1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements type-related semantic analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/TypeLoc.h"
23 #include "clang/AST/TypeLocVisitor.h"
24 #include "clang/Basic/PartialDiagnostic.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Sema/DeclSpec.h"
28 #include "clang/Sema/DelayedDiagnostic.h"
29 #include "clang/Sema/Lookup.h"
30 #include "clang/Sema/ScopeInfo.h"
31 #include "clang/Sema/SemaInternal.h"
32 #include "clang/Sema/Template.h"
33 #include "clang/Sema/TemplateInstCallback.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallString.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/Support/ErrorHandling.h"
38 
39 using namespace clang;
40 
41 enum TypeDiagSelector {
42   TDS_Function,
43   TDS_Pointer,
44   TDS_ObjCObjOrBlock
45 };
46 
47 /// isOmittedBlockReturnType - Return true if this declarator is missing a
48 /// return type because this is a omitted return type on a block literal.
49 static bool isOmittedBlockReturnType(const Declarator &D) {
50   if (D.getContext() != DeclaratorContext::BlockLiteralContext ||
51       D.getDeclSpec().hasTypeSpecifier())
52     return false;
53 
54   if (D.getNumTypeObjects() == 0)
55     return true;   // ^{ ... }
56 
57   if (D.getNumTypeObjects() == 1 &&
58       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
59     return true;   // ^(int X, float Y) { ... }
60 
61   return false;
62 }
63 
64 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
65 /// doesn't apply to the given type.
66 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
67                                      QualType type) {
68   TypeDiagSelector WhichType;
69   bool useExpansionLoc = true;
70   switch (attr.getKind()) {
71   case ParsedAttr::AT_ObjCGC:
72     WhichType = TDS_Pointer;
73     break;
74   case ParsedAttr::AT_ObjCOwnership:
75     WhichType = TDS_ObjCObjOrBlock;
76     break;
77   default:
78     // Assume everything else was a function attribute.
79     WhichType = TDS_Function;
80     useExpansionLoc = false;
81     break;
82   }
83 
84   SourceLocation loc = attr.getLoc();
85   StringRef name = attr.getName()->getName();
86 
87   // The GC attributes are usually written with macros;  special-case them.
88   IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
89                                           : nullptr;
90   if (useExpansionLoc && loc.isMacroID() && II) {
91     if (II->isStr("strong")) {
92       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
93     } else if (II->isStr("weak")) {
94       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
95     }
96   }
97 
98   S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
99     << type;
100 }
101 
102 // objc_gc applies to Objective-C pointers or, otherwise, to the
103 // smallest available pointer type (i.e. 'void*' in 'void**').
104 #define OBJC_POINTER_TYPE_ATTRS_CASELIST                                       \
105   case ParsedAttr::AT_ObjCGC:                                                  \
106   case ParsedAttr::AT_ObjCOwnership
107 
108 // Calling convention attributes.
109 #define CALLING_CONV_ATTRS_CASELIST                                            \
110   case ParsedAttr::AT_CDecl:                                                   \
111   case ParsedAttr::AT_FastCall:                                                \
112   case ParsedAttr::AT_StdCall:                                                 \
113   case ParsedAttr::AT_ThisCall:                                                \
114   case ParsedAttr::AT_RegCall:                                                 \
115   case ParsedAttr::AT_Pascal:                                                  \
116   case ParsedAttr::AT_SwiftCall:                                               \
117   case ParsedAttr::AT_VectorCall:                                              \
118   case ParsedAttr::AT_AArch64VectorPcs:                                        \
119   case ParsedAttr::AT_MSABI:                                                   \
120   case ParsedAttr::AT_SysVABI:                                                 \
121   case ParsedAttr::AT_Pcs:                                                     \
122   case ParsedAttr::AT_IntelOclBicc:                                            \
123   case ParsedAttr::AT_PreserveMost:                                            \
124   case ParsedAttr::AT_PreserveAll
125 
126 // Function type attributes.
127 #define FUNCTION_TYPE_ATTRS_CASELIST                                           \
128   case ParsedAttr::AT_NSReturnsRetained:                                       \
129   case ParsedAttr::AT_NoReturn:                                                \
130   case ParsedAttr::AT_Regparm:                                                 \
131   case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:                            \
132   case ParsedAttr::AT_AnyX86NoCfCheck:                                         \
133     CALLING_CONV_ATTRS_CASELIST
134 
135 // Microsoft-specific type qualifiers.
136 #define MS_TYPE_ATTRS_CASELIST                                                 \
137   case ParsedAttr::AT_Ptr32:                                                   \
138   case ParsedAttr::AT_Ptr64:                                                   \
139   case ParsedAttr::AT_SPtr:                                                    \
140   case ParsedAttr::AT_UPtr
141 
142 // Nullability qualifiers.
143 #define NULLABILITY_TYPE_ATTRS_CASELIST                                        \
144   case ParsedAttr::AT_TypeNonNull:                                             \
145   case ParsedAttr::AT_TypeNullable:                                            \
146   case ParsedAttr::AT_TypeNullUnspecified
147 
148 namespace {
149   /// An object which stores processing state for the entire
150   /// GetTypeForDeclarator process.
151   class TypeProcessingState {
152     Sema &sema;
153 
154     /// The declarator being processed.
155     Declarator &declarator;
156 
157     /// The index of the declarator chunk we're currently processing.
158     /// May be the total number of valid chunks, indicating the
159     /// DeclSpec.
160     unsigned chunkIndex;
161 
162     /// Whether there are non-trivial modifications to the decl spec.
163     bool trivial;
164 
165     /// Whether we saved the attributes in the decl spec.
166     bool hasSavedAttrs;
167 
168     /// The original set of attributes on the DeclSpec.
169     SmallVector<ParsedAttr *, 2> savedAttrs;
170 
171     /// A list of attributes to diagnose the uselessness of when the
172     /// processing is complete.
173     SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
174 
175     /// Attributes corresponding to AttributedTypeLocs that we have not yet
176     /// populated.
177     // FIXME: The two-phase mechanism by which we construct Types and fill
178     // their TypeLocs makes it hard to correctly assign these. We keep the
179     // attributes in creation order as an attempt to make them line up
180     // properly.
181     using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
182     SmallVector<TypeAttrPair, 8> AttrsForTypes;
183     bool AttrsForTypesSorted = true;
184 
185     /// MacroQualifiedTypes mapping to macro expansion locations that will be
186     /// stored in a MacroQualifiedTypeLoc.
187     llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
188 
189     /// Flag to indicate we parsed a noderef attribute. This is used for
190     /// validating that noderef was used on a pointer or array.
191     bool parsedNoDeref;
192 
193   public:
194     TypeProcessingState(Sema &sema, Declarator &declarator)
195         : sema(sema), declarator(declarator),
196           chunkIndex(declarator.getNumTypeObjects()), trivial(true),
197           hasSavedAttrs(false), parsedNoDeref(false) {}
198 
199     Sema &getSema() const {
200       return sema;
201     }
202 
203     Declarator &getDeclarator() const {
204       return declarator;
205     }
206 
207     bool isProcessingDeclSpec() const {
208       return chunkIndex == declarator.getNumTypeObjects();
209     }
210 
211     unsigned getCurrentChunkIndex() const {
212       return chunkIndex;
213     }
214 
215     void setCurrentChunkIndex(unsigned idx) {
216       assert(idx <= declarator.getNumTypeObjects());
217       chunkIndex = idx;
218     }
219 
220     ParsedAttributesView &getCurrentAttributes() const {
221       if (isProcessingDeclSpec())
222         return getMutableDeclSpec().getAttributes();
223       return declarator.getTypeObject(chunkIndex).getAttrs();
224     }
225 
226     /// Save the current set of attributes on the DeclSpec.
227     void saveDeclSpecAttrs() {
228       // Don't try to save them multiple times.
229       if (hasSavedAttrs) return;
230 
231       DeclSpec &spec = getMutableDeclSpec();
232       for (ParsedAttr &AL : spec.getAttributes())
233         savedAttrs.push_back(&AL);
234       trivial &= savedAttrs.empty();
235       hasSavedAttrs = true;
236     }
237 
238     /// Record that we had nowhere to put the given type attribute.
239     /// We will diagnose such attributes later.
240     void addIgnoredTypeAttr(ParsedAttr &attr) {
241       ignoredTypeAttrs.push_back(&attr);
242     }
243 
244     /// Diagnose all the ignored type attributes, given that the
245     /// declarator worked out to the given type.
246     void diagnoseIgnoredTypeAttrs(QualType type) const {
247       for (auto *Attr : ignoredTypeAttrs)
248         diagnoseBadTypeAttribute(getSema(), *Attr, type);
249     }
250 
251     /// Get an attributed type for the given attribute, and remember the Attr
252     /// object so that we can attach it to the AttributedTypeLoc.
253     QualType getAttributedType(Attr *A, QualType ModifiedType,
254                                QualType EquivType) {
255       QualType T =
256           sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
257       AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
258       AttrsForTypesSorted = false;
259       return T;
260     }
261 
262     /// Completely replace the \c auto in \p TypeWithAuto by
263     /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
264     /// necessary.
265     QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
266       QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
267       if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
268         // Attributed type still should be an attributed type after replacement.
269         auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
270         for (TypeAttrPair &A : AttrsForTypes) {
271           if (A.first == AttrTy)
272             A.first = NewAttrTy;
273         }
274         AttrsForTypesSorted = false;
275       }
276       return T;
277     }
278 
279     /// Extract and remove the Attr* for a given attributed type.
280     const Attr *takeAttrForAttributedType(const AttributedType *AT) {
281       if (!AttrsForTypesSorted) {
282         llvm::stable_sort(AttrsForTypes, llvm::less_first());
283         AttrsForTypesSorted = true;
284       }
285 
286       // FIXME: This is quadratic if we have lots of reuses of the same
287       // attributed type.
288       for (auto It = std::partition_point(
289                AttrsForTypes.begin(), AttrsForTypes.end(),
290                [=](const TypeAttrPair &A) { return A.first < AT; });
291            It != AttrsForTypes.end() && It->first == AT; ++It) {
292         if (It->second) {
293           const Attr *Result = It->second;
294           It->second = nullptr;
295           return Result;
296         }
297       }
298 
299       llvm_unreachable("no Attr* for AttributedType*");
300     }
301 
302     SourceLocation
303     getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
304       auto FoundLoc = LocsForMacros.find(MQT);
305       assert(FoundLoc != LocsForMacros.end() &&
306              "Unable to find macro expansion location for MacroQualifedType");
307       return FoundLoc->second;
308     }
309 
310     void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
311                                               SourceLocation Loc) {
312       LocsForMacros[MQT] = Loc;
313     }
314 
315     void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
316 
317     bool didParseNoDeref() const { return parsedNoDeref; }
318 
319     ~TypeProcessingState() {
320       if (trivial) return;
321 
322       restoreDeclSpecAttrs();
323     }
324 
325   private:
326     DeclSpec &getMutableDeclSpec() const {
327       return const_cast<DeclSpec&>(declarator.getDeclSpec());
328     }
329 
330     void restoreDeclSpecAttrs() {
331       assert(hasSavedAttrs);
332 
333       getMutableDeclSpec().getAttributes().clearListOnly();
334       for (ParsedAttr *AL : savedAttrs)
335         getMutableDeclSpec().getAttributes().addAtEnd(AL);
336     }
337   };
338 } // end anonymous namespace
339 
340 static void moveAttrFromListToList(ParsedAttr &attr,
341                                    ParsedAttributesView &fromList,
342                                    ParsedAttributesView &toList) {
343   fromList.remove(&attr);
344   toList.addAtEnd(&attr);
345 }
346 
347 /// The location of a type attribute.
348 enum TypeAttrLocation {
349   /// The attribute is in the decl-specifier-seq.
350   TAL_DeclSpec,
351   /// The attribute is part of a DeclaratorChunk.
352   TAL_DeclChunk,
353   /// The attribute is immediately after the declaration's name.
354   TAL_DeclName
355 };
356 
357 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
358                              TypeAttrLocation TAL, ParsedAttributesView &attrs);
359 
360 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
361                                    QualType &type);
362 
363 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
364                                              ParsedAttr &attr, QualType &type);
365 
366 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
367                                  QualType &type);
368 
369 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
370                                         ParsedAttr &attr, QualType &type);
371 
372 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
373                                       ParsedAttr &attr, QualType &type) {
374   if (attr.getKind() == ParsedAttr::AT_ObjCGC)
375     return handleObjCGCTypeAttr(state, attr, type);
376   assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
377   return handleObjCOwnershipTypeAttr(state, attr, type);
378 }
379 
380 /// Given the index of a declarator chunk, check whether that chunk
381 /// directly specifies the return type of a function and, if so, find
382 /// an appropriate place for it.
383 ///
384 /// \param i - a notional index which the search will start
385 ///   immediately inside
386 ///
387 /// \param onlyBlockPointers Whether we should only look into block
388 /// pointer types (vs. all pointer types).
389 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
390                                                 unsigned i,
391                                                 bool onlyBlockPointers) {
392   assert(i <= declarator.getNumTypeObjects());
393 
394   DeclaratorChunk *result = nullptr;
395 
396   // First, look inwards past parens for a function declarator.
397   for (; i != 0; --i) {
398     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
399     switch (fnChunk.Kind) {
400     case DeclaratorChunk::Paren:
401       continue;
402 
403     // If we find anything except a function, bail out.
404     case DeclaratorChunk::Pointer:
405     case DeclaratorChunk::BlockPointer:
406     case DeclaratorChunk::Array:
407     case DeclaratorChunk::Reference:
408     case DeclaratorChunk::MemberPointer:
409     case DeclaratorChunk::Pipe:
410       return result;
411 
412     // If we do find a function declarator, scan inwards from that,
413     // looking for a (block-)pointer declarator.
414     case DeclaratorChunk::Function:
415       for (--i; i != 0; --i) {
416         DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
417         switch (ptrChunk.Kind) {
418         case DeclaratorChunk::Paren:
419         case DeclaratorChunk::Array:
420         case DeclaratorChunk::Function:
421         case DeclaratorChunk::Reference:
422         case DeclaratorChunk::Pipe:
423           continue;
424 
425         case DeclaratorChunk::MemberPointer:
426         case DeclaratorChunk::Pointer:
427           if (onlyBlockPointers)
428             continue;
429 
430           LLVM_FALLTHROUGH;
431 
432         case DeclaratorChunk::BlockPointer:
433           result = &ptrChunk;
434           goto continue_outer;
435         }
436         llvm_unreachable("bad declarator chunk kind");
437       }
438 
439       // If we run out of declarators doing that, we're done.
440       return result;
441     }
442     llvm_unreachable("bad declarator chunk kind");
443 
444     // Okay, reconsider from our new point.
445   continue_outer: ;
446   }
447 
448   // Ran out of chunks, bail out.
449   return result;
450 }
451 
452 /// Given that an objc_gc attribute was written somewhere on a
453 /// declaration *other* than on the declarator itself (for which, use
454 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
455 /// didn't apply in whatever position it was written in, try to move
456 /// it to a more appropriate position.
457 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
458                                           ParsedAttr &attr, QualType type) {
459   Declarator &declarator = state.getDeclarator();
460 
461   // Move it to the outermost normal or block pointer declarator.
462   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
463     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
464     switch (chunk.Kind) {
465     case DeclaratorChunk::Pointer:
466     case DeclaratorChunk::BlockPointer: {
467       // But don't move an ARC ownership attribute to the return type
468       // of a block.
469       DeclaratorChunk *destChunk = nullptr;
470       if (state.isProcessingDeclSpec() &&
471           attr.getKind() == ParsedAttr::AT_ObjCOwnership)
472         destChunk = maybeMovePastReturnType(declarator, i - 1,
473                                             /*onlyBlockPointers=*/true);
474       if (!destChunk) destChunk = &chunk;
475 
476       moveAttrFromListToList(attr, state.getCurrentAttributes(),
477                              destChunk->getAttrs());
478       return;
479     }
480 
481     case DeclaratorChunk::Paren:
482     case DeclaratorChunk::Array:
483       continue;
484 
485     // We may be starting at the return type of a block.
486     case DeclaratorChunk::Function:
487       if (state.isProcessingDeclSpec() &&
488           attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
489         if (DeclaratorChunk *dest = maybeMovePastReturnType(
490                                       declarator, i,
491                                       /*onlyBlockPointers=*/true)) {
492           moveAttrFromListToList(attr, state.getCurrentAttributes(),
493                                  dest->getAttrs());
494           return;
495         }
496       }
497       goto error;
498 
499     // Don't walk through these.
500     case DeclaratorChunk::Reference:
501     case DeclaratorChunk::MemberPointer:
502     case DeclaratorChunk::Pipe:
503       goto error;
504     }
505   }
506  error:
507 
508   diagnoseBadTypeAttribute(state.getSema(), attr, type);
509 }
510 
511 /// Distribute an objc_gc type attribute that was written on the
512 /// declarator.
513 static void distributeObjCPointerTypeAttrFromDeclarator(
514     TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
515   Declarator &declarator = state.getDeclarator();
516 
517   // objc_gc goes on the innermost pointer to something that's not a
518   // pointer.
519   unsigned innermost = -1U;
520   bool considerDeclSpec = true;
521   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
522     DeclaratorChunk &chunk = declarator.getTypeObject(i);
523     switch (chunk.Kind) {
524     case DeclaratorChunk::Pointer:
525     case DeclaratorChunk::BlockPointer:
526       innermost = i;
527       continue;
528 
529     case DeclaratorChunk::Reference:
530     case DeclaratorChunk::MemberPointer:
531     case DeclaratorChunk::Paren:
532     case DeclaratorChunk::Array:
533     case DeclaratorChunk::Pipe:
534       continue;
535 
536     case DeclaratorChunk::Function:
537       considerDeclSpec = false;
538       goto done;
539     }
540   }
541  done:
542 
543   // That might actually be the decl spec if we weren't blocked by
544   // anything in the declarator.
545   if (considerDeclSpec) {
546     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
547       // Splice the attribute into the decl spec.  Prevents the
548       // attribute from being applied multiple times and gives
549       // the source-location-filler something to work with.
550       state.saveDeclSpecAttrs();
551       declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
552           declarator.getAttributes(), &attr);
553       return;
554     }
555   }
556 
557   // Otherwise, if we found an appropriate chunk, splice the attribute
558   // into it.
559   if (innermost != -1U) {
560     moveAttrFromListToList(attr, declarator.getAttributes(),
561                            declarator.getTypeObject(innermost).getAttrs());
562     return;
563   }
564 
565   // Otherwise, diagnose when we're done building the type.
566   declarator.getAttributes().remove(&attr);
567   state.addIgnoredTypeAttr(attr);
568 }
569 
570 /// A function type attribute was written somewhere in a declaration
571 /// *other* than on the declarator itself or in the decl spec.  Given
572 /// that it didn't apply in whatever position it was written in, try
573 /// to move it to a more appropriate position.
574 static void distributeFunctionTypeAttr(TypeProcessingState &state,
575                                        ParsedAttr &attr, QualType type) {
576   Declarator &declarator = state.getDeclarator();
577 
578   // Try to push the attribute from the return type of a function to
579   // the function itself.
580   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
581     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
582     switch (chunk.Kind) {
583     case DeclaratorChunk::Function:
584       moveAttrFromListToList(attr, state.getCurrentAttributes(),
585                              chunk.getAttrs());
586       return;
587 
588     case DeclaratorChunk::Paren:
589     case DeclaratorChunk::Pointer:
590     case DeclaratorChunk::BlockPointer:
591     case DeclaratorChunk::Array:
592     case DeclaratorChunk::Reference:
593     case DeclaratorChunk::MemberPointer:
594     case DeclaratorChunk::Pipe:
595       continue;
596     }
597   }
598 
599   diagnoseBadTypeAttribute(state.getSema(), attr, type);
600 }
601 
602 /// Try to distribute a function type attribute to the innermost
603 /// function chunk or type.  Returns true if the attribute was
604 /// distributed, false if no location was found.
605 static bool distributeFunctionTypeAttrToInnermost(
606     TypeProcessingState &state, ParsedAttr &attr,
607     ParsedAttributesView &attrList, QualType &declSpecType) {
608   Declarator &declarator = state.getDeclarator();
609 
610   // Put it on the innermost function chunk, if there is one.
611   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
612     DeclaratorChunk &chunk = declarator.getTypeObject(i);
613     if (chunk.Kind != DeclaratorChunk::Function) continue;
614 
615     moveAttrFromListToList(attr, attrList, chunk.getAttrs());
616     return true;
617   }
618 
619   return handleFunctionTypeAttr(state, attr, declSpecType);
620 }
621 
622 /// A function type attribute was written in the decl spec.  Try to
623 /// apply it somewhere.
624 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
625                                                    ParsedAttr &attr,
626                                                    QualType &declSpecType) {
627   state.saveDeclSpecAttrs();
628 
629   // C++11 attributes before the decl specifiers actually appertain to
630   // the declarators. Move them straight there. We don't support the
631   // 'put them wherever you like' semantics we allow for GNU attributes.
632   if (attr.isCXX11Attribute()) {
633     moveAttrFromListToList(attr, state.getCurrentAttributes(),
634                            state.getDeclarator().getAttributes());
635     return;
636   }
637 
638   // Try to distribute to the innermost.
639   if (distributeFunctionTypeAttrToInnermost(
640           state, attr, state.getCurrentAttributes(), declSpecType))
641     return;
642 
643   // If that failed, diagnose the bad attribute when the declarator is
644   // fully built.
645   state.addIgnoredTypeAttr(attr);
646 }
647 
648 /// A function type attribute was written on the declarator.  Try to
649 /// apply it somewhere.
650 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
651                                                      ParsedAttr &attr,
652                                                      QualType &declSpecType) {
653   Declarator &declarator = state.getDeclarator();
654 
655   // Try to distribute to the innermost.
656   if (distributeFunctionTypeAttrToInnermost(
657           state, attr, declarator.getAttributes(), declSpecType))
658     return;
659 
660   // If that failed, diagnose the bad attribute when the declarator is
661   // fully built.
662   declarator.getAttributes().remove(&attr);
663   state.addIgnoredTypeAttr(attr);
664 }
665 
666 /// Given that there are attributes written on the declarator
667 /// itself, try to distribute any type attributes to the appropriate
668 /// declarator chunk.
669 ///
670 /// These are attributes like the following:
671 ///   int f ATTR;
672 ///   int (f ATTR)();
673 /// but not necessarily this:
674 ///   int f() ATTR;
675 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
676                                               QualType &declSpecType) {
677   // Collect all the type attributes from the declarator itself.
678   assert(!state.getDeclarator().getAttributes().empty() &&
679          "declarator has no attrs!");
680   // The called functions in this loop actually remove things from the current
681   // list, so iterating over the existing list isn't possible.  Instead, make a
682   // non-owning copy and iterate over that.
683   ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
684   for (ParsedAttr &attr : AttrsCopy) {
685     // Do not distribute C++11 attributes. They have strict rules for what
686     // they appertain to.
687     if (attr.isCXX11Attribute())
688       continue;
689 
690     switch (attr.getKind()) {
691     OBJC_POINTER_TYPE_ATTRS_CASELIST:
692       distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
693       break;
694 
695     FUNCTION_TYPE_ATTRS_CASELIST:
696       distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
697       break;
698 
699     MS_TYPE_ATTRS_CASELIST:
700       // Microsoft type attributes cannot go after the declarator-id.
701       continue;
702 
703     NULLABILITY_TYPE_ATTRS_CASELIST:
704       // Nullability specifiers cannot go after the declarator-id.
705 
706     // Objective-C __kindof does not get distributed.
707     case ParsedAttr::AT_ObjCKindOf:
708       continue;
709 
710     default:
711       break;
712     }
713   }
714 }
715 
716 /// Add a synthetic '()' to a block-literal declarator if it is
717 /// required, given the return type.
718 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
719                                           QualType declSpecType) {
720   Declarator &declarator = state.getDeclarator();
721 
722   // First, check whether the declarator would produce a function,
723   // i.e. whether the innermost semantic chunk is a function.
724   if (declarator.isFunctionDeclarator()) {
725     // If so, make that declarator a prototyped declarator.
726     declarator.getFunctionTypeInfo().hasPrototype = true;
727     return;
728   }
729 
730   // If there are any type objects, the type as written won't name a
731   // function, regardless of the decl spec type.  This is because a
732   // block signature declarator is always an abstract-declarator, and
733   // abstract-declarators can't just be parentheses chunks.  Therefore
734   // we need to build a function chunk unless there are no type
735   // objects and the decl spec type is a function.
736   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
737     return;
738 
739   // Note that there *are* cases with invalid declarators where
740   // declarators consist solely of parentheses.  In general, these
741   // occur only in failed efforts to make function declarators, so
742   // faking up the function chunk is still the right thing to do.
743 
744   // Otherwise, we need to fake up a function declarator.
745   SourceLocation loc = declarator.getBeginLoc();
746 
747   // ...and *prepend* it to the declarator.
748   SourceLocation NoLoc;
749   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
750       /*HasProto=*/true,
751       /*IsAmbiguous=*/false,
752       /*LParenLoc=*/NoLoc,
753       /*ArgInfo=*/nullptr,
754       /*NumArgs=*/0,
755       /*EllipsisLoc=*/NoLoc,
756       /*RParenLoc=*/NoLoc,
757       /*RefQualifierIsLvalueRef=*/true,
758       /*RefQualifierLoc=*/NoLoc,
759       /*MutableLoc=*/NoLoc, EST_None,
760       /*ESpecRange=*/SourceRange(),
761       /*Exceptions=*/nullptr,
762       /*ExceptionRanges=*/nullptr,
763       /*NumExceptions=*/0,
764       /*NoexceptExpr=*/nullptr,
765       /*ExceptionSpecTokens=*/nullptr,
766       /*DeclsInPrototype=*/None, loc, loc, declarator));
767 
768   // For consistency, make sure the state still has us as processing
769   // the decl spec.
770   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
771   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
772 }
773 
774 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
775                                             unsigned &TypeQuals,
776                                             QualType TypeSoFar,
777                                             unsigned RemoveTQs,
778                                             unsigned DiagID) {
779   // If this occurs outside a template instantiation, warn the user about
780   // it; they probably didn't mean to specify a redundant qualifier.
781   typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
782   for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
783                        QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
784                        QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
785                        QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
786     if (!(RemoveTQs & Qual.first))
787       continue;
788 
789     if (!S.inTemplateInstantiation()) {
790       if (TypeQuals & Qual.first)
791         S.Diag(Qual.second, DiagID)
792           << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
793           << FixItHint::CreateRemoval(Qual.second);
794     }
795 
796     TypeQuals &= ~Qual.first;
797   }
798 }
799 
800 /// Return true if this is omitted block return type. Also check type
801 /// attributes and type qualifiers when returning true.
802 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
803                                         QualType Result) {
804   if (!isOmittedBlockReturnType(declarator))
805     return false;
806 
807   // Warn if we see type attributes for omitted return type on a block literal.
808   SmallVector<ParsedAttr *, 2> ToBeRemoved;
809   for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
810     if (AL.isInvalid() || !AL.isTypeAttr())
811       continue;
812     S.Diag(AL.getLoc(),
813            diag::warn_block_literal_attributes_on_omitted_return_type)
814         << AL.getName();
815     ToBeRemoved.push_back(&AL);
816   }
817   // Remove bad attributes from the list.
818   for (ParsedAttr *AL : ToBeRemoved)
819     declarator.getMutableDeclSpec().getAttributes().remove(AL);
820 
821   // Warn if we see type qualifiers for omitted return type on a block literal.
822   const DeclSpec &DS = declarator.getDeclSpec();
823   unsigned TypeQuals = DS.getTypeQualifiers();
824   diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
825       diag::warn_block_literal_qualifiers_on_omitted_return_type);
826   declarator.getMutableDeclSpec().ClearTypeQualifiers();
827 
828   return true;
829 }
830 
831 /// Apply Objective-C type arguments to the given type.
832 static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
833                                   ArrayRef<TypeSourceInfo *> typeArgs,
834                                   SourceRange typeArgsRange,
835                                   bool failOnError = false) {
836   // We can only apply type arguments to an Objective-C class type.
837   const auto *objcObjectType = type->getAs<ObjCObjectType>();
838   if (!objcObjectType || !objcObjectType->getInterface()) {
839     S.Diag(loc, diag::err_objc_type_args_non_class)
840       << type
841       << typeArgsRange;
842 
843     if (failOnError)
844       return QualType();
845     return type;
846   }
847 
848   // The class type must be parameterized.
849   ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
850   ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
851   if (!typeParams) {
852     S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
853       << objcClass->getDeclName()
854       << FixItHint::CreateRemoval(typeArgsRange);
855 
856     if (failOnError)
857       return QualType();
858 
859     return type;
860   }
861 
862   // The type must not already be specialized.
863   if (objcObjectType->isSpecialized()) {
864     S.Diag(loc, diag::err_objc_type_args_specialized_class)
865       << type
866       << FixItHint::CreateRemoval(typeArgsRange);
867 
868     if (failOnError)
869       return QualType();
870 
871     return type;
872   }
873 
874   // Check the type arguments.
875   SmallVector<QualType, 4> finalTypeArgs;
876   unsigned numTypeParams = typeParams->size();
877   bool anyPackExpansions = false;
878   for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
879     TypeSourceInfo *typeArgInfo = typeArgs[i];
880     QualType typeArg = typeArgInfo->getType();
881 
882     // Type arguments cannot have explicit qualifiers or nullability.
883     // We ignore indirect sources of these, e.g. behind typedefs or
884     // template arguments.
885     if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
886       bool diagnosed = false;
887       SourceRange rangeToRemove;
888       if (auto attr = qual.getAs<AttributedTypeLoc>()) {
889         rangeToRemove = attr.getLocalSourceRange();
890         if (attr.getTypePtr()->getImmediateNullability()) {
891           typeArg = attr.getTypePtr()->getModifiedType();
892           S.Diag(attr.getBeginLoc(),
893                  diag::err_objc_type_arg_explicit_nullability)
894               << typeArg << FixItHint::CreateRemoval(rangeToRemove);
895           diagnosed = true;
896         }
897       }
898 
899       if (!diagnosed) {
900         S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
901             << typeArg << typeArg.getQualifiers().getAsString()
902             << FixItHint::CreateRemoval(rangeToRemove);
903       }
904     }
905 
906     // Remove qualifiers even if they're non-local.
907     typeArg = typeArg.getUnqualifiedType();
908 
909     finalTypeArgs.push_back(typeArg);
910 
911     if (typeArg->getAs<PackExpansionType>())
912       anyPackExpansions = true;
913 
914     // Find the corresponding type parameter, if there is one.
915     ObjCTypeParamDecl *typeParam = nullptr;
916     if (!anyPackExpansions) {
917       if (i < numTypeParams) {
918         typeParam = typeParams->begin()[i];
919       } else {
920         // Too many arguments.
921         S.Diag(loc, diag::err_objc_type_args_wrong_arity)
922           << false
923           << objcClass->getDeclName()
924           << (unsigned)typeArgs.size()
925           << numTypeParams;
926         S.Diag(objcClass->getLocation(), diag::note_previous_decl)
927           << objcClass;
928 
929         if (failOnError)
930           return QualType();
931 
932         return type;
933       }
934     }
935 
936     // Objective-C object pointer types must be substitutable for the bounds.
937     if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
938       // If we don't have a type parameter to match against, assume
939       // everything is fine. There was a prior pack expansion that
940       // means we won't be able to match anything.
941       if (!typeParam) {
942         assert(anyPackExpansions && "Too many arguments?");
943         continue;
944       }
945 
946       // Retrieve the bound.
947       QualType bound = typeParam->getUnderlyingType();
948       const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
949 
950       // Determine whether the type argument is substitutable for the bound.
951       if (typeArgObjC->isObjCIdType()) {
952         // When the type argument is 'id', the only acceptable type
953         // parameter bound is 'id'.
954         if (boundObjC->isObjCIdType())
955           continue;
956       } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
957         // Otherwise, we follow the assignability rules.
958         continue;
959       }
960 
961       // Diagnose the mismatch.
962       S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
963              diag::err_objc_type_arg_does_not_match_bound)
964           << typeArg << bound << typeParam->getDeclName();
965       S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
966         << typeParam->getDeclName();
967 
968       if (failOnError)
969         return QualType();
970 
971       return type;
972     }
973 
974     // Block pointer types are permitted for unqualified 'id' bounds.
975     if (typeArg->isBlockPointerType()) {
976       // If we don't have a type parameter to match against, assume
977       // everything is fine. There was a prior pack expansion that
978       // means we won't be able to match anything.
979       if (!typeParam) {
980         assert(anyPackExpansions && "Too many arguments?");
981         continue;
982       }
983 
984       // Retrieve the bound.
985       QualType bound = typeParam->getUnderlyingType();
986       if (bound->isBlockCompatibleObjCPointerType(S.Context))
987         continue;
988 
989       // Diagnose the mismatch.
990       S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
991              diag::err_objc_type_arg_does_not_match_bound)
992           << typeArg << bound << typeParam->getDeclName();
993       S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
994         << typeParam->getDeclName();
995 
996       if (failOnError)
997         return QualType();
998 
999       return type;
1000     }
1001 
1002     // Dependent types will be checked at instantiation time.
1003     if (typeArg->isDependentType()) {
1004       continue;
1005     }
1006 
1007     // Diagnose non-id-compatible type arguments.
1008     S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1009            diag::err_objc_type_arg_not_id_compatible)
1010         << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1011 
1012     if (failOnError)
1013       return QualType();
1014 
1015     return type;
1016   }
1017 
1018   // Make sure we didn't have the wrong number of arguments.
1019   if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1020     S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1021       << (typeArgs.size() < typeParams->size())
1022       << objcClass->getDeclName()
1023       << (unsigned)finalTypeArgs.size()
1024       << (unsigned)numTypeParams;
1025     S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1026       << objcClass;
1027 
1028     if (failOnError)
1029       return QualType();
1030 
1031     return type;
1032   }
1033 
1034   // Success. Form the specialized type.
1035   return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1036 }
1037 
1038 QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1039                                       SourceLocation ProtocolLAngleLoc,
1040                                       ArrayRef<ObjCProtocolDecl *> Protocols,
1041                                       ArrayRef<SourceLocation> ProtocolLocs,
1042                                       SourceLocation ProtocolRAngleLoc,
1043                                       bool FailOnError) {
1044   QualType Result = QualType(Decl->getTypeForDecl(), 0);
1045   if (!Protocols.empty()) {
1046     bool HasError;
1047     Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1048                                                  HasError);
1049     if (HasError) {
1050       Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1051         << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1052       if (FailOnError) Result = QualType();
1053     }
1054     if (FailOnError && Result.isNull())
1055       return QualType();
1056   }
1057 
1058   return Result;
1059 }
1060 
1061 QualType Sema::BuildObjCObjectType(QualType BaseType,
1062                                    SourceLocation Loc,
1063                                    SourceLocation TypeArgsLAngleLoc,
1064                                    ArrayRef<TypeSourceInfo *> TypeArgs,
1065                                    SourceLocation TypeArgsRAngleLoc,
1066                                    SourceLocation ProtocolLAngleLoc,
1067                                    ArrayRef<ObjCProtocolDecl *> Protocols,
1068                                    ArrayRef<SourceLocation> ProtocolLocs,
1069                                    SourceLocation ProtocolRAngleLoc,
1070                                    bool FailOnError) {
1071   QualType Result = BaseType;
1072   if (!TypeArgs.empty()) {
1073     Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1074                                SourceRange(TypeArgsLAngleLoc,
1075                                            TypeArgsRAngleLoc),
1076                                FailOnError);
1077     if (FailOnError && Result.isNull())
1078       return QualType();
1079   }
1080 
1081   if (!Protocols.empty()) {
1082     bool HasError;
1083     Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1084                                                  HasError);
1085     if (HasError) {
1086       Diag(Loc, diag::err_invalid_protocol_qualifiers)
1087         << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1088       if (FailOnError) Result = QualType();
1089     }
1090     if (FailOnError && Result.isNull())
1091       return QualType();
1092   }
1093 
1094   return Result;
1095 }
1096 
1097 TypeResult Sema::actOnObjCProtocolQualifierType(
1098              SourceLocation lAngleLoc,
1099              ArrayRef<Decl *> protocols,
1100              ArrayRef<SourceLocation> protocolLocs,
1101              SourceLocation rAngleLoc) {
1102   // Form id<protocol-list>.
1103   QualType Result = Context.getObjCObjectType(
1104                       Context.ObjCBuiltinIdTy, { },
1105                       llvm::makeArrayRef(
1106                         (ObjCProtocolDecl * const *)protocols.data(),
1107                         protocols.size()),
1108                       false);
1109   Result = Context.getObjCObjectPointerType(Result);
1110 
1111   TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1112   TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1113 
1114   auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1115   ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1116 
1117   auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1118                         .castAs<ObjCObjectTypeLoc>();
1119   ObjCObjectTL.setHasBaseTypeAsWritten(false);
1120   ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1121 
1122   // No type arguments.
1123   ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1124   ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1125 
1126   // Fill in protocol qualifiers.
1127   ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1128   ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1129   for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1130     ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1131 
1132   // We're done. Return the completed type to the parser.
1133   return CreateParsedType(Result, ResultTInfo);
1134 }
1135 
1136 TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1137              Scope *S,
1138              SourceLocation Loc,
1139              ParsedType BaseType,
1140              SourceLocation TypeArgsLAngleLoc,
1141              ArrayRef<ParsedType> TypeArgs,
1142              SourceLocation TypeArgsRAngleLoc,
1143              SourceLocation ProtocolLAngleLoc,
1144              ArrayRef<Decl *> Protocols,
1145              ArrayRef<SourceLocation> ProtocolLocs,
1146              SourceLocation ProtocolRAngleLoc) {
1147   TypeSourceInfo *BaseTypeInfo = nullptr;
1148   QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1149   if (T.isNull())
1150     return true;
1151 
1152   // Handle missing type-source info.
1153   if (!BaseTypeInfo)
1154     BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1155 
1156   // Extract type arguments.
1157   SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1158   for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1159     TypeSourceInfo *TypeArgInfo = nullptr;
1160     QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1161     if (TypeArg.isNull()) {
1162       ActualTypeArgInfos.clear();
1163       break;
1164     }
1165 
1166     assert(TypeArgInfo && "No type source info?");
1167     ActualTypeArgInfos.push_back(TypeArgInfo);
1168   }
1169 
1170   // Build the object type.
1171   QualType Result = BuildObjCObjectType(
1172       T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1173       TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1174       ProtocolLAngleLoc,
1175       llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1176                          Protocols.size()),
1177       ProtocolLocs, ProtocolRAngleLoc,
1178       /*FailOnError=*/false);
1179 
1180   if (Result == T)
1181     return BaseType;
1182 
1183   // Create source information for this type.
1184   TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1185   TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1186 
1187   // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1188   // object pointer type. Fill in source information for it.
1189   if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1190     // The '*' is implicit.
1191     ObjCObjectPointerTL.setStarLoc(SourceLocation());
1192     ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1193   }
1194 
1195   if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1196     // Protocol qualifier information.
1197     if (OTPTL.getNumProtocols() > 0) {
1198       assert(OTPTL.getNumProtocols() == Protocols.size());
1199       OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1200       OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1201       for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1202         OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1203     }
1204 
1205     // We're done. Return the completed type to the parser.
1206     return CreateParsedType(Result, ResultTInfo);
1207   }
1208 
1209   auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1210 
1211   // Type argument information.
1212   if (ObjCObjectTL.getNumTypeArgs() > 0) {
1213     assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
1214     ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1215     ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1216     for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1217       ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1218   } else {
1219     ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1220     ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1221   }
1222 
1223   // Protocol qualifier information.
1224   if (ObjCObjectTL.getNumProtocols() > 0) {
1225     assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
1226     ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1227     ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1228     for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1229       ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1230   } else {
1231     ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1232     ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1233   }
1234 
1235   // Base type.
1236   ObjCObjectTL.setHasBaseTypeAsWritten(true);
1237   if (ObjCObjectTL.getType() == T)
1238     ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1239   else
1240     ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1241 
1242   // We're done. Return the completed type to the parser.
1243   return CreateParsedType(Result, ResultTInfo);
1244 }
1245 
1246 static OpenCLAccessAttr::Spelling
1247 getImageAccess(const ParsedAttributesView &Attrs) {
1248   for (const ParsedAttr &AL : Attrs)
1249     if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1250       return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1251   return OpenCLAccessAttr::Keyword_read_only;
1252 }
1253 
1254 /// Convert the specified declspec to the appropriate type
1255 /// object.
1256 /// \param state Specifies the declarator containing the declaration specifier
1257 /// to be converted, along with other associated processing state.
1258 /// \returns The type described by the declaration specifiers.  This function
1259 /// never returns null.
1260 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1261   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1262   // checking.
1263 
1264   Sema &S = state.getSema();
1265   Declarator &declarator = state.getDeclarator();
1266   DeclSpec &DS = declarator.getMutableDeclSpec();
1267   SourceLocation DeclLoc = declarator.getIdentifierLoc();
1268   if (DeclLoc.isInvalid())
1269     DeclLoc = DS.getBeginLoc();
1270 
1271   ASTContext &Context = S.Context;
1272 
1273   QualType Result;
1274   switch (DS.getTypeSpecType()) {
1275   case DeclSpec::TST_void:
1276     Result = Context.VoidTy;
1277     break;
1278   case DeclSpec::TST_char:
1279     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1280       Result = Context.CharTy;
1281     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
1282       Result = Context.SignedCharTy;
1283     else {
1284       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1285              "Unknown TSS value");
1286       Result = Context.UnsignedCharTy;
1287     }
1288     break;
1289   case DeclSpec::TST_wchar:
1290     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1291       Result = Context.WCharTy;
1292     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
1293       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1294         << DS.getSpecifierName(DS.getTypeSpecType(),
1295                                Context.getPrintingPolicy());
1296       Result = Context.getSignedWCharType();
1297     } else {
1298       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1299         "Unknown TSS value");
1300       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1301         << DS.getSpecifierName(DS.getTypeSpecType(),
1302                                Context.getPrintingPolicy());
1303       Result = Context.getUnsignedWCharType();
1304     }
1305     break;
1306   case DeclSpec::TST_char8:
1307       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1308         "Unknown TSS value");
1309       Result = Context.Char8Ty;
1310     break;
1311   case DeclSpec::TST_char16:
1312       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1313         "Unknown TSS value");
1314       Result = Context.Char16Ty;
1315     break;
1316   case DeclSpec::TST_char32:
1317       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1318         "Unknown TSS value");
1319       Result = Context.Char32Ty;
1320     break;
1321   case DeclSpec::TST_unspecified:
1322     // If this is a missing declspec in a block literal return context, then it
1323     // is inferred from the return statements inside the block.
1324     // The declspec is always missing in a lambda expr context; it is either
1325     // specified with a trailing return type or inferred.
1326     if (S.getLangOpts().CPlusPlus14 &&
1327         declarator.getContext() == DeclaratorContext::LambdaExprContext) {
1328       // In C++1y, a lambda's implicit return type is 'auto'.
1329       Result = Context.getAutoDeductType();
1330       break;
1331     } else if (declarator.getContext() ==
1332                    DeclaratorContext::LambdaExprContext ||
1333                checkOmittedBlockReturnType(S, declarator,
1334                                            Context.DependentTy)) {
1335       Result = Context.DependentTy;
1336       break;
1337     }
1338 
1339     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
1340     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1341     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
1342     // Note that the one exception to this is function definitions, which are
1343     // allowed to be completely missing a declspec.  This is handled in the
1344     // parser already though by it pretending to have seen an 'int' in this
1345     // case.
1346     if (S.getLangOpts().ImplicitInt) {
1347       // In C89 mode, we only warn if there is a completely missing declspec
1348       // when one is not allowed.
1349       if (DS.isEmpty()) {
1350         S.Diag(DeclLoc, diag::ext_missing_declspec)
1351             << DS.getSourceRange()
1352             << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1353       }
1354     } else if (!DS.hasTypeSpecifier()) {
1355       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
1356       // "At least one type specifier shall be given in the declaration
1357       // specifiers in each declaration, and in the specifier-qualifier list in
1358       // each struct declaration and type name."
1359       if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
1360         S.Diag(DeclLoc, diag::err_missing_type_specifier)
1361           << DS.getSourceRange();
1362 
1363         // When this occurs in C++ code, often something is very broken with the
1364         // value being declared, poison it as invalid so we don't get chains of
1365         // errors.
1366         declarator.setInvalidType(true);
1367       } else if ((S.getLangOpts().OpenCLVersion >= 200 ||
1368                   S.getLangOpts().OpenCLCPlusPlus) &&
1369                  DS.isTypeSpecPipe()) {
1370         S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1371           << DS.getSourceRange();
1372         declarator.setInvalidType(true);
1373       } else {
1374         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1375           << DS.getSourceRange();
1376       }
1377     }
1378 
1379     LLVM_FALLTHROUGH;
1380   case DeclSpec::TST_int: {
1381     if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
1382       switch (DS.getTypeSpecWidth()) {
1383       case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
1384       case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
1385       case DeclSpec::TSW_long:        Result = Context.LongTy; break;
1386       case DeclSpec::TSW_longlong:
1387         Result = Context.LongLongTy;
1388 
1389         // 'long long' is a C99 or C++11 feature.
1390         if (!S.getLangOpts().C99) {
1391           if (S.getLangOpts().CPlusPlus)
1392             S.Diag(DS.getTypeSpecWidthLoc(),
1393                    S.getLangOpts().CPlusPlus11 ?
1394                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1395           else
1396             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1397         }
1398         break;
1399       }
1400     } else {
1401       switch (DS.getTypeSpecWidth()) {
1402       case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
1403       case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
1404       case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
1405       case DeclSpec::TSW_longlong:
1406         Result = Context.UnsignedLongLongTy;
1407 
1408         // 'long long' is a C99 or C++11 feature.
1409         if (!S.getLangOpts().C99) {
1410           if (S.getLangOpts().CPlusPlus)
1411             S.Diag(DS.getTypeSpecWidthLoc(),
1412                    S.getLangOpts().CPlusPlus11 ?
1413                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1414           else
1415             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1416         }
1417         break;
1418       }
1419     }
1420     break;
1421   }
1422   case DeclSpec::TST_accum: {
1423     switch (DS.getTypeSpecWidth()) {
1424       case DeclSpec::TSW_short:
1425         Result = Context.ShortAccumTy;
1426         break;
1427       case DeclSpec::TSW_unspecified:
1428         Result = Context.AccumTy;
1429         break;
1430       case DeclSpec::TSW_long:
1431         Result = Context.LongAccumTy;
1432         break;
1433       case DeclSpec::TSW_longlong:
1434         llvm_unreachable("Unable to specify long long as _Accum width");
1435     }
1436 
1437     if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1438       Result = Context.getCorrespondingUnsignedType(Result);
1439 
1440     if (DS.isTypeSpecSat())
1441       Result = Context.getCorrespondingSaturatedType(Result);
1442 
1443     break;
1444   }
1445   case DeclSpec::TST_fract: {
1446     switch (DS.getTypeSpecWidth()) {
1447       case DeclSpec::TSW_short:
1448         Result = Context.ShortFractTy;
1449         break;
1450       case DeclSpec::TSW_unspecified:
1451         Result = Context.FractTy;
1452         break;
1453       case DeclSpec::TSW_long:
1454         Result = Context.LongFractTy;
1455         break;
1456       case DeclSpec::TSW_longlong:
1457         llvm_unreachable("Unable to specify long long as _Fract width");
1458     }
1459 
1460     if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1461       Result = Context.getCorrespondingUnsignedType(Result);
1462 
1463     if (DS.isTypeSpecSat())
1464       Result = Context.getCorrespondingSaturatedType(Result);
1465 
1466     break;
1467   }
1468   case DeclSpec::TST_int128:
1469     if (!S.Context.getTargetInfo().hasInt128Type() &&
1470         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1471       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1472         << "__int128";
1473     if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1474       Result = Context.UnsignedInt128Ty;
1475     else
1476       Result = Context.Int128Ty;
1477     break;
1478   case DeclSpec::TST_float16:
1479     // CUDA host and device may have different _Float16 support, therefore
1480     // do not diagnose _Float16 usage to avoid false alarm.
1481     // ToDo: more precise diagnostics for CUDA.
1482     if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1483         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1484       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1485         << "_Float16";
1486     Result = Context.Float16Ty;
1487     break;
1488   case DeclSpec::TST_half:    Result = Context.HalfTy; break;
1489   case DeclSpec::TST_float:   Result = Context.FloatTy; break;
1490   case DeclSpec::TST_double:
1491     if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
1492       Result = Context.LongDoubleTy;
1493     else
1494       Result = Context.DoubleTy;
1495     break;
1496   case DeclSpec::TST_float128:
1497     if (!S.Context.getTargetInfo().hasFloat128Type() &&
1498         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1499       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1500         << "__float128";
1501     Result = Context.Float128Ty;
1502     break;
1503   case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
1504     break;
1505   case DeclSpec::TST_decimal32:    // _Decimal32
1506   case DeclSpec::TST_decimal64:    // _Decimal64
1507   case DeclSpec::TST_decimal128:   // _Decimal128
1508     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1509     Result = Context.IntTy;
1510     declarator.setInvalidType(true);
1511     break;
1512   case DeclSpec::TST_class:
1513   case DeclSpec::TST_enum:
1514   case DeclSpec::TST_union:
1515   case DeclSpec::TST_struct:
1516   case DeclSpec::TST_interface: {
1517     TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1518     if (!D) {
1519       // This can happen in C++ with ambiguous lookups.
1520       Result = Context.IntTy;
1521       declarator.setInvalidType(true);
1522       break;
1523     }
1524 
1525     // If the type is deprecated or unavailable, diagnose it.
1526     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1527 
1528     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1529            DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
1530 
1531     // TypeQuals handled by caller.
1532     Result = Context.getTypeDeclType(D);
1533 
1534     // In both C and C++, make an ElaboratedType.
1535     ElaboratedTypeKeyword Keyword
1536       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1537     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1538                                  DS.isTypeSpecOwned() ? D : nullptr);
1539     break;
1540   }
1541   case DeclSpec::TST_typename: {
1542     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1543            DS.getTypeSpecSign() == 0 &&
1544            "Can't handle qualifiers on typedef names yet!");
1545     Result = S.GetTypeFromParser(DS.getRepAsType());
1546     if (Result.isNull()) {
1547       declarator.setInvalidType(true);
1548     }
1549 
1550     // TypeQuals handled by caller.
1551     break;
1552   }
1553   case DeclSpec::TST_typeofType:
1554     // FIXME: Preserve type source info.
1555     Result = S.GetTypeFromParser(DS.getRepAsType());
1556     assert(!Result.isNull() && "Didn't get a type for typeof?");
1557     if (!Result->isDependentType())
1558       if (const TagType *TT = Result->getAs<TagType>())
1559         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1560     // TypeQuals handled by caller.
1561     Result = Context.getTypeOfType(Result);
1562     break;
1563   case DeclSpec::TST_typeofExpr: {
1564     Expr *E = DS.getRepAsExpr();
1565     assert(E && "Didn't get an expression for typeof?");
1566     // TypeQuals handled by caller.
1567     Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1568     if (Result.isNull()) {
1569       Result = Context.IntTy;
1570       declarator.setInvalidType(true);
1571     }
1572     break;
1573   }
1574   case DeclSpec::TST_decltype: {
1575     Expr *E = DS.getRepAsExpr();
1576     assert(E && "Didn't get an expression for decltype?");
1577     // TypeQuals handled by caller.
1578     Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1579     if (Result.isNull()) {
1580       Result = Context.IntTy;
1581       declarator.setInvalidType(true);
1582     }
1583     break;
1584   }
1585   case DeclSpec::TST_underlyingType:
1586     Result = S.GetTypeFromParser(DS.getRepAsType());
1587     assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
1588     Result = S.BuildUnaryTransformType(Result,
1589                                        UnaryTransformType::EnumUnderlyingType,
1590                                        DS.getTypeSpecTypeLoc());
1591     if (Result.isNull()) {
1592       Result = Context.IntTy;
1593       declarator.setInvalidType(true);
1594     }
1595     break;
1596 
1597   case DeclSpec::TST_auto:
1598     Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
1599     break;
1600 
1601   case DeclSpec::TST_auto_type:
1602     Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1603     break;
1604 
1605   case DeclSpec::TST_decltype_auto:
1606     Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
1607                                  /*IsDependent*/ false);
1608     break;
1609 
1610   case DeclSpec::TST_unknown_anytype:
1611     Result = Context.UnknownAnyTy;
1612     break;
1613 
1614   case DeclSpec::TST_atomic:
1615     Result = S.GetTypeFromParser(DS.getRepAsType());
1616     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1617     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1618     if (Result.isNull()) {
1619       Result = Context.IntTy;
1620       declarator.setInvalidType(true);
1621     }
1622     break;
1623 
1624 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
1625   case DeclSpec::TST_##ImgType##_t:                                            \
1626     switch (getImageAccess(DS.getAttributes())) {                              \
1627     case OpenCLAccessAttr::Keyword_write_only:                                 \
1628       Result = Context.Id##WOTy;                                               \
1629       break;                                                                   \
1630     case OpenCLAccessAttr::Keyword_read_write:                                 \
1631       Result = Context.Id##RWTy;                                               \
1632       break;                                                                   \
1633     case OpenCLAccessAttr::Keyword_read_only:                                  \
1634       Result = Context.Id##ROTy;                                               \
1635       break;                                                                   \
1636     }                                                                          \
1637     break;
1638 #include "clang/Basic/OpenCLImageTypes.def"
1639 
1640   case DeclSpec::TST_error:
1641     Result = Context.IntTy;
1642     declarator.setInvalidType(true);
1643     break;
1644   }
1645 
1646   if (S.getLangOpts().OpenCL &&
1647       S.checkOpenCLDisabledTypeDeclSpec(DS, Result))
1648     declarator.setInvalidType(true);
1649 
1650   bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1651                           DS.getTypeSpecType() == DeclSpec::TST_fract;
1652 
1653   // Only fixed point types can be saturated
1654   if (DS.isTypeSpecSat() && !IsFixedPointType)
1655     S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1656         << DS.getSpecifierName(DS.getTypeSpecType(),
1657                                Context.getPrintingPolicy());
1658 
1659   // Handle complex types.
1660   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1661     if (S.getLangOpts().Freestanding)
1662       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1663     Result = Context.getComplexType(Result);
1664   } else if (DS.isTypeAltiVecVector()) {
1665     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1666     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1667     VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1668     if (DS.isTypeAltiVecPixel())
1669       VecKind = VectorType::AltiVecPixel;
1670     else if (DS.isTypeAltiVecBool())
1671       VecKind = VectorType::AltiVecBool;
1672     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1673   }
1674 
1675   // FIXME: Imaginary.
1676   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1677     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1678 
1679   // Before we process any type attributes, synthesize a block literal
1680   // function declarator if necessary.
1681   if (declarator.getContext() == DeclaratorContext::BlockLiteralContext)
1682     maybeSynthesizeBlockSignature(state, Result);
1683 
1684   // Apply any type attributes from the decl spec.  This may cause the
1685   // list of type attributes to be temporarily saved while the type
1686   // attributes are pushed around.
1687   // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1688   if (!DS.isTypeSpecPipe())
1689     processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1690 
1691   // Apply const/volatile/restrict qualifiers to T.
1692   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1693     // Warn about CV qualifiers on function types.
1694     // C99 6.7.3p8:
1695     //   If the specification of a function type includes any type qualifiers,
1696     //   the behavior is undefined.
1697     // C++11 [dcl.fct]p7:
1698     //   The effect of a cv-qualifier-seq in a function declarator is not the
1699     //   same as adding cv-qualification on top of the function type. In the
1700     //   latter case, the cv-qualifiers are ignored.
1701     if (TypeQuals && Result->isFunctionType()) {
1702       diagnoseAndRemoveTypeQualifiers(
1703           S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1704           S.getLangOpts().CPlusPlus
1705               ? diag::warn_typecheck_function_qualifiers_ignored
1706               : diag::warn_typecheck_function_qualifiers_unspecified);
1707       // No diagnostic for 'restrict' or '_Atomic' applied to a
1708       // function type; we'll diagnose those later, in BuildQualifiedType.
1709     }
1710 
1711     // C++11 [dcl.ref]p1:
1712     //   Cv-qualified references are ill-formed except when the
1713     //   cv-qualifiers are introduced through the use of a typedef-name
1714     //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1715     //
1716     // There don't appear to be any other contexts in which a cv-qualified
1717     // reference type could be formed, so the 'ill-formed' clause here appears
1718     // to never happen.
1719     if (TypeQuals && Result->isReferenceType()) {
1720       diagnoseAndRemoveTypeQualifiers(
1721           S, DS, TypeQuals, Result,
1722           DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1723           diag::warn_typecheck_reference_qualifiers);
1724     }
1725 
1726     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1727     // than once in the same specifier-list or qualifier-list, either directly
1728     // or via one or more typedefs."
1729     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1730         && TypeQuals & Result.getCVRQualifiers()) {
1731       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1732         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1733           << "const";
1734       }
1735 
1736       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1737         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1738           << "volatile";
1739       }
1740 
1741       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1742       // produce a warning in this case.
1743     }
1744 
1745     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1746 
1747     // If adding qualifiers fails, just use the unqualified type.
1748     if (Qualified.isNull())
1749       declarator.setInvalidType(true);
1750     else
1751       Result = Qualified;
1752   }
1753 
1754   assert(!Result.isNull() && "This function should not return a null type");
1755   return Result;
1756 }
1757 
1758 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1759   if (Entity)
1760     return Entity.getAsString();
1761 
1762   return "type name";
1763 }
1764 
1765 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1766                                   Qualifiers Qs, const DeclSpec *DS) {
1767   if (T.isNull())
1768     return QualType();
1769 
1770   // Ignore any attempt to form a cv-qualified reference.
1771   if (T->isReferenceType()) {
1772     Qs.removeConst();
1773     Qs.removeVolatile();
1774   }
1775 
1776   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1777   // object or incomplete types shall not be restrict-qualified."
1778   if (Qs.hasRestrict()) {
1779     unsigned DiagID = 0;
1780     QualType ProblemTy;
1781 
1782     if (T->isAnyPointerType() || T->isReferenceType() ||
1783         T->isMemberPointerType()) {
1784       QualType EltTy;
1785       if (T->isObjCObjectPointerType())
1786         EltTy = T;
1787       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1788         EltTy = PTy->getPointeeType();
1789       else
1790         EltTy = T->getPointeeType();
1791 
1792       // If we have a pointer or reference, the pointee must have an object
1793       // incomplete type.
1794       if (!EltTy->isIncompleteOrObjectType()) {
1795         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1796         ProblemTy = EltTy;
1797       }
1798     } else if (!T->isDependentType()) {
1799       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1800       ProblemTy = T;
1801     }
1802 
1803     if (DiagID) {
1804       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1805       Qs.removeRestrict();
1806     }
1807   }
1808 
1809   return Context.getQualifiedType(T, Qs);
1810 }
1811 
1812 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1813                                   unsigned CVRAU, const DeclSpec *DS) {
1814   if (T.isNull())
1815     return QualType();
1816 
1817   // Ignore any attempt to form a cv-qualified reference.
1818   if (T->isReferenceType())
1819     CVRAU &=
1820         ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1821 
1822   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1823   // TQ_unaligned;
1824   unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1825 
1826   // C11 6.7.3/5:
1827   //   If the same qualifier appears more than once in the same
1828   //   specifier-qualifier-list, either directly or via one or more typedefs,
1829   //   the behavior is the same as if it appeared only once.
1830   //
1831   // It's not specified what happens when the _Atomic qualifier is applied to
1832   // a type specified with the _Atomic specifier, but we assume that this
1833   // should be treated as if the _Atomic qualifier appeared multiple times.
1834   if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1835     // C11 6.7.3/5:
1836     //   If other qualifiers appear along with the _Atomic qualifier in a
1837     //   specifier-qualifier-list, the resulting type is the so-qualified
1838     //   atomic type.
1839     //
1840     // Don't need to worry about array types here, since _Atomic can't be
1841     // applied to such types.
1842     SplitQualType Split = T.getSplitUnqualifiedType();
1843     T = BuildAtomicType(QualType(Split.Ty, 0),
1844                         DS ? DS->getAtomicSpecLoc() : Loc);
1845     if (T.isNull())
1846       return T;
1847     Split.Quals.addCVRQualifiers(CVR);
1848     return BuildQualifiedType(T, Loc, Split.Quals);
1849   }
1850 
1851   Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1852   Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1853   return BuildQualifiedType(T, Loc, Q, DS);
1854 }
1855 
1856 /// Build a paren type including \p T.
1857 QualType Sema::BuildParenType(QualType T) {
1858   return Context.getParenType(T);
1859 }
1860 
1861 /// Given that we're building a pointer or reference to the given
1862 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1863                                            SourceLocation loc,
1864                                            bool isReference) {
1865   // Bail out if retention is unrequired or already specified.
1866   if (!type->isObjCLifetimeType() ||
1867       type.getObjCLifetime() != Qualifiers::OCL_None)
1868     return type;
1869 
1870   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1871 
1872   // If the object type is const-qualified, we can safely use
1873   // __unsafe_unretained.  This is safe (because there are no read
1874   // barriers), and it'll be safe to coerce anything but __weak* to
1875   // the resulting type.
1876   if (type.isConstQualified()) {
1877     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1878 
1879   // Otherwise, check whether the static type does not require
1880   // retaining.  This currently only triggers for Class (possibly
1881   // protocol-qualifed, and arrays thereof).
1882   } else if (type->isObjCARCImplicitlyUnretainedType()) {
1883     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1884 
1885   // If we are in an unevaluated context, like sizeof, skip adding a
1886   // qualification.
1887   } else if (S.isUnevaluatedContext()) {
1888     return type;
1889 
1890   // If that failed, give an error and recover using __strong.  __strong
1891   // is the option most likely to prevent spurious second-order diagnostics,
1892   // like when binding a reference to a field.
1893   } else {
1894     // These types can show up in private ivars in system headers, so
1895     // we need this to not be an error in those cases.  Instead we
1896     // want to delay.
1897     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1898       S.DelayedDiagnostics.add(
1899           sema::DelayedDiagnostic::makeForbiddenType(loc,
1900               diag::err_arc_indirect_no_ownership, type, isReference));
1901     } else {
1902       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1903     }
1904     implicitLifetime = Qualifiers::OCL_Strong;
1905   }
1906   assert(implicitLifetime && "didn't infer any lifetime!");
1907 
1908   Qualifiers qs;
1909   qs.addObjCLifetime(implicitLifetime);
1910   return S.Context.getQualifiedType(type, qs);
1911 }
1912 
1913 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1914   std::string Quals = FnTy->getMethodQuals().getAsString();
1915 
1916   switch (FnTy->getRefQualifier()) {
1917   case RQ_None:
1918     break;
1919 
1920   case RQ_LValue:
1921     if (!Quals.empty())
1922       Quals += ' ';
1923     Quals += '&';
1924     break;
1925 
1926   case RQ_RValue:
1927     if (!Quals.empty())
1928       Quals += ' ';
1929     Quals += "&&";
1930     break;
1931   }
1932 
1933   return Quals;
1934 }
1935 
1936 namespace {
1937 /// Kinds of declarator that cannot contain a qualified function type.
1938 ///
1939 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1940 ///     a function type with a cv-qualifier or a ref-qualifier can only appear
1941 ///     at the topmost level of a type.
1942 ///
1943 /// Parens and member pointers are permitted. We don't diagnose array and
1944 /// function declarators, because they don't allow function types at all.
1945 ///
1946 /// The values of this enum are used in diagnostics.
1947 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1948 } // end anonymous namespace
1949 
1950 /// Check whether the type T is a qualified function type, and if it is,
1951 /// diagnose that it cannot be contained within the given kind of declarator.
1952 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1953                                    QualifiedFunctionKind QFK) {
1954   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1955   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1956   if (!FPT || (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1957     return false;
1958 
1959   S.Diag(Loc, diag::err_compound_qualified_function_type)
1960     << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1961     << getFunctionQualifiersAsString(FPT);
1962   return true;
1963 }
1964 
1965 /// Build a pointer type.
1966 ///
1967 /// \param T The type to which we'll be building a pointer.
1968 ///
1969 /// \param Loc The location of the entity whose type involves this
1970 /// pointer type or, if there is no such entity, the location of the
1971 /// type that will have pointer type.
1972 ///
1973 /// \param Entity The name of the entity that involves the pointer
1974 /// type, if known.
1975 ///
1976 /// \returns A suitable pointer type, if there are no
1977 /// errors. Otherwise, returns a NULL type.
1978 QualType Sema::BuildPointerType(QualType T,
1979                                 SourceLocation Loc, DeclarationName Entity) {
1980   if (T->isReferenceType()) {
1981     // C++ 8.3.2p4: There shall be no ... pointers to references ...
1982     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1983       << getPrintableNameForEntity(Entity) << T;
1984     return QualType();
1985   }
1986 
1987   if (T->isFunctionType() && getLangOpts().OpenCL) {
1988     Diag(Loc, diag::err_opencl_function_pointer);
1989     return QualType();
1990   }
1991 
1992   if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1993     return QualType();
1994 
1995   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1996 
1997   // In ARC, it is forbidden to build pointers to unqualified pointers.
1998   if (getLangOpts().ObjCAutoRefCount)
1999     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2000 
2001   // Build the pointer type.
2002   return Context.getPointerType(T);
2003 }
2004 
2005 /// Build a reference type.
2006 ///
2007 /// \param T The type to which we'll be building a reference.
2008 ///
2009 /// \param Loc The location of the entity whose type involves this
2010 /// reference type or, if there is no such entity, the location of the
2011 /// type that will have reference type.
2012 ///
2013 /// \param Entity The name of the entity that involves the reference
2014 /// type, if known.
2015 ///
2016 /// \returns A suitable reference type, if there are no
2017 /// errors. Otherwise, returns a NULL type.
2018 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2019                                   SourceLocation Loc,
2020                                   DeclarationName Entity) {
2021   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
2022          "Unresolved overloaded function type");
2023 
2024   // C++0x [dcl.ref]p6:
2025   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2026   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2027   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
2028   //   the type "lvalue reference to T", while an attempt to create the type
2029   //   "rvalue reference to cv TR" creates the type TR.
2030   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2031 
2032   // C++ [dcl.ref]p4: There shall be no references to references.
2033   //
2034   // According to C++ DR 106, references to references are only
2035   // diagnosed when they are written directly (e.g., "int & &"),
2036   // but not when they happen via a typedef:
2037   //
2038   //   typedef int& intref;
2039   //   typedef intref& intref2;
2040   //
2041   // Parser::ParseDeclaratorInternal diagnoses the case where
2042   // references are written directly; here, we handle the
2043   // collapsing of references-to-references as described in C++0x.
2044   // DR 106 and 540 introduce reference-collapsing into C++98/03.
2045 
2046   // C++ [dcl.ref]p1:
2047   //   A declarator that specifies the type "reference to cv void"
2048   //   is ill-formed.
2049   if (T->isVoidType()) {
2050     Diag(Loc, diag::err_reference_to_void);
2051     return QualType();
2052   }
2053 
2054   if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2055     return QualType();
2056 
2057   // In ARC, it is forbidden to build references to unqualified pointers.
2058   if (getLangOpts().ObjCAutoRefCount)
2059     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2060 
2061   // Handle restrict on references.
2062   if (LValueRef)
2063     return Context.getLValueReferenceType(T, SpelledAsLValue);
2064   return Context.getRValueReferenceType(T);
2065 }
2066 
2067 /// Build a Read-only Pipe type.
2068 ///
2069 /// \param T The type to which we'll be building a Pipe.
2070 ///
2071 /// \param Loc We do not use it for now.
2072 ///
2073 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2074 /// NULL type.
2075 QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2076   return Context.getReadPipeType(T);
2077 }
2078 
2079 /// Build a Write-only Pipe type.
2080 ///
2081 /// \param T The type to which we'll be building a Pipe.
2082 ///
2083 /// \param Loc We do not use it for now.
2084 ///
2085 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2086 /// NULL type.
2087 QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2088   return Context.getWritePipeType(T);
2089 }
2090 
2091 /// Check whether the specified array size makes the array type a VLA.  If so,
2092 /// return true, if not, return the size of the array in SizeVal.
2093 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
2094   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2095   // (like gnu99, but not c99) accept any evaluatable value as an extension.
2096   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2097   public:
2098     VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
2099 
2100     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
2101     }
2102 
2103     void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
2104       S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
2105     }
2106   } Diagnoser;
2107 
2108   return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
2109                                            S.LangOpts.GNUMode ||
2110                                            S.LangOpts.OpenCL).isInvalid();
2111 }
2112 
2113 /// Build an array type.
2114 ///
2115 /// \param T The type of each element in the array.
2116 ///
2117 /// \param ASM C99 array size modifier (e.g., '*', 'static').
2118 ///
2119 /// \param ArraySize Expression describing the size of the array.
2120 ///
2121 /// \param Brackets The range from the opening '[' to the closing ']'.
2122 ///
2123 /// \param Entity The name of the entity that involves the array
2124 /// type, if known.
2125 ///
2126 /// \returns A suitable array type, if there are no errors. Otherwise,
2127 /// returns a NULL type.
2128 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2129                               Expr *ArraySize, unsigned Quals,
2130                               SourceRange Brackets, DeclarationName Entity) {
2131 
2132   SourceLocation Loc = Brackets.getBegin();
2133   if (getLangOpts().CPlusPlus) {
2134     // C++ [dcl.array]p1:
2135     //   T is called the array element type; this type shall not be a reference
2136     //   type, the (possibly cv-qualified) type void, a function type or an
2137     //   abstract class type.
2138     //
2139     // C++ [dcl.array]p3:
2140     //   When several "array of" specifications are adjacent, [...] only the
2141     //   first of the constant expressions that specify the bounds of the arrays
2142     //   may be omitted.
2143     //
2144     // Note: function types are handled in the common path with C.
2145     if (T->isReferenceType()) {
2146       Diag(Loc, diag::err_illegal_decl_array_of_references)
2147       << getPrintableNameForEntity(Entity) << T;
2148       return QualType();
2149     }
2150 
2151     if (T->isVoidType() || T->isIncompleteArrayType()) {
2152       Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
2153       return QualType();
2154     }
2155 
2156     if (RequireNonAbstractType(Brackets.getBegin(), T,
2157                                diag::err_array_of_abstract_type))
2158       return QualType();
2159 
2160     // Mentioning a member pointer type for an array type causes us to lock in
2161     // an inheritance model, even if it's inside an unused typedef.
2162     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2163       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2164         if (!MPTy->getClass()->isDependentType())
2165           (void)isCompleteType(Loc, T);
2166 
2167   } else {
2168     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2169     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2170     if (RequireCompleteType(Loc, T,
2171                             diag::err_illegal_decl_array_incomplete_type))
2172       return QualType();
2173   }
2174 
2175   if (T->isFunctionType()) {
2176     Diag(Loc, diag::err_illegal_decl_array_of_functions)
2177       << getPrintableNameForEntity(Entity) << T;
2178     return QualType();
2179   }
2180 
2181   if (const RecordType *EltTy = T->getAs<RecordType>()) {
2182     // If the element type is a struct or union that contains a variadic
2183     // array, accept it as a GNU extension: C99 6.7.2.1p2.
2184     if (EltTy->getDecl()->hasFlexibleArrayMember())
2185       Diag(Loc, diag::ext_flexible_array_in_array) << T;
2186   } else if (T->isObjCObjectType()) {
2187     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2188     return QualType();
2189   }
2190 
2191   // Do placeholder conversions on the array size expression.
2192   if (ArraySize && ArraySize->hasPlaceholderType()) {
2193     ExprResult Result = CheckPlaceholderExpr(ArraySize);
2194     if (Result.isInvalid()) return QualType();
2195     ArraySize = Result.get();
2196   }
2197 
2198   // Do lvalue-to-rvalue conversions on the array size expression.
2199   if (ArraySize && !ArraySize->isRValue()) {
2200     ExprResult Result = DefaultLvalueConversion(ArraySize);
2201     if (Result.isInvalid())
2202       return QualType();
2203 
2204     ArraySize = Result.get();
2205   }
2206 
2207   // C99 6.7.5.2p1: The size expression shall have integer type.
2208   // C++11 allows contextual conversions to such types.
2209   if (!getLangOpts().CPlusPlus11 &&
2210       ArraySize && !ArraySize->isTypeDependent() &&
2211       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2212     Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2213         << ArraySize->getType() << ArraySize->getSourceRange();
2214     return QualType();
2215   }
2216 
2217   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2218   if (!ArraySize) {
2219     if (ASM == ArrayType::Star)
2220       T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2221     else
2222       T = Context.getIncompleteArrayType(T, ASM, Quals);
2223   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2224     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2225   } else if ((!T->isDependentType() && !T->isIncompleteType() &&
2226               !T->isConstantSizeType()) ||
2227              isArraySizeVLA(*this, ArraySize, ConstVal)) {
2228     // Even in C++11, don't allow contextual conversions in the array bound
2229     // of a VLA.
2230     if (getLangOpts().CPlusPlus11 &&
2231         !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2232       Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2233           << ArraySize->getType() << ArraySize->getSourceRange();
2234       return QualType();
2235     }
2236 
2237     // C99: an array with an element type that has a non-constant-size is a VLA.
2238     // C99: an array with a non-ICE size is a VLA.  We accept any expression
2239     // that we can fold to a non-zero positive value as an extension.
2240     T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2241   } else {
2242     // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2243     // have a value greater than zero.
2244     if (ConstVal.isSigned() && ConstVal.isNegative()) {
2245       if (Entity)
2246         Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2247             << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
2248       else
2249         Diag(ArraySize->getBeginLoc(), diag::err_typecheck_negative_array_size)
2250             << ArraySize->getSourceRange();
2251       return QualType();
2252     }
2253     if (ConstVal == 0) {
2254       // GCC accepts zero sized static arrays. We allow them when
2255       // we're not in a SFINAE context.
2256       Diag(ArraySize->getBeginLoc(), isSFINAEContext()
2257                                          ? diag::err_typecheck_zero_array_size
2258                                          : diag::ext_typecheck_zero_array_size)
2259           << ArraySize->getSourceRange();
2260 
2261       if (ASM == ArrayType::Static) {
2262         Diag(ArraySize->getBeginLoc(),
2263              diag::warn_typecheck_zero_static_array_size)
2264             << ArraySize->getSourceRange();
2265         ASM = ArrayType::Normal;
2266       }
2267     } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
2268                !T->isIncompleteType() && !T->isUndeducedType()) {
2269       // Is the array too large?
2270       unsigned ActiveSizeBits
2271         = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
2272       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2273         Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2274             << ConstVal.toString(10) << ArraySize->getSourceRange();
2275         return QualType();
2276       }
2277     }
2278 
2279     T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
2280   }
2281 
2282   // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2283   if (getLangOpts().OpenCL && T->isVariableArrayType()) {
2284     Diag(Loc, diag::err_opencl_vla);
2285     return QualType();
2286   }
2287 
2288   if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2289     // CUDA device code and some other targets don't support VLAs.
2290     targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2291                         ? diag::err_cuda_vla
2292                         : diag::err_vla_unsupported)
2293         << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2294                 ? CurrentCUDATarget()
2295                 : CFT_InvalidTarget);
2296   }
2297 
2298   // If this is not C99, extwarn about VLA's and C99 array size modifiers.
2299   if (!getLangOpts().C99) {
2300     if (T->isVariableArrayType()) {
2301       // Prohibit the use of VLAs during template argument deduction.
2302       if (isSFINAEContext()) {
2303         Diag(Loc, diag::err_vla_in_sfinae);
2304         return QualType();
2305       }
2306       // Just extwarn about VLAs.
2307       else
2308         Diag(Loc, diag::ext_vla);
2309     } else if (ASM != ArrayType::Normal || Quals != 0)
2310       Diag(Loc,
2311            getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
2312                                   : diag::ext_c99_array_usage) << ASM;
2313   }
2314 
2315   if (T->isVariableArrayType()) {
2316     // Warn about VLAs for -Wvla.
2317     Diag(Loc, diag::warn_vla_used);
2318   }
2319 
2320   // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2321   // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2322   // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2323   if (getLangOpts().OpenCL) {
2324     const QualType ArrType = Context.getBaseElementType(T);
2325     if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2326         ArrType->isSamplerT() || ArrType->isImageType()) {
2327       Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2328       return QualType();
2329     }
2330   }
2331 
2332   return T;
2333 }
2334 
2335 QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2336                                SourceLocation AttrLoc) {
2337   // The base type must be integer (not Boolean or enumeration) or float, and
2338   // can't already be a vector.
2339   if (!CurType->isDependentType() &&
2340       (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2341        (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) {
2342     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2343     return QualType();
2344   }
2345 
2346   if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2347     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2348                                                VectorType::GenericVector);
2349 
2350   llvm::APSInt VecSize(32);
2351   if (!SizeExpr->isIntegerConstantExpr(VecSize, Context)) {
2352     Diag(AttrLoc, diag::err_attribute_argument_type)
2353         << "vector_size" << AANT_ArgumentIntegerConstant
2354         << SizeExpr->getSourceRange();
2355     return QualType();
2356   }
2357 
2358   if (CurType->isDependentType())
2359     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2360                                                VectorType::GenericVector);
2361 
2362   unsigned VectorSize = static_cast<unsigned>(VecSize.getZExtValue() * 8);
2363   unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2364 
2365   if (VectorSize == 0) {
2366     Diag(AttrLoc, diag::err_attribute_zero_size) << SizeExpr->getSourceRange();
2367     return QualType();
2368   }
2369 
2370   // vecSize is specified in bytes - convert to bits.
2371   if (VectorSize % TypeSize) {
2372     Diag(AttrLoc, diag::err_attribute_invalid_size)
2373         << SizeExpr->getSourceRange();
2374     return QualType();
2375   }
2376 
2377   if (VectorType::isVectorSizeTooLarge(VectorSize / TypeSize)) {
2378     Diag(AttrLoc, diag::err_attribute_size_too_large)
2379         << SizeExpr->getSourceRange();
2380     return QualType();
2381   }
2382 
2383   return Context.getVectorType(CurType, VectorSize / TypeSize,
2384                                VectorType::GenericVector);
2385 }
2386 
2387 /// Build an ext-vector type.
2388 ///
2389 /// Run the required checks for the extended vector type.
2390 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2391                                   SourceLocation AttrLoc) {
2392   // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2393   // in conjunction with complex types (pointers, arrays, functions, etc.).
2394   //
2395   // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2396   // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2397   // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2398   // of bool aren't allowed.
2399   if ((!T->isDependentType() && !T->isIntegerType() &&
2400        !T->isRealFloatingType()) ||
2401       T->isBooleanType()) {
2402     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2403     return QualType();
2404   }
2405 
2406   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2407     llvm::APSInt vecSize(32);
2408     if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
2409       Diag(AttrLoc, diag::err_attribute_argument_type)
2410         << "ext_vector_type" << AANT_ArgumentIntegerConstant
2411         << ArraySize->getSourceRange();
2412       return QualType();
2413     }
2414 
2415     // Unlike gcc's vector_size attribute, the size is specified as the
2416     // number of elements, not the number of bytes.
2417     unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2418 
2419     if (vectorSize == 0) {
2420       Diag(AttrLoc, diag::err_attribute_zero_size)
2421       << ArraySize->getSourceRange();
2422       return QualType();
2423     }
2424 
2425     if (VectorType::isVectorSizeTooLarge(vectorSize)) {
2426       Diag(AttrLoc, diag::err_attribute_size_too_large)
2427         << ArraySize->getSourceRange();
2428       return QualType();
2429     }
2430 
2431     return Context.getExtVectorType(T, vectorSize);
2432   }
2433 
2434   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2435 }
2436 
2437 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2438   if (T->isArrayType() || T->isFunctionType()) {
2439     Diag(Loc, diag::err_func_returning_array_function)
2440       << T->isFunctionType() << T;
2441     return true;
2442   }
2443 
2444   // Functions cannot return half FP.
2445   if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2446     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2447       FixItHint::CreateInsertion(Loc, "*");
2448     return true;
2449   }
2450 
2451   // Methods cannot return interface types. All ObjC objects are
2452   // passed by reference.
2453   if (T->isObjCObjectType()) {
2454     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2455         << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2456     return true;
2457   }
2458 
2459   return false;
2460 }
2461 
2462 /// Check the extended parameter information.  Most of the necessary
2463 /// checking should occur when applying the parameter attribute; the
2464 /// only other checks required are positional restrictions.
2465 static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2466                     const FunctionProtoType::ExtProtoInfo &EPI,
2467                     llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2468   assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2469 
2470   bool hasCheckedSwiftCall = false;
2471   auto checkForSwiftCC = [&](unsigned paramIndex) {
2472     // Only do this once.
2473     if (hasCheckedSwiftCall) return;
2474     hasCheckedSwiftCall = true;
2475     if (EPI.ExtInfo.getCC() == CC_Swift) return;
2476     S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2477       << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
2478   };
2479 
2480   for (size_t paramIndex = 0, numParams = paramTypes.size();
2481           paramIndex != numParams; ++paramIndex) {
2482     switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2483     // Nothing interesting to check for orindary-ABI parameters.
2484     case ParameterABI::Ordinary:
2485       continue;
2486 
2487     // swift_indirect_result parameters must be a prefix of the function
2488     // arguments.
2489     case ParameterABI::SwiftIndirectResult:
2490       checkForSwiftCC(paramIndex);
2491       if (paramIndex != 0 &&
2492           EPI.ExtParameterInfos[paramIndex - 1].getABI()
2493             != ParameterABI::SwiftIndirectResult) {
2494         S.Diag(getParamLoc(paramIndex),
2495                diag::err_swift_indirect_result_not_first);
2496       }
2497       continue;
2498 
2499     case ParameterABI::SwiftContext:
2500       checkForSwiftCC(paramIndex);
2501       continue;
2502 
2503     // swift_error parameters must be preceded by a swift_context parameter.
2504     case ParameterABI::SwiftErrorResult:
2505       checkForSwiftCC(paramIndex);
2506       if (paramIndex == 0 ||
2507           EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2508               ParameterABI::SwiftContext) {
2509         S.Diag(getParamLoc(paramIndex),
2510                diag::err_swift_error_result_not_after_swift_context);
2511       }
2512       continue;
2513     }
2514     llvm_unreachable("bad ABI kind");
2515   }
2516 }
2517 
2518 QualType Sema::BuildFunctionType(QualType T,
2519                                  MutableArrayRef<QualType> ParamTypes,
2520                                  SourceLocation Loc, DeclarationName Entity,
2521                                  const FunctionProtoType::ExtProtoInfo &EPI) {
2522   bool Invalid = false;
2523 
2524   Invalid |= CheckFunctionReturnType(T, Loc);
2525 
2526   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2527     // FIXME: Loc is too inprecise here, should use proper locations for args.
2528     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2529     if (ParamType->isVoidType()) {
2530       Diag(Loc, diag::err_param_with_void_type);
2531       Invalid = true;
2532     } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2533       // Disallow half FP arguments.
2534       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2535         FixItHint::CreateInsertion(Loc, "*");
2536       Invalid = true;
2537     }
2538 
2539     ParamTypes[Idx] = ParamType;
2540   }
2541 
2542   if (EPI.ExtParameterInfos) {
2543     checkExtParameterInfos(*this, ParamTypes, EPI,
2544                            [=](unsigned i) { return Loc; });
2545   }
2546 
2547   if (EPI.ExtInfo.getProducesResult()) {
2548     // This is just a warning, so we can't fail to build if we see it.
2549     checkNSReturnsRetainedReturnType(Loc, T);
2550   }
2551 
2552   if (Invalid)
2553     return QualType();
2554 
2555   return Context.getFunctionType(T, ParamTypes, EPI);
2556 }
2557 
2558 /// Build a member pointer type \c T Class::*.
2559 ///
2560 /// \param T the type to which the member pointer refers.
2561 /// \param Class the class type into which the member pointer points.
2562 /// \param Loc the location where this type begins
2563 /// \param Entity the name of the entity that will have this member pointer type
2564 ///
2565 /// \returns a member pointer type, if successful, or a NULL type if there was
2566 /// an error.
2567 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2568                                       SourceLocation Loc,
2569                                       DeclarationName Entity) {
2570   // Verify that we're not building a pointer to pointer to function with
2571   // exception specification.
2572   if (CheckDistantExceptionSpec(T)) {
2573     Diag(Loc, diag::err_distant_exception_spec);
2574     return QualType();
2575   }
2576 
2577   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2578   //   with reference type, or "cv void."
2579   if (T->isReferenceType()) {
2580     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2581       << getPrintableNameForEntity(Entity) << T;
2582     return QualType();
2583   }
2584 
2585   if (T->isVoidType()) {
2586     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2587       << getPrintableNameForEntity(Entity);
2588     return QualType();
2589   }
2590 
2591   if (!Class->isDependentType() && !Class->isRecordType()) {
2592     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2593     return QualType();
2594   }
2595 
2596   // Adjust the default free function calling convention to the default method
2597   // calling convention.
2598   bool IsCtorOrDtor =
2599       (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2600       (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2601   if (T->isFunctionType())
2602     adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2603 
2604   return Context.getMemberPointerType(T, Class.getTypePtr());
2605 }
2606 
2607 /// Build a block pointer type.
2608 ///
2609 /// \param T The type to which we'll be building a block pointer.
2610 ///
2611 /// \param Loc The source location, used for diagnostics.
2612 ///
2613 /// \param Entity The name of the entity that involves the block pointer
2614 /// type, if known.
2615 ///
2616 /// \returns A suitable block pointer type, if there are no
2617 /// errors. Otherwise, returns a NULL type.
2618 QualType Sema::BuildBlockPointerType(QualType T,
2619                                      SourceLocation Loc,
2620                                      DeclarationName Entity) {
2621   if (!T->isFunctionType()) {
2622     Diag(Loc, diag::err_nonfunction_block_type);
2623     return QualType();
2624   }
2625 
2626   if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2627     return QualType();
2628 
2629   return Context.getBlockPointerType(T);
2630 }
2631 
2632 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2633   QualType QT = Ty.get();
2634   if (QT.isNull()) {
2635     if (TInfo) *TInfo = nullptr;
2636     return QualType();
2637   }
2638 
2639   TypeSourceInfo *DI = nullptr;
2640   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2641     QT = LIT->getType();
2642     DI = LIT->getTypeSourceInfo();
2643   }
2644 
2645   if (TInfo) *TInfo = DI;
2646   return QT;
2647 }
2648 
2649 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2650                                             Qualifiers::ObjCLifetime ownership,
2651                                             unsigned chunkIndex);
2652 
2653 /// Given that this is the declaration of a parameter under ARC,
2654 /// attempt to infer attributes and such for pointer-to-whatever
2655 /// types.
2656 static void inferARCWriteback(TypeProcessingState &state,
2657                               QualType &declSpecType) {
2658   Sema &S = state.getSema();
2659   Declarator &declarator = state.getDeclarator();
2660 
2661   // TODO: should we care about decl qualifiers?
2662 
2663   // Check whether the declarator has the expected form.  We walk
2664   // from the inside out in order to make the block logic work.
2665   unsigned outermostPointerIndex = 0;
2666   bool isBlockPointer = false;
2667   unsigned numPointers = 0;
2668   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2669     unsigned chunkIndex = i;
2670     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2671     switch (chunk.Kind) {
2672     case DeclaratorChunk::Paren:
2673       // Ignore parens.
2674       break;
2675 
2676     case DeclaratorChunk::Reference:
2677     case DeclaratorChunk::Pointer:
2678       // Count the number of pointers.  Treat references
2679       // interchangeably as pointers; if they're mis-ordered, normal
2680       // type building will discover that.
2681       outermostPointerIndex = chunkIndex;
2682       numPointers++;
2683       break;
2684 
2685     case DeclaratorChunk::BlockPointer:
2686       // If we have a pointer to block pointer, that's an acceptable
2687       // indirect reference; anything else is not an application of
2688       // the rules.
2689       if (numPointers != 1) return;
2690       numPointers++;
2691       outermostPointerIndex = chunkIndex;
2692       isBlockPointer = true;
2693 
2694       // We don't care about pointer structure in return values here.
2695       goto done;
2696 
2697     case DeclaratorChunk::Array: // suppress if written (id[])?
2698     case DeclaratorChunk::Function:
2699     case DeclaratorChunk::MemberPointer:
2700     case DeclaratorChunk::Pipe:
2701       return;
2702     }
2703   }
2704  done:
2705 
2706   // If we have *one* pointer, then we want to throw the qualifier on
2707   // the declaration-specifiers, which means that it needs to be a
2708   // retainable object type.
2709   if (numPointers == 1) {
2710     // If it's not a retainable object type, the rule doesn't apply.
2711     if (!declSpecType->isObjCRetainableType()) return;
2712 
2713     // If it already has lifetime, don't do anything.
2714     if (declSpecType.getObjCLifetime()) return;
2715 
2716     // Otherwise, modify the type in-place.
2717     Qualifiers qs;
2718 
2719     if (declSpecType->isObjCARCImplicitlyUnretainedType())
2720       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2721     else
2722       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2723     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2724 
2725   // If we have *two* pointers, then we want to throw the qualifier on
2726   // the outermost pointer.
2727   } else if (numPointers == 2) {
2728     // If we don't have a block pointer, we need to check whether the
2729     // declaration-specifiers gave us something that will turn into a
2730     // retainable object pointer after we slap the first pointer on it.
2731     if (!isBlockPointer && !declSpecType->isObjCObjectType())
2732       return;
2733 
2734     // Look for an explicit lifetime attribute there.
2735     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2736     if (chunk.Kind != DeclaratorChunk::Pointer &&
2737         chunk.Kind != DeclaratorChunk::BlockPointer)
2738       return;
2739     for (const ParsedAttr &AL : chunk.getAttrs())
2740       if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2741         return;
2742 
2743     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2744                                           outermostPointerIndex);
2745 
2746   // Any other number of pointers/references does not trigger the rule.
2747   } else return;
2748 
2749   // TODO: mark whether we did this inference?
2750 }
2751 
2752 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2753                                      SourceLocation FallbackLoc,
2754                                      SourceLocation ConstQualLoc,
2755                                      SourceLocation VolatileQualLoc,
2756                                      SourceLocation RestrictQualLoc,
2757                                      SourceLocation AtomicQualLoc,
2758                                      SourceLocation UnalignedQualLoc) {
2759   if (!Quals)
2760     return;
2761 
2762   struct Qual {
2763     const char *Name;
2764     unsigned Mask;
2765     SourceLocation Loc;
2766   } const QualKinds[5] = {
2767     { "const", DeclSpec::TQ_const, ConstQualLoc },
2768     { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2769     { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2770     { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2771     { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2772   };
2773 
2774   SmallString<32> QualStr;
2775   unsigned NumQuals = 0;
2776   SourceLocation Loc;
2777   FixItHint FixIts[5];
2778 
2779   // Build a string naming the redundant qualifiers.
2780   for (auto &E : QualKinds) {
2781     if (Quals & E.Mask) {
2782       if (!QualStr.empty()) QualStr += ' ';
2783       QualStr += E.Name;
2784 
2785       // If we have a location for the qualifier, offer a fixit.
2786       SourceLocation QualLoc = E.Loc;
2787       if (QualLoc.isValid()) {
2788         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2789         if (Loc.isInvalid() ||
2790             getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2791           Loc = QualLoc;
2792       }
2793 
2794       ++NumQuals;
2795     }
2796   }
2797 
2798   Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2799     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2800 }
2801 
2802 // Diagnose pointless type qualifiers on the return type of a function.
2803 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2804                                                   Declarator &D,
2805                                                   unsigned FunctionChunkIndex) {
2806   if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2807     // FIXME: TypeSourceInfo doesn't preserve location information for
2808     // qualifiers.
2809     S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2810                                 RetTy.getLocalCVRQualifiers(),
2811                                 D.getIdentifierLoc());
2812     return;
2813   }
2814 
2815   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2816                 End = D.getNumTypeObjects();
2817        OuterChunkIndex != End; ++OuterChunkIndex) {
2818     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2819     switch (OuterChunk.Kind) {
2820     case DeclaratorChunk::Paren:
2821       continue;
2822 
2823     case DeclaratorChunk::Pointer: {
2824       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2825       S.diagnoseIgnoredQualifiers(
2826           diag::warn_qual_return_type,
2827           PTI.TypeQuals,
2828           SourceLocation(),
2829           SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2830           SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2831           SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2832           SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc),
2833           SourceLocation::getFromRawEncoding(PTI.UnalignedQualLoc));
2834       return;
2835     }
2836 
2837     case DeclaratorChunk::Function:
2838     case DeclaratorChunk::BlockPointer:
2839     case DeclaratorChunk::Reference:
2840     case DeclaratorChunk::Array:
2841     case DeclaratorChunk::MemberPointer:
2842     case DeclaratorChunk::Pipe:
2843       // FIXME: We can't currently provide an accurate source location and a
2844       // fix-it hint for these.
2845       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2846       S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2847                                   RetTy.getCVRQualifiers() | AtomicQual,
2848                                   D.getIdentifierLoc());
2849       return;
2850     }
2851 
2852     llvm_unreachable("unknown declarator chunk kind");
2853   }
2854 
2855   // If the qualifiers come from a conversion function type, don't diagnose
2856   // them -- they're not necessarily redundant, since such a conversion
2857   // operator can be explicitly called as "x.operator const int()".
2858   if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
2859     return;
2860 
2861   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2862   // which are present there.
2863   S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2864                               D.getDeclSpec().getTypeQualifiers(),
2865                               D.getIdentifierLoc(),
2866                               D.getDeclSpec().getConstSpecLoc(),
2867                               D.getDeclSpec().getVolatileSpecLoc(),
2868                               D.getDeclSpec().getRestrictSpecLoc(),
2869                               D.getDeclSpec().getAtomicSpecLoc(),
2870                               D.getDeclSpec().getUnalignedSpecLoc());
2871 }
2872 
2873 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2874                                              TypeSourceInfo *&ReturnTypeInfo) {
2875   Sema &SemaRef = state.getSema();
2876   Declarator &D = state.getDeclarator();
2877   QualType T;
2878   ReturnTypeInfo = nullptr;
2879 
2880   // The TagDecl owned by the DeclSpec.
2881   TagDecl *OwnedTagDecl = nullptr;
2882 
2883   switch (D.getName().getKind()) {
2884   case UnqualifiedIdKind::IK_ImplicitSelfParam:
2885   case UnqualifiedIdKind::IK_OperatorFunctionId:
2886   case UnqualifiedIdKind::IK_Identifier:
2887   case UnqualifiedIdKind::IK_LiteralOperatorId:
2888   case UnqualifiedIdKind::IK_TemplateId:
2889     T = ConvertDeclSpecToType(state);
2890 
2891     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2892       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2893       // Owned declaration is embedded in declarator.
2894       OwnedTagDecl->setEmbeddedInDeclarator(true);
2895     }
2896     break;
2897 
2898   case UnqualifiedIdKind::IK_ConstructorName:
2899   case UnqualifiedIdKind::IK_ConstructorTemplateId:
2900   case UnqualifiedIdKind::IK_DestructorName:
2901     // Constructors and destructors don't have return types. Use
2902     // "void" instead.
2903     T = SemaRef.Context.VoidTy;
2904     processTypeAttrs(state, T, TAL_DeclSpec,
2905                      D.getMutableDeclSpec().getAttributes());
2906     break;
2907 
2908   case UnqualifiedIdKind::IK_DeductionGuideName:
2909     // Deduction guides have a trailing return type and no type in their
2910     // decl-specifier sequence. Use a placeholder return type for now.
2911     T = SemaRef.Context.DependentTy;
2912     break;
2913 
2914   case UnqualifiedIdKind::IK_ConversionFunctionId:
2915     // The result type of a conversion function is the type that it
2916     // converts to.
2917     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2918                                   &ReturnTypeInfo);
2919     break;
2920   }
2921 
2922   if (!D.getAttributes().empty())
2923     distributeTypeAttrsFromDeclarator(state, T);
2924 
2925   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2926   if (DeducedType *Deduced = T->getContainedDeducedType()) {
2927     AutoType *Auto = dyn_cast<AutoType>(Deduced);
2928     int Error = -1;
2929 
2930     // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
2931     // class template argument deduction)?
2932     bool IsCXXAutoType =
2933         (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
2934     bool IsDeducedReturnType = false;
2935 
2936     switch (D.getContext()) {
2937     case DeclaratorContext::LambdaExprContext:
2938       // Declared return type of a lambda-declarator is implicit and is always
2939       // 'auto'.
2940       break;
2941     case DeclaratorContext::ObjCParameterContext:
2942     case DeclaratorContext::ObjCResultContext:
2943     case DeclaratorContext::PrototypeContext:
2944       Error = 0;
2945       break;
2946     case DeclaratorContext::LambdaExprParameterContext:
2947       // In C++14, generic lambdas allow 'auto' in their parameters.
2948       if (!SemaRef.getLangOpts().CPlusPlus14 ||
2949           !Auto || Auto->getKeyword() != AutoTypeKeyword::Auto)
2950         Error = 16;
2951       else {
2952         // If auto is mentioned in a lambda parameter context, convert it to a
2953         // template parameter type.
2954         sema::LambdaScopeInfo *LSI = SemaRef.getCurLambda();
2955         assert(LSI && "No LambdaScopeInfo on the stack!");
2956         const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
2957         const unsigned AutoParameterPosition = LSI->TemplateParams.size();
2958         const bool IsParameterPack = D.hasEllipsis();
2959 
2960         // Create the TemplateTypeParmDecl here to retrieve the corresponding
2961         // template parameter type. Template parameters are temporarily added
2962         // to the TU until the associated TemplateDecl is created.
2963         TemplateTypeParmDecl *CorrespondingTemplateParam =
2964             TemplateTypeParmDecl::Create(
2965                 SemaRef.Context, SemaRef.Context.getTranslationUnitDecl(),
2966                 /*KeyLoc*/ SourceLocation(), /*NameLoc*/ D.getBeginLoc(),
2967                 TemplateParameterDepth, AutoParameterPosition,
2968                 /*Identifier*/ nullptr, false, IsParameterPack);
2969         CorrespondingTemplateParam->setImplicit();
2970         LSI->TemplateParams.push_back(CorrespondingTemplateParam);
2971         // Replace the 'auto' in the function parameter with this invented
2972         // template type parameter.
2973         // FIXME: Retain some type sugar to indicate that this was written
2974         // as 'auto'.
2975         T = state.ReplaceAutoType(
2976             T, QualType(CorrespondingTemplateParam->getTypeForDecl(), 0));
2977       }
2978       break;
2979     case DeclaratorContext::MemberContext: {
2980       if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
2981           D.isFunctionDeclarator())
2982         break;
2983       bool Cxx = SemaRef.getLangOpts().CPlusPlus;
2984       switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2985       case TTK_Enum: llvm_unreachable("unhandled tag kind");
2986       case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
2987       case TTK_Union:  Error = Cxx ? 3 : 4; /* Union member */ break;
2988       case TTK_Class:  Error = 5; /* Class member */ break;
2989       case TTK_Interface: Error = 6; /* Interface member */ break;
2990       }
2991       if (D.getDeclSpec().isFriendSpecified())
2992         Error = 20; // Friend type
2993       break;
2994     }
2995     case DeclaratorContext::CXXCatchContext:
2996     case DeclaratorContext::ObjCCatchContext:
2997       Error = 7; // Exception declaration
2998       break;
2999     case DeclaratorContext::TemplateParamContext:
3000       if (isa<DeducedTemplateSpecializationType>(Deduced))
3001         Error = 19; // Template parameter
3002       else if (!SemaRef.getLangOpts().CPlusPlus17)
3003         Error = 8; // Template parameter (until C++17)
3004       break;
3005     case DeclaratorContext::BlockLiteralContext:
3006       Error = 9; // Block literal
3007       break;
3008     case DeclaratorContext::TemplateArgContext:
3009       // Within a template argument list, a deduced template specialization
3010       // type will be reinterpreted as a template template argument.
3011       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3012           !D.getNumTypeObjects() &&
3013           D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3014         break;
3015       LLVM_FALLTHROUGH;
3016     case DeclaratorContext::TemplateTypeArgContext:
3017       Error = 10; // Template type argument
3018       break;
3019     case DeclaratorContext::AliasDeclContext:
3020     case DeclaratorContext::AliasTemplateContext:
3021       Error = 12; // Type alias
3022       break;
3023     case DeclaratorContext::TrailingReturnContext:
3024     case DeclaratorContext::TrailingReturnVarContext:
3025       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3026         Error = 13; // Function return type
3027       IsDeducedReturnType = true;
3028       break;
3029     case DeclaratorContext::ConversionIdContext:
3030       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3031         Error = 14; // conversion-type-id
3032       IsDeducedReturnType = true;
3033       break;
3034     case DeclaratorContext::FunctionalCastContext:
3035       if (isa<DeducedTemplateSpecializationType>(Deduced))
3036         break;
3037       LLVM_FALLTHROUGH;
3038     case DeclaratorContext::TypeNameContext:
3039       Error = 15; // Generic
3040       break;
3041     case DeclaratorContext::FileContext:
3042     case DeclaratorContext::BlockContext:
3043     case DeclaratorContext::ForContext:
3044     case DeclaratorContext::InitStmtContext:
3045     case DeclaratorContext::ConditionContext:
3046       // FIXME: P0091R3 (erroneously) does not permit class template argument
3047       // deduction in conditions, for-init-statements, and other declarations
3048       // that are not simple-declarations.
3049       break;
3050     case DeclaratorContext::CXXNewContext:
3051       // FIXME: P0091R3 does not permit class template argument deduction here,
3052       // but we follow GCC and allow it anyway.
3053       if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3054         Error = 17; // 'new' type
3055       break;
3056     case DeclaratorContext::KNRTypeListContext:
3057       Error = 18; // K&R function parameter
3058       break;
3059     }
3060 
3061     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3062       Error = 11;
3063 
3064     // In Objective-C it is an error to use 'auto' on a function declarator
3065     // (and everywhere for '__auto_type').
3066     if (D.isFunctionDeclarator() &&
3067         (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3068       Error = 13;
3069 
3070     bool HaveTrailing = false;
3071 
3072     // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
3073     // contains a trailing return type. That is only legal at the outermost
3074     // level. Check all declarator chunks (outermost first) anyway, to give
3075     // better diagnostics.
3076     // We don't support '__auto_type' with trailing return types.
3077     // FIXME: Should we only do this for 'auto' and not 'decltype(auto)'?
3078     if (SemaRef.getLangOpts().CPlusPlus11 && IsCXXAutoType &&
3079         D.hasTrailingReturnType()) {
3080       HaveTrailing = true;
3081       Error = -1;
3082     }
3083 
3084     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3085     if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3086       AutoRange = D.getName().getSourceRange();
3087 
3088     if (Error != -1) {
3089       unsigned Kind;
3090       if (Auto) {
3091         switch (Auto->getKeyword()) {
3092         case AutoTypeKeyword::Auto: Kind = 0; break;
3093         case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3094         case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3095         }
3096       } else {
3097         assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3098                "unknown auto type");
3099         Kind = 3;
3100       }
3101 
3102       auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3103       TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3104 
3105       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3106         << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3107         << QualType(Deduced, 0) << AutoRange;
3108       if (auto *TD = TN.getAsTemplateDecl())
3109         SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3110 
3111       T = SemaRef.Context.IntTy;
3112       D.setInvalidType(true);
3113     } else if (!HaveTrailing &&
3114                D.getContext() != DeclaratorContext::LambdaExprContext) {
3115       // If there was a trailing return type, we already got
3116       // warn_cxx98_compat_trailing_return_type in the parser.
3117       SemaRef.Diag(AutoRange.getBegin(),
3118                    D.getContext() ==
3119                            DeclaratorContext::LambdaExprParameterContext
3120                        ? diag::warn_cxx11_compat_generic_lambda
3121                        : IsDeducedReturnType
3122                              ? diag::warn_cxx11_compat_deduced_return_type
3123                              : diag::warn_cxx98_compat_auto_type_specifier)
3124           << AutoRange;
3125     }
3126   }
3127 
3128   if (SemaRef.getLangOpts().CPlusPlus &&
3129       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3130     // Check the contexts where C++ forbids the declaration of a new class
3131     // or enumeration in a type-specifier-seq.
3132     unsigned DiagID = 0;
3133     switch (D.getContext()) {
3134     case DeclaratorContext::TrailingReturnContext:
3135     case DeclaratorContext::TrailingReturnVarContext:
3136       // Class and enumeration definitions are syntactically not allowed in
3137       // trailing return types.
3138       llvm_unreachable("parser should not have allowed this");
3139       break;
3140     case DeclaratorContext::FileContext:
3141     case DeclaratorContext::MemberContext:
3142     case DeclaratorContext::BlockContext:
3143     case DeclaratorContext::ForContext:
3144     case DeclaratorContext::InitStmtContext:
3145     case DeclaratorContext::BlockLiteralContext:
3146     case DeclaratorContext::LambdaExprContext:
3147       // C++11 [dcl.type]p3:
3148       //   A type-specifier-seq shall not define a class or enumeration unless
3149       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
3150       //   the declaration of a template-declaration.
3151     case DeclaratorContext::AliasDeclContext:
3152       break;
3153     case DeclaratorContext::AliasTemplateContext:
3154       DiagID = diag::err_type_defined_in_alias_template;
3155       break;
3156     case DeclaratorContext::TypeNameContext:
3157     case DeclaratorContext::FunctionalCastContext:
3158     case DeclaratorContext::ConversionIdContext:
3159     case DeclaratorContext::TemplateParamContext:
3160     case DeclaratorContext::CXXNewContext:
3161     case DeclaratorContext::CXXCatchContext:
3162     case DeclaratorContext::ObjCCatchContext:
3163     case DeclaratorContext::TemplateArgContext:
3164     case DeclaratorContext::TemplateTypeArgContext:
3165       DiagID = diag::err_type_defined_in_type_specifier;
3166       break;
3167     case DeclaratorContext::PrototypeContext:
3168     case DeclaratorContext::LambdaExprParameterContext:
3169     case DeclaratorContext::ObjCParameterContext:
3170     case DeclaratorContext::ObjCResultContext:
3171     case DeclaratorContext::KNRTypeListContext:
3172       // C++ [dcl.fct]p6:
3173       //   Types shall not be defined in return or parameter types.
3174       DiagID = diag::err_type_defined_in_param_type;
3175       break;
3176     case DeclaratorContext::ConditionContext:
3177       // C++ 6.4p2:
3178       // The type-specifier-seq shall not contain typedef and shall not declare
3179       // a new class or enumeration.
3180       DiagID = diag::err_type_defined_in_condition;
3181       break;
3182     }
3183 
3184     if (DiagID != 0) {
3185       SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3186           << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3187       D.setInvalidType(true);
3188     }
3189   }
3190 
3191   assert(!T.isNull() && "This function should not return a null type");
3192   return T;
3193 }
3194 
3195 /// Produce an appropriate diagnostic for an ambiguity between a function
3196 /// declarator and a C++ direct-initializer.
3197 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3198                                        DeclaratorChunk &DeclType, QualType RT) {
3199   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3200   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3201 
3202   // If the return type is void there is no ambiguity.
3203   if (RT->isVoidType())
3204     return;
3205 
3206   // An initializer for a non-class type can have at most one argument.
3207   if (!RT->isRecordType() && FTI.NumParams > 1)
3208     return;
3209 
3210   // An initializer for a reference must have exactly one argument.
3211   if (RT->isReferenceType() && FTI.NumParams != 1)
3212     return;
3213 
3214   // Only warn if this declarator is declaring a function at block scope, and
3215   // doesn't have a storage class (such as 'extern') specified.
3216   if (!D.isFunctionDeclarator() ||
3217       D.getFunctionDefinitionKind() != FDK_Declaration ||
3218       !S.CurContext->isFunctionOrMethod() ||
3219       D.getDeclSpec().getStorageClassSpec()
3220         != DeclSpec::SCS_unspecified)
3221     return;
3222 
3223   // Inside a condition, a direct initializer is not permitted. We allow one to
3224   // be parsed in order to give better diagnostics in condition parsing.
3225   if (D.getContext() == DeclaratorContext::ConditionContext)
3226     return;
3227 
3228   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3229 
3230   S.Diag(DeclType.Loc,
3231          FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3232                        : diag::warn_empty_parens_are_function_decl)
3233       << ParenRange;
3234 
3235   // If the declaration looks like:
3236   //   T var1,
3237   //   f();
3238   // and name lookup finds a function named 'f', then the ',' was
3239   // probably intended to be a ';'.
3240   if (!D.isFirstDeclarator() && D.getIdentifier()) {
3241     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3242     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3243     if (Comma.getFileID() != Name.getFileID() ||
3244         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3245       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3246                           Sema::LookupOrdinaryName);
3247       if (S.LookupName(Result, S.getCurScope()))
3248         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3249           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3250           << D.getIdentifier();
3251       Result.suppressDiagnostics();
3252     }
3253   }
3254 
3255   if (FTI.NumParams > 0) {
3256     // For a declaration with parameters, eg. "T var(T());", suggest adding
3257     // parens around the first parameter to turn the declaration into a
3258     // variable declaration.
3259     SourceRange Range = FTI.Params[0].Param->getSourceRange();
3260     SourceLocation B = Range.getBegin();
3261     SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3262     // FIXME: Maybe we should suggest adding braces instead of parens
3263     // in C++11 for classes that don't have an initializer_list constructor.
3264     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3265       << FixItHint::CreateInsertion(B, "(")
3266       << FixItHint::CreateInsertion(E, ")");
3267   } else {
3268     // For a declaration without parameters, eg. "T var();", suggest replacing
3269     // the parens with an initializer to turn the declaration into a variable
3270     // declaration.
3271     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3272 
3273     // Empty parens mean value-initialization, and no parens mean
3274     // default initialization. These are equivalent if the default
3275     // constructor is user-provided or if zero-initialization is a
3276     // no-op.
3277     if (RD && RD->hasDefinition() &&
3278         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3279       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3280         << FixItHint::CreateRemoval(ParenRange);
3281     else {
3282       std::string Init =
3283           S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3284       if (Init.empty() && S.LangOpts.CPlusPlus11)
3285         Init = "{}";
3286       if (!Init.empty())
3287         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3288           << FixItHint::CreateReplacement(ParenRange, Init);
3289     }
3290   }
3291 }
3292 
3293 /// Produce an appropriate diagnostic for a declarator with top-level
3294 /// parentheses.
3295 static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3296   DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3297   assert(Paren.Kind == DeclaratorChunk::Paren &&
3298          "do not have redundant top-level parentheses");
3299 
3300   // This is a syntactic check; we're not interested in cases that arise
3301   // during template instantiation.
3302   if (S.inTemplateInstantiation())
3303     return;
3304 
3305   // Check whether this could be intended to be a construction of a temporary
3306   // object in C++ via a function-style cast.
3307   bool CouldBeTemporaryObject =
3308       S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3309       !D.isInvalidType() && D.getIdentifier() &&
3310       D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3311       (T->isRecordType() || T->isDependentType()) &&
3312       D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3313 
3314   bool StartsWithDeclaratorId = true;
3315   for (auto &C : D.type_objects()) {
3316     switch (C.Kind) {
3317     case DeclaratorChunk::Paren:
3318       if (&C == &Paren)
3319         continue;
3320       LLVM_FALLTHROUGH;
3321     case DeclaratorChunk::Pointer:
3322       StartsWithDeclaratorId = false;
3323       continue;
3324 
3325     case DeclaratorChunk::Array:
3326       if (!C.Arr.NumElts)
3327         CouldBeTemporaryObject = false;
3328       continue;
3329 
3330     case DeclaratorChunk::Reference:
3331       // FIXME: Suppress the warning here if there is no initializer; we're
3332       // going to give an error anyway.
3333       // We assume that something like 'T (&x) = y;' is highly likely to not
3334       // be intended to be a temporary object.
3335       CouldBeTemporaryObject = false;
3336       StartsWithDeclaratorId = false;
3337       continue;
3338 
3339     case DeclaratorChunk::Function:
3340       // In a new-type-id, function chunks require parentheses.
3341       if (D.getContext() == DeclaratorContext::CXXNewContext)
3342         return;
3343       // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3344       // redundant-parens warning, but we don't know whether the function
3345       // chunk was syntactically valid as an expression here.
3346       CouldBeTemporaryObject = false;
3347       continue;
3348 
3349     case DeclaratorChunk::BlockPointer:
3350     case DeclaratorChunk::MemberPointer:
3351     case DeclaratorChunk::Pipe:
3352       // These cannot appear in expressions.
3353       CouldBeTemporaryObject = false;
3354       StartsWithDeclaratorId = false;
3355       continue;
3356     }
3357   }
3358 
3359   // FIXME: If there is an initializer, assume that this is not intended to be
3360   // a construction of a temporary object.
3361 
3362   // Check whether the name has already been declared; if not, this is not a
3363   // function-style cast.
3364   if (CouldBeTemporaryObject) {
3365     LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3366                         Sema::LookupOrdinaryName);
3367     if (!S.LookupName(Result, S.getCurScope()))
3368       CouldBeTemporaryObject = false;
3369     Result.suppressDiagnostics();
3370   }
3371 
3372   SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3373 
3374   if (!CouldBeTemporaryObject) {
3375     // If we have A (::B), the parentheses affect the meaning of the program.
3376     // Suppress the warning in that case. Don't bother looking at the DeclSpec
3377     // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3378     // formally unambiguous.
3379     if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3380       for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3381            NNS = NNS->getPrefix()) {
3382         if (NNS->getKind() == NestedNameSpecifier::Global)
3383           return;
3384       }
3385     }
3386 
3387     S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3388         << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3389         << FixItHint::CreateRemoval(Paren.EndLoc);
3390     return;
3391   }
3392 
3393   S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3394       << ParenRange << D.getIdentifier();
3395   auto *RD = T->getAsCXXRecordDecl();
3396   if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3397     S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3398         << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3399         << D.getIdentifier();
3400   // FIXME: A cast to void is probably a better suggestion in cases where it's
3401   // valid (when there is no initializer and we're not in a condition).
3402   S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3403       << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3404       << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3405   S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3406       << FixItHint::CreateRemoval(Paren.Loc)
3407       << FixItHint::CreateRemoval(Paren.EndLoc);
3408 }
3409 
3410 /// Helper for figuring out the default CC for a function declarator type.  If
3411 /// this is the outermost chunk, then we can determine the CC from the
3412 /// declarator context.  If not, then this could be either a member function
3413 /// type or normal function type.
3414 static CallingConv getCCForDeclaratorChunk(
3415     Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3416     const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3417   assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3418 
3419   // Check for an explicit CC attribute.
3420   for (const ParsedAttr &AL : AttrList) {
3421     switch (AL.getKind()) {
3422     CALLING_CONV_ATTRS_CASELIST : {
3423       // Ignore attributes that don't validate or can't apply to the
3424       // function type.  We'll diagnose the failure to apply them in
3425       // handleFunctionTypeAttr.
3426       CallingConv CC;
3427       if (!S.CheckCallingConvAttr(AL, CC) &&
3428           (!FTI.isVariadic || supportsVariadicCall(CC))) {
3429         return CC;
3430       }
3431       break;
3432     }
3433 
3434     default:
3435       break;
3436     }
3437   }
3438 
3439   bool IsCXXInstanceMethod = false;
3440 
3441   if (S.getLangOpts().CPlusPlus) {
3442     // Look inwards through parentheses to see if this chunk will form a
3443     // member pointer type or if we're the declarator.  Any type attributes
3444     // between here and there will override the CC we choose here.
3445     unsigned I = ChunkIndex;
3446     bool FoundNonParen = false;
3447     while (I && !FoundNonParen) {
3448       --I;
3449       if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3450         FoundNonParen = true;
3451     }
3452 
3453     if (FoundNonParen) {
3454       // If we're not the declarator, we're a regular function type unless we're
3455       // in a member pointer.
3456       IsCXXInstanceMethod =
3457           D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3458     } else if (D.getContext() == DeclaratorContext::LambdaExprContext) {
3459       // This can only be a call operator for a lambda, which is an instance
3460       // method.
3461       IsCXXInstanceMethod = true;
3462     } else {
3463       // We're the innermost decl chunk, so must be a function declarator.
3464       assert(D.isFunctionDeclarator());
3465 
3466       // If we're inside a record, we're declaring a method, but it could be
3467       // explicitly or implicitly static.
3468       IsCXXInstanceMethod =
3469           D.isFirstDeclarationOfMember() &&
3470           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3471           !D.isStaticMember();
3472     }
3473   }
3474 
3475   CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3476                                                          IsCXXInstanceMethod);
3477 
3478   // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3479   // and AMDGPU targets, hence it cannot be treated as a calling
3480   // convention attribute. This is the simplest place to infer
3481   // calling convention for OpenCL kernels.
3482   if (S.getLangOpts().OpenCL) {
3483     for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3484       if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3485         CC = CC_OpenCLKernel;
3486         break;
3487       }
3488     }
3489   }
3490 
3491   return CC;
3492 }
3493 
3494 namespace {
3495   /// A simple notion of pointer kinds, which matches up with the various
3496   /// pointer declarators.
3497   enum class SimplePointerKind {
3498     Pointer,
3499     BlockPointer,
3500     MemberPointer,
3501     Array,
3502   };
3503 } // end anonymous namespace
3504 
3505 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3506   switch (nullability) {
3507   case NullabilityKind::NonNull:
3508     if (!Ident__Nonnull)
3509       Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3510     return Ident__Nonnull;
3511 
3512   case NullabilityKind::Nullable:
3513     if (!Ident__Nullable)
3514       Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3515     return Ident__Nullable;
3516 
3517   case NullabilityKind::Unspecified:
3518     if (!Ident__Null_unspecified)
3519       Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3520     return Ident__Null_unspecified;
3521   }
3522   llvm_unreachable("Unknown nullability kind.");
3523 }
3524 
3525 /// Retrieve the identifier "NSError".
3526 IdentifierInfo *Sema::getNSErrorIdent() {
3527   if (!Ident_NSError)
3528     Ident_NSError = PP.getIdentifierInfo("NSError");
3529 
3530   return Ident_NSError;
3531 }
3532 
3533 /// Check whether there is a nullability attribute of any kind in the given
3534 /// attribute list.
3535 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3536   for (const ParsedAttr &AL : attrs) {
3537     if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3538         AL.getKind() == ParsedAttr::AT_TypeNullable ||
3539         AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3540       return true;
3541   }
3542 
3543   return false;
3544 }
3545 
3546 namespace {
3547   /// Describes the kind of a pointer a declarator describes.
3548   enum class PointerDeclaratorKind {
3549     // Not a pointer.
3550     NonPointer,
3551     // Single-level pointer.
3552     SingleLevelPointer,
3553     // Multi-level pointer (of any pointer kind).
3554     MultiLevelPointer,
3555     // CFFooRef*
3556     MaybePointerToCFRef,
3557     // CFErrorRef*
3558     CFErrorRefPointer,
3559     // NSError**
3560     NSErrorPointerPointer,
3561   };
3562 
3563   /// Describes a declarator chunk wrapping a pointer that marks inference as
3564   /// unexpected.
3565   // These values must be kept in sync with diagnostics.
3566   enum class PointerWrappingDeclaratorKind {
3567     /// Pointer is top-level.
3568     None = -1,
3569     /// Pointer is an array element.
3570     Array = 0,
3571     /// Pointer is the referent type of a C++ reference.
3572     Reference = 1
3573   };
3574 } // end anonymous namespace
3575 
3576 /// Classify the given declarator, whose type-specified is \c type, based on
3577 /// what kind of pointer it refers to.
3578 ///
3579 /// This is used to determine the default nullability.
3580 static PointerDeclaratorKind
3581 classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3582                           PointerWrappingDeclaratorKind &wrappingKind) {
3583   unsigned numNormalPointers = 0;
3584 
3585   // For any dependent type, we consider it a non-pointer.
3586   if (type->isDependentType())
3587     return PointerDeclaratorKind::NonPointer;
3588 
3589   // Look through the declarator chunks to identify pointers.
3590   for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3591     DeclaratorChunk &chunk = declarator.getTypeObject(i);
3592     switch (chunk.Kind) {
3593     case DeclaratorChunk::Array:
3594       if (numNormalPointers == 0)
3595         wrappingKind = PointerWrappingDeclaratorKind::Array;
3596       break;
3597 
3598     case DeclaratorChunk::Function:
3599     case DeclaratorChunk::Pipe:
3600       break;
3601 
3602     case DeclaratorChunk::BlockPointer:
3603     case DeclaratorChunk::MemberPointer:
3604       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3605                                    : PointerDeclaratorKind::SingleLevelPointer;
3606 
3607     case DeclaratorChunk::Paren:
3608       break;
3609 
3610     case DeclaratorChunk::Reference:
3611       if (numNormalPointers == 0)
3612         wrappingKind = PointerWrappingDeclaratorKind::Reference;
3613       break;
3614 
3615     case DeclaratorChunk::Pointer:
3616       ++numNormalPointers;
3617       if (numNormalPointers > 2)
3618         return PointerDeclaratorKind::MultiLevelPointer;
3619       break;
3620     }
3621   }
3622 
3623   // Then, dig into the type specifier itself.
3624   unsigned numTypeSpecifierPointers = 0;
3625   do {
3626     // Decompose normal pointers.
3627     if (auto ptrType = type->getAs<PointerType>()) {
3628       ++numNormalPointers;
3629 
3630       if (numNormalPointers > 2)
3631         return PointerDeclaratorKind::MultiLevelPointer;
3632 
3633       type = ptrType->getPointeeType();
3634       ++numTypeSpecifierPointers;
3635       continue;
3636     }
3637 
3638     // Decompose block pointers.
3639     if (type->getAs<BlockPointerType>()) {
3640       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3641                                    : PointerDeclaratorKind::SingleLevelPointer;
3642     }
3643 
3644     // Decompose member pointers.
3645     if (type->getAs<MemberPointerType>()) {
3646       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3647                                    : PointerDeclaratorKind::SingleLevelPointer;
3648     }
3649 
3650     // Look at Objective-C object pointers.
3651     if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3652       ++numNormalPointers;
3653       ++numTypeSpecifierPointers;
3654 
3655       // If this is NSError**, report that.
3656       if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3657         if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
3658             numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3659           return PointerDeclaratorKind::NSErrorPointerPointer;
3660         }
3661       }
3662 
3663       break;
3664     }
3665 
3666     // Look at Objective-C class types.
3667     if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3668       if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
3669         if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3670           return PointerDeclaratorKind::NSErrorPointerPointer;
3671       }
3672 
3673       break;
3674     }
3675 
3676     // If at this point we haven't seen a pointer, we won't see one.
3677     if (numNormalPointers == 0)
3678       return PointerDeclaratorKind::NonPointer;
3679 
3680     if (auto recordType = type->getAs<RecordType>()) {
3681       RecordDecl *recordDecl = recordType->getDecl();
3682 
3683       bool isCFError = false;
3684       if (S.CFError) {
3685         // If we already know about CFError, test it directly.
3686         isCFError = (S.CFError == recordDecl);
3687       } else {
3688         // Check whether this is CFError, which we identify based on its bridge
3689         // to NSError. CFErrorRef used to be declared with "objc_bridge" but is
3690         // now declared with "objc_bridge_mutable", so look for either one of
3691         // the two attributes.
3692         if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
3693           IdentifierInfo *bridgedType = nullptr;
3694           if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>())
3695             bridgedType = bridgeAttr->getBridgedType();
3696           else if (auto bridgeAttr =
3697                        recordDecl->getAttr<ObjCBridgeMutableAttr>())
3698             bridgedType = bridgeAttr->getBridgedType();
3699 
3700           if (bridgedType == S.getNSErrorIdent()) {
3701             S.CFError = recordDecl;
3702             isCFError = true;
3703           }
3704         }
3705       }
3706 
3707       // If this is CFErrorRef*, report it as such.
3708       if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3709         return PointerDeclaratorKind::CFErrorRefPointer;
3710       }
3711       break;
3712     }
3713 
3714     break;
3715   } while (true);
3716 
3717   switch (numNormalPointers) {
3718   case 0:
3719     return PointerDeclaratorKind::NonPointer;
3720 
3721   case 1:
3722     return PointerDeclaratorKind::SingleLevelPointer;
3723 
3724   case 2:
3725     return PointerDeclaratorKind::MaybePointerToCFRef;
3726 
3727   default:
3728     return PointerDeclaratorKind::MultiLevelPointer;
3729   }
3730 }
3731 
3732 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3733                                                     SourceLocation loc) {
3734   // If we're anywhere in a function, method, or closure context, don't perform
3735   // completeness checks.
3736   for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3737     if (ctx->isFunctionOrMethod())
3738       return FileID();
3739 
3740     if (ctx->isFileContext())
3741       break;
3742   }
3743 
3744   // We only care about the expansion location.
3745   loc = S.SourceMgr.getExpansionLoc(loc);
3746   FileID file = S.SourceMgr.getFileID(loc);
3747   if (file.isInvalid())
3748     return FileID();
3749 
3750   // Retrieve file information.
3751   bool invalid = false;
3752   const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3753   if (invalid || !sloc.isFile())
3754     return FileID();
3755 
3756   // We don't want to perform completeness checks on the main file or in
3757   // system headers.
3758   const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3759   if (fileInfo.getIncludeLoc().isInvalid())
3760     return FileID();
3761   if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
3762       S.Diags.getSuppressSystemWarnings()) {
3763     return FileID();
3764   }
3765 
3766   return file;
3767 }
3768 
3769 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
3770 /// taking into account whitespace before and after.
3771 static void fixItNullability(Sema &S, DiagnosticBuilder &Diag,
3772                              SourceLocation PointerLoc,
3773                              NullabilityKind Nullability) {
3774   assert(PointerLoc.isValid());
3775   if (PointerLoc.isMacroID())
3776     return;
3777 
3778   SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
3779   if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
3780     return;
3781 
3782   const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
3783   if (!NextChar)
3784     return;
3785 
3786   SmallString<32> InsertionTextBuf{" "};
3787   InsertionTextBuf += getNullabilitySpelling(Nullability);
3788   InsertionTextBuf += " ";
3789   StringRef InsertionText = InsertionTextBuf.str();
3790 
3791   if (isWhitespace(*NextChar)) {
3792     InsertionText = InsertionText.drop_back();
3793   } else if (NextChar[-1] == '[') {
3794     if (NextChar[0] == ']')
3795       InsertionText = InsertionText.drop_back().drop_front();
3796     else
3797       InsertionText = InsertionText.drop_front();
3798   } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
3799              !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
3800     InsertionText = InsertionText.drop_back().drop_front();
3801   }
3802 
3803   Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
3804 }
3805 
3806 static void emitNullabilityConsistencyWarning(Sema &S,
3807                                               SimplePointerKind PointerKind,
3808                                               SourceLocation PointerLoc,
3809                                               SourceLocation PointerEndLoc) {
3810   assert(PointerLoc.isValid());
3811 
3812   if (PointerKind == SimplePointerKind::Array) {
3813     S.Diag(PointerLoc, diag::warn_nullability_missing_array);
3814   } else {
3815     S.Diag(PointerLoc, diag::warn_nullability_missing)
3816       << static_cast<unsigned>(PointerKind);
3817   }
3818 
3819   auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
3820   if (FixItLoc.isMacroID())
3821     return;
3822 
3823   auto addFixIt = [&](NullabilityKind Nullability) {
3824     auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
3825     Diag << static_cast<unsigned>(Nullability);
3826     Diag << static_cast<unsigned>(PointerKind);
3827     fixItNullability(S, Diag, FixItLoc, Nullability);
3828   };
3829   addFixIt(NullabilityKind::Nullable);
3830   addFixIt(NullabilityKind::NonNull);
3831 }
3832 
3833 /// Complains about missing nullability if the file containing \p pointerLoc
3834 /// has other uses of nullability (either the keywords or the \c assume_nonnull
3835 /// pragma).
3836 ///
3837 /// If the file has \e not seen other uses of nullability, this particular
3838 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
3839 static void
3840 checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
3841                             SourceLocation pointerLoc,
3842                             SourceLocation pointerEndLoc = SourceLocation()) {
3843   // Determine which file we're performing consistency checking for.
3844   FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
3845   if (file.isInvalid())
3846     return;
3847 
3848   // If we haven't seen any type nullability in this file, we won't warn now
3849   // about anything.
3850   FileNullability &fileNullability = S.NullabilityMap[file];
3851   if (!fileNullability.SawTypeNullability) {
3852     // If this is the first pointer declarator in the file, and the appropriate
3853     // warning is on, record it in case we need to diagnose it retroactively.
3854     diag::kind diagKind;
3855     if (pointerKind == SimplePointerKind::Array)
3856       diagKind = diag::warn_nullability_missing_array;
3857     else
3858       diagKind = diag::warn_nullability_missing;
3859 
3860     if (fileNullability.PointerLoc.isInvalid() &&
3861         !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
3862       fileNullability.PointerLoc = pointerLoc;
3863       fileNullability.PointerEndLoc = pointerEndLoc;
3864       fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
3865     }
3866 
3867     return;
3868   }
3869 
3870   // Complain about missing nullability.
3871   emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
3872 }
3873 
3874 /// Marks that a nullability feature has been used in the file containing
3875 /// \p loc.
3876 ///
3877 /// If this file already had pointer types in it that were missing nullability,
3878 /// the first such instance is retroactively diagnosed.
3879 ///
3880 /// \sa checkNullabilityConsistency
3881 static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
3882   FileID file = getNullabilityCompletenessCheckFileID(S, loc);
3883   if (file.isInvalid())
3884     return;
3885 
3886   FileNullability &fileNullability = S.NullabilityMap[file];
3887   if (fileNullability.SawTypeNullability)
3888     return;
3889   fileNullability.SawTypeNullability = true;
3890 
3891   // If we haven't seen any type nullability before, now we have. Retroactively
3892   // diagnose the first unannotated pointer, if there was one.
3893   if (fileNullability.PointerLoc.isInvalid())
3894     return;
3895 
3896   auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
3897   emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
3898                                     fileNullability.PointerEndLoc);
3899 }
3900 
3901 /// Returns true if any of the declarator chunks before \p endIndex include a
3902 /// level of indirection: array, pointer, reference, or pointer-to-member.
3903 ///
3904 /// Because declarator chunks are stored in outer-to-inner order, testing
3905 /// every chunk before \p endIndex is testing all chunks that embed the current
3906 /// chunk as part of their type.
3907 ///
3908 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
3909 /// end index, in which case all chunks are tested.
3910 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
3911   unsigned i = endIndex;
3912   while (i != 0) {
3913     // Walk outwards along the declarator chunks.
3914     --i;
3915     const DeclaratorChunk &DC = D.getTypeObject(i);
3916     switch (DC.Kind) {
3917     case DeclaratorChunk::Paren:
3918       break;
3919     case DeclaratorChunk::Array:
3920     case DeclaratorChunk::Pointer:
3921     case DeclaratorChunk::Reference:
3922     case DeclaratorChunk::MemberPointer:
3923       return true;
3924     case DeclaratorChunk::Function:
3925     case DeclaratorChunk::BlockPointer:
3926     case DeclaratorChunk::Pipe:
3927       // These are invalid anyway, so just ignore.
3928       break;
3929     }
3930   }
3931   return false;
3932 }
3933 
3934 static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
3935   return (Chunk.Kind == DeclaratorChunk::Pointer ||
3936           Chunk.Kind == DeclaratorChunk::Array);
3937 }
3938 
3939 template<typename AttrT>
3940 static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &Attr) {
3941   Attr.setUsedAsTypeAttr();
3942   return ::new (Ctx)
3943       AttrT(Attr.getRange(), Ctx, Attr.getAttributeSpellingListIndex());
3944 }
3945 
3946 static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
3947                                    NullabilityKind NK) {
3948   switch (NK) {
3949   case NullabilityKind::NonNull:
3950     return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
3951 
3952   case NullabilityKind::Nullable:
3953     return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
3954 
3955   case NullabilityKind::Unspecified:
3956     return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
3957   }
3958   llvm_unreachable("unknown NullabilityKind");
3959 }
3960 
3961 // Diagnose whether this is a case with the multiple addr spaces.
3962 // Returns true if this is an invalid case.
3963 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
3964 // by qualifiers for two or more different address spaces."
3965 static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
3966                                                 LangAS ASNew,
3967                                                 SourceLocation AttrLoc) {
3968   if (ASOld != LangAS::Default) {
3969     if (ASOld != ASNew) {
3970       S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
3971       return true;
3972     }
3973     // Emit a warning if they are identical; it's likely unintended.
3974     S.Diag(AttrLoc,
3975            diag::warn_attribute_address_multiple_identical_qualifiers);
3976   }
3977   return false;
3978 }
3979 
3980 static TypeSourceInfo *
3981 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3982                                QualType T, TypeSourceInfo *ReturnTypeInfo);
3983 
3984 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
3985                                                 QualType declSpecType,
3986                                                 TypeSourceInfo *TInfo) {
3987   // The TypeSourceInfo that this function returns will not be a null type.
3988   // If there is an error, this function will fill in a dummy type as fallback.
3989   QualType T = declSpecType;
3990   Declarator &D = state.getDeclarator();
3991   Sema &S = state.getSema();
3992   ASTContext &Context = S.Context;
3993   const LangOptions &LangOpts = S.getLangOpts();
3994 
3995   // The name we're declaring, if any.
3996   DeclarationName Name;
3997   if (D.getIdentifier())
3998     Name = D.getIdentifier();
3999 
4000   // Does this declaration declare a typedef-name?
4001   bool IsTypedefName =
4002     D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4003     D.getContext() == DeclaratorContext::AliasDeclContext ||
4004     D.getContext() == DeclaratorContext::AliasTemplateContext;
4005 
4006   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4007   bool IsQualifiedFunction = T->isFunctionProtoType() &&
4008       (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4009        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4010 
4011   // If T is 'decltype(auto)', the only declarators we can have are parens
4012   // and at most one function declarator if this is a function declaration.
4013   // If T is a deduced class template specialization type, we can have no
4014   // declarator chunks at all.
4015   if (auto *DT = T->getAs<DeducedType>()) {
4016     const AutoType *AT = T->getAs<AutoType>();
4017     bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4018     if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4019       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4020         unsigned Index = E - I - 1;
4021         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4022         unsigned DiagId = IsClassTemplateDeduction
4023                               ? diag::err_deduced_class_template_compound_type
4024                               : diag::err_decltype_auto_compound_type;
4025         unsigned DiagKind = 0;
4026         switch (DeclChunk.Kind) {
4027         case DeclaratorChunk::Paren:
4028           // FIXME: Rejecting this is a little silly.
4029           if (IsClassTemplateDeduction) {
4030             DiagKind = 4;
4031             break;
4032           }
4033           continue;
4034         case DeclaratorChunk::Function: {
4035           if (IsClassTemplateDeduction) {
4036             DiagKind = 3;
4037             break;
4038           }
4039           unsigned FnIndex;
4040           if (D.isFunctionDeclarationContext() &&
4041               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4042             continue;
4043           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4044           break;
4045         }
4046         case DeclaratorChunk::Pointer:
4047         case DeclaratorChunk::BlockPointer:
4048         case DeclaratorChunk::MemberPointer:
4049           DiagKind = 0;
4050           break;
4051         case DeclaratorChunk::Reference:
4052           DiagKind = 1;
4053           break;
4054         case DeclaratorChunk::Array:
4055           DiagKind = 2;
4056           break;
4057         case DeclaratorChunk::Pipe:
4058           break;
4059         }
4060 
4061         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4062         D.setInvalidType(true);
4063         break;
4064       }
4065     }
4066   }
4067 
4068   // Determine whether we should infer _Nonnull on pointer types.
4069   Optional<NullabilityKind> inferNullability;
4070   bool inferNullabilityCS = false;
4071   bool inferNullabilityInnerOnly = false;
4072   bool inferNullabilityInnerOnlyComplete = false;
4073 
4074   // Are we in an assume-nonnull region?
4075   bool inAssumeNonNullRegion = false;
4076   SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4077   if (assumeNonNullLoc.isValid()) {
4078     inAssumeNonNullRegion = true;
4079     recordNullabilitySeen(S, assumeNonNullLoc);
4080   }
4081 
4082   // Whether to complain about missing nullability specifiers or not.
4083   enum {
4084     /// Never complain.
4085     CAMN_No,
4086     /// Complain on the inner pointers (but not the outermost
4087     /// pointer).
4088     CAMN_InnerPointers,
4089     /// Complain about any pointers that don't have nullability
4090     /// specified or inferred.
4091     CAMN_Yes
4092   } complainAboutMissingNullability = CAMN_No;
4093   unsigned NumPointersRemaining = 0;
4094   auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4095 
4096   if (IsTypedefName) {
4097     // For typedefs, we do not infer any nullability (the default),
4098     // and we only complain about missing nullability specifiers on
4099     // inner pointers.
4100     complainAboutMissingNullability = CAMN_InnerPointers;
4101 
4102     if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4103         !T->getNullability(S.Context)) {
4104       // Note that we allow but don't require nullability on dependent types.
4105       ++NumPointersRemaining;
4106     }
4107 
4108     for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4109       DeclaratorChunk &chunk = D.getTypeObject(i);
4110       switch (chunk.Kind) {
4111       case DeclaratorChunk::Array:
4112       case DeclaratorChunk::Function:
4113       case DeclaratorChunk::Pipe:
4114         break;
4115 
4116       case DeclaratorChunk::BlockPointer:
4117       case DeclaratorChunk::MemberPointer:
4118         ++NumPointersRemaining;
4119         break;
4120 
4121       case DeclaratorChunk::Paren:
4122       case DeclaratorChunk::Reference:
4123         continue;
4124 
4125       case DeclaratorChunk::Pointer:
4126         ++NumPointersRemaining;
4127         continue;
4128       }
4129     }
4130   } else {
4131     bool isFunctionOrMethod = false;
4132     switch (auto context = state.getDeclarator().getContext()) {
4133     case DeclaratorContext::ObjCParameterContext:
4134     case DeclaratorContext::ObjCResultContext:
4135     case DeclaratorContext::PrototypeContext:
4136     case DeclaratorContext::TrailingReturnContext:
4137     case DeclaratorContext::TrailingReturnVarContext:
4138       isFunctionOrMethod = true;
4139       LLVM_FALLTHROUGH;
4140 
4141     case DeclaratorContext::MemberContext:
4142       if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4143         complainAboutMissingNullability = CAMN_No;
4144         break;
4145       }
4146 
4147       // Weak properties are inferred to be nullable.
4148       if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4149         inferNullability = NullabilityKind::Nullable;
4150         break;
4151       }
4152 
4153       LLVM_FALLTHROUGH;
4154 
4155     case DeclaratorContext::FileContext:
4156     case DeclaratorContext::KNRTypeListContext: {
4157       complainAboutMissingNullability = CAMN_Yes;
4158 
4159       // Nullability inference depends on the type and declarator.
4160       auto wrappingKind = PointerWrappingDeclaratorKind::None;
4161       switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4162       case PointerDeclaratorKind::NonPointer:
4163       case PointerDeclaratorKind::MultiLevelPointer:
4164         // Cannot infer nullability.
4165         break;
4166 
4167       case PointerDeclaratorKind::SingleLevelPointer:
4168         // Infer _Nonnull if we are in an assumes-nonnull region.
4169         if (inAssumeNonNullRegion) {
4170           complainAboutInferringWithinChunk = wrappingKind;
4171           inferNullability = NullabilityKind::NonNull;
4172           inferNullabilityCS =
4173               (context == DeclaratorContext::ObjCParameterContext ||
4174                context == DeclaratorContext::ObjCResultContext);
4175         }
4176         break;
4177 
4178       case PointerDeclaratorKind::CFErrorRefPointer:
4179       case PointerDeclaratorKind::NSErrorPointerPointer:
4180         // Within a function or method signature, infer _Nullable at both
4181         // levels.
4182         if (isFunctionOrMethod && inAssumeNonNullRegion)
4183           inferNullability = NullabilityKind::Nullable;
4184         break;
4185 
4186       case PointerDeclaratorKind::MaybePointerToCFRef:
4187         if (isFunctionOrMethod) {
4188           // On pointer-to-pointer parameters marked cf_returns_retained or
4189           // cf_returns_not_retained, if the outer pointer is explicit then
4190           // infer the inner pointer as _Nullable.
4191           auto hasCFReturnsAttr =
4192               [](const ParsedAttributesView &AttrList) -> bool {
4193             return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4194                    AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4195           };
4196           if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4197             if (hasCFReturnsAttr(D.getAttributes()) ||
4198                 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4199                 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4200               inferNullability = NullabilityKind::Nullable;
4201               inferNullabilityInnerOnly = true;
4202             }
4203           }
4204         }
4205         break;
4206       }
4207       break;
4208     }
4209 
4210     case DeclaratorContext::ConversionIdContext:
4211       complainAboutMissingNullability = CAMN_Yes;
4212       break;
4213 
4214     case DeclaratorContext::AliasDeclContext:
4215     case DeclaratorContext::AliasTemplateContext:
4216     case DeclaratorContext::BlockContext:
4217     case DeclaratorContext::BlockLiteralContext:
4218     case DeclaratorContext::ConditionContext:
4219     case DeclaratorContext::CXXCatchContext:
4220     case DeclaratorContext::CXXNewContext:
4221     case DeclaratorContext::ForContext:
4222     case DeclaratorContext::InitStmtContext:
4223     case DeclaratorContext::LambdaExprContext:
4224     case DeclaratorContext::LambdaExprParameterContext:
4225     case DeclaratorContext::ObjCCatchContext:
4226     case DeclaratorContext::TemplateParamContext:
4227     case DeclaratorContext::TemplateArgContext:
4228     case DeclaratorContext::TemplateTypeArgContext:
4229     case DeclaratorContext::TypeNameContext:
4230     case DeclaratorContext::FunctionalCastContext:
4231       // Don't infer in these contexts.
4232       break;
4233     }
4234   }
4235 
4236   // Local function that returns true if its argument looks like a va_list.
4237   auto isVaList = [&S](QualType T) -> bool {
4238     auto *typedefTy = T->getAs<TypedefType>();
4239     if (!typedefTy)
4240       return false;
4241     TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4242     do {
4243       if (typedefTy->getDecl() == vaListTypedef)
4244         return true;
4245       if (auto *name = typedefTy->getDecl()->getIdentifier())
4246         if (name->isStr("va_list"))
4247           return true;
4248       typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4249     } while (typedefTy);
4250     return false;
4251   };
4252 
4253   // Local function that checks the nullability for a given pointer declarator.
4254   // Returns true if _Nonnull was inferred.
4255   auto inferPointerNullability =
4256       [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4257           SourceLocation pointerEndLoc,
4258           ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4259     // We've seen a pointer.
4260     if (NumPointersRemaining > 0)
4261       --NumPointersRemaining;
4262 
4263     // If a nullability attribute is present, there's nothing to do.
4264     if (hasNullabilityAttr(attrs))
4265       return nullptr;
4266 
4267     // If we're supposed to infer nullability, do so now.
4268     if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4269       ParsedAttr::Syntax syntax = inferNullabilityCS
4270                                       ? ParsedAttr::AS_ContextSensitiveKeyword
4271                                       : ParsedAttr::AS_Keyword;
4272       ParsedAttr *nullabilityAttr = Pool.create(
4273           S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4274           nullptr, SourceLocation(), nullptr, 0, syntax);
4275 
4276       attrs.addAtEnd(nullabilityAttr);
4277 
4278       if (inferNullabilityCS) {
4279         state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4280           ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4281       }
4282 
4283       if (pointerLoc.isValid() &&
4284           complainAboutInferringWithinChunk !=
4285             PointerWrappingDeclaratorKind::None) {
4286         auto Diag =
4287             S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4288         Diag << static_cast<int>(complainAboutInferringWithinChunk);
4289         fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4290       }
4291 
4292       if (inferNullabilityInnerOnly)
4293         inferNullabilityInnerOnlyComplete = true;
4294       return nullabilityAttr;
4295     }
4296 
4297     // If we're supposed to complain about missing nullability, do so
4298     // now if it's truly missing.
4299     switch (complainAboutMissingNullability) {
4300     case CAMN_No:
4301       break;
4302 
4303     case CAMN_InnerPointers:
4304       if (NumPointersRemaining == 0)
4305         break;
4306       LLVM_FALLTHROUGH;
4307 
4308     case CAMN_Yes:
4309       checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4310     }
4311     return nullptr;
4312   };
4313 
4314   // If the type itself could have nullability but does not, infer pointer
4315   // nullability and perform consistency checking.
4316   if (S.CodeSynthesisContexts.empty()) {
4317     if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4318         !T->getNullability(S.Context)) {
4319       if (isVaList(T)) {
4320         // Record that we've seen a pointer, but do nothing else.
4321         if (NumPointersRemaining > 0)
4322           --NumPointersRemaining;
4323       } else {
4324         SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4325         if (T->isBlockPointerType())
4326           pointerKind = SimplePointerKind::BlockPointer;
4327         else if (T->isMemberPointerType())
4328           pointerKind = SimplePointerKind::MemberPointer;
4329 
4330         if (auto *attr = inferPointerNullability(
4331                 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4332                 D.getDeclSpec().getEndLoc(),
4333                 D.getMutableDeclSpec().getAttributes(),
4334                 D.getMutableDeclSpec().getAttributePool())) {
4335           T = state.getAttributedType(
4336               createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4337         }
4338       }
4339     }
4340 
4341     if (complainAboutMissingNullability == CAMN_Yes &&
4342         T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4343         D.isPrototypeContext() &&
4344         !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4345       checkNullabilityConsistency(S, SimplePointerKind::Array,
4346                                   D.getDeclSpec().getTypeSpecTypeLoc());
4347     }
4348   }
4349 
4350   bool ExpectNoDerefChunk =
4351       state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4352 
4353   // Walk the DeclTypeInfo, building the recursive type as we go.
4354   // DeclTypeInfos are ordered from the identifier out, which is
4355   // opposite of what we want :).
4356   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4357     unsigned chunkIndex = e - i - 1;
4358     state.setCurrentChunkIndex(chunkIndex);
4359     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4360     IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4361     switch (DeclType.Kind) {
4362     case DeclaratorChunk::Paren:
4363       if (i == 0)
4364         warnAboutRedundantParens(S, D, T);
4365       T = S.BuildParenType(T);
4366       break;
4367     case DeclaratorChunk::BlockPointer:
4368       // If blocks are disabled, emit an error.
4369       if (!LangOpts.Blocks)
4370         S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4371 
4372       // Handle pointer nullability.
4373       inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4374                               DeclType.EndLoc, DeclType.getAttrs(),
4375                               state.getDeclarator().getAttributePool());
4376 
4377       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4378       if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4379         // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4380         // qualified with const.
4381         if (LangOpts.OpenCL)
4382           DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4383         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4384       }
4385       break;
4386     case DeclaratorChunk::Pointer:
4387       // Verify that we're not building a pointer to pointer to function with
4388       // exception specification.
4389       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4390         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4391         D.setInvalidType(true);
4392         // Build the type anyway.
4393       }
4394 
4395       // Handle pointer nullability
4396       inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4397                               DeclType.EndLoc, DeclType.getAttrs(),
4398                               state.getDeclarator().getAttributePool());
4399 
4400       if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4401         T = Context.getObjCObjectPointerType(T);
4402         if (DeclType.Ptr.TypeQuals)
4403           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4404         break;
4405       }
4406 
4407       // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4408       // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4409       // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4410       if (LangOpts.OpenCL) {
4411         if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4412             T->isBlockPointerType()) {
4413           S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4414           D.setInvalidType(true);
4415         }
4416       }
4417 
4418       T = S.BuildPointerType(T, DeclType.Loc, Name);
4419       if (DeclType.Ptr.TypeQuals)
4420         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4421       break;
4422     case DeclaratorChunk::Reference: {
4423       // Verify that we're not building a reference to pointer to function with
4424       // exception specification.
4425       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4426         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4427         D.setInvalidType(true);
4428         // Build the type anyway.
4429       }
4430       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4431 
4432       if (DeclType.Ref.HasRestrict)
4433         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4434       break;
4435     }
4436     case DeclaratorChunk::Array: {
4437       // Verify that we're not building an array of pointers to function with
4438       // exception specification.
4439       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4440         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4441         D.setInvalidType(true);
4442         // Build the type anyway.
4443       }
4444       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4445       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4446       ArrayType::ArraySizeModifier ASM;
4447       if (ATI.isStar)
4448         ASM = ArrayType::Star;
4449       else if (ATI.hasStatic)
4450         ASM = ArrayType::Static;
4451       else
4452         ASM = ArrayType::Normal;
4453       if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4454         // FIXME: This check isn't quite right: it allows star in prototypes
4455         // for function definitions, and disallows some edge cases detailed
4456         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4457         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4458         ASM = ArrayType::Normal;
4459         D.setInvalidType(true);
4460       }
4461 
4462       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4463       // shall appear only in a declaration of a function parameter with an
4464       // array type, ...
4465       if (ASM == ArrayType::Static || ATI.TypeQuals) {
4466         if (!(D.isPrototypeContext() ||
4467               D.getContext() == DeclaratorContext::KNRTypeListContext)) {
4468           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4469               (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4470           // Remove the 'static' and the type qualifiers.
4471           if (ASM == ArrayType::Static)
4472             ASM = ArrayType::Normal;
4473           ATI.TypeQuals = 0;
4474           D.setInvalidType(true);
4475         }
4476 
4477         // C99 6.7.5.2p1: ... and then only in the outermost array type
4478         // derivation.
4479         if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4480           S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4481             (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4482           if (ASM == ArrayType::Static)
4483             ASM = ArrayType::Normal;
4484           ATI.TypeQuals = 0;
4485           D.setInvalidType(true);
4486         }
4487       }
4488       const AutoType *AT = T->getContainedAutoType();
4489       // Allow arrays of auto if we are a generic lambda parameter.
4490       // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4491       if (AT &&
4492           D.getContext() != DeclaratorContext::LambdaExprParameterContext) {
4493         // We've already diagnosed this for decltype(auto).
4494         if (!AT->isDecltypeAuto())
4495           S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4496             << getPrintableNameForEntity(Name) << T;
4497         T = QualType();
4498         break;
4499       }
4500 
4501       // Array parameters can be marked nullable as well, although it's not
4502       // necessary if they're marked 'static'.
4503       if (complainAboutMissingNullability == CAMN_Yes &&
4504           !hasNullabilityAttr(DeclType.getAttrs()) &&
4505           ASM != ArrayType::Static &&
4506           D.isPrototypeContext() &&
4507           !hasOuterPointerLikeChunk(D, chunkIndex)) {
4508         checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4509       }
4510 
4511       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4512                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4513       break;
4514     }
4515     case DeclaratorChunk::Function: {
4516       // If the function declarator has a prototype (i.e. it is not () and
4517       // does not have a K&R-style identifier list), then the arguments are part
4518       // of the type, otherwise the argument list is ().
4519       const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4520       IsQualifiedFunction =
4521           FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4522 
4523       // Check for auto functions and trailing return type and adjust the
4524       // return type accordingly.
4525       if (!D.isInvalidType()) {
4526         // trailing-return-type is only required if we're declaring a function,
4527         // and not, for instance, a pointer to a function.
4528         if (D.getDeclSpec().hasAutoTypeSpec() &&
4529             !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4530           if (!S.getLangOpts().CPlusPlus14) {
4531             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4532                    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4533                        ? diag::err_auto_missing_trailing_return
4534                        : diag::err_deduced_return_type);
4535             T = Context.IntTy;
4536             D.setInvalidType(true);
4537           } else {
4538             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4539                    diag::warn_cxx11_compat_deduced_return_type);
4540           }
4541         } else if (FTI.hasTrailingReturnType()) {
4542           // T must be exactly 'auto' at this point. See CWG issue 681.
4543           if (isa<ParenType>(T)) {
4544             S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4545                 << T << D.getSourceRange();
4546             D.setInvalidType(true);
4547           } else if (D.getName().getKind() ==
4548                      UnqualifiedIdKind::IK_DeductionGuideName) {
4549             if (T != Context.DependentTy) {
4550               S.Diag(D.getDeclSpec().getBeginLoc(),
4551                      diag::err_deduction_guide_with_complex_decl)
4552                   << D.getSourceRange();
4553               D.setInvalidType(true);
4554             }
4555           } else if (D.getContext() != DeclaratorContext::LambdaExprContext &&
4556                      (T.hasQualifiers() || !isa<AutoType>(T) ||
4557                       cast<AutoType>(T)->getKeyword() !=
4558                           AutoTypeKeyword::Auto)) {
4559             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4560                    diag::err_trailing_return_without_auto)
4561                 << T << D.getDeclSpec().getSourceRange();
4562             D.setInvalidType(true);
4563           }
4564           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4565           if (T.isNull()) {
4566             // An error occurred parsing the trailing return type.
4567             T = Context.IntTy;
4568             D.setInvalidType(true);
4569           }
4570         } else {
4571           // This function type is not the type of the entity being declared,
4572           // so checking the 'auto' is not the responsibility of this chunk.
4573         }
4574       }
4575 
4576       // C99 6.7.5.3p1: The return type may not be a function or array type.
4577       // For conversion functions, we'll diagnose this particular error later.
4578       if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4579           (D.getName().getKind() !=
4580            UnqualifiedIdKind::IK_ConversionFunctionId)) {
4581         unsigned diagID = diag::err_func_returning_array_function;
4582         // Last processing chunk in block context means this function chunk
4583         // represents the block.
4584         if (chunkIndex == 0 &&
4585             D.getContext() == DeclaratorContext::BlockLiteralContext)
4586           diagID = diag::err_block_returning_array_function;
4587         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4588         T = Context.IntTy;
4589         D.setInvalidType(true);
4590       }
4591 
4592       // Do not allow returning half FP value.
4593       // FIXME: This really should be in BuildFunctionType.
4594       if (T->isHalfType()) {
4595         if (S.getLangOpts().OpenCL) {
4596           if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4597             S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4598                 << T << 0 /*pointer hint*/;
4599             D.setInvalidType(true);
4600           }
4601         } else if (!S.getLangOpts().HalfArgsAndReturns) {
4602           S.Diag(D.getIdentifierLoc(),
4603             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4604           D.setInvalidType(true);
4605         }
4606       }
4607 
4608       if (LangOpts.OpenCL) {
4609         // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4610         // function.
4611         if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4612             T->isPipeType()) {
4613           S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4614               << T << 1 /*hint off*/;
4615           D.setInvalidType(true);
4616         }
4617         // OpenCL doesn't support variadic functions and blocks
4618         // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4619         // We also allow here any toolchain reserved identifiers.
4620         if (FTI.isVariadic &&
4621             !(D.getIdentifier() &&
4622               ((D.getIdentifier()->getName() == "printf" &&
4623                 (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) ||
4624                D.getIdentifier()->getName().startswith("__")))) {
4625           S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4626           D.setInvalidType(true);
4627         }
4628       }
4629 
4630       // Methods cannot return interface types. All ObjC objects are
4631       // passed by reference.
4632       if (T->isObjCObjectType()) {
4633         SourceLocation DiagLoc, FixitLoc;
4634         if (TInfo) {
4635           DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4636           FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4637         } else {
4638           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4639           FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4640         }
4641         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4642           << 0 << T
4643           << FixItHint::CreateInsertion(FixitLoc, "*");
4644 
4645         T = Context.getObjCObjectPointerType(T);
4646         if (TInfo) {
4647           TypeLocBuilder TLB;
4648           TLB.pushFullCopy(TInfo->getTypeLoc());
4649           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
4650           TLoc.setStarLoc(FixitLoc);
4651           TInfo = TLB.getTypeSourceInfo(Context, T);
4652         }
4653 
4654         D.setInvalidType(true);
4655       }
4656 
4657       // cv-qualifiers on return types are pointless except when the type is a
4658       // class type in C++.
4659       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
4660           !(S.getLangOpts().CPlusPlus &&
4661             (T->isDependentType() || T->isRecordType()))) {
4662         if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
4663             D.getFunctionDefinitionKind() == FDK_Definition) {
4664           // [6.9.1/3] qualified void return is invalid on a C
4665           // function definition.  Apparently ok on declarations and
4666           // in C++ though (!)
4667           S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
4668         } else
4669           diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
4670       }
4671 
4672       // Objective-C ARC ownership qualifiers are ignored on the function
4673       // return type (by type canonicalization). Complain if this attribute
4674       // was written here.
4675       if (T.getQualifiers().hasObjCLifetime()) {
4676         SourceLocation AttrLoc;
4677         if (chunkIndex + 1 < D.getNumTypeObjects()) {
4678           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
4679           for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
4680             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4681               AttrLoc = AL.getLoc();
4682               break;
4683             }
4684           }
4685         }
4686         if (AttrLoc.isInvalid()) {
4687           for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4688             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4689               AttrLoc = AL.getLoc();
4690               break;
4691             }
4692           }
4693         }
4694 
4695         if (AttrLoc.isValid()) {
4696           // The ownership attributes are almost always written via
4697           // the predefined
4698           // __strong/__weak/__autoreleasing/__unsafe_unretained.
4699           if (AttrLoc.isMacroID())
4700             AttrLoc =
4701                 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
4702 
4703           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
4704             << T.getQualifiers().getObjCLifetime();
4705         }
4706       }
4707 
4708       if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
4709         // C++ [dcl.fct]p6:
4710         //   Types shall not be defined in return or parameter types.
4711         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
4712         S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
4713           << Context.getTypeDeclType(Tag);
4714       }
4715 
4716       // Exception specs are not allowed in typedefs. Complain, but add it
4717       // anyway.
4718       if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
4719         S.Diag(FTI.getExceptionSpecLocBeg(),
4720                diag::err_exception_spec_in_typedef)
4721             << (D.getContext() == DeclaratorContext::AliasDeclContext ||
4722                 D.getContext() == DeclaratorContext::AliasTemplateContext);
4723 
4724       // If we see "T var();" or "T var(T());" at block scope, it is probably
4725       // an attempt to initialize a variable, not a function declaration.
4726       if (FTI.isAmbiguous)
4727         warnAboutAmbiguousFunction(S, D, DeclType, T);
4728 
4729       FunctionType::ExtInfo EI(
4730           getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
4731 
4732       if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
4733                                             && !LangOpts.OpenCL) {
4734         // Simple void foo(), where the incoming T is the result type.
4735         T = Context.getFunctionNoProtoType(T, EI);
4736       } else {
4737         // We allow a zero-parameter variadic function in C if the
4738         // function is marked with the "overloadable" attribute. Scan
4739         // for this attribute now.
4740         if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
4741           if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
4742             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
4743 
4744         if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
4745           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
4746           // definition.
4747           S.Diag(FTI.Params[0].IdentLoc,
4748                  diag::err_ident_list_in_fn_declaration);
4749           D.setInvalidType(true);
4750           // Recover by creating a K&R-style function type.
4751           T = Context.getFunctionNoProtoType(T, EI);
4752           break;
4753         }
4754 
4755         FunctionProtoType::ExtProtoInfo EPI;
4756         EPI.ExtInfo = EI;
4757         EPI.Variadic = FTI.isVariadic;
4758         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
4759         EPI.TypeQuals.addCVRUQualifiers(
4760             FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
4761                                  : 0);
4762         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
4763                     : FTI.RefQualifierIsLValueRef? RQ_LValue
4764                     : RQ_RValue;
4765 
4766         // Otherwise, we have a function with a parameter list that is
4767         // potentially variadic.
4768         SmallVector<QualType, 16> ParamTys;
4769         ParamTys.reserve(FTI.NumParams);
4770 
4771         SmallVector<FunctionProtoType::ExtParameterInfo, 16>
4772           ExtParameterInfos(FTI.NumParams);
4773         bool HasAnyInterestingExtParameterInfos = false;
4774 
4775         for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
4776           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
4777           QualType ParamTy = Param->getType();
4778           assert(!ParamTy.isNull() && "Couldn't parse type?");
4779 
4780           // Look for 'void'.  void is allowed only as a single parameter to a
4781           // function with no other parameters (C99 6.7.5.3p10).  We record
4782           // int(void) as a FunctionProtoType with an empty parameter list.
4783           if (ParamTy->isVoidType()) {
4784             // If this is something like 'float(int, void)', reject it.  'void'
4785             // is an incomplete type (C99 6.2.5p19) and function decls cannot
4786             // have parameters of incomplete type.
4787             if (FTI.NumParams != 1 || FTI.isVariadic) {
4788               S.Diag(DeclType.Loc, diag::err_void_only_param);
4789               ParamTy = Context.IntTy;
4790               Param->setType(ParamTy);
4791             } else if (FTI.Params[i].Ident) {
4792               // Reject, but continue to parse 'int(void abc)'.
4793               S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
4794               ParamTy = Context.IntTy;
4795               Param->setType(ParamTy);
4796             } else {
4797               // Reject, but continue to parse 'float(const void)'.
4798               if (ParamTy.hasQualifiers())
4799                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
4800 
4801               // Do not add 'void' to the list.
4802               break;
4803             }
4804           } else if (ParamTy->isHalfType()) {
4805             // Disallow half FP parameters.
4806             // FIXME: This really should be in BuildFunctionType.
4807             if (S.getLangOpts().OpenCL) {
4808               if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4809                 S.Diag(Param->getLocation(),
4810                   diag::err_opencl_half_param) << ParamTy;
4811                 D.setInvalidType();
4812                 Param->setInvalidDecl();
4813               }
4814             } else if (!S.getLangOpts().HalfArgsAndReturns) {
4815               S.Diag(Param->getLocation(),
4816                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
4817               D.setInvalidType();
4818             }
4819           } else if (!FTI.hasPrototype) {
4820             if (ParamTy->isPromotableIntegerType()) {
4821               ParamTy = Context.getPromotedIntegerType(ParamTy);
4822               Param->setKNRPromoted(true);
4823             } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
4824               if (BTy->getKind() == BuiltinType::Float) {
4825                 ParamTy = Context.DoubleTy;
4826                 Param->setKNRPromoted(true);
4827               }
4828             }
4829           }
4830 
4831           if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
4832             ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
4833             HasAnyInterestingExtParameterInfos = true;
4834           }
4835 
4836           if (auto attr = Param->getAttr<ParameterABIAttr>()) {
4837             ExtParameterInfos[i] =
4838               ExtParameterInfos[i].withABI(attr->getABI());
4839             HasAnyInterestingExtParameterInfos = true;
4840           }
4841 
4842           if (Param->hasAttr<PassObjectSizeAttr>()) {
4843             ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
4844             HasAnyInterestingExtParameterInfos = true;
4845           }
4846 
4847           if (Param->hasAttr<NoEscapeAttr>()) {
4848             ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
4849             HasAnyInterestingExtParameterInfos = true;
4850           }
4851 
4852           ParamTys.push_back(ParamTy);
4853         }
4854 
4855         if (HasAnyInterestingExtParameterInfos) {
4856           EPI.ExtParameterInfos = ExtParameterInfos.data();
4857           checkExtParameterInfos(S, ParamTys, EPI,
4858               [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
4859         }
4860 
4861         SmallVector<QualType, 4> Exceptions;
4862         SmallVector<ParsedType, 2> DynamicExceptions;
4863         SmallVector<SourceRange, 2> DynamicExceptionRanges;
4864         Expr *NoexceptExpr = nullptr;
4865 
4866         if (FTI.getExceptionSpecType() == EST_Dynamic) {
4867           // FIXME: It's rather inefficient to have to split into two vectors
4868           // here.
4869           unsigned N = FTI.getNumExceptions();
4870           DynamicExceptions.reserve(N);
4871           DynamicExceptionRanges.reserve(N);
4872           for (unsigned I = 0; I != N; ++I) {
4873             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
4874             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
4875           }
4876         } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
4877           NoexceptExpr = FTI.NoexceptExpr;
4878         }
4879 
4880         S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
4881                                       FTI.getExceptionSpecType(),
4882                                       DynamicExceptions,
4883                                       DynamicExceptionRanges,
4884                                       NoexceptExpr,
4885                                       Exceptions,
4886                                       EPI.ExceptionSpec);
4887 
4888         // FIXME: Set address space from attrs for C++ mode here.
4889         // OpenCLCPlusPlus: A class member function has an address space.
4890         auto IsClassMember = [&]() {
4891           return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
4892                   state.getDeclarator()
4893                           .getCXXScopeSpec()
4894                           .getScopeRep()
4895                           ->getKind() == NestedNameSpecifier::TypeSpec) ||
4896                  state.getDeclarator().getContext() ==
4897                      DeclaratorContext::MemberContext;
4898         };
4899 
4900         if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
4901           LangAS ASIdx = LangAS::Default;
4902           // Take address space attr if any and mark as invalid to avoid adding
4903           // them later while creating QualType.
4904           if (FTI.MethodQualifiers)
4905             for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
4906               LangAS ASIdxNew = attr.asOpenCLLangAS();
4907               if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
4908                                                       attr.getLoc()))
4909                 D.setInvalidType(true);
4910               else
4911                 ASIdx = ASIdxNew;
4912             }
4913           // If a class member function's address space is not set, set it to
4914           // __generic.
4915           LangAS AS =
4916               (ASIdx == LangAS::Default ? LangAS::opencl_generic : ASIdx);
4917           EPI.TypeQuals.addAddressSpace(AS);
4918         }
4919         T = Context.getFunctionType(T, ParamTys, EPI);
4920       }
4921       break;
4922     }
4923     case DeclaratorChunk::MemberPointer: {
4924       // The scope spec must refer to a class, or be dependent.
4925       CXXScopeSpec &SS = DeclType.Mem.Scope();
4926       QualType ClsType;
4927 
4928       // Handle pointer nullability.
4929       inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
4930                               DeclType.EndLoc, DeclType.getAttrs(),
4931                               state.getDeclarator().getAttributePool());
4932 
4933       if (SS.isInvalid()) {
4934         // Avoid emitting extra errors if we already errored on the scope.
4935         D.setInvalidType(true);
4936       } else if (S.isDependentScopeSpecifier(SS) ||
4937                  dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
4938         NestedNameSpecifier *NNS = SS.getScopeRep();
4939         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
4940         switch (NNS->getKind()) {
4941         case NestedNameSpecifier::Identifier:
4942           ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
4943                                                  NNS->getAsIdentifier());
4944           break;
4945 
4946         case NestedNameSpecifier::Namespace:
4947         case NestedNameSpecifier::NamespaceAlias:
4948         case NestedNameSpecifier::Global:
4949         case NestedNameSpecifier::Super:
4950           llvm_unreachable("Nested-name-specifier must name a type");
4951 
4952         case NestedNameSpecifier::TypeSpec:
4953         case NestedNameSpecifier::TypeSpecWithTemplate:
4954           ClsType = QualType(NNS->getAsType(), 0);
4955           // Note: if the NNS has a prefix and ClsType is a nondependent
4956           // TemplateSpecializationType, then the NNS prefix is NOT included
4957           // in ClsType; hence we wrap ClsType into an ElaboratedType.
4958           // NOTE: in particular, no wrap occurs if ClsType already is an
4959           // Elaborated, DependentName, or DependentTemplateSpecialization.
4960           if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
4961             ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
4962           break;
4963         }
4964       } else {
4965         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
4966              diag::err_illegal_decl_mempointer_in_nonclass)
4967           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
4968           << DeclType.Mem.Scope().getRange();
4969         D.setInvalidType(true);
4970       }
4971 
4972       if (!ClsType.isNull())
4973         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
4974                                      D.getIdentifier());
4975       if (T.isNull()) {
4976         T = Context.IntTy;
4977         D.setInvalidType(true);
4978       } else if (DeclType.Mem.TypeQuals) {
4979         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
4980       }
4981       break;
4982     }
4983 
4984     case DeclaratorChunk::Pipe: {
4985       T = S.BuildReadPipeType(T, DeclType.Loc);
4986       processTypeAttrs(state, T, TAL_DeclSpec,
4987                        D.getMutableDeclSpec().getAttributes());
4988       break;
4989     }
4990     }
4991 
4992     if (T.isNull()) {
4993       D.setInvalidType(true);
4994       T = Context.IntTy;
4995     }
4996 
4997     // See if there are any attributes on this declarator chunk.
4998     processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
4999 
5000     if (DeclType.Kind != DeclaratorChunk::Paren) {
5001       if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5002         S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5003 
5004       ExpectNoDerefChunk = state.didParseNoDeref();
5005     }
5006   }
5007 
5008   if (ExpectNoDerefChunk)
5009     S.Diag(state.getDeclarator().getBeginLoc(),
5010            diag::warn_noderef_on_non_pointer_or_array);
5011 
5012   // GNU warning -Wstrict-prototypes
5013   //   Warn if a function declaration is without a prototype.
5014   //   This warning is issued for all kinds of unprototyped function
5015   //   declarations (i.e. function type typedef, function pointer etc.)
5016   //   C99 6.7.5.3p14:
5017   //   The empty list in a function declarator that is not part of a definition
5018   //   of that function specifies that no information about the number or types
5019   //   of the parameters is supplied.
5020   if (!LangOpts.CPlusPlus && D.getFunctionDefinitionKind() == FDK_Declaration) {
5021     bool IsBlock = false;
5022     for (const DeclaratorChunk &DeclType : D.type_objects()) {
5023       switch (DeclType.Kind) {
5024       case DeclaratorChunk::BlockPointer:
5025         IsBlock = true;
5026         break;
5027       case DeclaratorChunk::Function: {
5028         const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5029         // We supress the warning when there's no LParen location, as this
5030         // indicates the declaration was an implicit declaration, which gets
5031         // warned about separately via -Wimplicit-function-declaration.
5032         if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
5033           S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5034               << IsBlock
5035               << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5036         IsBlock = false;
5037         break;
5038       }
5039       default:
5040         break;
5041       }
5042     }
5043   }
5044 
5045   assert(!T.isNull() && "T must not be null after this point");
5046 
5047   if (LangOpts.CPlusPlus && T->isFunctionType()) {
5048     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5049     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5050 
5051     // C++ 8.3.5p4:
5052     //   A cv-qualifier-seq shall only be part of the function type
5053     //   for a nonstatic member function, the function type to which a pointer
5054     //   to member refers, or the top-level function type of a function typedef
5055     //   declaration.
5056     //
5057     // Core issue 547 also allows cv-qualifiers on function types that are
5058     // top-level template type arguments.
5059     enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5060     if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5061       Kind = DeductionGuide;
5062     else if (!D.getCXXScopeSpec().isSet()) {
5063       if ((D.getContext() == DeclaratorContext::MemberContext ||
5064            D.getContext() == DeclaratorContext::LambdaExprContext) &&
5065           !D.getDeclSpec().isFriendSpecified())
5066         Kind = Member;
5067     } else {
5068       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5069       if (!DC || DC->isRecord())
5070         Kind = Member;
5071     }
5072 
5073     // C++11 [dcl.fct]p6 (w/DR1417):
5074     // An attempt to specify a function type with a cv-qualifier-seq or a
5075     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5076     //  - the function type for a non-static member function,
5077     //  - the function type to which a pointer to member refers,
5078     //  - the top-level function type of a function typedef declaration or
5079     //    alias-declaration,
5080     //  - the type-id in the default argument of a type-parameter, or
5081     //  - the type-id of a template-argument for a type-parameter
5082     //
5083     // FIXME: Checking this here is insufficient. We accept-invalid on:
5084     //
5085     //   template<typename T> struct S { void f(T); };
5086     //   S<int() const> s;
5087     //
5088     // ... for instance.
5089     if (IsQualifiedFunction &&
5090         !(Kind == Member &&
5091           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5092         !IsTypedefName &&
5093         D.getContext() != DeclaratorContext::TemplateArgContext &&
5094         D.getContext() != DeclaratorContext::TemplateTypeArgContext) {
5095       SourceLocation Loc = D.getBeginLoc();
5096       SourceRange RemovalRange;
5097       unsigned I;
5098       if (D.isFunctionDeclarator(I)) {
5099         SmallVector<SourceLocation, 4> RemovalLocs;
5100         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5101         assert(Chunk.Kind == DeclaratorChunk::Function);
5102 
5103         if (Chunk.Fun.hasRefQualifier())
5104           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5105 
5106         if (Chunk.Fun.hasMethodTypeQualifiers())
5107           Chunk.Fun.MethodQualifiers->forEachQualifier(
5108               [&](DeclSpec::TQ TypeQual, StringRef QualName,
5109                   SourceLocation SL) { RemovalLocs.push_back(SL); });
5110 
5111         if (!RemovalLocs.empty()) {
5112           llvm::sort(RemovalLocs,
5113                      BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5114           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5115           Loc = RemovalLocs.front();
5116         }
5117       }
5118 
5119       S.Diag(Loc, diag::err_invalid_qualified_function_type)
5120         << Kind << D.isFunctionDeclarator() << T
5121         << getFunctionQualifiersAsString(FnTy)
5122         << FixItHint::CreateRemoval(RemovalRange);
5123 
5124       // Strip the cv-qualifiers and ref-qualifiers from the type.
5125       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5126       EPI.TypeQuals.removeCVRQualifiers();
5127       EPI.RefQualifier = RQ_None;
5128 
5129       T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5130                                   EPI);
5131       // Rebuild any parens around the identifier in the function type.
5132       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5133         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5134           break;
5135         T = S.BuildParenType(T);
5136       }
5137     }
5138   }
5139 
5140   // Apply any undistributed attributes from the declarator.
5141   processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5142 
5143   // Diagnose any ignored type attributes.
5144   state.diagnoseIgnoredTypeAttrs(T);
5145 
5146   // C++0x [dcl.constexpr]p9:
5147   //  A constexpr specifier used in an object declaration declares the object
5148   //  as const.
5149   if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
5150     T.addConst();
5151   }
5152 
5153   // If there was an ellipsis in the declarator, the declaration declares a
5154   // parameter pack whose type may be a pack expansion type.
5155   if (D.hasEllipsis()) {
5156     // C++0x [dcl.fct]p13:
5157     //   A declarator-id or abstract-declarator containing an ellipsis shall
5158     //   only be used in a parameter-declaration. Such a parameter-declaration
5159     //   is a parameter pack (14.5.3). [...]
5160     switch (D.getContext()) {
5161     case DeclaratorContext::PrototypeContext:
5162     case DeclaratorContext::LambdaExprParameterContext:
5163       // C++0x [dcl.fct]p13:
5164       //   [...] When it is part of a parameter-declaration-clause, the
5165       //   parameter pack is a function parameter pack (14.5.3). The type T
5166       //   of the declarator-id of the function parameter pack shall contain
5167       //   a template parameter pack; each template parameter pack in T is
5168       //   expanded by the function parameter pack.
5169       //
5170       // We represent function parameter packs as function parameters whose
5171       // type is a pack expansion.
5172       if (!T->containsUnexpandedParameterPack()) {
5173         S.Diag(D.getEllipsisLoc(),
5174              diag::err_function_parameter_pack_without_parameter_packs)
5175           << T <<  D.getSourceRange();
5176         D.setEllipsisLoc(SourceLocation());
5177       } else {
5178         T = Context.getPackExpansionType(T, None);
5179       }
5180       break;
5181     case DeclaratorContext::TemplateParamContext:
5182       // C++0x [temp.param]p15:
5183       //   If a template-parameter is a [...] is a parameter-declaration that
5184       //   declares a parameter pack (8.3.5), then the template-parameter is a
5185       //   template parameter pack (14.5.3).
5186       //
5187       // Note: core issue 778 clarifies that, if there are any unexpanded
5188       // parameter packs in the type of the non-type template parameter, then
5189       // it expands those parameter packs.
5190       if (T->containsUnexpandedParameterPack())
5191         T = Context.getPackExpansionType(T, None);
5192       else
5193         S.Diag(D.getEllipsisLoc(),
5194                LangOpts.CPlusPlus11
5195                  ? diag::warn_cxx98_compat_variadic_templates
5196                  : diag::ext_variadic_templates);
5197       break;
5198 
5199     case DeclaratorContext::FileContext:
5200     case DeclaratorContext::KNRTypeListContext:
5201     case DeclaratorContext::ObjCParameterContext:  // FIXME: special diagnostic
5202                                                    // here?
5203     case DeclaratorContext::ObjCResultContext:     // FIXME: special diagnostic
5204                                                    // here?
5205     case DeclaratorContext::TypeNameContext:
5206     case DeclaratorContext::FunctionalCastContext:
5207     case DeclaratorContext::CXXNewContext:
5208     case DeclaratorContext::AliasDeclContext:
5209     case DeclaratorContext::AliasTemplateContext:
5210     case DeclaratorContext::MemberContext:
5211     case DeclaratorContext::BlockContext:
5212     case DeclaratorContext::ForContext:
5213     case DeclaratorContext::InitStmtContext:
5214     case DeclaratorContext::ConditionContext:
5215     case DeclaratorContext::CXXCatchContext:
5216     case DeclaratorContext::ObjCCatchContext:
5217     case DeclaratorContext::BlockLiteralContext:
5218     case DeclaratorContext::LambdaExprContext:
5219     case DeclaratorContext::ConversionIdContext:
5220     case DeclaratorContext::TrailingReturnContext:
5221     case DeclaratorContext::TrailingReturnVarContext:
5222     case DeclaratorContext::TemplateArgContext:
5223     case DeclaratorContext::TemplateTypeArgContext:
5224       // FIXME: We may want to allow parameter packs in block-literal contexts
5225       // in the future.
5226       S.Diag(D.getEllipsisLoc(),
5227              diag::err_ellipsis_in_declarator_not_parameter);
5228       D.setEllipsisLoc(SourceLocation());
5229       break;
5230     }
5231   }
5232 
5233   assert(!T.isNull() && "T must not be null at the end of this function");
5234   if (D.isInvalidType())
5235     return Context.getTrivialTypeSourceInfo(T);
5236 
5237   return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5238 }
5239 
5240 /// GetTypeForDeclarator - Convert the type for the specified
5241 /// declarator to Type instances.
5242 ///
5243 /// The result of this call will never be null, but the associated
5244 /// type may be a null type if there's an unrecoverable error.
5245 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5246   // Determine the type of the declarator. Not all forms of declarator
5247   // have a type.
5248 
5249   TypeProcessingState state(*this, D);
5250 
5251   TypeSourceInfo *ReturnTypeInfo = nullptr;
5252   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5253   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5254     inferARCWriteback(state, T);
5255 
5256   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5257 }
5258 
5259 static void transferARCOwnershipToDeclSpec(Sema &S,
5260                                            QualType &declSpecTy,
5261                                            Qualifiers::ObjCLifetime ownership) {
5262   if (declSpecTy->isObjCRetainableType() &&
5263       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5264     Qualifiers qs;
5265     qs.addObjCLifetime(ownership);
5266     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5267   }
5268 }
5269 
5270 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5271                                             Qualifiers::ObjCLifetime ownership,
5272                                             unsigned chunkIndex) {
5273   Sema &S = state.getSema();
5274   Declarator &D = state.getDeclarator();
5275 
5276   // Look for an explicit lifetime attribute.
5277   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5278   if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5279     return;
5280 
5281   const char *attrStr = nullptr;
5282   switch (ownership) {
5283   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5284   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5285   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5286   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5287   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5288   }
5289 
5290   IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5291   Arg->Ident = &S.Context.Idents.get(attrStr);
5292   Arg->Loc = SourceLocation();
5293 
5294   ArgsUnion Args(Arg);
5295 
5296   // If there wasn't one, add one (with an invalid source location
5297   // so that we don't make an AttributedType for it).
5298   ParsedAttr *attr = D.getAttributePool().create(
5299       &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5300       /*scope*/ nullptr, SourceLocation(),
5301       /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5302   chunk.getAttrs().addAtEnd(attr);
5303   // TODO: mark whether we did this inference?
5304 }
5305 
5306 /// Used for transferring ownership in casts resulting in l-values.
5307 static void transferARCOwnership(TypeProcessingState &state,
5308                                  QualType &declSpecTy,
5309                                  Qualifiers::ObjCLifetime ownership) {
5310   Sema &S = state.getSema();
5311   Declarator &D = state.getDeclarator();
5312 
5313   int inner = -1;
5314   bool hasIndirection = false;
5315   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5316     DeclaratorChunk &chunk = D.getTypeObject(i);
5317     switch (chunk.Kind) {
5318     case DeclaratorChunk::Paren:
5319       // Ignore parens.
5320       break;
5321 
5322     case DeclaratorChunk::Array:
5323     case DeclaratorChunk::Reference:
5324     case DeclaratorChunk::Pointer:
5325       if (inner != -1)
5326         hasIndirection = true;
5327       inner = i;
5328       break;
5329 
5330     case DeclaratorChunk::BlockPointer:
5331       if (inner != -1)
5332         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5333       return;
5334 
5335     case DeclaratorChunk::Function:
5336     case DeclaratorChunk::MemberPointer:
5337     case DeclaratorChunk::Pipe:
5338       return;
5339     }
5340   }
5341 
5342   if (inner == -1)
5343     return;
5344 
5345   DeclaratorChunk &chunk = D.getTypeObject(inner);
5346   if (chunk.Kind == DeclaratorChunk::Pointer) {
5347     if (declSpecTy->isObjCRetainableType())
5348       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5349     if (declSpecTy->isObjCObjectType() && hasIndirection)
5350       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5351   } else {
5352     assert(chunk.Kind == DeclaratorChunk::Array ||
5353            chunk.Kind == DeclaratorChunk::Reference);
5354     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5355   }
5356 }
5357 
5358 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5359   TypeProcessingState state(*this, D);
5360 
5361   TypeSourceInfo *ReturnTypeInfo = nullptr;
5362   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5363 
5364   if (getLangOpts().ObjC) {
5365     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5366     if (ownership != Qualifiers::OCL_None)
5367       transferARCOwnership(state, declSpecTy, ownership);
5368   }
5369 
5370   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5371 }
5372 
5373 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5374                                   TypeProcessingState &State) {
5375   TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5376 }
5377 
5378 namespace {
5379   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5380     ASTContext &Context;
5381     TypeProcessingState &State;
5382     const DeclSpec &DS;
5383 
5384   public:
5385     TypeSpecLocFiller(ASTContext &Context, TypeProcessingState &State,
5386                       const DeclSpec &DS)
5387         : Context(Context), State(State), DS(DS) {}
5388 
5389     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5390       Visit(TL.getModifiedLoc());
5391       fillAttributedTypeLoc(TL, State);
5392     }
5393     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5394       Visit(TL.getInnerLoc());
5395       TL.setExpansionLoc(
5396           State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5397     }
5398     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5399       Visit(TL.getUnqualifiedLoc());
5400     }
5401     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5402       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5403     }
5404     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5405       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5406       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5407       // addition field. What we have is good enough for dispay of location
5408       // of 'fixit' on interface name.
5409       TL.setNameEndLoc(DS.getEndLoc());
5410     }
5411     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5412       TypeSourceInfo *RepTInfo = nullptr;
5413       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5414       TL.copy(RepTInfo->getTypeLoc());
5415     }
5416     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5417       TypeSourceInfo *RepTInfo = nullptr;
5418       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5419       TL.copy(RepTInfo->getTypeLoc());
5420     }
5421     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5422       TypeSourceInfo *TInfo = nullptr;
5423       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5424 
5425       // If we got no declarator info from previous Sema routines,
5426       // just fill with the typespec loc.
5427       if (!TInfo) {
5428         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5429         return;
5430       }
5431 
5432       TypeLoc OldTL = TInfo->getTypeLoc();
5433       if (TInfo->getType()->getAs<ElaboratedType>()) {
5434         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5435         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5436             .castAs<TemplateSpecializationTypeLoc>();
5437         TL.copy(NamedTL);
5438       } else {
5439         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5440         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5441       }
5442 
5443     }
5444     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5445       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
5446       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5447       TL.setParensRange(DS.getTypeofParensRange());
5448     }
5449     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5450       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
5451       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5452       TL.setParensRange(DS.getTypeofParensRange());
5453       assert(DS.getRepAsType());
5454       TypeSourceInfo *TInfo = nullptr;
5455       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5456       TL.setUnderlyingTInfo(TInfo);
5457     }
5458     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5459       // FIXME: This holds only because we only have one unary transform.
5460       assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
5461       TL.setKWLoc(DS.getTypeSpecTypeLoc());
5462       TL.setParensRange(DS.getTypeofParensRange());
5463       assert(DS.getRepAsType());
5464       TypeSourceInfo *TInfo = nullptr;
5465       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5466       TL.setUnderlyingTInfo(TInfo);
5467     }
5468     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5469       // By default, use the source location of the type specifier.
5470       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5471       if (TL.needsExtraLocalData()) {
5472         // Set info for the written builtin specifiers.
5473         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5474         // Try to have a meaningful source location.
5475         if (TL.getWrittenSignSpec() != TSS_unspecified)
5476           TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5477         if (TL.getWrittenWidthSpec() != TSW_unspecified)
5478           TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5479       }
5480     }
5481     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5482       ElaboratedTypeKeyword Keyword
5483         = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
5484       if (DS.getTypeSpecType() == TST_typename) {
5485         TypeSourceInfo *TInfo = nullptr;
5486         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5487         if (TInfo) {
5488           TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5489           return;
5490         }
5491       }
5492       TL.setElaboratedKeywordLoc(Keyword != ETK_None
5493                                  ? DS.getTypeSpecTypeLoc()
5494                                  : SourceLocation());
5495       const CXXScopeSpec& SS = DS.getTypeSpecScope();
5496       TL.setQualifierLoc(SS.getWithLocInContext(Context));
5497       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5498     }
5499     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5500       assert(DS.getTypeSpecType() == TST_typename);
5501       TypeSourceInfo *TInfo = nullptr;
5502       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5503       assert(TInfo);
5504       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5505     }
5506     void VisitDependentTemplateSpecializationTypeLoc(
5507                                  DependentTemplateSpecializationTypeLoc TL) {
5508       assert(DS.getTypeSpecType() == TST_typename);
5509       TypeSourceInfo *TInfo = nullptr;
5510       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5511       assert(TInfo);
5512       TL.copy(
5513           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5514     }
5515     void VisitTagTypeLoc(TagTypeLoc TL) {
5516       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
5517     }
5518     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
5519       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
5520       // or an _Atomic qualifier.
5521       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
5522         TL.setKWLoc(DS.getTypeSpecTypeLoc());
5523         TL.setParensRange(DS.getTypeofParensRange());
5524 
5525         TypeSourceInfo *TInfo = nullptr;
5526         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5527         assert(TInfo);
5528         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5529       } else {
5530         TL.setKWLoc(DS.getAtomicSpecLoc());
5531         // No parens, to indicate this was spelled as an _Atomic qualifier.
5532         TL.setParensRange(SourceRange());
5533         Visit(TL.getValueLoc());
5534       }
5535     }
5536 
5537     void VisitPipeTypeLoc(PipeTypeLoc TL) {
5538       TL.setKWLoc(DS.getTypeSpecTypeLoc());
5539 
5540       TypeSourceInfo *TInfo = nullptr;
5541       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5542       TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5543     }
5544 
5545     void VisitTypeLoc(TypeLoc TL) {
5546       // FIXME: add other typespec types and change this to an assert.
5547       TL.initialize(Context, DS.getTypeSpecTypeLoc());
5548     }
5549   };
5550 
5551   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
5552     ASTContext &Context;
5553     TypeProcessingState &State;
5554     const DeclaratorChunk &Chunk;
5555 
5556   public:
5557     DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
5558                         const DeclaratorChunk &Chunk)
5559         : Context(Context), State(State), Chunk(Chunk) {}
5560 
5561     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5562       llvm_unreachable("qualified type locs not expected here!");
5563     }
5564     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
5565       llvm_unreachable("decayed type locs not expected here!");
5566     }
5567 
5568     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5569       fillAttributedTypeLoc(TL, State);
5570     }
5571     void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
5572       // nothing
5573     }
5574     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
5575       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
5576       TL.setCaretLoc(Chunk.Loc);
5577     }
5578     void VisitPointerTypeLoc(PointerTypeLoc TL) {
5579       assert(Chunk.Kind == DeclaratorChunk::Pointer);
5580       TL.setStarLoc(Chunk.Loc);
5581     }
5582     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5583       assert(Chunk.Kind == DeclaratorChunk::Pointer);
5584       TL.setStarLoc(Chunk.Loc);
5585     }
5586     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
5587       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
5588       const CXXScopeSpec& SS = Chunk.Mem.Scope();
5589       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
5590 
5591       const Type* ClsTy = TL.getClass();
5592       QualType ClsQT = QualType(ClsTy, 0);
5593       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
5594       // Now copy source location info into the type loc component.
5595       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
5596       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
5597       case NestedNameSpecifier::Identifier:
5598         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
5599         {
5600           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
5601           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
5602           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
5603           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
5604         }
5605         break;
5606 
5607       case NestedNameSpecifier::TypeSpec:
5608       case NestedNameSpecifier::TypeSpecWithTemplate:
5609         if (isa<ElaboratedType>(ClsTy)) {
5610           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
5611           ETLoc.setElaboratedKeywordLoc(SourceLocation());
5612           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
5613           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
5614           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
5615         } else {
5616           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
5617         }
5618         break;
5619 
5620       case NestedNameSpecifier::Namespace:
5621       case NestedNameSpecifier::NamespaceAlias:
5622       case NestedNameSpecifier::Global:
5623       case NestedNameSpecifier::Super:
5624         llvm_unreachable("Nested-name-specifier must name a type");
5625       }
5626 
5627       // Finally fill in MemberPointerLocInfo fields.
5628       TL.setStarLoc(Chunk.Loc);
5629       TL.setClassTInfo(ClsTInfo);
5630     }
5631     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
5632       assert(Chunk.Kind == DeclaratorChunk::Reference);
5633       // 'Amp' is misleading: this might have been originally
5634       /// spelled with AmpAmp.
5635       TL.setAmpLoc(Chunk.Loc);
5636     }
5637     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
5638       assert(Chunk.Kind == DeclaratorChunk::Reference);
5639       assert(!Chunk.Ref.LValueRef);
5640       TL.setAmpAmpLoc(Chunk.Loc);
5641     }
5642     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
5643       assert(Chunk.Kind == DeclaratorChunk::Array);
5644       TL.setLBracketLoc(Chunk.Loc);
5645       TL.setRBracketLoc(Chunk.EndLoc);
5646       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
5647     }
5648     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
5649       assert(Chunk.Kind == DeclaratorChunk::Function);
5650       TL.setLocalRangeBegin(Chunk.Loc);
5651       TL.setLocalRangeEnd(Chunk.EndLoc);
5652 
5653       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
5654       TL.setLParenLoc(FTI.getLParenLoc());
5655       TL.setRParenLoc(FTI.getRParenLoc());
5656       for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
5657         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5658         TL.setParam(tpi++, Param);
5659       }
5660       TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
5661     }
5662     void VisitParenTypeLoc(ParenTypeLoc TL) {
5663       assert(Chunk.Kind == DeclaratorChunk::Paren);
5664       TL.setLParenLoc(Chunk.Loc);
5665       TL.setRParenLoc(Chunk.EndLoc);
5666     }
5667     void VisitPipeTypeLoc(PipeTypeLoc TL) {
5668       assert(Chunk.Kind == DeclaratorChunk::Pipe);
5669       TL.setKWLoc(Chunk.Loc);
5670     }
5671     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5672       TL.setExpansionLoc(Chunk.Loc);
5673     }
5674 
5675     void VisitTypeLoc(TypeLoc TL) {
5676       llvm_unreachable("unsupported TypeLoc kind in declarator!");
5677     }
5678   };
5679 } // end anonymous namespace
5680 
5681 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
5682   SourceLocation Loc;
5683   switch (Chunk.Kind) {
5684   case DeclaratorChunk::Function:
5685   case DeclaratorChunk::Array:
5686   case DeclaratorChunk::Paren:
5687   case DeclaratorChunk::Pipe:
5688     llvm_unreachable("cannot be _Atomic qualified");
5689 
5690   case DeclaratorChunk::Pointer:
5691     Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
5692     break;
5693 
5694   case DeclaratorChunk::BlockPointer:
5695   case DeclaratorChunk::Reference:
5696   case DeclaratorChunk::MemberPointer:
5697     // FIXME: Provide a source location for the _Atomic keyword.
5698     break;
5699   }
5700 
5701   ATL.setKWLoc(Loc);
5702   ATL.setParensRange(SourceRange());
5703 }
5704 
5705 static void
5706 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
5707                                  const ParsedAttributesView &Attrs) {
5708   for (const ParsedAttr &AL : Attrs) {
5709     if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
5710       DASTL.setAttrNameLoc(AL.getLoc());
5711       DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
5712       DASTL.setAttrOperandParensRange(SourceRange());
5713       return;
5714     }
5715   }
5716 
5717   llvm_unreachable(
5718       "no address_space attribute found at the expected location!");
5719 }
5720 
5721 /// Create and instantiate a TypeSourceInfo with type source information.
5722 ///
5723 /// \param T QualType referring to the type as written in source code.
5724 ///
5725 /// \param ReturnTypeInfo For declarators whose return type does not show
5726 /// up in the normal place in the declaration specifiers (such as a C++
5727 /// conversion function), this pointer will refer to a type source information
5728 /// for that return type.
5729 static TypeSourceInfo *
5730 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
5731                                QualType T, TypeSourceInfo *ReturnTypeInfo) {
5732   Sema &S = State.getSema();
5733   Declarator &D = State.getDeclarator();
5734 
5735   TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
5736   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
5737 
5738   // Handle parameter packs whose type is a pack expansion.
5739   if (isa<PackExpansionType>(T)) {
5740     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
5741     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5742   }
5743 
5744   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5745     // An AtomicTypeLoc might be produced by an atomic qualifier in this
5746     // declarator chunk.
5747     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
5748       fillAtomicQualLoc(ATL, D.getTypeObject(i));
5749       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
5750     }
5751 
5752     while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
5753       TL.setExpansionLoc(
5754           State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5755       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5756     }
5757 
5758     while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
5759       fillAttributedTypeLoc(TL, State);
5760       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5761     }
5762 
5763     while (DependentAddressSpaceTypeLoc TL =
5764                CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
5765       fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
5766       CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
5767     }
5768 
5769     // FIXME: Ordering here?
5770     while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
5771       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5772 
5773     DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
5774     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5775   }
5776 
5777   // If we have different source information for the return type, use
5778   // that.  This really only applies to C++ conversion functions.
5779   if (ReturnTypeInfo) {
5780     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
5781     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
5782     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
5783   } else {
5784     TypeSpecLocFiller(S.Context, State, D.getDeclSpec()).Visit(CurrTL);
5785   }
5786 
5787   return TInfo;
5788 }
5789 
5790 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
5791 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
5792   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
5793   // and Sema during declaration parsing. Try deallocating/caching them when
5794   // it's appropriate, instead of allocating them and keeping them around.
5795   LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
5796                                                        TypeAlignment);
5797   new (LocT) LocInfoType(T, TInfo);
5798   assert(LocT->getTypeClass() != T->getTypeClass() &&
5799          "LocInfoType's TypeClass conflicts with an existing Type class");
5800   return ParsedType::make(QualType(LocT, 0));
5801 }
5802 
5803 void LocInfoType::getAsStringInternal(std::string &Str,
5804                                       const PrintingPolicy &Policy) const {
5805   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
5806          " was used directly instead of getting the QualType through"
5807          " GetTypeFromParser");
5808 }
5809 
5810 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
5811   // C99 6.7.6: Type names have no identifier.  This is already validated by
5812   // the parser.
5813   assert(D.getIdentifier() == nullptr &&
5814          "Type name should have no identifier!");
5815 
5816   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5817   QualType T = TInfo->getType();
5818   if (D.isInvalidType())
5819     return true;
5820 
5821   // Make sure there are no unused decl attributes on the declarator.
5822   // We don't want to do this for ObjC parameters because we're going
5823   // to apply them to the actual parameter declaration.
5824   // Likewise, we don't want to do this for alias declarations, because
5825   // we are actually going to build a declaration from this eventually.
5826   if (D.getContext() != DeclaratorContext::ObjCParameterContext &&
5827       D.getContext() != DeclaratorContext::AliasDeclContext &&
5828       D.getContext() != DeclaratorContext::AliasTemplateContext)
5829     checkUnusedDeclAttributes(D);
5830 
5831   if (getLangOpts().CPlusPlus) {
5832     // Check that there are no default arguments (C++ only).
5833     CheckExtraCXXDefaultArguments(D);
5834   }
5835 
5836   return CreateParsedType(T, TInfo);
5837 }
5838 
5839 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
5840   QualType T = Context.getObjCInstanceType();
5841   TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
5842   return CreateParsedType(T, TInfo);
5843 }
5844 
5845 //===----------------------------------------------------------------------===//
5846 // Type Attribute Processing
5847 //===----------------------------------------------------------------------===//
5848 
5849 /// Build an AddressSpace index from a constant expression and diagnose any
5850 /// errors related to invalid address_spaces. Returns true on successfully
5851 /// building an AddressSpace index.
5852 static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
5853                                    const Expr *AddrSpace,
5854                                    SourceLocation AttrLoc) {
5855   if (!AddrSpace->isValueDependent()) {
5856     llvm::APSInt addrSpace(32);
5857     if (!AddrSpace->isIntegerConstantExpr(addrSpace, S.Context)) {
5858       S.Diag(AttrLoc, diag::err_attribute_argument_type)
5859           << "'address_space'" << AANT_ArgumentIntegerConstant
5860           << AddrSpace->getSourceRange();
5861       return false;
5862     }
5863 
5864     // Bounds checking.
5865     if (addrSpace.isSigned()) {
5866       if (addrSpace.isNegative()) {
5867         S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
5868             << AddrSpace->getSourceRange();
5869         return false;
5870       }
5871       addrSpace.setIsSigned(false);
5872     }
5873 
5874     llvm::APSInt max(addrSpace.getBitWidth());
5875     max =
5876         Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
5877     if (addrSpace > max) {
5878       S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
5879           << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
5880       return false;
5881     }
5882 
5883     ASIdx =
5884         getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
5885     return true;
5886   }
5887 
5888   // Default value for DependentAddressSpaceTypes
5889   ASIdx = LangAS::Default;
5890   return true;
5891 }
5892 
5893 /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
5894 /// is uninstantiated. If instantiated it will apply the appropriate address
5895 /// space to the type. This function allows dependent template variables to be
5896 /// used in conjunction with the address_space attribute
5897 QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
5898                                      SourceLocation AttrLoc) {
5899   if (!AddrSpace->isValueDependent()) {
5900     if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
5901                                             AttrLoc))
5902       return QualType();
5903 
5904     return Context.getAddrSpaceQualType(T, ASIdx);
5905   }
5906 
5907   // A check with similar intentions as checking if a type already has an
5908   // address space except for on a dependent types, basically if the
5909   // current type is already a DependentAddressSpaceType then its already
5910   // lined up to have another address space on it and we can't have
5911   // multiple address spaces on the one pointer indirection
5912   if (T->getAs<DependentAddressSpaceType>()) {
5913     Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
5914     return QualType();
5915   }
5916 
5917   return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
5918 }
5919 
5920 QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
5921                                      SourceLocation AttrLoc) {
5922   LangAS ASIdx;
5923   if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
5924     return QualType();
5925   return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
5926 }
5927 
5928 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
5929 /// specified type.  The attribute contains 1 argument, the id of the address
5930 /// space for the type.
5931 static void HandleAddressSpaceTypeAttribute(QualType &Type,
5932                                             const ParsedAttr &Attr,
5933                                             TypeProcessingState &State) {
5934   Sema &S = State.getSema();
5935 
5936   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
5937   // qualified by an address-space qualifier."
5938   if (Type->isFunctionType()) {
5939     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
5940     Attr.setInvalid();
5941     return;
5942   }
5943 
5944   LangAS ASIdx;
5945   if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
5946 
5947     // Check the attribute arguments.
5948     if (Attr.getNumArgs() != 1) {
5949       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
5950                                                                         << 1;
5951       Attr.setInvalid();
5952       return;
5953     }
5954 
5955     Expr *ASArgExpr;
5956     if (Attr.isArgIdent(0)) {
5957       // Special case where the argument is a template id.
5958       CXXScopeSpec SS;
5959       SourceLocation TemplateKWLoc;
5960       UnqualifiedId id;
5961       id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
5962 
5963       ExprResult AddrSpace = S.ActOnIdExpression(
5964           S.getCurScope(), SS, TemplateKWLoc, id, /*HasTrailingLParen=*/false,
5965           /*IsAddressOfOperand=*/false);
5966       if (AddrSpace.isInvalid())
5967         return;
5968 
5969       ASArgExpr = static_cast<Expr *>(AddrSpace.get());
5970     } else {
5971       ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
5972     }
5973 
5974     LangAS ASIdx;
5975     if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
5976       Attr.setInvalid();
5977       return;
5978     }
5979 
5980     ASTContext &Ctx = S.Context;
5981     auto *ASAttr = ::new (Ctx) AddressSpaceAttr(
5982         Attr.getRange(), Ctx, Attr.getAttributeSpellingListIndex(),
5983         static_cast<unsigned>(ASIdx));
5984 
5985     // If the expression is not value dependent (not templated), then we can
5986     // apply the address space qualifiers just to the equivalent type.
5987     // Otherwise, we make an AttributedType with the modified and equivalent
5988     // type the same, and wrap it in a DependentAddressSpaceType. When this
5989     // dependent type is resolved, the qualifier is added to the equivalent type
5990     // later.
5991     QualType T;
5992     if (!ASArgExpr->isValueDependent()) {
5993       QualType EquivType =
5994           S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
5995       if (EquivType.isNull()) {
5996         Attr.setInvalid();
5997         return;
5998       }
5999       T = State.getAttributedType(ASAttr, Type, EquivType);
6000     } else {
6001       T = State.getAttributedType(ASAttr, Type, Type);
6002       T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6003     }
6004 
6005     if (!T.isNull())
6006       Type = T;
6007     else
6008       Attr.setInvalid();
6009   } else {
6010     // The keyword-based type attributes imply which address space to use.
6011     ASIdx = Attr.asOpenCLLangAS();
6012     if (ASIdx == LangAS::Default)
6013       llvm_unreachable("Invalid address space");
6014 
6015     if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6016                                             Attr.getLoc())) {
6017       Attr.setInvalid();
6018       return;
6019     }
6020 
6021     Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6022   }
6023 }
6024 
6025 /// Does this type have a "direct" ownership qualifier?  That is,
6026 /// is it written like "__strong id", as opposed to something like
6027 /// "typeof(foo)", where that happens to be strong?
6028 static bool hasDirectOwnershipQualifier(QualType type) {
6029   // Fast path: no qualifier at all.
6030   assert(type.getQualifiers().hasObjCLifetime());
6031 
6032   while (true) {
6033     // __strong id
6034     if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
6035       if (attr->getAttrKind() == attr::ObjCOwnership)
6036         return true;
6037 
6038       type = attr->getModifiedType();
6039 
6040     // X *__strong (...)
6041     } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
6042       type = paren->getInnerType();
6043 
6044     // That's it for things we want to complain about.  In particular,
6045     // we do not want to look through typedefs, typeof(expr),
6046     // typeof(type), or any other way that the type is somehow
6047     // abstracted.
6048     } else {
6049 
6050       return false;
6051     }
6052   }
6053 }
6054 
6055 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6056 /// attribute on the specified type.
6057 ///
6058 /// Returns 'true' if the attribute was handled.
6059 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6060                                         ParsedAttr &attr, QualType &type) {
6061   bool NonObjCPointer = false;
6062 
6063   if (!type->isDependentType() && !type->isUndeducedType()) {
6064     if (const PointerType *ptr = type->getAs<PointerType>()) {
6065       QualType pointee = ptr->getPointeeType();
6066       if (pointee->isObjCRetainableType() || pointee->isPointerType())
6067         return false;
6068       // It is important not to lose the source info that there was an attribute
6069       // applied to non-objc pointer. We will create an attributed type but
6070       // its type will be the same as the original type.
6071       NonObjCPointer = true;
6072     } else if (!type->isObjCRetainableType()) {
6073       return false;
6074     }
6075 
6076     // Don't accept an ownership attribute in the declspec if it would
6077     // just be the return type of a block pointer.
6078     if (state.isProcessingDeclSpec()) {
6079       Declarator &D = state.getDeclarator();
6080       if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6081                                   /*onlyBlockPointers=*/true))
6082         return false;
6083     }
6084   }
6085 
6086   Sema &S = state.getSema();
6087   SourceLocation AttrLoc = attr.getLoc();
6088   if (AttrLoc.isMacroID())
6089     AttrLoc =
6090         S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6091 
6092   if (!attr.isArgIdent(0)) {
6093     S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6094                                                        << AANT_ArgumentString;
6095     attr.setInvalid();
6096     return true;
6097   }
6098 
6099   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6100   Qualifiers::ObjCLifetime lifetime;
6101   if (II->isStr("none"))
6102     lifetime = Qualifiers::OCL_ExplicitNone;
6103   else if (II->isStr("strong"))
6104     lifetime = Qualifiers::OCL_Strong;
6105   else if (II->isStr("weak"))
6106     lifetime = Qualifiers::OCL_Weak;
6107   else if (II->isStr("autoreleasing"))
6108     lifetime = Qualifiers::OCL_Autoreleasing;
6109   else {
6110     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
6111       << attr.getName() << II;
6112     attr.setInvalid();
6113     return true;
6114   }
6115 
6116   // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6117   // outside of ARC mode.
6118   if (!S.getLangOpts().ObjCAutoRefCount &&
6119       lifetime != Qualifiers::OCL_Weak &&
6120       lifetime != Qualifiers::OCL_ExplicitNone) {
6121     return true;
6122   }
6123 
6124   SplitQualType underlyingType = type.split();
6125 
6126   // Check for redundant/conflicting ownership qualifiers.
6127   if (Qualifiers::ObjCLifetime previousLifetime
6128         = type.getQualifiers().getObjCLifetime()) {
6129     // If it's written directly, that's an error.
6130     if (hasDirectOwnershipQualifier(type)) {
6131       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6132         << type;
6133       return true;
6134     }
6135 
6136     // Otherwise, if the qualifiers actually conflict, pull sugar off
6137     // and remove the ObjCLifetime qualifiers.
6138     if (previousLifetime != lifetime) {
6139       // It's possible to have multiple local ObjCLifetime qualifiers. We
6140       // can't stop after we reach a type that is directly qualified.
6141       const Type *prevTy = nullptr;
6142       while (!prevTy || prevTy != underlyingType.Ty) {
6143         prevTy = underlyingType.Ty;
6144         underlyingType = underlyingType.getSingleStepDesugaredType();
6145       }
6146       underlyingType.Quals.removeObjCLifetime();
6147     }
6148   }
6149 
6150   underlyingType.Quals.addObjCLifetime(lifetime);
6151 
6152   if (NonObjCPointer) {
6153     StringRef name = attr.getName()->getName();
6154     switch (lifetime) {
6155     case Qualifiers::OCL_None:
6156     case Qualifiers::OCL_ExplicitNone:
6157       break;
6158     case Qualifiers::OCL_Strong: name = "__strong"; break;
6159     case Qualifiers::OCL_Weak: name = "__weak"; break;
6160     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6161     }
6162     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6163       << TDS_ObjCObjOrBlock << type;
6164   }
6165 
6166   // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6167   // because having both 'T' and '__unsafe_unretained T' exist in the type
6168   // system causes unfortunate widespread consistency problems.  (For example,
6169   // they're not considered compatible types, and we mangle them identicially
6170   // as template arguments.)  These problems are all individually fixable,
6171   // but it's easier to just not add the qualifier and instead sniff it out
6172   // in specific places using isObjCInertUnsafeUnretainedType().
6173   //
6174   // Doing this does means we miss some trivial consistency checks that
6175   // would've triggered in ARC, but that's better than trying to solve all
6176   // the coexistence problems with __unsafe_unretained.
6177   if (!S.getLangOpts().ObjCAutoRefCount &&
6178       lifetime == Qualifiers::OCL_ExplicitNone) {
6179     type = state.getAttributedType(
6180         createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6181         type, type);
6182     return true;
6183   }
6184 
6185   QualType origType = type;
6186   if (!NonObjCPointer)
6187     type = S.Context.getQualifiedType(underlyingType);
6188 
6189   // If we have a valid source location for the attribute, use an
6190   // AttributedType instead.
6191   if (AttrLoc.isValid()) {
6192     type = state.getAttributedType(::new (S.Context) ObjCOwnershipAttr(
6193                                        attr.getRange(), S.Context, II,
6194                                        attr.getAttributeSpellingListIndex()),
6195                                    origType, type);
6196   }
6197 
6198   auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6199                             unsigned diagnostic, QualType type) {
6200     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6201       S.DelayedDiagnostics.add(
6202           sema::DelayedDiagnostic::makeForbiddenType(
6203               S.getSourceManager().getExpansionLoc(loc),
6204               diagnostic, type, /*ignored*/ 0));
6205     } else {
6206       S.Diag(loc, diagnostic);
6207     }
6208   };
6209 
6210   // Sometimes, __weak isn't allowed.
6211   if (lifetime == Qualifiers::OCL_Weak &&
6212       !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6213 
6214     // Use a specialized diagnostic if the runtime just doesn't support them.
6215     unsigned diagnostic =
6216       (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6217                                        : diag::err_arc_weak_no_runtime);
6218 
6219     // In any case, delay the diagnostic until we know what we're parsing.
6220     diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6221 
6222     attr.setInvalid();
6223     return true;
6224   }
6225 
6226   // Forbid __weak for class objects marked as
6227   // objc_arc_weak_reference_unavailable
6228   if (lifetime == Qualifiers::OCL_Weak) {
6229     if (const ObjCObjectPointerType *ObjT =
6230           type->getAs<ObjCObjectPointerType>()) {
6231       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6232         if (Class->isArcWeakrefUnavailable()) {
6233           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6234           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6235                  diag::note_class_declared);
6236         }
6237       }
6238     }
6239   }
6240 
6241   return true;
6242 }
6243 
6244 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6245 /// attribute on the specified type.  Returns true to indicate that
6246 /// the attribute was handled, false to indicate that the type does
6247 /// not permit the attribute.
6248 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6249                                  QualType &type) {
6250   Sema &S = state.getSema();
6251 
6252   // Delay if this isn't some kind of pointer.
6253   if (!type->isPointerType() &&
6254       !type->isObjCObjectPointerType() &&
6255       !type->isBlockPointerType())
6256     return false;
6257 
6258   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6259     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6260     attr.setInvalid();
6261     return true;
6262   }
6263 
6264   // Check the attribute arguments.
6265   if (!attr.isArgIdent(0)) {
6266     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6267         << attr << AANT_ArgumentString;
6268     attr.setInvalid();
6269     return true;
6270   }
6271   Qualifiers::GC GCAttr;
6272   if (attr.getNumArgs() > 1) {
6273     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6274                                                                       << 1;
6275     attr.setInvalid();
6276     return true;
6277   }
6278 
6279   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6280   if (II->isStr("weak"))
6281     GCAttr = Qualifiers::Weak;
6282   else if (II->isStr("strong"))
6283     GCAttr = Qualifiers::Strong;
6284   else {
6285     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6286       << attr.getName() << II;
6287     attr.setInvalid();
6288     return true;
6289   }
6290 
6291   QualType origType = type;
6292   type = S.Context.getObjCGCQualType(origType, GCAttr);
6293 
6294   // Make an attributed type to preserve the source information.
6295   if (attr.getLoc().isValid())
6296     type = state.getAttributedType(
6297         ::new (S.Context) ObjCGCAttr(attr.getRange(), S.Context, II,
6298                                      attr.getAttributeSpellingListIndex()),
6299         origType, type);
6300 
6301   return true;
6302 }
6303 
6304 namespace {
6305   /// A helper class to unwrap a type down to a function for the
6306   /// purposes of applying attributes there.
6307   ///
6308   /// Use:
6309   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
6310   ///   if (unwrapped.isFunctionType()) {
6311   ///     const FunctionType *fn = unwrapped.get();
6312   ///     // change fn somehow
6313   ///     T = unwrapped.wrap(fn);
6314   ///   }
6315   struct FunctionTypeUnwrapper {
6316     enum WrapKind {
6317       Desugar,
6318       Attributed,
6319       Parens,
6320       Pointer,
6321       BlockPointer,
6322       Reference,
6323       MemberPointer
6324     };
6325 
6326     QualType Original;
6327     const FunctionType *Fn;
6328     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6329 
6330     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6331       while (true) {
6332         const Type *Ty = T.getTypePtr();
6333         if (isa<FunctionType>(Ty)) {
6334           Fn = cast<FunctionType>(Ty);
6335           return;
6336         } else if (isa<ParenType>(Ty)) {
6337           T = cast<ParenType>(Ty)->getInnerType();
6338           Stack.push_back(Parens);
6339         } else if (isa<PointerType>(Ty)) {
6340           T = cast<PointerType>(Ty)->getPointeeType();
6341           Stack.push_back(Pointer);
6342         } else if (isa<BlockPointerType>(Ty)) {
6343           T = cast<BlockPointerType>(Ty)->getPointeeType();
6344           Stack.push_back(BlockPointer);
6345         } else if (isa<MemberPointerType>(Ty)) {
6346           T = cast<MemberPointerType>(Ty)->getPointeeType();
6347           Stack.push_back(MemberPointer);
6348         } else if (isa<ReferenceType>(Ty)) {
6349           T = cast<ReferenceType>(Ty)->getPointeeType();
6350           Stack.push_back(Reference);
6351         } else if (isa<AttributedType>(Ty)) {
6352           T = cast<AttributedType>(Ty)->getEquivalentType();
6353           Stack.push_back(Attributed);
6354         } else {
6355           const Type *DTy = Ty->getUnqualifiedDesugaredType();
6356           if (Ty == DTy) {
6357             Fn = nullptr;
6358             return;
6359           }
6360 
6361           T = QualType(DTy, 0);
6362           Stack.push_back(Desugar);
6363         }
6364       }
6365     }
6366 
6367     bool isFunctionType() const { return (Fn != nullptr); }
6368     const FunctionType *get() const { return Fn; }
6369 
6370     QualType wrap(Sema &S, const FunctionType *New) {
6371       // If T wasn't modified from the unwrapped type, do nothing.
6372       if (New == get()) return Original;
6373 
6374       Fn = New;
6375       return wrap(S.Context, Original, 0);
6376     }
6377 
6378   private:
6379     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6380       if (I == Stack.size())
6381         return C.getQualifiedType(Fn, Old.getQualifiers());
6382 
6383       // Build up the inner type, applying the qualifiers from the old
6384       // type to the new type.
6385       SplitQualType SplitOld = Old.split();
6386 
6387       // As a special case, tail-recurse if there are no qualifiers.
6388       if (SplitOld.Quals.empty())
6389         return wrap(C, SplitOld.Ty, I);
6390       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6391     }
6392 
6393     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6394       if (I == Stack.size()) return QualType(Fn, 0);
6395 
6396       switch (static_cast<WrapKind>(Stack[I++])) {
6397       case Desugar:
6398         // This is the point at which we potentially lose source
6399         // information.
6400         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6401 
6402       case Attributed:
6403         return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6404 
6405       case Parens: {
6406         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6407         return C.getParenType(New);
6408       }
6409 
6410       case Pointer: {
6411         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6412         return C.getPointerType(New);
6413       }
6414 
6415       case BlockPointer: {
6416         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6417         return C.getBlockPointerType(New);
6418       }
6419 
6420       case MemberPointer: {
6421         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6422         QualType New = wrap(C, OldMPT->getPointeeType(), I);
6423         return C.getMemberPointerType(New, OldMPT->getClass());
6424       }
6425 
6426       case Reference: {
6427         const ReferenceType *OldRef = cast<ReferenceType>(Old);
6428         QualType New = wrap(C, OldRef->getPointeeType(), I);
6429         if (isa<LValueReferenceType>(OldRef))
6430           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6431         else
6432           return C.getRValueReferenceType(New);
6433       }
6434       }
6435 
6436       llvm_unreachable("unknown wrapping kind");
6437     }
6438   };
6439 } // end anonymous namespace
6440 
6441 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6442                                              ParsedAttr &PAttr, QualType &Type) {
6443   Sema &S = State.getSema();
6444 
6445   Attr *A;
6446   switch (PAttr.getKind()) {
6447   default: llvm_unreachable("Unknown attribute kind");
6448   case ParsedAttr::AT_Ptr32:
6449     A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
6450     break;
6451   case ParsedAttr::AT_Ptr64:
6452     A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
6453     break;
6454   case ParsedAttr::AT_SPtr:
6455     A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
6456     break;
6457   case ParsedAttr::AT_UPtr:
6458     A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
6459     break;
6460   }
6461 
6462   attr::Kind NewAttrKind = A->getKind();
6463   QualType Desugared = Type;
6464   const AttributedType *AT = dyn_cast<AttributedType>(Type);
6465   while (AT) {
6466     attr::Kind CurAttrKind = AT->getAttrKind();
6467 
6468     // You cannot specify duplicate type attributes, so if the attribute has
6469     // already been applied, flag it.
6470     if (NewAttrKind == CurAttrKind) {
6471       S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact)
6472         << PAttr.getName();
6473       return true;
6474     }
6475 
6476     // You cannot have both __sptr and __uptr on the same type, nor can you
6477     // have __ptr32 and __ptr64.
6478     if ((CurAttrKind == attr::Ptr32 && NewAttrKind == attr::Ptr64) ||
6479         (CurAttrKind == attr::Ptr64 && NewAttrKind == attr::Ptr32)) {
6480       S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6481         << "'__ptr32'" << "'__ptr64'";
6482       return true;
6483     } else if ((CurAttrKind == attr::SPtr && NewAttrKind == attr::UPtr) ||
6484                (CurAttrKind == attr::UPtr && NewAttrKind == attr::SPtr)) {
6485       S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6486         << "'__sptr'" << "'__uptr'";
6487       return true;
6488     }
6489 
6490     Desugared = AT->getEquivalentType();
6491     AT = dyn_cast<AttributedType>(Desugared);
6492   }
6493 
6494   // Pointer type qualifiers can only operate on pointer types, but not
6495   // pointer-to-member types.
6496   //
6497   // FIXME: Should we really be disallowing this attribute if there is any
6498   // type sugar between it and the pointer (other than attributes)? Eg, this
6499   // disallows the attribute on a parenthesized pointer.
6500   // And if so, should we really allow *any* type attribute?
6501   if (!isa<PointerType>(Desugared)) {
6502     if (Type->isMemberPointerType())
6503       S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
6504     else
6505       S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
6506     return true;
6507   }
6508 
6509   Type = State.getAttributedType(A, Type, Type);
6510   return false;
6511 }
6512 
6513 /// Map a nullability attribute kind to a nullability kind.
6514 static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
6515   switch (kind) {
6516   case ParsedAttr::AT_TypeNonNull:
6517     return NullabilityKind::NonNull;
6518 
6519   case ParsedAttr::AT_TypeNullable:
6520     return NullabilityKind::Nullable;
6521 
6522   case ParsedAttr::AT_TypeNullUnspecified:
6523     return NullabilityKind::Unspecified;
6524 
6525   default:
6526     llvm_unreachable("not a nullability attribute kind");
6527   }
6528 }
6529 
6530 /// Applies a nullability type specifier to the given type, if possible.
6531 ///
6532 /// \param state The type processing state.
6533 ///
6534 /// \param type The type to which the nullability specifier will be
6535 /// added. On success, this type will be updated appropriately.
6536 ///
6537 /// \param attr The attribute as written on the type.
6538 ///
6539 /// \param allowOnArrayType Whether to accept nullability specifiers on an
6540 /// array type (e.g., because it will decay to a pointer).
6541 ///
6542 /// \returns true if a problem has been diagnosed, false on success.
6543 static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
6544                                           QualType &type,
6545                                           ParsedAttr &attr,
6546                                           bool allowOnArrayType) {
6547   Sema &S = state.getSema();
6548 
6549   NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
6550   SourceLocation nullabilityLoc = attr.getLoc();
6551   bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
6552 
6553   recordNullabilitySeen(S, nullabilityLoc);
6554 
6555   // Check for existing nullability attributes on the type.
6556   QualType desugared = type;
6557   while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
6558     // Check whether there is already a null
6559     if (auto existingNullability = attributed->getImmediateNullability()) {
6560       // Duplicated nullability.
6561       if (nullability == *existingNullability) {
6562         S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
6563           << DiagNullabilityKind(nullability, isContextSensitive)
6564           << FixItHint::CreateRemoval(nullabilityLoc);
6565 
6566         break;
6567       }
6568 
6569       // Conflicting nullability.
6570       S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
6571         << DiagNullabilityKind(nullability, isContextSensitive)
6572         << DiagNullabilityKind(*existingNullability, false);
6573       return true;
6574     }
6575 
6576     desugared = attributed->getModifiedType();
6577   }
6578 
6579   // If there is already a different nullability specifier, complain.
6580   // This (unlike the code above) looks through typedefs that might
6581   // have nullability specifiers on them, which means we cannot
6582   // provide a useful Fix-It.
6583   if (auto existingNullability = desugared->getNullability(S.Context)) {
6584     if (nullability != *existingNullability) {
6585       S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
6586         << DiagNullabilityKind(nullability, isContextSensitive)
6587         << DiagNullabilityKind(*existingNullability, false);
6588 
6589       // Try to find the typedef with the existing nullability specifier.
6590       if (auto typedefType = desugared->getAs<TypedefType>()) {
6591         TypedefNameDecl *typedefDecl = typedefType->getDecl();
6592         QualType underlyingType = typedefDecl->getUnderlyingType();
6593         if (auto typedefNullability
6594               = AttributedType::stripOuterNullability(underlyingType)) {
6595           if (*typedefNullability == *existingNullability) {
6596             S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
6597               << DiagNullabilityKind(*existingNullability, false);
6598           }
6599         }
6600       }
6601 
6602       return true;
6603     }
6604   }
6605 
6606   // If this definitely isn't a pointer type, reject the specifier.
6607   if (!desugared->canHaveNullability() &&
6608       !(allowOnArrayType && desugared->isArrayType())) {
6609     S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
6610       << DiagNullabilityKind(nullability, isContextSensitive) << type;
6611     return true;
6612   }
6613 
6614   // For the context-sensitive keywords/Objective-C property
6615   // attributes, require that the type be a single-level pointer.
6616   if (isContextSensitive) {
6617     // Make sure that the pointee isn't itself a pointer type.
6618     const Type *pointeeType;
6619     if (desugared->isArrayType())
6620       pointeeType = desugared->getArrayElementTypeNoTypeQual();
6621     else
6622       pointeeType = desugared->getPointeeType().getTypePtr();
6623 
6624     if (pointeeType->isAnyPointerType() ||
6625         pointeeType->isObjCObjectPointerType() ||
6626         pointeeType->isMemberPointerType()) {
6627       S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
6628         << DiagNullabilityKind(nullability, true)
6629         << type;
6630       S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
6631         << DiagNullabilityKind(nullability, false)
6632         << type
6633         << FixItHint::CreateReplacement(nullabilityLoc,
6634                                         getNullabilitySpelling(nullability));
6635       return true;
6636     }
6637   }
6638 
6639   // Form the attributed type.
6640   type = state.getAttributedType(
6641       createNullabilityAttr(S.Context, attr, nullability), type, type);
6642   return false;
6643 }
6644 
6645 /// Check the application of the Objective-C '__kindof' qualifier to
6646 /// the given type.
6647 static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
6648                                 ParsedAttr &attr) {
6649   Sema &S = state.getSema();
6650 
6651   if (isa<ObjCTypeParamType>(type)) {
6652     // Build the attributed type to record where __kindof occurred.
6653     type = state.getAttributedType(
6654         createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
6655     return false;
6656   }
6657 
6658   // Find out if it's an Objective-C object or object pointer type;
6659   const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
6660   const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
6661                                           : type->getAs<ObjCObjectType>();
6662 
6663   // If not, we can't apply __kindof.
6664   if (!objType) {
6665     // FIXME: Handle dependent types that aren't yet object types.
6666     S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
6667       << type;
6668     return true;
6669   }
6670 
6671   // Rebuild the "equivalent" type, which pushes __kindof down into
6672   // the object type.
6673   // There is no need to apply kindof on an unqualified id type.
6674   QualType equivType = S.Context.getObjCObjectType(
6675       objType->getBaseType(), objType->getTypeArgsAsWritten(),
6676       objType->getProtocols(),
6677       /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
6678 
6679   // If we started with an object pointer type, rebuild it.
6680   if (ptrType) {
6681     equivType = S.Context.getObjCObjectPointerType(equivType);
6682     if (auto nullability = type->getNullability(S.Context)) {
6683       // We create a nullability attribute from the __kindof attribute.
6684       // Make sure that will make sense.
6685       assert(attr.getAttributeSpellingListIndex() == 0 &&
6686              "multiple spellings for __kindof?");
6687       Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
6688       A->setImplicit(true);
6689       equivType = state.getAttributedType(A, equivType, equivType);
6690     }
6691   }
6692 
6693   // Build the attributed type to record where __kindof occurred.
6694   type = state.getAttributedType(
6695       createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
6696   return false;
6697 }
6698 
6699 /// Distribute a nullability type attribute that cannot be applied to
6700 /// the type specifier to a pointer, block pointer, or member pointer
6701 /// declarator, complaining if necessary.
6702 ///
6703 /// \returns true if the nullability annotation was distributed, false
6704 /// otherwise.
6705 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
6706                                           QualType type, ParsedAttr &attr) {
6707   Declarator &declarator = state.getDeclarator();
6708 
6709   /// Attempt to move the attribute to the specified chunk.
6710   auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
6711     // If there is already a nullability attribute there, don't add
6712     // one.
6713     if (hasNullabilityAttr(chunk.getAttrs()))
6714       return false;
6715 
6716     // Complain about the nullability qualifier being in the wrong
6717     // place.
6718     enum {
6719       PK_Pointer,
6720       PK_BlockPointer,
6721       PK_MemberPointer,
6722       PK_FunctionPointer,
6723       PK_MemberFunctionPointer,
6724     } pointerKind
6725       = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
6726                                                              : PK_Pointer)
6727         : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
6728         : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
6729 
6730     auto diag = state.getSema().Diag(attr.getLoc(),
6731                                      diag::warn_nullability_declspec)
6732       << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
6733                              attr.isContextSensitiveKeywordAttribute())
6734       << type
6735       << static_cast<unsigned>(pointerKind);
6736 
6737     // FIXME: MemberPointer chunks don't carry the location of the *.
6738     if (chunk.Kind != DeclaratorChunk::MemberPointer) {
6739       diag << FixItHint::CreateRemoval(attr.getLoc())
6740            << FixItHint::CreateInsertion(
6741                 state.getSema().getPreprocessor()
6742                   .getLocForEndOfToken(chunk.Loc),
6743                 " " + attr.getName()->getName().str() + " ");
6744     }
6745 
6746     moveAttrFromListToList(attr, state.getCurrentAttributes(),
6747                            chunk.getAttrs());
6748     return true;
6749   };
6750 
6751   // Move it to the outermost pointer, member pointer, or block
6752   // pointer declarator.
6753   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
6754     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
6755     switch (chunk.Kind) {
6756     case DeclaratorChunk::Pointer:
6757     case DeclaratorChunk::BlockPointer:
6758     case DeclaratorChunk::MemberPointer:
6759       return moveToChunk(chunk, false);
6760 
6761     case DeclaratorChunk::Paren:
6762     case DeclaratorChunk::Array:
6763       continue;
6764 
6765     case DeclaratorChunk::Function:
6766       // Try to move past the return type to a function/block/member
6767       // function pointer.
6768       if (DeclaratorChunk *dest = maybeMovePastReturnType(
6769                                     declarator, i,
6770                                     /*onlyBlockPointers=*/false)) {
6771         return moveToChunk(*dest, true);
6772       }
6773 
6774       return false;
6775 
6776     // Don't walk through these.
6777     case DeclaratorChunk::Reference:
6778     case DeclaratorChunk::Pipe:
6779       return false;
6780     }
6781   }
6782 
6783   return false;
6784 }
6785 
6786 static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
6787   assert(!Attr.isInvalid());
6788   switch (Attr.getKind()) {
6789   default:
6790     llvm_unreachable("not a calling convention attribute");
6791   case ParsedAttr::AT_CDecl:
6792     return createSimpleAttr<CDeclAttr>(Ctx, Attr);
6793   case ParsedAttr::AT_FastCall:
6794     return createSimpleAttr<FastCallAttr>(Ctx, Attr);
6795   case ParsedAttr::AT_StdCall:
6796     return createSimpleAttr<StdCallAttr>(Ctx, Attr);
6797   case ParsedAttr::AT_ThisCall:
6798     return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
6799   case ParsedAttr::AT_RegCall:
6800     return createSimpleAttr<RegCallAttr>(Ctx, Attr);
6801   case ParsedAttr::AT_Pascal:
6802     return createSimpleAttr<PascalAttr>(Ctx, Attr);
6803   case ParsedAttr::AT_SwiftCall:
6804     return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
6805   case ParsedAttr::AT_VectorCall:
6806     return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
6807   case ParsedAttr::AT_AArch64VectorPcs:
6808     return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
6809   case ParsedAttr::AT_Pcs: {
6810     // The attribute may have had a fixit applied where we treated an
6811     // identifier as a string literal.  The contents of the string are valid,
6812     // but the form may not be.
6813     StringRef Str;
6814     if (Attr.isArgExpr(0))
6815       Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
6816     else
6817       Str = Attr.getArgAsIdent(0)->Ident->getName();
6818     PcsAttr::PCSType Type;
6819     if (!PcsAttr::ConvertStrToPCSType(Str, Type))
6820       llvm_unreachable("already validated the attribute");
6821     return ::new (Ctx) PcsAttr(Attr.getRange(), Ctx, Type,
6822                                Attr.getAttributeSpellingListIndex());
6823   }
6824   case ParsedAttr::AT_IntelOclBicc:
6825     return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
6826   case ParsedAttr::AT_MSABI:
6827     return createSimpleAttr<MSABIAttr>(Ctx, Attr);
6828   case ParsedAttr::AT_SysVABI:
6829     return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
6830   case ParsedAttr::AT_PreserveMost:
6831     return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
6832   case ParsedAttr::AT_PreserveAll:
6833     return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
6834   }
6835   llvm_unreachable("unexpected attribute kind!");
6836 }
6837 
6838 /// Process an individual function attribute.  Returns true to
6839 /// indicate that the attribute was handled, false if it wasn't.
6840 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6841                                    QualType &type) {
6842   Sema &S = state.getSema();
6843 
6844   FunctionTypeUnwrapper unwrapped(S, type);
6845 
6846   if (attr.getKind() == ParsedAttr::AT_NoReturn) {
6847     if (S.CheckAttrNoArgs(attr))
6848       return true;
6849 
6850     // Delay if this is not a function type.
6851     if (!unwrapped.isFunctionType())
6852       return false;
6853 
6854     // Otherwise we can process right away.
6855     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
6856     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6857     return true;
6858   }
6859 
6860   // ns_returns_retained is not always a type attribute, but if we got
6861   // here, we're treating it as one right now.
6862   if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
6863     if (attr.getNumArgs()) return true;
6864 
6865     // Delay if this is not a function type.
6866     if (!unwrapped.isFunctionType())
6867       return false;
6868 
6869     // Check whether the return type is reasonable.
6870     if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
6871                                            unwrapped.get()->getReturnType()))
6872       return true;
6873 
6874     // Only actually change the underlying type in ARC builds.
6875     QualType origType = type;
6876     if (state.getSema().getLangOpts().ObjCAutoRefCount) {
6877       FunctionType::ExtInfo EI
6878         = unwrapped.get()->getExtInfo().withProducesResult(true);
6879       type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6880     }
6881     type = state.getAttributedType(
6882         createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
6883         origType, type);
6884     return true;
6885   }
6886 
6887   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
6888     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
6889       return true;
6890 
6891     // Delay if this is not a function type.
6892     if (!unwrapped.isFunctionType())
6893       return false;
6894 
6895     FunctionType::ExtInfo EI =
6896         unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
6897     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6898     return true;
6899   }
6900 
6901   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
6902     if (!S.getLangOpts().CFProtectionBranch) {
6903       S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
6904       attr.setInvalid();
6905       return true;
6906     }
6907 
6908     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
6909       return true;
6910 
6911     // If this is not a function type, warning will be asserted by subject
6912     // check.
6913     if (!unwrapped.isFunctionType())
6914       return true;
6915 
6916     FunctionType::ExtInfo EI =
6917       unwrapped.get()->getExtInfo().withNoCfCheck(true);
6918     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6919     return true;
6920   }
6921 
6922   if (attr.getKind() == ParsedAttr::AT_Regparm) {
6923     unsigned value;
6924     if (S.CheckRegparmAttr(attr, value))
6925       return true;
6926 
6927     // Delay if this is not a function type.
6928     if (!unwrapped.isFunctionType())
6929       return false;
6930 
6931     // Diagnose regparm with fastcall.
6932     const FunctionType *fn = unwrapped.get();
6933     CallingConv CC = fn->getCallConv();
6934     if (CC == CC_X86FastCall) {
6935       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6936         << FunctionType::getNameForCallConv(CC)
6937         << "regparm";
6938       attr.setInvalid();
6939       return true;
6940     }
6941 
6942     FunctionType::ExtInfo EI =
6943       unwrapped.get()->getExtInfo().withRegParm(value);
6944     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6945     return true;
6946   }
6947 
6948   // Delay if the type didn't work out to a function.
6949   if (!unwrapped.isFunctionType()) return false;
6950 
6951   // Otherwise, a calling convention.
6952   CallingConv CC;
6953   if (S.CheckCallingConvAttr(attr, CC))
6954     return true;
6955 
6956   const FunctionType *fn = unwrapped.get();
6957   CallingConv CCOld = fn->getCallConv();
6958   Attr *CCAttr = getCCTypeAttr(S.Context, attr);
6959 
6960   if (CCOld != CC) {
6961     // Error out on when there's already an attribute on the type
6962     // and the CCs don't match.
6963     if (S.getCallingConvAttributedType(type)) {
6964       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6965         << FunctionType::getNameForCallConv(CC)
6966         << FunctionType::getNameForCallConv(CCOld);
6967       attr.setInvalid();
6968       return true;
6969     }
6970   }
6971 
6972   // Diagnose use of variadic functions with calling conventions that
6973   // don't support them (e.g. because they're callee-cleanup).
6974   // We delay warning about this on unprototyped function declarations
6975   // until after redeclaration checking, just in case we pick up a
6976   // prototype that way.  And apparently we also "delay" warning about
6977   // unprototyped function types in general, despite not necessarily having
6978   // much ability to diagnose it later.
6979   if (!supportsVariadicCall(CC)) {
6980     const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
6981     if (FnP && FnP->isVariadic()) {
6982       // stdcall and fastcall are ignored with a warning for GCC and MS
6983       // compatibility.
6984       if (CC == CC_X86StdCall || CC == CC_X86FastCall)
6985         return S.Diag(attr.getLoc(), diag::warn_cconv_ignored)
6986                << FunctionType::getNameForCallConv(CC)
6987                << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
6988 
6989       attr.setInvalid();
6990       return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
6991              << FunctionType::getNameForCallConv(CC);
6992     }
6993   }
6994 
6995   // Also diagnose fastcall with regparm.
6996   if (CC == CC_X86FastCall && fn->getHasRegParm()) {
6997     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6998         << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
6999     attr.setInvalid();
7000     return true;
7001   }
7002 
7003   // Modify the CC from the wrapped function type, wrap it all back, and then
7004   // wrap the whole thing in an AttributedType as written.  The modified type
7005   // might have a different CC if we ignored the attribute.
7006   QualType Equivalent;
7007   if (CCOld == CC) {
7008     Equivalent = type;
7009   } else {
7010     auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
7011     Equivalent =
7012       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7013   }
7014   type = state.getAttributedType(CCAttr, type, Equivalent);
7015   return true;
7016 }
7017 
7018 bool Sema::hasExplicitCallingConv(QualType T) {
7019   const AttributedType *AT;
7020 
7021   // Stop if we'd be stripping off a typedef sugar node to reach the
7022   // AttributedType.
7023   while ((AT = T->getAs<AttributedType>()) &&
7024          AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
7025     if (AT->isCallingConv())
7026       return true;
7027     T = AT->getModifiedType();
7028   }
7029   return false;
7030 }
7031 
7032 void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
7033                                   SourceLocation Loc) {
7034   FunctionTypeUnwrapper Unwrapped(*this, T);
7035   const FunctionType *FT = Unwrapped.get();
7036   bool IsVariadic = (isa<FunctionProtoType>(FT) &&
7037                      cast<FunctionProtoType>(FT)->isVariadic());
7038   CallingConv CurCC = FT->getCallConv();
7039   CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
7040 
7041   if (CurCC == ToCC)
7042     return;
7043 
7044   // MS compiler ignores explicit calling convention attributes on structors. We
7045   // should do the same.
7046   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
7047     // Issue a warning on ignored calling convention -- except of __stdcall.
7048     // Again, this is what MS compiler does.
7049     if (CurCC != CC_X86StdCall)
7050       Diag(Loc, diag::warn_cconv_ignored)
7051           << FunctionType::getNameForCallConv(CurCC)
7052           << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
7053   // Default adjustment.
7054   } else {
7055     // Only adjust types with the default convention.  For example, on Windows
7056     // we should adjust a __cdecl type to __thiscall for instance methods, and a
7057     // __thiscall type to __cdecl for static methods.
7058     CallingConv DefaultCC =
7059         Context.getDefaultCallingConvention(IsVariadic, IsStatic);
7060 
7061     if (CurCC != DefaultCC || DefaultCC == ToCC)
7062       return;
7063 
7064     if (hasExplicitCallingConv(T))
7065       return;
7066   }
7067 
7068   FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
7069   QualType Wrapped = Unwrapped.wrap(*this, FT);
7070   T = Context.getAdjustedType(T, Wrapped);
7071 }
7072 
7073 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
7074 /// and float scalars, although arrays, pointers, and function return values are
7075 /// allowed in conjunction with this construct. Aggregates with this attribute
7076 /// are invalid, even if they are of the same size as a corresponding scalar.
7077 /// The raw attribute should contain precisely 1 argument, the vector size for
7078 /// the variable, measured in bytes. If curType and rawAttr are well formed,
7079 /// this routine will return a new vector type.
7080 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
7081                                  Sema &S) {
7082   // Check the attribute arguments.
7083   if (Attr.getNumArgs() != 1) {
7084     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7085                                                                       << 1;
7086     Attr.setInvalid();
7087     return;
7088   }
7089 
7090   Expr *SizeExpr;
7091   // Special case where the argument is a template id.
7092   if (Attr.isArgIdent(0)) {
7093     CXXScopeSpec SS;
7094     SourceLocation TemplateKWLoc;
7095     UnqualifiedId Id;
7096     Id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
7097 
7098     ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
7099                                           Id, /*HasTrailingLParen=*/false,
7100                                           /*IsAddressOfOperand=*/false);
7101 
7102     if (Size.isInvalid())
7103       return;
7104     SizeExpr = Size.get();
7105   } else {
7106     SizeExpr = Attr.getArgAsExpr(0);
7107   }
7108 
7109   QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
7110   if (!T.isNull())
7111     CurType = T;
7112   else
7113     Attr.setInvalid();
7114 }
7115 
7116 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
7117 /// a type.
7118 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7119                                     Sema &S) {
7120   // check the attribute arguments.
7121   if (Attr.getNumArgs() != 1) {
7122     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7123                                                                       << 1;
7124     return;
7125   }
7126 
7127   Expr *sizeExpr;
7128 
7129   // Special case where the argument is a template id.
7130   if (Attr.isArgIdent(0)) {
7131     CXXScopeSpec SS;
7132     SourceLocation TemplateKWLoc;
7133     UnqualifiedId id;
7134     id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
7135 
7136     ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
7137                                           id, /*HasTrailingLParen=*/false,
7138                                           /*IsAddressOfOperand=*/false);
7139     if (Size.isInvalid())
7140       return;
7141 
7142     sizeExpr = Size.get();
7143   } else {
7144     sizeExpr = Attr.getArgAsExpr(0);
7145   }
7146 
7147   // Create the vector type.
7148   QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
7149   if (!T.isNull())
7150     CurType = T;
7151 }
7152 
7153 static bool isPermittedNeonBaseType(QualType &Ty,
7154                                     VectorType::VectorKind VecKind, Sema &S) {
7155   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
7156   if (!BTy)
7157     return false;
7158 
7159   llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
7160 
7161   // Signed poly is mathematically wrong, but has been baked into some ABIs by
7162   // now.
7163   bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
7164                         Triple.getArch() == llvm::Triple::aarch64_be;
7165   if (VecKind == VectorType::NeonPolyVector) {
7166     if (IsPolyUnsigned) {
7167       // AArch64 polynomial vectors are unsigned and support poly64.
7168       return BTy->getKind() == BuiltinType::UChar ||
7169              BTy->getKind() == BuiltinType::UShort ||
7170              BTy->getKind() == BuiltinType::ULong ||
7171              BTy->getKind() == BuiltinType::ULongLong;
7172     } else {
7173       // AArch32 polynomial vector are signed.
7174       return BTy->getKind() == BuiltinType::SChar ||
7175              BTy->getKind() == BuiltinType::Short;
7176     }
7177   }
7178 
7179   // Non-polynomial vector types: the usual suspects are allowed, as well as
7180   // float64_t on AArch64.
7181   bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
7182                  Triple.getArch() == llvm::Triple::aarch64_be;
7183 
7184   if (Is64Bit && BTy->getKind() == BuiltinType::Double)
7185     return true;
7186 
7187   return BTy->getKind() == BuiltinType::SChar ||
7188          BTy->getKind() == BuiltinType::UChar ||
7189          BTy->getKind() == BuiltinType::Short ||
7190          BTy->getKind() == BuiltinType::UShort ||
7191          BTy->getKind() == BuiltinType::Int ||
7192          BTy->getKind() == BuiltinType::UInt ||
7193          BTy->getKind() == BuiltinType::Long ||
7194          BTy->getKind() == BuiltinType::ULong ||
7195          BTy->getKind() == BuiltinType::LongLong ||
7196          BTy->getKind() == BuiltinType::ULongLong ||
7197          BTy->getKind() == BuiltinType::Float ||
7198          BTy->getKind() == BuiltinType::Half;
7199 }
7200 
7201 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
7202 /// "neon_polyvector_type" attributes are used to create vector types that
7203 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
7204 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
7205 /// the argument to these Neon attributes is the number of vector elements,
7206 /// not the vector size in bytes.  The vector width and element type must
7207 /// match one of the standard Neon vector types.
7208 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7209                                      Sema &S, VectorType::VectorKind VecKind) {
7210   // Target must have NEON
7211   if (!S.Context.getTargetInfo().hasFeature("neon")) {
7212     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr;
7213     Attr.setInvalid();
7214     return;
7215   }
7216   // Check the attribute arguments.
7217   if (Attr.getNumArgs() != 1) {
7218     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7219                                                                       << 1;
7220     Attr.setInvalid();
7221     return;
7222   }
7223   // The number of elements must be an ICE.
7224   Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
7225   llvm::APSInt numEltsInt(32);
7226   if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
7227       !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
7228     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
7229         << Attr << AANT_ArgumentIntegerConstant
7230         << numEltsExpr->getSourceRange();
7231     Attr.setInvalid();
7232     return;
7233   }
7234   // Only certain element types are supported for Neon vectors.
7235   if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
7236     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
7237     Attr.setInvalid();
7238     return;
7239   }
7240 
7241   // The total size of the vector must be 64 or 128 bits.
7242   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
7243   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
7244   unsigned vecSize = typeSize * numElts;
7245   if (vecSize != 64 && vecSize != 128) {
7246     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
7247     Attr.setInvalid();
7248     return;
7249   }
7250 
7251   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
7252 }
7253 
7254 /// Handle OpenCL Access Qualifier Attribute.
7255 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
7256                                    Sema &S) {
7257   // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
7258   if (!(CurType->isImageType() || CurType->isPipeType())) {
7259     S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
7260     Attr.setInvalid();
7261     return;
7262   }
7263 
7264   if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
7265     QualType BaseTy = TypedefTy->desugar();
7266 
7267     std::string PrevAccessQual;
7268     if (BaseTy->isPipeType()) {
7269       if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
7270         OpenCLAccessAttr *Attr =
7271             TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
7272         PrevAccessQual = Attr->getSpelling();
7273       } else {
7274         PrevAccessQual = "read_only";
7275       }
7276     } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
7277 
7278       switch (ImgType->getKind()) {
7279         #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7280       case BuiltinType::Id:                                          \
7281         PrevAccessQual = #Access;                                    \
7282         break;
7283         #include "clang/Basic/OpenCLImageTypes.def"
7284       default:
7285         llvm_unreachable("Unable to find corresponding image type.");
7286       }
7287     } else {
7288       llvm_unreachable("unexpected type");
7289     }
7290     StringRef AttrName = Attr.getName()->getName();
7291     if (PrevAccessQual == AttrName.ltrim("_")) {
7292       // Duplicated qualifiers
7293       S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
7294          << AttrName << Attr.getRange();
7295     } else {
7296       // Contradicting qualifiers
7297       S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
7298     }
7299 
7300     S.Diag(TypedefTy->getDecl()->getBeginLoc(),
7301            diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
7302   } else if (CurType->isPipeType()) {
7303     if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
7304       QualType ElemType = CurType->getAs<PipeType>()->getElementType();
7305       CurType = S.Context.getWritePipeType(ElemType);
7306     }
7307   }
7308 }
7309 
7310 static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State,
7311                                           QualType &T, TypeAttrLocation TAL) {
7312   Declarator &D = State.getDeclarator();
7313 
7314   // Handle the cases where address space should not be deduced.
7315   //
7316   // The pointee type of a pointer type is always deduced since a pointer always
7317   // points to some memory location which should has an address space.
7318   //
7319   // There are situations that at the point of certain declarations, the address
7320   // space may be unknown and better to be left as default. For example, when
7321   // defining a typedef or struct type, they are not associated with any
7322   // specific address space. Later on, they may be used with any address space
7323   // to declare a variable.
7324   //
7325   // The return value of a function is r-value, therefore should not have
7326   // address space.
7327   //
7328   // The void type does not occupy memory, therefore should not have address
7329   // space, except when it is used as a pointee type.
7330   //
7331   // Since LLVM assumes function type is in default address space, it should not
7332   // have address space.
7333   auto ChunkIndex = State.getCurrentChunkIndex();
7334   bool IsPointee =
7335       ChunkIndex > 0 &&
7336       (D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Pointer ||
7337        D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::BlockPointer ||
7338        D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Reference);
7339   bool IsFuncReturnType =
7340       ChunkIndex > 0 &&
7341       D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Function;
7342   bool IsFuncType =
7343       ChunkIndex < D.getNumTypeObjects() &&
7344       D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function;
7345   if ( // Do not deduce addr space for function return type and function type,
7346        // otherwise it will fail some sema check.
7347       IsFuncReturnType || IsFuncType ||
7348       // Do not deduce addr space for member types of struct, except the pointee
7349       // type of a pointer member type or static data members.
7350       (D.getContext() == DeclaratorContext::MemberContext &&
7351        (!IsPointee &&
7352         D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)) ||
7353       // Do not deduce addr space for types used to define a typedef and the
7354       // typedef itself, except the pointee type of a pointer type which is used
7355       // to define the typedef.
7356       (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef &&
7357        !IsPointee) ||
7358       // Do not deduce addr space of the void type, e.g. in f(void), otherwise
7359       // it will fail some sema check.
7360       (T->isVoidType() && !IsPointee) ||
7361       // Do not deduce addr spaces for dependent types because they might end
7362       // up instantiating to a type with an explicit address space qualifier.
7363       T->isDependentType() ||
7364       // Do not deduce addr space of decltype because it will be taken from
7365       // its argument.
7366       T->isDecltypeType() ||
7367       // OpenCL spec v2.0 s6.9.b:
7368       // The sampler type cannot be used with the __local and __global address
7369       // space qualifiers.
7370       // OpenCL spec v2.0 s6.13.14:
7371       // Samplers can also be declared as global constants in the program
7372       // source using the following syntax.
7373       //   const sampler_t <sampler name> = <value>
7374       // In codegen, file-scope sampler type variable has special handing and
7375       // does not rely on address space qualifier. On the other hand, deducing
7376       // address space of const sampler file-scope variable as global address
7377       // space causes spurious diagnostic about __global address space
7378       // qualifier, therefore do not deduce address space of file-scope sampler
7379       // type variable.
7380       (D.getContext() == DeclaratorContext::FileContext && T->isSamplerT()))
7381     return;
7382 
7383   LangAS ImpAddr = LangAS::Default;
7384   // Put OpenCL automatic variable in private address space.
7385   // OpenCL v1.2 s6.5:
7386   // The default address space name for arguments to a function in a
7387   // program, or local variables of a function is __private. All function
7388   // arguments shall be in the __private address space.
7389   if (State.getSema().getLangOpts().OpenCLVersion <= 120 &&
7390       !State.getSema().getLangOpts().OpenCLCPlusPlus) {
7391     ImpAddr = LangAS::opencl_private;
7392   } else {
7393     // If address space is not set, OpenCL 2.0 defines non private default
7394     // address spaces for some cases:
7395     // OpenCL 2.0, section 6.5:
7396     // The address space for a variable at program scope or a static variable
7397     // inside a function can either be __global or __constant, but defaults to
7398     // __global if not specified.
7399     // (...)
7400     // Pointers that are declared without pointing to a named address space
7401     // point to the generic address space.
7402     if (IsPointee) {
7403       ImpAddr = LangAS::opencl_generic;
7404     } else {
7405       if (D.getContext() == DeclaratorContext::TemplateArgContext) {
7406         // Do not deduce address space for non-pointee type in template arg.
7407       } else if (D.getContext() == DeclaratorContext::FileContext) {
7408         ImpAddr = LangAS::opencl_global;
7409       } else {
7410         if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
7411             D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern) {
7412           ImpAddr = LangAS::opencl_global;
7413         } else {
7414           ImpAddr = LangAS::opencl_private;
7415         }
7416       }
7417     }
7418   }
7419   T = State.getSema().Context.getAddrSpaceQualType(T, ImpAddr);
7420 }
7421 
7422 static void HandleLifetimeBoundAttr(TypeProcessingState &State,
7423                                     QualType &CurType,
7424                                     ParsedAttr &Attr) {
7425   if (State.getDeclarator().isDeclarationOfFunction()) {
7426     CurType = State.getAttributedType(
7427         createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
7428         CurType, CurType);
7429   } else {
7430     Attr.diagnoseAppertainsTo(State.getSema(), nullptr);
7431   }
7432 }
7433 
7434 
7435 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
7436                              TypeAttrLocation TAL,
7437                              ParsedAttributesView &attrs) {
7438   // Scan through and apply attributes to this type where it makes sense.  Some
7439   // attributes (such as __address_space__, __vector_size__, etc) apply to the
7440   // type, but others can be present in the type specifiers even though they
7441   // apply to the decl.  Here we apply type attributes and ignore the rest.
7442 
7443   // This loop modifies the list pretty frequently, but we still need to make
7444   // sure we visit every element once. Copy the attributes list, and iterate
7445   // over that.
7446   ParsedAttributesView AttrsCopy{attrs};
7447 
7448   state.setParsedNoDeref(false);
7449 
7450   for (ParsedAttr &attr : AttrsCopy) {
7451 
7452     // Skip attributes that were marked to be invalid.
7453     if (attr.isInvalid())
7454       continue;
7455 
7456     if (attr.isCXX11Attribute()) {
7457       // [[gnu::...]] attributes are treated as declaration attributes, so may
7458       // not appertain to a DeclaratorChunk. If we handle them as type
7459       // attributes, accept them in that position and diagnose the GCC
7460       // incompatibility.
7461       if (attr.isGNUScope()) {
7462         bool IsTypeAttr = attr.isTypeAttr();
7463         if (TAL == TAL_DeclChunk) {
7464           state.getSema().Diag(attr.getLoc(),
7465                                IsTypeAttr
7466                                    ? diag::warn_gcc_ignores_type_attr
7467                                    : diag::warn_cxx11_gnu_attribute_on_type)
7468               << attr.getName();
7469           if (!IsTypeAttr)
7470             continue;
7471         }
7472       } else if (TAL != TAL_DeclChunk &&
7473                  attr.getKind() != ParsedAttr::AT_AddressSpace) {
7474         // Otherwise, only consider type processing for a C++11 attribute if
7475         // it's actually been applied to a type.
7476         // We also allow C++11 address_space attributes to pass through.
7477         continue;
7478       }
7479     }
7480 
7481     // If this is an attribute we can handle, do so now,
7482     // otherwise, add it to the FnAttrs list for rechaining.
7483     switch (attr.getKind()) {
7484     default:
7485       // A C++11 attribute on a declarator chunk must appertain to a type.
7486       if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
7487         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
7488             << attr;
7489         attr.setUsedAsTypeAttr();
7490       }
7491       break;
7492 
7493     case ParsedAttr::UnknownAttribute:
7494       if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
7495         state.getSema().Diag(attr.getLoc(),
7496                              diag::warn_unknown_attribute_ignored)
7497           << attr.getName();
7498       break;
7499 
7500     case ParsedAttr::IgnoredAttribute:
7501       break;
7502 
7503     case ParsedAttr::AT_MayAlias:
7504       // FIXME: This attribute needs to actually be handled, but if we ignore
7505       // it it breaks large amounts of Linux software.
7506       attr.setUsedAsTypeAttr();
7507       break;
7508     case ParsedAttr::AT_OpenCLPrivateAddressSpace:
7509     case ParsedAttr::AT_OpenCLGlobalAddressSpace:
7510     case ParsedAttr::AT_OpenCLLocalAddressSpace:
7511     case ParsedAttr::AT_OpenCLConstantAddressSpace:
7512     case ParsedAttr::AT_OpenCLGenericAddressSpace:
7513     case ParsedAttr::AT_AddressSpace:
7514       HandleAddressSpaceTypeAttribute(type, attr, state);
7515       attr.setUsedAsTypeAttr();
7516       break;
7517     OBJC_POINTER_TYPE_ATTRS_CASELIST:
7518       if (!handleObjCPointerTypeAttr(state, attr, type))
7519         distributeObjCPointerTypeAttr(state, attr, type);
7520       attr.setUsedAsTypeAttr();
7521       break;
7522     case ParsedAttr::AT_VectorSize:
7523       HandleVectorSizeAttr(type, attr, state.getSema());
7524       attr.setUsedAsTypeAttr();
7525       break;
7526     case ParsedAttr::AT_ExtVectorType:
7527       HandleExtVectorTypeAttr(type, attr, state.getSema());
7528       attr.setUsedAsTypeAttr();
7529       break;
7530     case ParsedAttr::AT_NeonVectorType:
7531       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7532                                VectorType::NeonVector);
7533       attr.setUsedAsTypeAttr();
7534       break;
7535     case ParsedAttr::AT_NeonPolyVectorType:
7536       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7537                                VectorType::NeonPolyVector);
7538       attr.setUsedAsTypeAttr();
7539       break;
7540     case ParsedAttr::AT_OpenCLAccess:
7541       HandleOpenCLAccessAttr(type, attr, state.getSema());
7542       attr.setUsedAsTypeAttr();
7543       break;
7544     case ParsedAttr::AT_LifetimeBound:
7545       if (TAL == TAL_DeclChunk)
7546         HandleLifetimeBoundAttr(state, type, attr);
7547       break;
7548 
7549     case ParsedAttr::AT_NoDeref: {
7550       ASTContext &Ctx = state.getSema().Context;
7551       type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
7552                                      type, type);
7553       attr.setUsedAsTypeAttr();
7554       state.setParsedNoDeref(true);
7555       break;
7556     }
7557 
7558     MS_TYPE_ATTRS_CASELIST:
7559       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
7560         attr.setUsedAsTypeAttr();
7561       break;
7562 
7563 
7564     NULLABILITY_TYPE_ATTRS_CASELIST:
7565       // Either add nullability here or try to distribute it.  We
7566       // don't want to distribute the nullability specifier past any
7567       // dependent type, because that complicates the user model.
7568       if (type->canHaveNullability() || type->isDependentType() ||
7569           type->isArrayType() ||
7570           !distributeNullabilityTypeAttr(state, type, attr)) {
7571         unsigned endIndex;
7572         if (TAL == TAL_DeclChunk)
7573           endIndex = state.getCurrentChunkIndex();
7574         else
7575           endIndex = state.getDeclarator().getNumTypeObjects();
7576         bool allowOnArrayType =
7577             state.getDeclarator().isPrototypeContext() &&
7578             !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
7579         if (checkNullabilityTypeSpecifier(
7580               state,
7581               type,
7582               attr,
7583               allowOnArrayType)) {
7584           attr.setInvalid();
7585         }
7586 
7587         attr.setUsedAsTypeAttr();
7588       }
7589       break;
7590 
7591     case ParsedAttr::AT_ObjCKindOf:
7592       // '__kindof' must be part of the decl-specifiers.
7593       switch (TAL) {
7594       case TAL_DeclSpec:
7595         break;
7596 
7597       case TAL_DeclChunk:
7598       case TAL_DeclName:
7599         state.getSema().Diag(attr.getLoc(),
7600                              diag::err_objc_kindof_wrong_position)
7601             << FixItHint::CreateRemoval(attr.getLoc())
7602             << FixItHint::CreateInsertion(
7603                    state.getDeclarator().getDeclSpec().getBeginLoc(),
7604                    "__kindof ");
7605         break;
7606       }
7607 
7608       // Apply it regardless.
7609       if (checkObjCKindOfType(state, type, attr))
7610         attr.setInvalid();
7611       break;
7612 
7613     FUNCTION_TYPE_ATTRS_CASELIST:
7614       attr.setUsedAsTypeAttr();
7615 
7616       // Never process function type attributes as part of the
7617       // declaration-specifiers.
7618       if (TAL == TAL_DeclSpec)
7619         distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
7620 
7621       // Otherwise, handle the possible delays.
7622       else if (!handleFunctionTypeAttr(state, attr, type))
7623         distributeFunctionTypeAttr(state, attr, type);
7624       break;
7625     }
7626 
7627     // Handle attributes that are defined in a macro. We do not want this to be
7628     // applied to ObjC builtin attributes.
7629     if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
7630         !type.getQualifiers().hasObjCLifetime() &&
7631         !type.getQualifiers().hasObjCGCAttr() &&
7632         attr.getKind() != ParsedAttr::AT_ObjCGC &&
7633         attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
7634       const IdentifierInfo *MacroII = attr.getMacroIdentifier();
7635       type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
7636       state.setExpansionLocForMacroQualifiedType(
7637           cast<MacroQualifiedType>(type.getTypePtr()),
7638           attr.getMacroExpansionLoc());
7639     }
7640   }
7641 
7642   if (!state.getSema().getLangOpts().OpenCL ||
7643       type.getAddressSpace() != LangAS::Default)
7644     return;
7645 
7646   deduceOpenCLImplicitAddrSpace(state, type, TAL);
7647 }
7648 
7649 void Sema::completeExprArrayBound(Expr *E) {
7650   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
7651     if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
7652       if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
7653         auto *Def = Var->getDefinition();
7654         if (!Def) {
7655           SourceLocation PointOfInstantiation = E->getExprLoc();
7656           InstantiateVariableDefinition(PointOfInstantiation, Var);
7657           Def = Var->getDefinition();
7658 
7659           // If we don't already have a point of instantiation, and we managed
7660           // to instantiate a definition, this is the point of instantiation.
7661           // Otherwise, we don't request an end-of-TU instantiation, so this is
7662           // not a point of instantiation.
7663           // FIXME: Is this really the right behavior?
7664           if (Var->getPointOfInstantiation().isInvalid() && Def) {
7665             assert(Var->getTemplateSpecializationKind() ==
7666                        TSK_ImplicitInstantiation &&
7667                    "explicit instantiation with no point of instantiation");
7668             Var->setTemplateSpecializationKind(
7669                 Var->getTemplateSpecializationKind(), PointOfInstantiation);
7670           }
7671         }
7672 
7673         // Update the type to the definition's type both here and within the
7674         // expression.
7675         if (Def) {
7676           DRE->setDecl(Def);
7677           QualType T = Def->getType();
7678           DRE->setType(T);
7679           // FIXME: Update the type on all intervening expressions.
7680           E->setType(T);
7681         }
7682 
7683         // We still go on to try to complete the type independently, as it
7684         // may also require instantiations or diagnostics if it remains
7685         // incomplete.
7686       }
7687     }
7688   }
7689 }
7690 
7691 /// Ensure that the type of the given expression is complete.
7692 ///
7693 /// This routine checks whether the expression \p E has a complete type. If the
7694 /// expression refers to an instantiable construct, that instantiation is
7695 /// performed as needed to complete its type. Furthermore
7696 /// Sema::RequireCompleteType is called for the expression's type (or in the
7697 /// case of a reference type, the referred-to type).
7698 ///
7699 /// \param E The expression whose type is required to be complete.
7700 /// \param Diagnoser The object that will emit a diagnostic if the type is
7701 /// incomplete.
7702 ///
7703 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
7704 /// otherwise.
7705 bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser) {
7706   QualType T = E->getType();
7707 
7708   // Incomplete array types may be completed by the initializer attached to
7709   // their definitions. For static data members of class templates and for
7710   // variable templates, we need to instantiate the definition to get this
7711   // initializer and complete the type.
7712   if (T->isIncompleteArrayType()) {
7713     completeExprArrayBound(E);
7714     T = E->getType();
7715   }
7716 
7717   // FIXME: Are there other cases which require instantiating something other
7718   // than the type to complete the type of an expression?
7719 
7720   return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
7721 }
7722 
7723 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
7724   BoundTypeDiagnoser<> Diagnoser(DiagID);
7725   return RequireCompleteExprType(E, Diagnoser);
7726 }
7727 
7728 /// Ensure that the type T is a complete type.
7729 ///
7730 /// This routine checks whether the type @p T is complete in any
7731 /// context where a complete type is required. If @p T is a complete
7732 /// type, returns false. If @p T is a class template specialization,
7733 /// this routine then attempts to perform class template
7734 /// instantiation. If instantiation fails, or if @p T is incomplete
7735 /// and cannot be completed, issues the diagnostic @p diag (giving it
7736 /// the type @p T) and returns true.
7737 ///
7738 /// @param Loc  The location in the source that the incomplete type
7739 /// diagnostic should refer to.
7740 ///
7741 /// @param T  The type that this routine is examining for completeness.
7742 ///
7743 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
7744 /// @c false otherwise.
7745 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
7746                                TypeDiagnoser &Diagnoser) {
7747   if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
7748     return true;
7749   if (const TagType *Tag = T->getAs<TagType>()) {
7750     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
7751       Tag->getDecl()->setCompleteDefinitionRequired();
7752       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
7753     }
7754   }
7755   return false;
7756 }
7757 
7758 bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
7759   llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
7760   if (!Suggested)
7761     return false;
7762 
7763   // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
7764   // and isolate from other C++ specific checks.
7765   StructuralEquivalenceContext Ctx(
7766       D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
7767       StructuralEquivalenceKind::Default,
7768       false /*StrictTypeSpelling*/, true /*Complain*/,
7769       true /*ErrorOnTagTypeMismatch*/);
7770   return Ctx.IsEquivalent(D, Suggested);
7771 }
7772 
7773 /// Determine whether there is any declaration of \p D that was ever a
7774 ///        definition (perhaps before module merging) and is currently visible.
7775 /// \param D The definition of the entity.
7776 /// \param Suggested Filled in with the declaration that should be made visible
7777 ///        in order to provide a definition of this entity.
7778 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
7779 ///        not defined. This only matters for enums with a fixed underlying
7780 ///        type, since in all other cases, a type is complete if and only if it
7781 ///        is defined.
7782 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
7783                                 bool OnlyNeedComplete) {
7784   // Easy case: if we don't have modules, all declarations are visible.
7785   if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
7786     return true;
7787 
7788   // If this definition was instantiated from a template, map back to the
7789   // pattern from which it was instantiated.
7790   if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
7791     // We're in the middle of defining it; this definition should be treated
7792     // as visible.
7793     return true;
7794   } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
7795     if (auto *Pattern = RD->getTemplateInstantiationPattern())
7796       RD = Pattern;
7797     D = RD->getDefinition();
7798   } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
7799     if (auto *Pattern = ED->getTemplateInstantiationPattern())
7800       ED = Pattern;
7801     if (OnlyNeedComplete && ED->isFixed()) {
7802       // If the enum has a fixed underlying type, and we're only looking for a
7803       // complete type (not a definition), any visible declaration of it will
7804       // do.
7805       *Suggested = nullptr;
7806       for (auto *Redecl : ED->redecls()) {
7807         if (isVisible(Redecl))
7808           return true;
7809         if (Redecl->isThisDeclarationADefinition() ||
7810             (Redecl->isCanonicalDecl() && !*Suggested))
7811           *Suggested = Redecl;
7812       }
7813       return false;
7814     }
7815     D = ED->getDefinition();
7816   } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
7817     if (auto *Pattern = FD->getTemplateInstantiationPattern())
7818       FD = Pattern;
7819     D = FD->getDefinition();
7820   } else if (auto *VD = dyn_cast<VarDecl>(D)) {
7821     if (auto *Pattern = VD->getTemplateInstantiationPattern())
7822       VD = Pattern;
7823     D = VD->getDefinition();
7824   }
7825   assert(D && "missing definition for pattern of instantiated definition");
7826 
7827   *Suggested = D;
7828 
7829   auto DefinitionIsVisible = [&] {
7830     // The (primary) definition might be in a visible module.
7831     if (isVisible(D))
7832       return true;
7833 
7834     // A visible module might have a merged definition instead.
7835     if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
7836                              : hasVisibleMergedDefinition(D)) {
7837       if (CodeSynthesisContexts.empty() &&
7838           !getLangOpts().ModulesLocalVisibility) {
7839         // Cache the fact that this definition is implicitly visible because
7840         // there is a visible merged definition.
7841         D->setVisibleDespiteOwningModule();
7842       }
7843       return true;
7844     }
7845 
7846     return false;
7847   };
7848 
7849   if (DefinitionIsVisible())
7850     return true;
7851 
7852   // The external source may have additional definitions of this entity that are
7853   // visible, so complete the redeclaration chain now and ask again.
7854   if (auto *Source = Context.getExternalSource()) {
7855     Source->CompleteRedeclChain(D);
7856     return DefinitionIsVisible();
7857   }
7858 
7859   return false;
7860 }
7861 
7862 /// Locks in the inheritance model for the given class and all of its bases.
7863 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
7864   RD = RD->getMostRecentNonInjectedDecl();
7865   if (!RD->hasAttr<MSInheritanceAttr>()) {
7866     MSInheritanceAttr::Spelling IM;
7867 
7868     switch (S.MSPointerToMemberRepresentationMethod) {
7869     case LangOptions::PPTMK_BestCase:
7870       IM = RD->calculateInheritanceModel();
7871       break;
7872     case LangOptions::PPTMK_FullGeneralitySingleInheritance:
7873       IM = MSInheritanceAttr::Keyword_single_inheritance;
7874       break;
7875     case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
7876       IM = MSInheritanceAttr::Keyword_multiple_inheritance;
7877       break;
7878     case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
7879       IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
7880       break;
7881     }
7882 
7883     RD->addAttr(MSInheritanceAttr::CreateImplicit(
7884         S.getASTContext(), IM,
7885         /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
7886             LangOptions::PPTMK_BestCase,
7887         S.ImplicitMSInheritanceAttrLoc.isValid()
7888             ? S.ImplicitMSInheritanceAttrLoc
7889             : RD->getSourceRange()));
7890     S.Consumer.AssignInheritanceModel(RD);
7891   }
7892 }
7893 
7894 /// The implementation of RequireCompleteType
7895 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
7896                                    TypeDiagnoser *Diagnoser) {
7897   // FIXME: Add this assertion to make sure we always get instantiation points.
7898   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
7899   // FIXME: Add this assertion to help us flush out problems with
7900   // checking for dependent types and type-dependent expressions.
7901   //
7902   //  assert(!T->isDependentType() &&
7903   //         "Can't ask whether a dependent type is complete");
7904 
7905   if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
7906     if (!MPTy->getClass()->isDependentType()) {
7907       if (getLangOpts().CompleteMemberPointers &&
7908           !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
7909           RequireCompleteType(Loc, QualType(MPTy->getClass(), 0),
7910                               diag::err_memptr_incomplete))
7911         return true;
7912 
7913       // We lock in the inheritance model once somebody has asked us to ensure
7914       // that a pointer-to-member type is complete.
7915       if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7916         (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
7917         assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
7918       }
7919     }
7920   }
7921 
7922   NamedDecl *Def = nullptr;
7923   bool Incomplete = T->isIncompleteType(&Def);
7924 
7925   // Check that any necessary explicit specializations are visible. For an
7926   // enum, we just need the declaration, so don't check this.
7927   if (Def && !isa<EnumDecl>(Def))
7928     checkSpecializationVisibility(Loc, Def);
7929 
7930   // If we have a complete type, we're done.
7931   if (!Incomplete) {
7932     // If we know about the definition but it is not visible, complain.
7933     NamedDecl *SuggestedDef = nullptr;
7934     if (Def &&
7935         !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
7936       // If the user is going to see an error here, recover by making the
7937       // definition visible.
7938       bool TreatAsComplete = Diagnoser && !isSFINAEContext();
7939       if (Diagnoser && SuggestedDef)
7940         diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
7941                               /*Recover*/TreatAsComplete);
7942       return !TreatAsComplete;
7943     } else if (Def && !TemplateInstCallbacks.empty()) {
7944       CodeSynthesisContext TempInst;
7945       TempInst.Kind = CodeSynthesisContext::Memoization;
7946       TempInst.Template = Def;
7947       TempInst.Entity = Def;
7948       TempInst.PointOfInstantiation = Loc;
7949       atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
7950       atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
7951     }
7952 
7953     return false;
7954   }
7955 
7956   TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
7957   ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
7958 
7959   // Give the external source a chance to provide a definition of the type.
7960   // This is kept separate from completing the redeclaration chain so that
7961   // external sources such as LLDB can avoid synthesizing a type definition
7962   // unless it's actually needed.
7963   if (Tag || IFace) {
7964     // Avoid diagnosing invalid decls as incomplete.
7965     if (Def->isInvalidDecl())
7966       return true;
7967 
7968     // Give the external AST source a chance to complete the type.
7969     if (auto *Source = Context.getExternalSource()) {
7970       if (Tag && Tag->hasExternalLexicalStorage())
7971           Source->CompleteType(Tag);
7972       if (IFace && IFace->hasExternalLexicalStorage())
7973           Source->CompleteType(IFace);
7974       // If the external source completed the type, go through the motions
7975       // again to ensure we're allowed to use the completed type.
7976       if (!T->isIncompleteType())
7977         return RequireCompleteTypeImpl(Loc, T, Diagnoser);
7978     }
7979   }
7980 
7981   // If we have a class template specialization or a class member of a
7982   // class template specialization, or an array with known size of such,
7983   // try to instantiate it.
7984   if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
7985     bool Instantiated = false;
7986     bool Diagnosed = false;
7987     if (RD->isDependentContext()) {
7988       // Don't try to instantiate a dependent class (eg, a member template of
7989       // an instantiated class template specialization).
7990       // FIXME: Can this ever happen?
7991     } else if (auto *ClassTemplateSpec =
7992             dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
7993       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
7994         Diagnosed = InstantiateClassTemplateSpecialization(
7995             Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
7996             /*Complain=*/Diagnoser);
7997         Instantiated = true;
7998       }
7999     } else {
8000       CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
8001       if (!RD->isBeingDefined() && Pattern) {
8002         MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
8003         assert(MSI && "Missing member specialization information?");
8004         // This record was instantiated from a class within a template.
8005         if (MSI->getTemplateSpecializationKind() !=
8006             TSK_ExplicitSpecialization) {
8007           Diagnosed = InstantiateClass(Loc, RD, Pattern,
8008                                        getTemplateInstantiationArgs(RD),
8009                                        TSK_ImplicitInstantiation,
8010                                        /*Complain=*/Diagnoser);
8011           Instantiated = true;
8012         }
8013       }
8014     }
8015 
8016     if (Instantiated) {
8017       // Instantiate* might have already complained that the template is not
8018       // defined, if we asked it to.
8019       if (Diagnoser && Diagnosed)
8020         return true;
8021       // If we instantiated a definition, check that it's usable, even if
8022       // instantiation produced an error, so that repeated calls to this
8023       // function give consistent answers.
8024       if (!T->isIncompleteType())
8025         return RequireCompleteTypeImpl(Loc, T, Diagnoser);
8026     }
8027   }
8028 
8029   // FIXME: If we didn't instantiate a definition because of an explicit
8030   // specialization declaration, check that it's visible.
8031 
8032   if (!Diagnoser)
8033     return true;
8034 
8035   Diagnoser->diagnose(*this, Loc, T);
8036 
8037   // If the type was a forward declaration of a class/struct/union
8038   // type, produce a note.
8039   if (Tag && !Tag->isInvalidDecl())
8040     Diag(Tag->getLocation(),
8041          Tag->isBeingDefined() ? diag::note_type_being_defined
8042                                : diag::note_forward_declaration)
8043       << Context.getTagDeclType(Tag);
8044 
8045   // If the Objective-C class was a forward declaration, produce a note.
8046   if (IFace && !IFace->isInvalidDecl())
8047     Diag(IFace->getLocation(), diag::note_forward_class);
8048 
8049   // If we have external information that we can use to suggest a fix,
8050   // produce a note.
8051   if (ExternalSource)
8052     ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
8053 
8054   return true;
8055 }
8056 
8057 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8058                                unsigned DiagID) {
8059   BoundTypeDiagnoser<> Diagnoser(DiagID);
8060   return RequireCompleteType(Loc, T, Diagnoser);
8061 }
8062 
8063 /// Get diagnostic %select index for tag kind for
8064 /// literal type diagnostic message.
8065 /// WARNING: Indexes apply to particular diagnostics only!
8066 ///
8067 /// \returns diagnostic %select index.
8068 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
8069   switch (Tag) {
8070   case TTK_Struct: return 0;
8071   case TTK_Interface: return 1;
8072   case TTK_Class:  return 2;
8073   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
8074   }
8075 }
8076 
8077 /// Ensure that the type T is a literal type.
8078 ///
8079 /// This routine checks whether the type @p T is a literal type. If @p T is an
8080 /// incomplete type, an attempt is made to complete it. If @p T is a literal
8081 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
8082 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
8083 /// it the type @p T), along with notes explaining why the type is not a
8084 /// literal type, and returns true.
8085 ///
8086 /// @param Loc  The location in the source that the non-literal type
8087 /// diagnostic should refer to.
8088 ///
8089 /// @param T  The type that this routine is examining for literalness.
8090 ///
8091 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
8092 ///
8093 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
8094 /// @c false otherwise.
8095 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
8096                               TypeDiagnoser &Diagnoser) {
8097   assert(!T->isDependentType() && "type should not be dependent");
8098 
8099   QualType ElemType = Context.getBaseElementType(T);
8100   if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
8101       T->isLiteralType(Context))
8102     return false;
8103 
8104   Diagnoser.diagnose(*this, Loc, T);
8105 
8106   if (T->isVariableArrayType())
8107     return true;
8108 
8109   const RecordType *RT = ElemType->getAs<RecordType>();
8110   if (!RT)
8111     return true;
8112 
8113   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
8114 
8115   // A partially-defined class type can't be a literal type, because a literal
8116   // class type must have a trivial destructor (which can't be checked until
8117   // the class definition is complete).
8118   if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
8119     return true;
8120 
8121   // [expr.prim.lambda]p3:
8122   //   This class type is [not] a literal type.
8123   if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
8124     Diag(RD->getLocation(), diag::note_non_literal_lambda);
8125     return true;
8126   }
8127 
8128   // If the class has virtual base classes, then it's not an aggregate, and
8129   // cannot have any constexpr constructors or a trivial default constructor,
8130   // so is non-literal. This is better to diagnose than the resulting absence
8131   // of constexpr constructors.
8132   if (RD->getNumVBases()) {
8133     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
8134       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
8135     for (const auto &I : RD->vbases())
8136       Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
8137           << I.getSourceRange();
8138   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
8139              !RD->hasTrivialDefaultConstructor()) {
8140     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
8141   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
8142     for (const auto &I : RD->bases()) {
8143       if (!I.getType()->isLiteralType(Context)) {
8144         Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
8145             << RD << I.getType() << I.getSourceRange();
8146         return true;
8147       }
8148     }
8149     for (const auto *I : RD->fields()) {
8150       if (!I->getType()->isLiteralType(Context) ||
8151           I->getType().isVolatileQualified()) {
8152         Diag(I->getLocation(), diag::note_non_literal_field)
8153           << RD << I << I->getType()
8154           << I->getType().isVolatileQualified();
8155         return true;
8156       }
8157     }
8158   } else if (!RD->hasTrivialDestructor()) {
8159     // All fields and bases are of literal types, so have trivial destructors.
8160     // If this class's destructor is non-trivial it must be user-declared.
8161     CXXDestructorDecl *Dtor = RD->getDestructor();
8162     assert(Dtor && "class has literal fields and bases but no dtor?");
8163     if (!Dtor)
8164       return true;
8165 
8166     Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
8167          diag::note_non_literal_user_provided_dtor :
8168          diag::note_non_literal_nontrivial_dtor) << RD;
8169     if (!Dtor->isUserProvided())
8170       SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
8171                              /*Diagnose*/true);
8172   }
8173 
8174   return true;
8175 }
8176 
8177 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
8178   BoundTypeDiagnoser<> Diagnoser(DiagID);
8179   return RequireLiteralType(Loc, T, Diagnoser);
8180 }
8181 
8182 /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
8183 /// by the nested-name-specifier contained in SS, and that is (re)declared by
8184 /// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
8185 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
8186                                  const CXXScopeSpec &SS, QualType T,
8187                                  TagDecl *OwnedTagDecl) {
8188   if (T.isNull())
8189     return T;
8190   NestedNameSpecifier *NNS;
8191   if (SS.isValid())
8192     NNS = SS.getScopeRep();
8193   else {
8194     if (Keyword == ETK_None)
8195       return T;
8196     NNS = nullptr;
8197   }
8198   return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
8199 }
8200 
8201 QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
8202   assert(!E->hasPlaceholderType() && "unexpected placeholder");
8203 
8204   if (!getLangOpts().CPlusPlus && E->refersToBitField())
8205     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
8206 
8207   if (!E->isTypeDependent()) {
8208     QualType T = E->getType();
8209     if (const TagType *TT = T->getAs<TagType>())
8210       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
8211   }
8212   return Context.getTypeOfExprType(E);
8213 }
8214 
8215 /// getDecltypeForExpr - Given an expr, will return the decltype for
8216 /// that expression, according to the rules in C++11
8217 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
8218 static QualType getDecltypeForExpr(Sema &S, Expr *E) {
8219   if (E->isTypeDependent())
8220     return S.Context.DependentTy;
8221 
8222   // C++11 [dcl.type.simple]p4:
8223   //   The type denoted by decltype(e) is defined as follows:
8224   //
8225   //     - if e is an unparenthesized id-expression or an unparenthesized class
8226   //       member access (5.2.5), decltype(e) is the type of the entity named
8227   //       by e. If there is no such entity, or if e names a set of overloaded
8228   //       functions, the program is ill-formed;
8229   //
8230   // We apply the same rules for Objective-C ivar and property references.
8231   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8232     const ValueDecl *VD = DRE->getDecl();
8233     return VD->getType();
8234   } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
8235     if (const ValueDecl *VD = ME->getMemberDecl())
8236       if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
8237         return VD->getType();
8238   } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
8239     return IR->getDecl()->getType();
8240   } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
8241     if (PR->isExplicitProperty())
8242       return PR->getExplicitProperty()->getType();
8243   } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
8244     return PE->getType();
8245   }
8246 
8247   // C++11 [expr.lambda.prim]p18:
8248   //   Every occurrence of decltype((x)) where x is a possibly
8249   //   parenthesized id-expression that names an entity of automatic
8250   //   storage duration is treated as if x were transformed into an
8251   //   access to a corresponding data member of the closure type that
8252   //   would have been declared if x were an odr-use of the denoted
8253   //   entity.
8254   using namespace sema;
8255   if (S.getCurLambda()) {
8256     if (isa<ParenExpr>(E)) {
8257       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8258         if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8259           QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
8260           if (!T.isNull())
8261             return S.Context.getLValueReferenceType(T);
8262         }
8263       }
8264     }
8265   }
8266 
8267 
8268   // C++11 [dcl.type.simple]p4:
8269   //   [...]
8270   QualType T = E->getType();
8271   switch (E->getValueKind()) {
8272   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
8273   //       type of e;
8274   case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
8275   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
8276   //       type of e;
8277   case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
8278   //  - otherwise, decltype(e) is the type of e.
8279   case VK_RValue: break;
8280   }
8281 
8282   return T;
8283 }
8284 
8285 QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
8286                                  bool AsUnevaluated) {
8287   assert(!E->hasPlaceholderType() && "unexpected placeholder");
8288 
8289   if (AsUnevaluated && CodeSynthesisContexts.empty() &&
8290       E->HasSideEffects(Context, false)) {
8291     // The expression operand for decltype is in an unevaluated expression
8292     // context, so side effects could result in unintended consequences.
8293     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8294   }
8295 
8296   return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
8297 }
8298 
8299 QualType Sema::BuildUnaryTransformType(QualType BaseType,
8300                                        UnaryTransformType::UTTKind UKind,
8301                                        SourceLocation Loc) {
8302   switch (UKind) {
8303   case UnaryTransformType::EnumUnderlyingType:
8304     if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
8305       Diag(Loc, diag::err_only_enums_have_underlying_types);
8306       return QualType();
8307     } else {
8308       QualType Underlying = BaseType;
8309       if (!BaseType->isDependentType()) {
8310         // The enum could be incomplete if we're parsing its definition or
8311         // recovering from an error.
8312         NamedDecl *FwdDecl = nullptr;
8313         if (BaseType->isIncompleteType(&FwdDecl)) {
8314           Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
8315           Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
8316           return QualType();
8317         }
8318 
8319         EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
8320         assert(ED && "EnumType has no EnumDecl");
8321 
8322         DiagnoseUseOfDecl(ED, Loc);
8323 
8324         Underlying = ED->getIntegerType();
8325         assert(!Underlying.isNull());
8326       }
8327       return Context.getUnaryTransformType(BaseType, Underlying,
8328                                         UnaryTransformType::EnumUnderlyingType);
8329     }
8330   }
8331   llvm_unreachable("unknown unary transform type");
8332 }
8333 
8334 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
8335   if (!T->isDependentType()) {
8336     // FIXME: It isn't entirely clear whether incomplete atomic types
8337     // are allowed or not; for simplicity, ban them for the moment.
8338     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
8339       return QualType();
8340 
8341     int DisallowedKind = -1;
8342     if (T->isArrayType())
8343       DisallowedKind = 1;
8344     else if (T->isFunctionType())
8345       DisallowedKind = 2;
8346     else if (T->isReferenceType())
8347       DisallowedKind = 3;
8348     else if (T->isAtomicType())
8349       DisallowedKind = 4;
8350     else if (T.hasQualifiers())
8351       DisallowedKind = 5;
8352     else if (!T.isTriviallyCopyableType(Context))
8353       // Some other non-trivially-copyable type (probably a C++ class)
8354       DisallowedKind = 6;
8355 
8356     if (DisallowedKind != -1) {
8357       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
8358       return QualType();
8359     }
8360 
8361     // FIXME: Do we need any handling for ARC here?
8362   }
8363 
8364   // Build the pointer type.
8365   return Context.getAtomicType(T);
8366 }
8367