1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements type-related semantic analysis.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/ScopeInfo.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/Sema/Template.h"
17 #include "clang/Basic/OpenCL.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTMutationListener.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "clang/AST/TypeLocVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/Basic/PartialDiagnostic.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/DelayedDiagnostic.h"
31 #include "clang/Sema/Lookup.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/Support/ErrorHandling.h"
34 using namespace clang;
35 
36 /// isOmittedBlockReturnType - Return true if this declarator is missing a
37 /// return type because this is a omitted return type on a block literal.
38 static bool isOmittedBlockReturnType(const Declarator &D) {
39   if (D.getContext() != Declarator::BlockLiteralContext ||
40       D.getDeclSpec().hasTypeSpecifier())
41     return false;
42 
43   if (D.getNumTypeObjects() == 0)
44     return true;   // ^{ ... }
45 
46   if (D.getNumTypeObjects() == 1 &&
47       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
48     return true;   // ^(int X, float Y) { ... }
49 
50   return false;
51 }
52 
53 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
54 /// doesn't apply to the given type.
55 static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
56                                      QualType type) {
57   bool useExpansionLoc = false;
58 
59   unsigned diagID = 0;
60   switch (attr.getKind()) {
61   case AttributeList::AT_objc_gc:
62     diagID = diag::warn_pointer_attribute_wrong_type;
63     useExpansionLoc = true;
64     break;
65 
66   case AttributeList::AT_objc_ownership:
67     diagID = diag::warn_objc_object_attribute_wrong_type;
68     useExpansionLoc = true;
69     break;
70 
71   default:
72     // Assume everything else was a function attribute.
73     diagID = diag::warn_function_attribute_wrong_type;
74     break;
75   }
76 
77   SourceLocation loc = attr.getLoc();
78   StringRef name = attr.getName()->getName();
79 
80   // The GC attributes are usually written with macros;  special-case them.
81   if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
82     if (attr.getParameterName()->isStr("strong")) {
83       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
84     } else if (attr.getParameterName()->isStr("weak")) {
85       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
86     }
87   }
88 
89   S.Diag(loc, diagID) << name << type;
90 }
91 
92 // objc_gc applies to Objective-C pointers or, otherwise, to the
93 // smallest available pointer type (i.e. 'void*' in 'void**').
94 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
95     case AttributeList::AT_objc_gc: \
96     case AttributeList::AT_objc_ownership
97 
98 // Function type attributes.
99 #define FUNCTION_TYPE_ATTRS_CASELIST \
100     case AttributeList::AT_noreturn: \
101     case AttributeList::AT_cdecl: \
102     case AttributeList::AT_fastcall: \
103     case AttributeList::AT_stdcall: \
104     case AttributeList::AT_thiscall: \
105     case AttributeList::AT_pascal: \
106     case AttributeList::AT_regparm: \
107     case AttributeList::AT_pcs \
108 
109 namespace {
110   /// An object which stores processing state for the entire
111   /// GetTypeForDeclarator process.
112   class TypeProcessingState {
113     Sema &sema;
114 
115     /// The declarator being processed.
116     Declarator &declarator;
117 
118     /// The index of the declarator chunk we're currently processing.
119     /// May be the total number of valid chunks, indicating the
120     /// DeclSpec.
121     unsigned chunkIndex;
122 
123     /// Whether there are non-trivial modifications to the decl spec.
124     bool trivial;
125 
126     /// Whether we saved the attributes in the decl spec.
127     bool hasSavedAttrs;
128 
129     /// The original set of attributes on the DeclSpec.
130     SmallVector<AttributeList*, 2> savedAttrs;
131 
132     /// A list of attributes to diagnose the uselessness of when the
133     /// processing is complete.
134     SmallVector<AttributeList*, 2> ignoredTypeAttrs;
135 
136   public:
137     TypeProcessingState(Sema &sema, Declarator &declarator)
138       : sema(sema), declarator(declarator),
139         chunkIndex(declarator.getNumTypeObjects()),
140         trivial(true), hasSavedAttrs(false) {}
141 
142     Sema &getSema() const {
143       return sema;
144     }
145 
146     Declarator &getDeclarator() const {
147       return declarator;
148     }
149 
150     unsigned getCurrentChunkIndex() const {
151       return chunkIndex;
152     }
153 
154     void setCurrentChunkIndex(unsigned idx) {
155       assert(idx <= declarator.getNumTypeObjects());
156       chunkIndex = idx;
157     }
158 
159     AttributeList *&getCurrentAttrListRef() const {
160       assert(chunkIndex <= declarator.getNumTypeObjects());
161       if (chunkIndex == declarator.getNumTypeObjects())
162         return getMutableDeclSpec().getAttributes().getListRef();
163       return declarator.getTypeObject(chunkIndex).getAttrListRef();
164     }
165 
166     /// Save the current set of attributes on the DeclSpec.
167     void saveDeclSpecAttrs() {
168       // Don't try to save them multiple times.
169       if (hasSavedAttrs) return;
170 
171       DeclSpec &spec = getMutableDeclSpec();
172       for (AttributeList *attr = spec.getAttributes().getList(); attr;
173              attr = attr->getNext())
174         savedAttrs.push_back(attr);
175       trivial &= savedAttrs.empty();
176       hasSavedAttrs = true;
177     }
178 
179     /// Record that we had nowhere to put the given type attribute.
180     /// We will diagnose such attributes later.
181     void addIgnoredTypeAttr(AttributeList &attr) {
182       ignoredTypeAttrs.push_back(&attr);
183     }
184 
185     /// Diagnose all the ignored type attributes, given that the
186     /// declarator worked out to the given type.
187     void diagnoseIgnoredTypeAttrs(QualType type) const {
188       for (SmallVectorImpl<AttributeList*>::const_iterator
189              i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
190            i != e; ++i)
191         diagnoseBadTypeAttribute(getSema(), **i, type);
192     }
193 
194     ~TypeProcessingState() {
195       if (trivial) return;
196 
197       restoreDeclSpecAttrs();
198     }
199 
200   private:
201     DeclSpec &getMutableDeclSpec() const {
202       return const_cast<DeclSpec&>(declarator.getDeclSpec());
203     }
204 
205     void restoreDeclSpecAttrs() {
206       assert(hasSavedAttrs);
207 
208       if (savedAttrs.empty()) {
209         getMutableDeclSpec().getAttributes().set(0);
210         return;
211       }
212 
213       getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
214       for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
215         savedAttrs[i]->setNext(savedAttrs[i+1]);
216       savedAttrs.back()->setNext(0);
217     }
218   };
219 
220   /// Basically std::pair except that we really want to avoid an
221   /// implicit operator= for safety concerns.  It's also a minor
222   /// link-time optimization for this to be a private type.
223   struct AttrAndList {
224     /// The attribute.
225     AttributeList &first;
226 
227     /// The head of the list the attribute is currently in.
228     AttributeList *&second;
229 
230     AttrAndList(AttributeList &attr, AttributeList *&head)
231       : first(attr), second(head) {}
232   };
233 }
234 
235 namespace llvm {
236   template <> struct isPodLike<AttrAndList> {
237     static const bool value = true;
238   };
239 }
240 
241 static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
242   attr.setNext(head);
243   head = &attr;
244 }
245 
246 static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
247   if (head == &attr) {
248     head = attr.getNext();
249     return;
250   }
251 
252   AttributeList *cur = head;
253   while (true) {
254     assert(cur && cur->getNext() && "ran out of attrs?");
255     if (cur->getNext() == &attr) {
256       cur->setNext(attr.getNext());
257       return;
258     }
259     cur = cur->getNext();
260   }
261 }
262 
263 static void moveAttrFromListToList(AttributeList &attr,
264                                    AttributeList *&fromList,
265                                    AttributeList *&toList) {
266   spliceAttrOutOfList(attr, fromList);
267   spliceAttrIntoList(attr, toList);
268 }
269 
270 static void processTypeAttrs(TypeProcessingState &state,
271                              QualType &type, bool isDeclSpec,
272                              AttributeList *attrs);
273 
274 static bool handleFunctionTypeAttr(TypeProcessingState &state,
275                                    AttributeList &attr,
276                                    QualType &type);
277 
278 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
279                                  AttributeList &attr, QualType &type);
280 
281 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
282                                        AttributeList &attr, QualType &type);
283 
284 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
285                                       AttributeList &attr, QualType &type) {
286   if (attr.getKind() == AttributeList::AT_objc_gc)
287     return handleObjCGCTypeAttr(state, attr, type);
288   assert(attr.getKind() == AttributeList::AT_objc_ownership);
289   return handleObjCOwnershipTypeAttr(state, attr, type);
290 }
291 
292 /// Given that an objc_gc attribute was written somewhere on a
293 /// declaration *other* than on the declarator itself (for which, use
294 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
295 /// didn't apply in whatever position it was written in, try to move
296 /// it to a more appropriate position.
297 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
298                                           AttributeList &attr,
299                                           QualType type) {
300   Declarator &declarator = state.getDeclarator();
301   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
302     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
303     switch (chunk.Kind) {
304     case DeclaratorChunk::Pointer:
305     case DeclaratorChunk::BlockPointer:
306       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
307                              chunk.getAttrListRef());
308       return;
309 
310     case DeclaratorChunk::Paren:
311     case DeclaratorChunk::Array:
312       continue;
313 
314     // Don't walk through these.
315     case DeclaratorChunk::Reference:
316     case DeclaratorChunk::Function:
317     case DeclaratorChunk::MemberPointer:
318       goto error;
319     }
320   }
321  error:
322 
323   diagnoseBadTypeAttribute(state.getSema(), attr, type);
324 }
325 
326 /// Distribute an objc_gc type attribute that was written on the
327 /// declarator.
328 static void
329 distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
330                                             AttributeList &attr,
331                                             QualType &declSpecType) {
332   Declarator &declarator = state.getDeclarator();
333 
334   // objc_gc goes on the innermost pointer to something that's not a
335   // pointer.
336   unsigned innermost = -1U;
337   bool considerDeclSpec = true;
338   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
339     DeclaratorChunk &chunk = declarator.getTypeObject(i);
340     switch (chunk.Kind) {
341     case DeclaratorChunk::Pointer:
342     case DeclaratorChunk::BlockPointer:
343       innermost = i;
344       continue;
345 
346     case DeclaratorChunk::Reference:
347     case DeclaratorChunk::MemberPointer:
348     case DeclaratorChunk::Paren:
349     case DeclaratorChunk::Array:
350       continue;
351 
352     case DeclaratorChunk::Function:
353       considerDeclSpec = false;
354       goto done;
355     }
356   }
357  done:
358 
359   // That might actually be the decl spec if we weren't blocked by
360   // anything in the declarator.
361   if (considerDeclSpec) {
362     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
363       // Splice the attribute into the decl spec.  Prevents the
364       // attribute from being applied multiple times and gives
365       // the source-location-filler something to work with.
366       state.saveDeclSpecAttrs();
367       moveAttrFromListToList(attr, declarator.getAttrListRef(),
368                declarator.getMutableDeclSpec().getAttributes().getListRef());
369       return;
370     }
371   }
372 
373   // Otherwise, if we found an appropriate chunk, splice the attribute
374   // into it.
375   if (innermost != -1U) {
376     moveAttrFromListToList(attr, declarator.getAttrListRef(),
377                        declarator.getTypeObject(innermost).getAttrListRef());
378     return;
379   }
380 
381   // Otherwise, diagnose when we're done building the type.
382   spliceAttrOutOfList(attr, declarator.getAttrListRef());
383   state.addIgnoredTypeAttr(attr);
384 }
385 
386 /// A function type attribute was written somewhere in a declaration
387 /// *other* than on the declarator itself or in the decl spec.  Given
388 /// that it didn't apply in whatever position it was written in, try
389 /// to move it to a more appropriate position.
390 static void distributeFunctionTypeAttr(TypeProcessingState &state,
391                                        AttributeList &attr,
392                                        QualType type) {
393   Declarator &declarator = state.getDeclarator();
394 
395   // Try to push the attribute from the return type of a function to
396   // the function itself.
397   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
398     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
399     switch (chunk.Kind) {
400     case DeclaratorChunk::Function:
401       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
402                              chunk.getAttrListRef());
403       return;
404 
405     case DeclaratorChunk::Paren:
406     case DeclaratorChunk::Pointer:
407     case DeclaratorChunk::BlockPointer:
408     case DeclaratorChunk::Array:
409     case DeclaratorChunk::Reference:
410     case DeclaratorChunk::MemberPointer:
411       continue;
412     }
413   }
414 
415   diagnoseBadTypeAttribute(state.getSema(), attr, type);
416 }
417 
418 /// Try to distribute a function type attribute to the innermost
419 /// function chunk or type.  Returns true if the attribute was
420 /// distributed, false if no location was found.
421 static bool
422 distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
423                                       AttributeList &attr,
424                                       AttributeList *&attrList,
425                                       QualType &declSpecType) {
426   Declarator &declarator = state.getDeclarator();
427 
428   // Put it on the innermost function chunk, if there is one.
429   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
430     DeclaratorChunk &chunk = declarator.getTypeObject(i);
431     if (chunk.Kind != DeclaratorChunk::Function) continue;
432 
433     moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
434     return true;
435   }
436 
437   if (handleFunctionTypeAttr(state, attr, declSpecType)) {
438     spliceAttrOutOfList(attr, attrList);
439     return true;
440   }
441 
442   return false;
443 }
444 
445 /// A function type attribute was written in the decl spec.  Try to
446 /// apply it somewhere.
447 static void
448 distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
449                                        AttributeList &attr,
450                                        QualType &declSpecType) {
451   state.saveDeclSpecAttrs();
452 
453   // Try to distribute to the innermost.
454   if (distributeFunctionTypeAttrToInnermost(state, attr,
455                                             state.getCurrentAttrListRef(),
456                                             declSpecType))
457     return;
458 
459   // If that failed, diagnose the bad attribute when the declarator is
460   // fully built.
461   state.addIgnoredTypeAttr(attr);
462 }
463 
464 /// A function type attribute was written on the declarator.  Try to
465 /// apply it somewhere.
466 static void
467 distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
468                                          AttributeList &attr,
469                                          QualType &declSpecType) {
470   Declarator &declarator = state.getDeclarator();
471 
472   // Try to distribute to the innermost.
473   if (distributeFunctionTypeAttrToInnermost(state, attr,
474                                             declarator.getAttrListRef(),
475                                             declSpecType))
476     return;
477 
478   // If that failed, diagnose the bad attribute when the declarator is
479   // fully built.
480   spliceAttrOutOfList(attr, declarator.getAttrListRef());
481   state.addIgnoredTypeAttr(attr);
482 }
483 
484 /// \brief Given that there are attributes written on the declarator
485 /// itself, try to distribute any type attributes to the appropriate
486 /// declarator chunk.
487 ///
488 /// These are attributes like the following:
489 ///   int f ATTR;
490 ///   int (f ATTR)();
491 /// but not necessarily this:
492 ///   int f() ATTR;
493 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
494                                               QualType &declSpecType) {
495   // Collect all the type attributes from the declarator itself.
496   assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
497   AttributeList *attr = state.getDeclarator().getAttributes();
498   AttributeList *next;
499   do {
500     next = attr->getNext();
501 
502     switch (attr->getKind()) {
503     OBJC_POINTER_TYPE_ATTRS_CASELIST:
504       distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
505       break;
506 
507     case AttributeList::AT_ns_returns_retained:
508       if (!state.getSema().getLangOptions().ObjCAutoRefCount)
509         break;
510       // fallthrough
511 
512     FUNCTION_TYPE_ATTRS_CASELIST:
513       distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
514       break;
515 
516     default:
517       break;
518     }
519   } while ((attr = next));
520 }
521 
522 /// Add a synthetic '()' to a block-literal declarator if it is
523 /// required, given the return type.
524 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
525                                           QualType declSpecType) {
526   Declarator &declarator = state.getDeclarator();
527 
528   // First, check whether the declarator would produce a function,
529   // i.e. whether the innermost semantic chunk is a function.
530   if (declarator.isFunctionDeclarator()) {
531     // If so, make that declarator a prototyped declarator.
532     declarator.getFunctionTypeInfo().hasPrototype = true;
533     return;
534   }
535 
536   // If there are any type objects, the type as written won't name a
537   // function, regardless of the decl spec type.  This is because a
538   // block signature declarator is always an abstract-declarator, and
539   // abstract-declarators can't just be parentheses chunks.  Therefore
540   // we need to build a function chunk unless there are no type
541   // objects and the decl spec type is a function.
542   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
543     return;
544 
545   // Note that there *are* cases with invalid declarators where
546   // declarators consist solely of parentheses.  In general, these
547   // occur only in failed efforts to make function declarators, so
548   // faking up the function chunk is still the right thing to do.
549 
550   // Otherwise, we need to fake up a function declarator.
551   SourceLocation loc = declarator.getSourceRange().getBegin();
552 
553   // ...and *prepend* it to the declarator.
554   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
555                              /*proto*/ true,
556                              /*variadic*/ false, SourceLocation(),
557                              /*args*/ 0, 0,
558                              /*type quals*/ 0,
559                              /*ref-qualifier*/true, SourceLocation(),
560                              /*const qualifier*/SourceLocation(),
561                              /*volatile qualifier*/SourceLocation(),
562                              /*mutable qualifier*/SourceLocation(),
563                              /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
564                              /*parens*/ loc, loc,
565                              declarator));
566 
567   // For consistency, make sure the state still has us as processing
568   // the decl spec.
569   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
570   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
571 }
572 
573 /// \brief Convert the specified declspec to the appropriate type
574 /// object.
575 /// \param D  the declarator containing the declaration specifier.
576 /// \returns The type described by the declaration specifiers.  This function
577 /// never returns null.
578 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
579   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
580   // checking.
581 
582   Sema &S = state.getSema();
583   Declarator &declarator = state.getDeclarator();
584   const DeclSpec &DS = declarator.getDeclSpec();
585   SourceLocation DeclLoc = declarator.getIdentifierLoc();
586   if (DeclLoc.isInvalid())
587     DeclLoc = DS.getSourceRange().getBegin();
588 
589   ASTContext &Context = S.Context;
590 
591   QualType Result;
592   switch (DS.getTypeSpecType()) {
593   case DeclSpec::TST_void:
594     Result = Context.VoidTy;
595     break;
596   case DeclSpec::TST_char:
597     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
598       Result = Context.CharTy;
599     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
600       Result = Context.SignedCharTy;
601     else {
602       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
603              "Unknown TSS value");
604       Result = Context.UnsignedCharTy;
605     }
606     break;
607   case DeclSpec::TST_wchar:
608     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
609       Result = Context.WCharTy;
610     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
611       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
612         << DS.getSpecifierName(DS.getTypeSpecType());
613       Result = Context.getSignedWCharType();
614     } else {
615       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
616         "Unknown TSS value");
617       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
618         << DS.getSpecifierName(DS.getTypeSpecType());
619       Result = Context.getUnsignedWCharType();
620     }
621     break;
622   case DeclSpec::TST_char16:
623       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
624         "Unknown TSS value");
625       Result = Context.Char16Ty;
626     break;
627   case DeclSpec::TST_char32:
628       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
629         "Unknown TSS value");
630       Result = Context.Char32Ty;
631     break;
632   case DeclSpec::TST_unspecified:
633     // "<proto1,proto2>" is an objc qualified ID with a missing id.
634     if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
635       Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
636                                          (ObjCProtocolDecl**)PQ,
637                                          DS.getNumProtocolQualifiers());
638       Result = Context.getObjCObjectPointerType(Result);
639       break;
640     }
641 
642     // If this is a missing declspec in a block literal return context, then it
643     // is inferred from the return statements inside the block.
644     // The declspec is always missing in a lambda expr context; it is either
645     // specified with a trailing return type or inferred.
646     if (declarator.getContext() == Declarator::LambdaExprContext ||
647         isOmittedBlockReturnType(declarator)) {
648       Result = Context.DependentTy;
649       break;
650     }
651 
652     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
653     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
654     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
655     // Note that the one exception to this is function definitions, which are
656     // allowed to be completely missing a declspec.  This is handled in the
657     // parser already though by it pretending to have seen an 'int' in this
658     // case.
659     if (S.getLangOptions().ImplicitInt) {
660       // In C89 mode, we only warn if there is a completely missing declspec
661       // when one is not allowed.
662       if (DS.isEmpty()) {
663         S.Diag(DeclLoc, diag::ext_missing_declspec)
664           << DS.getSourceRange()
665         << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
666       }
667     } else if (!DS.hasTypeSpecifier()) {
668       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
669       // "At least one type specifier shall be given in the declaration
670       // specifiers in each declaration, and in the specifier-qualifier list in
671       // each struct declaration and type name."
672       // FIXME: Does Microsoft really have the implicit int extension in C++?
673       if (S.getLangOptions().CPlusPlus &&
674           !S.getLangOptions().MicrosoftExt) {
675         S.Diag(DeclLoc, diag::err_missing_type_specifier)
676           << DS.getSourceRange();
677 
678         // When this occurs in C++ code, often something is very broken with the
679         // value being declared, poison it as invalid so we don't get chains of
680         // errors.
681         declarator.setInvalidType(true);
682       } else {
683         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
684           << DS.getSourceRange();
685       }
686     }
687 
688     // FALL THROUGH.
689   case DeclSpec::TST_int: {
690     if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
691       switch (DS.getTypeSpecWidth()) {
692       case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
693       case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
694       case DeclSpec::TSW_long:        Result = Context.LongTy; break;
695       case DeclSpec::TSW_longlong:
696         Result = Context.LongLongTy;
697 
698         // long long is a C99 feature.
699         if (!S.getLangOptions().C99)
700           S.Diag(DS.getTypeSpecWidthLoc(),
701                  S.getLangOptions().CPlusPlus0x ?
702                    diag::warn_cxx98_compat_longlong : diag::ext_longlong);
703         break;
704       }
705     } else {
706       switch (DS.getTypeSpecWidth()) {
707       case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
708       case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
709       case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
710       case DeclSpec::TSW_longlong:
711         Result = Context.UnsignedLongLongTy;
712 
713         // long long is a C99 feature.
714         if (!S.getLangOptions().C99)
715           S.Diag(DS.getTypeSpecWidthLoc(),
716                  S.getLangOptions().CPlusPlus0x ?
717                    diag::warn_cxx98_compat_longlong : diag::ext_longlong);
718         break;
719       }
720     }
721     break;
722   }
723   case DeclSpec::TST_half: Result = Context.HalfTy; break;
724   case DeclSpec::TST_float: Result = Context.FloatTy; break;
725   case DeclSpec::TST_double:
726     if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
727       Result = Context.LongDoubleTy;
728     else
729       Result = Context.DoubleTy;
730 
731     if (S.getLangOptions().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
732       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
733       declarator.setInvalidType(true);
734     }
735     break;
736   case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
737   case DeclSpec::TST_decimal32:    // _Decimal32
738   case DeclSpec::TST_decimal64:    // _Decimal64
739   case DeclSpec::TST_decimal128:   // _Decimal128
740     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
741     Result = Context.IntTy;
742     declarator.setInvalidType(true);
743     break;
744   case DeclSpec::TST_class:
745   case DeclSpec::TST_enum:
746   case DeclSpec::TST_union:
747   case DeclSpec::TST_struct: {
748     TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
749     if (!D) {
750       // This can happen in C++ with ambiguous lookups.
751       Result = Context.IntTy;
752       declarator.setInvalidType(true);
753       break;
754     }
755 
756     // If the type is deprecated or unavailable, diagnose it.
757     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
758 
759     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
760            DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
761 
762     // TypeQuals handled by caller.
763     Result = Context.getTypeDeclType(D);
764 
765     // In both C and C++, make an ElaboratedType.
766     ElaboratedTypeKeyword Keyword
767       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
768     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
769 
770     if (D->isInvalidDecl())
771       declarator.setInvalidType(true);
772     break;
773   }
774   case DeclSpec::TST_typename: {
775     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
776            DS.getTypeSpecSign() == 0 &&
777            "Can't handle qualifiers on typedef names yet!");
778     Result = S.GetTypeFromParser(DS.getRepAsType());
779     if (Result.isNull())
780       declarator.setInvalidType(true);
781     else if (DeclSpec::ProtocolQualifierListTy PQ
782                = DS.getProtocolQualifiers()) {
783       if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
784         // Silently drop any existing protocol qualifiers.
785         // TODO: determine whether that's the right thing to do.
786         if (ObjT->getNumProtocols())
787           Result = ObjT->getBaseType();
788 
789         if (DS.getNumProtocolQualifiers())
790           Result = Context.getObjCObjectType(Result,
791                                              (ObjCProtocolDecl**) PQ,
792                                              DS.getNumProtocolQualifiers());
793       } else if (Result->isObjCIdType()) {
794         // id<protocol-list>
795         Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
796                                            (ObjCProtocolDecl**) PQ,
797                                            DS.getNumProtocolQualifiers());
798         Result = Context.getObjCObjectPointerType(Result);
799       } else if (Result->isObjCClassType()) {
800         // Class<protocol-list>
801         Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
802                                            (ObjCProtocolDecl**) PQ,
803                                            DS.getNumProtocolQualifiers());
804         Result = Context.getObjCObjectPointerType(Result);
805       } else {
806         S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
807           << DS.getSourceRange();
808         declarator.setInvalidType(true);
809       }
810     }
811 
812     // TypeQuals handled by caller.
813     break;
814   }
815   case DeclSpec::TST_typeofType:
816     // FIXME: Preserve type source info.
817     Result = S.GetTypeFromParser(DS.getRepAsType());
818     assert(!Result.isNull() && "Didn't get a type for typeof?");
819     if (!Result->isDependentType())
820       if (const TagType *TT = Result->getAs<TagType>())
821         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
822     // TypeQuals handled by caller.
823     Result = Context.getTypeOfType(Result);
824     break;
825   case DeclSpec::TST_typeofExpr: {
826     Expr *E = DS.getRepAsExpr();
827     assert(E && "Didn't get an expression for typeof?");
828     // TypeQuals handled by caller.
829     Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
830     if (Result.isNull()) {
831       Result = Context.IntTy;
832       declarator.setInvalidType(true);
833     }
834     break;
835   }
836   case DeclSpec::TST_decltype: {
837     Expr *E = DS.getRepAsExpr();
838     assert(E && "Didn't get an expression for decltype?");
839     // TypeQuals handled by caller.
840     Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
841     if (Result.isNull()) {
842       Result = Context.IntTy;
843       declarator.setInvalidType(true);
844     }
845     break;
846   }
847   case DeclSpec::TST_underlyingType:
848     Result = S.GetTypeFromParser(DS.getRepAsType());
849     assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
850     Result = S.BuildUnaryTransformType(Result,
851                                        UnaryTransformType::EnumUnderlyingType,
852                                        DS.getTypeSpecTypeLoc());
853     if (Result.isNull()) {
854       Result = Context.IntTy;
855       declarator.setInvalidType(true);
856     }
857     break;
858 
859   case DeclSpec::TST_auto: {
860     // TypeQuals handled by caller.
861     Result = Context.getAutoType(QualType());
862     break;
863   }
864 
865   case DeclSpec::TST_unknown_anytype:
866     Result = Context.UnknownAnyTy;
867     break;
868 
869   case DeclSpec::TST_atomic:
870     Result = S.GetTypeFromParser(DS.getRepAsType());
871     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
872     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
873     if (Result.isNull()) {
874       Result = Context.IntTy;
875       declarator.setInvalidType(true);
876     }
877     break;
878 
879   case DeclSpec::TST_error:
880     Result = Context.IntTy;
881     declarator.setInvalidType(true);
882     break;
883   }
884 
885   // Handle complex types.
886   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
887     if (S.getLangOptions().Freestanding)
888       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
889     Result = Context.getComplexType(Result);
890   } else if (DS.isTypeAltiVecVector()) {
891     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
892     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
893     VectorType::VectorKind VecKind = VectorType::AltiVecVector;
894     if (DS.isTypeAltiVecPixel())
895       VecKind = VectorType::AltiVecPixel;
896     else if (DS.isTypeAltiVecBool())
897       VecKind = VectorType::AltiVecBool;
898     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
899   }
900 
901   // FIXME: Imaginary.
902   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
903     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
904 
905   // Before we process any type attributes, synthesize a block literal
906   // function declarator if necessary.
907   if (declarator.getContext() == Declarator::BlockLiteralContext)
908     maybeSynthesizeBlockSignature(state, Result);
909 
910   // Apply any type attributes from the decl spec.  This may cause the
911   // list of type attributes to be temporarily saved while the type
912   // attributes are pushed around.
913   if (AttributeList *attrs = DS.getAttributes().getList())
914     processTypeAttrs(state, Result, true, attrs);
915 
916   // Apply const/volatile/restrict qualifiers to T.
917   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
918 
919     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
920     // or incomplete types shall not be restrict-qualified."  C++ also allows
921     // restrict-qualified references.
922     if (TypeQuals & DeclSpec::TQ_restrict) {
923       if (Result->isAnyPointerType() || Result->isReferenceType()) {
924         QualType EltTy;
925         if (Result->isObjCObjectPointerType())
926           EltTy = Result;
927         else
928           EltTy = Result->isPointerType() ?
929                     Result->getAs<PointerType>()->getPointeeType() :
930                     Result->getAs<ReferenceType>()->getPointeeType();
931 
932         // If we have a pointer or reference, the pointee must have an object
933         // incomplete type.
934         if (!EltTy->isIncompleteOrObjectType()) {
935           S.Diag(DS.getRestrictSpecLoc(),
936                diag::err_typecheck_invalid_restrict_invalid_pointee)
937             << EltTy << DS.getSourceRange();
938           TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
939         }
940       } else {
941         S.Diag(DS.getRestrictSpecLoc(),
942                diag::err_typecheck_invalid_restrict_not_pointer)
943           << Result << DS.getSourceRange();
944         TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
945       }
946     }
947 
948     // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
949     // of a function type includes any type qualifiers, the behavior is
950     // undefined."
951     if (Result->isFunctionType() && TypeQuals) {
952       // Get some location to point at, either the C or V location.
953       SourceLocation Loc;
954       if (TypeQuals & DeclSpec::TQ_const)
955         Loc = DS.getConstSpecLoc();
956       else if (TypeQuals & DeclSpec::TQ_volatile)
957         Loc = DS.getVolatileSpecLoc();
958       else {
959         assert((TypeQuals & DeclSpec::TQ_restrict) &&
960                "Has CVR quals but not C, V, or R?");
961         Loc = DS.getRestrictSpecLoc();
962       }
963       S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
964         << Result << DS.getSourceRange();
965     }
966 
967     // C++ [dcl.ref]p1:
968     //   Cv-qualified references are ill-formed except when the
969     //   cv-qualifiers are introduced through the use of a typedef
970     //   (7.1.3) or of a template type argument (14.3), in which
971     //   case the cv-qualifiers are ignored.
972     // FIXME: Shouldn't we be checking SCS_typedef here?
973     if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
974         TypeQuals && Result->isReferenceType()) {
975       TypeQuals &= ~DeclSpec::TQ_const;
976       TypeQuals &= ~DeclSpec::TQ_volatile;
977     }
978 
979     Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
980     Result = Context.getQualifiedType(Result, Quals);
981   }
982 
983   return Result;
984 }
985 
986 static std::string getPrintableNameForEntity(DeclarationName Entity) {
987   if (Entity)
988     return Entity.getAsString();
989 
990   return "type name";
991 }
992 
993 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
994                                   Qualifiers Qs) {
995   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
996   // object or incomplete types shall not be restrict-qualified."
997   if (Qs.hasRestrict()) {
998     unsigned DiagID = 0;
999     QualType ProblemTy;
1000 
1001     const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1002     if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1003       if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1004         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1005         ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1006       }
1007     } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1008       if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1009         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1010         ProblemTy = T->getAs<PointerType>()->getPointeeType();
1011       }
1012     } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1013       if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1014         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1015         ProblemTy = T->getAs<PointerType>()->getPointeeType();
1016       }
1017     } else if (!Ty->isDependentType()) {
1018       // FIXME: this deserves a proper diagnostic
1019       DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1020       ProblemTy = T;
1021     }
1022 
1023     if (DiagID) {
1024       Diag(Loc, DiagID) << ProblemTy;
1025       Qs.removeRestrict();
1026     }
1027   }
1028 
1029   return Context.getQualifiedType(T, Qs);
1030 }
1031 
1032 /// \brief Build a paren type including \p T.
1033 QualType Sema::BuildParenType(QualType T) {
1034   return Context.getParenType(T);
1035 }
1036 
1037 /// Given that we're building a pointer or reference to the given
1038 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1039                                            SourceLocation loc,
1040                                            bool isReference) {
1041   // Bail out if retention is unrequired or already specified.
1042   if (!type->isObjCLifetimeType() ||
1043       type.getObjCLifetime() != Qualifiers::OCL_None)
1044     return type;
1045 
1046   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1047 
1048   // If the object type is const-qualified, we can safely use
1049   // __unsafe_unretained.  This is safe (because there are no read
1050   // barriers), and it'll be safe to coerce anything but __weak* to
1051   // the resulting type.
1052   if (type.isConstQualified()) {
1053     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1054 
1055   // Otherwise, check whether the static type does not require
1056   // retaining.  This currently only triggers for Class (possibly
1057   // protocol-qualifed, and arrays thereof).
1058   } else if (type->isObjCARCImplicitlyUnretainedType()) {
1059     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1060 
1061   // If we are in an unevaluated context, like sizeof, skip adding a
1062   // qualification.
1063   } else if (S.ExprEvalContexts.back().Context == Sema::Unevaluated) {
1064     return type;
1065 
1066   // If that failed, give an error and recover using __strong.  __strong
1067   // is the option most likely to prevent spurious second-order diagnostics,
1068   // like when binding a reference to a field.
1069   } else {
1070     // These types can show up in private ivars in system headers, so
1071     // we need this to not be an error in those cases.  Instead we
1072     // want to delay.
1073     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1074       S.DelayedDiagnostics.add(
1075           sema::DelayedDiagnostic::makeForbiddenType(loc,
1076               diag::err_arc_indirect_no_ownership, type, isReference));
1077     } else {
1078       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1079     }
1080     implicitLifetime = Qualifiers::OCL_Strong;
1081   }
1082   assert(implicitLifetime && "didn't infer any lifetime!");
1083 
1084   Qualifiers qs;
1085   qs.addObjCLifetime(implicitLifetime);
1086   return S.Context.getQualifiedType(type, qs);
1087 }
1088 
1089 /// \brief Build a pointer type.
1090 ///
1091 /// \param T The type to which we'll be building a pointer.
1092 ///
1093 /// \param Loc The location of the entity whose type involves this
1094 /// pointer type or, if there is no such entity, the location of the
1095 /// type that will have pointer type.
1096 ///
1097 /// \param Entity The name of the entity that involves the pointer
1098 /// type, if known.
1099 ///
1100 /// \returns A suitable pointer type, if there are no
1101 /// errors. Otherwise, returns a NULL type.
1102 QualType Sema::BuildPointerType(QualType T,
1103                                 SourceLocation Loc, DeclarationName Entity) {
1104   if (T->isReferenceType()) {
1105     // C++ 8.3.2p4: There shall be no ... pointers to references ...
1106     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1107       << getPrintableNameForEntity(Entity) << T;
1108     return QualType();
1109   }
1110 
1111   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1112 
1113   // In ARC, it is forbidden to build pointers to unqualified pointers.
1114   if (getLangOptions().ObjCAutoRefCount)
1115     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1116 
1117   // Build the pointer type.
1118   return Context.getPointerType(T);
1119 }
1120 
1121 /// \brief Build a reference type.
1122 ///
1123 /// \param T The type to which we'll be building a reference.
1124 ///
1125 /// \param Loc The location of the entity whose type involves this
1126 /// reference type or, if there is no such entity, the location of the
1127 /// type that will have reference type.
1128 ///
1129 /// \param Entity The name of the entity that involves the reference
1130 /// type, if known.
1131 ///
1132 /// \returns A suitable reference type, if there are no
1133 /// errors. Otherwise, returns a NULL type.
1134 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1135                                   SourceLocation Loc,
1136                                   DeclarationName Entity) {
1137   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1138          "Unresolved overloaded function type");
1139 
1140   // C++0x [dcl.ref]p6:
1141   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1142   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1143   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1144   //   the type "lvalue reference to T", while an attempt to create the type
1145   //   "rvalue reference to cv TR" creates the type TR.
1146   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1147 
1148   // C++ [dcl.ref]p4: There shall be no references to references.
1149   //
1150   // According to C++ DR 106, references to references are only
1151   // diagnosed when they are written directly (e.g., "int & &"),
1152   // but not when they happen via a typedef:
1153   //
1154   //   typedef int& intref;
1155   //   typedef intref& intref2;
1156   //
1157   // Parser::ParseDeclaratorInternal diagnoses the case where
1158   // references are written directly; here, we handle the
1159   // collapsing of references-to-references as described in C++0x.
1160   // DR 106 and 540 introduce reference-collapsing into C++98/03.
1161 
1162   // C++ [dcl.ref]p1:
1163   //   A declarator that specifies the type "reference to cv void"
1164   //   is ill-formed.
1165   if (T->isVoidType()) {
1166     Diag(Loc, diag::err_reference_to_void);
1167     return QualType();
1168   }
1169 
1170   // In ARC, it is forbidden to build references to unqualified pointers.
1171   if (getLangOptions().ObjCAutoRefCount)
1172     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1173 
1174   // Handle restrict on references.
1175   if (LValueRef)
1176     return Context.getLValueReferenceType(T, SpelledAsLValue);
1177   return Context.getRValueReferenceType(T);
1178 }
1179 
1180 /// Check whether the specified array size makes the array type a VLA.  If so,
1181 /// return true, if not, return the size of the array in SizeVal.
1182 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1183   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1184   // (like gnu99, but not c99) accept any evaluatable value as an extension.
1185   return S.VerifyIntegerConstantExpression(
1186       ArraySize, &SizeVal, S.PDiag(), S.LangOpts.GNUMode,
1187       S.PDiag(diag::ext_vla_folded_to_constant)).isInvalid();
1188 }
1189 
1190 
1191 /// \brief Build an array type.
1192 ///
1193 /// \param T The type of each element in the array.
1194 ///
1195 /// \param ASM C99 array size modifier (e.g., '*', 'static').
1196 ///
1197 /// \param ArraySize Expression describing the size of the array.
1198 ///
1199 /// \param Loc The location of the entity whose type involves this
1200 /// array type or, if there is no such entity, the location of the
1201 /// type that will have array type.
1202 ///
1203 /// \param Entity The name of the entity that involves the array
1204 /// type, if known.
1205 ///
1206 /// \returns A suitable array type, if there are no errors. Otherwise,
1207 /// returns a NULL type.
1208 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1209                               Expr *ArraySize, unsigned Quals,
1210                               SourceRange Brackets, DeclarationName Entity) {
1211 
1212   SourceLocation Loc = Brackets.getBegin();
1213   if (getLangOptions().CPlusPlus) {
1214     // C++ [dcl.array]p1:
1215     //   T is called the array element type; this type shall not be a reference
1216     //   type, the (possibly cv-qualified) type void, a function type or an
1217     //   abstract class type.
1218     //
1219     // Note: function types are handled in the common path with C.
1220     if (T->isReferenceType()) {
1221       Diag(Loc, diag::err_illegal_decl_array_of_references)
1222       << getPrintableNameForEntity(Entity) << T;
1223       return QualType();
1224     }
1225 
1226     if (T->isVoidType()) {
1227       Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1228       return QualType();
1229     }
1230 
1231     if (RequireNonAbstractType(Brackets.getBegin(), T,
1232                                diag::err_array_of_abstract_type))
1233       return QualType();
1234 
1235   } else {
1236     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1237     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1238     if (RequireCompleteType(Loc, T,
1239                             diag::err_illegal_decl_array_incomplete_type))
1240       return QualType();
1241   }
1242 
1243   if (T->isFunctionType()) {
1244     Diag(Loc, diag::err_illegal_decl_array_of_functions)
1245       << getPrintableNameForEntity(Entity) << T;
1246     return QualType();
1247   }
1248 
1249   if (T->getContainedAutoType()) {
1250     Diag(Loc, diag::err_illegal_decl_array_of_auto)
1251       << getPrintableNameForEntity(Entity) << T;
1252     return QualType();
1253   }
1254 
1255   if (const RecordType *EltTy = T->getAs<RecordType>()) {
1256     // If the element type is a struct or union that contains a variadic
1257     // array, accept it as a GNU extension: C99 6.7.2.1p2.
1258     if (EltTy->getDecl()->hasFlexibleArrayMember())
1259       Diag(Loc, diag::ext_flexible_array_in_array) << T;
1260   } else if (T->isObjCObjectType()) {
1261     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1262     return QualType();
1263   }
1264 
1265   // Do placeholder conversions on the array size expression.
1266   if (ArraySize && ArraySize->hasPlaceholderType()) {
1267     ExprResult Result = CheckPlaceholderExpr(ArraySize);
1268     if (Result.isInvalid()) return QualType();
1269     ArraySize = Result.take();
1270   }
1271 
1272   // Do lvalue-to-rvalue conversions on the array size expression.
1273   if (ArraySize && !ArraySize->isRValue()) {
1274     ExprResult Result = DefaultLvalueConversion(ArraySize);
1275     if (Result.isInvalid())
1276       return QualType();
1277 
1278     ArraySize = Result.take();
1279   }
1280 
1281   // C99 6.7.5.2p1: The size expression shall have integer type.
1282   // C++11 allows contextual conversions to such types.
1283   if (!getLangOptions().CPlusPlus0x &&
1284       ArraySize && !ArraySize->isTypeDependent() &&
1285       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1286     Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1287       << ArraySize->getType() << ArraySize->getSourceRange();
1288     return QualType();
1289   }
1290 
1291   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1292   if (!ArraySize) {
1293     if (ASM == ArrayType::Star)
1294       T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1295     else
1296       T = Context.getIncompleteArrayType(T, ASM, Quals);
1297   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1298     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1299   } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1300               !T->isConstantSizeType()) ||
1301              isArraySizeVLA(*this, ArraySize, ConstVal)) {
1302     // Even in C++11, don't allow contextual conversions in the array bound
1303     // of a VLA.
1304     if (getLangOptions().CPlusPlus0x &&
1305         !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1306       Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1307         << ArraySize->getType() << ArraySize->getSourceRange();
1308       return QualType();
1309     }
1310 
1311     // C99: an array with an element type that has a non-constant-size is a VLA.
1312     // C99: an array with a non-ICE size is a VLA.  We accept any expression
1313     // that we can fold to a non-zero positive value as an extension.
1314     T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1315   } else {
1316     // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1317     // have a value greater than zero.
1318     if (ConstVal.isSigned() && ConstVal.isNegative()) {
1319       if (Entity)
1320         Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1321           << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1322       else
1323         Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1324           << ArraySize->getSourceRange();
1325       return QualType();
1326     }
1327     if (ConstVal == 0) {
1328       // GCC accepts zero sized static arrays. We allow them when
1329       // we're not in a SFINAE context.
1330       Diag(ArraySize->getLocStart(),
1331            isSFINAEContext()? diag::err_typecheck_zero_array_size
1332                             : diag::ext_typecheck_zero_array_size)
1333         << ArraySize->getSourceRange();
1334 
1335       if (ASM == ArrayType::Static) {
1336         Diag(ArraySize->getLocStart(),
1337              diag::warn_typecheck_zero_static_array_size)
1338           << ArraySize->getSourceRange();
1339         ASM = ArrayType::Normal;
1340       }
1341     } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1342                !T->isIncompleteType()) {
1343       // Is the array too large?
1344       unsigned ActiveSizeBits
1345         = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1346       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1347         Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1348           << ConstVal.toString(10)
1349           << ArraySize->getSourceRange();
1350     }
1351 
1352     T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1353   }
1354   // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1355   if (!getLangOptions().C99) {
1356     if (T->isVariableArrayType()) {
1357       // Prohibit the use of non-POD types in VLAs.
1358       QualType BaseT = Context.getBaseElementType(T);
1359       if (!T->isDependentType() &&
1360           !BaseT.isPODType(Context) &&
1361           !BaseT->isObjCLifetimeType()) {
1362         Diag(Loc, diag::err_vla_non_pod)
1363           << BaseT;
1364         return QualType();
1365       }
1366       // Prohibit the use of VLAs during template argument deduction.
1367       else if (isSFINAEContext()) {
1368         Diag(Loc, diag::err_vla_in_sfinae);
1369         return QualType();
1370       }
1371       // Just extwarn about VLAs.
1372       else
1373         Diag(Loc, diag::ext_vla);
1374     } else if (ASM != ArrayType::Normal || Quals != 0)
1375       Diag(Loc,
1376            getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
1377                                      : diag::ext_c99_array_usage) << ASM;
1378   }
1379 
1380   return T;
1381 }
1382 
1383 /// \brief Build an ext-vector type.
1384 ///
1385 /// Run the required checks for the extended vector type.
1386 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1387                                   SourceLocation AttrLoc) {
1388   // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1389   // in conjunction with complex types (pointers, arrays, functions, etc.).
1390   if (!T->isDependentType() &&
1391       !T->isIntegerType() && !T->isRealFloatingType()) {
1392     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1393     return QualType();
1394   }
1395 
1396   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1397     llvm::APSInt vecSize(32);
1398     if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1399       Diag(AttrLoc, diag::err_attribute_argument_not_int)
1400         << "ext_vector_type" << ArraySize->getSourceRange();
1401       return QualType();
1402     }
1403 
1404     // unlike gcc's vector_size attribute, the size is specified as the
1405     // number of elements, not the number of bytes.
1406     unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1407 
1408     if (vectorSize == 0) {
1409       Diag(AttrLoc, diag::err_attribute_zero_size)
1410       << ArraySize->getSourceRange();
1411       return QualType();
1412     }
1413 
1414     return Context.getExtVectorType(T, vectorSize);
1415   }
1416 
1417   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1418 }
1419 
1420 /// \brief Build a function type.
1421 ///
1422 /// This routine checks the function type according to C++ rules and
1423 /// under the assumption that the result type and parameter types have
1424 /// just been instantiated from a template. It therefore duplicates
1425 /// some of the behavior of GetTypeForDeclarator, but in a much
1426 /// simpler form that is only suitable for this narrow use case.
1427 ///
1428 /// \param T The return type of the function.
1429 ///
1430 /// \param ParamTypes The parameter types of the function. This array
1431 /// will be modified to account for adjustments to the types of the
1432 /// function parameters.
1433 ///
1434 /// \param NumParamTypes The number of parameter types in ParamTypes.
1435 ///
1436 /// \param Variadic Whether this is a variadic function type.
1437 ///
1438 /// \param HasTrailingReturn Whether this function has a trailing return type.
1439 ///
1440 /// \param Quals The cvr-qualifiers to be applied to the function type.
1441 ///
1442 /// \param Loc The location of the entity whose type involves this
1443 /// function type or, if there is no such entity, the location of the
1444 /// type that will have function type.
1445 ///
1446 /// \param Entity The name of the entity that involves the function
1447 /// type, if known.
1448 ///
1449 /// \returns A suitable function type, if there are no
1450 /// errors. Otherwise, returns a NULL type.
1451 QualType Sema::BuildFunctionType(QualType T,
1452                                  QualType *ParamTypes,
1453                                  unsigned NumParamTypes,
1454                                  bool Variadic, bool HasTrailingReturn,
1455                                  unsigned Quals,
1456                                  RefQualifierKind RefQualifier,
1457                                  SourceLocation Loc, DeclarationName Entity,
1458                                  FunctionType::ExtInfo Info) {
1459   if (T->isArrayType() || T->isFunctionType()) {
1460     Diag(Loc, diag::err_func_returning_array_function)
1461       << T->isFunctionType() << T;
1462     return QualType();
1463   }
1464 
1465   // Functions cannot return half FP.
1466   if (T->isHalfType()) {
1467     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1468       FixItHint::CreateInsertion(Loc, "*");
1469     return QualType();
1470   }
1471 
1472   bool Invalid = false;
1473   for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1474     // FIXME: Loc is too inprecise here, should use proper locations for args.
1475     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1476     if (ParamType->isVoidType()) {
1477       Diag(Loc, diag::err_param_with_void_type);
1478       Invalid = true;
1479     } else if (ParamType->isHalfType()) {
1480       // Disallow half FP arguments.
1481       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1482         FixItHint::CreateInsertion(Loc, "*");
1483       Invalid = true;
1484     }
1485 
1486     ParamTypes[Idx] = ParamType;
1487   }
1488 
1489   if (Invalid)
1490     return QualType();
1491 
1492   FunctionProtoType::ExtProtoInfo EPI;
1493   EPI.Variadic = Variadic;
1494   EPI.HasTrailingReturn = HasTrailingReturn;
1495   EPI.TypeQuals = Quals;
1496   EPI.RefQualifier = RefQualifier;
1497   EPI.ExtInfo = Info;
1498 
1499   return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1500 }
1501 
1502 /// \brief Build a member pointer type \c T Class::*.
1503 ///
1504 /// \param T the type to which the member pointer refers.
1505 /// \param Class the class type into which the member pointer points.
1506 /// \param Loc the location where this type begins
1507 /// \param Entity the name of the entity that will have this member pointer type
1508 ///
1509 /// \returns a member pointer type, if successful, or a NULL type if there was
1510 /// an error.
1511 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1512                                       SourceLocation Loc,
1513                                       DeclarationName Entity) {
1514   // Verify that we're not building a pointer to pointer to function with
1515   // exception specification.
1516   if (CheckDistantExceptionSpec(T)) {
1517     Diag(Loc, diag::err_distant_exception_spec);
1518 
1519     // FIXME: If we're doing this as part of template instantiation,
1520     // we should return immediately.
1521 
1522     // Build the type anyway, but use the canonical type so that the
1523     // exception specifiers are stripped off.
1524     T = Context.getCanonicalType(T);
1525   }
1526 
1527   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1528   //   with reference type, or "cv void."
1529   if (T->isReferenceType()) {
1530     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1531       << (Entity? Entity.getAsString() : "type name") << T;
1532     return QualType();
1533   }
1534 
1535   if (T->isVoidType()) {
1536     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1537       << (Entity? Entity.getAsString() : "type name");
1538     return QualType();
1539   }
1540 
1541   if (!Class->isDependentType() && !Class->isRecordType()) {
1542     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1543     return QualType();
1544   }
1545 
1546   // In the Microsoft ABI, the class is allowed to be an incomplete
1547   // type. In such cases, the compiler makes a worst-case assumption.
1548   // We make no such assumption right now, so emit an error if the
1549   // class isn't a complete type.
1550   if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1551       RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1552     return QualType();
1553 
1554   return Context.getMemberPointerType(T, Class.getTypePtr());
1555 }
1556 
1557 /// \brief Build a block pointer type.
1558 ///
1559 /// \param T The type to which we'll be building a block pointer.
1560 ///
1561 /// \param CVR The cvr-qualifiers to be applied to the block pointer type.
1562 ///
1563 /// \param Loc The location of the entity whose type involves this
1564 /// block pointer type or, if there is no such entity, the location of the
1565 /// type that will have block pointer type.
1566 ///
1567 /// \param Entity The name of the entity that involves the block pointer
1568 /// type, if known.
1569 ///
1570 /// \returns A suitable block pointer type, if there are no
1571 /// errors. Otherwise, returns a NULL type.
1572 QualType Sema::BuildBlockPointerType(QualType T,
1573                                      SourceLocation Loc,
1574                                      DeclarationName Entity) {
1575   if (!T->isFunctionType()) {
1576     Diag(Loc, diag::err_nonfunction_block_type);
1577     return QualType();
1578   }
1579 
1580   return Context.getBlockPointerType(T);
1581 }
1582 
1583 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1584   QualType QT = Ty.get();
1585   if (QT.isNull()) {
1586     if (TInfo) *TInfo = 0;
1587     return QualType();
1588   }
1589 
1590   TypeSourceInfo *DI = 0;
1591   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1592     QT = LIT->getType();
1593     DI = LIT->getTypeSourceInfo();
1594   }
1595 
1596   if (TInfo) *TInfo = DI;
1597   return QT;
1598 }
1599 
1600 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1601                                             Qualifiers::ObjCLifetime ownership,
1602                                             unsigned chunkIndex);
1603 
1604 /// Given that this is the declaration of a parameter under ARC,
1605 /// attempt to infer attributes and such for pointer-to-whatever
1606 /// types.
1607 static void inferARCWriteback(TypeProcessingState &state,
1608                               QualType &declSpecType) {
1609   Sema &S = state.getSema();
1610   Declarator &declarator = state.getDeclarator();
1611 
1612   // TODO: should we care about decl qualifiers?
1613 
1614   // Check whether the declarator has the expected form.  We walk
1615   // from the inside out in order to make the block logic work.
1616   unsigned outermostPointerIndex = 0;
1617   bool isBlockPointer = false;
1618   unsigned numPointers = 0;
1619   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1620     unsigned chunkIndex = i;
1621     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1622     switch (chunk.Kind) {
1623     case DeclaratorChunk::Paren:
1624       // Ignore parens.
1625       break;
1626 
1627     case DeclaratorChunk::Reference:
1628     case DeclaratorChunk::Pointer:
1629       // Count the number of pointers.  Treat references
1630       // interchangeably as pointers; if they're mis-ordered, normal
1631       // type building will discover that.
1632       outermostPointerIndex = chunkIndex;
1633       numPointers++;
1634       break;
1635 
1636     case DeclaratorChunk::BlockPointer:
1637       // If we have a pointer to block pointer, that's an acceptable
1638       // indirect reference; anything else is not an application of
1639       // the rules.
1640       if (numPointers != 1) return;
1641       numPointers++;
1642       outermostPointerIndex = chunkIndex;
1643       isBlockPointer = true;
1644 
1645       // We don't care about pointer structure in return values here.
1646       goto done;
1647 
1648     case DeclaratorChunk::Array: // suppress if written (id[])?
1649     case DeclaratorChunk::Function:
1650     case DeclaratorChunk::MemberPointer:
1651       return;
1652     }
1653   }
1654  done:
1655 
1656   // If we have *one* pointer, then we want to throw the qualifier on
1657   // the declaration-specifiers, which means that it needs to be a
1658   // retainable object type.
1659   if (numPointers == 1) {
1660     // If it's not a retainable object type, the rule doesn't apply.
1661     if (!declSpecType->isObjCRetainableType()) return;
1662 
1663     // If it already has lifetime, don't do anything.
1664     if (declSpecType.getObjCLifetime()) return;
1665 
1666     // Otherwise, modify the type in-place.
1667     Qualifiers qs;
1668 
1669     if (declSpecType->isObjCARCImplicitlyUnretainedType())
1670       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1671     else
1672       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1673     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1674 
1675   // If we have *two* pointers, then we want to throw the qualifier on
1676   // the outermost pointer.
1677   } else if (numPointers == 2) {
1678     // If we don't have a block pointer, we need to check whether the
1679     // declaration-specifiers gave us something that will turn into a
1680     // retainable object pointer after we slap the first pointer on it.
1681     if (!isBlockPointer && !declSpecType->isObjCObjectType())
1682       return;
1683 
1684     // Look for an explicit lifetime attribute there.
1685     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1686     if (chunk.Kind != DeclaratorChunk::Pointer &&
1687         chunk.Kind != DeclaratorChunk::BlockPointer)
1688       return;
1689     for (const AttributeList *attr = chunk.getAttrs(); attr;
1690            attr = attr->getNext())
1691       if (attr->getKind() == AttributeList::AT_objc_ownership)
1692         return;
1693 
1694     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1695                                           outermostPointerIndex);
1696 
1697   // Any other number of pointers/references does not trigger the rule.
1698   } else return;
1699 
1700   // TODO: mark whether we did this inference?
1701 }
1702 
1703 static void DiagnoseIgnoredQualifiers(unsigned Quals,
1704                                       SourceLocation ConstQualLoc,
1705                                       SourceLocation VolatileQualLoc,
1706                                       SourceLocation RestrictQualLoc,
1707                                       Sema& S) {
1708   std::string QualStr;
1709   unsigned NumQuals = 0;
1710   SourceLocation Loc;
1711 
1712   FixItHint ConstFixIt;
1713   FixItHint VolatileFixIt;
1714   FixItHint RestrictFixIt;
1715 
1716   const SourceManager &SM = S.getSourceManager();
1717 
1718   // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1719   // find a range and grow it to encompass all the qualifiers, regardless of
1720   // the order in which they textually appear.
1721   if (Quals & Qualifiers::Const) {
1722     ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1723     QualStr = "const";
1724     ++NumQuals;
1725     if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1726       Loc = ConstQualLoc;
1727   }
1728   if (Quals & Qualifiers::Volatile) {
1729     VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1730     QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1731     ++NumQuals;
1732     if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1733       Loc = VolatileQualLoc;
1734   }
1735   if (Quals & Qualifiers::Restrict) {
1736     RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1737     QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1738     ++NumQuals;
1739     if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1740       Loc = RestrictQualLoc;
1741   }
1742 
1743   assert(NumQuals > 0 && "No known qualifiers?");
1744 
1745   S.Diag(Loc, diag::warn_qual_return_type)
1746     << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1747 }
1748 
1749 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1750                                              TypeSourceInfo *&ReturnTypeInfo) {
1751   Sema &SemaRef = state.getSema();
1752   Declarator &D = state.getDeclarator();
1753   QualType T;
1754   ReturnTypeInfo = 0;
1755 
1756   // The TagDecl owned by the DeclSpec.
1757   TagDecl *OwnedTagDecl = 0;
1758 
1759   switch (D.getName().getKind()) {
1760   case UnqualifiedId::IK_ImplicitSelfParam:
1761   case UnqualifiedId::IK_OperatorFunctionId:
1762   case UnqualifiedId::IK_Identifier:
1763   case UnqualifiedId::IK_LiteralOperatorId:
1764   case UnqualifiedId::IK_TemplateId:
1765     T = ConvertDeclSpecToType(state);
1766 
1767     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1768       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1769       // Owned declaration is embedded in declarator.
1770       OwnedTagDecl->setEmbeddedInDeclarator(true);
1771     }
1772     break;
1773 
1774   case UnqualifiedId::IK_ConstructorName:
1775   case UnqualifiedId::IK_ConstructorTemplateId:
1776   case UnqualifiedId::IK_DestructorName:
1777     // Constructors and destructors don't have return types. Use
1778     // "void" instead.
1779     T = SemaRef.Context.VoidTy;
1780     break;
1781 
1782   case UnqualifiedId::IK_ConversionFunctionId:
1783     // The result type of a conversion function is the type that it
1784     // converts to.
1785     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1786                                   &ReturnTypeInfo);
1787     break;
1788   }
1789 
1790   if (D.getAttributes())
1791     distributeTypeAttrsFromDeclarator(state, T);
1792 
1793   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1794   // In C++11, a function declarator using 'auto' must have a trailing return
1795   // type (this is checked later) and we can skip this. In other languages
1796   // using auto, we need to check regardless.
1797   if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1798       (!SemaRef.getLangOptions().CPlusPlus0x || !D.isFunctionDeclarator())) {
1799     int Error = -1;
1800 
1801     switch (D.getContext()) {
1802     case Declarator::KNRTypeListContext:
1803       llvm_unreachable("K&R type lists aren't allowed in C++");
1804     case Declarator::LambdaExprContext:
1805       llvm_unreachable("Can't specify a type specifier in lambda grammar");
1806     case Declarator::ObjCParameterContext:
1807     case Declarator::ObjCResultContext:
1808     case Declarator::PrototypeContext:
1809       Error = 0; // Function prototype
1810       break;
1811     case Declarator::MemberContext:
1812       if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1813         break;
1814       switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1815       case TTK_Enum: llvm_unreachable("unhandled tag kind");
1816       case TTK_Struct: Error = 1; /* Struct member */ break;
1817       case TTK_Union:  Error = 2; /* Union member */ break;
1818       case TTK_Class:  Error = 3; /* Class member */ break;
1819       }
1820       break;
1821     case Declarator::CXXCatchContext:
1822     case Declarator::ObjCCatchContext:
1823       Error = 4; // Exception declaration
1824       break;
1825     case Declarator::TemplateParamContext:
1826       Error = 5; // Template parameter
1827       break;
1828     case Declarator::BlockLiteralContext:
1829       Error = 6; // Block literal
1830       break;
1831     case Declarator::TemplateTypeArgContext:
1832       Error = 7; // Template type argument
1833       break;
1834     case Declarator::AliasDeclContext:
1835     case Declarator::AliasTemplateContext:
1836       Error = 9; // Type alias
1837       break;
1838     case Declarator::TypeNameContext:
1839       Error = 11; // Generic
1840       break;
1841     case Declarator::FileContext:
1842     case Declarator::BlockContext:
1843     case Declarator::ForContext:
1844     case Declarator::ConditionContext:
1845     case Declarator::CXXNewContext:
1846       break;
1847     }
1848 
1849     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1850       Error = 8;
1851 
1852     // In Objective-C it is an error to use 'auto' on a function declarator.
1853     if (D.isFunctionDeclarator())
1854       Error = 10;
1855 
1856     // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1857     // contains a trailing return type. That is only legal at the outermost
1858     // level. Check all declarator chunks (outermost first) anyway, to give
1859     // better diagnostics.
1860     if (SemaRef.getLangOptions().CPlusPlus0x && Error != -1) {
1861       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1862         unsigned chunkIndex = e - i - 1;
1863         state.setCurrentChunkIndex(chunkIndex);
1864         DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1865         if (DeclType.Kind == DeclaratorChunk::Function) {
1866           const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1867           if (FTI.TrailingReturnType) {
1868             Error = -1;
1869             break;
1870           }
1871         }
1872       }
1873     }
1874 
1875     if (Error != -1) {
1876       SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1877                    diag::err_auto_not_allowed)
1878         << Error;
1879       T = SemaRef.Context.IntTy;
1880       D.setInvalidType(true);
1881     } else
1882       SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1883                    diag::warn_cxx98_compat_auto_type_specifier);
1884   }
1885 
1886   if (SemaRef.getLangOptions().CPlusPlus &&
1887       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1888     // Check the contexts where C++ forbids the declaration of a new class
1889     // or enumeration in a type-specifier-seq.
1890     switch (D.getContext()) {
1891     case Declarator::FileContext:
1892     case Declarator::MemberContext:
1893     case Declarator::BlockContext:
1894     case Declarator::ForContext:
1895     case Declarator::BlockLiteralContext:
1896     case Declarator::LambdaExprContext:
1897       // C++11 [dcl.type]p3:
1898       //   A type-specifier-seq shall not define a class or enumeration unless
1899       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1900       //   the declaration of a template-declaration.
1901     case Declarator::AliasDeclContext:
1902       break;
1903     case Declarator::AliasTemplateContext:
1904       SemaRef.Diag(OwnedTagDecl->getLocation(),
1905              diag::err_type_defined_in_alias_template)
1906         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1907       break;
1908     case Declarator::TypeNameContext:
1909     case Declarator::TemplateParamContext:
1910     case Declarator::CXXNewContext:
1911     case Declarator::CXXCatchContext:
1912     case Declarator::ObjCCatchContext:
1913     case Declarator::TemplateTypeArgContext:
1914       SemaRef.Diag(OwnedTagDecl->getLocation(),
1915              diag::err_type_defined_in_type_specifier)
1916         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1917       break;
1918     case Declarator::PrototypeContext:
1919     case Declarator::ObjCParameterContext:
1920     case Declarator::ObjCResultContext:
1921     case Declarator::KNRTypeListContext:
1922       // C++ [dcl.fct]p6:
1923       //   Types shall not be defined in return or parameter types.
1924       SemaRef.Diag(OwnedTagDecl->getLocation(),
1925                    diag::err_type_defined_in_param_type)
1926         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1927       break;
1928     case Declarator::ConditionContext:
1929       // C++ 6.4p2:
1930       // The type-specifier-seq shall not contain typedef and shall not declare
1931       // a new class or enumeration.
1932       SemaRef.Diag(OwnedTagDecl->getLocation(),
1933                    diag::err_type_defined_in_condition);
1934       break;
1935     }
1936   }
1937 
1938   return T;
1939 }
1940 
1941 std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy) {
1942   std::string Quals =
1943     Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1944 
1945   switch (FnTy->getRefQualifier()) {
1946   case RQ_None:
1947     break;
1948 
1949   case RQ_LValue:
1950     if (!Quals.empty())
1951       Quals += ' ';
1952     Quals += '&';
1953     break;
1954 
1955   case RQ_RValue:
1956     if (!Quals.empty())
1957       Quals += ' ';
1958     Quals += "&&";
1959     break;
1960   }
1961 
1962   return Quals;
1963 }
1964 
1965 /// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
1966 /// can be contained within the declarator chunk DeclType, and produce an
1967 /// appropriate diagnostic if not.
1968 static void checkQualifiedFunction(Sema &S, QualType T,
1969                                    DeclaratorChunk &DeclType) {
1970   // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
1971   // cv-qualifier or a ref-qualifier can only appear at the topmost level
1972   // of a type.
1973   int DiagKind = -1;
1974   switch (DeclType.Kind) {
1975   case DeclaratorChunk::Paren:
1976   case DeclaratorChunk::MemberPointer:
1977     // These cases are permitted.
1978     return;
1979   case DeclaratorChunk::Array:
1980   case DeclaratorChunk::Function:
1981     // These cases don't allow function types at all; no need to diagnose the
1982     // qualifiers separately.
1983     return;
1984   case DeclaratorChunk::BlockPointer:
1985     DiagKind = 0;
1986     break;
1987   case DeclaratorChunk::Pointer:
1988     DiagKind = 1;
1989     break;
1990   case DeclaratorChunk::Reference:
1991     DiagKind = 2;
1992     break;
1993   }
1994 
1995   assert(DiagKind != -1);
1996   S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
1997     << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
1998     << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
1999 }
2000 
2001 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2002                                                 QualType declSpecType,
2003                                                 TypeSourceInfo *TInfo) {
2004 
2005   QualType T = declSpecType;
2006   Declarator &D = state.getDeclarator();
2007   Sema &S = state.getSema();
2008   ASTContext &Context = S.Context;
2009   const LangOptions &LangOpts = S.getLangOptions();
2010 
2011   bool ImplicitlyNoexcept = false;
2012   if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
2013       LangOpts.CPlusPlus0x) {
2014     OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
2015     /// In C++0x, deallocation functions (normal and array operator delete)
2016     /// are implicitly noexcept.
2017     if (OO == OO_Delete || OO == OO_Array_Delete)
2018       ImplicitlyNoexcept = true;
2019   }
2020 
2021   // The name we're declaring, if any.
2022   DeclarationName Name;
2023   if (D.getIdentifier())
2024     Name = D.getIdentifier();
2025 
2026   // Does this declaration declare a typedef-name?
2027   bool IsTypedefName =
2028     D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2029     D.getContext() == Declarator::AliasDeclContext ||
2030     D.getContext() == Declarator::AliasTemplateContext;
2031 
2032   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2033   bool IsQualifiedFunction = T->isFunctionProtoType() &&
2034       (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2035        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2036 
2037   // Walk the DeclTypeInfo, building the recursive type as we go.
2038   // DeclTypeInfos are ordered from the identifier out, which is
2039   // opposite of what we want :).
2040   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2041     unsigned chunkIndex = e - i - 1;
2042     state.setCurrentChunkIndex(chunkIndex);
2043     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2044     if (IsQualifiedFunction) {
2045       checkQualifiedFunction(S, T, DeclType);
2046       IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2047     }
2048     switch (DeclType.Kind) {
2049     case DeclaratorChunk::Paren:
2050       T = S.BuildParenType(T);
2051       break;
2052     case DeclaratorChunk::BlockPointer:
2053       // If blocks are disabled, emit an error.
2054       if (!LangOpts.Blocks)
2055         S.Diag(DeclType.Loc, diag::err_blocks_disable);
2056 
2057       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2058       if (DeclType.Cls.TypeQuals)
2059         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2060       break;
2061     case DeclaratorChunk::Pointer:
2062       // Verify that we're not building a pointer to pointer to function with
2063       // exception specification.
2064       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2065         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2066         D.setInvalidType(true);
2067         // Build the type anyway.
2068       }
2069       if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2070         T = Context.getObjCObjectPointerType(T);
2071         if (DeclType.Ptr.TypeQuals)
2072           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2073         break;
2074       }
2075       T = S.BuildPointerType(T, DeclType.Loc, Name);
2076       if (DeclType.Ptr.TypeQuals)
2077         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2078 
2079       break;
2080     case DeclaratorChunk::Reference: {
2081       // Verify that we're not building a reference to pointer to function with
2082       // exception specification.
2083       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2084         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2085         D.setInvalidType(true);
2086         // Build the type anyway.
2087       }
2088       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2089 
2090       Qualifiers Quals;
2091       if (DeclType.Ref.HasRestrict)
2092         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2093       break;
2094     }
2095     case DeclaratorChunk::Array: {
2096       // Verify that we're not building an array of pointers to function with
2097       // exception specification.
2098       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2099         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2100         D.setInvalidType(true);
2101         // Build the type anyway.
2102       }
2103       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2104       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2105       ArrayType::ArraySizeModifier ASM;
2106       if (ATI.isStar)
2107         ASM = ArrayType::Star;
2108       else if (ATI.hasStatic)
2109         ASM = ArrayType::Static;
2110       else
2111         ASM = ArrayType::Normal;
2112       if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2113         // FIXME: This check isn't quite right: it allows star in prototypes
2114         // for function definitions, and disallows some edge cases detailed
2115         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2116         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2117         ASM = ArrayType::Normal;
2118         D.setInvalidType(true);
2119       }
2120       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2121                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2122       break;
2123     }
2124     case DeclaratorChunk::Function: {
2125       // If the function declarator has a prototype (i.e. it is not () and
2126       // does not have a K&R-style identifier list), then the arguments are part
2127       // of the type, otherwise the argument list is ().
2128       const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2129       IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2130 
2131       // Check for auto functions and trailing return type and adjust the
2132       // return type accordingly.
2133       if (!D.isInvalidType()) {
2134         // trailing-return-type is only required if we're declaring a function,
2135         // and not, for instance, a pointer to a function.
2136         if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2137             !FTI.TrailingReturnType && chunkIndex == 0) {
2138           S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2139                diag::err_auto_missing_trailing_return);
2140           T = Context.IntTy;
2141           D.setInvalidType(true);
2142         } else if (FTI.TrailingReturnType) {
2143           // T must be exactly 'auto' at this point. See CWG issue 681.
2144           if (isa<ParenType>(T)) {
2145             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2146                  diag::err_trailing_return_in_parens)
2147               << T << D.getDeclSpec().getSourceRange();
2148             D.setInvalidType(true);
2149           } else if (D.getContext() != Declarator::LambdaExprContext &&
2150                      (T.hasQualifiers() || !isa<AutoType>(T))) {
2151             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2152                  diag::err_trailing_return_without_auto)
2153               << T << D.getDeclSpec().getSourceRange();
2154             D.setInvalidType(true);
2155           }
2156 
2157           T = S.GetTypeFromParser(
2158             ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
2159             &TInfo);
2160         }
2161       }
2162 
2163       // C99 6.7.5.3p1: The return type may not be a function or array type.
2164       // For conversion functions, we'll diagnose this particular error later.
2165       if ((T->isArrayType() || T->isFunctionType()) &&
2166           (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2167         unsigned diagID = diag::err_func_returning_array_function;
2168         // Last processing chunk in block context means this function chunk
2169         // represents the block.
2170         if (chunkIndex == 0 &&
2171             D.getContext() == Declarator::BlockLiteralContext)
2172           diagID = diag::err_block_returning_array_function;
2173         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2174         T = Context.IntTy;
2175         D.setInvalidType(true);
2176       }
2177 
2178       // Do not allow returning half FP value.
2179       // FIXME: This really should be in BuildFunctionType.
2180       if (T->isHalfType()) {
2181         S.Diag(D.getIdentifierLoc(),
2182              diag::err_parameters_retval_cannot_have_fp16_type) << 1
2183           << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2184         D.setInvalidType(true);
2185       }
2186 
2187       // cv-qualifiers on return types are pointless except when the type is a
2188       // class type in C++.
2189       if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2190           (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2191           (!LangOpts.CPlusPlus || !T->isDependentType())) {
2192         assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2193         DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2194         assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2195 
2196         DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2197 
2198         DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2199             SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2200             SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2201             SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2202             S);
2203 
2204       } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2205           (!LangOpts.CPlusPlus ||
2206            (!T->isDependentType() && !T->isRecordType()))) {
2207 
2208         DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2209                                   D.getDeclSpec().getConstSpecLoc(),
2210                                   D.getDeclSpec().getVolatileSpecLoc(),
2211                                   D.getDeclSpec().getRestrictSpecLoc(),
2212                                   S);
2213       }
2214 
2215       if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2216         // C++ [dcl.fct]p6:
2217         //   Types shall not be defined in return or parameter types.
2218         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2219         if (Tag->isCompleteDefinition())
2220           S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2221             << Context.getTypeDeclType(Tag);
2222       }
2223 
2224       // Exception specs are not allowed in typedefs. Complain, but add it
2225       // anyway.
2226       if (IsTypedefName && FTI.getExceptionSpecType())
2227         S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2228           << (D.getContext() == Declarator::AliasDeclContext ||
2229               D.getContext() == Declarator::AliasTemplateContext);
2230 
2231       if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2232         // Simple void foo(), where the incoming T is the result type.
2233         T = Context.getFunctionNoProtoType(T);
2234       } else {
2235         // We allow a zero-parameter variadic function in C if the
2236         // function is marked with the "overloadable" attribute. Scan
2237         // for this attribute now.
2238         if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2239           bool Overloadable = false;
2240           for (const AttributeList *Attrs = D.getAttributes();
2241                Attrs; Attrs = Attrs->getNext()) {
2242             if (Attrs->getKind() == AttributeList::AT_overloadable) {
2243               Overloadable = true;
2244               break;
2245             }
2246           }
2247 
2248           if (!Overloadable)
2249             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2250         }
2251 
2252         if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2253           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2254           // definition.
2255           S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2256           D.setInvalidType(true);
2257           break;
2258         }
2259 
2260         FunctionProtoType::ExtProtoInfo EPI;
2261         EPI.Variadic = FTI.isVariadic;
2262         EPI.HasTrailingReturn = FTI.TrailingReturnType;
2263         EPI.TypeQuals = FTI.TypeQuals;
2264         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2265                     : FTI.RefQualifierIsLValueRef? RQ_LValue
2266                     : RQ_RValue;
2267 
2268         // Otherwise, we have a function with an argument list that is
2269         // potentially variadic.
2270         SmallVector<QualType, 16> ArgTys;
2271         ArgTys.reserve(FTI.NumArgs);
2272 
2273         SmallVector<bool, 16> ConsumedArguments;
2274         ConsumedArguments.reserve(FTI.NumArgs);
2275         bool HasAnyConsumedArguments = false;
2276 
2277         for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2278           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2279           QualType ArgTy = Param->getType();
2280           assert(!ArgTy.isNull() && "Couldn't parse type?");
2281 
2282           // Adjust the parameter type.
2283           assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2284                  "Unadjusted type?");
2285 
2286           // Look for 'void'.  void is allowed only as a single argument to a
2287           // function with no other parameters (C99 6.7.5.3p10).  We record
2288           // int(void) as a FunctionProtoType with an empty argument list.
2289           if (ArgTy->isVoidType()) {
2290             // If this is something like 'float(int, void)', reject it.  'void'
2291             // is an incomplete type (C99 6.2.5p19) and function decls cannot
2292             // have arguments of incomplete type.
2293             if (FTI.NumArgs != 1 || FTI.isVariadic) {
2294               S.Diag(DeclType.Loc, diag::err_void_only_param);
2295               ArgTy = Context.IntTy;
2296               Param->setType(ArgTy);
2297             } else if (FTI.ArgInfo[i].Ident) {
2298               // Reject, but continue to parse 'int(void abc)'.
2299               S.Diag(FTI.ArgInfo[i].IdentLoc,
2300                    diag::err_param_with_void_type);
2301               ArgTy = Context.IntTy;
2302               Param->setType(ArgTy);
2303             } else {
2304               // Reject, but continue to parse 'float(const void)'.
2305               if (ArgTy.hasQualifiers())
2306                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2307 
2308               // Do not add 'void' to the ArgTys list.
2309               break;
2310             }
2311           } else if (ArgTy->isHalfType()) {
2312             // Disallow half FP arguments.
2313             // FIXME: This really should be in BuildFunctionType.
2314             S.Diag(Param->getLocation(),
2315                diag::err_parameters_retval_cannot_have_fp16_type) << 0
2316             << FixItHint::CreateInsertion(Param->getLocation(), "*");
2317             D.setInvalidType();
2318           } else if (!FTI.hasPrototype) {
2319             if (ArgTy->isPromotableIntegerType()) {
2320               ArgTy = Context.getPromotedIntegerType(ArgTy);
2321               Param->setKNRPromoted(true);
2322             } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2323               if (BTy->getKind() == BuiltinType::Float) {
2324                 ArgTy = Context.DoubleTy;
2325                 Param->setKNRPromoted(true);
2326               }
2327             }
2328           }
2329 
2330           if (LangOpts.ObjCAutoRefCount) {
2331             bool Consumed = Param->hasAttr<NSConsumedAttr>();
2332             ConsumedArguments.push_back(Consumed);
2333             HasAnyConsumedArguments |= Consumed;
2334           }
2335 
2336           ArgTys.push_back(ArgTy);
2337         }
2338 
2339         if (HasAnyConsumedArguments)
2340           EPI.ConsumedArguments = ConsumedArguments.data();
2341 
2342         SmallVector<QualType, 4> Exceptions;
2343         EPI.ExceptionSpecType = FTI.getExceptionSpecType();
2344         if (FTI.getExceptionSpecType() == EST_Dynamic) {
2345           Exceptions.reserve(FTI.NumExceptions);
2346           for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
2347             // FIXME: Preserve type source info.
2348             QualType ET = S.GetTypeFromParser(FTI.Exceptions[ei].Ty);
2349             // Check that the type is valid for an exception spec, and
2350             // drop it if not.
2351             if (!S.CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
2352               Exceptions.push_back(ET);
2353           }
2354           EPI.NumExceptions = Exceptions.size();
2355           EPI.Exceptions = Exceptions.data();
2356         } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2357           // If an error occurred, there's no expression here.
2358           if (Expr *NoexceptExpr = FTI.NoexceptExpr) {
2359             assert((NoexceptExpr->isTypeDependent() ||
2360                     NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
2361                         Context.BoolTy) &&
2362                  "Parser should have made sure that the expression is boolean");
2363             if (!NoexceptExpr->isValueDependent())
2364               NoexceptExpr = S.VerifyIntegerConstantExpression(NoexceptExpr, 0,
2365                 S.PDiag(diag::err_noexcept_needs_constant_expression),
2366                 /*AllowFold*/ false).take();
2367             EPI.NoexceptExpr = NoexceptExpr;
2368           }
2369         } else if (FTI.getExceptionSpecType() == EST_None &&
2370                    ImplicitlyNoexcept && chunkIndex == 0) {
2371           // Only the outermost chunk is marked noexcept, of course.
2372           EPI.ExceptionSpecType = EST_BasicNoexcept;
2373         }
2374 
2375         T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2376       }
2377 
2378       break;
2379     }
2380     case DeclaratorChunk::MemberPointer:
2381       // The scope spec must refer to a class, or be dependent.
2382       CXXScopeSpec &SS = DeclType.Mem.Scope();
2383       QualType ClsType;
2384       if (SS.isInvalid()) {
2385         // Avoid emitting extra errors if we already errored on the scope.
2386         D.setInvalidType(true);
2387       } else if (S.isDependentScopeSpecifier(SS) ||
2388                  dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2389         NestedNameSpecifier *NNS
2390           = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2391         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2392         switch (NNS->getKind()) {
2393         case NestedNameSpecifier::Identifier:
2394           ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2395                                                  NNS->getAsIdentifier());
2396           break;
2397 
2398         case NestedNameSpecifier::Namespace:
2399         case NestedNameSpecifier::NamespaceAlias:
2400         case NestedNameSpecifier::Global:
2401           llvm_unreachable("Nested-name-specifier must name a type");
2402 
2403         case NestedNameSpecifier::TypeSpec:
2404         case NestedNameSpecifier::TypeSpecWithTemplate:
2405           ClsType = QualType(NNS->getAsType(), 0);
2406           // Note: if the NNS has a prefix and ClsType is a nondependent
2407           // TemplateSpecializationType, then the NNS prefix is NOT included
2408           // in ClsType; hence we wrap ClsType into an ElaboratedType.
2409           // NOTE: in particular, no wrap occurs if ClsType already is an
2410           // Elaborated, DependentName, or DependentTemplateSpecialization.
2411           if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2412             ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2413           break;
2414         }
2415       } else {
2416         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2417              diag::err_illegal_decl_mempointer_in_nonclass)
2418           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2419           << DeclType.Mem.Scope().getRange();
2420         D.setInvalidType(true);
2421       }
2422 
2423       if (!ClsType.isNull())
2424         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2425       if (T.isNull()) {
2426         T = Context.IntTy;
2427         D.setInvalidType(true);
2428       } else if (DeclType.Mem.TypeQuals) {
2429         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2430       }
2431       break;
2432     }
2433 
2434     if (T.isNull()) {
2435       D.setInvalidType(true);
2436       T = Context.IntTy;
2437     }
2438 
2439     // See if there are any attributes on this declarator chunk.
2440     if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2441       processTypeAttrs(state, T, false, attrs);
2442   }
2443 
2444   if (LangOpts.CPlusPlus && T->isFunctionType()) {
2445     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2446     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2447 
2448     // C++ 8.3.5p4:
2449     //   A cv-qualifier-seq shall only be part of the function type
2450     //   for a nonstatic member function, the function type to which a pointer
2451     //   to member refers, or the top-level function type of a function typedef
2452     //   declaration.
2453     //
2454     // Core issue 547 also allows cv-qualifiers on function types that are
2455     // top-level template type arguments.
2456     bool FreeFunction;
2457     if (!D.getCXXScopeSpec().isSet()) {
2458       FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2459                        D.getContext() != Declarator::LambdaExprContext) ||
2460                       D.getDeclSpec().isFriendSpecified());
2461     } else {
2462       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2463       FreeFunction = (DC && !DC->isRecord());
2464     }
2465 
2466     // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2467     // function that is not a constructor declares that function to be const.
2468     if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2469         D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
2470         D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2471         D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2472         !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2473       // Rebuild function type adding a 'const' qualifier.
2474       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2475       EPI.TypeQuals |= DeclSpec::TQ_const;
2476       T = Context.getFunctionType(FnTy->getResultType(),
2477                                   FnTy->arg_type_begin(),
2478                                   FnTy->getNumArgs(), EPI);
2479     }
2480 
2481     // C++11 [dcl.fct]p6 (w/DR1417):
2482     // An attempt to specify a function type with a cv-qualifier-seq or a
2483     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2484     //  - the function type for a non-static member function,
2485     //  - the function type to which a pointer to member refers,
2486     //  - the top-level function type of a function typedef declaration or
2487     //    alias-declaration,
2488     //  - the type-id in the default argument of a type-parameter, or
2489     //  - the type-id of a template-argument for a type-parameter
2490     if (IsQualifiedFunction &&
2491         !(!FreeFunction &&
2492           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2493         !IsTypedefName &&
2494         D.getContext() != Declarator::TemplateTypeArgContext) {
2495       SourceLocation Loc = D.getSourceRange().getBegin();
2496       SourceRange RemovalRange;
2497       unsigned I;
2498       if (D.isFunctionDeclarator(I)) {
2499         SmallVector<SourceLocation, 4> RemovalLocs;
2500         const DeclaratorChunk &Chunk = D.getTypeObject(I);
2501         assert(Chunk.Kind == DeclaratorChunk::Function);
2502         if (Chunk.Fun.hasRefQualifier())
2503           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2504         if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2505           RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2506         if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2507           RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2508         // FIXME: We do not track the location of the __restrict qualifier.
2509         //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2510         //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2511         if (!RemovalLocs.empty()) {
2512           std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2513                     SourceManager::LocBeforeThanCompare(S.getSourceManager()));
2514           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2515           Loc = RemovalLocs.front();
2516         }
2517       }
2518 
2519       S.Diag(Loc, diag::err_invalid_qualified_function_type)
2520         << FreeFunction << D.isFunctionDeclarator() << T
2521         << getFunctionQualifiersAsString(FnTy)
2522         << FixItHint::CreateRemoval(RemovalRange);
2523 
2524       // Strip the cv-qualifiers and ref-qualifiers from the type.
2525       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2526       EPI.TypeQuals = 0;
2527       EPI.RefQualifier = RQ_None;
2528 
2529       T = Context.getFunctionType(FnTy->getResultType(),
2530                                   FnTy->arg_type_begin(),
2531                                   FnTy->getNumArgs(), EPI);
2532     }
2533   }
2534 
2535   // Apply any undistributed attributes from the declarator.
2536   if (!T.isNull())
2537     if (AttributeList *attrs = D.getAttributes())
2538       processTypeAttrs(state, T, false, attrs);
2539 
2540   // Diagnose any ignored type attributes.
2541   if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2542 
2543   // C++0x [dcl.constexpr]p9:
2544   //  A constexpr specifier used in an object declaration declares the object
2545   //  as const.
2546   if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2547     T.addConst();
2548   }
2549 
2550   // If there was an ellipsis in the declarator, the declaration declares a
2551   // parameter pack whose type may be a pack expansion type.
2552   if (D.hasEllipsis() && !T.isNull()) {
2553     // C++0x [dcl.fct]p13:
2554     //   A declarator-id or abstract-declarator containing an ellipsis shall
2555     //   only be used in a parameter-declaration. Such a parameter-declaration
2556     //   is a parameter pack (14.5.3). [...]
2557     switch (D.getContext()) {
2558     case Declarator::PrototypeContext:
2559       // C++0x [dcl.fct]p13:
2560       //   [...] When it is part of a parameter-declaration-clause, the
2561       //   parameter pack is a function parameter pack (14.5.3). The type T
2562       //   of the declarator-id of the function parameter pack shall contain
2563       //   a template parameter pack; each template parameter pack in T is
2564       //   expanded by the function parameter pack.
2565       //
2566       // We represent function parameter packs as function parameters whose
2567       // type is a pack expansion.
2568       if (!T->containsUnexpandedParameterPack()) {
2569         S.Diag(D.getEllipsisLoc(),
2570              diag::err_function_parameter_pack_without_parameter_packs)
2571           << T <<  D.getSourceRange();
2572         D.setEllipsisLoc(SourceLocation());
2573       } else {
2574         T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2575       }
2576       break;
2577 
2578     case Declarator::TemplateParamContext:
2579       // C++0x [temp.param]p15:
2580       //   If a template-parameter is a [...] is a parameter-declaration that
2581       //   declares a parameter pack (8.3.5), then the template-parameter is a
2582       //   template parameter pack (14.5.3).
2583       //
2584       // Note: core issue 778 clarifies that, if there are any unexpanded
2585       // parameter packs in the type of the non-type template parameter, then
2586       // it expands those parameter packs.
2587       if (T->containsUnexpandedParameterPack())
2588         T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2589       else
2590         S.Diag(D.getEllipsisLoc(),
2591                LangOpts.CPlusPlus0x
2592                  ? diag::warn_cxx98_compat_variadic_templates
2593                  : diag::ext_variadic_templates);
2594       break;
2595 
2596     case Declarator::FileContext:
2597     case Declarator::KNRTypeListContext:
2598     case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2599     case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2600     case Declarator::TypeNameContext:
2601     case Declarator::CXXNewContext:
2602     case Declarator::AliasDeclContext:
2603     case Declarator::AliasTemplateContext:
2604     case Declarator::MemberContext:
2605     case Declarator::BlockContext:
2606     case Declarator::ForContext:
2607     case Declarator::ConditionContext:
2608     case Declarator::CXXCatchContext:
2609     case Declarator::ObjCCatchContext:
2610     case Declarator::BlockLiteralContext:
2611     case Declarator::LambdaExprContext:
2612     case Declarator::TemplateTypeArgContext:
2613       // FIXME: We may want to allow parameter packs in block-literal contexts
2614       // in the future.
2615       S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2616       D.setEllipsisLoc(SourceLocation());
2617       break;
2618     }
2619   }
2620 
2621   if (T.isNull())
2622     return Context.getNullTypeSourceInfo();
2623   else if (D.isInvalidType())
2624     return Context.getTrivialTypeSourceInfo(T);
2625 
2626   return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2627 }
2628 
2629 /// GetTypeForDeclarator - Convert the type for the specified
2630 /// declarator to Type instances.
2631 ///
2632 /// The result of this call will never be null, but the associated
2633 /// type may be a null type if there's an unrecoverable error.
2634 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2635   // Determine the type of the declarator. Not all forms of declarator
2636   // have a type.
2637 
2638   TypeProcessingState state(*this, D);
2639 
2640   TypeSourceInfo *ReturnTypeInfo = 0;
2641   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2642   if (T.isNull())
2643     return Context.getNullTypeSourceInfo();
2644 
2645   if (D.isPrototypeContext() && getLangOptions().ObjCAutoRefCount)
2646     inferARCWriteback(state, T);
2647 
2648   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2649 }
2650 
2651 static void transferARCOwnershipToDeclSpec(Sema &S,
2652                                            QualType &declSpecTy,
2653                                            Qualifiers::ObjCLifetime ownership) {
2654   if (declSpecTy->isObjCRetainableType() &&
2655       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2656     Qualifiers qs;
2657     qs.addObjCLifetime(ownership);
2658     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2659   }
2660 }
2661 
2662 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2663                                             Qualifiers::ObjCLifetime ownership,
2664                                             unsigned chunkIndex) {
2665   Sema &S = state.getSema();
2666   Declarator &D = state.getDeclarator();
2667 
2668   // Look for an explicit lifetime attribute.
2669   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2670   for (const AttributeList *attr = chunk.getAttrs(); attr;
2671          attr = attr->getNext())
2672     if (attr->getKind() == AttributeList::AT_objc_ownership)
2673       return;
2674 
2675   const char *attrStr = 0;
2676   switch (ownership) {
2677   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
2678   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2679   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2680   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2681   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2682   }
2683 
2684   // If there wasn't one, add one (with an invalid source location
2685   // so that we don't make an AttributedType for it).
2686   AttributeList *attr = D.getAttributePool()
2687     .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2688             /*scope*/ 0, SourceLocation(),
2689             &S.Context.Idents.get(attrStr), SourceLocation(),
2690             /*args*/ 0, 0,
2691             /*declspec*/ false, /*C++0x*/ false);
2692   spliceAttrIntoList(*attr, chunk.getAttrListRef());
2693 
2694   // TODO: mark whether we did this inference?
2695 }
2696 
2697 /// \brief Used for transfering ownership in casts resulting in l-values.
2698 static void transferARCOwnership(TypeProcessingState &state,
2699                                  QualType &declSpecTy,
2700                                  Qualifiers::ObjCLifetime ownership) {
2701   Sema &S = state.getSema();
2702   Declarator &D = state.getDeclarator();
2703 
2704   int inner = -1;
2705   bool hasIndirection = false;
2706   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2707     DeclaratorChunk &chunk = D.getTypeObject(i);
2708     switch (chunk.Kind) {
2709     case DeclaratorChunk::Paren:
2710       // Ignore parens.
2711       break;
2712 
2713     case DeclaratorChunk::Array:
2714     case DeclaratorChunk::Reference:
2715     case DeclaratorChunk::Pointer:
2716       if (inner != -1)
2717         hasIndirection = true;
2718       inner = i;
2719       break;
2720 
2721     case DeclaratorChunk::BlockPointer:
2722       if (inner != -1)
2723         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2724       return;
2725 
2726     case DeclaratorChunk::Function:
2727     case DeclaratorChunk::MemberPointer:
2728       return;
2729     }
2730   }
2731 
2732   if (inner == -1)
2733     return;
2734 
2735   DeclaratorChunk &chunk = D.getTypeObject(inner);
2736   if (chunk.Kind == DeclaratorChunk::Pointer) {
2737     if (declSpecTy->isObjCRetainableType())
2738       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2739     if (declSpecTy->isObjCObjectType() && hasIndirection)
2740       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2741   } else {
2742     assert(chunk.Kind == DeclaratorChunk::Array ||
2743            chunk.Kind == DeclaratorChunk::Reference);
2744     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2745   }
2746 }
2747 
2748 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2749   TypeProcessingState state(*this, D);
2750 
2751   TypeSourceInfo *ReturnTypeInfo = 0;
2752   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2753   if (declSpecTy.isNull())
2754     return Context.getNullTypeSourceInfo();
2755 
2756   if (getLangOptions().ObjCAutoRefCount) {
2757     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2758     if (ownership != Qualifiers::OCL_None)
2759       transferARCOwnership(state, declSpecTy, ownership);
2760   }
2761 
2762   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2763 }
2764 
2765 /// Map an AttributedType::Kind to an AttributeList::Kind.
2766 static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2767   switch (kind) {
2768   case AttributedType::attr_address_space:
2769     return AttributeList::AT_address_space;
2770   case AttributedType::attr_regparm:
2771     return AttributeList::AT_regparm;
2772   case AttributedType::attr_vector_size:
2773     return AttributeList::AT_vector_size;
2774   case AttributedType::attr_neon_vector_type:
2775     return AttributeList::AT_neon_vector_type;
2776   case AttributedType::attr_neon_polyvector_type:
2777     return AttributeList::AT_neon_polyvector_type;
2778   case AttributedType::attr_objc_gc:
2779     return AttributeList::AT_objc_gc;
2780   case AttributedType::attr_objc_ownership:
2781     return AttributeList::AT_objc_ownership;
2782   case AttributedType::attr_noreturn:
2783     return AttributeList::AT_noreturn;
2784   case AttributedType::attr_cdecl:
2785     return AttributeList::AT_cdecl;
2786   case AttributedType::attr_fastcall:
2787     return AttributeList::AT_fastcall;
2788   case AttributedType::attr_stdcall:
2789     return AttributeList::AT_stdcall;
2790   case AttributedType::attr_thiscall:
2791     return AttributeList::AT_thiscall;
2792   case AttributedType::attr_pascal:
2793     return AttributeList::AT_pascal;
2794   case AttributedType::attr_pcs:
2795     return AttributeList::AT_pcs;
2796   }
2797   llvm_unreachable("unexpected attribute kind!");
2798 }
2799 
2800 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2801                                   const AttributeList *attrs) {
2802   AttributedType::Kind kind = TL.getAttrKind();
2803 
2804   assert(attrs && "no type attributes in the expected location!");
2805   AttributeList::Kind parsedKind = getAttrListKind(kind);
2806   while (attrs->getKind() != parsedKind) {
2807     attrs = attrs->getNext();
2808     assert(attrs && "no matching attribute in expected location!");
2809   }
2810 
2811   TL.setAttrNameLoc(attrs->getLoc());
2812   if (TL.hasAttrExprOperand())
2813     TL.setAttrExprOperand(attrs->getArg(0));
2814   else if (TL.hasAttrEnumOperand())
2815     TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
2816 
2817   // FIXME: preserve this information to here.
2818   if (TL.hasAttrOperand())
2819     TL.setAttrOperandParensRange(SourceRange());
2820 }
2821 
2822 namespace {
2823   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
2824     ASTContext &Context;
2825     const DeclSpec &DS;
2826 
2827   public:
2828     TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
2829       : Context(Context), DS(DS) {}
2830 
2831     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2832       fillAttributedTypeLoc(TL, DS.getAttributes().getList());
2833       Visit(TL.getModifiedLoc());
2834     }
2835     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2836       Visit(TL.getUnqualifiedLoc());
2837     }
2838     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
2839       TL.setNameLoc(DS.getTypeSpecTypeLoc());
2840     }
2841     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
2842       TL.setNameLoc(DS.getTypeSpecTypeLoc());
2843     }
2844     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
2845       // Handle the base type, which might not have been written explicitly.
2846       if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
2847         TL.setHasBaseTypeAsWritten(false);
2848         TL.getBaseLoc().initialize(Context, SourceLocation());
2849       } else {
2850         TL.setHasBaseTypeAsWritten(true);
2851         Visit(TL.getBaseLoc());
2852       }
2853 
2854       // Protocol qualifiers.
2855       if (DS.getProtocolQualifiers()) {
2856         assert(TL.getNumProtocols() > 0);
2857         assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
2858         TL.setLAngleLoc(DS.getProtocolLAngleLoc());
2859         TL.setRAngleLoc(DS.getSourceRange().getEnd());
2860         for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
2861           TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
2862       } else {
2863         assert(TL.getNumProtocols() == 0);
2864         TL.setLAngleLoc(SourceLocation());
2865         TL.setRAngleLoc(SourceLocation());
2866       }
2867     }
2868     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2869       TL.setStarLoc(SourceLocation());
2870       Visit(TL.getPointeeLoc());
2871     }
2872     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
2873       TypeSourceInfo *TInfo = 0;
2874       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2875 
2876       // If we got no declarator info from previous Sema routines,
2877       // just fill with the typespec loc.
2878       if (!TInfo) {
2879         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
2880         return;
2881       }
2882 
2883       TypeLoc OldTL = TInfo->getTypeLoc();
2884       if (TInfo->getType()->getAs<ElaboratedType>()) {
2885         ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
2886         TemplateSpecializationTypeLoc NamedTL =
2887           cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
2888         TL.copy(NamedTL);
2889       }
2890       else
2891         TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
2892     }
2893     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
2894       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
2895       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2896       TL.setParensRange(DS.getTypeofParensRange());
2897     }
2898     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
2899       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
2900       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2901       TL.setParensRange(DS.getTypeofParensRange());
2902       assert(DS.getRepAsType());
2903       TypeSourceInfo *TInfo = 0;
2904       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2905       TL.setUnderlyingTInfo(TInfo);
2906     }
2907     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
2908       // FIXME: This holds only because we only have one unary transform.
2909       assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
2910       TL.setKWLoc(DS.getTypeSpecTypeLoc());
2911       TL.setParensRange(DS.getTypeofParensRange());
2912       assert(DS.getRepAsType());
2913       TypeSourceInfo *TInfo = 0;
2914       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2915       TL.setUnderlyingTInfo(TInfo);
2916     }
2917     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
2918       // By default, use the source location of the type specifier.
2919       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
2920       if (TL.needsExtraLocalData()) {
2921         // Set info for the written builtin specifiers.
2922         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
2923         // Try to have a meaningful source location.
2924         if (TL.getWrittenSignSpec() != TSS_unspecified)
2925           // Sign spec loc overrides the others (e.g., 'unsigned long').
2926           TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
2927         else if (TL.getWrittenWidthSpec() != TSW_unspecified)
2928           // Width spec loc overrides type spec loc (e.g., 'short int').
2929           TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
2930       }
2931     }
2932     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
2933       ElaboratedTypeKeyword Keyword
2934         = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2935       if (DS.getTypeSpecType() == TST_typename) {
2936         TypeSourceInfo *TInfo = 0;
2937         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2938         if (TInfo) {
2939           TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
2940           return;
2941         }
2942       }
2943       TL.setElaboratedKeywordLoc(Keyword != ETK_None
2944                                  ? DS.getTypeSpecTypeLoc()
2945                                  : SourceLocation());
2946       const CXXScopeSpec& SS = DS.getTypeSpecScope();
2947       TL.setQualifierLoc(SS.getWithLocInContext(Context));
2948       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
2949     }
2950     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
2951       assert(DS.getTypeSpecType() == TST_typename);
2952       TypeSourceInfo *TInfo = 0;
2953       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2954       assert(TInfo);
2955       TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
2956     }
2957     void VisitDependentTemplateSpecializationTypeLoc(
2958                                  DependentTemplateSpecializationTypeLoc TL) {
2959       assert(DS.getTypeSpecType() == TST_typename);
2960       TypeSourceInfo *TInfo = 0;
2961       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2962       assert(TInfo);
2963       TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
2964                 TInfo->getTypeLoc()));
2965     }
2966     void VisitTagTypeLoc(TagTypeLoc TL) {
2967       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2968     }
2969     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
2970       TL.setKWLoc(DS.getTypeSpecTypeLoc());
2971       TL.setParensRange(DS.getTypeofParensRange());
2972 
2973       TypeSourceInfo *TInfo = 0;
2974       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2975       TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
2976     }
2977 
2978     void VisitTypeLoc(TypeLoc TL) {
2979       // FIXME: add other typespec types and change this to an assert.
2980       TL.initialize(Context, DS.getTypeSpecTypeLoc());
2981     }
2982   };
2983 
2984   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
2985     ASTContext &Context;
2986     const DeclaratorChunk &Chunk;
2987 
2988   public:
2989     DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
2990       : Context(Context), Chunk(Chunk) {}
2991 
2992     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2993       llvm_unreachable("qualified type locs not expected here!");
2994     }
2995 
2996     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2997       fillAttributedTypeLoc(TL, Chunk.getAttrs());
2998     }
2999     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3000       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3001       TL.setCaretLoc(Chunk.Loc);
3002     }
3003     void VisitPointerTypeLoc(PointerTypeLoc TL) {
3004       assert(Chunk.Kind == DeclaratorChunk::Pointer);
3005       TL.setStarLoc(Chunk.Loc);
3006     }
3007     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3008       assert(Chunk.Kind == DeclaratorChunk::Pointer);
3009       TL.setStarLoc(Chunk.Loc);
3010     }
3011     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3012       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3013       const CXXScopeSpec& SS = Chunk.Mem.Scope();
3014       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3015 
3016       const Type* ClsTy = TL.getClass();
3017       QualType ClsQT = QualType(ClsTy, 0);
3018       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3019       // Now copy source location info into the type loc component.
3020       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3021       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3022       case NestedNameSpecifier::Identifier:
3023         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3024         {
3025           DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3026           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3027           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3028           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3029         }
3030         break;
3031 
3032       case NestedNameSpecifier::TypeSpec:
3033       case NestedNameSpecifier::TypeSpecWithTemplate:
3034         if (isa<ElaboratedType>(ClsTy)) {
3035           ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3036           ETLoc.setElaboratedKeywordLoc(SourceLocation());
3037           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3038           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3039           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3040         } else {
3041           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3042         }
3043         break;
3044 
3045       case NestedNameSpecifier::Namespace:
3046       case NestedNameSpecifier::NamespaceAlias:
3047       case NestedNameSpecifier::Global:
3048         llvm_unreachable("Nested-name-specifier must name a type");
3049       }
3050 
3051       // Finally fill in MemberPointerLocInfo fields.
3052       TL.setStarLoc(Chunk.Loc);
3053       TL.setClassTInfo(ClsTInfo);
3054     }
3055     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3056       assert(Chunk.Kind == DeclaratorChunk::Reference);
3057       // 'Amp' is misleading: this might have been originally
3058       /// spelled with AmpAmp.
3059       TL.setAmpLoc(Chunk.Loc);
3060     }
3061     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3062       assert(Chunk.Kind == DeclaratorChunk::Reference);
3063       assert(!Chunk.Ref.LValueRef);
3064       TL.setAmpAmpLoc(Chunk.Loc);
3065     }
3066     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3067       assert(Chunk.Kind == DeclaratorChunk::Array);
3068       TL.setLBracketLoc(Chunk.Loc);
3069       TL.setRBracketLoc(Chunk.EndLoc);
3070       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3071     }
3072     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3073       assert(Chunk.Kind == DeclaratorChunk::Function);
3074       TL.setLocalRangeBegin(Chunk.Loc);
3075       TL.setLocalRangeEnd(Chunk.EndLoc);
3076       TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
3077 
3078       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3079       for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3080         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3081         TL.setArg(tpi++, Param);
3082       }
3083       // FIXME: exception specs
3084     }
3085     void VisitParenTypeLoc(ParenTypeLoc TL) {
3086       assert(Chunk.Kind == DeclaratorChunk::Paren);
3087       TL.setLParenLoc(Chunk.Loc);
3088       TL.setRParenLoc(Chunk.EndLoc);
3089     }
3090 
3091     void VisitTypeLoc(TypeLoc TL) {
3092       llvm_unreachable("unsupported TypeLoc kind in declarator!");
3093     }
3094   };
3095 }
3096 
3097 /// \brief Create and instantiate a TypeSourceInfo with type source information.
3098 ///
3099 /// \param T QualType referring to the type as written in source code.
3100 ///
3101 /// \param ReturnTypeInfo For declarators whose return type does not show
3102 /// up in the normal place in the declaration specifiers (such as a C++
3103 /// conversion function), this pointer will refer to a type source information
3104 /// for that return type.
3105 TypeSourceInfo *
3106 Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3107                                      TypeSourceInfo *ReturnTypeInfo) {
3108   TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3109   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3110 
3111   // Handle parameter packs whose type is a pack expansion.
3112   if (isa<PackExpansionType>(T)) {
3113     cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3114     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3115   }
3116 
3117   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3118     while (isa<AttributedTypeLoc>(CurrTL)) {
3119       AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3120       fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3121       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3122     }
3123 
3124     DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3125     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3126   }
3127 
3128   // If we have different source information for the return type, use
3129   // that.  This really only applies to C++ conversion functions.
3130   if (ReturnTypeInfo) {
3131     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3132     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3133     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3134   } else {
3135     TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3136   }
3137 
3138   return TInfo;
3139 }
3140 
3141 /// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3142 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3143   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3144   // and Sema during declaration parsing. Try deallocating/caching them when
3145   // it's appropriate, instead of allocating them and keeping them around.
3146   LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3147                                                        TypeAlignment);
3148   new (LocT) LocInfoType(T, TInfo);
3149   assert(LocT->getTypeClass() != T->getTypeClass() &&
3150          "LocInfoType's TypeClass conflicts with an existing Type class");
3151   return ParsedType::make(QualType(LocT, 0));
3152 }
3153 
3154 void LocInfoType::getAsStringInternal(std::string &Str,
3155                                       const PrintingPolicy &Policy) const {
3156   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3157          " was used directly instead of getting the QualType through"
3158          " GetTypeFromParser");
3159 }
3160 
3161 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3162   // C99 6.7.6: Type names have no identifier.  This is already validated by
3163   // the parser.
3164   assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3165 
3166   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3167   QualType T = TInfo->getType();
3168   if (D.isInvalidType())
3169     return true;
3170 
3171   // Make sure there are no unused decl attributes on the declarator.
3172   // We don't want to do this for ObjC parameters because we're going
3173   // to apply them to the actual parameter declaration.
3174   if (D.getContext() != Declarator::ObjCParameterContext)
3175     checkUnusedDeclAttributes(D);
3176 
3177   if (getLangOptions().CPlusPlus) {
3178     // Check that there are no default arguments (C++ only).
3179     CheckExtraCXXDefaultArguments(D);
3180   }
3181 
3182   return CreateParsedType(T, TInfo);
3183 }
3184 
3185 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3186   QualType T = Context.getObjCInstanceType();
3187   TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3188   return CreateParsedType(T, TInfo);
3189 }
3190 
3191 
3192 //===----------------------------------------------------------------------===//
3193 // Type Attribute Processing
3194 //===----------------------------------------------------------------------===//
3195 
3196 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3197 /// specified type.  The attribute contains 1 argument, the id of the address
3198 /// space for the type.
3199 static void HandleAddressSpaceTypeAttribute(QualType &Type,
3200                                             const AttributeList &Attr, Sema &S){
3201 
3202   // If this type is already address space qualified, reject it.
3203   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3204   // qualifiers for two or more different address spaces."
3205   if (Type.getAddressSpace()) {
3206     S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3207     Attr.setInvalid();
3208     return;
3209   }
3210 
3211   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3212   // qualified by an address-space qualifier."
3213   if (Type->isFunctionType()) {
3214     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3215     Attr.setInvalid();
3216     return;
3217   }
3218 
3219   // Check the attribute arguments.
3220   if (Attr.getNumArgs() != 1) {
3221     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3222     Attr.setInvalid();
3223     return;
3224   }
3225   Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3226   llvm::APSInt addrSpace(32);
3227   if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3228       !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3229     S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3230       << ASArgExpr->getSourceRange();
3231     Attr.setInvalid();
3232     return;
3233   }
3234 
3235   // Bounds checking.
3236   if (addrSpace.isSigned()) {
3237     if (addrSpace.isNegative()) {
3238       S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3239         << ASArgExpr->getSourceRange();
3240       Attr.setInvalid();
3241       return;
3242     }
3243     addrSpace.setIsSigned(false);
3244   }
3245   llvm::APSInt max(addrSpace.getBitWidth());
3246   max = Qualifiers::MaxAddressSpace;
3247   if (addrSpace > max) {
3248     S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3249       << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3250     Attr.setInvalid();
3251     return;
3252   }
3253 
3254   unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3255   Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3256 }
3257 
3258 /// Does this type have a "direct" ownership qualifier?  That is,
3259 /// is it written like "__strong id", as opposed to something like
3260 /// "typeof(foo)", where that happens to be strong?
3261 static bool hasDirectOwnershipQualifier(QualType type) {
3262   // Fast path: no qualifier at all.
3263   assert(type.getQualifiers().hasObjCLifetime());
3264 
3265   while (true) {
3266     // __strong id
3267     if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3268       if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3269         return true;
3270 
3271       type = attr->getModifiedType();
3272 
3273     // X *__strong (...)
3274     } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3275       type = paren->getInnerType();
3276 
3277     // That's it for things we want to complain about.  In particular,
3278     // we do not want to look through typedefs, typeof(expr),
3279     // typeof(type), or any other way that the type is somehow
3280     // abstracted.
3281     } else {
3282 
3283       return false;
3284     }
3285   }
3286 }
3287 
3288 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
3289 /// attribute on the specified type.
3290 ///
3291 /// Returns 'true' if the attribute was handled.
3292 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3293                                        AttributeList &attr,
3294                                        QualType &type) {
3295   bool NonObjCPointer = false;
3296 
3297   if (!type->isDependentType()) {
3298     if (const PointerType *ptr = type->getAs<PointerType>()) {
3299       QualType pointee = ptr->getPointeeType();
3300       if (pointee->isObjCRetainableType() || pointee->isPointerType())
3301         return false;
3302       // It is important not to lose the source info that there was an attribute
3303       // applied to non-objc pointer. We will create an attributed type but
3304       // its type will be the same as the original type.
3305       NonObjCPointer = true;
3306     } else if (!type->isObjCRetainableType()) {
3307       return false;
3308     }
3309   }
3310 
3311   Sema &S = state.getSema();
3312   SourceLocation AttrLoc = attr.getLoc();
3313   if (AttrLoc.isMacroID())
3314     AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3315 
3316   if (!attr.getParameterName()) {
3317     S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3318       << "objc_ownership" << 1;
3319     attr.setInvalid();
3320     return true;
3321   }
3322 
3323   // Consume lifetime attributes without further comment outside of
3324   // ARC mode.
3325   if (!S.getLangOptions().ObjCAutoRefCount)
3326     return true;
3327 
3328   Qualifiers::ObjCLifetime lifetime;
3329   if (attr.getParameterName()->isStr("none"))
3330     lifetime = Qualifiers::OCL_ExplicitNone;
3331   else if (attr.getParameterName()->isStr("strong"))
3332     lifetime = Qualifiers::OCL_Strong;
3333   else if (attr.getParameterName()->isStr("weak"))
3334     lifetime = Qualifiers::OCL_Weak;
3335   else if (attr.getParameterName()->isStr("autoreleasing"))
3336     lifetime = Qualifiers::OCL_Autoreleasing;
3337   else {
3338     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3339       << "objc_ownership" << attr.getParameterName();
3340     attr.setInvalid();
3341     return true;
3342   }
3343 
3344   SplitQualType underlyingType = type.split();
3345 
3346   // Check for redundant/conflicting ownership qualifiers.
3347   if (Qualifiers::ObjCLifetime previousLifetime
3348         = type.getQualifiers().getObjCLifetime()) {
3349     // If it's written directly, that's an error.
3350     if (hasDirectOwnershipQualifier(type)) {
3351       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3352         << type;
3353       return true;
3354     }
3355 
3356     // Otherwise, if the qualifiers actually conflict, pull sugar off
3357     // until we reach a type that is directly qualified.
3358     if (previousLifetime != lifetime) {
3359       // This should always terminate: the canonical type is
3360       // qualified, so some bit of sugar must be hiding it.
3361       while (!underlyingType.Quals.hasObjCLifetime()) {
3362         underlyingType = underlyingType.getSingleStepDesugaredType();
3363       }
3364       underlyingType.Quals.removeObjCLifetime();
3365     }
3366   }
3367 
3368   underlyingType.Quals.addObjCLifetime(lifetime);
3369 
3370   if (NonObjCPointer) {
3371     StringRef name = attr.getName()->getName();
3372     switch (lifetime) {
3373     case Qualifiers::OCL_None:
3374     case Qualifiers::OCL_ExplicitNone:
3375       break;
3376     case Qualifiers::OCL_Strong: name = "__strong"; break;
3377     case Qualifiers::OCL_Weak: name = "__weak"; break;
3378     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3379     }
3380     S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3381       << name << type;
3382   }
3383 
3384   QualType origType = type;
3385   if (!NonObjCPointer)
3386     type = S.Context.getQualifiedType(underlyingType);
3387 
3388   // If we have a valid source location for the attribute, use an
3389   // AttributedType instead.
3390   if (AttrLoc.isValid())
3391     type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3392                                        origType, type);
3393 
3394   // Forbid __weak if the runtime doesn't support it.
3395   if (lifetime == Qualifiers::OCL_Weak &&
3396       !S.getLangOptions().ObjCRuntimeHasWeak && !NonObjCPointer) {
3397 
3398     // Actually, delay this until we know what we're parsing.
3399     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3400       S.DelayedDiagnostics.add(
3401           sema::DelayedDiagnostic::makeForbiddenType(
3402               S.getSourceManager().getExpansionLoc(AttrLoc),
3403               diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3404     } else {
3405       S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3406     }
3407 
3408     attr.setInvalid();
3409     return true;
3410   }
3411 
3412   // Forbid __weak for class objects marked as
3413   // objc_arc_weak_reference_unavailable
3414   if (lifetime == Qualifiers::OCL_Weak) {
3415     QualType T = type;
3416     while (const PointerType *ptr = T->getAs<PointerType>())
3417       T = ptr->getPointeeType();
3418     if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3419       ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
3420       if (Class->isArcWeakrefUnavailable()) {
3421           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3422           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3423                  diag::note_class_declared);
3424       }
3425     }
3426   }
3427 
3428   return true;
3429 }
3430 
3431 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3432 /// attribute on the specified type.  Returns true to indicate that
3433 /// the attribute was handled, false to indicate that the type does
3434 /// not permit the attribute.
3435 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3436                                  AttributeList &attr,
3437                                  QualType &type) {
3438   Sema &S = state.getSema();
3439 
3440   // Delay if this isn't some kind of pointer.
3441   if (!type->isPointerType() &&
3442       !type->isObjCObjectPointerType() &&
3443       !type->isBlockPointerType())
3444     return false;
3445 
3446   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3447     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3448     attr.setInvalid();
3449     return true;
3450   }
3451 
3452   // Check the attribute arguments.
3453   if (!attr.getParameterName()) {
3454     S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3455       << "objc_gc" << 1;
3456     attr.setInvalid();
3457     return true;
3458   }
3459   Qualifiers::GC GCAttr;
3460   if (attr.getNumArgs() != 0) {
3461     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3462     attr.setInvalid();
3463     return true;
3464   }
3465   if (attr.getParameterName()->isStr("weak"))
3466     GCAttr = Qualifiers::Weak;
3467   else if (attr.getParameterName()->isStr("strong"))
3468     GCAttr = Qualifiers::Strong;
3469   else {
3470     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3471       << "objc_gc" << attr.getParameterName();
3472     attr.setInvalid();
3473     return true;
3474   }
3475 
3476   QualType origType = type;
3477   type = S.Context.getObjCGCQualType(origType, GCAttr);
3478 
3479   // Make an attributed type to preserve the source information.
3480   if (attr.getLoc().isValid())
3481     type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3482                                        origType, type);
3483 
3484   return true;
3485 }
3486 
3487 namespace {
3488   /// A helper class to unwrap a type down to a function for the
3489   /// purposes of applying attributes there.
3490   ///
3491   /// Use:
3492   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3493   ///   if (unwrapped.isFunctionType()) {
3494   ///     const FunctionType *fn = unwrapped.get();
3495   ///     // change fn somehow
3496   ///     T = unwrapped.wrap(fn);
3497   ///   }
3498   struct FunctionTypeUnwrapper {
3499     enum WrapKind {
3500       Desugar,
3501       Parens,
3502       Pointer,
3503       BlockPointer,
3504       Reference,
3505       MemberPointer
3506     };
3507 
3508     QualType Original;
3509     const FunctionType *Fn;
3510     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3511 
3512     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3513       while (true) {
3514         const Type *Ty = T.getTypePtr();
3515         if (isa<FunctionType>(Ty)) {
3516           Fn = cast<FunctionType>(Ty);
3517           return;
3518         } else if (isa<ParenType>(Ty)) {
3519           T = cast<ParenType>(Ty)->getInnerType();
3520           Stack.push_back(Parens);
3521         } else if (isa<PointerType>(Ty)) {
3522           T = cast<PointerType>(Ty)->getPointeeType();
3523           Stack.push_back(Pointer);
3524         } else if (isa<BlockPointerType>(Ty)) {
3525           T = cast<BlockPointerType>(Ty)->getPointeeType();
3526           Stack.push_back(BlockPointer);
3527         } else if (isa<MemberPointerType>(Ty)) {
3528           T = cast<MemberPointerType>(Ty)->getPointeeType();
3529           Stack.push_back(MemberPointer);
3530         } else if (isa<ReferenceType>(Ty)) {
3531           T = cast<ReferenceType>(Ty)->getPointeeType();
3532           Stack.push_back(Reference);
3533         } else {
3534           const Type *DTy = Ty->getUnqualifiedDesugaredType();
3535           if (Ty == DTy) {
3536             Fn = 0;
3537             return;
3538           }
3539 
3540           T = QualType(DTy, 0);
3541           Stack.push_back(Desugar);
3542         }
3543       }
3544     }
3545 
3546     bool isFunctionType() const { return (Fn != 0); }
3547     const FunctionType *get() const { return Fn; }
3548 
3549     QualType wrap(Sema &S, const FunctionType *New) {
3550       // If T wasn't modified from the unwrapped type, do nothing.
3551       if (New == get()) return Original;
3552 
3553       Fn = New;
3554       return wrap(S.Context, Original, 0);
3555     }
3556 
3557   private:
3558     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3559       if (I == Stack.size())
3560         return C.getQualifiedType(Fn, Old.getQualifiers());
3561 
3562       // Build up the inner type, applying the qualifiers from the old
3563       // type to the new type.
3564       SplitQualType SplitOld = Old.split();
3565 
3566       // As a special case, tail-recurse if there are no qualifiers.
3567       if (SplitOld.Quals.empty())
3568         return wrap(C, SplitOld.Ty, I);
3569       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
3570     }
3571 
3572     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3573       if (I == Stack.size()) return QualType(Fn, 0);
3574 
3575       switch (static_cast<WrapKind>(Stack[I++])) {
3576       case Desugar:
3577         // This is the point at which we potentially lose source
3578         // information.
3579         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3580 
3581       case Parens: {
3582         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3583         return C.getParenType(New);
3584       }
3585 
3586       case Pointer: {
3587         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3588         return C.getPointerType(New);
3589       }
3590 
3591       case BlockPointer: {
3592         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3593         return C.getBlockPointerType(New);
3594       }
3595 
3596       case MemberPointer: {
3597         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3598         QualType New = wrap(C, OldMPT->getPointeeType(), I);
3599         return C.getMemberPointerType(New, OldMPT->getClass());
3600       }
3601 
3602       case Reference: {
3603         const ReferenceType *OldRef = cast<ReferenceType>(Old);
3604         QualType New = wrap(C, OldRef->getPointeeType(), I);
3605         if (isa<LValueReferenceType>(OldRef))
3606           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3607         else
3608           return C.getRValueReferenceType(New);
3609       }
3610       }
3611 
3612       llvm_unreachable("unknown wrapping kind");
3613     }
3614   };
3615 }
3616 
3617 /// Process an individual function attribute.  Returns true to
3618 /// indicate that the attribute was handled, false if it wasn't.
3619 static bool handleFunctionTypeAttr(TypeProcessingState &state,
3620                                    AttributeList &attr,
3621                                    QualType &type) {
3622   Sema &S = state.getSema();
3623 
3624   FunctionTypeUnwrapper unwrapped(S, type);
3625 
3626   if (attr.getKind() == AttributeList::AT_noreturn) {
3627     if (S.CheckNoReturnAttr(attr))
3628       return true;
3629 
3630     // Delay if this is not a function type.
3631     if (!unwrapped.isFunctionType())
3632       return false;
3633 
3634     // Otherwise we can process right away.
3635     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3636     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3637     return true;
3638   }
3639 
3640   // ns_returns_retained is not always a type attribute, but if we got
3641   // here, we're treating it as one right now.
3642   if (attr.getKind() == AttributeList::AT_ns_returns_retained) {
3643     assert(S.getLangOptions().ObjCAutoRefCount &&
3644            "ns_returns_retained treated as type attribute in non-ARC");
3645     if (attr.getNumArgs()) return true;
3646 
3647     // Delay if this is not a function type.
3648     if (!unwrapped.isFunctionType())
3649       return false;
3650 
3651     FunctionType::ExtInfo EI
3652       = unwrapped.get()->getExtInfo().withProducesResult(true);
3653     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3654     return true;
3655   }
3656 
3657   if (attr.getKind() == AttributeList::AT_regparm) {
3658     unsigned value;
3659     if (S.CheckRegparmAttr(attr, value))
3660       return true;
3661 
3662     // Delay if this is not a function type.
3663     if (!unwrapped.isFunctionType())
3664       return false;
3665 
3666     // Diagnose regparm with fastcall.
3667     const FunctionType *fn = unwrapped.get();
3668     CallingConv CC = fn->getCallConv();
3669     if (CC == CC_X86FastCall) {
3670       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3671         << FunctionType::getNameForCallConv(CC)
3672         << "regparm";
3673       attr.setInvalid();
3674       return true;
3675     }
3676 
3677     FunctionType::ExtInfo EI =
3678       unwrapped.get()->getExtInfo().withRegParm(value);
3679     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3680     return true;
3681   }
3682 
3683   // Otherwise, a calling convention.
3684   CallingConv CC;
3685   if (S.CheckCallingConvAttr(attr, CC))
3686     return true;
3687 
3688   // Delay if the type didn't work out to a function.
3689   if (!unwrapped.isFunctionType()) return false;
3690 
3691   const FunctionType *fn = unwrapped.get();
3692   CallingConv CCOld = fn->getCallConv();
3693   if (S.Context.getCanonicalCallConv(CC) ==
3694       S.Context.getCanonicalCallConv(CCOld)) {
3695     FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3696     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3697     return true;
3698   }
3699 
3700   if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3701     // Should we diagnose reapplications of the same convention?
3702     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3703       << FunctionType::getNameForCallConv(CC)
3704       << FunctionType::getNameForCallConv(CCOld);
3705     attr.setInvalid();
3706     return true;
3707   }
3708 
3709   // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3710   if (CC == CC_X86FastCall) {
3711     if (isa<FunctionNoProtoType>(fn)) {
3712       S.Diag(attr.getLoc(), diag::err_cconv_knr)
3713         << FunctionType::getNameForCallConv(CC);
3714       attr.setInvalid();
3715       return true;
3716     }
3717 
3718     const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3719     if (FnP->isVariadic()) {
3720       S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3721         << FunctionType::getNameForCallConv(CC);
3722       attr.setInvalid();
3723       return true;
3724     }
3725 
3726     // Also diagnose fastcall with regparm.
3727     if (fn->getHasRegParm()) {
3728       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3729         << "regparm"
3730         << FunctionType::getNameForCallConv(CC);
3731       attr.setInvalid();
3732       return true;
3733     }
3734   }
3735 
3736   FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3737   type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3738   return true;
3739 }
3740 
3741 /// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3742 static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3743                                              const AttributeList &Attr,
3744                                              Sema &S) {
3745   // Check the attribute arguments.
3746   if (Attr.getNumArgs() != 1) {
3747     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3748     Attr.setInvalid();
3749     return;
3750   }
3751   Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3752   llvm::APSInt arg(32);
3753   if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3754       !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3755     S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3756       << "opencl_image_access" << sizeExpr->getSourceRange();
3757     Attr.setInvalid();
3758     return;
3759   }
3760   unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3761   switch (iarg) {
3762   case CLIA_read_only:
3763   case CLIA_write_only:
3764   case CLIA_read_write:
3765     // Implemented in a separate patch
3766     break;
3767   default:
3768     // Implemented in a separate patch
3769     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3770       << sizeExpr->getSourceRange();
3771     Attr.setInvalid();
3772     break;
3773   }
3774 }
3775 
3776 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
3777 /// and float scalars, although arrays, pointers, and function return values are
3778 /// allowed in conjunction with this construct. Aggregates with this attribute
3779 /// are invalid, even if they are of the same size as a corresponding scalar.
3780 /// The raw attribute should contain precisely 1 argument, the vector size for
3781 /// the variable, measured in bytes. If curType and rawAttr are well formed,
3782 /// this routine will return a new vector type.
3783 static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3784                                  Sema &S) {
3785   // Check the attribute arguments.
3786   if (Attr.getNumArgs() != 1) {
3787     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3788     Attr.setInvalid();
3789     return;
3790   }
3791   Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3792   llvm::APSInt vecSize(32);
3793   if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3794       !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
3795     S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3796       << "vector_size" << sizeExpr->getSourceRange();
3797     Attr.setInvalid();
3798     return;
3799   }
3800   // the base type must be integer or float, and can't already be a vector.
3801   if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
3802     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
3803     Attr.setInvalid();
3804     return;
3805   }
3806   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3807   // vecSize is specified in bytes - convert to bits.
3808   unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
3809 
3810   // the vector size needs to be an integral multiple of the type size.
3811   if (vectorSize % typeSize) {
3812     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3813       << sizeExpr->getSourceRange();
3814     Attr.setInvalid();
3815     return;
3816   }
3817   if (vectorSize == 0) {
3818     S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
3819       << sizeExpr->getSourceRange();
3820     Attr.setInvalid();
3821     return;
3822   }
3823 
3824   // Success! Instantiate the vector type, the number of elements is > 0, and
3825   // not required to be a power of 2, unlike GCC.
3826   CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
3827                                     VectorType::GenericVector);
3828 }
3829 
3830 /// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
3831 /// a type.
3832 static void HandleExtVectorTypeAttr(QualType &CurType,
3833                                     const AttributeList &Attr,
3834                                     Sema &S) {
3835   Expr *sizeExpr;
3836 
3837   // Special case where the argument is a template id.
3838   if (Attr.getParameterName()) {
3839     CXXScopeSpec SS;
3840     SourceLocation TemplateKWLoc;
3841     UnqualifiedId id;
3842     id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
3843 
3844     ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
3845                                           id, false, false);
3846     if (Size.isInvalid())
3847       return;
3848 
3849     sizeExpr = Size.get();
3850   } else {
3851     // check the attribute arguments.
3852     if (Attr.getNumArgs() != 1) {
3853       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3854       return;
3855     }
3856     sizeExpr = Attr.getArg(0);
3857   }
3858 
3859   // Create the vector type.
3860   QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
3861   if (!T.isNull())
3862     CurType = T;
3863 }
3864 
3865 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
3866 /// "neon_polyvector_type" attributes are used to create vector types that
3867 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
3868 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
3869 /// the argument to these Neon attributes is the number of vector elements,
3870 /// not the vector size in bytes.  The vector width and element type must
3871 /// match one of the standard Neon vector types.
3872 static void HandleNeonVectorTypeAttr(QualType& CurType,
3873                                      const AttributeList &Attr, Sema &S,
3874                                      VectorType::VectorKind VecKind,
3875                                      const char *AttrName) {
3876   // Check the attribute arguments.
3877   if (Attr.getNumArgs() != 1) {
3878     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3879     Attr.setInvalid();
3880     return;
3881   }
3882   // The number of elements must be an ICE.
3883   Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
3884   llvm::APSInt numEltsInt(32);
3885   if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
3886       !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
3887     S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3888       << AttrName << numEltsExpr->getSourceRange();
3889     Attr.setInvalid();
3890     return;
3891   }
3892   // Only certain element types are supported for Neon vectors.
3893   const BuiltinType* BTy = CurType->getAs<BuiltinType>();
3894   if (!BTy ||
3895       (VecKind == VectorType::NeonPolyVector &&
3896        BTy->getKind() != BuiltinType::SChar &&
3897        BTy->getKind() != BuiltinType::Short) ||
3898       (BTy->getKind() != BuiltinType::SChar &&
3899        BTy->getKind() != BuiltinType::UChar &&
3900        BTy->getKind() != BuiltinType::Short &&
3901        BTy->getKind() != BuiltinType::UShort &&
3902        BTy->getKind() != BuiltinType::Int &&
3903        BTy->getKind() != BuiltinType::UInt &&
3904        BTy->getKind() != BuiltinType::LongLong &&
3905        BTy->getKind() != BuiltinType::ULongLong &&
3906        BTy->getKind() != BuiltinType::Float)) {
3907     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
3908     Attr.setInvalid();
3909     return;
3910   }
3911   // The total size of the vector must be 64 or 128 bits.
3912   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3913   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
3914   unsigned vecSize = typeSize * numElts;
3915   if (vecSize != 64 && vecSize != 128) {
3916     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
3917     Attr.setInvalid();
3918     return;
3919   }
3920 
3921   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
3922 }
3923 
3924 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
3925                              bool isDeclSpec, AttributeList *attrs) {
3926   // Scan through and apply attributes to this type where it makes sense.  Some
3927   // attributes (such as __address_space__, __vector_size__, etc) apply to the
3928   // type, but others can be present in the type specifiers even though they
3929   // apply to the decl.  Here we apply type attributes and ignore the rest.
3930 
3931   AttributeList *next;
3932   do {
3933     AttributeList &attr = *attrs;
3934     next = attr.getNext();
3935 
3936     // Skip attributes that were marked to be invalid.
3937     if (attr.isInvalid())
3938       continue;
3939 
3940     // If this is an attribute we can handle, do so now,
3941     // otherwise, add it to the FnAttrs list for rechaining.
3942     switch (attr.getKind()) {
3943     default: break;
3944 
3945     case AttributeList::AT_may_alias:
3946       // FIXME: This attribute needs to actually be handled, but if we ignore
3947       // it it breaks large amounts of Linux software.
3948       attr.setUsedAsTypeAttr();
3949       break;
3950     case AttributeList::AT_address_space:
3951       HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
3952       attr.setUsedAsTypeAttr();
3953       break;
3954     OBJC_POINTER_TYPE_ATTRS_CASELIST:
3955       if (!handleObjCPointerTypeAttr(state, attr, type))
3956         distributeObjCPointerTypeAttr(state, attr, type);
3957       attr.setUsedAsTypeAttr();
3958       break;
3959     case AttributeList::AT_vector_size:
3960       HandleVectorSizeAttr(type, attr, state.getSema());
3961       attr.setUsedAsTypeAttr();
3962       break;
3963     case AttributeList::AT_ext_vector_type:
3964       if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
3965             != DeclSpec::SCS_typedef)
3966         HandleExtVectorTypeAttr(type, attr, state.getSema());
3967       attr.setUsedAsTypeAttr();
3968       break;
3969     case AttributeList::AT_neon_vector_type:
3970       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3971                                VectorType::NeonVector, "neon_vector_type");
3972       attr.setUsedAsTypeAttr();
3973       break;
3974     case AttributeList::AT_neon_polyvector_type:
3975       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3976                                VectorType::NeonPolyVector,
3977                                "neon_polyvector_type");
3978       attr.setUsedAsTypeAttr();
3979       break;
3980     case AttributeList::AT_opencl_image_access:
3981       HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
3982       attr.setUsedAsTypeAttr();
3983       break;
3984 
3985     case AttributeList::AT_ns_returns_retained:
3986       if (!state.getSema().getLangOptions().ObjCAutoRefCount)
3987 	break;
3988       // fallthrough into the function attrs
3989 
3990     FUNCTION_TYPE_ATTRS_CASELIST:
3991       attr.setUsedAsTypeAttr();
3992 
3993       // Never process function type attributes as part of the
3994       // declaration-specifiers.
3995       if (isDeclSpec)
3996         distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
3997 
3998       // Otherwise, handle the possible delays.
3999       else if (!handleFunctionTypeAttr(state, attr, type))
4000         distributeFunctionTypeAttr(state, attr, type);
4001       break;
4002     }
4003   } while ((attrs = next));
4004 }
4005 
4006 /// \brief Ensure that the type of the given expression is complete.
4007 ///
4008 /// This routine checks whether the expression \p E has a complete type. If the
4009 /// expression refers to an instantiable construct, that instantiation is
4010 /// performed as needed to complete its type. Furthermore
4011 /// Sema::RequireCompleteType is called for the expression's type (or in the
4012 /// case of a reference type, the referred-to type).
4013 ///
4014 /// \param E The expression whose type is required to be complete.
4015 /// \param PD The partial diagnostic that will be printed out if the type cannot
4016 /// be completed.
4017 ///
4018 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4019 /// otherwise.
4020 bool Sema::RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD,
4021                                    std::pair<SourceLocation,
4022                                              PartialDiagnostic> Note) {
4023   QualType T = E->getType();
4024 
4025   // Fast path the case where the type is already complete.
4026   if (!T->isIncompleteType())
4027     return false;
4028 
4029   // Incomplete array types may be completed by the initializer attached to
4030   // their definitions. For static data members of class templates we need to
4031   // instantiate the definition to get this initializer and complete the type.
4032   if (T->isIncompleteArrayType()) {
4033     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4034       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4035         if (Var->isStaticDataMember() &&
4036             Var->getInstantiatedFromStaticDataMember()) {
4037 
4038           MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4039           assert(MSInfo && "Missing member specialization information?");
4040           if (MSInfo->getTemplateSpecializationKind()
4041                 != TSK_ExplicitSpecialization) {
4042             // If we don't already have a point of instantiation, this is it.
4043             if (MSInfo->getPointOfInstantiation().isInvalid()) {
4044               MSInfo->setPointOfInstantiation(E->getLocStart());
4045 
4046               // This is a modification of an existing AST node. Notify
4047               // listeners.
4048               if (ASTMutationListener *L = getASTMutationListener())
4049                 L->StaticDataMemberInstantiated(Var);
4050             }
4051 
4052             InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4053 
4054             // Update the type to the newly instantiated definition's type both
4055             // here and within the expression.
4056             if (VarDecl *Def = Var->getDefinition()) {
4057               DRE->setDecl(Def);
4058               T = Def->getType();
4059               DRE->setType(T);
4060               E->setType(T);
4061             }
4062           }
4063 
4064           // We still go on to try to complete the type independently, as it
4065           // may also require instantiations or diagnostics if it remains
4066           // incomplete.
4067         }
4068       }
4069     }
4070   }
4071 
4072   // FIXME: Are there other cases which require instantiating something other
4073   // than the type to complete the type of an expression?
4074 
4075   // Look through reference types and complete the referred type.
4076   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4077     T = Ref->getPointeeType();
4078 
4079   return RequireCompleteType(E->getExprLoc(), T, PD, Note);
4080 }
4081 
4082 /// @brief Ensure that the type T is a complete type.
4083 ///
4084 /// This routine checks whether the type @p T is complete in any
4085 /// context where a complete type is required. If @p T is a complete
4086 /// type, returns false. If @p T is a class template specialization,
4087 /// this routine then attempts to perform class template
4088 /// instantiation. If instantiation fails, or if @p T is incomplete
4089 /// and cannot be completed, issues the diagnostic @p diag (giving it
4090 /// the type @p T) and returns true.
4091 ///
4092 /// @param Loc  The location in the source that the incomplete type
4093 /// diagnostic should refer to.
4094 ///
4095 /// @param T  The type that this routine is examining for completeness.
4096 ///
4097 /// @param PD The partial diagnostic that will be printed out if T is not a
4098 /// complete type.
4099 ///
4100 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4101 /// @c false otherwise.
4102 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4103                                const PartialDiagnostic &PD,
4104                                std::pair<SourceLocation,
4105                                          PartialDiagnostic> Note) {
4106   unsigned diag = PD.getDiagID();
4107 
4108   // FIXME: Add this assertion to make sure we always get instantiation points.
4109   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4110   // FIXME: Add this assertion to help us flush out problems with
4111   // checking for dependent types and type-dependent expressions.
4112   //
4113   //  assert(!T->isDependentType() &&
4114   //         "Can't ask whether a dependent type is complete");
4115 
4116   // If we have a complete type, we're done.
4117   NamedDecl *Def = 0;
4118   if (!T->isIncompleteType(&Def)) {
4119     // If we know about the definition but it is not visible, complain.
4120     if (diag != 0 && Def && !LookupResult::isVisible(Def)) {
4121       // Suppress this error outside of a SFINAE context if we've already
4122       // emitted the error once for this type. There's no usefulness in
4123       // repeating the diagnostic.
4124       // FIXME: Add a Fix-It that imports the corresponding module or includes
4125       // the header.
4126       if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
4127         Diag(Loc, diag::err_module_private_definition) << T;
4128         Diag(Def->getLocation(), diag::note_previous_definition);
4129       }
4130     }
4131 
4132     return false;
4133   }
4134 
4135   const TagType *Tag = T->getAs<TagType>();
4136   const ObjCInterfaceType *IFace = 0;
4137 
4138   if (Tag) {
4139     // Avoid diagnosing invalid decls as incomplete.
4140     if (Tag->getDecl()->isInvalidDecl())
4141       return true;
4142 
4143     // Give the external AST source a chance to complete the type.
4144     if (Tag->getDecl()->hasExternalLexicalStorage()) {
4145       Context.getExternalSource()->CompleteType(Tag->getDecl());
4146       if (!Tag->isIncompleteType())
4147         return false;
4148     }
4149   }
4150   else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4151     // Avoid diagnosing invalid decls as incomplete.
4152     if (IFace->getDecl()->isInvalidDecl())
4153       return true;
4154 
4155     // Give the external AST source a chance to complete the type.
4156     if (IFace->getDecl()->hasExternalLexicalStorage()) {
4157       Context.getExternalSource()->CompleteType(IFace->getDecl());
4158       if (!IFace->isIncompleteType())
4159         return false;
4160     }
4161   }
4162 
4163   // If we have a class template specialization or a class member of a
4164   // class template specialization, or an array with known size of such,
4165   // try to instantiate it.
4166   QualType MaybeTemplate = T;
4167   if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
4168     MaybeTemplate = Array->getElementType();
4169   if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4170     if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4171           = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4172       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4173         return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4174                                                       TSK_ImplicitInstantiation,
4175                                                       /*Complain=*/diag != 0);
4176     } else if (CXXRecordDecl *Rec
4177                  = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4178       if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
4179         MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
4180         assert(MSInfo && "Missing member specialization information?");
4181         // This record was instantiated from a class within a template.
4182         if (MSInfo->getTemplateSpecializationKind()
4183                                                != TSK_ExplicitSpecialization)
4184           return InstantiateClass(Loc, Rec, Pattern,
4185                                   getTemplateInstantiationArgs(Rec),
4186                                   TSK_ImplicitInstantiation,
4187                                   /*Complain=*/diag != 0);
4188       }
4189     }
4190   }
4191 
4192   if (diag == 0)
4193     return true;
4194 
4195   // We have an incomplete type. Produce a diagnostic.
4196   Diag(Loc, PD) << T;
4197 
4198   // If we have a note, produce it.
4199   if (!Note.first.isInvalid())
4200     Diag(Note.first, Note.second);
4201 
4202   // If the type was a forward declaration of a class/struct/union
4203   // type, produce a note.
4204   if (Tag && !Tag->getDecl()->isInvalidDecl())
4205     Diag(Tag->getDecl()->getLocation(),
4206          Tag->isBeingDefined() ? diag::note_type_being_defined
4207                                : diag::note_forward_declaration)
4208       << QualType(Tag, 0);
4209 
4210   // If the Objective-C class was a forward declaration, produce a note.
4211   if (IFace && !IFace->getDecl()->isInvalidDecl())
4212     Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4213 
4214   return true;
4215 }
4216 
4217 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4218                                const PartialDiagnostic &PD) {
4219   return RequireCompleteType(Loc, T, PD,
4220                              std::make_pair(SourceLocation(), PDiag(0)));
4221 }
4222 
4223 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4224                                unsigned DiagID) {
4225   return RequireCompleteType(Loc, T, PDiag(DiagID),
4226                              std::make_pair(SourceLocation(), PDiag(0)));
4227 }
4228 
4229 /// @brief Ensure that the type T is a literal type.
4230 ///
4231 /// This routine checks whether the type @p T is a literal type. If @p T is an
4232 /// incomplete type, an attempt is made to complete it. If @p T is a literal
4233 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4234 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4235 /// it the type @p T), along with notes explaining why the type is not a
4236 /// literal type, and returns true.
4237 ///
4238 /// @param Loc  The location in the source that the non-literal type
4239 /// diagnostic should refer to.
4240 ///
4241 /// @param T  The type that this routine is examining for literalness.
4242 ///
4243 /// @param PD The partial diagnostic that will be printed out if T is not a
4244 /// literal type.
4245 ///
4246 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4247 /// @c false otherwise.
4248 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4249                               const PartialDiagnostic &PD) {
4250   assert(!T->isDependentType() && "type should not be dependent");
4251 
4252   QualType ElemType = Context.getBaseElementType(T);
4253   RequireCompleteType(Loc, ElemType, 0);
4254 
4255   if (T->isLiteralType())
4256     return false;
4257 
4258   if (PD.getDiagID() == 0)
4259     return true;
4260 
4261   Diag(Loc, PD) << T;
4262 
4263   if (T->isVariableArrayType())
4264     return true;
4265 
4266   const RecordType *RT = ElemType->getAs<RecordType>();
4267   if (!RT)
4268     return true;
4269 
4270   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4271 
4272   // FIXME: Better diagnostic for incomplete class?
4273   if (!RD->isCompleteDefinition())
4274     return true;
4275 
4276   // If the class has virtual base classes, then it's not an aggregate, and
4277   // cannot have any constexpr constructors or a trivial default constructor,
4278   // so is non-literal. This is better to diagnose than the resulting absence
4279   // of constexpr constructors.
4280   if (RD->getNumVBases()) {
4281     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4282       << RD->isStruct() << RD->getNumVBases();
4283     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4284            E = RD->vbases_end(); I != E; ++I)
4285       Diag(I->getSourceRange().getBegin(),
4286            diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4287   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
4288              !RD->hasTrivialDefaultConstructor()) {
4289     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4290   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4291     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4292          E = RD->bases_end(); I != E; ++I) {
4293       if (!I->getType()->isLiteralType()) {
4294         Diag(I->getSourceRange().getBegin(),
4295              diag::note_non_literal_base_class)
4296           << RD << I->getType() << I->getSourceRange();
4297         return true;
4298       }
4299     }
4300     for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4301          E = RD->field_end(); I != E; ++I) {
4302       if (!(*I)->getType()->isLiteralType() ||
4303           (*I)->getType().isVolatileQualified()) {
4304         Diag((*I)->getLocation(), diag::note_non_literal_field)
4305           << RD << (*I) << (*I)->getType()
4306           << (*I)->getType().isVolatileQualified();
4307         return true;
4308       }
4309     }
4310   } else if (!RD->hasTrivialDestructor()) {
4311     // All fields and bases are of literal types, so have trivial destructors.
4312     // If this class's destructor is non-trivial it must be user-declared.
4313     CXXDestructorDecl *Dtor = RD->getDestructor();
4314     assert(Dtor && "class has literal fields and bases but no dtor?");
4315     if (!Dtor)
4316       return true;
4317 
4318     Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4319          diag::note_non_literal_user_provided_dtor :
4320          diag::note_non_literal_nontrivial_dtor) << RD;
4321   }
4322 
4323   return true;
4324 }
4325 
4326 /// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4327 /// and qualified by the nested-name-specifier contained in SS.
4328 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4329                                  const CXXScopeSpec &SS, QualType T) {
4330   if (T.isNull())
4331     return T;
4332   NestedNameSpecifier *NNS;
4333   if (SS.isValid())
4334     NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4335   else {
4336     if (Keyword == ETK_None)
4337       return T;
4338     NNS = 0;
4339   }
4340   return Context.getElaboratedType(Keyword, NNS, T);
4341 }
4342 
4343 QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4344   ExprResult ER = CheckPlaceholderExpr(E);
4345   if (ER.isInvalid()) return QualType();
4346   E = ER.take();
4347 
4348   if (!E->isTypeDependent()) {
4349     QualType T = E->getType();
4350     if (const TagType *TT = T->getAs<TagType>())
4351       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4352   }
4353   return Context.getTypeOfExprType(E);
4354 }
4355 
4356 /// getDecltypeForExpr - Given an expr, will return the decltype for
4357 /// that expression, according to the rules in C++11
4358 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
4359 static QualType getDecltypeForExpr(Sema &S, Expr *E) {
4360   if (E->isTypeDependent())
4361     return S.Context.DependentTy;
4362 
4363   // C++11 [dcl.type.simple]p4:
4364   //   The type denoted by decltype(e) is defined as follows:
4365   //
4366   //     - if e is an unparenthesized id-expression or an unparenthesized class
4367   //       member access (5.2.5), decltype(e) is the type of the entity named
4368   //       by e. If there is no such entity, or if e names a set of overloaded
4369   //       functions, the program is ill-formed;
4370   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4371     if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
4372       return VD->getType();
4373   }
4374   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
4375     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4376       return FD->getType();
4377   }
4378 
4379   // C++11 [expr.lambda.prim]p18:
4380   //   Every occurrence of decltype((x)) where x is a possibly
4381   //   parenthesized id-expression that names an entity of automatic
4382   //   storage duration is treated as if x were transformed into an
4383   //   access to a corresponding data member of the closure type that
4384   //   would have been declared if x were an odr-use of the denoted
4385   //   entity.
4386   using namespace sema;
4387   if (S.getCurLambda()) {
4388     if (isa<ParenExpr>(E)) {
4389       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4390         if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4391           QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
4392           if (!T.isNull())
4393             return S.Context.getLValueReferenceType(T);
4394         }
4395       }
4396     }
4397   }
4398 
4399 
4400   // C++11 [dcl.type.simple]p4:
4401   //   [...]
4402   QualType T = E->getType();
4403   switch (E->getValueKind()) {
4404   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
4405   //       type of e;
4406   case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
4407   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
4408   //       type of e;
4409   case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
4410   //  - otherwise, decltype(e) is the type of e.
4411   case VK_RValue: break;
4412   }
4413 
4414   return T;
4415 }
4416 
4417 QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4418   ExprResult ER = CheckPlaceholderExpr(E);
4419   if (ER.isInvalid()) return QualType();
4420   E = ER.take();
4421 
4422   return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
4423 }
4424 
4425 QualType Sema::BuildUnaryTransformType(QualType BaseType,
4426                                        UnaryTransformType::UTTKind UKind,
4427                                        SourceLocation Loc) {
4428   switch (UKind) {
4429   case UnaryTransformType::EnumUnderlyingType:
4430     if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4431       Diag(Loc, diag::err_only_enums_have_underlying_types);
4432       return QualType();
4433     } else {
4434       QualType Underlying = BaseType;
4435       if (!BaseType->isDependentType()) {
4436         EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4437         assert(ED && "EnumType has no EnumDecl");
4438         DiagnoseUseOfDecl(ED, Loc);
4439         Underlying = ED->getIntegerType();
4440       }
4441       assert(!Underlying.isNull());
4442       return Context.getUnaryTransformType(BaseType, Underlying,
4443                                         UnaryTransformType::EnumUnderlyingType);
4444     }
4445   }
4446   llvm_unreachable("unknown unary transform type");
4447 }
4448 
4449 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4450   if (!T->isDependentType()) {
4451     // FIXME: It isn't entirely clear whether incomplete atomic types
4452     // are allowed or not; for simplicity, ban them for the moment.
4453     if (RequireCompleteType(Loc, T,
4454                             PDiag(diag::err_atomic_specifier_bad_type) << 0))
4455       return QualType();
4456 
4457     int DisallowedKind = -1;
4458     if (T->isArrayType())
4459       DisallowedKind = 1;
4460     else if (T->isFunctionType())
4461       DisallowedKind = 2;
4462     else if (T->isReferenceType())
4463       DisallowedKind = 3;
4464     else if (T->isAtomicType())
4465       DisallowedKind = 4;
4466     else if (T.hasQualifiers())
4467       DisallowedKind = 5;
4468     else if (!T.isTriviallyCopyableType(Context))
4469       // Some other non-trivially-copyable type (probably a C++ class)
4470       DisallowedKind = 6;
4471 
4472     if (DisallowedKind != -1) {
4473       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4474       return QualType();
4475     }
4476 
4477     // FIXME: Do we need any handling for ARC here?
4478   }
4479 
4480   // Build the pointer type.
4481   return Context.getAtomicType(T);
4482 }
4483