 registerCStringCheckerBasic(mgr); \ 2783 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 2784 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \ 2785 "Optimistic", false, checker); \ 2786 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 2787 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 2788 } 2789 2790 REGISTER_CHECKER(MallocChecker) 2791 REGISTER_CHECKER(NewDeleteChecker) 2792 REGISTER_CHECKER(MismatchedDeallocatorChecker) 2793