1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 65 #include "clang/StaticAnalyzer/Core/Checker.h" 66 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 79 #include "llvm/ADT/STLExtras.h" 80 #include "llvm/ADT/SetOperations.h" 81 #include "llvm/ADT/SmallString.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <climits> 88 #include <functional> 89 #include <utility> 90 91 using namespace clang; 92 using namespace ento; 93 using namespace std::placeholders; 94 95 //===----------------------------------------------------------------------===// 96 // The types of allocation we're modeling. This is used to check whether a 97 // dynamically allocated object is deallocated with the correct function, like 98 // not using operator delete on an object created by malloc(), or alloca regions 99 // aren't ever deallocated manually. 100 //===----------------------------------------------------------------------===// 101 102 namespace { 103 104 // Used to check correspondence between allocators and deallocators. 105 enum AllocationFamily { 106 AF_None, 107 AF_Malloc, 108 AF_CXXNew, 109 AF_CXXNewArray, 110 AF_IfNameIndex, 111 AF_Alloca, 112 AF_InnerBuffer 113 }; 114 115 } // end of anonymous namespace 116 117 /// Print names of allocators and deallocators. 118 /// 119 /// \returns true on success. 120 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 121 122 /// Print expected name of an allocator based on the deallocator's family 123 /// derived from the DeallocExpr. 124 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 125 126 /// Print expected name of a deallocator based on the allocator's 127 /// family. 128 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 129 130 //===----------------------------------------------------------------------===// 131 // The state of a symbol, in terms of memory management. 132 //===----------------------------------------------------------------------===// 133 134 namespace { 135 136 class RefState { 137 enum Kind { 138 // Reference to allocated memory. 139 Allocated, 140 // Reference to zero-allocated memory. 141 AllocatedOfSizeZero, 142 // Reference to released/freed memory. 143 Released, 144 // The responsibility for freeing resources has transferred from 145 // this reference. A relinquished symbol should not be freed. 146 Relinquished, 147 // We are no longer guaranteed to have observed all manipulations 148 // of this pointer/memory. For example, it could have been 149 // passed as a parameter to an opaque function. 150 Escaped 151 }; 152 153 const Stmt *S; 154 155 Kind K; 156 AllocationFamily Family; 157 158 RefState(Kind k, const Stmt *s, AllocationFamily family) 159 : S(s), K(k), Family(family) { 160 assert(family != AF_None); 161 } 162 163 public: 164 bool isAllocated() const { return K == Allocated; } 165 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 166 bool isReleased() const { return K == Released; } 167 bool isRelinquished() const { return K == Relinquished; } 168 bool isEscaped() const { return K == Escaped; } 169 AllocationFamily getAllocationFamily() const { return Family; } 170 const Stmt *getStmt() const { return S; } 171 172 bool operator==(const RefState &X) const { 173 return K == X.K && S == X.S && Family == X.Family; 174 } 175 176 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 177 return RefState(Allocated, s, family); 178 } 179 static RefState getAllocatedOfSizeZero(const RefState *RS) { 180 return RefState(AllocatedOfSizeZero, RS->getStmt(), 181 RS->getAllocationFamily()); 182 } 183 static RefState getReleased(AllocationFamily family, const Stmt *s) { 184 return RefState(Released, s, family); 185 } 186 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 187 return RefState(Relinquished, s, family); 188 } 189 static RefState getEscaped(const RefState *RS) { 190 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 191 } 192 193 void Profile(llvm::FoldingSetNodeID &ID) const { 194 ID.AddInteger(K); 195 ID.AddPointer(S); 196 ID.AddInteger(Family); 197 } 198 199 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 200 switch (K) { 201 #define CASE(ID) case ID: OS << #ID; break; 202 CASE(Allocated) 203 CASE(AllocatedOfSizeZero) 204 CASE(Released) 205 CASE(Relinquished) 206 CASE(Escaped) 207 } 208 } 209 210 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 211 }; 212 213 } // end of anonymous namespace 214 215 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 216 217 /// Check if the memory associated with this symbol was released. 218 static bool isReleased(SymbolRef Sym, CheckerContext &C); 219 220 /// Update the RefState to reflect the new memory allocation. 221 /// The optional \p RetVal parameter specifies the newly allocated pointer 222 /// value; if unspecified, the value of expression \p E is used. 223 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 224 ProgramStateRef State, 225 AllocationFamily Family, 226 Optional<SVal> RetVal = None); 227 228 //===----------------------------------------------------------------------===// 229 // The modeling of memory reallocation. 230 // 231 // The terminology 'toPtr' and 'fromPtr' will be used: 232 // toPtr = realloc(fromPtr, 20); 233 //===----------------------------------------------------------------------===// 234 235 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 236 237 namespace { 238 239 /// The state of 'fromPtr' after reallocation is known to have failed. 240 enum OwnershipAfterReallocKind { 241 // The symbol needs to be freed (e.g.: realloc) 242 OAR_ToBeFreedAfterFailure, 243 // The symbol has been freed (e.g.: reallocf) 244 OAR_FreeOnFailure, 245 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 246 // 'fromPtr' was allocated: 247 // void Haha(int *ptr) { 248 // ptr = realloc(ptr, 67); 249 // // ... 250 // } 251 // ). 252 OAR_DoNotTrackAfterFailure 253 }; 254 255 /// Stores information about the 'fromPtr' symbol after reallocation. 256 /// 257 /// This is important because realloc may fail, and that needs special modeling. 258 /// Whether reallocation failed or not will not be known until later, so we'll 259 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 260 /// later, etc. 261 struct ReallocPair { 262 263 // The 'fromPtr'. 264 SymbolRef ReallocatedSym; 265 OwnershipAfterReallocKind Kind; 266 267 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 268 : ReallocatedSym(S), Kind(K) {} 269 void Profile(llvm::FoldingSetNodeID &ID) const { 270 ID.AddInteger(Kind); 271 ID.AddPointer(ReallocatedSym); 272 } 273 bool operator==(const ReallocPair &X) const { 274 return ReallocatedSym == X.ReallocatedSym && 275 Kind == X.Kind; 276 } 277 }; 278 279 } // end of anonymous namespace 280 281 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 282 283 /// Tells if the callee is one of the builtin new/delete operators, including 284 /// placement operators and other standard overloads. 285 static bool isStandardNewDelete(const FunctionDecl *FD); 286 static bool isStandardNewDelete(const CallEvent &Call) { 287 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 288 return false; 289 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 290 } 291 292 //===----------------------------------------------------------------------===// 293 // Definition of the MallocChecker class. 294 //===----------------------------------------------------------------------===// 295 296 namespace { 297 298 class MallocChecker 299 : public Checker<check::DeadSymbols, check::PointerEscape, 300 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 301 check::EndFunction, check::PreCall, check::PostCall, 302 check::NewAllocator, check::PostStmt<BlockExpr>, 303 check::PostObjCMessage, check::Location, eval::Assume> { 304 public: 305 /// In pessimistic mode, the checker assumes that it does not know which 306 /// functions might free the memory. 307 /// In optimistic mode, the checker assumes that all user-defined functions 308 /// which might free a pointer are annotated. 309 bool ShouldIncludeOwnershipAnnotatedFunctions = false; 310 311 bool ShouldRegisterNoOwnershipChangeVisitor = false; 312 313 /// Many checkers are essentially built into this one, so enabling them will 314 /// make MallocChecker perform additional modeling and reporting. 315 enum CheckKind { 316 /// When a subchecker is enabled but MallocChecker isn't, model memory 317 /// management but do not emit warnings emitted with MallocChecker only 318 /// enabled. 319 CK_MallocChecker, 320 CK_NewDeleteChecker, 321 CK_NewDeleteLeaksChecker, 322 CK_MismatchedDeallocatorChecker, 323 CK_InnerPointerChecker, 324 CK_NumCheckKinds 325 }; 326 327 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 328 329 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 330 CheckerNameRef CheckNames[CK_NumCheckKinds]; 331 332 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 333 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 334 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 335 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 336 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 337 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 338 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 339 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 340 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 341 bool Assumption) const; 342 void checkLocation(SVal l, bool isLoad, const Stmt *S, 343 CheckerContext &C) const; 344 345 ProgramStateRef checkPointerEscape(ProgramStateRef State, 346 const InvalidatedSymbols &Escaped, 347 const CallEvent *Call, 348 PointerEscapeKind Kind) const; 349 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 350 const InvalidatedSymbols &Escaped, 351 const CallEvent *Call, 352 PointerEscapeKind Kind) const; 353 354 void printState(raw_ostream &Out, ProgramStateRef State, 355 const char *NL, const char *Sep) const override; 356 357 private: 358 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 359 mutable std::unique_ptr<BugType> BT_DoubleDelete; 360 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 361 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 363 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 364 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 365 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 366 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 367 368 #define CHECK_FN(NAME) \ 369 void NAME(const CallEvent &Call, CheckerContext &C) const; 370 371 CHECK_FN(checkFree) 372 CHECK_FN(checkIfNameIndex) 373 CHECK_FN(checkBasicAlloc) 374 CHECK_FN(checkKernelMalloc) 375 CHECK_FN(checkCalloc) 376 CHECK_FN(checkAlloca) 377 CHECK_FN(checkStrdup) 378 CHECK_FN(checkIfFreeNameIndex) 379 CHECK_FN(checkCXXNewOrCXXDelete) 380 CHECK_FN(checkGMalloc0) 381 CHECK_FN(checkGMemdup) 382 CHECK_FN(checkGMallocN) 383 CHECK_FN(checkGMallocN0) 384 CHECK_FN(checkReallocN) 385 CHECK_FN(checkOwnershipAttr) 386 387 void checkRealloc(const CallEvent &Call, CheckerContext &C, 388 bool ShouldFreeOnFail) const; 389 390 using CheckFn = std::function<void(const MallocChecker *, 391 const CallEvent &Call, CheckerContext &C)>; 392 393 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 394 {{"free", 1}, &MallocChecker::checkFree}, 395 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 396 {{"kfree", 1}, &MallocChecker::checkFree}, 397 {{"g_free", 1}, &MallocChecker::checkFree}, 398 }; 399 400 bool isFreeingCall(const CallEvent &Call) const; 401 static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); 402 403 friend class NoOwnershipChangeVisitor; 404 405 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 406 {{"alloca", 1}, &MallocChecker::checkAlloca}, 407 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 408 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 409 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 410 {{"calloc", 2}, &MallocChecker::checkCalloc}, 411 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 412 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 413 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 414 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 415 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 416 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 417 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 418 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 419 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 420 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 421 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 422 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 423 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 424 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 425 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 426 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 427 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 428 }; 429 430 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 431 {{"realloc", 2}, 432 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 433 {{"reallocf", 2}, 434 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 435 {{"g_realloc", 2}, 436 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 437 {{"g_try_realloc", 2}, 438 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 439 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 440 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 441 }; 442 443 bool isMemCall(const CallEvent &Call) const; 444 445 // TODO: Remove mutable by moving the initializtaion to the registry function. 446 mutable Optional<uint64_t> KernelZeroFlagVal; 447 448 using KernelZeroSizePtrValueTy = Optional<int>; 449 /// Store the value of macro called `ZERO_SIZE_PTR`. 450 /// The value is initialized at first use, before first use the outer 451 /// Optional is empty, afterwards it contains another Optional that indicates 452 /// if the macro value could be determined, and if yes the value itself. 453 mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 454 455 /// Process C++ operator new()'s allocation, which is the part of C++ 456 /// new-expression that goes before the constructor. 457 LLVM_NODISCARD 458 ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call, 459 CheckerContext &C, 460 AllocationFamily Family) const; 461 462 /// Perform a zero-allocation check. 463 /// 464 /// \param [in] Call The expression that allocates memory. 465 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 466 /// of the memory that needs to be allocated. E.g. for malloc, this would be 467 /// 0. 468 /// \param [in] RetVal Specifies the newly allocated pointer value; 469 /// if unspecified, the value of expression \p E is used. 470 LLVM_NODISCARD 471 static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call, 472 const unsigned IndexOfSizeArg, 473 ProgramStateRef State, 474 Optional<SVal> RetVal = None); 475 476 /// Model functions with the ownership_returns attribute. 477 /// 478 /// User-defined function may have the ownership_returns attribute, which 479 /// annotates that the function returns with an object that was allocated on 480 /// the heap, and passes the ownertship to the callee. 481 /// 482 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 483 /// 484 /// It has two parameters: 485 /// - first: name of the resource (e.g. 'malloc') 486 /// - (OPTIONAL) second: size of the allocated region 487 /// 488 /// \param [in] Call The expression that allocates memory. 489 /// \param [in] Att The ownership_returns attribute. 490 /// \param [in] State The \c ProgramState right before allocation. 491 /// \returns The ProgramState right after allocation. 492 LLVM_NODISCARD 493 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 494 const OwnershipAttr *Att, 495 ProgramStateRef State) const; 496 497 /// Models memory allocation. 498 /// 499 /// \param [in] Call The expression that allocates memory. 500 /// \param [in] SizeEx Size of the memory that needs to be allocated. 501 /// \param [in] Init The value the allocated memory needs to be initialized. 502 /// with. For example, \c calloc initializes the allocated memory to 0, 503 /// malloc leaves it undefined. 504 /// \param [in] State The \c ProgramState right before allocation. 505 /// \returns The ProgramState right after allocation. 506 LLVM_NODISCARD 507 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 508 const Expr *SizeEx, SVal Init, 509 ProgramStateRef State, 510 AllocationFamily Family); 511 512 /// Models memory allocation. 513 /// 514 /// \param [in] Call The expression that allocates memory. 515 /// \param [in] Size Size of the memory that needs to be allocated. 516 /// \param [in] Init The value the allocated memory needs to be initialized. 517 /// with. For example, \c calloc initializes the allocated memory to 0, 518 /// malloc leaves it undefined. 519 /// \param [in] State The \c ProgramState right before allocation. 520 /// \returns The ProgramState right after allocation. 521 LLVM_NODISCARD 522 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 523 SVal Size, SVal Init, 524 ProgramStateRef State, 525 AllocationFamily Family); 526 527 // Check if this malloc() for special flags. At present that means M_ZERO or 528 // __GFP_ZERO (in which case, treat it like calloc). 529 LLVM_NODISCARD 530 llvm::Optional<ProgramStateRef> 531 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 532 const ProgramStateRef &State) const; 533 534 /// Model functions with the ownership_takes and ownership_holds attributes. 535 /// 536 /// User-defined function may have the ownership_takes and/or ownership_holds 537 /// attributes, which annotates that the function frees the memory passed as a 538 /// parameter. 539 /// 540 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 541 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 542 /// 543 /// They have two parameters: 544 /// - first: name of the resource (e.g. 'malloc') 545 /// - second: index of the parameter the attribute applies to 546 /// 547 /// \param [in] Call The expression that frees memory. 548 /// \param [in] Att The ownership_takes or ownership_holds attribute. 549 /// \param [in] State The \c ProgramState right before allocation. 550 /// \returns The ProgramState right after deallocation. 551 LLVM_NODISCARD 552 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call, 553 const OwnershipAttr *Att, 554 ProgramStateRef State) const; 555 556 /// Models memory deallocation. 557 /// 558 /// \param [in] Call The expression that frees memory. 559 /// \param [in] State The \c ProgramState right before allocation. 560 /// \param [in] Num Index of the argument that needs to be freed. This is 561 /// normally 0, but for custom free functions it may be different. 562 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 563 /// attribute. 564 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 565 /// to have been allocated, or in other words, the symbol to be freed was 566 /// registered as allocated by this checker. In the following case, \c ptr 567 /// isn't known to be allocated. 568 /// void Haha(int *ptr) { 569 /// ptr = realloc(ptr, 67); 570 /// // ... 571 /// } 572 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 573 /// we're modeling returns with Null on failure. 574 /// \returns The ProgramState right after deallocation. 575 LLVM_NODISCARD 576 ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call, 577 ProgramStateRef State, unsigned Num, bool Hold, 578 bool &IsKnownToBeAllocated, 579 AllocationFamily Family, 580 bool ReturnsNullOnFailure = false) const; 581 582 /// Models memory deallocation. 583 /// 584 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 585 /// \param [in] Call The expression that frees the memory. 586 /// \param [in] State The \c ProgramState right before allocation. 587 /// normally 0, but for custom free functions it may be different. 588 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 589 /// attribute. 590 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 591 /// to have been allocated, or in other words, the symbol to be freed was 592 /// registered as allocated by this checker. In the following case, \c ptr 593 /// isn't known to be allocated. 594 /// void Haha(int *ptr) { 595 /// ptr = realloc(ptr, 67); 596 /// // ... 597 /// } 598 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 599 /// we're modeling returns with Null on failure. 600 /// \returns The ProgramState right after deallocation. 601 LLVM_NODISCARD 602 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 603 const CallEvent &Call, ProgramStateRef State, 604 bool Hold, bool &IsKnownToBeAllocated, 605 AllocationFamily Family, 606 bool ReturnsNullOnFailure = false) const; 607 608 // TODO: Needs some refactoring, as all other deallocation modeling 609 // functions are suffering from out parameters and messy code due to how 610 // realloc is handled. 611 // 612 /// Models memory reallocation. 613 /// 614 /// \param [in] Call The expression that reallocated memory 615 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 616 /// memory should be freed. 617 /// \param [in] State The \c ProgramState right before reallocation. 618 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 619 /// has an '_n' suffix, such as g_realloc_n. 620 /// \returns The ProgramState right after reallocation. 621 LLVM_NODISCARD 622 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call, 623 bool ShouldFreeOnFail, ProgramStateRef State, 624 AllocationFamily Family, 625 bool SuffixWithN = false) const; 626 627 /// Evaluates the buffer size that needs to be allocated. 628 /// 629 /// \param [in] Blocks The amount of blocks that needs to be allocated. 630 /// \param [in] BlockBytes The size of a block. 631 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 632 LLVM_NODISCARD 633 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 634 const Expr *BlockBytes); 635 636 /// Models zero initialized array allocation. 637 /// 638 /// \param [in] Call The expression that reallocated memory 639 /// \param [in] State The \c ProgramState right before reallocation. 640 /// \returns The ProgramState right after allocation. 641 LLVM_NODISCARD 642 static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call, 643 ProgramStateRef State); 644 645 /// See if deallocation happens in a suspicious context. If so, escape the 646 /// pointers that otherwise would have been deallocated and return true. 647 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 648 CheckerContext &C) const; 649 650 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 651 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 652 653 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 654 /// sized memory region. 655 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 656 const Stmt *S) const; 657 658 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 659 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 660 661 /// Check if the function is known to free memory, or if it is 662 /// "interesting" and should be modeled explicitly. 663 /// 664 /// \param [out] EscapingSymbol A function might not free memory in general, 665 /// but could be known to free a particular symbol. In this case, false is 666 /// returned and the single escaping symbol is returned through the out 667 /// parameter. 668 /// 669 /// We assume that pointers do not escape through calls to system functions 670 /// not handled by this checker. 671 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 672 ProgramStateRef State, 673 SymbolRef &EscapingSymbol) const; 674 675 /// Implementation of the checkPointerEscape callbacks. 676 LLVM_NODISCARD 677 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 678 const InvalidatedSymbols &Escaped, 679 const CallEvent *Call, 680 PointerEscapeKind Kind, 681 bool IsConstPointerEscape) const; 682 683 // Implementation of the checkPreStmt and checkEndFunction callbacks. 684 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 685 686 ///@{ 687 /// Tells if a given family/call/symbol is tracked by the current checker. 688 /// Sets CheckKind to the kind of the checker responsible for this 689 /// family/call/symbol. 690 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 691 bool IsALeakCheck = false) const; 692 693 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 694 bool IsALeakCheck = false) const; 695 ///@} 696 static bool SummarizeValue(raw_ostream &os, SVal V); 697 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 698 699 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 700 const Expr *DeallocExpr, 701 AllocationFamily Family) const; 702 703 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 704 SourceRange Range) const; 705 706 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 707 const Expr *DeallocExpr, const RefState *RS, 708 SymbolRef Sym, bool OwnershipTransferred) const; 709 710 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 711 const Expr *DeallocExpr, AllocationFamily Family, 712 const Expr *AllocExpr = nullptr) const; 713 714 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 715 SymbolRef Sym) const; 716 717 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 718 SymbolRef Sym, SymbolRef PrevSym) const; 719 720 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 721 722 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 723 SymbolRef Sym) const; 724 725 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 726 const Expr *FreeExpr, 727 AllocationFamily Family) const; 728 729 /// Find the location of the allocation for Sym on the path leading to the 730 /// exploded node N. 731 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 732 CheckerContext &C); 733 734 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 735 736 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 737 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 738 SVal ArgVal) const; 739 }; 740 } // end anonymous namespace 741 742 //===----------------------------------------------------------------------===// 743 // Definition of NoOwnershipChangeVisitor. 744 //===----------------------------------------------------------------------===// 745 746 namespace { 747 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 748 // The symbol whose (lack of) ownership change we are interested in. 749 SymbolRef Sym; 750 const MallocChecker &Checker; 751 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 752 753 // Collect which entities point to the allocated memory, and could be 754 // responsible for deallocating it. 755 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 756 SymbolRef Sym; 757 OwnerSet &Owners; 758 759 public: 760 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 761 : Sym(Sym), Owners(Owners) {} 762 763 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 764 SVal Val) override { 765 if (Val.getAsSymbol() == Sym) 766 Owners.insert(Region); 767 return true; 768 } 769 770 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 771 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 772 out << "Owners: {\n"; 773 for (const MemRegion *Owner : Owners) { 774 out << " "; 775 Owner->dumpToStream(out); 776 out << ",\n"; 777 } 778 out << "}\n"; 779 } 780 }; 781 782 protected: 783 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 784 OwnerSet Ret; 785 786 ProgramStateRef State = N->getState(); 787 OwnershipBindingsHandler Handler{Sym, Ret}; 788 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 789 Handler); 790 return Ret; 791 } 792 793 LLVM_DUMP_METHOD static std::string 794 getFunctionName(const ExplodedNode *CallEnterN) { 795 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 796 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 797 if (const FunctionDecl *FD = CE->getDirectCallee()) 798 return FD->getQualifiedNameAsString(); 799 return ""; 800 } 801 802 /// Syntactically checks whether the callee is a deallocating function. Since 803 /// we have no path-sensitive information on this call (we would need a 804 /// CallEvent instead of a CallExpr for that), its possible that a 805 /// deallocation function was called indirectly through a function pointer, 806 /// but we are not able to tell, so this is a best effort analysis. 807 /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in 808 /// clang/test/Analysis/NewDeleteLeaks.cpp. 809 bool isFreeingCallAsWritten(const CallExpr &Call) const { 810 if (Checker.FreeingMemFnMap.lookupAsWritten(Call) || 811 Checker.ReallocatingMemFnMap.lookupAsWritten(Call)) 812 return true; 813 814 if (const auto *Func = 815 llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl())) 816 return MallocChecker::isFreeingOwnershipAttrCall(Func); 817 818 return false; 819 } 820 821 /// Heuristically guess whether the callee intended to free memory. This is 822 /// done syntactically, because we are trying to argue about alternative 823 /// paths of execution, and as a consequence we don't have path-sensitive 824 /// information. 825 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 826 using namespace clang::ast_matchers; 827 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 828 829 // Given that the stack frame was entered, the body should always be 830 // theoretically obtainable. In case of body farms, the synthesized body 831 // is not attached to declaration, thus triggering the '!FD->hasBody()' 832 // branch. That said, would a synthesized body ever intend to handle 833 // ownership? As of today they don't. And if they did, how would we 834 // put notes inside it, given that it doesn't match any source locations? 835 if (!FD || !FD->hasBody()) 836 return false; 837 838 auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"), 839 callExpr().bind("call")))), 840 *FD->getBody(), ACtx); 841 for (BoundNodes Match : Matches) { 842 if (Match.getNodeAs<CXXDeleteExpr>("delete")) 843 return true; 844 845 if (const auto *Call = Match.getNodeAs<CallExpr>("call")) 846 if (isFreeingCallAsWritten(*Call)) 847 return true; 848 } 849 // TODO: Ownership might change with an attempt to store the allocated 850 // memory, not only through deallocation. Check for attempted stores as 851 // well. 852 return false; 853 } 854 855 virtual bool 856 wasModifiedInFunction(const ExplodedNode *CallEnterN, 857 const ExplodedNode *CallExitEndN) override { 858 if (!doesFnIntendToHandleOwnership( 859 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 860 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 861 return true; 862 863 if (CallEnterN->getState()->get<RegionState>(Sym) != 864 CallExitEndN->getState()->get<RegionState>(Sym)) 865 return true; 866 867 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 868 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 869 870 // Owners in the current set may be purged from the analyzer later on. 871 // If a variable is dead (is not referenced directly or indirectly after 872 // some point), it will be removed from the Store before the end of its 873 // actual lifetime. 874 // This means that that if the ownership status didn't change, CurrOwners 875 // must be a superset of, but not necessarily equal to ExitOwners. 876 return !llvm::set_is_subset(ExitOwners, CurrOwners); 877 } 878 879 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 880 PathDiagnosticLocation L = PathDiagnosticLocation::create( 881 N->getLocation(), 882 N->getState()->getStateManager().getContext().getSourceManager()); 883 return std::make_shared<PathDiagnosticEventPiece>( 884 L, "Returning without deallocating memory or storing the pointer for " 885 "later deallocation"); 886 } 887 888 virtual PathDiagnosticPieceRef 889 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 890 const ObjCMethodCall &Call, 891 const ExplodedNode *N) override { 892 // TODO: Implement. 893 return nullptr; 894 } 895 896 virtual PathDiagnosticPieceRef 897 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 898 const CXXConstructorCall &Call, 899 const ExplodedNode *N) override { 900 // TODO: Implement. 901 return nullptr; 902 } 903 904 virtual PathDiagnosticPieceRef 905 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 906 const ExplodedNode *N) override { 907 // TODO: Factor the logic of "what constitutes as an entity being passed 908 // into a function call" out by reusing the code in 909 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 910 // the printing technology in UninitializedObject's FieldChainInfo. 911 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 912 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 913 SVal V = Call.getArgSVal(I); 914 if (V.getAsSymbol() == Sym) 915 return emitNote(N); 916 } 917 return nullptr; 918 } 919 920 public: 921 NoOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) 922 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), Sym(Sym), 923 Checker(*Checker) {} 924 925 void Profile(llvm::FoldingSetNodeID &ID) const override { 926 static int Tag = 0; 927 ID.AddPointer(&Tag); 928 ID.AddPointer(Sym); 929 } 930 }; 931 932 } // end anonymous namespace 933 934 //===----------------------------------------------------------------------===// 935 // Definition of MallocBugVisitor. 936 //===----------------------------------------------------------------------===// 937 938 namespace { 939 /// The bug visitor which allows us to print extra diagnostics along the 940 /// BugReport path. For example, showing the allocation site of the leaked 941 /// region. 942 class MallocBugVisitor final : public BugReporterVisitor { 943 protected: 944 enum NotificationMode { Normal, ReallocationFailed }; 945 946 // The allocated region symbol tracked by the main analysis. 947 SymbolRef Sym; 948 949 // The mode we are in, i.e. what kind of diagnostics will be emitted. 950 NotificationMode Mode; 951 952 // A symbol from when the primary region should have been reallocated. 953 SymbolRef FailedReallocSymbol; 954 955 // A C++ destructor stack frame in which memory was released. Used for 956 // miscellaneous false positive suppression. 957 const StackFrameContext *ReleaseDestructorLC; 958 959 bool IsLeak; 960 961 public: 962 MallocBugVisitor(SymbolRef S, bool isLeak = false) 963 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 964 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 965 966 static void *getTag() { 967 static int Tag = 0; 968 return &Tag; 969 } 970 971 void Profile(llvm::FoldingSetNodeID &ID) const override { 972 ID.AddPointer(getTag()); 973 ID.AddPointer(Sym); 974 } 975 976 /// Did not track -> allocated. Other state (released) -> allocated. 977 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 978 const Stmt *Stmt) { 979 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 980 (RSCurr && 981 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 982 (!RSPrev || 983 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 984 } 985 986 /// Did not track -> released. Other state (allocated) -> released. 987 /// The statement associated with the release might be missing. 988 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 989 const Stmt *Stmt) { 990 bool IsReleased = 991 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 992 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 993 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 994 return IsReleased; 995 } 996 997 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 998 static inline bool isRelinquished(const RefState *RSCurr, 999 const RefState *RSPrev, const Stmt *Stmt) { 1000 return ( 1001 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 1002 (RSCurr && RSCurr->isRelinquished()) && 1003 (!RSPrev || !RSPrev->isRelinquished())); 1004 } 1005 1006 /// If the expression is not a call, and the state change is 1007 /// released -> allocated, it must be the realloc return value 1008 /// check. If we have to handle more cases here, it might be cleaner just 1009 /// to track this extra bit in the state itself. 1010 static inline bool hasReallocFailed(const RefState *RSCurr, 1011 const RefState *RSPrev, 1012 const Stmt *Stmt) { 1013 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 1014 (RSCurr && 1015 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 1016 (RSPrev && 1017 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 1018 } 1019 1020 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 1021 BugReporterContext &BRC, 1022 PathSensitiveBugReport &BR) override; 1023 1024 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 1025 const ExplodedNode *EndPathNode, 1026 PathSensitiveBugReport &BR) override { 1027 if (!IsLeak) 1028 return nullptr; 1029 1030 PathDiagnosticLocation L = BR.getLocation(); 1031 // Do not add the statement itself as a range in case of leak. 1032 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 1033 false); 1034 } 1035 1036 private: 1037 class StackHintGeneratorForReallocationFailed 1038 : public StackHintGeneratorForSymbol { 1039 public: 1040 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1041 : StackHintGeneratorForSymbol(S, M) {} 1042 1043 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1044 // Printed parameters start at 1, not 0. 1045 ++ArgIndex; 1046 1047 SmallString<200> buf; 1048 llvm::raw_svector_ostream os(buf); 1049 1050 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1051 << " parameter failed"; 1052 1053 return std::string(os.str()); 1054 } 1055 1056 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1057 return "Reallocation of returned value failed"; 1058 } 1059 }; 1060 }; 1061 } // end anonymous namespace 1062 1063 // A map from the freed symbol to the symbol representing the return value of 1064 // the free function. 1065 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1066 1067 namespace { 1068 class StopTrackingCallback final : public SymbolVisitor { 1069 ProgramStateRef state; 1070 1071 public: 1072 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1073 ProgramStateRef getState() const { return state; } 1074 1075 bool VisitSymbol(SymbolRef sym) override { 1076 state = state->remove<RegionState>(sym); 1077 return true; 1078 } 1079 }; 1080 } // end anonymous namespace 1081 1082 static bool isStandardNewDelete(const FunctionDecl *FD) { 1083 if (!FD) 1084 return false; 1085 1086 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1087 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1088 Kind != OO_Array_Delete) 1089 return false; 1090 1091 // This is standard if and only if it's not defined in a user file. 1092 SourceLocation L = FD->getLocation(); 1093 // If the header for operator delete is not included, it's still defined 1094 // in an invalid source location. Check to make sure we don't crash. 1095 return !L.isValid() || 1096 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1097 } 1098 1099 //===----------------------------------------------------------------------===// 1100 // Methods of MallocChecker and MallocBugVisitor. 1101 //===----------------------------------------------------------------------===// 1102 1103 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { 1104 if (Func->hasAttrs()) { 1105 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1106 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1107 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1108 return true; 1109 } 1110 } 1111 return false; 1112 } 1113 1114 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1115 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1116 return true; 1117 1118 if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl())) 1119 return isFreeingOwnershipAttrCall(Func); 1120 1121 return false; 1122 } 1123 1124 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1125 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1126 ReallocatingMemFnMap.lookup(Call)) 1127 return true; 1128 1129 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1130 return false; 1131 1132 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1133 return Func && Func->hasAttr<OwnershipAttr>(); 1134 } 1135 1136 llvm::Optional<ProgramStateRef> 1137 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1138 const ProgramStateRef &State) const { 1139 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1140 // 1141 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1142 // 1143 // One of the possible flags is M_ZERO, which means 'give me back an 1144 // allocation which is already zeroed', like calloc. 1145 1146 // 2-argument kmalloc(), as used in the Linux kernel: 1147 // 1148 // void *kmalloc(size_t size, gfp_t flags); 1149 // 1150 // Has the similar flag value __GFP_ZERO. 1151 1152 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1153 // code could be shared. 1154 1155 ASTContext &Ctx = C.getASTContext(); 1156 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1157 1158 if (!KernelZeroFlagVal) { 1159 if (OS == llvm::Triple::FreeBSD) 1160 KernelZeroFlagVal = 0x0100; 1161 else if (OS == llvm::Triple::NetBSD) 1162 KernelZeroFlagVal = 0x0002; 1163 else if (OS == llvm::Triple::OpenBSD) 1164 KernelZeroFlagVal = 0x0008; 1165 else if (OS == llvm::Triple::Linux) 1166 // __GFP_ZERO 1167 KernelZeroFlagVal = 0x8000; 1168 else 1169 // FIXME: We need a more general way of getting the M_ZERO value. 1170 // See also: O_CREAT in UnixAPIChecker.cpp. 1171 1172 // Fall back to normal malloc behavior on platforms where we don't 1173 // know M_ZERO. 1174 return None; 1175 } 1176 1177 // We treat the last argument as the flags argument, and callers fall-back to 1178 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1179 // as well as Linux kmalloc. 1180 if (Call.getNumArgs() < 2) 1181 return None; 1182 1183 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1184 const SVal V = C.getSVal(FlagsEx); 1185 if (!isa<NonLoc>(V)) { 1186 // The case where 'V' can be a location can only be due to a bad header, 1187 // so in this case bail out. 1188 return None; 1189 } 1190 1191 NonLoc Flags = V.castAs<NonLoc>(); 1192 NonLoc ZeroFlag = 1193 C.getSValBuilder() 1194 .makeIntVal(KernelZeroFlagVal.value(), FlagsEx->getType()) 1195 .castAs<NonLoc>(); 1196 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1197 Flags, ZeroFlag, 1198 FlagsEx->getType()); 1199 if (MaskedFlagsUC.isUnknownOrUndef()) 1200 return None; 1201 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1202 1203 // Check if maskedFlags is non-zero. 1204 ProgramStateRef TrueState, FalseState; 1205 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1206 1207 // If M_ZERO is set, treat this like calloc (initialized). 1208 if (TrueState && !FalseState) { 1209 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1210 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1211 AF_Malloc); 1212 } 1213 1214 return None; 1215 } 1216 1217 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1218 const Expr *BlockBytes) { 1219 SValBuilder &SB = C.getSValBuilder(); 1220 SVal BlocksVal = C.getSVal(Blocks); 1221 SVal BlockBytesVal = C.getSVal(BlockBytes); 1222 ProgramStateRef State = C.getState(); 1223 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1224 SB.getContext().getSizeType()); 1225 return TotalSize; 1226 } 1227 1228 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1229 CheckerContext &C) const { 1230 ProgramStateRef State = C.getState(); 1231 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1232 AF_Malloc); 1233 State = ProcessZeroAllocCheck(Call, 0, State); 1234 C.addTransition(State); 1235 } 1236 1237 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1238 CheckerContext &C) const { 1239 ProgramStateRef State = C.getState(); 1240 llvm::Optional<ProgramStateRef> MaybeState = 1241 performKernelMalloc(Call, C, State); 1242 if (MaybeState) 1243 State = MaybeState.value(); 1244 else 1245 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1246 AF_Malloc); 1247 C.addTransition(State); 1248 } 1249 1250 static bool isStandardRealloc(const CallEvent &Call) { 1251 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1252 assert(FD); 1253 ASTContext &AC = FD->getASTContext(); 1254 1255 if (isa<CXXMethodDecl>(FD)) 1256 return false; 1257 1258 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1259 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1260 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1261 AC.getSizeType(); 1262 } 1263 1264 static bool isGRealloc(const CallEvent &Call) { 1265 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1266 assert(FD); 1267 ASTContext &AC = FD->getASTContext(); 1268 1269 if (isa<CXXMethodDecl>(FD)) 1270 return false; 1271 1272 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1273 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1274 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1275 AC.UnsignedLongTy; 1276 } 1277 1278 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1279 bool ShouldFreeOnFail) const { 1280 // HACK: CallDescription currently recognizes non-standard realloc functions 1281 // as standard because it doesn't check the type, or wether its a non-method 1282 // function. This should be solved by making CallDescription smarter. 1283 // Mind that this came from a bug report, and all other functions suffer from 1284 // this. 1285 // https://bugs.llvm.org/show_bug.cgi?id=46253 1286 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1287 return; 1288 ProgramStateRef State = C.getState(); 1289 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1290 State = ProcessZeroAllocCheck(Call, 1, State); 1291 C.addTransition(State); 1292 } 1293 1294 void MallocChecker::checkCalloc(const CallEvent &Call, 1295 CheckerContext &C) const { 1296 ProgramStateRef State = C.getState(); 1297 State = CallocMem(C, Call, State); 1298 State = ProcessZeroAllocCheck(Call, 0, State); 1299 State = ProcessZeroAllocCheck(Call, 1, State); 1300 C.addTransition(State); 1301 } 1302 1303 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1304 ProgramStateRef State = C.getState(); 1305 bool IsKnownToBeAllocatedMemory = false; 1306 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1307 return; 1308 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1309 AF_Malloc); 1310 C.addTransition(State); 1311 } 1312 1313 void MallocChecker::checkAlloca(const CallEvent &Call, 1314 CheckerContext &C) const { 1315 ProgramStateRef State = C.getState(); 1316 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1317 AF_Alloca); 1318 State = ProcessZeroAllocCheck(Call, 0, State); 1319 C.addTransition(State); 1320 } 1321 1322 void MallocChecker::checkStrdup(const CallEvent &Call, 1323 CheckerContext &C) const { 1324 ProgramStateRef State = C.getState(); 1325 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1326 if (!CE) 1327 return; 1328 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1329 1330 C.addTransition(State); 1331 } 1332 1333 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1334 CheckerContext &C) const { 1335 ProgramStateRef State = C.getState(); 1336 // Should we model this differently? We can allocate a fixed number of 1337 // elements with zeros in the last one. 1338 State = 1339 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1340 1341 C.addTransition(State); 1342 } 1343 1344 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1345 CheckerContext &C) const { 1346 ProgramStateRef State = C.getState(); 1347 bool IsKnownToBeAllocatedMemory = false; 1348 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1349 AF_IfNameIndex); 1350 C.addTransition(State); 1351 } 1352 1353 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1354 CheckerContext &C) const { 1355 ProgramStateRef State = C.getState(); 1356 bool IsKnownToBeAllocatedMemory = false; 1357 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1358 if (!CE) 1359 return; 1360 1361 assert(isStandardNewDelete(Call)); 1362 1363 // Process direct calls to operator new/new[]/delete/delete[] functions 1364 // as distinct from new/new[]/delete/delete[] expressions that are 1365 // processed by the checkPostStmt callbacks for CXXNewExpr and 1366 // CXXDeleteExpr. 1367 const FunctionDecl *FD = C.getCalleeDecl(CE); 1368 switch (FD->getOverloadedOperator()) { 1369 case OO_New: 1370 State = 1371 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1372 State = ProcessZeroAllocCheck(Call, 0, State); 1373 break; 1374 case OO_Array_New: 1375 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1376 AF_CXXNewArray); 1377 State = ProcessZeroAllocCheck(Call, 0, State); 1378 break; 1379 case OO_Delete: 1380 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1381 AF_CXXNew); 1382 break; 1383 case OO_Array_Delete: 1384 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1385 AF_CXXNewArray); 1386 break; 1387 default: 1388 llvm_unreachable("not a new/delete operator"); 1389 } 1390 1391 C.addTransition(State); 1392 } 1393 1394 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1395 CheckerContext &C) const { 1396 ProgramStateRef State = C.getState(); 1397 SValBuilder &svalBuilder = C.getSValBuilder(); 1398 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1399 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1400 State = ProcessZeroAllocCheck(Call, 0, State); 1401 C.addTransition(State); 1402 } 1403 1404 void MallocChecker::checkGMemdup(const CallEvent &Call, 1405 CheckerContext &C) const { 1406 ProgramStateRef State = C.getState(); 1407 State = 1408 MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, AF_Malloc); 1409 State = ProcessZeroAllocCheck(Call, 1, State); 1410 C.addTransition(State); 1411 } 1412 1413 void MallocChecker::checkGMallocN(const CallEvent &Call, 1414 CheckerContext &C) const { 1415 ProgramStateRef State = C.getState(); 1416 SVal Init = UndefinedVal(); 1417 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1418 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1419 State = ProcessZeroAllocCheck(Call, 0, State); 1420 State = ProcessZeroAllocCheck(Call, 1, State); 1421 C.addTransition(State); 1422 } 1423 1424 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1425 CheckerContext &C) const { 1426 ProgramStateRef State = C.getState(); 1427 SValBuilder &SB = C.getSValBuilder(); 1428 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1429 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1430 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1431 State = ProcessZeroAllocCheck(Call, 0, State); 1432 State = ProcessZeroAllocCheck(Call, 1, State); 1433 C.addTransition(State); 1434 } 1435 1436 void MallocChecker::checkReallocN(const CallEvent &Call, 1437 CheckerContext &C) const { 1438 ProgramStateRef State = C.getState(); 1439 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1440 /*SuffixWithN=*/true); 1441 State = ProcessZeroAllocCheck(Call, 1, State); 1442 State = ProcessZeroAllocCheck(Call, 2, State); 1443 C.addTransition(State); 1444 } 1445 1446 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1447 CheckerContext &C) const { 1448 ProgramStateRef State = C.getState(); 1449 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1450 if (!CE) 1451 return; 1452 const FunctionDecl *FD = C.getCalleeDecl(CE); 1453 if (!FD) 1454 return; 1455 if (ShouldIncludeOwnershipAnnotatedFunctions || 1456 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1457 // Check all the attributes, if there are any. 1458 // There can be multiple of these attributes. 1459 if (FD->hasAttrs()) 1460 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1461 switch (I->getOwnKind()) { 1462 case OwnershipAttr::Returns: 1463 State = MallocMemReturnsAttr(C, Call, I, State); 1464 break; 1465 case OwnershipAttr::Takes: 1466 case OwnershipAttr::Holds: 1467 State = FreeMemAttr(C, Call, I, State); 1468 break; 1469 } 1470 } 1471 } 1472 C.addTransition(State); 1473 } 1474 1475 void MallocChecker::checkPostCall(const CallEvent &Call, 1476 CheckerContext &C) const { 1477 if (C.wasInlined) 1478 return; 1479 if (!Call.getOriginExpr()) 1480 return; 1481 1482 ProgramStateRef State = C.getState(); 1483 1484 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1485 (*Callback)(this, Call, C); 1486 return; 1487 } 1488 1489 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1490 (*Callback)(this, Call, C); 1491 return; 1492 } 1493 1494 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1495 (*Callback)(this, Call, C); 1496 return; 1497 } 1498 1499 if (isStandardNewDelete(Call)) { 1500 checkCXXNewOrCXXDelete(Call, C); 1501 return; 1502 } 1503 1504 checkOwnershipAttr(Call, C); 1505 } 1506 1507 // Performs a 0-sized allocations check. 1508 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1509 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1510 Optional<SVal> RetVal) { 1511 if (!State) 1512 return nullptr; 1513 1514 if (!RetVal) 1515 RetVal = Call.getReturnValue(); 1516 1517 const Expr *Arg = nullptr; 1518 1519 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1520 Arg = CE->getArg(IndexOfSizeArg); 1521 } else if (const CXXNewExpr *NE = 1522 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1523 if (NE->isArray()) { 1524 Arg = *NE->getArraySize(); 1525 } else { 1526 return State; 1527 } 1528 } else 1529 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1530 1531 assert(Arg); 1532 1533 auto DefArgVal = 1534 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1535 1536 if (!DefArgVal) 1537 return State; 1538 1539 // Check if the allocation size is 0. 1540 ProgramStateRef TrueState, FalseState; 1541 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1542 DefinedSVal Zero = 1543 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1544 1545 std::tie(TrueState, FalseState) = 1546 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1547 1548 if (TrueState && !FalseState) { 1549 SymbolRef Sym = RetVal->getAsLocSymbol(); 1550 if (!Sym) 1551 return State; 1552 1553 const RefState *RS = State->get<RegionState>(Sym); 1554 if (RS) { 1555 if (RS->isAllocated()) 1556 return TrueState->set<RegionState>(Sym, 1557 RefState::getAllocatedOfSizeZero(RS)); 1558 else 1559 return State; 1560 } else { 1561 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1562 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1563 // tracked. Add zero-reallocated Sym to the state to catch references 1564 // to zero-allocated memory. 1565 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1566 } 1567 } 1568 1569 // Assume the value is non-zero going forward. 1570 assert(FalseState); 1571 return FalseState; 1572 } 1573 1574 static QualType getDeepPointeeType(QualType T) { 1575 QualType Result = T, PointeeType = T->getPointeeType(); 1576 while (!PointeeType.isNull()) { 1577 Result = PointeeType; 1578 PointeeType = PointeeType->getPointeeType(); 1579 } 1580 return Result; 1581 } 1582 1583 /// \returns true if the constructor invoked by \p NE has an argument of a 1584 /// pointer/reference to a record type. 1585 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1586 1587 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1588 if (!ConstructE) 1589 return false; 1590 1591 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1592 return false; 1593 1594 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1595 1596 // Iterate over the constructor parameters. 1597 for (const auto *CtorParam : CtorD->parameters()) { 1598 1599 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1600 if (CtorParamPointeeT.isNull()) 1601 continue; 1602 1603 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1604 1605 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1606 return true; 1607 } 1608 1609 return false; 1610 } 1611 1612 ProgramStateRef 1613 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1614 CheckerContext &C, 1615 AllocationFamily Family) const { 1616 if (!isStandardNewDelete(Call)) 1617 return nullptr; 1618 1619 const CXXNewExpr *NE = Call.getOriginExpr(); 1620 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1621 ProgramStateRef State = C.getState(); 1622 1623 // Non-trivial constructors have a chance to escape 'this', but marking all 1624 // invocations of trivial constructors as escaped would cause too great of 1625 // reduction of true positives, so let's just do that for constructors that 1626 // have an argument of a pointer-to-record type. 1627 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1628 return State; 1629 1630 // The return value from operator new is bound to a specified initialization 1631 // value (if any) and we don't want to loose this value. So we call 1632 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1633 // existing binding. 1634 SVal Target = Call.getObjectUnderConstruction(); 1635 State = MallocUpdateRefState(C, NE, State, Family, Target); 1636 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1637 return State; 1638 } 1639 1640 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1641 CheckerContext &C) const { 1642 if (!C.wasInlined) { 1643 ProgramStateRef State = processNewAllocation( 1644 Call, C, 1645 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1646 C.addTransition(State); 1647 } 1648 } 1649 1650 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1651 // If the first selector piece is one of the names below, assume that the 1652 // object takes ownership of the memory, promising to eventually deallocate it 1653 // with free(). 1654 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1655 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1656 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1657 return FirstSlot == "dataWithBytesNoCopy" || 1658 FirstSlot == "initWithBytesNoCopy" || 1659 FirstSlot == "initWithCharactersNoCopy"; 1660 } 1661 1662 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1663 Selector S = Call.getSelector(); 1664 1665 // FIXME: We should not rely on fully-constrained symbols being folded. 1666 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1667 if (S.getNameForSlot(i).equals("freeWhenDone")) 1668 return !Call.getArgSVal(i).isZeroConstant(); 1669 1670 return None; 1671 } 1672 1673 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1674 CheckerContext &C) const { 1675 if (C.wasInlined) 1676 return; 1677 1678 if (!isKnownDeallocObjCMethodName(Call)) 1679 return; 1680 1681 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1682 if (!*FreeWhenDone) 1683 return; 1684 1685 if (Call.hasNonZeroCallbackArg()) 1686 return; 1687 1688 bool IsKnownToBeAllocatedMemory; 1689 ProgramStateRef State = 1690 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1691 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1692 /*ReturnsNullOnFailure=*/true); 1693 1694 C.addTransition(State); 1695 } 1696 1697 ProgramStateRef 1698 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1699 const OwnershipAttr *Att, 1700 ProgramStateRef State) const { 1701 if (!State) 1702 return nullptr; 1703 1704 if (Att->getModule()->getName() != "malloc") 1705 return nullptr; 1706 1707 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1708 if (I != E) { 1709 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1710 UndefinedVal(), State, AF_Malloc); 1711 } 1712 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1713 } 1714 1715 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1716 const CallEvent &Call, 1717 const Expr *SizeEx, SVal Init, 1718 ProgramStateRef State, 1719 AllocationFamily Family) { 1720 if (!State) 1721 return nullptr; 1722 1723 assert(SizeEx); 1724 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1725 } 1726 1727 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1728 const CallEvent &Call, SVal Size, 1729 SVal Init, ProgramStateRef State, 1730 AllocationFamily Family) { 1731 if (!State) 1732 return nullptr; 1733 1734 const Expr *CE = Call.getOriginExpr(); 1735 1736 // We expect the malloc functions to return a pointer. 1737 if (!Loc::isLocType(CE->getType())) 1738 return nullptr; 1739 1740 // Bind the return value to the symbolic value from the heap region. 1741 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1742 // side effects other than what we model here. 1743 unsigned Count = C.blockCount(); 1744 SValBuilder &svalBuilder = C.getSValBuilder(); 1745 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1746 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1747 .castAs<DefinedSVal>(); 1748 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1749 1750 // Fill the region with the initialization value. 1751 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1752 1753 // Set the region's extent. 1754 State = setDynamicExtent(State, RetVal.getAsRegion(), 1755 Size.castAs<DefinedOrUnknownSVal>(), svalBuilder); 1756 1757 return MallocUpdateRefState(C, CE, State, Family); 1758 } 1759 1760 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1761 ProgramStateRef State, 1762 AllocationFamily Family, 1763 Optional<SVal> RetVal) { 1764 if (!State) 1765 return nullptr; 1766 1767 // Get the return value. 1768 if (!RetVal) 1769 RetVal = C.getSVal(E); 1770 1771 // We expect the malloc functions to return a pointer. 1772 if (!RetVal->getAs<Loc>()) 1773 return nullptr; 1774 1775 SymbolRef Sym = RetVal->getAsLocSymbol(); 1776 // This is a return value of a function that was not inlined, such as malloc() 1777 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1778 assert(Sym); 1779 1780 // Set the symbol's state to Allocated. 1781 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1782 } 1783 1784 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1785 const CallEvent &Call, 1786 const OwnershipAttr *Att, 1787 ProgramStateRef State) const { 1788 if (!State) 1789 return nullptr; 1790 1791 if (Att->getModule()->getName() != "malloc") 1792 return nullptr; 1793 1794 bool IsKnownToBeAllocated = false; 1795 1796 for (const auto &Arg : Att->args()) { 1797 ProgramStateRef StateI = 1798 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1799 Att->getOwnKind() == OwnershipAttr::Holds, 1800 IsKnownToBeAllocated, AF_Malloc); 1801 if (StateI) 1802 State = StateI; 1803 } 1804 return State; 1805 } 1806 1807 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1808 const CallEvent &Call, 1809 ProgramStateRef State, unsigned Num, 1810 bool Hold, bool &IsKnownToBeAllocated, 1811 AllocationFamily Family, 1812 bool ReturnsNullOnFailure) const { 1813 if (!State) 1814 return nullptr; 1815 1816 if (Call.getNumArgs() < (Num + 1)) 1817 return nullptr; 1818 1819 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1820 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1821 } 1822 1823 /// Checks if the previous call to free on the given symbol failed - if free 1824 /// failed, returns true. Also, returns the corresponding return value symbol. 1825 static bool didPreviousFreeFail(ProgramStateRef State, 1826 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1827 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1828 if (Ret) { 1829 assert(*Ret && "We should not store the null return symbol"); 1830 ConstraintManager &CMgr = State->getConstraintManager(); 1831 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1832 RetStatusSymbol = *Ret; 1833 return FreeFailed.isConstrainedTrue(); 1834 } 1835 return false; 1836 } 1837 1838 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1839 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1840 // FIXME: This doesn't handle indirect calls. 1841 const FunctionDecl *FD = CE->getDirectCallee(); 1842 if (!FD) 1843 return false; 1844 1845 os << *FD; 1846 if (!FD->isOverloadedOperator()) 1847 os << "()"; 1848 return true; 1849 } 1850 1851 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1852 if (Msg->isInstanceMessage()) 1853 os << "-"; 1854 else 1855 os << "+"; 1856 Msg->getSelector().print(os); 1857 return true; 1858 } 1859 1860 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1861 os << "'" 1862 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1863 << "'"; 1864 return true; 1865 } 1866 1867 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1868 os << "'" 1869 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1870 << "'"; 1871 return true; 1872 } 1873 1874 return false; 1875 } 1876 1877 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1878 1879 switch(Family) { 1880 case AF_Malloc: os << "malloc()"; return; 1881 case AF_CXXNew: os << "'new'"; return; 1882 case AF_CXXNewArray: os << "'new[]'"; return; 1883 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1884 case AF_InnerBuffer: os << "container-specific allocator"; return; 1885 case AF_Alloca: 1886 case AF_None: llvm_unreachable("not a deallocation expression"); 1887 } 1888 } 1889 1890 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1891 switch(Family) { 1892 case AF_Malloc: os << "free()"; return; 1893 case AF_CXXNew: os << "'delete'"; return; 1894 case AF_CXXNewArray: os << "'delete[]'"; return; 1895 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1896 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1897 case AF_Alloca: 1898 case AF_None: llvm_unreachable("suspicious argument"); 1899 } 1900 } 1901 1902 ProgramStateRef MallocChecker::FreeMemAux( 1903 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1904 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1905 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1906 1907 if (!State) 1908 return nullptr; 1909 1910 SVal ArgVal = C.getSVal(ArgExpr); 1911 if (!isa<DefinedOrUnknownSVal>(ArgVal)) 1912 return nullptr; 1913 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1914 1915 // Check for null dereferences. 1916 if (!isa<Loc>(location)) 1917 return nullptr; 1918 1919 // The explicit NULL case, no operation is performed. 1920 ProgramStateRef notNullState, nullState; 1921 std::tie(notNullState, nullState) = State->assume(location); 1922 if (nullState && !notNullState) 1923 return nullptr; 1924 1925 // Unknown values could easily be okay 1926 // Undefined values are handled elsewhere 1927 if (ArgVal.isUnknownOrUndef()) 1928 return nullptr; 1929 1930 const MemRegion *R = ArgVal.getAsRegion(); 1931 const Expr *ParentExpr = Call.getOriginExpr(); 1932 1933 // NOTE: We detected a bug, but the checker under whose name we would emit the 1934 // error could be disabled. Generally speaking, the MallocChecker family is an 1935 // integral part of the Static Analyzer, and disabling any part of it should 1936 // only be done under exceptional circumstances, such as frequent false 1937 // positives. If this is the case, we can reasonably believe that there are 1938 // serious faults in our understanding of the source code, and even if we 1939 // don't emit an warning, we should terminate further analysis with a sink 1940 // node. 1941 1942 // Nonlocs can't be freed, of course. 1943 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1944 if (!R) { 1945 // Exception: 1946 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1947 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1948 // zero-sized memory block which is allowed to be freed, despite not being a 1949 // null pointer. 1950 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1951 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1952 Family); 1953 return nullptr; 1954 } 1955 1956 R = R->StripCasts(); 1957 1958 // Blocks might show up as heap data, but should not be free()d 1959 if (isa<BlockDataRegion>(R)) { 1960 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1961 Family); 1962 return nullptr; 1963 } 1964 1965 const MemSpaceRegion *MS = R->getMemorySpace(); 1966 1967 // Parameters, locals, statics, globals, and memory returned by 1968 // __builtin_alloca() shouldn't be freed. 1969 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 1970 // FIXME: at the time this code was written, malloc() regions were 1971 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1972 // This means that there isn't actually anything from HeapSpaceRegion 1973 // that should be freed, even though we allow it here. 1974 // Of course, free() can work on memory allocated outside the current 1975 // function, so UnknownSpaceRegion is always a possibility. 1976 // False negatives are better than false positives. 1977 1978 if (isa<AllocaRegion>(R)) 1979 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1980 else 1981 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1982 Family); 1983 1984 return nullptr; 1985 } 1986 1987 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1988 // Various cases could lead to non-symbol values here. 1989 // For now, ignore them. 1990 if (!SrBase) 1991 return nullptr; 1992 1993 SymbolRef SymBase = SrBase->getSymbol(); 1994 const RefState *RsBase = State->get<RegionState>(SymBase); 1995 SymbolRef PreviousRetStatusSymbol = nullptr; 1996 1997 IsKnownToBeAllocated = 1998 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1999 2000 if (RsBase) { 2001 2002 // Memory returned by alloca() shouldn't be freed. 2003 if (RsBase->getAllocationFamily() == AF_Alloca) { 2004 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 2005 return nullptr; 2006 } 2007 2008 // Check for double free first. 2009 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 2010 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 2011 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 2012 SymBase, PreviousRetStatusSymbol); 2013 return nullptr; 2014 2015 // If the pointer is allocated or escaped, but we are now trying to free it, 2016 // check that the call to free is proper. 2017 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 2018 RsBase->isEscaped()) { 2019 2020 // Check if an expected deallocation function matches the real one. 2021 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 2022 if (!DeallocMatchesAlloc) { 2023 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 2024 RsBase, SymBase, Hold); 2025 return nullptr; 2026 } 2027 2028 // Check if the memory location being freed is the actual location 2029 // allocated, or an offset. 2030 RegionOffset Offset = R->getAsOffset(); 2031 if (Offset.isValid() && 2032 !Offset.hasSymbolicOffset() && 2033 Offset.getOffset() != 0) { 2034 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 2035 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2036 Family, AllocExpr); 2037 return nullptr; 2038 } 2039 } 2040 } 2041 2042 if (SymBase->getType()->isFunctionPointerType()) { 2043 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2044 Family); 2045 return nullptr; 2046 } 2047 2048 // Clean out the info on previous call to free return info. 2049 State = State->remove<FreeReturnValue>(SymBase); 2050 2051 // Keep track of the return value. If it is NULL, we will know that free 2052 // failed. 2053 if (ReturnsNullOnFailure) { 2054 SVal RetVal = C.getSVal(ParentExpr); 2055 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2056 if (RetStatusSymbol) { 2057 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2058 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2059 } 2060 } 2061 2062 // If we don't know anything about this symbol, a free on it may be totally 2063 // valid. If this is the case, lets assume that the allocation family of the 2064 // freeing function is the same as the symbols allocation family, and go with 2065 // that. 2066 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2067 2068 // Normal free. 2069 if (Hold) 2070 return State->set<RegionState>(SymBase, 2071 RefState::getRelinquished(Family, 2072 ParentExpr)); 2073 2074 return State->set<RegionState>(SymBase, 2075 RefState::getReleased(Family, ParentExpr)); 2076 } 2077 2078 Optional<MallocChecker::CheckKind> 2079 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2080 bool IsALeakCheck) const { 2081 switch (Family) { 2082 case AF_Malloc: 2083 case AF_Alloca: 2084 case AF_IfNameIndex: { 2085 if (ChecksEnabled[CK_MallocChecker]) 2086 return CK_MallocChecker; 2087 return None; 2088 } 2089 case AF_CXXNew: 2090 case AF_CXXNewArray: { 2091 if (IsALeakCheck) { 2092 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2093 return CK_NewDeleteLeaksChecker; 2094 } 2095 else { 2096 if (ChecksEnabled[CK_NewDeleteChecker]) 2097 return CK_NewDeleteChecker; 2098 } 2099 return None; 2100 } 2101 case AF_InnerBuffer: { 2102 if (ChecksEnabled[CK_InnerPointerChecker]) 2103 return CK_InnerPointerChecker; 2104 return None; 2105 } 2106 case AF_None: { 2107 llvm_unreachable("no family"); 2108 } 2109 } 2110 llvm_unreachable("unhandled family"); 2111 } 2112 2113 Optional<MallocChecker::CheckKind> 2114 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2115 bool IsALeakCheck) const { 2116 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2117 return CK_MallocChecker; 2118 2119 const RefState *RS = C.getState()->get<RegionState>(Sym); 2120 assert(RS); 2121 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2122 } 2123 2124 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2125 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 2126 os << "an integer (" << IntVal->getValue() << ")"; 2127 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 2128 os << "a constant address (" << ConstAddr->getValue() << ")"; 2129 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2130 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2131 else 2132 return false; 2133 2134 return true; 2135 } 2136 2137 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2138 const MemRegion *MR) { 2139 switch (MR->getKind()) { 2140 case MemRegion::FunctionCodeRegionKind: { 2141 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2142 if (FD) 2143 os << "the address of the function '" << *FD << '\''; 2144 else 2145 os << "the address of a function"; 2146 return true; 2147 } 2148 case MemRegion::BlockCodeRegionKind: 2149 os << "block text"; 2150 return true; 2151 case MemRegion::BlockDataRegionKind: 2152 // FIXME: where the block came from? 2153 os << "a block"; 2154 return true; 2155 default: { 2156 const MemSpaceRegion *MS = MR->getMemorySpace(); 2157 2158 if (isa<StackLocalsSpaceRegion>(MS)) { 2159 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2160 const VarDecl *VD; 2161 if (VR) 2162 VD = VR->getDecl(); 2163 else 2164 VD = nullptr; 2165 2166 if (VD) 2167 os << "the address of the local variable '" << VD->getName() << "'"; 2168 else 2169 os << "the address of a local stack variable"; 2170 return true; 2171 } 2172 2173 if (isa<StackArgumentsSpaceRegion>(MS)) { 2174 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2175 const VarDecl *VD; 2176 if (VR) 2177 VD = VR->getDecl(); 2178 else 2179 VD = nullptr; 2180 2181 if (VD) 2182 os << "the address of the parameter '" << VD->getName() << "'"; 2183 else 2184 os << "the address of a parameter"; 2185 return true; 2186 } 2187 2188 if (isa<GlobalsSpaceRegion>(MS)) { 2189 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2190 const VarDecl *VD; 2191 if (VR) 2192 VD = VR->getDecl(); 2193 else 2194 VD = nullptr; 2195 2196 if (VD) { 2197 if (VD->isStaticLocal()) 2198 os << "the address of the static variable '" << VD->getName() << "'"; 2199 else 2200 os << "the address of the global variable '" << VD->getName() << "'"; 2201 } else 2202 os << "the address of a global variable"; 2203 return true; 2204 } 2205 2206 return false; 2207 } 2208 } 2209 } 2210 2211 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2212 SourceRange Range, 2213 const Expr *DeallocExpr, 2214 AllocationFamily Family) const { 2215 2216 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2217 C.addSink(); 2218 return; 2219 } 2220 2221 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2222 if (!CheckKind) 2223 return; 2224 2225 if (ExplodedNode *N = C.generateErrorNode()) { 2226 if (!BT_BadFree[*CheckKind]) 2227 BT_BadFree[*CheckKind].reset(new BugType( 2228 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2229 2230 SmallString<100> buf; 2231 llvm::raw_svector_ostream os(buf); 2232 2233 const MemRegion *MR = ArgVal.getAsRegion(); 2234 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2235 MR = ER->getSuperRegion(); 2236 2237 os << "Argument to "; 2238 if (!printMemFnName(os, C, DeallocExpr)) 2239 os << "deallocator"; 2240 2241 os << " is "; 2242 bool Summarized = MR ? SummarizeRegion(os, MR) 2243 : SummarizeValue(os, ArgVal); 2244 if (Summarized) 2245 os << ", which is not memory allocated by "; 2246 else 2247 os << "not memory allocated by "; 2248 2249 printExpectedAllocName(os, Family); 2250 2251 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2252 os.str(), N); 2253 R->markInteresting(MR); 2254 R->addRange(Range); 2255 C.emitReport(std::move(R)); 2256 } 2257 } 2258 2259 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2260 SourceRange Range) const { 2261 2262 Optional<MallocChecker::CheckKind> CheckKind; 2263 2264 if (ChecksEnabled[CK_MallocChecker]) 2265 CheckKind = CK_MallocChecker; 2266 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2267 CheckKind = CK_MismatchedDeallocatorChecker; 2268 else { 2269 C.addSink(); 2270 return; 2271 } 2272 2273 if (ExplodedNode *N = C.generateErrorNode()) { 2274 if (!BT_FreeAlloca[*CheckKind]) 2275 BT_FreeAlloca[*CheckKind].reset(new BugType( 2276 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2277 2278 auto R = std::make_unique<PathSensitiveBugReport>( 2279 *BT_FreeAlloca[*CheckKind], 2280 "Memory allocated by alloca() should not be deallocated", N); 2281 R->markInteresting(ArgVal.getAsRegion()); 2282 R->addRange(Range); 2283 C.emitReport(std::move(R)); 2284 } 2285 } 2286 2287 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2288 SourceRange Range, 2289 const Expr *DeallocExpr, 2290 const RefState *RS, SymbolRef Sym, 2291 bool OwnershipTransferred) const { 2292 2293 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2294 C.addSink(); 2295 return; 2296 } 2297 2298 if (ExplodedNode *N = C.generateErrorNode()) { 2299 if (!BT_MismatchedDealloc) 2300 BT_MismatchedDealloc.reset( 2301 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2302 "Bad deallocator", categories::MemoryError)); 2303 2304 SmallString<100> buf; 2305 llvm::raw_svector_ostream os(buf); 2306 2307 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2308 SmallString<20> AllocBuf; 2309 llvm::raw_svector_ostream AllocOs(AllocBuf); 2310 SmallString<20> DeallocBuf; 2311 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2312 2313 if (OwnershipTransferred) { 2314 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2315 os << DeallocOs.str() << " cannot"; 2316 else 2317 os << "Cannot"; 2318 2319 os << " take ownership of memory"; 2320 2321 if (printMemFnName(AllocOs, C, AllocExpr)) 2322 os << " allocated by " << AllocOs.str(); 2323 } else { 2324 os << "Memory"; 2325 if (printMemFnName(AllocOs, C, AllocExpr)) 2326 os << " allocated by " << AllocOs.str(); 2327 2328 os << " should be deallocated by "; 2329 printExpectedDeallocName(os, RS->getAllocationFamily()); 2330 2331 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2332 os << ", not " << DeallocOs.str(); 2333 } 2334 2335 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2336 os.str(), N); 2337 R->markInteresting(Sym); 2338 R->addRange(Range); 2339 R->addVisitor<MallocBugVisitor>(Sym); 2340 C.emitReport(std::move(R)); 2341 } 2342 } 2343 2344 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2345 SourceRange Range, const Expr *DeallocExpr, 2346 AllocationFamily Family, 2347 const Expr *AllocExpr) const { 2348 2349 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2350 C.addSink(); 2351 return; 2352 } 2353 2354 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2355 if (!CheckKind) 2356 return; 2357 2358 ExplodedNode *N = C.generateErrorNode(); 2359 if (!N) 2360 return; 2361 2362 if (!BT_OffsetFree[*CheckKind]) 2363 BT_OffsetFree[*CheckKind].reset(new BugType( 2364 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2365 2366 SmallString<100> buf; 2367 llvm::raw_svector_ostream os(buf); 2368 SmallString<20> AllocNameBuf; 2369 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2370 2371 const MemRegion *MR = ArgVal.getAsRegion(); 2372 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2373 2374 RegionOffset Offset = MR->getAsOffset(); 2375 assert((Offset.isValid() && 2376 !Offset.hasSymbolicOffset() && 2377 Offset.getOffset() != 0) && 2378 "Only symbols with a valid offset can have offset free errors"); 2379 2380 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2381 2382 os << "Argument to "; 2383 if (!printMemFnName(os, C, DeallocExpr)) 2384 os << "deallocator"; 2385 os << " is offset by " 2386 << offsetBytes 2387 << " " 2388 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2389 << " from the start of "; 2390 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2391 os << "memory allocated by " << AllocNameOs.str(); 2392 else 2393 os << "allocated memory"; 2394 2395 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2396 os.str(), N); 2397 R->markInteresting(MR->getBaseRegion()); 2398 R->addRange(Range); 2399 C.emitReport(std::move(R)); 2400 } 2401 2402 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2403 SymbolRef Sym) const { 2404 2405 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2406 !ChecksEnabled[CK_InnerPointerChecker]) { 2407 C.addSink(); 2408 return; 2409 } 2410 2411 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2412 if (!CheckKind) 2413 return; 2414 2415 if (ExplodedNode *N = C.generateErrorNode()) { 2416 if (!BT_UseFree[*CheckKind]) 2417 BT_UseFree[*CheckKind].reset(new BugType( 2418 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2419 2420 AllocationFamily AF = 2421 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2422 2423 auto R = std::make_unique<PathSensitiveBugReport>( 2424 *BT_UseFree[*CheckKind], 2425 AF == AF_InnerBuffer 2426 ? "Inner pointer of container used after re/deallocation" 2427 : "Use of memory after it is freed", 2428 N); 2429 2430 R->markInteresting(Sym); 2431 R->addRange(Range); 2432 R->addVisitor<MallocBugVisitor>(Sym); 2433 2434 if (AF == AF_InnerBuffer) 2435 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2436 2437 C.emitReport(std::move(R)); 2438 } 2439 } 2440 2441 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2442 bool Released, SymbolRef Sym, 2443 SymbolRef PrevSym) const { 2444 2445 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2446 C.addSink(); 2447 return; 2448 } 2449 2450 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2451 if (!CheckKind) 2452 return; 2453 2454 if (ExplodedNode *N = C.generateErrorNode()) { 2455 if (!BT_DoubleFree[*CheckKind]) 2456 BT_DoubleFree[*CheckKind].reset(new BugType( 2457 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2458 2459 auto R = std::make_unique<PathSensitiveBugReport>( 2460 *BT_DoubleFree[*CheckKind], 2461 (Released ? "Attempt to free released memory" 2462 : "Attempt to free non-owned memory"), 2463 N); 2464 R->addRange(Range); 2465 R->markInteresting(Sym); 2466 if (PrevSym) 2467 R->markInteresting(PrevSym); 2468 R->addVisitor<MallocBugVisitor>(Sym); 2469 C.emitReport(std::move(R)); 2470 } 2471 } 2472 2473 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2474 2475 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2476 C.addSink(); 2477 return; 2478 } 2479 2480 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2481 if (!CheckKind) 2482 return; 2483 2484 if (ExplodedNode *N = C.generateErrorNode()) { 2485 if (!BT_DoubleDelete) 2486 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2487 "Double delete", 2488 categories::MemoryError)); 2489 2490 auto R = std::make_unique<PathSensitiveBugReport>( 2491 *BT_DoubleDelete, "Attempt to delete released memory", N); 2492 2493 R->markInteresting(Sym); 2494 R->addVisitor<MallocBugVisitor>(Sym); 2495 C.emitReport(std::move(R)); 2496 } 2497 } 2498 2499 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2500 SymbolRef Sym) const { 2501 2502 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2503 C.addSink(); 2504 return; 2505 } 2506 2507 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2508 2509 if (!CheckKind) 2510 return; 2511 2512 if (ExplodedNode *N = C.generateErrorNode()) { 2513 if (!BT_UseZerroAllocated[*CheckKind]) 2514 BT_UseZerroAllocated[*CheckKind].reset( 2515 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2516 categories::MemoryError)); 2517 2518 auto R = std::make_unique<PathSensitiveBugReport>( 2519 *BT_UseZerroAllocated[*CheckKind], 2520 "Use of memory allocated with size zero", N); 2521 2522 R->addRange(Range); 2523 if (Sym) { 2524 R->markInteresting(Sym); 2525 R->addVisitor<MallocBugVisitor>(Sym); 2526 } 2527 C.emitReport(std::move(R)); 2528 } 2529 } 2530 2531 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2532 SourceRange Range, 2533 const Expr *FreeExpr, 2534 AllocationFamily Family) const { 2535 if (!ChecksEnabled[CK_MallocChecker]) { 2536 C.addSink(); 2537 return; 2538 } 2539 2540 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2541 if (!CheckKind) 2542 return; 2543 2544 if (ExplodedNode *N = C.generateErrorNode()) { 2545 if (!BT_BadFree[*CheckKind]) 2546 BT_BadFree[*CheckKind].reset(new BugType( 2547 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2548 2549 SmallString<100> Buf; 2550 llvm::raw_svector_ostream Os(Buf); 2551 2552 const MemRegion *MR = ArgVal.getAsRegion(); 2553 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2554 MR = ER->getSuperRegion(); 2555 2556 Os << "Argument to "; 2557 if (!printMemFnName(Os, C, FreeExpr)) 2558 Os << "deallocator"; 2559 2560 Os << " is a function pointer"; 2561 2562 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2563 Os.str(), N); 2564 R->markInteresting(MR); 2565 R->addRange(Range); 2566 C.emitReport(std::move(R)); 2567 } 2568 } 2569 2570 ProgramStateRef 2571 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2572 bool ShouldFreeOnFail, ProgramStateRef State, 2573 AllocationFamily Family, bool SuffixWithN) const { 2574 if (!State) 2575 return nullptr; 2576 2577 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2578 2579 if (SuffixWithN && CE->getNumArgs() < 3) 2580 return nullptr; 2581 else if (CE->getNumArgs() < 2) 2582 return nullptr; 2583 2584 const Expr *arg0Expr = CE->getArg(0); 2585 SVal Arg0Val = C.getSVal(arg0Expr); 2586 if (!isa<DefinedOrUnknownSVal>(Arg0Val)) 2587 return nullptr; 2588 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2589 2590 SValBuilder &svalBuilder = C.getSValBuilder(); 2591 2592 DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( 2593 State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType())); 2594 2595 // Get the size argument. 2596 const Expr *Arg1 = CE->getArg(1); 2597 2598 // Get the value of the size argument. 2599 SVal TotalSize = C.getSVal(Arg1); 2600 if (SuffixWithN) 2601 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2602 if (!isa<DefinedOrUnknownSVal>(TotalSize)) 2603 return nullptr; 2604 2605 // Compare the size argument to 0. 2606 DefinedOrUnknownSVal SizeZero = 2607 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2608 svalBuilder.makeIntValWithWidth( 2609 svalBuilder.getContext().getSizeType(), 0)); 2610 2611 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2612 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2613 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2614 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2615 // We only assume exceptional states if they are definitely true; if the 2616 // state is under-constrained, assume regular realloc behavior. 2617 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2618 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2619 2620 // If the ptr is NULL and the size is not 0, the call is equivalent to 2621 // malloc(size). 2622 if (PrtIsNull && !SizeIsZero) { 2623 ProgramStateRef stateMalloc = MallocMemAux( 2624 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2625 return stateMalloc; 2626 } 2627 2628 if (PrtIsNull && SizeIsZero) 2629 return State; 2630 2631 assert(!PrtIsNull); 2632 2633 bool IsKnownToBeAllocated = false; 2634 2635 // If the size is 0, free the memory. 2636 if (SizeIsZero) 2637 // The semantics of the return value are: 2638 // If size was equal to 0, either NULL or a pointer suitable to be passed 2639 // to free() is returned. We just free the input pointer and do not add 2640 // any constrains on the output pointer. 2641 if (ProgramStateRef stateFree = FreeMemAux( 2642 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2643 return stateFree; 2644 2645 // Default behavior. 2646 if (ProgramStateRef stateFree = 2647 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2648 2649 ProgramStateRef stateRealloc = 2650 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2651 if (!stateRealloc) 2652 return nullptr; 2653 2654 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2655 if (ShouldFreeOnFail) 2656 Kind = OAR_FreeOnFailure; 2657 else if (!IsKnownToBeAllocated) 2658 Kind = OAR_DoNotTrackAfterFailure; 2659 2660 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2661 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2662 SVal RetVal = C.getSVal(CE); 2663 SymbolRef ToPtr = RetVal.getAsSymbol(); 2664 assert(FromPtr && ToPtr && 2665 "By this point, FreeMemAux and MallocMemAux should have checked " 2666 "whether the argument or the return value is symbolic!"); 2667 2668 // Record the info about the reallocated symbol so that we could properly 2669 // process failed reallocation. 2670 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2671 ReallocPair(FromPtr, Kind)); 2672 // The reallocated symbol should stay alive for as long as the new symbol. 2673 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2674 return stateRealloc; 2675 } 2676 return nullptr; 2677 } 2678 2679 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2680 const CallEvent &Call, 2681 ProgramStateRef State) { 2682 if (!State) 2683 return nullptr; 2684 2685 if (Call.getNumArgs() < 2) 2686 return nullptr; 2687 2688 SValBuilder &svalBuilder = C.getSValBuilder(); 2689 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2690 SVal TotalSize = 2691 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2692 2693 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2694 } 2695 2696 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2697 SymbolRef Sym, 2698 CheckerContext &C) { 2699 const LocationContext *LeakContext = N->getLocationContext(); 2700 // Walk the ExplodedGraph backwards and find the first node that referred to 2701 // the tracked symbol. 2702 const ExplodedNode *AllocNode = N; 2703 const MemRegion *ReferenceRegion = nullptr; 2704 2705 while (N) { 2706 ProgramStateRef State = N->getState(); 2707 if (!State->get<RegionState>(Sym)) 2708 break; 2709 2710 // Find the most recent expression bound to the symbol in the current 2711 // context. 2712 if (!ReferenceRegion) { 2713 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2714 SVal Val = State->getSVal(MR); 2715 if (Val.getAsLocSymbol() == Sym) { 2716 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2717 // Do not show local variables belonging to a function other than 2718 // where the error is reported. 2719 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2720 ReferenceRegion = MR; 2721 } 2722 } 2723 } 2724 2725 // Allocation node, is the last node in the current or parent context in 2726 // which the symbol was tracked. 2727 const LocationContext *NContext = N->getLocationContext(); 2728 if (NContext == LeakContext || 2729 NContext->isParentOf(LeakContext)) 2730 AllocNode = N; 2731 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2732 } 2733 2734 return LeakInfo(AllocNode, ReferenceRegion); 2735 } 2736 2737 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2738 CheckerContext &C) const { 2739 2740 if (!ChecksEnabled[CK_MallocChecker] && 2741 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2742 return; 2743 2744 const RefState *RS = C.getState()->get<RegionState>(Sym); 2745 assert(RS && "cannot leak an untracked symbol"); 2746 AllocationFamily Family = RS->getAllocationFamily(); 2747 2748 if (Family == AF_Alloca) 2749 return; 2750 2751 Optional<MallocChecker::CheckKind> 2752 CheckKind = getCheckIfTracked(Family, true); 2753 2754 if (!CheckKind) 2755 return; 2756 2757 assert(N); 2758 if (!BT_Leak[*CheckKind]) { 2759 // Leaks should not be reported if they are post-dominated by a sink: 2760 // (1) Sinks are higher importance bugs. 2761 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2762 // with __noreturn functions such as assert() or exit(). We choose not 2763 // to report leaks on such paths. 2764 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2765 categories::MemoryError, 2766 /*SuppressOnSink=*/true)); 2767 } 2768 2769 // Most bug reports are cached at the location where they occurred. 2770 // With leaks, we want to unique them by the location where they were 2771 // allocated, and only report a single path. 2772 PathDiagnosticLocation LocUsedForUniqueing; 2773 const ExplodedNode *AllocNode = nullptr; 2774 const MemRegion *Region = nullptr; 2775 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2776 2777 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2778 if (AllocationStmt) 2779 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2780 C.getSourceManager(), 2781 AllocNode->getLocationContext()); 2782 2783 SmallString<200> buf; 2784 llvm::raw_svector_ostream os(buf); 2785 if (Region && Region->canPrintPretty()) { 2786 os << "Potential leak of memory pointed to by "; 2787 Region->printPretty(os); 2788 } else { 2789 os << "Potential memory leak"; 2790 } 2791 2792 auto R = std::make_unique<PathSensitiveBugReport>( 2793 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2794 AllocNode->getLocationContext()->getDecl()); 2795 R->markInteresting(Sym); 2796 R->addVisitor<MallocBugVisitor>(Sym, true); 2797 if (ShouldRegisterNoOwnershipChangeVisitor) 2798 R->addVisitor<NoOwnershipChangeVisitor>(Sym, this); 2799 C.emitReport(std::move(R)); 2800 } 2801 2802 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2803 CheckerContext &C) const 2804 { 2805 ProgramStateRef state = C.getState(); 2806 RegionStateTy OldRS = state->get<RegionState>(); 2807 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2808 2809 RegionStateTy RS = OldRS; 2810 SmallVector<SymbolRef, 2> Errors; 2811 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2812 if (SymReaper.isDead(I->first)) { 2813 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2814 Errors.push_back(I->first); 2815 // Remove the dead symbol from the map. 2816 RS = F.remove(RS, I->first); 2817 } 2818 } 2819 2820 if (RS == OldRS) { 2821 // We shouldn't have touched other maps yet. 2822 assert(state->get<ReallocPairs>() == 2823 C.getState()->get<ReallocPairs>()); 2824 assert(state->get<FreeReturnValue>() == 2825 C.getState()->get<FreeReturnValue>()); 2826 return; 2827 } 2828 2829 // Cleanup the Realloc Pairs Map. 2830 ReallocPairsTy RP = state->get<ReallocPairs>(); 2831 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2832 if (SymReaper.isDead(I->first) || 2833 SymReaper.isDead(I->second.ReallocatedSym)) { 2834 state = state->remove<ReallocPairs>(I->first); 2835 } 2836 } 2837 2838 // Cleanup the FreeReturnValue Map. 2839 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2840 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2841 if (SymReaper.isDead(I->first) || 2842 SymReaper.isDead(I->second)) { 2843 state = state->remove<FreeReturnValue>(I->first); 2844 } 2845 } 2846 2847 // Generate leak node. 2848 ExplodedNode *N = C.getPredecessor(); 2849 if (!Errors.empty()) { 2850 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2851 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2852 if (N) { 2853 for (SmallVectorImpl<SymbolRef>::iterator 2854 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2855 HandleLeak(*I, N, C); 2856 } 2857 } 2858 } 2859 2860 C.addTransition(state->set<RegionState>(RS), N); 2861 } 2862 2863 void MallocChecker::checkPreCall(const CallEvent &Call, 2864 CheckerContext &C) const { 2865 2866 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2867 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2868 2869 if (!ChecksEnabled[CK_NewDeleteChecker]) 2870 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2871 checkUseAfterFree(Sym, C, DE->getArgument()); 2872 2873 if (!isStandardNewDelete(DC->getDecl())) 2874 return; 2875 2876 ProgramStateRef State = C.getState(); 2877 bool IsKnownToBeAllocated; 2878 State = FreeMemAux(C, DE->getArgument(), Call, State, 2879 /*Hold*/ false, IsKnownToBeAllocated, 2880 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2881 2882 C.addTransition(State); 2883 return; 2884 } 2885 2886 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2887 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2888 if (!Sym || checkDoubleDelete(Sym, C)) 2889 return; 2890 } 2891 2892 // We will check for double free in the post visit. 2893 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2894 const FunctionDecl *FD = FC->getDecl(); 2895 if (!FD) 2896 return; 2897 2898 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2899 return; 2900 } 2901 2902 // Check if the callee of a method is deleted. 2903 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2904 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2905 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2906 return; 2907 } 2908 2909 // Check arguments for being used after free. 2910 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2911 SVal ArgSVal = Call.getArgSVal(I); 2912 if (isa<Loc>(ArgSVal)) { 2913 SymbolRef Sym = ArgSVal.getAsSymbol(); 2914 if (!Sym) 2915 continue; 2916 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2917 return; 2918 } 2919 } 2920 } 2921 2922 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2923 CheckerContext &C) const { 2924 checkEscapeOnReturn(S, C); 2925 } 2926 2927 // In the CFG, automatic destructors come after the return statement. 2928 // This callback checks for returning memory that is freed by automatic 2929 // destructors, as those cannot be reached in checkPreStmt(). 2930 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2931 CheckerContext &C) const { 2932 checkEscapeOnReturn(S, C); 2933 } 2934 2935 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2936 CheckerContext &C) const { 2937 if (!S) 2938 return; 2939 2940 const Expr *E = S->getRetValue(); 2941 if (!E) 2942 return; 2943 2944 // Check if we are returning a symbol. 2945 ProgramStateRef State = C.getState(); 2946 SVal RetVal = C.getSVal(E); 2947 SymbolRef Sym = RetVal.getAsSymbol(); 2948 if (!Sym) 2949 // If we are returning a field of the allocated struct or an array element, 2950 // the callee could still free the memory. 2951 // TODO: This logic should be a part of generic symbol escape callback. 2952 if (const MemRegion *MR = RetVal.getAsRegion()) 2953 if (isa<FieldRegion, ElementRegion>(MR)) 2954 if (const SymbolicRegion *BMR = 2955 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2956 Sym = BMR->getSymbol(); 2957 2958 // Check if we are returning freed memory. 2959 if (Sym) 2960 checkUseAfterFree(Sym, C, E); 2961 } 2962 2963 // TODO: Blocks should be either inlined or should call invalidate regions 2964 // upon invocation. After that's in place, special casing here will not be 2965 // needed. 2966 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2967 CheckerContext &C) const { 2968 2969 // Scan the BlockDecRefExprs for any object the retain count checker 2970 // may be tracking. 2971 if (!BE->getBlockDecl()->hasCaptures()) 2972 return; 2973 2974 ProgramStateRef state = C.getState(); 2975 const BlockDataRegion *R = 2976 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2977 2978 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2979 E = R->referenced_vars_end(); 2980 2981 if (I == E) 2982 return; 2983 2984 SmallVector<const MemRegion*, 10> Regions; 2985 const LocationContext *LC = C.getLocationContext(); 2986 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2987 2988 for ( ; I != E; ++I) { 2989 const VarRegion *VR = I.getCapturedRegion(); 2990 if (VR->getSuperRegion() == R) { 2991 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2992 } 2993 Regions.push_back(VR); 2994 } 2995 2996 state = 2997 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2998 C.addTransition(state); 2999 } 3000 3001 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 3002 assert(Sym); 3003 const RefState *RS = C.getState()->get<RegionState>(Sym); 3004 return (RS && RS->isReleased()); 3005 } 3006 3007 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 3008 const CallEvent &Call, CheckerContext &C) const { 3009 if (Call.getNumArgs() == 0) 3010 return false; 3011 3012 StringRef FunctionStr = ""; 3013 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 3014 if (const Stmt *Body = FD->getBody()) 3015 if (Body->getBeginLoc().isValid()) 3016 FunctionStr = 3017 Lexer::getSourceText(CharSourceRange::getTokenRange( 3018 {FD->getBeginLoc(), Body->getBeginLoc()}), 3019 C.getSourceManager(), C.getLangOpts()); 3020 3021 // We do not model the Integer Set Library's retain-count based allocation. 3022 if (!FunctionStr.contains("__isl_")) 3023 return false; 3024 3025 ProgramStateRef State = C.getState(); 3026 3027 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 3028 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 3029 if (const RefState *RS = State->get<RegionState>(Sym)) 3030 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 3031 3032 C.addTransition(State); 3033 return true; 3034 } 3035 3036 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 3037 const Stmt *S) const { 3038 3039 if (isReleased(Sym, C)) { 3040 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3041 return true; 3042 } 3043 3044 return false; 3045 } 3046 3047 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3048 const Stmt *S) const { 3049 assert(Sym); 3050 3051 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3052 if (RS->isAllocatedOfSizeZero()) 3053 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3054 } 3055 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3056 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3057 } 3058 } 3059 3060 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3061 3062 if (isReleased(Sym, C)) { 3063 HandleDoubleDelete(C, Sym); 3064 return true; 3065 } 3066 return false; 3067 } 3068 3069 // Check if the location is a freed symbolic region. 3070 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3071 CheckerContext &C) const { 3072 SymbolRef Sym = l.getLocSymbolInBase(); 3073 if (Sym) { 3074 checkUseAfterFree(Sym, C, S); 3075 checkUseZeroAllocated(Sym, C, S); 3076 } 3077 } 3078 3079 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3080 // it - assuming that allocation failed on this path. 3081 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3082 SVal Cond, 3083 bool Assumption) const { 3084 RegionStateTy RS = state->get<RegionState>(); 3085 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3086 // If the symbol is assumed to be NULL, remove it from consideration. 3087 ConstraintManager &CMgr = state->getConstraintManager(); 3088 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3089 if (AllocFailed.isConstrainedTrue()) 3090 state = state->remove<RegionState>(I.getKey()); 3091 } 3092 3093 // Realloc returns 0 when reallocation fails, which means that we should 3094 // restore the state of the pointer being reallocated. 3095 ReallocPairsTy RP = state->get<ReallocPairs>(); 3096 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 3097 // If the symbol is assumed to be NULL, remove it from consideration. 3098 ConstraintManager &CMgr = state->getConstraintManager(); 3099 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3100 if (!AllocFailed.isConstrainedTrue()) 3101 continue; 3102 3103 SymbolRef ReallocSym = I.getData().ReallocatedSym; 3104 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3105 if (RS->isReleased()) { 3106 switch (I.getData().Kind) { 3107 case OAR_ToBeFreedAfterFailure: 3108 state = state->set<RegionState>(ReallocSym, 3109 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3110 break; 3111 case OAR_DoNotTrackAfterFailure: 3112 state = state->remove<RegionState>(ReallocSym); 3113 break; 3114 default: 3115 assert(I.getData().Kind == OAR_FreeOnFailure); 3116 } 3117 } 3118 } 3119 state = state->remove<ReallocPairs>(I.getKey()); 3120 } 3121 3122 return state; 3123 } 3124 3125 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3126 const CallEvent *Call, 3127 ProgramStateRef State, 3128 SymbolRef &EscapingSymbol) const { 3129 assert(Call); 3130 EscapingSymbol = nullptr; 3131 3132 // For now, assume that any C++ or block call can free memory. 3133 // TODO: If we want to be more optimistic here, we'll need to make sure that 3134 // regions escape to C++ containers. They seem to do that even now, but for 3135 // mysterious reasons. 3136 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3137 return true; 3138 3139 // Check Objective-C messages by selector name. 3140 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3141 // If it's not a framework call, or if it takes a callback, assume it 3142 // can free memory. 3143 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3144 return true; 3145 3146 // If it's a method we know about, handle it explicitly post-call. 3147 // This should happen before the "freeWhenDone" check below. 3148 if (isKnownDeallocObjCMethodName(*Msg)) 3149 return false; 3150 3151 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3152 // about, we can't be sure that the object will use free() to deallocate the 3153 // memory, so we can't model it explicitly. The best we can do is use it to 3154 // decide whether the pointer escapes. 3155 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3156 return *FreeWhenDone; 3157 3158 // If the first selector piece ends with "NoCopy", and there is no 3159 // "freeWhenDone" parameter set to zero, we know ownership is being 3160 // transferred. Again, though, we can't be sure that the object will use 3161 // free() to deallocate the memory, so we can't model it explicitly. 3162 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3163 if (FirstSlot.endswith("NoCopy")) 3164 return true; 3165 3166 // If the first selector starts with addPointer, insertPointer, 3167 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3168 // This is similar to C++ containers (vector); we still might want to check 3169 // that the pointers get freed by following the container itself. 3170 if (FirstSlot.startswith("addPointer") || 3171 FirstSlot.startswith("insertPointer") || 3172 FirstSlot.startswith("replacePointer") || 3173 FirstSlot.equals("valueWithPointer")) { 3174 return true; 3175 } 3176 3177 // We should escape receiver on call to 'init'. This is especially relevant 3178 // to the receiver, as the corresponding symbol is usually not referenced 3179 // after the call. 3180 if (Msg->getMethodFamily() == OMF_init) { 3181 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3182 return true; 3183 } 3184 3185 // Otherwise, assume that the method does not free memory. 3186 // Most framework methods do not free memory. 3187 return false; 3188 } 3189 3190 // At this point the only thing left to handle is straight function calls. 3191 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3192 if (!FD) 3193 return true; 3194 3195 // If it's one of the allocation functions we can reason about, we model 3196 // its behavior explicitly. 3197 if (isMemCall(*Call)) 3198 return false; 3199 3200 // If it's not a system call, assume it frees memory. 3201 if (!Call->isInSystemHeader()) 3202 return true; 3203 3204 // White list the system functions whose arguments escape. 3205 const IdentifierInfo *II = FD->getIdentifier(); 3206 if (!II) 3207 return true; 3208 StringRef FName = II->getName(); 3209 3210 // White list the 'XXXNoCopy' CoreFoundation functions. 3211 // We specifically check these before 3212 if (FName.endswith("NoCopy")) { 3213 // Look for the deallocator argument. We know that the memory ownership 3214 // is not transferred only if the deallocator argument is 3215 // 'kCFAllocatorNull'. 3216 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3217 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3218 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3219 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3220 if (DeallocatorName == "kCFAllocatorNull") 3221 return false; 3222 } 3223 } 3224 return true; 3225 } 3226 3227 // Associating streams with malloced buffers. The pointer can escape if 3228 // 'closefn' is specified (and if that function does free memory), 3229 // but it will not if closefn is not specified. 3230 // Currently, we do not inspect the 'closefn' function (PR12101). 3231 if (FName == "funopen") 3232 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3233 return false; 3234 3235 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3236 // these leaks might be intentional when setting the buffer for stdio. 3237 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3238 if (FName == "setbuf" || FName =="setbuffer" || 3239 FName == "setlinebuf" || FName == "setvbuf") { 3240 if (Call->getNumArgs() >= 1) { 3241 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3242 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3243 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3244 if (D->getCanonicalDecl()->getName().contains("std")) 3245 return true; 3246 } 3247 } 3248 3249 // A bunch of other functions which either take ownership of a pointer or 3250 // wrap the result up in a struct or object, meaning it can be freed later. 3251 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3252 // but the Malloc checker cannot differentiate between them. The right way 3253 // of doing this would be to implement a pointer escapes callback. 3254 if (FName == "CGBitmapContextCreate" || 3255 FName == "CGBitmapContextCreateWithData" || 3256 FName == "CVPixelBufferCreateWithBytes" || 3257 FName == "CVPixelBufferCreateWithPlanarBytes" || 3258 FName == "OSAtomicEnqueue") { 3259 return true; 3260 } 3261 3262 if (FName == "postEvent" && 3263 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3264 return true; 3265 } 3266 3267 if (FName == "connectImpl" && 3268 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3269 return true; 3270 } 3271 3272 // Handle cases where we know a buffer's /address/ can escape. 3273 // Note that the above checks handle some special cases where we know that 3274 // even though the address escapes, it's still our responsibility to free the 3275 // buffer. 3276 if (Call->argumentsMayEscape()) 3277 return true; 3278 3279 // Otherwise, assume that the function does not free memory. 3280 // Most system calls do not free the memory. 3281 return false; 3282 } 3283 3284 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3285 const InvalidatedSymbols &Escaped, 3286 const CallEvent *Call, 3287 PointerEscapeKind Kind) const { 3288 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3289 /*IsConstPointerEscape*/ false); 3290 } 3291 3292 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3293 const InvalidatedSymbols &Escaped, 3294 const CallEvent *Call, 3295 PointerEscapeKind Kind) const { 3296 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3297 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3298 /*IsConstPointerEscape*/ true); 3299 } 3300 3301 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3302 return (RS->getAllocationFamily() == AF_CXXNewArray || 3303 RS->getAllocationFamily() == AF_CXXNew); 3304 } 3305 3306 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3307 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3308 const CallEvent *Call, PointerEscapeKind Kind, 3309 bool IsConstPointerEscape) const { 3310 // If we know that the call does not free memory, or we want to process the 3311 // call later, keep tracking the top level arguments. 3312 SymbolRef EscapingSymbol = nullptr; 3313 if (Kind == PSK_DirectEscapeOnCall && 3314 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3315 EscapingSymbol) && 3316 !EscapingSymbol) { 3317 return State; 3318 } 3319 3320 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3321 E = Escaped.end(); 3322 I != E; ++I) { 3323 SymbolRef sym = *I; 3324 3325 if (EscapingSymbol && EscapingSymbol != sym) 3326 continue; 3327 3328 if (const RefState *RS = State->get<RegionState>(sym)) 3329 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3330 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3331 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3332 } 3333 return State; 3334 } 3335 3336 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3337 SVal ArgVal) const { 3338 if (!KernelZeroSizePtrValue) 3339 KernelZeroSizePtrValue = 3340 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3341 3342 const llvm::APSInt *ArgValKnown = 3343 C.getSValBuilder().getKnownValue(State, ArgVal); 3344 return ArgValKnown && *KernelZeroSizePtrValue && 3345 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3346 } 3347 3348 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3349 ProgramStateRef prevState) { 3350 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3351 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3352 3353 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3354 SymbolRef sym = Pair.first; 3355 if (!currMap.lookup(sym)) 3356 return sym; 3357 } 3358 3359 return nullptr; 3360 } 3361 3362 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3363 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3364 StringRef N = II->getName(); 3365 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3366 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3367 N.contains_insensitive("intrusive") || 3368 N.contains_insensitive("shared")) { 3369 return true; 3370 } 3371 } 3372 } 3373 return false; 3374 } 3375 3376 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3377 BugReporterContext &BRC, 3378 PathSensitiveBugReport &BR) { 3379 ProgramStateRef state = N->getState(); 3380 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3381 3382 const RefState *RSCurr = state->get<RegionState>(Sym); 3383 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3384 3385 const Stmt *S = N->getStmtForDiagnostics(); 3386 // When dealing with containers, we sometimes want to give a note 3387 // even if the statement is missing. 3388 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3389 return nullptr; 3390 3391 const LocationContext *CurrentLC = N->getLocationContext(); 3392 3393 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3394 // the pointer was released (before the release), this is likely a destructor 3395 // of a shared pointer. 3396 // Because we don't model atomics, and also because we don't know that the 3397 // original reference count is positive, we should not report use-after-frees 3398 // on objects deleted in such destructors. This can probably be improved 3399 // through better shared pointer modeling. 3400 if (ReleaseDestructorLC) { 3401 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3402 AtomicExpr::AtomicOp Op = AE->getOp(); 3403 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3404 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3405 if (ReleaseDestructorLC == CurrentLC || 3406 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3407 BR.markInvalid(getTag(), S); 3408 } 3409 } 3410 } 3411 } 3412 3413 // FIXME: We will eventually need to handle non-statement-based events 3414 // (__attribute__((cleanup))). 3415 3416 // Find out if this is an interesting point and what is the kind. 3417 StringRef Msg; 3418 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3419 SmallString<256> Buf; 3420 llvm::raw_svector_ostream OS(Buf); 3421 3422 if (Mode == Normal) { 3423 if (isAllocated(RSCurr, RSPrev, S)) { 3424 Msg = "Memory is allocated"; 3425 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3426 Sym, "Returned allocated memory"); 3427 } else if (isReleased(RSCurr, RSPrev, S)) { 3428 const auto Family = RSCurr->getAllocationFamily(); 3429 switch (Family) { 3430 case AF_Alloca: 3431 case AF_Malloc: 3432 case AF_CXXNew: 3433 case AF_CXXNewArray: 3434 case AF_IfNameIndex: 3435 Msg = "Memory is released"; 3436 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3437 Sym, "Returning; memory was released"); 3438 break; 3439 case AF_InnerBuffer: { 3440 const MemRegion *ObjRegion = 3441 allocation_state::getContainerObjRegion(statePrev, Sym); 3442 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3443 QualType ObjTy = TypedRegion->getValueType(); 3444 OS << "Inner buffer of '" << ObjTy << "' "; 3445 3446 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3447 OS << "deallocated by call to destructor"; 3448 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3449 Sym, "Returning; inner buffer was deallocated"); 3450 } else { 3451 OS << "reallocated by call to '"; 3452 const Stmt *S = RSCurr->getStmt(); 3453 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3454 OS << MemCallE->getMethodDecl()->getDeclName(); 3455 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3456 OS << OpCallE->getDirectCallee()->getDeclName(); 3457 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3458 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3459 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3460 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3461 OS << D->getDeclName(); 3462 else 3463 OS << "unknown"; 3464 } 3465 OS << "'"; 3466 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3467 Sym, "Returning; inner buffer was reallocated"); 3468 } 3469 Msg = OS.str(); 3470 break; 3471 } 3472 case AF_None: 3473 llvm_unreachable("Unhandled allocation family!"); 3474 } 3475 3476 // See if we're releasing memory while inlining a destructor 3477 // (or one of its callees). This turns on various common 3478 // false positive suppressions. 3479 bool FoundAnyDestructor = false; 3480 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3481 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3482 if (isReferenceCountingPointerDestructor(DD)) { 3483 // This immediately looks like a reference-counting destructor. 3484 // We're bad at guessing the original reference count of the object, 3485 // so suppress the report for now. 3486 BR.markInvalid(getTag(), DD); 3487 } else if (!FoundAnyDestructor) { 3488 assert(!ReleaseDestructorLC && 3489 "There can be only one release point!"); 3490 // Suspect that it's a reference counting pointer destructor. 3491 // On one of the next nodes might find out that it has atomic 3492 // reference counting operations within it (see the code above), 3493 // and if so, we'd conclude that it likely is a reference counting 3494 // pointer destructor. 3495 ReleaseDestructorLC = LC->getStackFrame(); 3496 // It is unlikely that releasing memory is delegated to a destructor 3497 // inside a destructor of a shared pointer, because it's fairly hard 3498 // to pass the information that the pointer indeed needs to be 3499 // released into it. So we're only interested in the innermost 3500 // destructor. 3501 FoundAnyDestructor = true; 3502 } 3503 } 3504 } 3505 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3506 Msg = "Memory ownership is transferred"; 3507 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3508 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3509 Mode = ReallocationFailed; 3510 Msg = "Reallocation failed"; 3511 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3512 Sym, "Reallocation failed"); 3513 3514 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3515 // Is it possible to fail two reallocs WITHOUT testing in between? 3516 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3517 "We only support one failed realloc at a time."); 3518 BR.markInteresting(sym); 3519 FailedReallocSymbol = sym; 3520 } 3521 } 3522 3523 // We are in a special mode if a reallocation failed later in the path. 3524 } else if (Mode == ReallocationFailed) { 3525 assert(FailedReallocSymbol && "No symbol to look for."); 3526 3527 // Is this is the first appearance of the reallocated symbol? 3528 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3529 // We're at the reallocation point. 3530 Msg = "Attempt to reallocate memory"; 3531 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3532 Sym, "Returned reallocated memory"); 3533 FailedReallocSymbol = nullptr; 3534 Mode = Normal; 3535 } 3536 } 3537 3538 if (Msg.empty()) { 3539 assert(!StackHint); 3540 return nullptr; 3541 } 3542 3543 assert(StackHint); 3544 3545 // Generate the extra diagnostic. 3546 PathDiagnosticLocation Pos; 3547 if (!S) { 3548 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3549 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3550 if (!PostImplCall) 3551 return nullptr; 3552 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3553 BRC.getSourceManager()); 3554 } else { 3555 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3556 N->getLocationContext()); 3557 } 3558 3559 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3560 BR.addCallStackHint(P, std::move(StackHint)); 3561 return P; 3562 } 3563 3564 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3565 const char *NL, const char *Sep) const { 3566 3567 RegionStateTy RS = State->get<RegionState>(); 3568 3569 if (!RS.isEmpty()) { 3570 Out << Sep << "MallocChecker :" << NL; 3571 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3572 const RefState *RefS = State->get<RegionState>(I.getKey()); 3573 AllocationFamily Family = RefS->getAllocationFamily(); 3574 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3575 if (!CheckKind) 3576 CheckKind = getCheckIfTracked(Family, true); 3577 3578 I.getKey()->dumpToStream(Out); 3579 Out << " : "; 3580 I.getData().dump(Out); 3581 if (CheckKind) 3582 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3583 Out << NL; 3584 } 3585 } 3586 } 3587 3588 namespace clang { 3589 namespace ento { 3590 namespace allocation_state { 3591 3592 ProgramStateRef 3593 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3594 AllocationFamily Family = AF_InnerBuffer; 3595 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3596 } 3597 3598 } // end namespace allocation_state 3599 } // end namespace ento 3600 } // end namespace clang 3601 3602 // Intended to be used in InnerPointerChecker to register the part of 3603 // MallocChecker connected to it. 3604 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3605 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3606 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3607 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3608 mgr.getCurrentCheckerName(); 3609 } 3610 3611 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3612 auto *checker = mgr.registerChecker<MallocChecker>(); 3613 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3614 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3615 checker->ShouldRegisterNoOwnershipChangeVisitor = 3616 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3617 checker, "AddNoOwnershipChangeNotes"); 3618 } 3619 3620 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3621 return true; 3622 } 3623 3624 #define REGISTER_CHECKER(name) \ 3625 void ento::register##name(CheckerManager &mgr) { \ 3626 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3627 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3628 checker->CheckNames[MallocChecker::CK_##name] = \ 3629 mgr.getCurrentCheckerName(); \ 3630 } \ 3631 \ 3632 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3633 3634 REGISTER_CHECKER(MallocChecker) 3635 REGISTER_CHECKER(NewDeleteChecker) 3636 REGISTER_CHECKER(NewDeleteLeaksChecker) 3637 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3638