1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===// 7 // 8 // This file implements semantic analysis for C++ templates. 9 //===----------------------------------------------------------------------===// 10 11 #include "TreeTransform.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/Decl.h" 15 #include "clang/AST/DeclFriend.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/RecursiveASTVisitor.h" 20 #include "clang/AST/TemplateName.h" 21 #include "clang/AST/TypeVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/LangOptions.h" 24 #include "clang/Basic/PartialDiagnostic.h" 25 #include "clang/Basic/Stack.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Sema/DeclSpec.h" 28 #include "clang/Sema/Initialization.h" 29 #include "clang/Sema/Lookup.h" 30 #include "clang/Sema/Overload.h" 31 #include "clang/Sema/ParsedTemplate.h" 32 #include "clang/Sema/Scope.h" 33 #include "clang/Sema/SemaInternal.h" 34 #include "clang/Sema/Template.h" 35 #include "clang/Sema/TemplateDeduction.h" 36 #include "llvm/ADT/SmallBitVector.h" 37 #include "llvm/ADT/SmallString.h" 38 #include "llvm/ADT/StringExtras.h" 39 40 #include <iterator> 41 using namespace clang; 42 using namespace sema; 43 44 // Exported for use by Parser. 45 SourceRange 46 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 47 unsigned N) { 48 if (!N) return SourceRange(); 49 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 50 } 51 52 unsigned Sema::getTemplateDepth(Scope *S) const { 53 unsigned Depth = 0; 54 55 // Each template parameter scope represents one level of template parameter 56 // depth. 57 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; 58 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { 59 ++Depth; 60 } 61 62 // Note that there are template parameters with the given depth. 63 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); }; 64 65 // Look for parameters of an enclosing generic lambda. We don't create a 66 // template parameter scope for these. 67 for (FunctionScopeInfo *FSI : getFunctionScopes()) { 68 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) { 69 if (!LSI->TemplateParams.empty()) { 70 ParamsAtDepth(LSI->AutoTemplateParameterDepth); 71 break; 72 } 73 if (LSI->GLTemplateParameterList) { 74 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); 75 break; 76 } 77 } 78 } 79 80 // Look for parameters of an enclosing terse function template. We don't 81 // create a template parameter scope for these either. 82 for (const InventedTemplateParameterInfo &Info : 83 getInventedParameterInfos()) { 84 if (!Info.TemplateParams.empty()) { 85 ParamsAtDepth(Info.AutoTemplateParameterDepth); 86 break; 87 } 88 } 89 90 return Depth; 91 } 92 93 /// \brief Determine whether the declaration found is acceptable as the name 94 /// of a template and, if so, return that template declaration. Otherwise, 95 /// returns null. 96 /// 97 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent 98 /// is true. In all other cases it will return a TemplateDecl (or null). 99 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, 100 bool AllowFunctionTemplates, 101 bool AllowDependent) { 102 D = D->getUnderlyingDecl(); 103 104 if (isa<TemplateDecl>(D)) { 105 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 106 return nullptr; 107 108 return D; 109 } 110 111 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 112 // C++ [temp.local]p1: 113 // Like normal (non-template) classes, class templates have an 114 // injected-class-name (Clause 9). The injected-class-name 115 // can be used with or without a template-argument-list. When 116 // it is used without a template-argument-list, it is 117 // equivalent to the injected-class-name followed by the 118 // template-parameters of the class template enclosed in 119 // <>. When it is used with a template-argument-list, it 120 // refers to the specified class template specialization, 121 // which could be the current specialization or another 122 // specialization. 123 if (Record->isInjectedClassName()) { 124 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 125 if (Record->getDescribedClassTemplate()) 126 return Record->getDescribedClassTemplate(); 127 128 if (ClassTemplateSpecializationDecl *Spec 129 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 130 return Spec->getSpecializedTemplate(); 131 } 132 133 return nullptr; 134 } 135 136 // 'using Dependent::foo;' can resolve to a template name. 137 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an 138 // injected-class-name). 139 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D)) 140 return D; 141 142 return nullptr; 143 } 144 145 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 146 bool AllowFunctionTemplates, 147 bool AllowDependent) { 148 LookupResult::Filter filter = R.makeFilter(); 149 while (filter.hasNext()) { 150 NamedDecl *Orig = filter.next(); 151 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) 152 filter.erase(); 153 } 154 filter.done(); 155 } 156 157 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 158 bool AllowFunctionTemplates, 159 bool AllowDependent, 160 bool AllowNonTemplateFunctions) { 161 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 162 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) 163 return true; 164 if (AllowNonTemplateFunctions && 165 isa<FunctionDecl>((*I)->getUnderlyingDecl())) 166 return true; 167 } 168 169 return false; 170 } 171 172 TemplateNameKind Sema::isTemplateName(Scope *S, 173 CXXScopeSpec &SS, 174 bool hasTemplateKeyword, 175 const UnqualifiedId &Name, 176 ParsedType ObjectTypePtr, 177 bool EnteringContext, 178 TemplateTy &TemplateResult, 179 bool &MemberOfUnknownSpecialization, 180 bool Disambiguation) { 181 assert(getLangOpts().CPlusPlus && "No template names in C!"); 182 183 DeclarationName TName; 184 MemberOfUnknownSpecialization = false; 185 186 switch (Name.getKind()) { 187 case UnqualifiedIdKind::IK_Identifier: 188 TName = DeclarationName(Name.Identifier); 189 break; 190 191 case UnqualifiedIdKind::IK_OperatorFunctionId: 192 TName = Context.DeclarationNames.getCXXOperatorName( 193 Name.OperatorFunctionId.Operator); 194 break; 195 196 case UnqualifiedIdKind::IK_LiteralOperatorId: 197 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 198 break; 199 200 default: 201 return TNK_Non_template; 202 } 203 204 QualType ObjectType = ObjectTypePtr.get(); 205 206 AssumedTemplateKind AssumedTemplate; 207 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); 208 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 209 MemberOfUnknownSpecialization, SourceLocation(), 210 &AssumedTemplate, 211 /*AllowTypoCorrection=*/!Disambiguation)) 212 return TNK_Non_template; 213 214 if (AssumedTemplate != AssumedTemplateKind::None) { 215 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); 216 // Let the parser know whether we found nothing or found functions; if we 217 // found nothing, we want to more carefully check whether this is actually 218 // a function template name versus some other kind of undeclared identifier. 219 return AssumedTemplate == AssumedTemplateKind::FoundNothing 220 ? TNK_Undeclared_template 221 : TNK_Function_template; 222 } 223 224 if (R.empty()) 225 return TNK_Non_template; 226 227 NamedDecl *D = nullptr; 228 UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin()); 229 if (R.isAmbiguous()) { 230 // If we got an ambiguity involving a non-function template, treat this 231 // as a template name, and pick an arbitrary template for error recovery. 232 bool AnyFunctionTemplates = false; 233 for (NamedDecl *FoundD : R) { 234 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { 235 if (isa<FunctionTemplateDecl>(FoundTemplate)) 236 AnyFunctionTemplates = true; 237 else { 238 D = FoundTemplate; 239 FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD); 240 break; 241 } 242 } 243 } 244 245 // If we didn't find any templates at all, this isn't a template name. 246 // Leave the ambiguity for a later lookup to diagnose. 247 if (!D && !AnyFunctionTemplates) { 248 R.suppressDiagnostics(); 249 return TNK_Non_template; 250 } 251 252 // If the only templates were function templates, filter out the rest. 253 // We'll diagnose the ambiguity later. 254 if (!D) 255 FilterAcceptableTemplateNames(R); 256 } 257 258 // At this point, we have either picked a single template name declaration D 259 // or we have a non-empty set of results R containing either one template name 260 // declaration or a set of function templates. 261 262 TemplateName Template; 263 TemplateNameKind TemplateKind; 264 265 unsigned ResultCount = R.end() - R.begin(); 266 if (!D && ResultCount > 1) { 267 // We assume that we'll preserve the qualifier from a function 268 // template name in other ways. 269 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 270 TemplateKind = TNK_Function_template; 271 272 // We'll do this lookup again later. 273 R.suppressDiagnostics(); 274 } else { 275 if (!D) { 276 D = getAsTemplateNameDecl(*R.begin()); 277 assert(D && "unambiguous result is not a template name"); 278 } 279 280 if (isa<UnresolvedUsingValueDecl>(D)) { 281 // We don't yet know whether this is a template-name or not. 282 MemberOfUnknownSpecialization = true; 283 return TNK_Non_template; 284 } 285 286 TemplateDecl *TD = cast<TemplateDecl>(D); 287 Template = 288 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); 289 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD); 290 if (SS.isSet() && !SS.isInvalid()) { 291 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 292 Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword, 293 Template); 294 } 295 296 if (isa<FunctionTemplateDecl>(TD)) { 297 TemplateKind = TNK_Function_template; 298 299 // We'll do this lookup again later. 300 R.suppressDiagnostics(); 301 } else { 302 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 303 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || 304 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); 305 TemplateKind = 306 isa<VarTemplateDecl>(TD) ? TNK_Var_template : 307 isa<ConceptDecl>(TD) ? TNK_Concept_template : 308 TNK_Type_template; 309 } 310 } 311 312 TemplateResult = TemplateTy::make(Template); 313 return TemplateKind; 314 } 315 316 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, 317 SourceLocation NameLoc, 318 ParsedTemplateTy *Template) { 319 CXXScopeSpec SS; 320 bool MemberOfUnknownSpecialization = false; 321 322 // We could use redeclaration lookup here, but we don't need to: the 323 // syntactic form of a deduction guide is enough to identify it even 324 // if we can't look up the template name at all. 325 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); 326 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), 327 /*EnteringContext*/ false, 328 MemberOfUnknownSpecialization)) 329 return false; 330 331 if (R.empty()) return false; 332 if (R.isAmbiguous()) { 333 // FIXME: Diagnose an ambiguity if we find at least one template. 334 R.suppressDiagnostics(); 335 return false; 336 } 337 338 // We only treat template-names that name type templates as valid deduction 339 // guide names. 340 TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); 341 if (!TD || !getAsTypeTemplateDecl(TD)) 342 return false; 343 344 if (Template) 345 *Template = TemplateTy::make(TemplateName(TD)); 346 return true; 347 } 348 349 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 350 SourceLocation IILoc, 351 Scope *S, 352 const CXXScopeSpec *SS, 353 TemplateTy &SuggestedTemplate, 354 TemplateNameKind &SuggestedKind) { 355 // We can't recover unless there's a dependent scope specifier preceding the 356 // template name. 357 // FIXME: Typo correction? 358 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 359 computeDeclContext(*SS)) 360 return false; 361 362 // The code is missing a 'template' keyword prior to the dependent template 363 // name. 364 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 365 Diag(IILoc, diag::err_template_kw_missing) 366 << Qualifier << II.getName() 367 << FixItHint::CreateInsertion(IILoc, "template "); 368 SuggestedTemplate 369 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 370 SuggestedKind = TNK_Dependent_template_name; 371 return true; 372 } 373 374 bool Sema::LookupTemplateName(LookupResult &Found, 375 Scope *S, CXXScopeSpec &SS, 376 QualType ObjectType, 377 bool EnteringContext, 378 bool &MemberOfUnknownSpecialization, 379 RequiredTemplateKind RequiredTemplate, 380 AssumedTemplateKind *ATK, 381 bool AllowTypoCorrection) { 382 if (ATK) 383 *ATK = AssumedTemplateKind::None; 384 385 if (SS.isInvalid()) 386 return true; 387 388 Found.setTemplateNameLookup(true); 389 390 // Determine where to perform name lookup 391 MemberOfUnknownSpecialization = false; 392 DeclContext *LookupCtx = nullptr; 393 bool IsDependent = false; 394 if (!ObjectType.isNull()) { 395 // This nested-name-specifier occurs in a member access expression, e.g., 396 // x->B::f, and we are looking into the type of the object. 397 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist"); 398 LookupCtx = computeDeclContext(ObjectType); 399 IsDependent = !LookupCtx && ObjectType->isDependentType(); 400 assert((IsDependent || !ObjectType->isIncompleteType() || 401 ObjectType->castAs<TagType>()->isBeingDefined()) && 402 "Caller should have completed object type"); 403 404 // Template names cannot appear inside an Objective-C class or object type 405 // or a vector type. 406 // 407 // FIXME: This is wrong. For example: 408 // 409 // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); 410 // Vec<int> vi; 411 // vi.Vec<int>::~Vec<int>(); 412 // 413 // ... should be accepted but we will not treat 'Vec' as a template name 414 // here. The right thing to do would be to check if the name is a valid 415 // vector component name, and look up a template name if not. And similarly 416 // for lookups into Objective-C class and object types, where the same 417 // problem can arise. 418 if (ObjectType->isObjCObjectOrInterfaceType() || 419 ObjectType->isVectorType()) { 420 Found.clear(); 421 return false; 422 } 423 } else if (SS.isNotEmpty()) { 424 // This nested-name-specifier occurs after another nested-name-specifier, 425 // so long into the context associated with the prior nested-name-specifier. 426 LookupCtx = computeDeclContext(SS, EnteringContext); 427 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); 428 429 // The declaration context must be complete. 430 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 431 return true; 432 } 433 434 bool ObjectTypeSearchedInScope = false; 435 bool AllowFunctionTemplatesInLookup = true; 436 if (LookupCtx) { 437 // Perform "qualified" name lookup into the declaration context we 438 // computed, which is either the type of the base of a member access 439 // expression or the declaration context associated with a prior 440 // nested-name-specifier. 441 LookupQualifiedName(Found, LookupCtx); 442 443 // FIXME: The C++ standard does not clearly specify what happens in the 444 // case where the object type is dependent, and implementations vary. In 445 // Clang, we treat a name after a . or -> as a template-name if lookup 446 // finds a non-dependent member or member of the current instantiation that 447 // is a type template, or finds no such members and lookup in the context 448 // of the postfix-expression finds a type template. In the latter case, the 449 // name is nonetheless dependent, and we may resolve it to a member of an 450 // unknown specialization when we come to instantiate the template. 451 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 452 } 453 454 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { 455 // C++ [basic.lookup.classref]p1: 456 // In a class member access expression (5.2.5), if the . or -> token is 457 // immediately followed by an identifier followed by a <, the 458 // identifier must be looked up to determine whether the < is the 459 // beginning of a template argument list (14.2) or a less-than operator. 460 // The identifier is first looked up in the class of the object 461 // expression. If the identifier is not found, it is then looked up in 462 // the context of the entire postfix-expression and shall name a class 463 // template. 464 if (S) 465 LookupName(Found, S); 466 467 if (!ObjectType.isNull()) { 468 // FIXME: We should filter out all non-type templates here, particularly 469 // variable templates and concepts. But the exclusion of alias templates 470 // and template template parameters is a wording defect. 471 AllowFunctionTemplatesInLookup = false; 472 ObjectTypeSearchedInScope = true; 473 } 474 475 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 476 } 477 478 if (Found.isAmbiguous()) 479 return false; 480 481 if (ATK && SS.isEmpty() && ObjectType.isNull() && 482 !RequiredTemplate.hasTemplateKeyword()) { 483 // C++2a [temp.names]p2: 484 // A name is also considered to refer to a template if it is an 485 // unqualified-id followed by a < and name lookup finds either one or more 486 // functions or finds nothing. 487 // 488 // To keep our behavior consistent, we apply the "finds nothing" part in 489 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we 490 // successfully form a call to an undeclared template-id. 491 bool AllFunctions = 492 getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) { 493 return isa<FunctionDecl>(ND->getUnderlyingDecl()); 494 }); 495 if (AllFunctions || (Found.empty() && !IsDependent)) { 496 // If lookup found any functions, or if this is a name that can only be 497 // used for a function, then strongly assume this is a function 498 // template-id. 499 *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) 500 ? AssumedTemplateKind::FoundNothing 501 : AssumedTemplateKind::FoundFunctions; 502 Found.clear(); 503 return false; 504 } 505 } 506 507 if (Found.empty() && !IsDependent && AllowTypoCorrection) { 508 // If we did not find any names, and this is not a disambiguation, attempt 509 // to correct any typos. 510 DeclarationName Name = Found.getLookupName(); 511 Found.clear(); 512 // Simple filter callback that, for keywords, only accepts the C++ *_cast 513 DefaultFilterCCC FilterCCC{}; 514 FilterCCC.WantTypeSpecifiers = false; 515 FilterCCC.WantExpressionKeywords = false; 516 FilterCCC.WantRemainingKeywords = false; 517 FilterCCC.WantCXXNamedCasts = true; 518 if (TypoCorrection Corrected = 519 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, 520 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { 521 if (auto *ND = Corrected.getFoundDecl()) 522 Found.addDecl(ND); 523 FilterAcceptableTemplateNames(Found); 524 if (Found.isAmbiguous()) { 525 Found.clear(); 526 } else if (!Found.empty()) { 527 Found.setLookupName(Corrected.getCorrection()); 528 if (LookupCtx) { 529 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 530 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 531 Name.getAsString() == CorrectedStr; 532 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 533 << Name << LookupCtx << DroppedSpecifier 534 << SS.getRange()); 535 } else { 536 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 537 } 538 } 539 } 540 } 541 542 NamedDecl *ExampleLookupResult = 543 Found.empty() ? nullptr : Found.getRepresentativeDecl(); 544 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 545 if (Found.empty()) { 546 if (IsDependent) { 547 MemberOfUnknownSpecialization = true; 548 return false; 549 } 550 551 // If a 'template' keyword was used, a lookup that finds only non-template 552 // names is an error. 553 if (ExampleLookupResult && RequiredTemplate) { 554 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) 555 << Found.getLookupName() << SS.getRange() 556 << RequiredTemplate.hasTemplateKeyword() 557 << RequiredTemplate.getTemplateKeywordLoc(); 558 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), 559 diag::note_template_kw_refers_to_non_template) 560 << Found.getLookupName(); 561 return true; 562 } 563 564 return false; 565 } 566 567 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 568 !getLangOpts().CPlusPlus11) { 569 // C++03 [basic.lookup.classref]p1: 570 // [...] If the lookup in the class of the object expression finds a 571 // template, the name is also looked up in the context of the entire 572 // postfix-expression and [...] 573 // 574 // Note: C++11 does not perform this second lookup. 575 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 576 LookupOrdinaryName); 577 FoundOuter.setTemplateNameLookup(true); 578 LookupName(FoundOuter, S); 579 // FIXME: We silently accept an ambiguous lookup here, in violation of 580 // [basic.lookup]/1. 581 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 582 583 NamedDecl *OuterTemplate; 584 if (FoundOuter.empty()) { 585 // - if the name is not found, the name found in the class of the 586 // object expression is used, otherwise 587 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || 588 !(OuterTemplate = 589 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { 590 // - if the name is found in the context of the entire 591 // postfix-expression and does not name a class template, the name 592 // found in the class of the object expression is used, otherwise 593 FoundOuter.clear(); 594 } else if (!Found.isSuppressingDiagnostics()) { 595 // - if the name found is a class template, it must refer to the same 596 // entity as the one found in the class of the object expression, 597 // otherwise the program is ill-formed. 598 if (!Found.isSingleResult() || 599 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != 600 OuterTemplate->getCanonicalDecl()) { 601 Diag(Found.getNameLoc(), 602 diag::ext_nested_name_member_ref_lookup_ambiguous) 603 << Found.getLookupName() 604 << ObjectType; 605 Diag(Found.getRepresentativeDecl()->getLocation(), 606 diag::note_ambig_member_ref_object_type) 607 << ObjectType; 608 Diag(FoundOuter.getFoundDecl()->getLocation(), 609 diag::note_ambig_member_ref_scope); 610 611 // Recover by taking the template that we found in the object 612 // expression's type. 613 } 614 } 615 } 616 617 return false; 618 } 619 620 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, 621 SourceLocation Less, 622 SourceLocation Greater) { 623 if (TemplateName.isInvalid()) 624 return; 625 626 DeclarationNameInfo NameInfo; 627 CXXScopeSpec SS; 628 LookupNameKind LookupKind; 629 630 DeclContext *LookupCtx = nullptr; 631 NamedDecl *Found = nullptr; 632 bool MissingTemplateKeyword = false; 633 634 // Figure out what name we looked up. 635 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { 636 NameInfo = DRE->getNameInfo(); 637 SS.Adopt(DRE->getQualifierLoc()); 638 LookupKind = LookupOrdinaryName; 639 Found = DRE->getFoundDecl(); 640 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { 641 NameInfo = ME->getMemberNameInfo(); 642 SS.Adopt(ME->getQualifierLoc()); 643 LookupKind = LookupMemberName; 644 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); 645 Found = ME->getMemberDecl(); 646 } else if (auto *DSDRE = 647 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { 648 NameInfo = DSDRE->getNameInfo(); 649 SS.Adopt(DSDRE->getQualifierLoc()); 650 MissingTemplateKeyword = true; 651 } else if (auto *DSME = 652 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { 653 NameInfo = DSME->getMemberNameInfo(); 654 SS.Adopt(DSME->getQualifierLoc()); 655 MissingTemplateKeyword = true; 656 } else { 657 llvm_unreachable("unexpected kind of potential template name"); 658 } 659 660 // If this is a dependent-scope lookup, diagnose that the 'template' keyword 661 // was missing. 662 if (MissingTemplateKeyword) { 663 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) 664 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); 665 return; 666 } 667 668 // Try to correct the name by looking for templates and C++ named casts. 669 struct TemplateCandidateFilter : CorrectionCandidateCallback { 670 Sema &S; 671 TemplateCandidateFilter(Sema &S) : S(S) { 672 WantTypeSpecifiers = false; 673 WantExpressionKeywords = false; 674 WantRemainingKeywords = false; 675 WantCXXNamedCasts = true; 676 }; 677 bool ValidateCandidate(const TypoCorrection &Candidate) override { 678 if (auto *ND = Candidate.getCorrectionDecl()) 679 return S.getAsTemplateNameDecl(ND); 680 return Candidate.isKeyword(); 681 } 682 683 std::unique_ptr<CorrectionCandidateCallback> clone() override { 684 return std::make_unique<TemplateCandidateFilter>(*this); 685 } 686 }; 687 688 DeclarationName Name = NameInfo.getName(); 689 TemplateCandidateFilter CCC(*this); 690 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, 691 CTK_ErrorRecovery, LookupCtx)) { 692 auto *ND = Corrected.getFoundDecl(); 693 if (ND) 694 ND = getAsTemplateNameDecl(ND); 695 if (ND || Corrected.isKeyword()) { 696 if (LookupCtx) { 697 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 698 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 699 Name.getAsString() == CorrectedStr; 700 diagnoseTypo(Corrected, 701 PDiag(diag::err_non_template_in_member_template_id_suggest) 702 << Name << LookupCtx << DroppedSpecifier 703 << SS.getRange(), false); 704 } else { 705 diagnoseTypo(Corrected, 706 PDiag(diag::err_non_template_in_template_id_suggest) 707 << Name, false); 708 } 709 if (Found) 710 Diag(Found->getLocation(), 711 diag::note_non_template_in_template_id_found); 712 return; 713 } 714 } 715 716 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) 717 << Name << SourceRange(Less, Greater); 718 if (Found) 719 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); 720 } 721 722 /// ActOnDependentIdExpression - Handle a dependent id-expression that 723 /// was just parsed. This is only possible with an explicit scope 724 /// specifier naming a dependent type. 725 ExprResult 726 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 727 SourceLocation TemplateKWLoc, 728 const DeclarationNameInfo &NameInfo, 729 bool isAddressOfOperand, 730 const TemplateArgumentListInfo *TemplateArgs) { 731 DeclContext *DC = getFunctionLevelDeclContext(); 732 733 // C++11 [expr.prim.general]p12: 734 // An id-expression that denotes a non-static data member or non-static 735 // member function of a class can only be used: 736 // (...) 737 // - if that id-expression denotes a non-static data member and it 738 // appears in an unevaluated operand. 739 // 740 // If this might be the case, form a DependentScopeDeclRefExpr instead of a 741 // CXXDependentScopeMemberExpr. The former can instantiate to either 742 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is 743 // always a MemberExpr. 744 bool MightBeCxx11UnevalField = 745 getLangOpts().CPlusPlus11 && isUnevaluatedContext(); 746 747 // Check if the nested name specifier is an enum type. 748 bool IsEnum = false; 749 if (NestedNameSpecifier *NNS = SS.getScopeRep()) 750 IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType()); 751 752 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && 753 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) { 754 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(); 755 756 // Since the 'this' expression is synthesized, we don't need to 757 // perform the double-lookup check. 758 NamedDecl *FirstQualifierInScope = nullptr; 759 760 return CXXDependentScopeMemberExpr::Create( 761 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, 762 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, 763 FirstQualifierInScope, NameInfo, TemplateArgs); 764 } 765 766 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 767 } 768 769 ExprResult 770 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 771 SourceLocation TemplateKWLoc, 772 const DeclarationNameInfo &NameInfo, 773 const TemplateArgumentListInfo *TemplateArgs) { 774 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc 775 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 776 if (!QualifierLoc) 777 return ExprError(); 778 779 return DependentScopeDeclRefExpr::Create( 780 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs); 781 } 782 783 784 /// Determine whether we would be unable to instantiate this template (because 785 /// it either has no definition, or is in the process of being instantiated). 786 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, 787 NamedDecl *Instantiation, 788 bool InstantiatedFromMember, 789 const NamedDecl *Pattern, 790 const NamedDecl *PatternDef, 791 TemplateSpecializationKind TSK, 792 bool Complain /*= true*/) { 793 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || 794 isa<VarDecl>(Instantiation)); 795 796 bool IsEntityBeingDefined = false; 797 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) 798 IsEntityBeingDefined = TD->isBeingDefined(); 799 800 if (PatternDef && !IsEntityBeingDefined) { 801 NamedDecl *SuggestedDef = nullptr; 802 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef, 803 /*OnlyNeedComplete*/false)) { 804 // If we're allowed to diagnose this and recover, do so. 805 bool Recover = Complain && !isSFINAEContext(); 806 if (Complain) 807 diagnoseMissingImport(PointOfInstantiation, SuggestedDef, 808 Sema::MissingImportKind::Definition, Recover); 809 return !Recover; 810 } 811 return false; 812 } 813 814 if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) 815 return true; 816 817 llvm::Optional<unsigned> Note; 818 QualType InstantiationTy; 819 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) 820 InstantiationTy = Context.getTypeDeclType(TD); 821 if (PatternDef) { 822 Diag(PointOfInstantiation, 823 diag::err_template_instantiate_within_definition) 824 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) 825 << InstantiationTy; 826 // Not much point in noting the template declaration here, since 827 // we're lexically inside it. 828 Instantiation->setInvalidDecl(); 829 } else if (InstantiatedFromMember) { 830 if (isa<FunctionDecl>(Instantiation)) { 831 Diag(PointOfInstantiation, 832 diag::err_explicit_instantiation_undefined_member) 833 << /*member function*/ 1 << Instantiation->getDeclName() 834 << Instantiation->getDeclContext(); 835 Note = diag::note_explicit_instantiation_here; 836 } else { 837 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); 838 Diag(PointOfInstantiation, 839 diag::err_implicit_instantiate_member_undefined) 840 << InstantiationTy; 841 Note = diag::note_member_declared_at; 842 } 843 } else { 844 if (isa<FunctionDecl>(Instantiation)) { 845 Diag(PointOfInstantiation, 846 diag::err_explicit_instantiation_undefined_func_template) 847 << Pattern; 848 Note = diag::note_explicit_instantiation_here; 849 } else if (isa<TagDecl>(Instantiation)) { 850 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) 851 << (TSK != TSK_ImplicitInstantiation) 852 << InstantiationTy; 853 Note = diag::note_template_decl_here; 854 } else { 855 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); 856 if (isa<VarTemplateSpecializationDecl>(Instantiation)) { 857 Diag(PointOfInstantiation, 858 diag::err_explicit_instantiation_undefined_var_template) 859 << Instantiation; 860 Instantiation->setInvalidDecl(); 861 } else 862 Diag(PointOfInstantiation, 863 diag::err_explicit_instantiation_undefined_member) 864 << /*static data member*/ 2 << Instantiation->getDeclName() 865 << Instantiation->getDeclContext(); 866 Note = diag::note_explicit_instantiation_here; 867 } 868 } 869 if (Note) // Diagnostics were emitted. 870 Diag(Pattern->getLocation(), Note.getValue()); 871 872 // In general, Instantiation isn't marked invalid to get more than one 873 // error for multiple undefined instantiations. But the code that does 874 // explicit declaration -> explicit definition conversion can't handle 875 // invalid declarations, so mark as invalid in that case. 876 if (TSK == TSK_ExplicitInstantiationDeclaration) 877 Instantiation->setInvalidDecl(); 878 return true; 879 } 880 881 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 882 /// that the template parameter 'PrevDecl' is being shadowed by a new 883 /// declaration at location Loc. Returns true to indicate that this is 884 /// an error, and false otherwise. 885 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 886 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 887 888 // C++ [temp.local]p4: 889 // A template-parameter shall not be redeclared within its 890 // scope (including nested scopes). 891 // 892 // Make this a warning when MSVC compatibility is requested. 893 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow 894 : diag::err_template_param_shadow; 895 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName(); 896 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 897 } 898 899 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 900 /// the parameter D to reference the templated declaration and return a pointer 901 /// to the template declaration. Otherwise, do nothing to D and return null. 902 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 903 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 904 D = Temp->getTemplatedDecl(); 905 return Temp; 906 } 907 return nullptr; 908 } 909 910 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 911 SourceLocation EllipsisLoc) const { 912 assert(Kind == Template && 913 "Only template template arguments can be pack expansions here"); 914 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 915 "Template template argument pack expansion without packs"); 916 ParsedTemplateArgument Result(*this); 917 Result.EllipsisLoc = EllipsisLoc; 918 return Result; 919 } 920 921 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 922 const ParsedTemplateArgument &Arg) { 923 924 switch (Arg.getKind()) { 925 case ParsedTemplateArgument::Type: { 926 TypeSourceInfo *DI; 927 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 928 if (!DI) 929 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 930 return TemplateArgumentLoc(TemplateArgument(T), DI); 931 } 932 933 case ParsedTemplateArgument::NonType: { 934 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 935 return TemplateArgumentLoc(TemplateArgument(E), E); 936 } 937 938 case ParsedTemplateArgument::Template: { 939 TemplateName Template = Arg.getAsTemplate().get(); 940 TemplateArgument TArg; 941 if (Arg.getEllipsisLoc().isValid()) 942 TArg = TemplateArgument(Template, Optional<unsigned int>()); 943 else 944 TArg = Template; 945 return TemplateArgumentLoc( 946 SemaRef.Context, TArg, 947 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context), 948 Arg.getLocation(), Arg.getEllipsisLoc()); 949 } 950 } 951 952 llvm_unreachable("Unhandled parsed template argument"); 953 } 954 955 /// Translates template arguments as provided by the parser 956 /// into template arguments used by semantic analysis. 957 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 958 TemplateArgumentListInfo &TemplateArgs) { 959 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 960 TemplateArgs.addArgument(translateTemplateArgument(*this, 961 TemplateArgsIn[I])); 962 } 963 964 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 965 SourceLocation Loc, 966 IdentifierInfo *Name) { 967 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 968 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 969 if (PrevDecl && PrevDecl->isTemplateParameter()) 970 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 971 } 972 973 /// Convert a parsed type into a parsed template argument. This is mostly 974 /// trivial, except that we may have parsed a C++17 deduced class template 975 /// specialization type, in which case we should form a template template 976 /// argument instead of a type template argument. 977 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { 978 TypeSourceInfo *TInfo; 979 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); 980 if (T.isNull()) 981 return ParsedTemplateArgument(); 982 assert(TInfo && "template argument with no location"); 983 984 // If we might have formed a deduced template specialization type, convert 985 // it to a template template argument. 986 if (getLangOpts().CPlusPlus17) { 987 TypeLoc TL = TInfo->getTypeLoc(); 988 SourceLocation EllipsisLoc; 989 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { 990 EllipsisLoc = PET.getEllipsisLoc(); 991 TL = PET.getPatternLoc(); 992 } 993 994 CXXScopeSpec SS; 995 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { 996 SS.Adopt(ET.getQualifierLoc()); 997 TL = ET.getNamedTypeLoc(); 998 } 999 1000 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { 1001 TemplateName Name = DTST.getTypePtr()->getTemplateName(); 1002 if (SS.isSet()) 1003 Name = Context.getQualifiedTemplateName(SS.getScopeRep(), 1004 /*HasTemplateKeyword=*/false, 1005 Name); 1006 ParsedTemplateArgument Result(SS, TemplateTy::make(Name), 1007 DTST.getTemplateNameLoc()); 1008 if (EllipsisLoc.isValid()) 1009 Result = Result.getTemplatePackExpansion(EllipsisLoc); 1010 return Result; 1011 } 1012 } 1013 1014 // This is a normal type template argument. Note, if the type template 1015 // argument is an injected-class-name for a template, it has a dual nature 1016 // and can be used as either a type or a template. We handle that in 1017 // convertTypeTemplateArgumentToTemplate. 1018 return ParsedTemplateArgument(ParsedTemplateArgument::Type, 1019 ParsedType.get().getAsOpaquePtr(), 1020 TInfo->getTypeLoc().getBeginLoc()); 1021 } 1022 1023 /// ActOnTypeParameter - Called when a C++ template type parameter 1024 /// (e.g., "typename T") has been parsed. Typename specifies whether 1025 /// the keyword "typename" was used to declare the type parameter 1026 /// (otherwise, "class" was used), and KeyLoc is the location of the 1027 /// "class" or "typename" keyword. ParamName is the name of the 1028 /// parameter (NULL indicates an unnamed template parameter) and 1029 /// ParamNameLoc is the location of the parameter name (if any). 1030 /// If the type parameter has a default argument, it will be added 1031 /// later via ActOnTypeParameterDefault. 1032 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 1033 SourceLocation EllipsisLoc, 1034 SourceLocation KeyLoc, 1035 IdentifierInfo *ParamName, 1036 SourceLocation ParamNameLoc, 1037 unsigned Depth, unsigned Position, 1038 SourceLocation EqualLoc, 1039 ParsedType DefaultArg, 1040 bool HasTypeConstraint) { 1041 assert(S->isTemplateParamScope() && 1042 "Template type parameter not in template parameter scope!"); 1043 1044 bool IsParameterPack = EllipsisLoc.isValid(); 1045 TemplateTypeParmDecl *Param 1046 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1047 KeyLoc, ParamNameLoc, Depth, Position, 1048 ParamName, Typename, IsParameterPack, 1049 HasTypeConstraint); 1050 Param->setAccess(AS_public); 1051 1052 if (Param->isParameterPack()) 1053 if (auto *LSI = getEnclosingLambda()) 1054 LSI->LocalPacks.push_back(Param); 1055 1056 if (ParamName) { 1057 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 1058 1059 // Add the template parameter into the current scope. 1060 S->AddDecl(Param); 1061 IdResolver.AddDecl(Param); 1062 } 1063 1064 // C++0x [temp.param]p9: 1065 // A default template-argument may be specified for any kind of 1066 // template-parameter that is not a template parameter pack. 1067 if (DefaultArg && IsParameterPack) { 1068 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1069 DefaultArg = nullptr; 1070 } 1071 1072 // Handle the default argument, if provided. 1073 if (DefaultArg) { 1074 TypeSourceInfo *DefaultTInfo; 1075 GetTypeFromParser(DefaultArg, &DefaultTInfo); 1076 1077 assert(DefaultTInfo && "expected source information for type"); 1078 1079 // Check for unexpanded parameter packs. 1080 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, 1081 UPPC_DefaultArgument)) 1082 return Param; 1083 1084 // Check the template argument itself. 1085 if (CheckTemplateArgument(DefaultTInfo)) { 1086 Param->setInvalidDecl(); 1087 return Param; 1088 } 1089 1090 Param->setDefaultArgument(DefaultTInfo); 1091 } 1092 1093 return Param; 1094 } 1095 1096 /// Convert the parser's template argument list representation into our form. 1097 static TemplateArgumentListInfo 1098 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 1099 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 1100 TemplateId.RAngleLoc); 1101 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 1102 TemplateId.NumArgs); 1103 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 1104 return TemplateArgs; 1105 } 1106 1107 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, 1108 TemplateIdAnnotation *TypeConstr, 1109 TemplateTypeParmDecl *ConstrainedParameter, 1110 SourceLocation EllipsisLoc) { 1111 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc, 1112 false); 1113 } 1114 1115 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS, 1116 TemplateIdAnnotation *TypeConstr, 1117 TemplateTypeParmDecl *ConstrainedParameter, 1118 SourceLocation EllipsisLoc, 1119 bool AllowUnexpandedPack) { 1120 TemplateName TN = TypeConstr->Template.get(); 1121 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl()); 1122 1123 // C++2a [temp.param]p4: 1124 // [...] The concept designated by a type-constraint shall be a type 1125 // concept ([temp.concept]). 1126 if (!CD->isTypeConcept()) { 1127 Diag(TypeConstr->TemplateNameLoc, 1128 diag::err_type_constraint_non_type_concept); 1129 return true; 1130 } 1131 1132 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); 1133 1134 if (!WereArgsSpecified && 1135 CD->getTemplateParameters()->getMinRequiredArguments() > 1) { 1136 Diag(TypeConstr->TemplateNameLoc, 1137 diag::err_type_constraint_missing_arguments) << CD; 1138 return true; 1139 } 1140 1141 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name), 1142 TypeConstr->TemplateNameLoc); 1143 1144 TemplateArgumentListInfo TemplateArgs; 1145 if (TypeConstr->LAngleLoc.isValid()) { 1146 TemplateArgs = 1147 makeTemplateArgumentListInfo(*this, *TypeConstr); 1148 1149 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) { 1150 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) { 1151 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint)) 1152 return true; 1153 } 1154 } 1155 } 1156 return AttachTypeConstraint( 1157 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), 1158 ConceptName, CD, 1159 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, 1160 ConstrainedParameter, EllipsisLoc); 1161 } 1162 1163 template<typename ArgumentLocAppender> 1164 static ExprResult formImmediatelyDeclaredConstraint( 1165 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, 1166 ConceptDecl *NamedConcept, SourceLocation LAngleLoc, 1167 SourceLocation RAngleLoc, QualType ConstrainedType, 1168 SourceLocation ParamNameLoc, ArgumentLocAppender Appender, 1169 SourceLocation EllipsisLoc) { 1170 1171 TemplateArgumentListInfo ConstraintArgs; 1172 ConstraintArgs.addArgument( 1173 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType), 1174 /*NTTPType=*/QualType(), ParamNameLoc)); 1175 1176 ConstraintArgs.setRAngleLoc(RAngleLoc); 1177 ConstraintArgs.setLAngleLoc(LAngleLoc); 1178 Appender(ConstraintArgs); 1179 1180 // C++2a [temp.param]p4: 1181 // [...] This constraint-expression E is called the immediately-declared 1182 // constraint of T. [...] 1183 CXXScopeSpec SS; 1184 SS.Adopt(NS); 1185 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( 1186 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, 1187 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs); 1188 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) 1189 return ImmediatelyDeclaredConstraint; 1190 1191 // C++2a [temp.param]p4: 1192 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). 1193 // 1194 // We have the following case: 1195 // 1196 // template<typename T> concept C1 = true; 1197 // template<C1... T> struct s1; 1198 // 1199 // The constraint: (C1<T> && ...) 1200 // 1201 // Note that the type of C1<T> is known to be 'bool', so we don't need to do 1202 // any unqualified lookups for 'operator&&' here. 1203 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr, 1204 /*LParenLoc=*/SourceLocation(), 1205 ImmediatelyDeclaredConstraint.get(), BO_LAnd, 1206 EllipsisLoc, /*RHS=*/nullptr, 1207 /*RParenLoc=*/SourceLocation(), 1208 /*NumExpansions=*/None); 1209 } 1210 1211 /// Attach a type-constraint to a template parameter. 1212 /// \returns true if an error occurred. This can happen if the 1213 /// immediately-declared constraint could not be formed (e.g. incorrect number 1214 /// of arguments for the named concept). 1215 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, 1216 DeclarationNameInfo NameInfo, 1217 ConceptDecl *NamedConcept, 1218 const TemplateArgumentListInfo *TemplateArgs, 1219 TemplateTypeParmDecl *ConstrainedParameter, 1220 SourceLocation EllipsisLoc) { 1221 // C++2a [temp.param]p4: 1222 // [...] If Q is of the form C<A1, ..., An>, then let E' be 1223 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] 1224 const ASTTemplateArgumentListInfo *ArgsAsWritten = 1225 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context, 1226 *TemplateArgs) : nullptr; 1227 1228 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); 1229 1230 ExprResult ImmediatelyDeclaredConstraint = 1231 formImmediatelyDeclaredConstraint( 1232 *this, NS, NameInfo, NamedConcept, 1233 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), 1234 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), 1235 ParamAsArgument, ConstrainedParameter->getLocation(), 1236 [&] (TemplateArgumentListInfo &ConstraintArgs) { 1237 if (TemplateArgs) 1238 for (const auto &ArgLoc : TemplateArgs->arguments()) 1239 ConstraintArgs.addArgument(ArgLoc); 1240 }, EllipsisLoc); 1241 if (ImmediatelyDeclaredConstraint.isInvalid()) 1242 return true; 1243 1244 ConstrainedParameter->setTypeConstraint(NS, NameInfo, 1245 /*FoundDecl=*/NamedConcept, 1246 NamedConcept, ArgsAsWritten, 1247 ImmediatelyDeclaredConstraint.get()); 1248 return false; 1249 } 1250 1251 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP, 1252 SourceLocation EllipsisLoc) { 1253 if (NTTP->getType() != TL.getType() || 1254 TL.getAutoKeyword() != AutoTypeKeyword::Auto) { 1255 Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1256 diag::err_unsupported_placeholder_constraint) 1257 << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange(); 1258 return true; 1259 } 1260 // FIXME: Concepts: This should be the type of the placeholder, but this is 1261 // unclear in the wording right now. 1262 DeclRefExpr *Ref = 1263 BuildDeclRefExpr(NTTP, NTTP->getType(), VK_PRValue, NTTP->getLocation()); 1264 if (!Ref) 1265 return true; 1266 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( 1267 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), 1268 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(), 1269 BuildDecltypeType(Ref), NTTP->getLocation(), 1270 [&](TemplateArgumentListInfo &ConstraintArgs) { 1271 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) 1272 ConstraintArgs.addArgument(TL.getArgLoc(I)); 1273 }, 1274 EllipsisLoc); 1275 if (ImmediatelyDeclaredConstraint.isInvalid() || 1276 !ImmediatelyDeclaredConstraint.isUsable()) 1277 return true; 1278 1279 NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get()); 1280 return false; 1281 } 1282 1283 /// Check that the type of a non-type template parameter is 1284 /// well-formed. 1285 /// 1286 /// \returns the (possibly-promoted) parameter type if valid; 1287 /// otherwise, produces a diagnostic and returns a NULL type. 1288 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, 1289 SourceLocation Loc) { 1290 if (TSI->getType()->isUndeducedType()) { 1291 // C++17 [temp.dep.expr]p3: 1292 // An id-expression is type-dependent if it contains 1293 // - an identifier associated by name lookup with a non-type 1294 // template-parameter declared with a type that contains a 1295 // placeholder type (7.1.7.4), 1296 TSI = SubstAutoTypeSourceInfoDependent(TSI); 1297 } 1298 1299 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); 1300 } 1301 1302 /// Require the given type to be a structural type, and diagnose if it is not. 1303 /// 1304 /// \return \c true if an error was produced. 1305 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) { 1306 if (T->isDependentType()) 1307 return false; 1308 1309 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete)) 1310 return true; 1311 1312 if (T->isStructuralType()) 1313 return false; 1314 1315 // Structural types are required to be object types or lvalue references. 1316 if (T->isRValueReferenceType()) { 1317 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T; 1318 return true; 1319 } 1320 1321 // Don't mention structural types in our diagnostic prior to C++20. Also, 1322 // there's not much more we can say about non-scalar non-class types -- 1323 // because we can't see functions or arrays here, those can only be language 1324 // extensions. 1325 if (!getLangOpts().CPlusPlus20 || 1326 (!T->isScalarType() && !T->isRecordType())) { 1327 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; 1328 return true; 1329 } 1330 1331 // Structural types are required to be literal types. 1332 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal)) 1333 return true; 1334 1335 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T; 1336 1337 // Drill down into the reason why the class is non-structural. 1338 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 1339 // All members are required to be public and non-mutable, and can't be of 1340 // rvalue reference type. Check these conditions first to prefer a "local" 1341 // reason over a more distant one. 1342 for (const FieldDecl *FD : RD->fields()) { 1343 if (FD->getAccess() != AS_public) { 1344 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0; 1345 return true; 1346 } 1347 if (FD->isMutable()) { 1348 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T; 1349 return true; 1350 } 1351 if (FD->getType()->isRValueReferenceType()) { 1352 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field) 1353 << T; 1354 return true; 1355 } 1356 } 1357 1358 // All bases are required to be public. 1359 for (const auto &BaseSpec : RD->bases()) { 1360 if (BaseSpec.getAccessSpecifier() != AS_public) { 1361 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public) 1362 << T << 1; 1363 return true; 1364 } 1365 } 1366 1367 // All subobjects are required to be of structural types. 1368 SourceLocation SubLoc; 1369 QualType SubType; 1370 int Kind = -1; 1371 1372 for (const FieldDecl *FD : RD->fields()) { 1373 QualType T = Context.getBaseElementType(FD->getType()); 1374 if (!T->isStructuralType()) { 1375 SubLoc = FD->getLocation(); 1376 SubType = T; 1377 Kind = 0; 1378 break; 1379 } 1380 } 1381 1382 if (Kind == -1) { 1383 for (const auto &BaseSpec : RD->bases()) { 1384 QualType T = BaseSpec.getType(); 1385 if (!T->isStructuralType()) { 1386 SubLoc = BaseSpec.getBaseTypeLoc(); 1387 SubType = T; 1388 Kind = 1; 1389 break; 1390 } 1391 } 1392 } 1393 1394 assert(Kind != -1 && "couldn't find reason why type is not structural"); 1395 Diag(SubLoc, diag::note_not_structural_subobject) 1396 << T << Kind << SubType; 1397 T = SubType; 1398 RD = T->getAsCXXRecordDecl(); 1399 } 1400 1401 return true; 1402 } 1403 1404 QualType Sema::CheckNonTypeTemplateParameterType(QualType T, 1405 SourceLocation Loc) { 1406 // We don't allow variably-modified types as the type of non-type template 1407 // parameters. 1408 if (T->isVariablyModifiedType()) { 1409 Diag(Loc, diag::err_variably_modified_nontype_template_param) 1410 << T; 1411 return QualType(); 1412 } 1413 1414 // C++ [temp.param]p4: 1415 // 1416 // A non-type template-parameter shall have one of the following 1417 // (optionally cv-qualified) types: 1418 // 1419 // -- integral or enumeration type, 1420 if (T->isIntegralOrEnumerationType() || 1421 // -- pointer to object or pointer to function, 1422 T->isPointerType() || 1423 // -- lvalue reference to object or lvalue reference to function, 1424 T->isLValueReferenceType() || 1425 // -- pointer to member, 1426 T->isMemberPointerType() || 1427 // -- std::nullptr_t, or 1428 T->isNullPtrType() || 1429 // -- a type that contains a placeholder type. 1430 T->isUndeducedType()) { 1431 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 1432 // are ignored when determining its type. 1433 return T.getUnqualifiedType(); 1434 } 1435 1436 // C++ [temp.param]p8: 1437 // 1438 // A non-type template-parameter of type "array of T" or 1439 // "function returning T" is adjusted to be of type "pointer to 1440 // T" or "pointer to function returning T", respectively. 1441 if (T->isArrayType() || T->isFunctionType()) 1442 return Context.getDecayedType(T); 1443 1444 // If T is a dependent type, we can't do the check now, so we 1445 // assume that it is well-formed. Note that stripping off the 1446 // qualifiers here is not really correct if T turns out to be 1447 // an array type, but we'll recompute the type everywhere it's 1448 // used during instantiation, so that should be OK. (Using the 1449 // qualified type is equally wrong.) 1450 if (T->isDependentType()) 1451 return T.getUnqualifiedType(); 1452 1453 // C++20 [temp.param]p6: 1454 // -- a structural type 1455 if (RequireStructuralType(T, Loc)) 1456 return QualType(); 1457 1458 if (!getLangOpts().CPlusPlus20) { 1459 // FIXME: Consider allowing structural types as an extension in C++17. (In 1460 // earlier language modes, the template argument evaluation rules are too 1461 // inflexible.) 1462 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T; 1463 return QualType(); 1464 } 1465 1466 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T; 1467 return T.getUnqualifiedType(); 1468 } 1469 1470 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 1471 unsigned Depth, 1472 unsigned Position, 1473 SourceLocation EqualLoc, 1474 Expr *Default) { 1475 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 1476 1477 // Check that we have valid decl-specifiers specified. 1478 auto CheckValidDeclSpecifiers = [this, &D] { 1479 // C++ [temp.param] 1480 // p1 1481 // template-parameter: 1482 // ... 1483 // parameter-declaration 1484 // p2 1485 // ... A storage class shall not be specified in a template-parameter 1486 // declaration. 1487 // [dcl.typedef]p1: 1488 // The typedef specifier [...] shall not be used in the decl-specifier-seq 1489 // of a parameter-declaration 1490 const DeclSpec &DS = D.getDeclSpec(); 1491 auto EmitDiag = [this](SourceLocation Loc) { 1492 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) 1493 << FixItHint::CreateRemoval(Loc); 1494 }; 1495 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) 1496 EmitDiag(DS.getStorageClassSpecLoc()); 1497 1498 if (DS.getThreadStorageClassSpec() != TSCS_unspecified) 1499 EmitDiag(DS.getThreadStorageClassSpecLoc()); 1500 1501 // [dcl.inline]p1: 1502 // The inline specifier can be applied only to the declaration or 1503 // definition of a variable or function. 1504 1505 if (DS.isInlineSpecified()) 1506 EmitDiag(DS.getInlineSpecLoc()); 1507 1508 // [dcl.constexpr]p1: 1509 // The constexpr specifier shall be applied only to the definition of a 1510 // variable or variable template or the declaration of a function or 1511 // function template. 1512 1513 if (DS.hasConstexprSpecifier()) 1514 EmitDiag(DS.getConstexprSpecLoc()); 1515 1516 // [dcl.fct.spec]p1: 1517 // Function-specifiers can be used only in function declarations. 1518 1519 if (DS.isVirtualSpecified()) 1520 EmitDiag(DS.getVirtualSpecLoc()); 1521 1522 if (DS.hasExplicitSpecifier()) 1523 EmitDiag(DS.getExplicitSpecLoc()); 1524 1525 if (DS.isNoreturnSpecified()) 1526 EmitDiag(DS.getNoreturnSpecLoc()); 1527 }; 1528 1529 CheckValidDeclSpecifiers(); 1530 1531 if (TInfo->getType()->isUndeducedType()) { 1532 Diag(D.getIdentifierLoc(), 1533 diag::warn_cxx14_compat_template_nontype_parm_auto_type) 1534 << QualType(TInfo->getType()->getContainedAutoType(), 0); 1535 } 1536 1537 assert(S->isTemplateParamScope() && 1538 "Non-type template parameter not in template parameter scope!"); 1539 bool Invalid = false; 1540 1541 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); 1542 if (T.isNull()) { 1543 T = Context.IntTy; // Recover with an 'int' type. 1544 Invalid = true; 1545 } 1546 1547 CheckFunctionOrTemplateParamDeclarator(S, D); 1548 1549 IdentifierInfo *ParamName = D.getIdentifier(); 1550 bool IsParameterPack = D.hasEllipsis(); 1551 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( 1552 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), 1553 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, 1554 TInfo); 1555 Param->setAccess(AS_public); 1556 1557 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) 1558 if (TL.isConstrained()) 1559 if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc())) 1560 Invalid = true; 1561 1562 if (Invalid) 1563 Param->setInvalidDecl(); 1564 1565 if (Param->isParameterPack()) 1566 if (auto *LSI = getEnclosingLambda()) 1567 LSI->LocalPacks.push_back(Param); 1568 1569 if (ParamName) { 1570 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 1571 ParamName); 1572 1573 // Add the template parameter into the current scope. 1574 S->AddDecl(Param); 1575 IdResolver.AddDecl(Param); 1576 } 1577 1578 // C++0x [temp.param]p9: 1579 // A default template-argument may be specified for any kind of 1580 // template-parameter that is not a template parameter pack. 1581 if (Default && IsParameterPack) { 1582 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1583 Default = nullptr; 1584 } 1585 1586 // Check the well-formedness of the default template argument, if provided. 1587 if (Default) { 1588 // Check for unexpanded parameter packs. 1589 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 1590 return Param; 1591 1592 TemplateArgument Converted; 1593 ExprResult DefaultRes = 1594 CheckTemplateArgument(Param, Param->getType(), Default, Converted); 1595 if (DefaultRes.isInvalid()) { 1596 Param->setInvalidDecl(); 1597 return Param; 1598 } 1599 Default = DefaultRes.get(); 1600 1601 Param->setDefaultArgument(Default); 1602 } 1603 1604 return Param; 1605 } 1606 1607 /// ActOnTemplateTemplateParameter - Called when a C++ template template 1608 /// parameter (e.g. T in template <template \<typename> class T> class array) 1609 /// has been parsed. S is the current scope. 1610 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S, 1611 SourceLocation TmpLoc, 1612 TemplateParameterList *Params, 1613 SourceLocation EllipsisLoc, 1614 IdentifierInfo *Name, 1615 SourceLocation NameLoc, 1616 unsigned Depth, 1617 unsigned Position, 1618 SourceLocation EqualLoc, 1619 ParsedTemplateArgument Default) { 1620 assert(S->isTemplateParamScope() && 1621 "Template template parameter not in template parameter scope!"); 1622 1623 // Construct the parameter object. 1624 bool IsParameterPack = EllipsisLoc.isValid(); 1625 TemplateTemplateParmDecl *Param = 1626 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1627 NameLoc.isInvalid()? TmpLoc : NameLoc, 1628 Depth, Position, IsParameterPack, 1629 Name, Params); 1630 Param->setAccess(AS_public); 1631 1632 if (Param->isParameterPack()) 1633 if (auto *LSI = getEnclosingLambda()) 1634 LSI->LocalPacks.push_back(Param); 1635 1636 // If the template template parameter has a name, then link the identifier 1637 // into the scope and lookup mechanisms. 1638 if (Name) { 1639 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 1640 1641 S->AddDecl(Param); 1642 IdResolver.AddDecl(Param); 1643 } 1644 1645 if (Params->size() == 0) { 1646 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 1647 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 1648 Param->setInvalidDecl(); 1649 } 1650 1651 // C++0x [temp.param]p9: 1652 // A default template-argument may be specified for any kind of 1653 // template-parameter that is not a template parameter pack. 1654 if (IsParameterPack && !Default.isInvalid()) { 1655 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1656 Default = ParsedTemplateArgument(); 1657 } 1658 1659 if (!Default.isInvalid()) { 1660 // Check only that we have a template template argument. We don't want to 1661 // try to check well-formedness now, because our template template parameter 1662 // might have dependent types in its template parameters, which we wouldn't 1663 // be able to match now. 1664 // 1665 // If none of the template template parameter's template arguments mention 1666 // other template parameters, we could actually perform more checking here. 1667 // However, it isn't worth doing. 1668 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 1669 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 1670 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) 1671 << DefaultArg.getSourceRange(); 1672 return Param; 1673 } 1674 1675 // Check for unexpanded parameter packs. 1676 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 1677 DefaultArg.getArgument().getAsTemplate(), 1678 UPPC_DefaultArgument)) 1679 return Param; 1680 1681 Param->setDefaultArgument(Context, DefaultArg); 1682 } 1683 1684 return Param; 1685 } 1686 1687 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally 1688 /// constrained by RequiresClause, that contains the template parameters in 1689 /// Params. 1690 TemplateParameterList * 1691 Sema::ActOnTemplateParameterList(unsigned Depth, 1692 SourceLocation ExportLoc, 1693 SourceLocation TemplateLoc, 1694 SourceLocation LAngleLoc, 1695 ArrayRef<NamedDecl *> Params, 1696 SourceLocation RAngleLoc, 1697 Expr *RequiresClause) { 1698 if (ExportLoc.isValid()) 1699 Diag(ExportLoc, diag::warn_template_export_unsupported); 1700 1701 for (NamedDecl *P : Params) 1702 warnOnReservedIdentifier(P); 1703 1704 return TemplateParameterList::Create( 1705 Context, TemplateLoc, LAngleLoc, 1706 llvm::makeArrayRef(Params.data(), Params.size()), 1707 RAngleLoc, RequiresClause); 1708 } 1709 1710 static void SetNestedNameSpecifier(Sema &S, TagDecl *T, 1711 const CXXScopeSpec &SS) { 1712 if (SS.isSet()) 1713 T->setQualifierInfo(SS.getWithLocInContext(S.Context)); 1714 } 1715 1716 DeclResult Sema::CheckClassTemplate( 1717 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 1718 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 1719 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, 1720 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 1721 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, 1722 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { 1723 assert(TemplateParams && TemplateParams->size() > 0 && 1724 "No template parameters"); 1725 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 1726 bool Invalid = false; 1727 1728 // Check that we can declare a template here. 1729 if (CheckTemplateDeclScope(S, TemplateParams)) 1730 return true; 1731 1732 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1733 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 1734 1735 // There is no such thing as an unnamed class template. 1736 if (!Name) { 1737 Diag(KWLoc, diag::err_template_unnamed_class); 1738 return true; 1739 } 1740 1741 // Find any previous declaration with this name. For a friend with no 1742 // scope explicitly specified, we only look for tag declarations (per 1743 // C++11 [basic.lookup.elab]p2). 1744 DeclContext *SemanticContext; 1745 LookupResult Previous(*this, Name, NameLoc, 1746 (SS.isEmpty() && TUK == TUK_Friend) 1747 ? LookupTagName : LookupOrdinaryName, 1748 forRedeclarationInCurContext()); 1749 if (SS.isNotEmpty() && !SS.isInvalid()) { 1750 SemanticContext = computeDeclContext(SS, true); 1751 if (!SemanticContext) { 1752 // FIXME: Horrible, horrible hack! We can't currently represent this 1753 // in the AST, and historically we have just ignored such friend 1754 // class templates, so don't complain here. 1755 Diag(NameLoc, TUK == TUK_Friend 1756 ? diag::warn_template_qualified_friend_ignored 1757 : diag::err_template_qualified_declarator_no_match) 1758 << SS.getScopeRep() << SS.getRange(); 1759 return TUK != TUK_Friend; 1760 } 1761 1762 if (RequireCompleteDeclContext(SS, SemanticContext)) 1763 return true; 1764 1765 // If we're adding a template to a dependent context, we may need to 1766 // rebuilding some of the types used within the template parameter list, 1767 // now that we know what the current instantiation is. 1768 if (SemanticContext->isDependentContext()) { 1769 ContextRAII SavedContext(*this, SemanticContext); 1770 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 1771 Invalid = true; 1772 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 1773 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false); 1774 1775 LookupQualifiedName(Previous, SemanticContext); 1776 } else { 1777 SemanticContext = CurContext; 1778 1779 // C++14 [class.mem]p14: 1780 // If T is the name of a class, then each of the following shall have a 1781 // name different from T: 1782 // -- every member template of class T 1783 if (TUK != TUK_Friend && 1784 DiagnoseClassNameShadow(SemanticContext, 1785 DeclarationNameInfo(Name, NameLoc))) 1786 return true; 1787 1788 LookupName(Previous, S); 1789 } 1790 1791 if (Previous.isAmbiguous()) 1792 return true; 1793 1794 NamedDecl *PrevDecl = nullptr; 1795 if (Previous.begin() != Previous.end()) 1796 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1797 1798 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1799 // Maybe we will complain about the shadowed template parameter. 1800 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1801 // Just pretend that we didn't see the previous declaration. 1802 PrevDecl = nullptr; 1803 } 1804 1805 // If there is a previous declaration with the same name, check 1806 // whether this is a valid redeclaration. 1807 ClassTemplateDecl *PrevClassTemplate = 1808 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 1809 1810 // We may have found the injected-class-name of a class template, 1811 // class template partial specialization, or class template specialization. 1812 // In these cases, grab the template that is being defined or specialized. 1813 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 1814 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 1815 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 1816 PrevClassTemplate 1817 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 1818 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 1819 PrevClassTemplate 1820 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 1821 ->getSpecializedTemplate(); 1822 } 1823 } 1824 1825 if (TUK == TUK_Friend) { 1826 // C++ [namespace.memdef]p3: 1827 // [...] When looking for a prior declaration of a class or a function 1828 // declared as a friend, and when the name of the friend class or 1829 // function is neither a qualified name nor a template-id, scopes outside 1830 // the innermost enclosing namespace scope are not considered. 1831 if (!SS.isSet()) { 1832 DeclContext *OutermostContext = CurContext; 1833 while (!OutermostContext->isFileContext()) 1834 OutermostContext = OutermostContext->getLookupParent(); 1835 1836 if (PrevDecl && 1837 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 1838 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 1839 SemanticContext = PrevDecl->getDeclContext(); 1840 } else { 1841 // Declarations in outer scopes don't matter. However, the outermost 1842 // context we computed is the semantic context for our new 1843 // declaration. 1844 PrevDecl = PrevClassTemplate = nullptr; 1845 SemanticContext = OutermostContext; 1846 1847 // Check that the chosen semantic context doesn't already contain a 1848 // declaration of this name as a non-tag type. 1849 Previous.clear(LookupOrdinaryName); 1850 DeclContext *LookupContext = SemanticContext; 1851 while (LookupContext->isTransparentContext()) 1852 LookupContext = LookupContext->getLookupParent(); 1853 LookupQualifiedName(Previous, LookupContext); 1854 1855 if (Previous.isAmbiguous()) 1856 return true; 1857 1858 if (Previous.begin() != Previous.end()) 1859 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1860 } 1861 } 1862 } else if (PrevDecl && 1863 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, 1864 S, SS.isValid())) 1865 PrevDecl = PrevClassTemplate = nullptr; 1866 1867 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( 1868 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { 1869 if (SS.isEmpty() && 1870 !(PrevClassTemplate && 1871 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( 1872 SemanticContext->getRedeclContext()))) { 1873 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 1874 Diag(Shadow->getTargetDecl()->getLocation(), 1875 diag::note_using_decl_target); 1876 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0; 1877 // Recover by ignoring the old declaration. 1878 PrevDecl = PrevClassTemplate = nullptr; 1879 } 1880 } 1881 1882 if (PrevClassTemplate) { 1883 // Ensure that the template parameter lists are compatible. Skip this check 1884 // for a friend in a dependent context: the template parameter list itself 1885 // could be dependent. 1886 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1887 !TemplateParameterListsAreEqual(TemplateParams, 1888 PrevClassTemplate->getTemplateParameters(), 1889 /*Complain=*/true, 1890 TPL_TemplateMatch)) 1891 return true; 1892 1893 // C++ [temp.class]p4: 1894 // In a redeclaration, partial specialization, explicit 1895 // specialization or explicit instantiation of a class template, 1896 // the class-key shall agree in kind with the original class 1897 // template declaration (7.1.5.3). 1898 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 1899 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 1900 TUK == TUK_Definition, KWLoc, Name)) { 1901 Diag(KWLoc, diag::err_use_with_wrong_tag) 1902 << Name 1903 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 1904 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1905 Kind = PrevRecordDecl->getTagKind(); 1906 } 1907 1908 // Check for redefinition of this class template. 1909 if (TUK == TUK_Definition) { 1910 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1911 // If we have a prior definition that is not visible, treat this as 1912 // simply making that previous definition visible. 1913 NamedDecl *Hidden = nullptr; 1914 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 1915 SkipBody->ShouldSkip = true; 1916 SkipBody->Previous = Def; 1917 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); 1918 assert(Tmpl && "original definition of a class template is not a " 1919 "class template?"); 1920 makeMergedDefinitionVisible(Hidden); 1921 makeMergedDefinitionVisible(Tmpl); 1922 } else { 1923 Diag(NameLoc, diag::err_redefinition) << Name; 1924 Diag(Def->getLocation(), diag::note_previous_definition); 1925 // FIXME: Would it make sense to try to "forget" the previous 1926 // definition, as part of error recovery? 1927 return true; 1928 } 1929 } 1930 } 1931 } else if (PrevDecl) { 1932 // C++ [temp]p5: 1933 // A class template shall not have the same name as any other 1934 // template, class, function, object, enumeration, enumerator, 1935 // namespace, or type in the same scope (3.3), except as specified 1936 // in (14.5.4). 1937 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1938 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1939 return true; 1940 } 1941 1942 // Check the template parameter list of this declaration, possibly 1943 // merging in the template parameter list from the previous class 1944 // template declaration. Skip this check for a friend in a dependent 1945 // context, because the template parameter list might be dependent. 1946 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1947 CheckTemplateParameterList( 1948 TemplateParams, 1949 PrevClassTemplate 1950 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters() 1951 : nullptr, 1952 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 1953 SemanticContext->isDependentContext()) 1954 ? TPC_ClassTemplateMember 1955 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate, 1956 SkipBody)) 1957 Invalid = true; 1958 1959 if (SS.isSet()) { 1960 // If the name of the template was qualified, we must be defining the 1961 // template out-of-line. 1962 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1963 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1964 : diag::err_member_decl_does_not_match) 1965 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); 1966 Invalid = true; 1967 } 1968 } 1969 1970 // If this is a templated friend in a dependent context we should not put it 1971 // on the redecl chain. In some cases, the templated friend can be the most 1972 // recent declaration tricking the template instantiator to make substitutions 1973 // there. 1974 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious 1975 bool ShouldAddRedecl 1976 = !(TUK == TUK_Friend && CurContext->isDependentContext()); 1977 1978 CXXRecordDecl *NewClass = 1979 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1980 PrevClassTemplate && ShouldAddRedecl ? 1981 PrevClassTemplate->getTemplatedDecl() : nullptr, 1982 /*DelayTypeCreation=*/true); 1983 SetNestedNameSpecifier(*this, NewClass, SS); 1984 if (NumOuterTemplateParamLists > 0) 1985 NewClass->setTemplateParameterListsInfo( 1986 Context, llvm::makeArrayRef(OuterTemplateParamLists, 1987 NumOuterTemplateParamLists)); 1988 1989 // Add alignment attributes if necessary; these attributes are checked when 1990 // the ASTContext lays out the structure. 1991 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 1992 AddAlignmentAttributesForRecord(NewClass); 1993 AddMsStructLayoutForRecord(NewClass); 1994 } 1995 1996 ClassTemplateDecl *NewTemplate 1997 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1998 DeclarationName(Name), TemplateParams, 1999 NewClass); 2000 2001 if (ShouldAddRedecl) 2002 NewTemplate->setPreviousDecl(PrevClassTemplate); 2003 2004 NewClass->setDescribedClassTemplate(NewTemplate); 2005 2006 if (ModulePrivateLoc.isValid()) 2007 NewTemplate->setModulePrivate(); 2008 2009 // Build the type for the class template declaration now. 2010 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 2011 T = Context.getInjectedClassNameType(NewClass, T); 2012 assert(T->isDependentType() && "Class template type is not dependent?"); 2013 (void)T; 2014 2015 // If we are providing an explicit specialization of a member that is a 2016 // class template, make a note of that. 2017 if (PrevClassTemplate && 2018 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 2019 PrevClassTemplate->setMemberSpecialization(); 2020 2021 // Set the access specifier. 2022 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 2023 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 2024 2025 // Set the lexical context of these templates 2026 NewClass->setLexicalDeclContext(CurContext); 2027 NewTemplate->setLexicalDeclContext(CurContext); 2028 2029 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 2030 NewClass->startDefinition(); 2031 2032 ProcessDeclAttributeList(S, NewClass, Attr); 2033 2034 if (PrevClassTemplate) 2035 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 2036 2037 AddPushedVisibilityAttribute(NewClass); 2038 inferGslOwnerPointerAttribute(NewClass); 2039 2040 if (TUK != TUK_Friend) { 2041 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 2042 Scope *Outer = S; 2043 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 2044 Outer = Outer->getParent(); 2045 PushOnScopeChains(NewTemplate, Outer); 2046 } else { 2047 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 2048 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 2049 NewClass->setAccess(PrevClassTemplate->getAccess()); 2050 } 2051 2052 NewTemplate->setObjectOfFriendDecl(); 2053 2054 // Friend templates are visible in fairly strange ways. 2055 if (!CurContext->isDependentContext()) { 2056 DeclContext *DC = SemanticContext->getRedeclContext(); 2057 DC->makeDeclVisibleInContext(NewTemplate); 2058 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 2059 PushOnScopeChains(NewTemplate, EnclosingScope, 2060 /* AddToContext = */ false); 2061 } 2062 2063 FriendDecl *Friend = FriendDecl::Create( 2064 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 2065 Friend->setAccess(AS_public); 2066 CurContext->addDecl(Friend); 2067 } 2068 2069 if (PrevClassTemplate) 2070 CheckRedeclarationInModule(NewTemplate, PrevClassTemplate); 2071 2072 if (Invalid) { 2073 NewTemplate->setInvalidDecl(); 2074 NewClass->setInvalidDecl(); 2075 } 2076 2077 ActOnDocumentableDecl(NewTemplate); 2078 2079 if (SkipBody && SkipBody->ShouldSkip) 2080 return SkipBody->Previous; 2081 2082 return NewTemplate; 2083 } 2084 2085 namespace { 2086 /// Tree transform to "extract" a transformed type from a class template's 2087 /// constructor to a deduction guide. 2088 class ExtractTypeForDeductionGuide 2089 : public TreeTransform<ExtractTypeForDeductionGuide> { 2090 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs; 2091 2092 public: 2093 typedef TreeTransform<ExtractTypeForDeductionGuide> Base; 2094 ExtractTypeForDeductionGuide( 2095 Sema &SemaRef, 2096 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) 2097 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {} 2098 2099 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); } 2100 2101 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { 2102 ASTContext &Context = SemaRef.getASTContext(); 2103 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl(); 2104 TypedefNameDecl *Decl = OrigDecl; 2105 // Transform the underlying type of the typedef and clone the Decl only if 2106 // the typedef has a dependent context. 2107 if (OrigDecl->getDeclContext()->isDependentContext()) { 2108 TypeLocBuilder InnerTLB; 2109 QualType Transformed = 2110 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc()); 2111 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed); 2112 if (isa<TypeAliasDecl>(OrigDecl)) 2113 Decl = TypeAliasDecl::Create( 2114 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 2115 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 2116 else { 2117 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef"); 2118 Decl = TypedefDecl::Create( 2119 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 2120 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 2121 } 2122 MaterializedTypedefs.push_back(Decl); 2123 } 2124 2125 QualType TDTy = Context.getTypedefType(Decl); 2126 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy); 2127 TypedefTL.setNameLoc(TL.getNameLoc()); 2128 2129 return TDTy; 2130 } 2131 }; 2132 2133 /// Transform to convert portions of a constructor declaration into the 2134 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. 2135 struct ConvertConstructorToDeductionGuideTransform { 2136 ConvertConstructorToDeductionGuideTransform(Sema &S, 2137 ClassTemplateDecl *Template) 2138 : SemaRef(S), Template(Template) {} 2139 2140 Sema &SemaRef; 2141 ClassTemplateDecl *Template; 2142 2143 DeclContext *DC = Template->getDeclContext(); 2144 CXXRecordDecl *Primary = Template->getTemplatedDecl(); 2145 DeclarationName DeductionGuideName = 2146 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); 2147 2148 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); 2149 2150 // Index adjustment to apply to convert depth-1 template parameters into 2151 // depth-0 template parameters. 2152 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); 2153 2154 /// Transform a constructor declaration into a deduction guide. 2155 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, 2156 CXXConstructorDecl *CD) { 2157 SmallVector<TemplateArgument, 16> SubstArgs; 2158 2159 LocalInstantiationScope Scope(SemaRef); 2160 2161 // C++ [over.match.class.deduct]p1: 2162 // -- For each constructor of the class template designated by the 2163 // template-name, a function template with the following properties: 2164 2165 // -- The template parameters are the template parameters of the class 2166 // template followed by the template parameters (including default 2167 // template arguments) of the constructor, if any. 2168 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2169 if (FTD) { 2170 TemplateParameterList *InnerParams = FTD->getTemplateParameters(); 2171 SmallVector<NamedDecl *, 16> AllParams; 2172 AllParams.reserve(TemplateParams->size() + InnerParams->size()); 2173 AllParams.insert(AllParams.begin(), 2174 TemplateParams->begin(), TemplateParams->end()); 2175 SubstArgs.reserve(InnerParams->size()); 2176 2177 // Later template parameters could refer to earlier ones, so build up 2178 // a list of substituted template arguments as we go. 2179 for (NamedDecl *Param : *InnerParams) { 2180 MultiLevelTemplateArgumentList Args; 2181 Args.setKind(TemplateSubstitutionKind::Rewrite); 2182 Args.addOuterTemplateArguments(SubstArgs); 2183 Args.addOuterRetainedLevel(); 2184 NamedDecl *NewParam = transformTemplateParameter(Param, Args); 2185 if (!NewParam) 2186 return nullptr; 2187 AllParams.push_back(NewParam); 2188 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( 2189 SemaRef.Context.getInjectedTemplateArg(NewParam))); 2190 } 2191 2192 // Substitute new template parameters into requires-clause if present. 2193 Expr *RequiresClause = nullptr; 2194 if (Expr *InnerRC = InnerParams->getRequiresClause()) { 2195 MultiLevelTemplateArgumentList Args; 2196 Args.setKind(TemplateSubstitutionKind::Rewrite); 2197 Args.addOuterTemplateArguments(SubstArgs); 2198 Args.addOuterRetainedLevel(); 2199 ExprResult E = SemaRef.SubstExpr(InnerRC, Args); 2200 if (E.isInvalid()) 2201 return nullptr; 2202 RequiresClause = E.getAs<Expr>(); 2203 } 2204 2205 TemplateParams = TemplateParameterList::Create( 2206 SemaRef.Context, InnerParams->getTemplateLoc(), 2207 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(), 2208 RequiresClause); 2209 } 2210 2211 // If we built a new template-parameter-list, track that we need to 2212 // substitute references to the old parameters into references to the 2213 // new ones. 2214 MultiLevelTemplateArgumentList Args; 2215 Args.setKind(TemplateSubstitutionKind::Rewrite); 2216 if (FTD) { 2217 Args.addOuterTemplateArguments(SubstArgs); 2218 Args.addOuterRetainedLevel(); 2219 } 2220 2221 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() 2222 .getAsAdjusted<FunctionProtoTypeLoc>(); 2223 assert(FPTL && "no prototype for constructor declaration"); 2224 2225 // Transform the type of the function, adjusting the return type and 2226 // replacing references to the old parameters with references to the 2227 // new ones. 2228 TypeLocBuilder TLB; 2229 SmallVector<ParmVarDecl*, 8> Params; 2230 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs; 2231 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args, 2232 MaterializedTypedefs); 2233 if (NewType.isNull()) 2234 return nullptr; 2235 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType); 2236 2237 return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(), 2238 NewTInfo, CD->getBeginLoc(), CD->getLocation(), 2239 CD->getEndLoc(), MaterializedTypedefs); 2240 } 2241 2242 /// Build a deduction guide with the specified parameter types. 2243 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { 2244 SourceLocation Loc = Template->getLocation(); 2245 2246 // Build the requested type. 2247 FunctionProtoType::ExtProtoInfo EPI; 2248 EPI.HasTrailingReturn = true; 2249 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, 2250 DeductionGuideName, EPI); 2251 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc); 2252 2253 FunctionProtoTypeLoc FPTL = 2254 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 2255 2256 // Build the parameters, needed during deduction / substitution. 2257 SmallVector<ParmVarDecl*, 4> Params; 2258 for (auto T : ParamTypes) { 2259 ParmVarDecl *NewParam = ParmVarDecl::Create( 2260 SemaRef.Context, DC, Loc, Loc, nullptr, T, 2261 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr); 2262 NewParam->setScopeInfo(0, Params.size()); 2263 FPTL.setParam(Params.size(), NewParam); 2264 Params.push_back(NewParam); 2265 } 2266 2267 return buildDeductionGuide(Template->getTemplateParameters(), nullptr, 2268 ExplicitSpecifier(), TSI, Loc, Loc, Loc); 2269 } 2270 2271 private: 2272 /// Transform a constructor template parameter into a deduction guide template 2273 /// parameter, rebuilding any internal references to earlier parameters and 2274 /// renumbering as we go. 2275 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, 2276 MultiLevelTemplateArgumentList &Args) { 2277 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) { 2278 // TemplateTypeParmDecl's index cannot be changed after creation, so 2279 // substitute it directly. 2280 auto *NewTTP = TemplateTypeParmDecl::Create( 2281 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(), 2282 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(), 2283 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(), 2284 TTP->isParameterPack(), TTP->hasTypeConstraint(), 2285 TTP->isExpandedParameterPack() ? 2286 llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None); 2287 if (const auto *TC = TTP->getTypeConstraint()) 2288 SemaRef.SubstTypeConstraint(NewTTP, TC, Args); 2289 if (TTP->hasDefaultArgument()) { 2290 TypeSourceInfo *InstantiatedDefaultArg = 2291 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, 2292 TTP->getDefaultArgumentLoc(), TTP->getDeclName()); 2293 if (InstantiatedDefaultArg) 2294 NewTTP->setDefaultArgument(InstantiatedDefaultArg); 2295 } 2296 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam, 2297 NewTTP); 2298 return NewTTP; 2299 } 2300 2301 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam)) 2302 return transformTemplateParameterImpl(TTP, Args); 2303 2304 return transformTemplateParameterImpl( 2305 cast<NonTypeTemplateParmDecl>(TemplateParam), Args); 2306 } 2307 template<typename TemplateParmDecl> 2308 TemplateParmDecl * 2309 transformTemplateParameterImpl(TemplateParmDecl *OldParam, 2310 MultiLevelTemplateArgumentList &Args) { 2311 // Ask the template instantiator to do the heavy lifting for us, then adjust 2312 // the index of the parameter once it's done. 2313 auto *NewParam = 2314 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args)); 2315 assert(NewParam->getDepth() == 0 && "unexpected template param depth"); 2316 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment); 2317 return NewParam; 2318 } 2319 2320 QualType transformFunctionProtoType( 2321 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, 2322 SmallVectorImpl<ParmVarDecl *> &Params, 2323 MultiLevelTemplateArgumentList &Args, 2324 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2325 SmallVector<QualType, 4> ParamTypes; 2326 const FunctionProtoType *T = TL.getTypePtr(); 2327 2328 // -- The types of the function parameters are those of the constructor. 2329 for (auto *OldParam : TL.getParams()) { 2330 ParmVarDecl *NewParam = 2331 transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs); 2332 if (!NewParam) 2333 return QualType(); 2334 ParamTypes.push_back(NewParam->getType()); 2335 Params.push_back(NewParam); 2336 } 2337 2338 // -- The return type is the class template specialization designated by 2339 // the template-name and template arguments corresponding to the 2340 // template parameters obtained from the class template. 2341 // 2342 // We use the injected-class-name type of the primary template instead. 2343 // This has the convenient property that it is different from any type that 2344 // the user can write in a deduction-guide (because they cannot enter the 2345 // context of the template), so implicit deduction guides can never collide 2346 // with explicit ones. 2347 QualType ReturnType = DeducedType; 2348 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation()); 2349 2350 // Resolving a wording defect, we also inherit the variadicness of the 2351 // constructor. 2352 FunctionProtoType::ExtProtoInfo EPI; 2353 EPI.Variadic = T->isVariadic(); 2354 EPI.HasTrailingReturn = true; 2355 2356 QualType Result = SemaRef.BuildFunctionType( 2357 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI); 2358 if (Result.isNull()) 2359 return QualType(); 2360 2361 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); 2362 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); 2363 NewTL.setLParenLoc(TL.getLParenLoc()); 2364 NewTL.setRParenLoc(TL.getRParenLoc()); 2365 NewTL.setExceptionSpecRange(SourceRange()); 2366 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); 2367 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) 2368 NewTL.setParam(I, Params[I]); 2369 2370 return Result; 2371 } 2372 2373 ParmVarDecl *transformFunctionTypeParam( 2374 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args, 2375 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2376 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); 2377 TypeSourceInfo *NewDI; 2378 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { 2379 // Expand out the one and only element in each inner pack. 2380 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); 2381 NewDI = 2382 SemaRef.SubstType(PackTL.getPatternLoc(), Args, 2383 OldParam->getLocation(), OldParam->getDeclName()); 2384 if (!NewDI) return nullptr; 2385 NewDI = 2386 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), 2387 PackTL.getTypePtr()->getNumExpansions()); 2388 } else 2389 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), 2390 OldParam->getDeclName()); 2391 if (!NewDI) 2392 return nullptr; 2393 2394 // Extract the type. This (for instance) replaces references to typedef 2395 // members of the current instantiations with the definitions of those 2396 // typedefs, avoiding triggering instantiation of the deduced type during 2397 // deduction. 2398 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs) 2399 .transform(NewDI); 2400 2401 // Resolving a wording defect, we also inherit default arguments from the 2402 // constructor. 2403 ExprResult NewDefArg; 2404 if (OldParam->hasDefaultArg()) { 2405 // We don't care what the value is (we won't use it); just create a 2406 // placeholder to indicate there is a default argument. 2407 QualType ParamTy = NewDI->getType(); 2408 NewDefArg = new (SemaRef.Context) 2409 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(), 2410 ParamTy.getNonLValueExprType(SemaRef.Context), 2411 ParamTy->isLValueReferenceType() ? VK_LValue 2412 : ParamTy->isRValueReferenceType() ? VK_XValue 2413 : VK_PRValue); 2414 } 2415 2416 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC, 2417 OldParam->getInnerLocStart(), 2418 OldParam->getLocation(), 2419 OldParam->getIdentifier(), 2420 NewDI->getType(), 2421 NewDI, 2422 OldParam->getStorageClass(), 2423 NewDefArg.get()); 2424 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(), 2425 OldParam->getFunctionScopeIndex()); 2426 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); 2427 return NewParam; 2428 } 2429 2430 FunctionTemplateDecl *buildDeductionGuide( 2431 TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor, 2432 ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart, 2433 SourceLocation Loc, SourceLocation LocEnd, 2434 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) { 2435 DeclarationNameInfo Name(DeductionGuideName, Loc); 2436 ArrayRef<ParmVarDecl *> Params = 2437 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); 2438 2439 // Build the implicit deduction guide template. 2440 auto *Guide = 2441 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name, 2442 TInfo->getType(), TInfo, LocEnd, Ctor); 2443 Guide->setImplicit(); 2444 Guide->setParams(Params); 2445 2446 for (auto *Param : Params) 2447 Param->setDeclContext(Guide); 2448 for (auto *TD : MaterializedTypedefs) 2449 TD->setDeclContext(Guide); 2450 2451 auto *GuideTemplate = FunctionTemplateDecl::Create( 2452 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide); 2453 GuideTemplate->setImplicit(); 2454 Guide->setDescribedFunctionTemplate(GuideTemplate); 2455 2456 if (isa<CXXRecordDecl>(DC)) { 2457 Guide->setAccess(AS_public); 2458 GuideTemplate->setAccess(AS_public); 2459 } 2460 2461 DC->addDecl(GuideTemplate); 2462 return GuideTemplate; 2463 } 2464 }; 2465 } 2466 2467 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, 2468 SourceLocation Loc) { 2469 if (CXXRecordDecl *DefRecord = 2470 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) { 2471 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate(); 2472 Template = DescribedTemplate ? DescribedTemplate : Template; 2473 } 2474 2475 DeclContext *DC = Template->getDeclContext(); 2476 if (DC->isDependentContext()) 2477 return; 2478 2479 ConvertConstructorToDeductionGuideTransform Transform( 2480 *this, cast<ClassTemplateDecl>(Template)); 2481 if (!isCompleteType(Loc, Transform.DeducedType)) 2482 return; 2483 2484 // Check whether we've already declared deduction guides for this template. 2485 // FIXME: Consider storing a flag on the template to indicate this. 2486 auto Existing = DC->lookup(Transform.DeductionGuideName); 2487 for (auto *D : Existing) 2488 if (D->isImplicit()) 2489 return; 2490 2491 // In case we were expanding a pack when we attempted to declare deduction 2492 // guides, turn off pack expansion for everything we're about to do. 2493 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); 2494 // Create a template instantiation record to track the "instantiation" of 2495 // constructors into deduction guides. 2496 // FIXME: Add a kind for this to give more meaningful diagnostics. But can 2497 // this substitution process actually fail? 2498 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template); 2499 if (BuildingDeductionGuides.isInvalid()) 2500 return; 2501 2502 // Convert declared constructors into deduction guide templates. 2503 // FIXME: Skip constructors for which deduction must necessarily fail (those 2504 // for which some class template parameter without a default argument never 2505 // appears in a deduced context). 2506 bool AddedAny = false; 2507 for (NamedDecl *D : LookupConstructors(Transform.Primary)) { 2508 D = D->getUnderlyingDecl(); 2509 if (D->isInvalidDecl() || D->isImplicit()) 2510 continue; 2511 D = cast<NamedDecl>(D->getCanonicalDecl()); 2512 2513 auto *FTD = dyn_cast<FunctionTemplateDecl>(D); 2514 auto *CD = 2515 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); 2516 // Class-scope explicit specializations (MS extension) do not result in 2517 // deduction guides. 2518 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) 2519 continue; 2520 2521 // Cannot make a deduction guide when unparsed arguments are present. 2522 if (std::any_of(CD->param_begin(), CD->param_end(), [](ParmVarDecl *P) { 2523 return !P || P->hasUnparsedDefaultArg(); 2524 })) 2525 continue; 2526 2527 Transform.transformConstructor(FTD, CD); 2528 AddedAny = true; 2529 } 2530 2531 // C++17 [over.match.class.deduct] 2532 // -- If C is not defined or does not declare any constructors, an 2533 // additional function template derived as above from a hypothetical 2534 // constructor C(). 2535 if (!AddedAny) 2536 Transform.buildSimpleDeductionGuide(None); 2537 2538 // -- An additional function template derived as above from a hypothetical 2539 // constructor C(C), called the copy deduction candidate. 2540 cast<CXXDeductionGuideDecl>( 2541 cast<FunctionTemplateDecl>( 2542 Transform.buildSimpleDeductionGuide(Transform.DeducedType)) 2543 ->getTemplatedDecl()) 2544 ->setIsCopyDeductionCandidate(); 2545 } 2546 2547 /// Diagnose the presence of a default template argument on a 2548 /// template parameter, which is ill-formed in certain contexts. 2549 /// 2550 /// \returns true if the default template argument should be dropped. 2551 static bool DiagnoseDefaultTemplateArgument(Sema &S, 2552 Sema::TemplateParamListContext TPC, 2553 SourceLocation ParamLoc, 2554 SourceRange DefArgRange) { 2555 switch (TPC) { 2556 case Sema::TPC_ClassTemplate: 2557 case Sema::TPC_VarTemplate: 2558 case Sema::TPC_TypeAliasTemplate: 2559 return false; 2560 2561 case Sema::TPC_FunctionTemplate: 2562 case Sema::TPC_FriendFunctionTemplateDefinition: 2563 // C++ [temp.param]p9: 2564 // A default template-argument shall not be specified in a 2565 // function template declaration or a function template 2566 // definition [...] 2567 // If a friend function template declaration specifies a default 2568 // template-argument, that declaration shall be a definition and shall be 2569 // the only declaration of the function template in the translation unit. 2570 // (C++98/03 doesn't have this wording; see DR226). 2571 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 2572 diag::warn_cxx98_compat_template_parameter_default_in_function_template 2573 : diag::ext_template_parameter_default_in_function_template) 2574 << DefArgRange; 2575 return false; 2576 2577 case Sema::TPC_ClassTemplateMember: 2578 // C++0x [temp.param]p9: 2579 // A default template-argument shall not be specified in the 2580 // template-parameter-lists of the definition of a member of a 2581 // class template that appears outside of the member's class. 2582 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 2583 << DefArgRange; 2584 return true; 2585 2586 case Sema::TPC_FriendClassTemplate: 2587 case Sema::TPC_FriendFunctionTemplate: 2588 // C++ [temp.param]p9: 2589 // A default template-argument shall not be specified in a 2590 // friend template declaration. 2591 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 2592 << DefArgRange; 2593 return true; 2594 2595 // FIXME: C++0x [temp.param]p9 allows default template-arguments 2596 // for friend function templates if there is only a single 2597 // declaration (and it is a definition). Strange! 2598 } 2599 2600 llvm_unreachable("Invalid TemplateParamListContext!"); 2601 } 2602 2603 /// Check for unexpanded parameter packs within the template parameters 2604 /// of a template template parameter, recursively. 2605 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 2606 TemplateTemplateParmDecl *TTP) { 2607 // A template template parameter which is a parameter pack is also a pack 2608 // expansion. 2609 if (TTP->isParameterPack()) 2610 return false; 2611 2612 TemplateParameterList *Params = TTP->getTemplateParameters(); 2613 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 2614 NamedDecl *P = Params->getParam(I); 2615 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) { 2616 if (!TTP->isParameterPack()) 2617 if (const TypeConstraint *TC = TTP->getTypeConstraint()) 2618 if (TC->hasExplicitTemplateArgs()) 2619 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2620 if (S.DiagnoseUnexpandedParameterPack(ArgLoc, 2621 Sema::UPPC_TypeConstraint)) 2622 return true; 2623 continue; 2624 } 2625 2626 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 2627 if (!NTTP->isParameterPack() && 2628 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 2629 NTTP->getTypeSourceInfo(), 2630 Sema::UPPC_NonTypeTemplateParameterType)) 2631 return true; 2632 2633 continue; 2634 } 2635 2636 if (TemplateTemplateParmDecl *InnerTTP 2637 = dyn_cast<TemplateTemplateParmDecl>(P)) 2638 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 2639 return true; 2640 } 2641 2642 return false; 2643 } 2644 2645 /// Checks the validity of a template parameter list, possibly 2646 /// considering the template parameter list from a previous 2647 /// declaration. 2648 /// 2649 /// If an "old" template parameter list is provided, it must be 2650 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 2651 /// template parameter list. 2652 /// 2653 /// \param NewParams Template parameter list for a new template 2654 /// declaration. This template parameter list will be updated with any 2655 /// default arguments that are carried through from the previous 2656 /// template parameter list. 2657 /// 2658 /// \param OldParams If provided, template parameter list from a 2659 /// previous declaration of the same template. Default template 2660 /// arguments will be merged from the old template parameter list to 2661 /// the new template parameter list. 2662 /// 2663 /// \param TPC Describes the context in which we are checking the given 2664 /// template parameter list. 2665 /// 2666 /// \param SkipBody If we might have already made a prior merged definition 2667 /// of this template visible, the corresponding body-skipping information. 2668 /// Default argument redefinition is not an error when skipping such a body, 2669 /// because (under the ODR) we can assume the default arguments are the same 2670 /// as the prior merged definition. 2671 /// 2672 /// \returns true if an error occurred, false otherwise. 2673 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 2674 TemplateParameterList *OldParams, 2675 TemplateParamListContext TPC, 2676 SkipBodyInfo *SkipBody) { 2677 bool Invalid = false; 2678 2679 // C++ [temp.param]p10: 2680 // The set of default template-arguments available for use with a 2681 // template declaration or definition is obtained by merging the 2682 // default arguments from the definition (if in scope) and all 2683 // declarations in scope in the same way default function 2684 // arguments are (8.3.6). 2685 bool SawDefaultArgument = false; 2686 SourceLocation PreviousDefaultArgLoc; 2687 2688 // Dummy initialization to avoid warnings. 2689 TemplateParameterList::iterator OldParam = NewParams->end(); 2690 if (OldParams) 2691 OldParam = OldParams->begin(); 2692 2693 bool RemoveDefaultArguments = false; 2694 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2695 NewParamEnd = NewParams->end(); 2696 NewParam != NewParamEnd; ++NewParam) { 2697 // Variables used to diagnose redundant default arguments 2698 bool RedundantDefaultArg = false; 2699 SourceLocation OldDefaultLoc; 2700 SourceLocation NewDefaultLoc; 2701 2702 // Variable used to diagnose missing default arguments 2703 bool MissingDefaultArg = false; 2704 2705 // Variable used to diagnose non-final parameter packs 2706 bool SawParameterPack = false; 2707 2708 if (TemplateTypeParmDecl *NewTypeParm 2709 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 2710 // Check the presence of a default argument here. 2711 if (NewTypeParm->hasDefaultArgument() && 2712 DiagnoseDefaultTemplateArgument(*this, TPC, 2713 NewTypeParm->getLocation(), 2714 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 2715 .getSourceRange())) 2716 NewTypeParm->removeDefaultArgument(); 2717 2718 // Merge default arguments for template type parameters. 2719 TemplateTypeParmDecl *OldTypeParm 2720 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 2721 if (NewTypeParm->isParameterPack()) { 2722 assert(!NewTypeParm->hasDefaultArgument() && 2723 "Parameter packs can't have a default argument!"); 2724 SawParameterPack = true; 2725 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && 2726 NewTypeParm->hasDefaultArgument() && 2727 (!SkipBody || !SkipBody->ShouldSkip)) { 2728 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 2729 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 2730 SawDefaultArgument = true; 2731 RedundantDefaultArg = true; 2732 PreviousDefaultArgLoc = NewDefaultLoc; 2733 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 2734 // Merge the default argument from the old declaration to the 2735 // new declaration. 2736 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); 2737 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 2738 } else if (NewTypeParm->hasDefaultArgument()) { 2739 SawDefaultArgument = true; 2740 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 2741 } else if (SawDefaultArgument) 2742 MissingDefaultArg = true; 2743 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 2744 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 2745 // Check for unexpanded parameter packs. 2746 if (!NewNonTypeParm->isParameterPack() && 2747 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 2748 NewNonTypeParm->getTypeSourceInfo(), 2749 UPPC_NonTypeTemplateParameterType)) { 2750 Invalid = true; 2751 continue; 2752 } 2753 2754 // Check the presence of a default argument here. 2755 if (NewNonTypeParm->hasDefaultArgument() && 2756 DiagnoseDefaultTemplateArgument(*this, TPC, 2757 NewNonTypeParm->getLocation(), 2758 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 2759 NewNonTypeParm->removeDefaultArgument(); 2760 } 2761 2762 // Merge default arguments for non-type template parameters 2763 NonTypeTemplateParmDecl *OldNonTypeParm 2764 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 2765 if (NewNonTypeParm->isParameterPack()) { 2766 assert(!NewNonTypeParm->hasDefaultArgument() && 2767 "Parameter packs can't have a default argument!"); 2768 if (!NewNonTypeParm->isPackExpansion()) 2769 SawParameterPack = true; 2770 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && 2771 NewNonTypeParm->hasDefaultArgument() && 2772 (!SkipBody || !SkipBody->ShouldSkip)) { 2773 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2774 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2775 SawDefaultArgument = true; 2776 RedundantDefaultArg = true; 2777 PreviousDefaultArgLoc = NewDefaultLoc; 2778 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 2779 // Merge the default argument from the old declaration to the 2780 // new declaration. 2781 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); 2782 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2783 } else if (NewNonTypeParm->hasDefaultArgument()) { 2784 SawDefaultArgument = true; 2785 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2786 } else if (SawDefaultArgument) 2787 MissingDefaultArg = true; 2788 } else { 2789 TemplateTemplateParmDecl *NewTemplateParm 2790 = cast<TemplateTemplateParmDecl>(*NewParam); 2791 2792 // Check for unexpanded parameter packs, recursively. 2793 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 2794 Invalid = true; 2795 continue; 2796 } 2797 2798 // Check the presence of a default argument here. 2799 if (NewTemplateParm->hasDefaultArgument() && 2800 DiagnoseDefaultTemplateArgument(*this, TPC, 2801 NewTemplateParm->getLocation(), 2802 NewTemplateParm->getDefaultArgument().getSourceRange())) 2803 NewTemplateParm->removeDefaultArgument(); 2804 2805 // Merge default arguments for template template parameters 2806 TemplateTemplateParmDecl *OldTemplateParm 2807 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 2808 if (NewTemplateParm->isParameterPack()) { 2809 assert(!NewTemplateParm->hasDefaultArgument() && 2810 "Parameter packs can't have a default argument!"); 2811 if (!NewTemplateParm->isPackExpansion()) 2812 SawParameterPack = true; 2813 } else if (OldTemplateParm && 2814 hasVisibleDefaultArgument(OldTemplateParm) && 2815 NewTemplateParm->hasDefaultArgument() && 2816 (!SkipBody || !SkipBody->ShouldSkip)) { 2817 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 2818 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 2819 SawDefaultArgument = true; 2820 RedundantDefaultArg = true; 2821 PreviousDefaultArgLoc = NewDefaultLoc; 2822 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 2823 // Merge the default argument from the old declaration to the 2824 // new declaration. 2825 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); 2826 PreviousDefaultArgLoc 2827 = OldTemplateParm->getDefaultArgument().getLocation(); 2828 } else if (NewTemplateParm->hasDefaultArgument()) { 2829 SawDefaultArgument = true; 2830 PreviousDefaultArgLoc 2831 = NewTemplateParm->getDefaultArgument().getLocation(); 2832 } else if (SawDefaultArgument) 2833 MissingDefaultArg = true; 2834 } 2835 2836 // C++11 [temp.param]p11: 2837 // If a template parameter of a primary class template or alias template 2838 // is a template parameter pack, it shall be the last template parameter. 2839 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 2840 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 2841 TPC == TPC_TypeAliasTemplate)) { 2842 Diag((*NewParam)->getLocation(), 2843 diag::err_template_param_pack_must_be_last_template_parameter); 2844 Invalid = true; 2845 } 2846 2847 if (RedundantDefaultArg) { 2848 // C++ [temp.param]p12: 2849 // A template-parameter shall not be given default arguments 2850 // by two different declarations in the same scope. 2851 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 2852 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 2853 Invalid = true; 2854 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 2855 // C++ [temp.param]p11: 2856 // If a template-parameter of a class template has a default 2857 // template-argument, each subsequent template-parameter shall either 2858 // have a default template-argument supplied or be a template parameter 2859 // pack. 2860 Diag((*NewParam)->getLocation(), 2861 diag::err_template_param_default_arg_missing); 2862 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 2863 Invalid = true; 2864 RemoveDefaultArguments = true; 2865 } 2866 2867 // If we have an old template parameter list that we're merging 2868 // in, move on to the next parameter. 2869 if (OldParams) 2870 ++OldParam; 2871 } 2872 2873 // We were missing some default arguments at the end of the list, so remove 2874 // all of the default arguments. 2875 if (RemoveDefaultArguments) { 2876 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2877 NewParamEnd = NewParams->end(); 2878 NewParam != NewParamEnd; ++NewParam) { 2879 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 2880 TTP->removeDefaultArgument(); 2881 else if (NonTypeTemplateParmDecl *NTTP 2882 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 2883 NTTP->removeDefaultArgument(); 2884 else 2885 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 2886 } 2887 } 2888 2889 return Invalid; 2890 } 2891 2892 namespace { 2893 2894 /// A class which looks for a use of a certain level of template 2895 /// parameter. 2896 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 2897 typedef RecursiveASTVisitor<DependencyChecker> super; 2898 2899 unsigned Depth; 2900 2901 // Whether we're looking for a use of a template parameter that makes the 2902 // overall construct type-dependent / a dependent type. This is strictly 2903 // best-effort for now; we may fail to match at all for a dependent type 2904 // in some cases if this is set. 2905 bool IgnoreNonTypeDependent; 2906 2907 bool Match; 2908 SourceLocation MatchLoc; 2909 2910 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) 2911 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), 2912 Match(false) {} 2913 2914 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) 2915 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { 2916 NamedDecl *ND = Params->getParam(0); 2917 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 2918 Depth = PD->getDepth(); 2919 } else if (NonTypeTemplateParmDecl *PD = 2920 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 2921 Depth = PD->getDepth(); 2922 } else { 2923 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 2924 } 2925 } 2926 2927 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 2928 if (ParmDepth >= Depth) { 2929 Match = true; 2930 MatchLoc = Loc; 2931 return true; 2932 } 2933 return false; 2934 } 2935 2936 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { 2937 // Prune out non-type-dependent expressions if requested. This can 2938 // sometimes result in us failing to find a template parameter reference 2939 // (if a value-dependent expression creates a dependent type), but this 2940 // mode is best-effort only. 2941 if (auto *E = dyn_cast_or_null<Expr>(S)) 2942 if (IgnoreNonTypeDependent && !E->isTypeDependent()) 2943 return true; 2944 return super::TraverseStmt(S, Q); 2945 } 2946 2947 bool TraverseTypeLoc(TypeLoc TL) { 2948 if (IgnoreNonTypeDependent && !TL.isNull() && 2949 !TL.getType()->isDependentType()) 2950 return true; 2951 return super::TraverseTypeLoc(TL); 2952 } 2953 2954 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { 2955 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 2956 } 2957 2958 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 2959 // For a best-effort search, keep looking until we find a location. 2960 return IgnoreNonTypeDependent || !Matches(T->getDepth()); 2961 } 2962 2963 bool TraverseTemplateName(TemplateName N) { 2964 if (TemplateTemplateParmDecl *PD = 2965 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 2966 if (Matches(PD->getDepth())) 2967 return false; 2968 return super::TraverseTemplateName(N); 2969 } 2970 2971 bool VisitDeclRefExpr(DeclRefExpr *E) { 2972 if (NonTypeTemplateParmDecl *PD = 2973 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 2974 if (Matches(PD->getDepth(), E->getExprLoc())) 2975 return false; 2976 return super::VisitDeclRefExpr(E); 2977 } 2978 2979 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { 2980 return TraverseType(T->getReplacementType()); 2981 } 2982 2983 bool 2984 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { 2985 return TraverseTemplateArgument(T->getArgumentPack()); 2986 } 2987 2988 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 2989 return TraverseType(T->getInjectedSpecializationType()); 2990 } 2991 }; 2992 } // end anonymous namespace 2993 2994 /// Determines whether a given type depends on the given parameter 2995 /// list. 2996 static bool 2997 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 2998 if (!Params->size()) 2999 return false; 3000 3001 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); 3002 Checker.TraverseType(T); 3003 return Checker.Match; 3004 } 3005 3006 // Find the source range corresponding to the named type in the given 3007 // nested-name-specifier, if any. 3008 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 3009 QualType T, 3010 const CXXScopeSpec &SS) { 3011 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 3012 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 3013 if (const Type *CurType = NNS->getAsType()) { 3014 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 3015 return NNSLoc.getTypeLoc().getSourceRange(); 3016 } else 3017 break; 3018 3019 NNSLoc = NNSLoc.getPrefix(); 3020 } 3021 3022 return SourceRange(); 3023 } 3024 3025 /// Match the given template parameter lists to the given scope 3026 /// specifier, returning the template parameter list that applies to the 3027 /// name. 3028 /// 3029 /// \param DeclStartLoc the start of the declaration that has a scope 3030 /// specifier or a template parameter list. 3031 /// 3032 /// \param DeclLoc The location of the declaration itself. 3033 /// 3034 /// \param SS the scope specifier that will be matched to the given template 3035 /// parameter lists. This scope specifier precedes a qualified name that is 3036 /// being declared. 3037 /// 3038 /// \param TemplateId The template-id following the scope specifier, if there 3039 /// is one. Used to check for a missing 'template<>'. 3040 /// 3041 /// \param ParamLists the template parameter lists, from the outermost to the 3042 /// innermost template parameter lists. 3043 /// 3044 /// \param IsFriend Whether to apply the slightly different rules for 3045 /// matching template parameters to scope specifiers in friend 3046 /// declarations. 3047 /// 3048 /// \param IsMemberSpecialization will be set true if the scope specifier 3049 /// denotes a fully-specialized type, and therefore this is a declaration of 3050 /// a member specialization. 3051 /// 3052 /// \returns the template parameter list, if any, that corresponds to the 3053 /// name that is preceded by the scope specifier @p SS. This template 3054 /// parameter list may have template parameters (if we're declaring a 3055 /// template) or may have no template parameters (if we're declaring a 3056 /// template specialization), or may be NULL (if what we're declaring isn't 3057 /// itself a template). 3058 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 3059 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 3060 TemplateIdAnnotation *TemplateId, 3061 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 3062 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { 3063 IsMemberSpecialization = false; 3064 Invalid = false; 3065 3066 // The sequence of nested types to which we will match up the template 3067 // parameter lists. We first build this list by starting with the type named 3068 // by the nested-name-specifier and walking out until we run out of types. 3069 SmallVector<QualType, 4> NestedTypes; 3070 QualType T; 3071 if (SS.getScopeRep()) { 3072 if (CXXRecordDecl *Record 3073 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 3074 T = Context.getTypeDeclType(Record); 3075 else 3076 T = QualType(SS.getScopeRep()->getAsType(), 0); 3077 } 3078 3079 // If we found an explicit specialization that prevents us from needing 3080 // 'template<>' headers, this will be set to the location of that 3081 // explicit specialization. 3082 SourceLocation ExplicitSpecLoc; 3083 3084 while (!T.isNull()) { 3085 NestedTypes.push_back(T); 3086 3087 // Retrieve the parent of a record type. 3088 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 3089 // If this type is an explicit specialization, we're done. 3090 if (ClassTemplateSpecializationDecl *Spec 3091 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 3092 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 3093 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 3094 ExplicitSpecLoc = Spec->getLocation(); 3095 break; 3096 } 3097 } else if (Record->getTemplateSpecializationKind() 3098 == TSK_ExplicitSpecialization) { 3099 ExplicitSpecLoc = Record->getLocation(); 3100 break; 3101 } 3102 3103 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 3104 T = Context.getTypeDeclType(Parent); 3105 else 3106 T = QualType(); 3107 continue; 3108 } 3109 3110 if (const TemplateSpecializationType *TST 3111 = T->getAs<TemplateSpecializationType>()) { 3112 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3113 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 3114 T = Context.getTypeDeclType(Parent); 3115 else 3116 T = QualType(); 3117 continue; 3118 } 3119 } 3120 3121 // Look one step prior in a dependent template specialization type. 3122 if (const DependentTemplateSpecializationType *DependentTST 3123 = T->getAs<DependentTemplateSpecializationType>()) { 3124 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 3125 T = QualType(NNS->getAsType(), 0); 3126 else 3127 T = QualType(); 3128 continue; 3129 } 3130 3131 // Look one step prior in a dependent name type. 3132 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 3133 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 3134 T = QualType(NNS->getAsType(), 0); 3135 else 3136 T = QualType(); 3137 continue; 3138 } 3139 3140 // Retrieve the parent of an enumeration type. 3141 if (const EnumType *EnumT = T->getAs<EnumType>()) { 3142 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 3143 // check here. 3144 EnumDecl *Enum = EnumT->getDecl(); 3145 3146 // Get to the parent type. 3147 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 3148 T = Context.getTypeDeclType(Parent); 3149 else 3150 T = QualType(); 3151 continue; 3152 } 3153 3154 T = QualType(); 3155 } 3156 // Reverse the nested types list, since we want to traverse from the outermost 3157 // to the innermost while checking template-parameter-lists. 3158 std::reverse(NestedTypes.begin(), NestedTypes.end()); 3159 3160 // C++0x [temp.expl.spec]p17: 3161 // A member or a member template may be nested within many 3162 // enclosing class templates. In an explicit specialization for 3163 // such a member, the member declaration shall be preceded by a 3164 // template<> for each enclosing class template that is 3165 // explicitly specialized. 3166 bool SawNonEmptyTemplateParameterList = false; 3167 3168 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 3169 if (SawNonEmptyTemplateParameterList) { 3170 if (!SuppressDiagnostic) 3171 Diag(DeclLoc, diag::err_specialize_member_of_template) 3172 << !Recovery << Range; 3173 Invalid = true; 3174 IsMemberSpecialization = false; 3175 return true; 3176 } 3177 3178 return false; 3179 }; 3180 3181 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 3182 // Check that we can have an explicit specialization here. 3183 if (CheckExplicitSpecialization(Range, true)) 3184 return true; 3185 3186 // We don't have a template header, but we should. 3187 SourceLocation ExpectedTemplateLoc; 3188 if (!ParamLists.empty()) 3189 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 3190 else 3191 ExpectedTemplateLoc = DeclStartLoc; 3192 3193 if (!SuppressDiagnostic) 3194 Diag(DeclLoc, diag::err_template_spec_needs_header) 3195 << Range 3196 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 3197 return false; 3198 }; 3199 3200 unsigned ParamIdx = 0; 3201 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 3202 ++TypeIdx) { 3203 T = NestedTypes[TypeIdx]; 3204 3205 // Whether we expect a 'template<>' header. 3206 bool NeedEmptyTemplateHeader = false; 3207 3208 // Whether we expect a template header with parameters. 3209 bool NeedNonemptyTemplateHeader = false; 3210 3211 // For a dependent type, the set of template parameters that we 3212 // expect to see. 3213 TemplateParameterList *ExpectedTemplateParams = nullptr; 3214 3215 // C++0x [temp.expl.spec]p15: 3216 // A member or a member template may be nested within many enclosing 3217 // class templates. In an explicit specialization for such a member, the 3218 // member declaration shall be preceded by a template<> for each 3219 // enclosing class template that is explicitly specialized. 3220 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 3221 if (ClassTemplatePartialSpecializationDecl *Partial 3222 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 3223 ExpectedTemplateParams = Partial->getTemplateParameters(); 3224 NeedNonemptyTemplateHeader = true; 3225 } else if (Record->isDependentType()) { 3226 if (Record->getDescribedClassTemplate()) { 3227 ExpectedTemplateParams = Record->getDescribedClassTemplate() 3228 ->getTemplateParameters(); 3229 NeedNonemptyTemplateHeader = true; 3230 } 3231 } else if (ClassTemplateSpecializationDecl *Spec 3232 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 3233 // C++0x [temp.expl.spec]p4: 3234 // Members of an explicitly specialized class template are defined 3235 // in the same manner as members of normal classes, and not using 3236 // the template<> syntax. 3237 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 3238 NeedEmptyTemplateHeader = true; 3239 else 3240 continue; 3241 } else if (Record->getTemplateSpecializationKind()) { 3242 if (Record->getTemplateSpecializationKind() 3243 != TSK_ExplicitSpecialization && 3244 TypeIdx == NumTypes - 1) 3245 IsMemberSpecialization = true; 3246 3247 continue; 3248 } 3249 } else if (const TemplateSpecializationType *TST 3250 = T->getAs<TemplateSpecializationType>()) { 3251 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3252 ExpectedTemplateParams = Template->getTemplateParameters(); 3253 NeedNonemptyTemplateHeader = true; 3254 } 3255 } else if (T->getAs<DependentTemplateSpecializationType>()) { 3256 // FIXME: We actually could/should check the template arguments here 3257 // against the corresponding template parameter list. 3258 NeedNonemptyTemplateHeader = false; 3259 } 3260 3261 // C++ [temp.expl.spec]p16: 3262 // In an explicit specialization declaration for a member of a class 3263 // template or a member template that ap- pears in namespace scope, the 3264 // member template and some of its enclosing class templates may remain 3265 // unspecialized, except that the declaration shall not explicitly 3266 // specialize a class member template if its en- closing class templates 3267 // are not explicitly specialized as well. 3268 if (ParamIdx < ParamLists.size()) { 3269 if (ParamLists[ParamIdx]->size() == 0) { 3270 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3271 false)) 3272 return nullptr; 3273 } else 3274 SawNonEmptyTemplateParameterList = true; 3275 } 3276 3277 if (NeedEmptyTemplateHeader) { 3278 // If we're on the last of the types, and we need a 'template<>' header 3279 // here, then it's a member specialization. 3280 if (TypeIdx == NumTypes - 1) 3281 IsMemberSpecialization = true; 3282 3283 if (ParamIdx < ParamLists.size()) { 3284 if (ParamLists[ParamIdx]->size() > 0) { 3285 // The header has template parameters when it shouldn't. Complain. 3286 if (!SuppressDiagnostic) 3287 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3288 diag::err_template_param_list_matches_nontemplate) 3289 << T 3290 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 3291 ParamLists[ParamIdx]->getRAngleLoc()) 3292 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3293 Invalid = true; 3294 return nullptr; 3295 } 3296 3297 // Consume this template header. 3298 ++ParamIdx; 3299 continue; 3300 } 3301 3302 if (!IsFriend) 3303 if (DiagnoseMissingExplicitSpecialization( 3304 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 3305 return nullptr; 3306 3307 continue; 3308 } 3309 3310 if (NeedNonemptyTemplateHeader) { 3311 // In friend declarations we can have template-ids which don't 3312 // depend on the corresponding template parameter lists. But 3313 // assume that empty parameter lists are supposed to match this 3314 // template-id. 3315 if (IsFriend && T->isDependentType()) { 3316 if (ParamIdx < ParamLists.size() && 3317 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 3318 ExpectedTemplateParams = nullptr; 3319 else 3320 continue; 3321 } 3322 3323 if (ParamIdx < ParamLists.size()) { 3324 // Check the template parameter list, if we can. 3325 if (ExpectedTemplateParams && 3326 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 3327 ExpectedTemplateParams, 3328 !SuppressDiagnostic, TPL_TemplateMatch)) 3329 Invalid = true; 3330 3331 if (!Invalid && 3332 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 3333 TPC_ClassTemplateMember)) 3334 Invalid = true; 3335 3336 ++ParamIdx; 3337 continue; 3338 } 3339 3340 if (!SuppressDiagnostic) 3341 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 3342 << T 3343 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3344 Invalid = true; 3345 continue; 3346 } 3347 } 3348 3349 // If there were at least as many template-ids as there were template 3350 // parameter lists, then there are no template parameter lists remaining for 3351 // the declaration itself. 3352 if (ParamIdx >= ParamLists.size()) { 3353 if (TemplateId && !IsFriend) { 3354 // We don't have a template header for the declaration itself, but we 3355 // should. 3356 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 3357 TemplateId->RAngleLoc)); 3358 3359 // Fabricate an empty template parameter list for the invented header. 3360 return TemplateParameterList::Create(Context, SourceLocation(), 3361 SourceLocation(), None, 3362 SourceLocation(), nullptr); 3363 } 3364 3365 return nullptr; 3366 } 3367 3368 // If there were too many template parameter lists, complain about that now. 3369 if (ParamIdx < ParamLists.size() - 1) { 3370 bool HasAnyExplicitSpecHeader = false; 3371 bool AllExplicitSpecHeaders = true; 3372 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 3373 if (ParamLists[I]->size() == 0) 3374 HasAnyExplicitSpecHeader = true; 3375 else 3376 AllExplicitSpecHeaders = false; 3377 } 3378 3379 if (!SuppressDiagnostic) 3380 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3381 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 3382 : diag::err_template_spec_extra_headers) 3383 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 3384 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 3385 3386 // If there was a specialization somewhere, such that 'template<>' is 3387 // not required, and there were any 'template<>' headers, note where the 3388 // specialization occurred. 3389 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && 3390 !SuppressDiagnostic) 3391 Diag(ExplicitSpecLoc, 3392 diag::note_explicit_template_spec_does_not_need_header) 3393 << NestedTypes.back(); 3394 3395 // We have a template parameter list with no corresponding scope, which 3396 // means that the resulting template declaration can't be instantiated 3397 // properly (we'll end up with dependent nodes when we shouldn't). 3398 if (!AllExplicitSpecHeaders) 3399 Invalid = true; 3400 } 3401 3402 // C++ [temp.expl.spec]p16: 3403 // In an explicit specialization declaration for a member of a class 3404 // template or a member template that ap- pears in namespace scope, the 3405 // member template and some of its enclosing class templates may remain 3406 // unspecialized, except that the declaration shall not explicitly 3407 // specialize a class member template if its en- closing class templates 3408 // are not explicitly specialized as well. 3409 if (ParamLists.back()->size() == 0 && 3410 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3411 false)) 3412 return nullptr; 3413 3414 // Return the last template parameter list, which corresponds to the 3415 // entity being declared. 3416 return ParamLists.back(); 3417 } 3418 3419 void Sema::NoteAllFoundTemplates(TemplateName Name) { 3420 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 3421 Diag(Template->getLocation(), diag::note_template_declared_here) 3422 << (isa<FunctionTemplateDecl>(Template) 3423 ? 0 3424 : isa<ClassTemplateDecl>(Template) 3425 ? 1 3426 : isa<VarTemplateDecl>(Template) 3427 ? 2 3428 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 3429 << Template->getDeclName(); 3430 return; 3431 } 3432 3433 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 3434 for (OverloadedTemplateStorage::iterator I = OST->begin(), 3435 IEnd = OST->end(); 3436 I != IEnd; ++I) 3437 Diag((*I)->getLocation(), diag::note_template_declared_here) 3438 << 0 << (*I)->getDeclName(); 3439 3440 return; 3441 } 3442 } 3443 3444 static QualType 3445 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, 3446 const SmallVectorImpl<TemplateArgument> &Converted, 3447 SourceLocation TemplateLoc, 3448 TemplateArgumentListInfo &TemplateArgs) { 3449 ASTContext &Context = SemaRef.getASTContext(); 3450 switch (BTD->getBuiltinTemplateKind()) { 3451 case BTK__make_integer_seq: { 3452 // Specializations of __make_integer_seq<S, T, N> are treated like 3453 // S<T, 0, ..., N-1>. 3454 3455 // C++14 [inteseq.intseq]p1: 3456 // T shall be an integer type. 3457 if (!Converted[1].getAsType()->isIntegralType(Context)) { 3458 SemaRef.Diag(TemplateArgs[1].getLocation(), 3459 diag::err_integer_sequence_integral_element_type); 3460 return QualType(); 3461 } 3462 3463 // C++14 [inteseq.make]p1: 3464 // If N is negative the program is ill-formed. 3465 TemplateArgument NumArgsArg = Converted[2]; 3466 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); 3467 if (NumArgs < 0) { 3468 SemaRef.Diag(TemplateArgs[2].getLocation(), 3469 diag::err_integer_sequence_negative_length); 3470 return QualType(); 3471 } 3472 3473 QualType ArgTy = NumArgsArg.getIntegralType(); 3474 TemplateArgumentListInfo SyntheticTemplateArgs; 3475 // The type argument gets reused as the first template argument in the 3476 // synthetic template argument list. 3477 SyntheticTemplateArgs.addArgument(TemplateArgs[1]); 3478 // Expand N into 0 ... N-1. 3479 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); 3480 I < NumArgs; ++I) { 3481 TemplateArgument TA(Context, I, ArgTy); 3482 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( 3483 TA, ArgTy, TemplateArgs[2].getLocation())); 3484 } 3485 // The first template argument will be reused as the template decl that 3486 // our synthetic template arguments will be applied to. 3487 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), 3488 TemplateLoc, SyntheticTemplateArgs); 3489 } 3490 3491 case BTK__type_pack_element: 3492 // Specializations of 3493 // __type_pack_element<Index, T_1, ..., T_N> 3494 // are treated like T_Index. 3495 assert(Converted.size() == 2 && 3496 "__type_pack_element should be given an index and a parameter pack"); 3497 3498 // If the Index is out of bounds, the program is ill-formed. 3499 TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; 3500 llvm::APSInt Index = IndexArg.getAsIntegral(); 3501 assert(Index >= 0 && "the index used with __type_pack_element should be of " 3502 "type std::size_t, and hence be non-negative"); 3503 if (Index >= Ts.pack_size()) { 3504 SemaRef.Diag(TemplateArgs[0].getLocation(), 3505 diag::err_type_pack_element_out_of_bounds); 3506 return QualType(); 3507 } 3508 3509 // We simply return the type at index `Index`. 3510 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue()); 3511 return Nth->getAsType(); 3512 } 3513 llvm_unreachable("unexpected BuiltinTemplateDecl!"); 3514 } 3515 3516 /// Determine whether this alias template is "enable_if_t". 3517 /// libc++ >=14 uses "__enable_if_t" in C++11 mode. 3518 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { 3519 return AliasTemplate->getName().equals("enable_if_t") || 3520 AliasTemplate->getName().equals("__enable_if_t"); 3521 } 3522 3523 /// Collect all of the separable terms in the given condition, which 3524 /// might be a conjunction. 3525 /// 3526 /// FIXME: The right answer is to convert the logical expression into 3527 /// disjunctive normal form, so we can find the first failed term 3528 /// within each possible clause. 3529 static void collectConjunctionTerms(Expr *Clause, 3530 SmallVectorImpl<Expr *> &Terms) { 3531 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { 3532 if (BinOp->getOpcode() == BO_LAnd) { 3533 collectConjunctionTerms(BinOp->getLHS(), Terms); 3534 collectConjunctionTerms(BinOp->getRHS(), Terms); 3535 } 3536 3537 return; 3538 } 3539 3540 Terms.push_back(Clause); 3541 } 3542 3543 // The ranges-v3 library uses an odd pattern of a top-level "||" with 3544 // a left-hand side that is value-dependent but never true. Identify 3545 // the idiom and ignore that term. 3546 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { 3547 // Top-level '||'. 3548 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); 3549 if (!BinOp) return Cond; 3550 3551 if (BinOp->getOpcode() != BO_LOr) return Cond; 3552 3553 // With an inner '==' that has a literal on the right-hand side. 3554 Expr *LHS = BinOp->getLHS(); 3555 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); 3556 if (!InnerBinOp) return Cond; 3557 3558 if (InnerBinOp->getOpcode() != BO_EQ || 3559 !isa<IntegerLiteral>(InnerBinOp->getRHS())) 3560 return Cond; 3561 3562 // If the inner binary operation came from a macro expansion named 3563 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side 3564 // of the '||', which is the real, user-provided condition. 3565 SourceLocation Loc = InnerBinOp->getExprLoc(); 3566 if (!Loc.isMacroID()) return Cond; 3567 3568 StringRef MacroName = PP.getImmediateMacroName(Loc); 3569 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") 3570 return BinOp->getRHS(); 3571 3572 return Cond; 3573 } 3574 3575 namespace { 3576 3577 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions 3578 // within failing boolean expression, such as substituting template parameters 3579 // for actual types. 3580 class FailedBooleanConditionPrinterHelper : public PrinterHelper { 3581 public: 3582 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) 3583 : Policy(P) {} 3584 3585 bool handledStmt(Stmt *E, raw_ostream &OS) override { 3586 const auto *DR = dyn_cast<DeclRefExpr>(E); 3587 if (DR && DR->getQualifier()) { 3588 // If this is a qualified name, expand the template arguments in nested 3589 // qualifiers. 3590 DR->getQualifier()->print(OS, Policy, true); 3591 // Then print the decl itself. 3592 const ValueDecl *VD = DR->getDecl(); 3593 OS << VD->getName(); 3594 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 3595 // This is a template variable, print the expanded template arguments. 3596 printTemplateArgumentList( 3597 OS, IV->getTemplateArgs().asArray(), Policy, 3598 IV->getSpecializedTemplate()->getTemplateParameters()); 3599 } 3600 return true; 3601 } 3602 return false; 3603 } 3604 3605 private: 3606 const PrintingPolicy Policy; 3607 }; 3608 3609 } // end anonymous namespace 3610 3611 std::pair<Expr *, std::string> 3612 Sema::findFailedBooleanCondition(Expr *Cond) { 3613 Cond = lookThroughRangesV3Condition(PP, Cond); 3614 3615 // Separate out all of the terms in a conjunction. 3616 SmallVector<Expr *, 4> Terms; 3617 collectConjunctionTerms(Cond, Terms); 3618 3619 // Determine which term failed. 3620 Expr *FailedCond = nullptr; 3621 for (Expr *Term : Terms) { 3622 Expr *TermAsWritten = Term->IgnoreParenImpCasts(); 3623 3624 // Literals are uninteresting. 3625 if (isa<CXXBoolLiteralExpr>(TermAsWritten) || 3626 isa<IntegerLiteral>(TermAsWritten)) 3627 continue; 3628 3629 // The initialization of the parameter from the argument is 3630 // a constant-evaluated context. 3631 EnterExpressionEvaluationContext ConstantEvaluated( 3632 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3633 3634 bool Succeeded; 3635 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && 3636 !Succeeded) { 3637 FailedCond = TermAsWritten; 3638 break; 3639 } 3640 } 3641 if (!FailedCond) 3642 FailedCond = Cond->IgnoreParenImpCasts(); 3643 3644 std::string Description; 3645 { 3646 llvm::raw_string_ostream Out(Description); 3647 PrintingPolicy Policy = getPrintingPolicy(); 3648 Policy.PrintCanonicalTypes = true; 3649 FailedBooleanConditionPrinterHelper Helper(Policy); 3650 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); 3651 } 3652 return { FailedCond, Description }; 3653 } 3654 3655 QualType Sema::CheckTemplateIdType(TemplateName Name, 3656 SourceLocation TemplateLoc, 3657 TemplateArgumentListInfo &TemplateArgs) { 3658 DependentTemplateName *DTN 3659 = Name.getUnderlying().getAsDependentTemplateName(); 3660 if (DTN && DTN->isIdentifier()) 3661 // When building a template-id where the template-name is dependent, 3662 // assume the template is a type template. Either our assumption is 3663 // correct, or the code is ill-formed and will be diagnosed when the 3664 // dependent name is substituted. 3665 return Context.getDependentTemplateSpecializationType(ETK_None, 3666 DTN->getQualifier(), 3667 DTN->getIdentifier(), 3668 TemplateArgs); 3669 3670 if (Name.getAsAssumedTemplateName() && 3671 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc)) 3672 return QualType(); 3673 3674 TemplateDecl *Template = Name.getAsTemplateDecl(); 3675 if (!Template || isa<FunctionTemplateDecl>(Template) || 3676 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) { 3677 // We might have a substituted template template parameter pack. If so, 3678 // build a template specialization type for it. 3679 if (Name.getAsSubstTemplateTemplateParmPack()) 3680 return Context.getTemplateSpecializationType(Name, TemplateArgs); 3681 3682 Diag(TemplateLoc, diag::err_template_id_not_a_type) 3683 << Name; 3684 NoteAllFoundTemplates(Name); 3685 return QualType(); 3686 } 3687 3688 // Check that the template argument list is well-formed for this 3689 // template. 3690 SmallVector<TemplateArgument, 4> Converted; 3691 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 3692 false, Converted, 3693 /*UpdateArgsWithConversions=*/true)) 3694 return QualType(); 3695 3696 QualType CanonType; 3697 3698 if (TypeAliasTemplateDecl *AliasTemplate = 3699 dyn_cast<TypeAliasTemplateDecl>(Template)) { 3700 3701 // Find the canonical type for this type alias template specialization. 3702 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 3703 if (Pattern->isInvalidDecl()) 3704 return QualType(); 3705 3706 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack, 3707 Converted); 3708 3709 // Only substitute for the innermost template argument list. 3710 MultiLevelTemplateArgumentList TemplateArgLists; 3711 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs); 3712 TemplateArgLists.addOuterRetainedLevels( 3713 AliasTemplate->getTemplateParameters()->getDepth()); 3714 3715 LocalInstantiationScope Scope(*this); 3716 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 3717 if (Inst.isInvalid()) 3718 return QualType(); 3719 3720 CanonType = SubstType(Pattern->getUnderlyingType(), 3721 TemplateArgLists, AliasTemplate->getLocation(), 3722 AliasTemplate->getDeclName()); 3723 if (CanonType.isNull()) { 3724 // If this was enable_if and we failed to find the nested type 3725 // within enable_if in a SFINAE context, dig out the specific 3726 // enable_if condition that failed and present that instead. 3727 if (isEnableIfAliasTemplate(AliasTemplate)) { 3728 if (auto DeductionInfo = isSFINAEContext()) { 3729 if (*DeductionInfo && 3730 (*DeductionInfo)->hasSFINAEDiagnostic() && 3731 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == 3732 diag::err_typename_nested_not_found_enable_if && 3733 TemplateArgs[0].getArgument().getKind() 3734 == TemplateArgument::Expression) { 3735 Expr *FailedCond; 3736 std::string FailedDescription; 3737 std::tie(FailedCond, FailedDescription) = 3738 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression()); 3739 3740 // Remove the old SFINAE diagnostic. 3741 PartialDiagnosticAt OldDiag = 3742 {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; 3743 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); 3744 3745 // Add a new SFINAE diagnostic specifying which condition 3746 // failed. 3747 (*DeductionInfo)->addSFINAEDiagnostic( 3748 OldDiag.first, 3749 PDiag(diag::err_typename_nested_not_found_requirement) 3750 << FailedDescription 3751 << FailedCond->getSourceRange()); 3752 } 3753 } 3754 } 3755 3756 return QualType(); 3757 } 3758 } else if (Name.isDependent() || 3759 TemplateSpecializationType::anyDependentTemplateArguments( 3760 TemplateArgs, Converted)) { 3761 // This class template specialization is a dependent 3762 // type. Therefore, its canonical type is another class template 3763 // specialization type that contains all of the converted 3764 // arguments in canonical form. This ensures that, e.g., A<T> and 3765 // A<T, T> have identical types when A is declared as: 3766 // 3767 // template<typename T, typename U = T> struct A; 3768 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted); 3769 3770 // This might work out to be a current instantiation, in which 3771 // case the canonical type needs to be the InjectedClassNameType. 3772 // 3773 // TODO: in theory this could be a simple hashtable lookup; most 3774 // changes to CurContext don't change the set of current 3775 // instantiations. 3776 if (isa<ClassTemplateDecl>(Template)) { 3777 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 3778 // If we get out to a namespace, we're done. 3779 if (Ctx->isFileContext()) break; 3780 3781 // If this isn't a record, keep looking. 3782 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 3783 if (!Record) continue; 3784 3785 // Look for one of the two cases with InjectedClassNameTypes 3786 // and check whether it's the same template. 3787 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 3788 !Record->getDescribedClassTemplate()) 3789 continue; 3790 3791 // Fetch the injected class name type and check whether its 3792 // injected type is equal to the type we just built. 3793 QualType ICNT = Context.getTypeDeclType(Record); 3794 QualType Injected = cast<InjectedClassNameType>(ICNT) 3795 ->getInjectedSpecializationType(); 3796 3797 if (CanonType != Injected->getCanonicalTypeInternal()) 3798 continue; 3799 3800 // If so, the canonical type of this TST is the injected 3801 // class name type of the record we just found. 3802 assert(ICNT.isCanonical()); 3803 CanonType = ICNT; 3804 break; 3805 } 3806 } 3807 } else if (ClassTemplateDecl *ClassTemplate 3808 = dyn_cast<ClassTemplateDecl>(Template)) { 3809 // Find the class template specialization declaration that 3810 // corresponds to these arguments. 3811 void *InsertPos = nullptr; 3812 ClassTemplateSpecializationDecl *Decl 3813 = ClassTemplate->findSpecialization(Converted, InsertPos); 3814 if (!Decl) { 3815 // This is the first time we have referenced this class template 3816 // specialization. Create the canonical declaration and add it to 3817 // the set of specializations. 3818 Decl = ClassTemplateSpecializationDecl::Create( 3819 Context, ClassTemplate->getTemplatedDecl()->getTagKind(), 3820 ClassTemplate->getDeclContext(), 3821 ClassTemplate->getTemplatedDecl()->getBeginLoc(), 3822 ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr); 3823 ClassTemplate->AddSpecialization(Decl, InsertPos); 3824 if (ClassTemplate->isOutOfLine()) 3825 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 3826 } 3827 3828 if (Decl->getSpecializationKind() == TSK_Undeclared && 3829 ClassTemplate->getTemplatedDecl()->hasAttrs()) { 3830 InstantiatingTemplate Inst(*this, TemplateLoc, Decl); 3831 if (!Inst.isInvalid()) { 3832 MultiLevelTemplateArgumentList TemplateArgLists; 3833 TemplateArgLists.addOuterTemplateArguments(Converted); 3834 InstantiateAttrsForDecl(TemplateArgLists, 3835 ClassTemplate->getTemplatedDecl(), Decl); 3836 } 3837 } 3838 3839 // Diagnose uses of this specialization. 3840 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 3841 3842 CanonType = Context.getTypeDeclType(Decl); 3843 assert(isa<RecordType>(CanonType) && 3844 "type of non-dependent specialization is not a RecordType"); 3845 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { 3846 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc, 3847 TemplateArgs); 3848 } 3849 3850 // Build the fully-sugared type for this class template 3851 // specialization, which refers back to the class template 3852 // specialization we created or found. 3853 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 3854 } 3855 3856 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, 3857 TemplateNameKind &TNK, 3858 SourceLocation NameLoc, 3859 IdentifierInfo *&II) { 3860 assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); 3861 3862 TemplateName Name = ParsedName.get(); 3863 auto *ATN = Name.getAsAssumedTemplateName(); 3864 assert(ATN && "not an assumed template name"); 3865 II = ATN->getDeclName().getAsIdentifierInfo(); 3866 3867 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { 3868 // Resolved to a type template name. 3869 ParsedName = TemplateTy::make(Name); 3870 TNK = TNK_Type_template; 3871 } 3872 } 3873 3874 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, 3875 SourceLocation NameLoc, 3876 bool Diagnose) { 3877 // We assumed this undeclared identifier to be an (ADL-only) function 3878 // template name, but it was used in a context where a type was required. 3879 // Try to typo-correct it now. 3880 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); 3881 assert(ATN && "not an assumed template name"); 3882 3883 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); 3884 struct CandidateCallback : CorrectionCandidateCallback { 3885 bool ValidateCandidate(const TypoCorrection &TC) override { 3886 return TC.getCorrectionDecl() && 3887 getAsTypeTemplateDecl(TC.getCorrectionDecl()); 3888 } 3889 std::unique_ptr<CorrectionCandidateCallback> clone() override { 3890 return std::make_unique<CandidateCallback>(*this); 3891 } 3892 } FilterCCC; 3893 3894 TypoCorrection Corrected = 3895 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr, 3896 FilterCCC, CTK_ErrorRecovery); 3897 if (Corrected && Corrected.getFoundDecl()) { 3898 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) 3899 << ATN->getDeclName()); 3900 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()); 3901 return false; 3902 } 3903 3904 if (Diagnose) 3905 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); 3906 return true; 3907 } 3908 3909 TypeResult Sema::ActOnTemplateIdType( 3910 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 3911 TemplateTy TemplateD, IdentifierInfo *TemplateII, 3912 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 3913 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, 3914 bool IsCtorOrDtorName, bool IsClassName) { 3915 if (SS.isInvalid()) 3916 return true; 3917 3918 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { 3919 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); 3920 3921 // C++ [temp.res]p3: 3922 // A qualified-id that refers to a type and in which the 3923 // nested-name-specifier depends on a template-parameter (14.6.2) 3924 // shall be prefixed by the keyword typename to indicate that the 3925 // qualified-id denotes a type, forming an 3926 // elaborated-type-specifier (7.1.5.3). 3927 if (!LookupCtx && isDependentScopeSpecifier(SS)) { 3928 Diag(SS.getBeginLoc(), diag::err_typename_missing_template) 3929 << SS.getScopeRep() << TemplateII->getName(); 3930 // Recover as if 'typename' were specified. 3931 // FIXME: This is not quite correct recovery as we don't transform SS 3932 // into the corresponding dependent form (and we don't diagnose missing 3933 // 'template' keywords within SS as a result). 3934 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, 3935 TemplateD, TemplateII, TemplateIILoc, LAngleLoc, 3936 TemplateArgsIn, RAngleLoc); 3937 } 3938 3939 // Per C++ [class.qual]p2, if the template-id was an injected-class-name, 3940 // it's not actually allowed to be used as a type in most cases. Because 3941 // we annotate it before we know whether it's valid, we have to check for 3942 // this case here. 3943 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 3944 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 3945 Diag(TemplateIILoc, 3946 TemplateKWLoc.isInvalid() 3947 ? diag::err_out_of_line_qualified_id_type_names_constructor 3948 : diag::ext_out_of_line_qualified_id_type_names_constructor) 3949 << TemplateII << 0 /*injected-class-name used as template name*/ 3950 << 1 /*if any keyword was present, it was 'template'*/; 3951 } 3952 } 3953 3954 TemplateName Template = TemplateD.get(); 3955 if (Template.getAsAssumedTemplateName() && 3956 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc)) 3957 return true; 3958 3959 // Translate the parser's template argument list in our AST format. 3960 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3961 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3962 3963 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3964 QualType T 3965 = Context.getDependentTemplateSpecializationType(ETK_None, 3966 DTN->getQualifier(), 3967 DTN->getIdentifier(), 3968 TemplateArgs); 3969 // Build type-source information. 3970 TypeLocBuilder TLB; 3971 DependentTemplateSpecializationTypeLoc SpecTL 3972 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3973 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 3974 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3975 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3976 SpecTL.setTemplateNameLoc(TemplateIILoc); 3977 SpecTL.setLAngleLoc(LAngleLoc); 3978 SpecTL.setRAngleLoc(RAngleLoc); 3979 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3980 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3981 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3982 } 3983 3984 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 3985 if (Result.isNull()) 3986 return true; 3987 3988 // Build type-source information. 3989 TypeLocBuilder TLB; 3990 TemplateSpecializationTypeLoc SpecTL 3991 = TLB.push<TemplateSpecializationTypeLoc>(Result); 3992 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3993 SpecTL.setTemplateNameLoc(TemplateIILoc); 3994 SpecTL.setLAngleLoc(LAngleLoc); 3995 SpecTL.setRAngleLoc(RAngleLoc); 3996 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3997 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3998 3999 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 4000 // constructor or destructor name (in such a case, the scope specifier 4001 // will be attached to the enclosing Decl or Expr node). 4002 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 4003 // Create an elaborated-type-specifier containing the nested-name-specifier. 4004 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 4005 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 4006 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 4007 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4008 } 4009 4010 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 4011 } 4012 4013 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 4014 TypeSpecifierType TagSpec, 4015 SourceLocation TagLoc, 4016 CXXScopeSpec &SS, 4017 SourceLocation TemplateKWLoc, 4018 TemplateTy TemplateD, 4019 SourceLocation TemplateLoc, 4020 SourceLocation LAngleLoc, 4021 ASTTemplateArgsPtr TemplateArgsIn, 4022 SourceLocation RAngleLoc) { 4023 if (SS.isInvalid()) 4024 return TypeResult(true); 4025 4026 TemplateName Template = TemplateD.get(); 4027 4028 // Translate the parser's template argument list in our AST format. 4029 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4030 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4031 4032 // Determine the tag kind 4033 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4034 ElaboratedTypeKeyword Keyword 4035 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 4036 4037 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 4038 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 4039 DTN->getQualifier(), 4040 DTN->getIdentifier(), 4041 TemplateArgs); 4042 4043 // Build type-source information. 4044 TypeLocBuilder TLB; 4045 DependentTemplateSpecializationTypeLoc SpecTL 4046 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 4047 SpecTL.setElaboratedKeywordLoc(TagLoc); 4048 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4049 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4050 SpecTL.setTemplateNameLoc(TemplateLoc); 4051 SpecTL.setLAngleLoc(LAngleLoc); 4052 SpecTL.setRAngleLoc(RAngleLoc); 4053 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 4054 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 4055 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 4056 } 4057 4058 if (TypeAliasTemplateDecl *TAT = 4059 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 4060 // C++0x [dcl.type.elab]p2: 4061 // If the identifier resolves to a typedef-name or the simple-template-id 4062 // resolves to an alias template specialization, the 4063 // elaborated-type-specifier is ill-formed. 4064 Diag(TemplateLoc, diag::err_tag_reference_non_tag) 4065 << TAT << NTK_TypeAliasTemplate << TagKind; 4066 Diag(TAT->getLocation(), diag::note_declared_at); 4067 } 4068 4069 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 4070 if (Result.isNull()) 4071 return TypeResult(true); 4072 4073 // Check the tag kind 4074 if (const RecordType *RT = Result->getAs<RecordType>()) { 4075 RecordDecl *D = RT->getDecl(); 4076 4077 IdentifierInfo *Id = D->getIdentifier(); 4078 assert(Id && "templated class must have an identifier"); 4079 4080 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 4081 TagLoc, Id)) { 4082 Diag(TagLoc, diag::err_use_with_wrong_tag) 4083 << Result 4084 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 4085 Diag(D->getLocation(), diag::note_previous_use); 4086 } 4087 } 4088 4089 // Provide source-location information for the template specialization. 4090 TypeLocBuilder TLB; 4091 TemplateSpecializationTypeLoc SpecTL 4092 = TLB.push<TemplateSpecializationTypeLoc>(Result); 4093 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4094 SpecTL.setTemplateNameLoc(TemplateLoc); 4095 SpecTL.setLAngleLoc(LAngleLoc); 4096 SpecTL.setRAngleLoc(RAngleLoc); 4097 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 4098 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 4099 4100 // Construct an elaborated type containing the nested-name-specifier (if any) 4101 // and tag keyword. 4102 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 4103 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 4104 ElabTL.setElaboratedKeywordLoc(TagLoc); 4105 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4106 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 4107 } 4108 4109 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 4110 NamedDecl *PrevDecl, 4111 SourceLocation Loc, 4112 bool IsPartialSpecialization); 4113 4114 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 4115 4116 static bool isTemplateArgumentTemplateParameter( 4117 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 4118 switch (Arg.getKind()) { 4119 case TemplateArgument::Null: 4120 case TemplateArgument::NullPtr: 4121 case TemplateArgument::Integral: 4122 case TemplateArgument::Declaration: 4123 case TemplateArgument::Pack: 4124 case TemplateArgument::TemplateExpansion: 4125 return false; 4126 4127 case TemplateArgument::Type: { 4128 QualType Type = Arg.getAsType(); 4129 const TemplateTypeParmType *TPT = 4130 Arg.getAsType()->getAs<TemplateTypeParmType>(); 4131 return TPT && !Type.hasQualifiers() && 4132 TPT->getDepth() == Depth && TPT->getIndex() == Index; 4133 } 4134 4135 case TemplateArgument::Expression: { 4136 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 4137 if (!DRE || !DRE->getDecl()) 4138 return false; 4139 const NonTypeTemplateParmDecl *NTTP = 4140 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 4141 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 4142 } 4143 4144 case TemplateArgument::Template: 4145 const TemplateTemplateParmDecl *TTP = 4146 dyn_cast_or_null<TemplateTemplateParmDecl>( 4147 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 4148 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 4149 } 4150 llvm_unreachable("unexpected kind of template argument"); 4151 } 4152 4153 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 4154 ArrayRef<TemplateArgument> Args) { 4155 if (Params->size() != Args.size()) 4156 return false; 4157 4158 unsigned Depth = Params->getDepth(); 4159 4160 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 4161 TemplateArgument Arg = Args[I]; 4162 4163 // If the parameter is a pack expansion, the argument must be a pack 4164 // whose only element is a pack expansion. 4165 if (Params->getParam(I)->isParameterPack()) { 4166 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 4167 !Arg.pack_begin()->isPackExpansion()) 4168 return false; 4169 Arg = Arg.pack_begin()->getPackExpansionPattern(); 4170 } 4171 4172 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 4173 return false; 4174 } 4175 4176 return true; 4177 } 4178 4179 template<typename PartialSpecDecl> 4180 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { 4181 if (Partial->getDeclContext()->isDependentContext()) 4182 return; 4183 4184 // FIXME: Get the TDK from deduction in order to provide better diagnostics 4185 // for non-substitution-failure issues? 4186 TemplateDeductionInfo Info(Partial->getLocation()); 4187 if (S.isMoreSpecializedThanPrimary(Partial, Info)) 4188 return; 4189 4190 auto *Template = Partial->getSpecializedTemplate(); 4191 S.Diag(Partial->getLocation(), 4192 diag::ext_partial_spec_not_more_specialized_than_primary) 4193 << isa<VarTemplateDecl>(Template); 4194 4195 if (Info.hasSFINAEDiagnostic()) { 4196 PartialDiagnosticAt Diag = {SourceLocation(), 4197 PartialDiagnostic::NullDiagnostic()}; 4198 Info.takeSFINAEDiagnostic(Diag); 4199 SmallString<128> SFINAEArgString; 4200 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); 4201 S.Diag(Diag.first, 4202 diag::note_partial_spec_not_more_specialized_than_primary) 4203 << SFINAEArgString; 4204 } 4205 4206 S.Diag(Template->getLocation(), diag::note_template_decl_here); 4207 SmallVector<const Expr *, 3> PartialAC, TemplateAC; 4208 Template->getAssociatedConstraints(TemplateAC); 4209 Partial->getAssociatedConstraints(PartialAC); 4210 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template, 4211 TemplateAC); 4212 } 4213 4214 static void 4215 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, 4216 const llvm::SmallBitVector &DeducibleParams) { 4217 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4218 if (!DeducibleParams[I]) { 4219 NamedDecl *Param = TemplateParams->getParam(I); 4220 if (Param->getDeclName()) 4221 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4222 << Param->getDeclName(); 4223 else 4224 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4225 << "(anonymous)"; 4226 } 4227 } 4228 } 4229 4230 4231 template<typename PartialSpecDecl> 4232 static void checkTemplatePartialSpecialization(Sema &S, 4233 PartialSpecDecl *Partial) { 4234 // C++1z [temp.class.spec]p8: (DR1495) 4235 // - The specialization shall be more specialized than the primary 4236 // template (14.5.5.2). 4237 checkMoreSpecializedThanPrimary(S, Partial); 4238 4239 // C++ [temp.class.spec]p8: (DR1315) 4240 // - Each template-parameter shall appear at least once in the 4241 // template-id outside a non-deduced context. 4242 // C++1z [temp.class.spec.match]p3 (P0127R2) 4243 // If the template arguments of a partial specialization cannot be 4244 // deduced because of the structure of its template-parameter-list 4245 // and the template-id, the program is ill-formed. 4246 auto *TemplateParams = Partial->getTemplateParameters(); 4247 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4248 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4249 TemplateParams->getDepth(), DeducibleParams); 4250 4251 if (!DeducibleParams.all()) { 4252 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4253 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) 4254 << isa<VarTemplatePartialSpecializationDecl>(Partial) 4255 << (NumNonDeducible > 1) 4256 << SourceRange(Partial->getLocation(), 4257 Partial->getTemplateArgsAsWritten()->RAngleLoc); 4258 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); 4259 } 4260 } 4261 4262 void Sema::CheckTemplatePartialSpecialization( 4263 ClassTemplatePartialSpecializationDecl *Partial) { 4264 checkTemplatePartialSpecialization(*this, Partial); 4265 } 4266 4267 void Sema::CheckTemplatePartialSpecialization( 4268 VarTemplatePartialSpecializationDecl *Partial) { 4269 checkTemplatePartialSpecialization(*this, Partial); 4270 } 4271 4272 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { 4273 // C++1z [temp.param]p11: 4274 // A template parameter of a deduction guide template that does not have a 4275 // default-argument shall be deducible from the parameter-type-list of the 4276 // deduction guide template. 4277 auto *TemplateParams = TD->getTemplateParameters(); 4278 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4279 MarkDeducedTemplateParameters(TD, DeducibleParams); 4280 for (unsigned I = 0; I != TemplateParams->size(); ++I) { 4281 // A parameter pack is deducible (to an empty pack). 4282 auto *Param = TemplateParams->getParam(I); 4283 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) 4284 DeducibleParams[I] = true; 4285 } 4286 4287 if (!DeducibleParams.all()) { 4288 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4289 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) 4290 << (NumNonDeducible > 1); 4291 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); 4292 } 4293 } 4294 4295 DeclResult Sema::ActOnVarTemplateSpecialization( 4296 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, 4297 TemplateParameterList *TemplateParams, StorageClass SC, 4298 bool IsPartialSpecialization) { 4299 // D must be variable template id. 4300 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && 4301 "Variable template specialization is declared with a template id."); 4302 4303 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4304 TemplateArgumentListInfo TemplateArgs = 4305 makeTemplateArgumentListInfo(*this, *TemplateId); 4306 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 4307 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 4308 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 4309 4310 TemplateName Name = TemplateId->Template.get(); 4311 4312 // The template-id must name a variable template. 4313 VarTemplateDecl *VarTemplate = 4314 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 4315 if (!VarTemplate) { 4316 NamedDecl *FnTemplate; 4317 if (auto *OTS = Name.getAsOverloadedTemplate()) 4318 FnTemplate = *OTS->begin(); 4319 else 4320 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4321 if (FnTemplate) 4322 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 4323 << FnTemplate->getDeclName(); 4324 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 4325 << IsPartialSpecialization; 4326 } 4327 4328 // Check for unexpanded parameter packs in any of the template arguments. 4329 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4330 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4331 UPPC_PartialSpecialization)) 4332 return true; 4333 4334 // Check that the template argument list is well-formed for this 4335 // template. 4336 SmallVector<TemplateArgument, 4> Converted; 4337 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 4338 false, Converted, 4339 /*UpdateArgsWithConversions=*/true)) 4340 return true; 4341 4342 // Find the variable template (partial) specialization declaration that 4343 // corresponds to these arguments. 4344 if (IsPartialSpecialization) { 4345 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, 4346 TemplateArgs.size(), Converted)) 4347 return true; 4348 4349 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we 4350 // also do them during instantiation. 4351 if (!Name.isDependent() && 4352 !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, 4353 Converted)) { 4354 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4355 << VarTemplate->getDeclName(); 4356 IsPartialSpecialization = false; 4357 } 4358 4359 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 4360 Converted) && 4361 (!Context.getLangOpts().CPlusPlus20 || 4362 !TemplateParams->hasAssociatedConstraints())) { 4363 // C++ [temp.class.spec]p9b3: 4364 // 4365 // -- The argument list of the specialization shall not be identical 4366 // to the implicit argument list of the primary template. 4367 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4368 << /*variable template*/ 1 4369 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) 4370 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4371 // FIXME: Recover from this by treating the declaration as a redeclaration 4372 // of the primary template. 4373 return true; 4374 } 4375 } 4376 4377 void *InsertPos = nullptr; 4378 VarTemplateSpecializationDecl *PrevDecl = nullptr; 4379 4380 if (IsPartialSpecialization) 4381 PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams, 4382 InsertPos); 4383 else 4384 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos); 4385 4386 VarTemplateSpecializationDecl *Specialization = nullptr; 4387 4388 // Check whether we can declare a variable template specialization in 4389 // the current scope. 4390 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 4391 TemplateNameLoc, 4392 IsPartialSpecialization)) 4393 return true; 4394 4395 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4396 // Since the only prior variable template specialization with these 4397 // arguments was referenced but not declared, reuse that 4398 // declaration node as our own, updating its source location and 4399 // the list of outer template parameters to reflect our new declaration. 4400 Specialization = PrevDecl; 4401 Specialization->setLocation(TemplateNameLoc); 4402 PrevDecl = nullptr; 4403 } else if (IsPartialSpecialization) { 4404 // Create a new class template partial specialization declaration node. 4405 VarTemplatePartialSpecializationDecl *PrevPartial = 4406 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 4407 VarTemplatePartialSpecializationDecl *Partial = 4408 VarTemplatePartialSpecializationDecl::Create( 4409 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 4410 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 4411 Converted, TemplateArgs); 4412 4413 if (!PrevPartial) 4414 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 4415 Specialization = Partial; 4416 4417 // If we are providing an explicit specialization of a member variable 4418 // template specialization, make a note of that. 4419 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4420 PrevPartial->setMemberSpecialization(); 4421 4422 CheckTemplatePartialSpecialization(Partial); 4423 } else { 4424 // Create a new class template specialization declaration node for 4425 // this explicit specialization or friend declaration. 4426 Specialization = VarTemplateSpecializationDecl::Create( 4427 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 4428 VarTemplate, DI->getType(), DI, SC, Converted); 4429 Specialization->setTemplateArgsInfo(TemplateArgs); 4430 4431 if (!PrevDecl) 4432 VarTemplate->AddSpecialization(Specialization, InsertPos); 4433 } 4434 4435 // C++ [temp.expl.spec]p6: 4436 // If a template, a member template or the member of a class template is 4437 // explicitly specialized then that specialization shall be declared 4438 // before the first use of that specialization that would cause an implicit 4439 // instantiation to take place, in every translation unit in which such a 4440 // use occurs; no diagnostic is required. 4441 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4442 bool Okay = false; 4443 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 4444 // Is there any previous explicit specialization declaration? 4445 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4446 Okay = true; 4447 break; 4448 } 4449 } 4450 4451 if (!Okay) { 4452 SourceRange Range(TemplateNameLoc, RAngleLoc); 4453 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4454 << Name << Range; 4455 4456 Diag(PrevDecl->getPointOfInstantiation(), 4457 diag::note_instantiation_required_here) 4458 << (PrevDecl->getTemplateSpecializationKind() != 4459 TSK_ImplicitInstantiation); 4460 return true; 4461 } 4462 } 4463 4464 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 4465 Specialization->setLexicalDeclContext(CurContext); 4466 4467 // Add the specialization into its lexical context, so that it can 4468 // be seen when iterating through the list of declarations in that 4469 // context. However, specializations are not found by name lookup. 4470 CurContext->addDecl(Specialization); 4471 4472 // Note that this is an explicit specialization. 4473 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4474 4475 if (PrevDecl) { 4476 // Check that this isn't a redefinition of this specialization, 4477 // merging with previous declarations. 4478 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 4479 forRedeclarationInCurContext()); 4480 PrevSpec.addDecl(PrevDecl); 4481 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 4482 } else if (Specialization->isStaticDataMember() && 4483 Specialization->isOutOfLine()) { 4484 Specialization->setAccess(VarTemplate->getAccess()); 4485 } 4486 4487 return Specialization; 4488 } 4489 4490 namespace { 4491 /// A partial specialization whose template arguments have matched 4492 /// a given template-id. 4493 struct PartialSpecMatchResult { 4494 VarTemplatePartialSpecializationDecl *Partial; 4495 TemplateArgumentList *Args; 4496 }; 4497 } // end anonymous namespace 4498 4499 DeclResult 4500 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 4501 SourceLocation TemplateNameLoc, 4502 const TemplateArgumentListInfo &TemplateArgs) { 4503 assert(Template && "A variable template id without template?"); 4504 4505 // Check that the template argument list is well-formed for this template. 4506 SmallVector<TemplateArgument, 4> Converted; 4507 if (CheckTemplateArgumentList( 4508 Template, TemplateNameLoc, 4509 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 4510 Converted, /*UpdateArgsWithConversions=*/true)) 4511 return true; 4512 4513 // Produce a placeholder value if the specialization is dependent. 4514 if (Template->getDeclContext()->isDependentContext() || 4515 TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, 4516 Converted)) 4517 return DeclResult(); 4518 4519 // Find the variable template specialization declaration that 4520 // corresponds to these arguments. 4521 void *InsertPos = nullptr; 4522 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( 4523 Converted, InsertPos)) { 4524 checkSpecializationVisibility(TemplateNameLoc, Spec); 4525 // If we already have a variable template specialization, return it. 4526 return Spec; 4527 } 4528 4529 // This is the first time we have referenced this variable template 4530 // specialization. Create the canonical declaration and add it to 4531 // the set of specializations, based on the closest partial specialization 4532 // that it represents. That is, 4533 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 4534 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 4535 Converted); 4536 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 4537 bool AmbiguousPartialSpec = false; 4538 typedef PartialSpecMatchResult MatchResult; 4539 SmallVector<MatchResult, 4> Matched; 4540 SourceLocation PointOfInstantiation = TemplateNameLoc; 4541 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, 4542 /*ForTakingAddress=*/false); 4543 4544 // 1. Attempt to find the closest partial specialization that this 4545 // specializes, if any. 4546 // TODO: Unify with InstantiateClassTemplateSpecialization()? 4547 // Perhaps better after unification of DeduceTemplateArguments() and 4548 // getMoreSpecializedPartialSpecialization(). 4549 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 4550 Template->getPartialSpecializations(PartialSpecs); 4551 4552 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 4553 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 4554 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 4555 4556 if (TemplateDeductionResult Result = 4557 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 4558 // Store the failed-deduction information for use in diagnostics, later. 4559 // TODO: Actually use the failed-deduction info? 4560 FailedCandidates.addCandidate().set( 4561 DeclAccessPair::make(Template, AS_public), Partial, 4562 MakeDeductionFailureInfo(Context, Result, Info)); 4563 (void)Result; 4564 } else { 4565 Matched.push_back(PartialSpecMatchResult()); 4566 Matched.back().Partial = Partial; 4567 Matched.back().Args = Info.take(); 4568 } 4569 } 4570 4571 if (Matched.size() >= 1) { 4572 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 4573 if (Matched.size() == 1) { 4574 // -- If exactly one matching specialization is found, the 4575 // instantiation is generated from that specialization. 4576 // We don't need to do anything for this. 4577 } else { 4578 // -- If more than one matching specialization is found, the 4579 // partial order rules (14.5.4.2) are used to determine 4580 // whether one of the specializations is more specialized 4581 // than the others. If none of the specializations is more 4582 // specialized than all of the other matching 4583 // specializations, then the use of the variable template is 4584 // ambiguous and the program is ill-formed. 4585 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 4586 PEnd = Matched.end(); 4587 P != PEnd; ++P) { 4588 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 4589 PointOfInstantiation) == 4590 P->Partial) 4591 Best = P; 4592 } 4593 4594 // Determine if the best partial specialization is more specialized than 4595 // the others. 4596 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 4597 PEnd = Matched.end(); 4598 P != PEnd; ++P) { 4599 if (P != Best && getMoreSpecializedPartialSpecialization( 4600 P->Partial, Best->Partial, 4601 PointOfInstantiation) != Best->Partial) { 4602 AmbiguousPartialSpec = true; 4603 break; 4604 } 4605 } 4606 } 4607 4608 // Instantiate using the best variable template partial specialization. 4609 InstantiationPattern = Best->Partial; 4610 InstantiationArgs = Best->Args; 4611 } else { 4612 // -- If no match is found, the instantiation is generated 4613 // from the primary template. 4614 // InstantiationPattern = Template->getTemplatedDecl(); 4615 } 4616 4617 // 2. Create the canonical declaration. 4618 // Note that we do not instantiate a definition until we see an odr-use 4619 // in DoMarkVarDeclReferenced(). 4620 // FIXME: LateAttrs et al.? 4621 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 4622 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 4623 Converted, TemplateNameLoc /*, LateAttrs, StartingScope*/); 4624 if (!Decl) 4625 return true; 4626 4627 if (AmbiguousPartialSpec) { 4628 // Partial ordering did not produce a clear winner. Complain. 4629 Decl->setInvalidDecl(); 4630 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 4631 << Decl; 4632 4633 // Print the matching partial specializations. 4634 for (MatchResult P : Matched) 4635 Diag(P.Partial->getLocation(), diag::note_partial_spec_match) 4636 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), 4637 *P.Args); 4638 return true; 4639 } 4640 4641 if (VarTemplatePartialSpecializationDecl *D = 4642 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 4643 Decl->setInstantiationOf(D, InstantiationArgs); 4644 4645 checkSpecializationVisibility(TemplateNameLoc, Decl); 4646 4647 assert(Decl && "No variable template specialization?"); 4648 return Decl; 4649 } 4650 4651 ExprResult 4652 Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 4653 const DeclarationNameInfo &NameInfo, 4654 VarTemplateDecl *Template, SourceLocation TemplateLoc, 4655 const TemplateArgumentListInfo *TemplateArgs) { 4656 4657 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 4658 *TemplateArgs); 4659 if (Decl.isInvalid()) 4660 return ExprError(); 4661 4662 if (!Decl.get()) 4663 return ExprResult(); 4664 4665 VarDecl *Var = cast<VarDecl>(Decl.get()); 4666 if (!Var->getTemplateSpecializationKind()) 4667 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 4668 NameInfo.getLoc()); 4669 4670 // Build an ordinary singleton decl ref. 4671 return BuildDeclarationNameExpr(SS, NameInfo, Var, 4672 /*FoundD=*/nullptr, TemplateArgs); 4673 } 4674 4675 void Sema::diagnoseMissingTemplateArguments(TemplateName Name, 4676 SourceLocation Loc) { 4677 Diag(Loc, diag::err_template_missing_args) 4678 << (int)getTemplateNameKindForDiagnostics(Name) << Name; 4679 if (TemplateDecl *TD = Name.getAsTemplateDecl()) { 4680 Diag(TD->getLocation(), diag::note_template_decl_here) 4681 << TD->getTemplateParameters()->getSourceRange(); 4682 } 4683 } 4684 4685 ExprResult 4686 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, 4687 SourceLocation TemplateKWLoc, 4688 const DeclarationNameInfo &ConceptNameInfo, 4689 NamedDecl *FoundDecl, 4690 ConceptDecl *NamedConcept, 4691 const TemplateArgumentListInfo *TemplateArgs) { 4692 assert(NamedConcept && "A concept template id without a template?"); 4693 4694 llvm::SmallVector<TemplateArgument, 4> Converted; 4695 if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(), 4696 const_cast<TemplateArgumentListInfo&>(*TemplateArgs), 4697 /*PartialTemplateArgs=*/false, Converted, 4698 /*UpdateArgsWithConversions=*/false)) 4699 return ExprError(); 4700 4701 ConstraintSatisfaction Satisfaction; 4702 bool AreArgsDependent = 4703 TemplateSpecializationType::anyDependentTemplateArguments(*TemplateArgs, 4704 Converted); 4705 if (!AreArgsDependent && 4706 CheckConstraintSatisfaction( 4707 NamedConcept, {NamedConcept->getConstraintExpr()}, Converted, 4708 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(), 4709 TemplateArgs->getRAngleLoc()), 4710 Satisfaction)) 4711 return ExprError(); 4712 4713 return ConceptSpecializationExpr::Create(Context, 4714 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, 4715 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, 4716 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted, 4717 AreArgsDependent ? nullptr : &Satisfaction); 4718 } 4719 4720 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 4721 SourceLocation TemplateKWLoc, 4722 LookupResult &R, 4723 bool RequiresADL, 4724 const TemplateArgumentListInfo *TemplateArgs) { 4725 // FIXME: Can we do any checking at this point? I guess we could check the 4726 // template arguments that we have against the template name, if the template 4727 // name refers to a single template. That's not a terribly common case, 4728 // though. 4729 // foo<int> could identify a single function unambiguously 4730 // This approach does NOT work, since f<int>(1); 4731 // gets resolved prior to resorting to overload resolution 4732 // i.e., template<class T> void f(double); 4733 // vs template<class T, class U> void f(U); 4734 4735 // These should be filtered out by our callers. 4736 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 4737 4738 // Non-function templates require a template argument list. 4739 if (auto *TD = R.getAsSingle<TemplateDecl>()) { 4740 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { 4741 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc()); 4742 return ExprError(); 4743 } 4744 } 4745 4746 // In C++1y, check variable template ids. 4747 if (R.getAsSingle<VarTemplateDecl>()) { 4748 ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(), 4749 R.getAsSingle<VarTemplateDecl>(), 4750 TemplateKWLoc, TemplateArgs); 4751 if (Res.isInvalid() || Res.isUsable()) 4752 return Res; 4753 // Result is dependent. Carry on to build an UnresolvedLookupEpxr. 4754 } 4755 4756 if (R.getAsSingle<ConceptDecl>()) { 4757 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(), 4758 R.getFoundDecl(), 4759 R.getAsSingle<ConceptDecl>(), TemplateArgs); 4760 } 4761 4762 // We don't want lookup warnings at this point. 4763 R.suppressDiagnostics(); 4764 4765 UnresolvedLookupExpr *ULE 4766 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 4767 SS.getWithLocInContext(Context), 4768 TemplateKWLoc, 4769 R.getLookupNameInfo(), 4770 RequiresADL, TemplateArgs, 4771 R.begin(), R.end()); 4772 4773 return ULE; 4774 } 4775 4776 // We actually only call this from template instantiation. 4777 ExprResult 4778 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 4779 SourceLocation TemplateKWLoc, 4780 const DeclarationNameInfo &NameInfo, 4781 const TemplateArgumentListInfo *TemplateArgs) { 4782 4783 assert(TemplateArgs || TemplateKWLoc.isValid()); 4784 DeclContext *DC; 4785 if (!(DC = computeDeclContext(SS, false)) || 4786 DC->isDependentContext() || 4787 RequireCompleteDeclContext(SS, DC)) 4788 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 4789 4790 bool MemberOfUnknownSpecialization; 4791 LookupResult R(*this, NameInfo, LookupOrdinaryName); 4792 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(), 4793 /*Entering*/false, MemberOfUnknownSpecialization, 4794 TemplateKWLoc)) 4795 return ExprError(); 4796 4797 if (R.isAmbiguous()) 4798 return ExprError(); 4799 4800 if (R.empty()) { 4801 Diag(NameInfo.getLoc(), diag::err_no_member) 4802 << NameInfo.getName() << DC << SS.getRange(); 4803 return ExprError(); 4804 } 4805 4806 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 4807 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 4808 << SS.getScopeRep() 4809 << NameInfo.getName().getAsString() << SS.getRange(); 4810 Diag(Temp->getLocation(), diag::note_referenced_class_template); 4811 return ExprError(); 4812 } 4813 4814 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 4815 } 4816 4817 /// Form a template name from a name that is syntactically required to name a 4818 /// template, either due to use of the 'template' keyword or because a name in 4819 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4). 4820 /// 4821 /// This action forms a template name given the name of the template and its 4822 /// optional scope specifier. This is used when the 'template' keyword is used 4823 /// or when the parsing context unambiguously treats a following '<' as 4824 /// introducing a template argument list. Note that this may produce a 4825 /// non-dependent template name if we can perform the lookup now and identify 4826 /// the named template. 4827 /// 4828 /// For example, given "x.MetaFun::template apply", the scope specifier 4829 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location 4830 /// of the "template" keyword, and "apply" is the \p Name. 4831 TemplateNameKind Sema::ActOnTemplateName(Scope *S, 4832 CXXScopeSpec &SS, 4833 SourceLocation TemplateKWLoc, 4834 const UnqualifiedId &Name, 4835 ParsedType ObjectType, 4836 bool EnteringContext, 4837 TemplateTy &Result, 4838 bool AllowInjectedClassName) { 4839 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 4840 Diag(TemplateKWLoc, 4841 getLangOpts().CPlusPlus11 ? 4842 diag::warn_cxx98_compat_template_outside_of_template : 4843 diag::ext_template_outside_of_template) 4844 << FixItHint::CreateRemoval(TemplateKWLoc); 4845 4846 if (SS.isInvalid()) 4847 return TNK_Non_template; 4848 4849 // Figure out where isTemplateName is going to look. 4850 DeclContext *LookupCtx = nullptr; 4851 if (SS.isNotEmpty()) 4852 LookupCtx = computeDeclContext(SS, EnteringContext); 4853 else if (ObjectType) 4854 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType)); 4855 4856 // C++0x [temp.names]p5: 4857 // If a name prefixed by the keyword template is not the name of 4858 // a template, the program is ill-formed. [Note: the keyword 4859 // template may not be applied to non-template members of class 4860 // templates. -end note ] [ Note: as is the case with the 4861 // typename prefix, the template prefix is allowed in cases 4862 // where it is not strictly necessary; i.e., when the 4863 // nested-name-specifier or the expression on the left of the -> 4864 // or . is not dependent on a template-parameter, or the use 4865 // does not appear in the scope of a template. -end note] 4866 // 4867 // Note: C++03 was more strict here, because it banned the use of 4868 // the "template" keyword prior to a template-name that was not a 4869 // dependent name. C++ DR468 relaxed this requirement (the 4870 // "template" keyword is now permitted). We follow the C++0x 4871 // rules, even in C++03 mode with a warning, retroactively applying the DR. 4872 bool MemberOfUnknownSpecialization; 4873 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 4874 ObjectType, EnteringContext, Result, 4875 MemberOfUnknownSpecialization); 4876 if (TNK != TNK_Non_template) { 4877 // We resolved this to a (non-dependent) template name. Return it. 4878 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 4879 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && 4880 Name.getKind() == UnqualifiedIdKind::IK_Identifier && 4881 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { 4882 // C++14 [class.qual]p2: 4883 // In a lookup in which function names are not ignored and the 4884 // nested-name-specifier nominates a class C, if the name specified 4885 // [...] is the injected-class-name of C, [...] the name is instead 4886 // considered to name the constructor 4887 // 4888 // We don't get here if naming the constructor would be valid, so we 4889 // just reject immediately and recover by treating the 4890 // injected-class-name as naming the template. 4891 Diag(Name.getBeginLoc(), 4892 diag::ext_out_of_line_qualified_id_type_names_constructor) 4893 << Name.Identifier 4894 << 0 /*injected-class-name used as template name*/ 4895 << TemplateKWLoc.isValid(); 4896 } 4897 return TNK; 4898 } 4899 4900 if (!MemberOfUnknownSpecialization) { 4901 // Didn't find a template name, and the lookup wasn't dependent. 4902 // Do the lookup again to determine if this is a "nothing found" case or 4903 // a "not a template" case. FIXME: Refactor isTemplateName so we don't 4904 // need to do this. 4905 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); 4906 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), 4907 LookupOrdinaryName); 4908 bool MOUS; 4909 // Tell LookupTemplateName that we require a template so that it diagnoses 4910 // cases where it finds a non-template. 4911 RequiredTemplateKind RTK = TemplateKWLoc.isValid() 4912 ? RequiredTemplateKind(TemplateKWLoc) 4913 : TemplateNameIsRequired; 4914 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS, 4915 RTK, nullptr, /*AllowTypoCorrection=*/false) && 4916 !R.isAmbiguous()) { 4917 if (LookupCtx) 4918 Diag(Name.getBeginLoc(), diag::err_no_member) 4919 << DNI.getName() << LookupCtx << SS.getRange(); 4920 else 4921 Diag(Name.getBeginLoc(), diag::err_undeclared_use) 4922 << DNI.getName() << SS.getRange(); 4923 } 4924 return TNK_Non_template; 4925 } 4926 4927 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 4928 4929 switch (Name.getKind()) { 4930 case UnqualifiedIdKind::IK_Identifier: 4931 Result = TemplateTy::make( 4932 Context.getDependentTemplateName(Qualifier, Name.Identifier)); 4933 return TNK_Dependent_template_name; 4934 4935 case UnqualifiedIdKind::IK_OperatorFunctionId: 4936 Result = TemplateTy::make(Context.getDependentTemplateName( 4937 Qualifier, Name.OperatorFunctionId.Operator)); 4938 return TNK_Function_template; 4939 4940 case UnqualifiedIdKind::IK_LiteralOperatorId: 4941 // This is a kind of template name, but can never occur in a dependent 4942 // scope (literal operators can only be declared at namespace scope). 4943 break; 4944 4945 default: 4946 break; 4947 } 4948 4949 // This name cannot possibly name a dependent template. Diagnose this now 4950 // rather than building a dependent template name that can never be valid. 4951 Diag(Name.getBeginLoc(), 4952 diag::err_template_kw_refers_to_dependent_non_template) 4953 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() 4954 << TemplateKWLoc.isValid() << TemplateKWLoc; 4955 return TNK_Non_template; 4956 } 4957 4958 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 4959 TemplateArgumentLoc &AL, 4960 SmallVectorImpl<TemplateArgument> &Converted) { 4961 const TemplateArgument &Arg = AL.getArgument(); 4962 QualType ArgType; 4963 TypeSourceInfo *TSI = nullptr; 4964 4965 // Check template type parameter. 4966 switch(Arg.getKind()) { 4967 case TemplateArgument::Type: 4968 // C++ [temp.arg.type]p1: 4969 // A template-argument for a template-parameter which is a 4970 // type shall be a type-id. 4971 ArgType = Arg.getAsType(); 4972 TSI = AL.getTypeSourceInfo(); 4973 break; 4974 case TemplateArgument::Template: 4975 case TemplateArgument::TemplateExpansion: { 4976 // We have a template type parameter but the template argument 4977 // is a template without any arguments. 4978 SourceRange SR = AL.getSourceRange(); 4979 TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); 4980 diagnoseMissingTemplateArguments(Name, SR.getEnd()); 4981 return true; 4982 } 4983 case TemplateArgument::Expression: { 4984 // We have a template type parameter but the template argument is an 4985 // expression; see if maybe it is missing the "typename" keyword. 4986 CXXScopeSpec SS; 4987 DeclarationNameInfo NameInfo; 4988 4989 if (DependentScopeDeclRefExpr *ArgExpr = 4990 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 4991 SS.Adopt(ArgExpr->getQualifierLoc()); 4992 NameInfo = ArgExpr->getNameInfo(); 4993 } else if (CXXDependentScopeMemberExpr *ArgExpr = 4994 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 4995 if (ArgExpr->isImplicitAccess()) { 4996 SS.Adopt(ArgExpr->getQualifierLoc()); 4997 NameInfo = ArgExpr->getMemberNameInfo(); 4998 } 4999 } 5000 5001 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 5002 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 5003 LookupParsedName(Result, CurScope, &SS); 5004 5005 if (Result.getAsSingle<TypeDecl>() || 5006 Result.getResultKind() == 5007 LookupResult::NotFoundInCurrentInstantiation) { 5008 assert(SS.getScopeRep() && "dependent scope expr must has a scope!"); 5009 // Suggest that the user add 'typename' before the NNS. 5010 SourceLocation Loc = AL.getSourceRange().getBegin(); 5011 Diag(Loc, getLangOpts().MSVCCompat 5012 ? diag::ext_ms_template_type_arg_missing_typename 5013 : diag::err_template_arg_must_be_type_suggest) 5014 << FixItHint::CreateInsertion(Loc, "typename "); 5015 Diag(Param->getLocation(), diag::note_template_param_here); 5016 5017 // Recover by synthesizing a type using the location information that we 5018 // already have. 5019 ArgType = 5020 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); 5021 TypeLocBuilder TLB; 5022 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 5023 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 5024 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 5025 TL.setNameLoc(NameInfo.getLoc()); 5026 TSI = TLB.getTypeSourceInfo(Context, ArgType); 5027 5028 // Overwrite our input TemplateArgumentLoc so that we can recover 5029 // properly. 5030 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 5031 TemplateArgumentLocInfo(TSI)); 5032 5033 break; 5034 } 5035 } 5036 // fallthrough 5037 LLVM_FALLTHROUGH; 5038 } 5039 default: { 5040 // We have a template type parameter but the template argument 5041 // is not a type. 5042 SourceRange SR = AL.getSourceRange(); 5043 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 5044 Diag(Param->getLocation(), diag::note_template_param_here); 5045 5046 return true; 5047 } 5048 } 5049 5050 if (CheckTemplateArgument(TSI)) 5051 return true; 5052 5053 // Add the converted template type argument. 5054 ArgType = Context.getCanonicalType(ArgType); 5055 5056 // Objective-C ARC: 5057 // If an explicitly-specified template argument type is a lifetime type 5058 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 5059 if (getLangOpts().ObjCAutoRefCount && 5060 ArgType->isObjCLifetimeType() && 5061 !ArgType.getObjCLifetime()) { 5062 Qualifiers Qs; 5063 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 5064 ArgType = Context.getQualifiedType(ArgType, Qs); 5065 } 5066 5067 Converted.push_back(TemplateArgument(ArgType)); 5068 return false; 5069 } 5070 5071 /// Substitute template arguments into the default template argument for 5072 /// the given template type parameter. 5073 /// 5074 /// \param SemaRef the semantic analysis object for which we are performing 5075 /// the substitution. 5076 /// 5077 /// \param Template the template that we are synthesizing template arguments 5078 /// for. 5079 /// 5080 /// \param TemplateLoc the location of the template name that started the 5081 /// template-id we are checking. 5082 /// 5083 /// \param RAngleLoc the location of the right angle bracket ('>') that 5084 /// terminates the template-id. 5085 /// 5086 /// \param Param the template template parameter whose default we are 5087 /// substituting into. 5088 /// 5089 /// \param Converted the list of template arguments provided for template 5090 /// parameters that precede \p Param in the template parameter list. 5091 /// \returns the substituted template argument, or NULL if an error occurred. 5092 static TypeSourceInfo * 5093 SubstDefaultTemplateArgument(Sema &SemaRef, 5094 TemplateDecl *Template, 5095 SourceLocation TemplateLoc, 5096 SourceLocation RAngleLoc, 5097 TemplateTypeParmDecl *Param, 5098 SmallVectorImpl<TemplateArgument> &Converted) { 5099 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 5100 5101 // If the argument type is dependent, instantiate it now based 5102 // on the previously-computed template arguments. 5103 if (ArgType->getType()->isInstantiationDependentType()) { 5104 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 5105 Param, Template, Converted, 5106 SourceRange(TemplateLoc, RAngleLoc)); 5107 if (Inst.isInvalid()) 5108 return nullptr; 5109 5110 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5111 5112 // Only substitute for the innermost template argument list. 5113 MultiLevelTemplateArgumentList TemplateArgLists; 5114 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 5115 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5116 TemplateArgLists.addOuterTemplateArguments(None); 5117 5118 bool ForLambdaCallOperator = false; 5119 if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext())) 5120 ForLambdaCallOperator = Rec->isLambda(); 5121 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(), 5122 !ForLambdaCallOperator); 5123 ArgType = 5124 SemaRef.SubstType(ArgType, TemplateArgLists, 5125 Param->getDefaultArgumentLoc(), Param->getDeclName()); 5126 } 5127 5128 return ArgType; 5129 } 5130 5131 /// Substitute template arguments into the default template argument for 5132 /// the given non-type template parameter. 5133 /// 5134 /// \param SemaRef the semantic analysis object for which we are performing 5135 /// the substitution. 5136 /// 5137 /// \param Template the template that we are synthesizing template arguments 5138 /// for. 5139 /// 5140 /// \param TemplateLoc the location of the template name that started the 5141 /// template-id we are checking. 5142 /// 5143 /// \param RAngleLoc the location of the right angle bracket ('>') that 5144 /// terminates the template-id. 5145 /// 5146 /// \param Param the non-type template parameter whose default we are 5147 /// substituting into. 5148 /// 5149 /// \param Converted the list of template arguments provided for template 5150 /// parameters that precede \p Param in the template parameter list. 5151 /// 5152 /// \returns the substituted template argument, or NULL if an error occurred. 5153 static ExprResult 5154 SubstDefaultTemplateArgument(Sema &SemaRef, 5155 TemplateDecl *Template, 5156 SourceLocation TemplateLoc, 5157 SourceLocation RAngleLoc, 5158 NonTypeTemplateParmDecl *Param, 5159 SmallVectorImpl<TemplateArgument> &Converted) { 5160 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 5161 Param, Template, Converted, 5162 SourceRange(TemplateLoc, RAngleLoc)); 5163 if (Inst.isInvalid()) 5164 return ExprError(); 5165 5166 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5167 5168 // Only substitute for the innermost template argument list. 5169 MultiLevelTemplateArgumentList TemplateArgLists; 5170 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 5171 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5172 TemplateArgLists.addOuterTemplateArguments(None); 5173 5174 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5175 EnterExpressionEvaluationContext ConstantEvaluated( 5176 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 5177 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); 5178 } 5179 5180 /// Substitute template arguments into the default template argument for 5181 /// the given template template parameter. 5182 /// 5183 /// \param SemaRef the semantic analysis object for which we are performing 5184 /// the substitution. 5185 /// 5186 /// \param Template the template that we are synthesizing template arguments 5187 /// for. 5188 /// 5189 /// \param TemplateLoc the location of the template name that started the 5190 /// template-id we are checking. 5191 /// 5192 /// \param RAngleLoc the location of the right angle bracket ('>') that 5193 /// terminates the template-id. 5194 /// 5195 /// \param Param the template template parameter whose default we are 5196 /// substituting into. 5197 /// 5198 /// \param Converted the list of template arguments provided for template 5199 /// parameters that precede \p Param in the template parameter list. 5200 /// 5201 /// \param QualifierLoc Will be set to the nested-name-specifier (with 5202 /// source-location information) that precedes the template name. 5203 /// 5204 /// \returns the substituted template argument, or NULL if an error occurred. 5205 static TemplateName 5206 SubstDefaultTemplateArgument(Sema &SemaRef, 5207 TemplateDecl *Template, 5208 SourceLocation TemplateLoc, 5209 SourceLocation RAngleLoc, 5210 TemplateTemplateParmDecl *Param, 5211 SmallVectorImpl<TemplateArgument> &Converted, 5212 NestedNameSpecifierLoc &QualifierLoc) { 5213 Sema::InstantiatingTemplate Inst( 5214 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted, 5215 SourceRange(TemplateLoc, RAngleLoc)); 5216 if (Inst.isInvalid()) 5217 return TemplateName(); 5218 5219 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5220 5221 // Only substitute for the innermost template argument list. 5222 MultiLevelTemplateArgumentList TemplateArgLists; 5223 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 5224 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5225 TemplateArgLists.addOuterTemplateArguments(None); 5226 5227 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5228 // Substitute into the nested-name-specifier first, 5229 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 5230 if (QualifierLoc) { 5231 QualifierLoc = 5232 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 5233 if (!QualifierLoc) 5234 return TemplateName(); 5235 } 5236 5237 return SemaRef.SubstTemplateName( 5238 QualifierLoc, 5239 Param->getDefaultArgument().getArgument().getAsTemplate(), 5240 Param->getDefaultArgument().getTemplateNameLoc(), 5241 TemplateArgLists); 5242 } 5243 5244 /// If the given template parameter has a default template 5245 /// argument, substitute into that default template argument and 5246 /// return the corresponding template argument. 5247 TemplateArgumentLoc 5248 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 5249 SourceLocation TemplateLoc, 5250 SourceLocation RAngleLoc, 5251 Decl *Param, 5252 SmallVectorImpl<TemplateArgument> 5253 &Converted, 5254 bool &HasDefaultArg) { 5255 HasDefaultArg = false; 5256 5257 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 5258 if (!hasVisibleDefaultArgument(TypeParm)) 5259 return TemplateArgumentLoc(); 5260 5261 HasDefaultArg = true; 5262 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 5263 TemplateLoc, 5264 RAngleLoc, 5265 TypeParm, 5266 Converted); 5267 if (DI) 5268 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 5269 5270 return TemplateArgumentLoc(); 5271 } 5272 5273 if (NonTypeTemplateParmDecl *NonTypeParm 5274 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5275 if (!hasVisibleDefaultArgument(NonTypeParm)) 5276 return TemplateArgumentLoc(); 5277 5278 HasDefaultArg = true; 5279 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 5280 TemplateLoc, 5281 RAngleLoc, 5282 NonTypeParm, 5283 Converted); 5284 if (Arg.isInvalid()) 5285 return TemplateArgumentLoc(); 5286 5287 Expr *ArgE = Arg.getAs<Expr>(); 5288 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 5289 } 5290 5291 TemplateTemplateParmDecl *TempTempParm 5292 = cast<TemplateTemplateParmDecl>(Param); 5293 if (!hasVisibleDefaultArgument(TempTempParm)) 5294 return TemplateArgumentLoc(); 5295 5296 HasDefaultArg = true; 5297 NestedNameSpecifierLoc QualifierLoc; 5298 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 5299 TemplateLoc, 5300 RAngleLoc, 5301 TempTempParm, 5302 Converted, 5303 QualifierLoc); 5304 if (TName.isNull()) 5305 return TemplateArgumentLoc(); 5306 5307 return TemplateArgumentLoc( 5308 Context, TemplateArgument(TName), 5309 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 5310 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 5311 } 5312 5313 /// Convert a template-argument that we parsed as a type into a template, if 5314 /// possible. C++ permits injected-class-names to perform dual service as 5315 /// template template arguments and as template type arguments. 5316 static TemplateArgumentLoc 5317 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) { 5318 // Extract and step over any surrounding nested-name-specifier. 5319 NestedNameSpecifierLoc QualLoc; 5320 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { 5321 if (ETLoc.getTypePtr()->getKeyword() != ETK_None) 5322 return TemplateArgumentLoc(); 5323 5324 QualLoc = ETLoc.getQualifierLoc(); 5325 TLoc = ETLoc.getNamedTypeLoc(); 5326 } 5327 // If this type was written as an injected-class-name, it can be used as a 5328 // template template argument. 5329 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) 5330 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(), 5331 QualLoc, InjLoc.getNameLoc()); 5332 5333 // If this type was written as an injected-class-name, it may have been 5334 // converted to a RecordType during instantiation. If the RecordType is 5335 // *not* wrapped in a TemplateSpecializationType and denotes a class 5336 // template specialization, it must have come from an injected-class-name. 5337 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) 5338 if (auto *CTSD = 5339 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) 5340 return TemplateArgumentLoc(Context, 5341 TemplateName(CTSD->getSpecializedTemplate()), 5342 QualLoc, RecLoc.getNameLoc()); 5343 5344 return TemplateArgumentLoc(); 5345 } 5346 5347 /// Check that the given template argument corresponds to the given 5348 /// template parameter. 5349 /// 5350 /// \param Param The template parameter against which the argument will be 5351 /// checked. 5352 /// 5353 /// \param Arg The template argument, which may be updated due to conversions. 5354 /// 5355 /// \param Template The template in which the template argument resides. 5356 /// 5357 /// \param TemplateLoc The location of the template name for the template 5358 /// whose argument list we're matching. 5359 /// 5360 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 5361 /// the template argument list. 5362 /// 5363 /// \param ArgumentPackIndex The index into the argument pack where this 5364 /// argument will be placed. Only valid if the parameter is a parameter pack. 5365 /// 5366 /// \param Converted The checked, converted argument will be added to the 5367 /// end of this small vector. 5368 /// 5369 /// \param CTAK Describes how we arrived at this particular template argument: 5370 /// explicitly written, deduced, etc. 5371 /// 5372 /// \returns true on error, false otherwise. 5373 bool Sema::CheckTemplateArgument(NamedDecl *Param, 5374 TemplateArgumentLoc &Arg, 5375 NamedDecl *Template, 5376 SourceLocation TemplateLoc, 5377 SourceLocation RAngleLoc, 5378 unsigned ArgumentPackIndex, 5379 SmallVectorImpl<TemplateArgument> &Converted, 5380 CheckTemplateArgumentKind CTAK) { 5381 // Check template type parameters. 5382 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 5383 return CheckTemplateTypeArgument(TTP, Arg, Converted); 5384 5385 // Check non-type template parameters. 5386 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5387 // Do substitution on the type of the non-type template parameter 5388 // with the template arguments we've seen thus far. But if the 5389 // template has a dependent context then we cannot substitute yet. 5390 QualType NTTPType = NTTP->getType(); 5391 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 5392 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 5393 5394 if (NTTPType->isInstantiationDependentType() && 5395 !isa<TemplateTemplateParmDecl>(Template) && 5396 !Template->getDeclContext()->isDependentContext()) { 5397 // Do substitution on the type of the non-type template parameter. 5398 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 5399 NTTP, Converted, 5400 SourceRange(TemplateLoc, RAngleLoc)); 5401 if (Inst.isInvalid()) 5402 return true; 5403 5404 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 5405 Converted); 5406 5407 // If the parameter is a pack expansion, expand this slice of the pack. 5408 if (auto *PET = NTTPType->getAs<PackExpansionType>()) { 5409 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, 5410 ArgumentPackIndex); 5411 NTTPType = SubstType(PET->getPattern(), 5412 MultiLevelTemplateArgumentList(TemplateArgs), 5413 NTTP->getLocation(), 5414 NTTP->getDeclName()); 5415 } else { 5416 NTTPType = SubstType(NTTPType, 5417 MultiLevelTemplateArgumentList(TemplateArgs), 5418 NTTP->getLocation(), 5419 NTTP->getDeclName()); 5420 } 5421 5422 // If that worked, check the non-type template parameter type 5423 // for validity. 5424 if (!NTTPType.isNull()) 5425 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 5426 NTTP->getLocation()); 5427 if (NTTPType.isNull()) 5428 return true; 5429 } 5430 5431 switch (Arg.getArgument().getKind()) { 5432 case TemplateArgument::Null: 5433 llvm_unreachable("Should never see a NULL template argument here"); 5434 5435 case TemplateArgument::Expression: { 5436 TemplateArgument Result; 5437 unsigned CurSFINAEErrors = NumSFINAEErrors; 5438 ExprResult Res = 5439 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 5440 Result, CTAK); 5441 if (Res.isInvalid()) 5442 return true; 5443 // If the current template argument causes an error, give up now. 5444 if (CurSFINAEErrors < NumSFINAEErrors) 5445 return true; 5446 5447 // If the resulting expression is new, then use it in place of the 5448 // old expression in the template argument. 5449 if (Res.get() != Arg.getArgument().getAsExpr()) { 5450 TemplateArgument TA(Res.get()); 5451 Arg = TemplateArgumentLoc(TA, Res.get()); 5452 } 5453 5454 Converted.push_back(Result); 5455 break; 5456 } 5457 5458 case TemplateArgument::Declaration: 5459 case TemplateArgument::Integral: 5460 case TemplateArgument::NullPtr: 5461 // We've already checked this template argument, so just copy 5462 // it to the list of converted arguments. 5463 Converted.push_back(Arg.getArgument()); 5464 break; 5465 5466 case TemplateArgument::Template: 5467 case TemplateArgument::TemplateExpansion: 5468 // We were given a template template argument. It may not be ill-formed; 5469 // see below. 5470 if (DependentTemplateName *DTN 5471 = Arg.getArgument().getAsTemplateOrTemplatePattern() 5472 .getAsDependentTemplateName()) { 5473 // We have a template argument such as \c T::template X, which we 5474 // parsed as a template template argument. However, since we now 5475 // know that we need a non-type template argument, convert this 5476 // template name into an expression. 5477 5478 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 5479 Arg.getTemplateNameLoc()); 5480 5481 CXXScopeSpec SS; 5482 SS.Adopt(Arg.getTemplateQualifierLoc()); 5483 // FIXME: the template-template arg was a DependentTemplateName, 5484 // so it was provided with a template keyword. However, its source 5485 // location is not stored in the template argument structure. 5486 SourceLocation TemplateKWLoc; 5487 ExprResult E = DependentScopeDeclRefExpr::Create( 5488 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 5489 nullptr); 5490 5491 // If we parsed the template argument as a pack expansion, create a 5492 // pack expansion expression. 5493 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 5494 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); 5495 if (E.isInvalid()) 5496 return true; 5497 } 5498 5499 TemplateArgument Result; 5500 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result); 5501 if (E.isInvalid()) 5502 return true; 5503 5504 Converted.push_back(Result); 5505 break; 5506 } 5507 5508 // We have a template argument that actually does refer to a class 5509 // template, alias template, or template template parameter, and 5510 // therefore cannot be a non-type template argument. 5511 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 5512 << Arg.getSourceRange(); 5513 5514 Diag(Param->getLocation(), diag::note_template_param_here); 5515 return true; 5516 5517 case TemplateArgument::Type: { 5518 // We have a non-type template parameter but the template 5519 // argument is a type. 5520 5521 // C++ [temp.arg]p2: 5522 // In a template-argument, an ambiguity between a type-id and 5523 // an expression is resolved to a type-id, regardless of the 5524 // form of the corresponding template-parameter. 5525 // 5526 // We warn specifically about this case, since it can be rather 5527 // confusing for users. 5528 QualType T = Arg.getArgument().getAsType(); 5529 SourceRange SR = Arg.getSourceRange(); 5530 if (T->isFunctionType()) 5531 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 5532 else 5533 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 5534 Diag(Param->getLocation(), diag::note_template_param_here); 5535 return true; 5536 } 5537 5538 case TemplateArgument::Pack: 5539 llvm_unreachable("Caller must expand template argument packs"); 5540 } 5541 5542 return false; 5543 } 5544 5545 5546 // Check template template parameters. 5547 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 5548 5549 TemplateParameterList *Params = TempParm->getTemplateParameters(); 5550 if (TempParm->isExpandedParameterPack()) 5551 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); 5552 5553 // Substitute into the template parameter list of the template 5554 // template parameter, since previously-supplied template arguments 5555 // may appear within the template template parameter. 5556 // 5557 // FIXME: Skip this if the parameters aren't instantiation-dependent. 5558 { 5559 // Set up a template instantiation context. 5560 LocalInstantiationScope Scope(*this); 5561 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 5562 TempParm, Converted, 5563 SourceRange(TemplateLoc, RAngleLoc)); 5564 if (Inst.isInvalid()) 5565 return true; 5566 5567 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5568 Params = SubstTemplateParams(Params, CurContext, 5569 MultiLevelTemplateArgumentList(TemplateArgs)); 5570 if (!Params) 5571 return true; 5572 } 5573 5574 // C++1z [temp.local]p1: (DR1004) 5575 // When [the injected-class-name] is used [...] as a template-argument for 5576 // a template template-parameter [...] it refers to the class template 5577 // itself. 5578 if (Arg.getArgument().getKind() == TemplateArgument::Type) { 5579 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( 5580 Context, Arg.getTypeSourceInfo()->getTypeLoc()); 5581 if (!ConvertedArg.getArgument().isNull()) 5582 Arg = ConvertedArg; 5583 } 5584 5585 switch (Arg.getArgument().getKind()) { 5586 case TemplateArgument::Null: 5587 llvm_unreachable("Should never see a NULL template argument here"); 5588 5589 case TemplateArgument::Template: 5590 case TemplateArgument::TemplateExpansion: 5591 if (CheckTemplateTemplateArgument(TempParm, Params, Arg)) 5592 return true; 5593 5594 Converted.push_back(Arg.getArgument()); 5595 break; 5596 5597 case TemplateArgument::Expression: 5598 case TemplateArgument::Type: 5599 // We have a template template parameter but the template 5600 // argument does not refer to a template. 5601 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 5602 << getLangOpts().CPlusPlus11; 5603 return true; 5604 5605 case TemplateArgument::Declaration: 5606 llvm_unreachable("Declaration argument with template template parameter"); 5607 case TemplateArgument::Integral: 5608 llvm_unreachable("Integral argument with template template parameter"); 5609 case TemplateArgument::NullPtr: 5610 llvm_unreachable("Null pointer argument with template template parameter"); 5611 5612 case TemplateArgument::Pack: 5613 llvm_unreachable("Caller must expand template argument packs"); 5614 } 5615 5616 return false; 5617 } 5618 5619 /// Diagnose a missing template argument. 5620 template<typename TemplateParmDecl> 5621 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, 5622 TemplateDecl *TD, 5623 const TemplateParmDecl *D, 5624 TemplateArgumentListInfo &Args) { 5625 // Dig out the most recent declaration of the template parameter; there may be 5626 // declarations of the template that are more recent than TD. 5627 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) 5628 ->getTemplateParameters() 5629 ->getParam(D->getIndex())); 5630 5631 // If there's a default argument that's not visible, diagnose that we're 5632 // missing a module import. 5633 llvm::SmallVector<Module*, 8> Modules; 5634 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) { 5635 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), 5636 D->getDefaultArgumentLoc(), Modules, 5637 Sema::MissingImportKind::DefaultArgument, 5638 /*Recover*/true); 5639 return true; 5640 } 5641 5642 // FIXME: If there's a more recent default argument that *is* visible, 5643 // diagnose that it was declared too late. 5644 5645 TemplateParameterList *Params = TD->getTemplateParameters(); 5646 5647 S.Diag(Loc, diag::err_template_arg_list_different_arity) 5648 << /*not enough args*/0 5649 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) 5650 << TD; 5651 S.Diag(TD->getLocation(), diag::note_template_decl_here) 5652 << Params->getSourceRange(); 5653 return true; 5654 } 5655 5656 /// Check that the given template argument list is well-formed 5657 /// for specializing the given template. 5658 bool Sema::CheckTemplateArgumentList( 5659 TemplateDecl *Template, SourceLocation TemplateLoc, 5660 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, 5661 SmallVectorImpl<TemplateArgument> &Converted, 5662 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) { 5663 5664 if (ConstraintsNotSatisfied) 5665 *ConstraintsNotSatisfied = false; 5666 5667 // Make a copy of the template arguments for processing. Only make the 5668 // changes at the end when successful in matching the arguments to the 5669 // template. 5670 TemplateArgumentListInfo NewArgs = TemplateArgs; 5671 5672 // Make sure we get the template parameter list from the most 5673 // recent declaration, since that is the only one that is guaranteed to 5674 // have all the default template argument information. 5675 TemplateParameterList *Params = 5676 cast<TemplateDecl>(Template->getMostRecentDecl()) 5677 ->getTemplateParameters(); 5678 5679 SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); 5680 5681 // C++ [temp.arg]p1: 5682 // [...] The type and form of each template-argument specified in 5683 // a template-id shall match the type and form specified for the 5684 // corresponding parameter declared by the template in its 5685 // template-parameter-list. 5686 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 5687 SmallVector<TemplateArgument, 2> ArgumentPack; 5688 unsigned ArgIdx = 0, NumArgs = NewArgs.size(); 5689 LocalInstantiationScope InstScope(*this, true); 5690 for (TemplateParameterList::iterator Param = Params->begin(), 5691 ParamEnd = Params->end(); 5692 Param != ParamEnd; /* increment in loop */) { 5693 // If we have an expanded parameter pack, make sure we don't have too 5694 // many arguments. 5695 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 5696 if (*Expansions == ArgumentPack.size()) { 5697 // We're done with this parameter pack. Pack up its arguments and add 5698 // them to the list. 5699 Converted.push_back( 5700 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5701 ArgumentPack.clear(); 5702 5703 // This argument is assigned to the next parameter. 5704 ++Param; 5705 continue; 5706 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 5707 // Not enough arguments for this parameter pack. 5708 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5709 << /*not enough args*/0 5710 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5711 << Template; 5712 Diag(Template->getLocation(), diag::note_template_decl_here) 5713 << Params->getSourceRange(); 5714 return true; 5715 } 5716 } 5717 5718 if (ArgIdx < NumArgs) { 5719 // Check the template argument we were given. 5720 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, 5721 TemplateLoc, RAngleLoc, 5722 ArgumentPack.size(), Converted)) 5723 return true; 5724 5725 bool PackExpansionIntoNonPack = 5726 NewArgs[ArgIdx].getArgument().isPackExpansion() && 5727 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); 5728 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) || 5729 isa<ConceptDecl>(Template))) { 5730 // Core issue 1430: we have a pack expansion as an argument to an 5731 // alias template, and it's not part of a parameter pack. This 5732 // can't be canonicalized, so reject it now. 5733 // As for concepts - we cannot normalize constraints where this 5734 // situation exists. 5735 Diag(NewArgs[ArgIdx].getLocation(), 5736 diag::err_template_expansion_into_fixed_list) 5737 << (isa<ConceptDecl>(Template) ? 1 : 0) 5738 << NewArgs[ArgIdx].getSourceRange(); 5739 Diag((*Param)->getLocation(), diag::note_template_param_here); 5740 return true; 5741 } 5742 5743 // We're now done with this argument. 5744 ++ArgIdx; 5745 5746 if ((*Param)->isTemplateParameterPack()) { 5747 // The template parameter was a template parameter pack, so take the 5748 // deduced argument and place it on the argument pack. Note that we 5749 // stay on the same template parameter so that we can deduce more 5750 // arguments. 5751 ArgumentPack.push_back(Converted.pop_back_val()); 5752 } else { 5753 // Move to the next template parameter. 5754 ++Param; 5755 } 5756 5757 // If we just saw a pack expansion into a non-pack, then directly convert 5758 // the remaining arguments, because we don't know what parameters they'll 5759 // match up with. 5760 if (PackExpansionIntoNonPack) { 5761 if (!ArgumentPack.empty()) { 5762 // If we were part way through filling in an expanded parameter pack, 5763 // fall back to just producing individual arguments. 5764 Converted.insert(Converted.end(), 5765 ArgumentPack.begin(), ArgumentPack.end()); 5766 ArgumentPack.clear(); 5767 } 5768 5769 while (ArgIdx < NumArgs) { 5770 Converted.push_back(NewArgs[ArgIdx].getArgument()); 5771 ++ArgIdx; 5772 } 5773 5774 return false; 5775 } 5776 5777 continue; 5778 } 5779 5780 // If we're checking a partial template argument list, we're done. 5781 if (PartialTemplateArgs) { 5782 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 5783 Converted.push_back( 5784 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5785 return false; 5786 } 5787 5788 // If we have a template parameter pack with no more corresponding 5789 // arguments, just break out now and we'll fill in the argument pack below. 5790 if ((*Param)->isTemplateParameterPack()) { 5791 assert(!getExpandedPackSize(*Param) && 5792 "Should have dealt with this already"); 5793 5794 // A non-expanded parameter pack before the end of the parameter list 5795 // only occurs for an ill-formed template parameter list, unless we've 5796 // got a partial argument list for a function template, so just bail out. 5797 if (Param + 1 != ParamEnd) 5798 return true; 5799 5800 Converted.push_back( 5801 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5802 ArgumentPack.clear(); 5803 5804 ++Param; 5805 continue; 5806 } 5807 5808 // Check whether we have a default argument. 5809 TemplateArgumentLoc Arg; 5810 5811 // Retrieve the default template argument from the template 5812 // parameter. For each kind of template parameter, we substitute the 5813 // template arguments provided thus far and any "outer" template arguments 5814 // (when the template parameter was part of a nested template) into 5815 // the default argument. 5816 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 5817 if (!hasVisibleDefaultArgument(TTP)) 5818 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, 5819 NewArgs); 5820 5821 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 5822 Template, 5823 TemplateLoc, 5824 RAngleLoc, 5825 TTP, 5826 Converted); 5827 if (!ArgType) 5828 return true; 5829 5830 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 5831 ArgType); 5832 } else if (NonTypeTemplateParmDecl *NTTP 5833 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 5834 if (!hasVisibleDefaultArgument(NTTP)) 5835 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, 5836 NewArgs); 5837 5838 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 5839 TemplateLoc, 5840 RAngleLoc, 5841 NTTP, 5842 Converted); 5843 if (E.isInvalid()) 5844 return true; 5845 5846 Expr *Ex = E.getAs<Expr>(); 5847 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 5848 } else { 5849 TemplateTemplateParmDecl *TempParm 5850 = cast<TemplateTemplateParmDecl>(*Param); 5851 5852 if (!hasVisibleDefaultArgument(TempParm)) 5853 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, 5854 NewArgs); 5855 5856 NestedNameSpecifierLoc QualifierLoc; 5857 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 5858 TemplateLoc, 5859 RAngleLoc, 5860 TempParm, 5861 Converted, 5862 QualifierLoc); 5863 if (Name.isNull()) 5864 return true; 5865 5866 Arg = TemplateArgumentLoc( 5867 Context, TemplateArgument(Name), QualifierLoc, 5868 TempParm->getDefaultArgument().getTemplateNameLoc()); 5869 } 5870 5871 // Introduce an instantiation record that describes where we are using 5872 // the default template argument. We're not actually instantiating a 5873 // template here, we just create this object to put a note into the 5874 // context stack. 5875 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted, 5876 SourceRange(TemplateLoc, RAngleLoc)); 5877 if (Inst.isInvalid()) 5878 return true; 5879 5880 // Check the default template argument. 5881 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 5882 RAngleLoc, 0, Converted)) 5883 return true; 5884 5885 // Core issue 150 (assumed resolution): if this is a template template 5886 // parameter, keep track of the default template arguments from the 5887 // template definition. 5888 if (isTemplateTemplateParameter) 5889 NewArgs.addArgument(Arg); 5890 5891 // Move to the next template parameter and argument. 5892 ++Param; 5893 ++ArgIdx; 5894 } 5895 5896 // If we're performing a partial argument substitution, allow any trailing 5897 // pack expansions; they might be empty. This can happen even if 5898 // PartialTemplateArgs is false (the list of arguments is complete but 5899 // still dependent). 5900 if (ArgIdx < NumArgs && CurrentInstantiationScope && 5901 CurrentInstantiationScope->getPartiallySubstitutedPack()) { 5902 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion()) 5903 Converted.push_back(NewArgs[ArgIdx++].getArgument()); 5904 } 5905 5906 // If we have any leftover arguments, then there were too many arguments. 5907 // Complain and fail. 5908 if (ArgIdx < NumArgs) { 5909 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5910 << /*too many args*/1 5911 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5912 << Template 5913 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); 5914 Diag(Template->getLocation(), diag::note_template_decl_here) 5915 << Params->getSourceRange(); 5916 return true; 5917 } 5918 5919 // No problems found with the new argument list, propagate changes back 5920 // to caller. 5921 if (UpdateArgsWithConversions) 5922 TemplateArgs = std::move(NewArgs); 5923 5924 if (!PartialTemplateArgs && 5925 EnsureTemplateArgumentListConstraints( 5926 Template, Converted, SourceRange(TemplateLoc, 5927 TemplateArgs.getRAngleLoc()))) { 5928 if (ConstraintsNotSatisfied) 5929 *ConstraintsNotSatisfied = true; 5930 return true; 5931 } 5932 5933 return false; 5934 } 5935 5936 namespace { 5937 class UnnamedLocalNoLinkageFinder 5938 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 5939 { 5940 Sema &S; 5941 SourceRange SR; 5942 5943 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 5944 5945 public: 5946 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 5947 5948 bool Visit(QualType T) { 5949 return T.isNull() ? false : inherited::Visit(T.getTypePtr()); 5950 } 5951 5952 #define TYPE(Class, Parent) \ 5953 bool Visit##Class##Type(const Class##Type *); 5954 #define ABSTRACT_TYPE(Class, Parent) \ 5955 bool Visit##Class##Type(const Class##Type *) { return false; } 5956 #define NON_CANONICAL_TYPE(Class, Parent) \ 5957 bool Visit##Class##Type(const Class##Type *) { return false; } 5958 #include "clang/AST/TypeNodes.inc" 5959 5960 bool VisitTagDecl(const TagDecl *Tag); 5961 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 5962 }; 5963 } // end anonymous namespace 5964 5965 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 5966 return false; 5967 } 5968 5969 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 5970 return Visit(T->getElementType()); 5971 } 5972 5973 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 5974 return Visit(T->getPointeeType()); 5975 } 5976 5977 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 5978 const BlockPointerType* T) { 5979 return Visit(T->getPointeeType()); 5980 } 5981 5982 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 5983 const LValueReferenceType* T) { 5984 return Visit(T->getPointeeType()); 5985 } 5986 5987 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 5988 const RValueReferenceType* T) { 5989 return Visit(T->getPointeeType()); 5990 } 5991 5992 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 5993 const MemberPointerType* T) { 5994 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 5995 } 5996 5997 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 5998 const ConstantArrayType* T) { 5999 return Visit(T->getElementType()); 6000 } 6001 6002 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 6003 const IncompleteArrayType* T) { 6004 return Visit(T->getElementType()); 6005 } 6006 6007 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 6008 const VariableArrayType* T) { 6009 return Visit(T->getElementType()); 6010 } 6011 6012 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 6013 const DependentSizedArrayType* T) { 6014 return Visit(T->getElementType()); 6015 } 6016 6017 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 6018 const DependentSizedExtVectorType* T) { 6019 return Visit(T->getElementType()); 6020 } 6021 6022 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( 6023 const DependentSizedMatrixType *T) { 6024 return Visit(T->getElementType()); 6025 } 6026 6027 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( 6028 const DependentAddressSpaceType *T) { 6029 return Visit(T->getPointeeType()); 6030 } 6031 6032 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 6033 return Visit(T->getElementType()); 6034 } 6035 6036 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( 6037 const DependentVectorType *T) { 6038 return Visit(T->getElementType()); 6039 } 6040 6041 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 6042 return Visit(T->getElementType()); 6043 } 6044 6045 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( 6046 const ConstantMatrixType *T) { 6047 return Visit(T->getElementType()); 6048 } 6049 6050 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 6051 const FunctionProtoType* T) { 6052 for (const auto &A : T->param_types()) { 6053 if (Visit(A)) 6054 return true; 6055 } 6056 6057 return Visit(T->getReturnType()); 6058 } 6059 6060 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 6061 const FunctionNoProtoType* T) { 6062 return Visit(T->getReturnType()); 6063 } 6064 6065 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 6066 const UnresolvedUsingType*) { 6067 return false; 6068 } 6069 6070 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 6071 return false; 6072 } 6073 6074 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 6075 return Visit(T->getUnderlyingType()); 6076 } 6077 6078 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 6079 return false; 6080 } 6081 6082 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 6083 const UnaryTransformType*) { 6084 return false; 6085 } 6086 6087 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 6088 return Visit(T->getDeducedType()); 6089 } 6090 6091 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( 6092 const DeducedTemplateSpecializationType *T) { 6093 return Visit(T->getDeducedType()); 6094 } 6095 6096 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 6097 return VisitTagDecl(T->getDecl()); 6098 } 6099 6100 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 6101 return VisitTagDecl(T->getDecl()); 6102 } 6103 6104 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 6105 const TemplateTypeParmType*) { 6106 return false; 6107 } 6108 6109 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 6110 const SubstTemplateTypeParmPackType *) { 6111 return false; 6112 } 6113 6114 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 6115 const TemplateSpecializationType*) { 6116 return false; 6117 } 6118 6119 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 6120 const InjectedClassNameType* T) { 6121 return VisitTagDecl(T->getDecl()); 6122 } 6123 6124 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 6125 const DependentNameType* T) { 6126 return VisitNestedNameSpecifier(T->getQualifier()); 6127 } 6128 6129 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 6130 const DependentTemplateSpecializationType* T) { 6131 if (auto *Q = T->getQualifier()) 6132 return VisitNestedNameSpecifier(Q); 6133 return false; 6134 } 6135 6136 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 6137 const PackExpansionType* T) { 6138 return Visit(T->getPattern()); 6139 } 6140 6141 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 6142 return false; 6143 } 6144 6145 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 6146 const ObjCInterfaceType *) { 6147 return false; 6148 } 6149 6150 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 6151 const ObjCObjectPointerType *) { 6152 return false; 6153 } 6154 6155 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 6156 return Visit(T->getValueType()); 6157 } 6158 6159 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { 6160 return false; 6161 } 6162 6163 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) { 6164 return false; 6165 } 6166 6167 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType( 6168 const DependentBitIntType *T) { 6169 return false; 6170 } 6171 6172 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 6173 if (Tag->getDeclContext()->isFunctionOrMethod()) { 6174 S.Diag(SR.getBegin(), 6175 S.getLangOpts().CPlusPlus11 ? 6176 diag::warn_cxx98_compat_template_arg_local_type : 6177 diag::ext_template_arg_local_type) 6178 << S.Context.getTypeDeclType(Tag) << SR; 6179 return true; 6180 } 6181 6182 if (!Tag->hasNameForLinkage()) { 6183 S.Diag(SR.getBegin(), 6184 S.getLangOpts().CPlusPlus11 ? 6185 diag::warn_cxx98_compat_template_arg_unnamed_type : 6186 diag::ext_template_arg_unnamed_type) << SR; 6187 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 6188 return true; 6189 } 6190 6191 return false; 6192 } 6193 6194 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 6195 NestedNameSpecifier *NNS) { 6196 assert(NNS); 6197 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 6198 return true; 6199 6200 switch (NNS->getKind()) { 6201 case NestedNameSpecifier::Identifier: 6202 case NestedNameSpecifier::Namespace: 6203 case NestedNameSpecifier::NamespaceAlias: 6204 case NestedNameSpecifier::Global: 6205 case NestedNameSpecifier::Super: 6206 return false; 6207 6208 case NestedNameSpecifier::TypeSpec: 6209 case NestedNameSpecifier::TypeSpecWithTemplate: 6210 return Visit(QualType(NNS->getAsType(), 0)); 6211 } 6212 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 6213 } 6214 6215 /// Check a template argument against its corresponding 6216 /// template type parameter. 6217 /// 6218 /// This routine implements the semantics of C++ [temp.arg.type]. It 6219 /// returns true if an error occurred, and false otherwise. 6220 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) { 6221 assert(ArgInfo && "invalid TypeSourceInfo"); 6222 QualType Arg = ArgInfo->getType(); 6223 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 6224 6225 if (Arg->isVariablyModifiedType()) { 6226 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 6227 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 6228 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 6229 } 6230 6231 // C++03 [temp.arg.type]p2: 6232 // A local type, a type with no linkage, an unnamed type or a type 6233 // compounded from any of these types shall not be used as a 6234 // template-argument for a template type-parameter. 6235 // 6236 // C++11 allows these, and even in C++03 we allow them as an extension with 6237 // a warning. 6238 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) { 6239 UnnamedLocalNoLinkageFinder Finder(*this, SR); 6240 (void)Finder.Visit(Context.getCanonicalType(Arg)); 6241 } 6242 6243 return false; 6244 } 6245 6246 enum NullPointerValueKind { 6247 NPV_NotNullPointer, 6248 NPV_NullPointer, 6249 NPV_Error 6250 }; 6251 6252 /// Determine whether the given template argument is a null pointer 6253 /// value of the appropriate type. 6254 static NullPointerValueKind 6255 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 6256 QualType ParamType, Expr *Arg, 6257 Decl *Entity = nullptr) { 6258 if (Arg->isValueDependent() || Arg->isTypeDependent()) 6259 return NPV_NotNullPointer; 6260 6261 // dllimport'd entities aren't constant but are available inside of template 6262 // arguments. 6263 if (Entity && Entity->hasAttr<DLLImportAttr>()) 6264 return NPV_NotNullPointer; 6265 6266 if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) 6267 llvm_unreachable( 6268 "Incomplete parameter type in isNullPointerValueTemplateArgument!"); 6269 6270 if (!S.getLangOpts().CPlusPlus11) 6271 return NPV_NotNullPointer; 6272 6273 // Determine whether we have a constant expression. 6274 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 6275 if (ArgRV.isInvalid()) 6276 return NPV_Error; 6277 Arg = ArgRV.get(); 6278 6279 Expr::EvalResult EvalResult; 6280 SmallVector<PartialDiagnosticAt, 8> Notes; 6281 EvalResult.Diag = &Notes; 6282 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 6283 EvalResult.HasSideEffects) { 6284 SourceLocation DiagLoc = Arg->getExprLoc(); 6285 6286 // If our only note is the usual "invalid subexpression" note, just point 6287 // the caret at its location rather than producing an essentially 6288 // redundant note. 6289 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 6290 diag::note_invalid_subexpr_in_const_expr) { 6291 DiagLoc = Notes[0].first; 6292 Notes.clear(); 6293 } 6294 6295 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 6296 << Arg->getType() << Arg->getSourceRange(); 6297 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 6298 S.Diag(Notes[I].first, Notes[I].second); 6299 6300 S.Diag(Param->getLocation(), diag::note_template_param_here); 6301 return NPV_Error; 6302 } 6303 6304 // C++11 [temp.arg.nontype]p1: 6305 // - an address constant expression of type std::nullptr_t 6306 if (Arg->getType()->isNullPtrType()) 6307 return NPV_NullPointer; 6308 6309 // - a constant expression that evaluates to a null pointer value (4.10); or 6310 // - a constant expression that evaluates to a null member pointer value 6311 // (4.11); or 6312 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 6313 (EvalResult.Val.isMemberPointer() && 6314 !EvalResult.Val.getMemberPointerDecl())) { 6315 // If our expression has an appropriate type, we've succeeded. 6316 bool ObjCLifetimeConversion; 6317 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 6318 S.IsQualificationConversion(Arg->getType(), ParamType, false, 6319 ObjCLifetimeConversion)) 6320 return NPV_NullPointer; 6321 6322 // The types didn't match, but we know we got a null pointer; complain, 6323 // then recover as if the types were correct. 6324 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 6325 << Arg->getType() << ParamType << Arg->getSourceRange(); 6326 S.Diag(Param->getLocation(), diag::note_template_param_here); 6327 return NPV_NullPointer; 6328 } 6329 6330 // If we don't have a null pointer value, but we do have a NULL pointer 6331 // constant, suggest a cast to the appropriate type. 6332 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 6333 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 6334 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 6335 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) 6336 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), 6337 ")"); 6338 S.Diag(Param->getLocation(), diag::note_template_param_here); 6339 return NPV_NullPointer; 6340 } 6341 6342 // FIXME: If we ever want to support general, address-constant expressions 6343 // as non-type template arguments, we should return the ExprResult here to 6344 // be interpreted by the caller. 6345 return NPV_NotNullPointer; 6346 } 6347 6348 /// Checks whether the given template argument is compatible with its 6349 /// template parameter. 6350 static bool CheckTemplateArgumentIsCompatibleWithParameter( 6351 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6352 Expr *Arg, QualType ArgType) { 6353 bool ObjCLifetimeConversion; 6354 if (ParamType->isPointerType() && 6355 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && 6356 S.IsQualificationConversion(ArgType, ParamType, false, 6357 ObjCLifetimeConversion)) { 6358 // For pointer-to-object types, qualification conversions are 6359 // permitted. 6360 } else { 6361 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 6362 if (!ParamRef->getPointeeType()->isFunctionType()) { 6363 // C++ [temp.arg.nontype]p5b3: 6364 // For a non-type template-parameter of type reference to 6365 // object, no conversions apply. The type referred to by the 6366 // reference may be more cv-qualified than the (otherwise 6367 // identical) type of the template- argument. The 6368 // template-parameter is bound directly to the 6369 // template-argument, which shall be an lvalue. 6370 6371 // FIXME: Other qualifiers? 6372 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 6373 unsigned ArgQuals = ArgType.getCVRQualifiers(); 6374 6375 if ((ParamQuals | ArgQuals) != ParamQuals) { 6376 S.Diag(Arg->getBeginLoc(), 6377 diag::err_template_arg_ref_bind_ignores_quals) 6378 << ParamType << Arg->getType() << Arg->getSourceRange(); 6379 S.Diag(Param->getLocation(), diag::note_template_param_here); 6380 return true; 6381 } 6382 } 6383 } 6384 6385 // At this point, the template argument refers to an object or 6386 // function with external linkage. We now need to check whether the 6387 // argument and parameter types are compatible. 6388 if (!S.Context.hasSameUnqualifiedType(ArgType, 6389 ParamType.getNonReferenceType())) { 6390 // We can't perform this conversion or binding. 6391 if (ParamType->isReferenceType()) 6392 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) 6393 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 6394 else 6395 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 6396 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 6397 S.Diag(Param->getLocation(), diag::note_template_param_here); 6398 return true; 6399 } 6400 } 6401 6402 return false; 6403 } 6404 6405 /// Checks whether the given template argument is the address 6406 /// of an object or function according to C++ [temp.arg.nontype]p1. 6407 static bool 6408 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 6409 NonTypeTemplateParmDecl *Param, 6410 QualType ParamType, 6411 Expr *ArgIn, 6412 TemplateArgument &Converted) { 6413 bool Invalid = false; 6414 Expr *Arg = ArgIn; 6415 QualType ArgType = Arg->getType(); 6416 6417 bool AddressTaken = false; 6418 SourceLocation AddrOpLoc; 6419 if (S.getLangOpts().MicrosoftExt) { 6420 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 6421 // dereference and address-of operators. 6422 Arg = Arg->IgnoreParenCasts(); 6423 6424 bool ExtWarnMSTemplateArg = false; 6425 UnaryOperatorKind FirstOpKind; 6426 SourceLocation FirstOpLoc; 6427 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6428 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 6429 if (UnOpKind == UO_Deref) 6430 ExtWarnMSTemplateArg = true; 6431 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 6432 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 6433 if (!AddrOpLoc.isValid()) { 6434 FirstOpKind = UnOpKind; 6435 FirstOpLoc = UnOp->getOperatorLoc(); 6436 } 6437 } else 6438 break; 6439 } 6440 if (FirstOpLoc.isValid()) { 6441 if (ExtWarnMSTemplateArg) 6442 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) 6443 << ArgIn->getSourceRange(); 6444 6445 if (FirstOpKind == UO_AddrOf) 6446 AddressTaken = true; 6447 else if (Arg->getType()->isPointerType()) { 6448 // We cannot let pointers get dereferenced here, that is obviously not a 6449 // constant expression. 6450 assert(FirstOpKind == UO_Deref); 6451 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6452 << Arg->getSourceRange(); 6453 } 6454 } 6455 } else { 6456 // See through any implicit casts we added to fix the type. 6457 Arg = Arg->IgnoreImpCasts(); 6458 6459 // C++ [temp.arg.nontype]p1: 6460 // 6461 // A template-argument for a non-type, non-template 6462 // template-parameter shall be one of: [...] 6463 // 6464 // -- the address of an object or function with external 6465 // linkage, including function templates and function 6466 // template-ids but excluding non-static class members, 6467 // expressed as & id-expression where the & is optional if 6468 // the name refers to a function or array, or if the 6469 // corresponding template-parameter is a reference; or 6470 6471 // In C++98/03 mode, give an extension warning on any extra parentheses. 6472 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6473 bool ExtraParens = false; 6474 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6475 if (!Invalid && !ExtraParens) { 6476 S.Diag(Arg->getBeginLoc(), 6477 S.getLangOpts().CPlusPlus11 6478 ? diag::warn_cxx98_compat_template_arg_extra_parens 6479 : diag::ext_template_arg_extra_parens) 6480 << Arg->getSourceRange(); 6481 ExtraParens = true; 6482 } 6483 6484 Arg = Parens->getSubExpr(); 6485 } 6486 6487 while (SubstNonTypeTemplateParmExpr *subst = 6488 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6489 Arg = subst->getReplacement()->IgnoreImpCasts(); 6490 6491 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6492 if (UnOp->getOpcode() == UO_AddrOf) { 6493 Arg = UnOp->getSubExpr(); 6494 AddressTaken = true; 6495 AddrOpLoc = UnOp->getOperatorLoc(); 6496 } 6497 } 6498 6499 while (SubstNonTypeTemplateParmExpr *subst = 6500 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6501 Arg = subst->getReplacement()->IgnoreImpCasts(); 6502 } 6503 6504 ValueDecl *Entity = nullptr; 6505 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg)) 6506 Entity = DRE->getDecl(); 6507 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg)) 6508 Entity = CUE->getGuidDecl(); 6509 6510 // If our parameter has pointer type, check for a null template value. 6511 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 6512 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, 6513 Entity)) { 6514 case NPV_NullPointer: 6515 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6516 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6517 /*isNullPtr=*/true); 6518 return false; 6519 6520 case NPV_Error: 6521 return true; 6522 6523 case NPV_NotNullPointer: 6524 break; 6525 } 6526 } 6527 6528 // Stop checking the precise nature of the argument if it is value dependent, 6529 // it should be checked when instantiated. 6530 if (Arg->isValueDependent()) { 6531 Converted = TemplateArgument(ArgIn); 6532 return false; 6533 } 6534 6535 if (!Entity) { 6536 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6537 << Arg->getSourceRange(); 6538 S.Diag(Param->getLocation(), diag::note_template_param_here); 6539 return true; 6540 } 6541 6542 // Cannot refer to non-static data members 6543 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 6544 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) 6545 << Entity << Arg->getSourceRange(); 6546 S.Diag(Param->getLocation(), diag::note_template_param_here); 6547 return true; 6548 } 6549 6550 // Cannot refer to non-static member functions 6551 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 6552 if (!Method->isStatic()) { 6553 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) 6554 << Method << Arg->getSourceRange(); 6555 S.Diag(Param->getLocation(), diag::note_template_param_here); 6556 return true; 6557 } 6558 } 6559 6560 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 6561 VarDecl *Var = dyn_cast<VarDecl>(Entity); 6562 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity); 6563 6564 // A non-type template argument must refer to an object or function. 6565 if (!Func && !Var && !Guid) { 6566 // We found something, but we don't know specifically what it is. 6567 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) 6568 << Arg->getSourceRange(); 6569 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here); 6570 return true; 6571 } 6572 6573 // Address / reference template args must have external linkage in C++98. 6574 if (Entity->getFormalLinkage() == InternalLinkage) { 6575 S.Diag(Arg->getBeginLoc(), 6576 S.getLangOpts().CPlusPlus11 6577 ? diag::warn_cxx98_compat_template_arg_object_internal 6578 : diag::ext_template_arg_object_internal) 6579 << !Func << Entity << Arg->getSourceRange(); 6580 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6581 << !Func; 6582 } else if (!Entity->hasLinkage()) { 6583 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) 6584 << !Func << Entity << Arg->getSourceRange(); 6585 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6586 << !Func; 6587 return true; 6588 } 6589 6590 if (Var) { 6591 // A value of reference type is not an object. 6592 if (Var->getType()->isReferenceType()) { 6593 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) 6594 << Var->getType() << Arg->getSourceRange(); 6595 S.Diag(Param->getLocation(), diag::note_template_param_here); 6596 return true; 6597 } 6598 6599 // A template argument must have static storage duration. 6600 if (Var->getTLSKind()) { 6601 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) 6602 << Arg->getSourceRange(); 6603 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 6604 return true; 6605 } 6606 } 6607 6608 if (AddressTaken && ParamType->isReferenceType()) { 6609 // If we originally had an address-of operator, but the 6610 // parameter has reference type, complain and (if things look 6611 // like they will work) drop the address-of operator. 6612 if (!S.Context.hasSameUnqualifiedType(Entity->getType(), 6613 ParamType.getNonReferenceType())) { 6614 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6615 << ParamType; 6616 S.Diag(Param->getLocation(), diag::note_template_param_here); 6617 return true; 6618 } 6619 6620 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6621 << ParamType 6622 << FixItHint::CreateRemoval(AddrOpLoc); 6623 S.Diag(Param->getLocation(), diag::note_template_param_here); 6624 6625 ArgType = Entity->getType(); 6626 } 6627 6628 // If the template parameter has pointer type, either we must have taken the 6629 // address or the argument must decay to a pointer. 6630 if (!AddressTaken && ParamType->isPointerType()) { 6631 if (Func) { 6632 // Function-to-pointer decay. 6633 ArgType = S.Context.getPointerType(Func->getType()); 6634 } else if (Entity->getType()->isArrayType()) { 6635 // Array-to-pointer decay. 6636 ArgType = S.Context.getArrayDecayedType(Entity->getType()); 6637 } else { 6638 // If the template parameter has pointer type but the address of 6639 // this object was not taken, complain and (possibly) recover by 6640 // taking the address of the entity. 6641 ArgType = S.Context.getPointerType(Entity->getType()); 6642 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 6643 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6644 << ParamType; 6645 S.Diag(Param->getLocation(), diag::note_template_param_here); 6646 return true; 6647 } 6648 6649 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6650 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); 6651 6652 S.Diag(Param->getLocation(), diag::note_template_param_here); 6653 } 6654 } 6655 6656 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 6657 Arg, ArgType)) 6658 return true; 6659 6660 // Create the template argument. 6661 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 6662 S.Context.getCanonicalType(ParamType)); 6663 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false); 6664 return false; 6665 } 6666 6667 /// Checks whether the given template argument is a pointer to 6668 /// member constant according to C++ [temp.arg.nontype]p1. 6669 static bool CheckTemplateArgumentPointerToMember(Sema &S, 6670 NonTypeTemplateParmDecl *Param, 6671 QualType ParamType, 6672 Expr *&ResultArg, 6673 TemplateArgument &Converted) { 6674 bool Invalid = false; 6675 6676 Expr *Arg = ResultArg; 6677 bool ObjCLifetimeConversion; 6678 6679 // C++ [temp.arg.nontype]p1: 6680 // 6681 // A template-argument for a non-type, non-template 6682 // template-parameter shall be one of: [...] 6683 // 6684 // -- a pointer to member expressed as described in 5.3.1. 6685 DeclRefExpr *DRE = nullptr; 6686 6687 // In C++98/03 mode, give an extension warning on any extra parentheses. 6688 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6689 bool ExtraParens = false; 6690 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6691 if (!Invalid && !ExtraParens) { 6692 S.Diag(Arg->getBeginLoc(), 6693 S.getLangOpts().CPlusPlus11 6694 ? diag::warn_cxx98_compat_template_arg_extra_parens 6695 : diag::ext_template_arg_extra_parens) 6696 << Arg->getSourceRange(); 6697 ExtraParens = true; 6698 } 6699 6700 Arg = Parens->getSubExpr(); 6701 } 6702 6703 while (SubstNonTypeTemplateParmExpr *subst = 6704 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6705 Arg = subst->getReplacement()->IgnoreImpCasts(); 6706 6707 // A pointer-to-member constant written &Class::member. 6708 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6709 if (UnOp->getOpcode() == UO_AddrOf) { 6710 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 6711 if (DRE && !DRE->getQualifier()) 6712 DRE = nullptr; 6713 } 6714 } 6715 // A constant of pointer-to-member type. 6716 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 6717 ValueDecl *VD = DRE->getDecl(); 6718 if (VD->getType()->isMemberPointerType()) { 6719 if (isa<NonTypeTemplateParmDecl>(VD)) { 6720 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6721 Converted = TemplateArgument(Arg); 6722 } else { 6723 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 6724 Converted = TemplateArgument(VD, ParamType); 6725 } 6726 return Invalid; 6727 } 6728 } 6729 6730 DRE = nullptr; 6731 } 6732 6733 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 6734 6735 // Check for a null pointer value. 6736 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, 6737 Entity)) { 6738 case NPV_Error: 6739 return true; 6740 case NPV_NullPointer: 6741 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6742 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6743 /*isNullPtr*/true); 6744 return false; 6745 case NPV_NotNullPointer: 6746 break; 6747 } 6748 6749 if (S.IsQualificationConversion(ResultArg->getType(), 6750 ParamType.getNonReferenceType(), false, 6751 ObjCLifetimeConversion)) { 6752 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, 6753 ResultArg->getValueKind()) 6754 .get(); 6755 } else if (!S.Context.hasSameUnqualifiedType( 6756 ResultArg->getType(), ParamType.getNonReferenceType())) { 6757 // We can't perform this conversion. 6758 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) 6759 << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); 6760 S.Diag(Param->getLocation(), diag::note_template_param_here); 6761 return true; 6762 } 6763 6764 if (!DRE) 6765 return S.Diag(Arg->getBeginLoc(), 6766 diag::err_template_arg_not_pointer_to_member_form) 6767 << Arg->getSourceRange(); 6768 6769 if (isa<FieldDecl>(DRE->getDecl()) || 6770 isa<IndirectFieldDecl>(DRE->getDecl()) || 6771 isa<CXXMethodDecl>(DRE->getDecl())) { 6772 assert((isa<FieldDecl>(DRE->getDecl()) || 6773 isa<IndirectFieldDecl>(DRE->getDecl()) || 6774 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 6775 "Only non-static member pointers can make it here"); 6776 6777 // Okay: this is the address of a non-static member, and therefore 6778 // a member pointer constant. 6779 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6780 Converted = TemplateArgument(Arg); 6781 } else { 6782 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 6783 Converted = TemplateArgument(D, S.Context.getCanonicalType(ParamType)); 6784 } 6785 return Invalid; 6786 } 6787 6788 // We found something else, but we don't know specifically what it is. 6789 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) 6790 << Arg->getSourceRange(); 6791 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 6792 return true; 6793 } 6794 6795 /// Check a template argument against its corresponding 6796 /// non-type template parameter. 6797 /// 6798 /// This routine implements the semantics of C++ [temp.arg.nontype]. 6799 /// If an error occurred, it returns ExprError(); otherwise, it 6800 /// returns the converted template argument. \p ParamType is the 6801 /// type of the non-type template parameter after it has been instantiated. 6802 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 6803 QualType ParamType, Expr *Arg, 6804 TemplateArgument &Converted, 6805 CheckTemplateArgumentKind CTAK) { 6806 SourceLocation StartLoc = Arg->getBeginLoc(); 6807 6808 // If the parameter type somehow involves auto, deduce the type now. 6809 DeducedType *DeducedT = ParamType->getContainedDeducedType(); 6810 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) { 6811 // During template argument deduction, we allow 'decltype(auto)' to 6812 // match an arbitrary dependent argument. 6813 // FIXME: The language rules don't say what happens in this case. 6814 // FIXME: We get an opaque dependent type out of decltype(auto) if the 6815 // expression is merely instantiation-dependent; is this enough? 6816 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { 6817 auto *AT = dyn_cast<AutoType>(DeducedT); 6818 if (AT && AT->isDecltypeAuto()) { 6819 Converted = TemplateArgument(Arg); 6820 return Arg; 6821 } 6822 } 6823 6824 // When checking a deduced template argument, deduce from its type even if 6825 // the type is dependent, in order to check the types of non-type template 6826 // arguments line up properly in partial ordering. 6827 Optional<unsigned> Depth = Param->getDepth() + 1; 6828 Expr *DeductionArg = Arg; 6829 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg)) 6830 DeductionArg = PE->getPattern(); 6831 TypeSourceInfo *TSI = 6832 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()); 6833 if (isa<DeducedTemplateSpecializationType>(DeducedT)) { 6834 InitializedEntity Entity = 6835 InitializedEntity::InitializeTemplateParameter(ParamType, Param); 6836 InitializationKind Kind = InitializationKind::CreateForInit( 6837 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg); 6838 Expr *Inits[1] = {DeductionArg}; 6839 ParamType = 6840 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits); 6841 if (ParamType.isNull()) 6842 return ExprError(); 6843 } else if (DeduceAutoType( 6844 TSI, DeductionArg, ParamType, Depth, 6845 // We do not check constraints right now because the 6846 // immediately-declared constraint of the auto type is also 6847 // an associated constraint, and will be checked along with 6848 // the other associated constraints after checking the 6849 // template argument list. 6850 /*IgnoreConstraints=*/true) == DAR_Failed) { 6851 Diag(Arg->getExprLoc(), 6852 diag::err_non_type_template_parm_type_deduction_failure) 6853 << Param->getDeclName() << Param->getType() << Arg->getType() 6854 << Arg->getSourceRange(); 6855 Diag(Param->getLocation(), diag::note_template_param_here); 6856 return ExprError(); 6857 } 6858 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's 6859 // an error. The error message normally references the parameter 6860 // declaration, but here we'll pass the argument location because that's 6861 // where the parameter type is deduced. 6862 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); 6863 if (ParamType.isNull()) { 6864 Diag(Param->getLocation(), diag::note_template_param_here); 6865 return ExprError(); 6866 } 6867 } 6868 6869 // We should have already dropped all cv-qualifiers by now. 6870 assert(!ParamType.hasQualifiers() && 6871 "non-type template parameter type cannot be qualified"); 6872 6873 // FIXME: When Param is a reference, should we check that Arg is an lvalue? 6874 if (CTAK == CTAK_Deduced && 6875 (ParamType->isReferenceType() 6876 ? !Context.hasSameType(ParamType.getNonReferenceType(), 6877 Arg->getType()) 6878 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) { 6879 // FIXME: If either type is dependent, we skip the check. This isn't 6880 // correct, since during deduction we're supposed to have replaced each 6881 // template parameter with some unique (non-dependent) placeholder. 6882 // FIXME: If the argument type contains 'auto', we carry on and fail the 6883 // type check in order to force specific types to be more specialized than 6884 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to 6885 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'. 6886 if ((ParamType->isDependentType() || Arg->isTypeDependent()) && 6887 !Arg->getType()->getContainedDeducedType()) { 6888 Converted = TemplateArgument(Arg); 6889 return Arg; 6890 } 6891 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, 6892 // we should actually be checking the type of the template argument in P, 6893 // not the type of the template argument deduced from A, against the 6894 // template parameter type. 6895 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 6896 << Arg->getType() 6897 << ParamType.getUnqualifiedType(); 6898 Diag(Param->getLocation(), diag::note_template_param_here); 6899 return ExprError(); 6900 } 6901 6902 // If either the parameter has a dependent type or the argument is 6903 // type-dependent, there's nothing we can check now. The argument only 6904 // contains an unexpanded pack during partial ordering, and there's 6905 // nothing more we can check in that case. 6906 if (ParamType->isDependentType() || Arg->isTypeDependent() || 6907 Arg->containsUnexpandedParameterPack()) { 6908 // Force the argument to the type of the parameter to maintain invariants. 6909 auto *PE = dyn_cast<PackExpansionExpr>(Arg); 6910 if (PE) 6911 Arg = PE->getPattern(); 6912 ExprResult E = ImpCastExprToType( 6913 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent, 6914 ParamType->isLValueReferenceType() ? VK_LValue 6915 : ParamType->isRValueReferenceType() ? VK_XValue 6916 : VK_PRValue); 6917 if (E.isInvalid()) 6918 return ExprError(); 6919 if (PE) { 6920 // Recreate a pack expansion if we unwrapped one. 6921 E = new (Context) 6922 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), 6923 PE->getNumExpansions()); 6924 } 6925 Converted = TemplateArgument(E.get()); 6926 return E; 6927 } 6928 6929 // The initialization of the parameter from the argument is 6930 // a constant-evaluated context. 6931 EnterExpressionEvaluationContext ConstantEvaluated( 6932 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 6933 6934 if (getLangOpts().CPlusPlus17) { 6935 QualType CanonParamType = Context.getCanonicalType(ParamType); 6936 6937 // Avoid making a copy when initializing a template parameter of class type 6938 // from a template parameter object of the same type. This is going beyond 6939 // the standard, but is required for soundness: in 6940 // template<A a> struct X { X *p; X<a> *q; }; 6941 // ... we need p and q to have the same type. 6942 // 6943 // Similarly, don't inject a call to a copy constructor when initializing 6944 // from a template parameter of the same type. 6945 Expr *InnerArg = Arg->IgnoreParenImpCasts(); 6946 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) && 6947 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) { 6948 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl(); 6949 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 6950 Converted = TemplateArgument(TPO, CanonParamType); 6951 return Arg; 6952 } 6953 if (isa<NonTypeTemplateParmDecl>(ND)) { 6954 Converted = TemplateArgument(Arg); 6955 return Arg; 6956 } 6957 } 6958 6959 // C++17 [temp.arg.nontype]p1: 6960 // A template-argument for a non-type template parameter shall be 6961 // a converted constant expression of the type of the template-parameter. 6962 APValue Value; 6963 ExprResult ArgResult = CheckConvertedConstantExpression( 6964 Arg, ParamType, Value, CCEK_TemplateArg, Param); 6965 if (ArgResult.isInvalid()) 6966 return ExprError(); 6967 6968 // For a value-dependent argument, CheckConvertedConstantExpression is 6969 // permitted (and expected) to be unable to determine a value. 6970 if (ArgResult.get()->isValueDependent()) { 6971 Converted = TemplateArgument(ArgResult.get()); 6972 return ArgResult; 6973 } 6974 6975 // Convert the APValue to a TemplateArgument. 6976 switch (Value.getKind()) { 6977 case APValue::None: 6978 assert(ParamType->isNullPtrType()); 6979 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true); 6980 break; 6981 case APValue::Indeterminate: 6982 llvm_unreachable("result of constant evaluation should be initialized"); 6983 break; 6984 case APValue::Int: 6985 assert(ParamType->isIntegralOrEnumerationType()); 6986 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType); 6987 break; 6988 case APValue::MemberPointer: { 6989 assert(ParamType->isMemberPointerType()); 6990 6991 // FIXME: We need TemplateArgument representation and mangling for these. 6992 if (!Value.getMemberPointerPath().empty()) { 6993 Diag(Arg->getBeginLoc(), 6994 diag::err_template_arg_member_ptr_base_derived_not_supported) 6995 << Value.getMemberPointerDecl() << ParamType 6996 << Arg->getSourceRange(); 6997 return ExprError(); 6998 } 6999 7000 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl()); 7001 Converted = VD ? TemplateArgument(VD, CanonParamType) 7002 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 7003 break; 7004 } 7005 case APValue::LValue: { 7006 // For a non-type template-parameter of pointer or reference type, 7007 // the value of the constant expression shall not refer to 7008 assert(ParamType->isPointerType() || ParamType->isReferenceType() || 7009 ParamType->isNullPtrType()); 7010 // -- a temporary object 7011 // -- a string literal 7012 // -- the result of a typeid expression, or 7013 // -- a predefined __func__ variable 7014 APValue::LValueBase Base = Value.getLValueBase(); 7015 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); 7016 if (Base && 7017 (!VD || 7018 isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) { 7019 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 7020 << Arg->getSourceRange(); 7021 return ExprError(); 7022 } 7023 // -- a subobject 7024 // FIXME: Until C++20 7025 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && 7026 VD && VD->getType()->isArrayType() && 7027 Value.getLValuePath()[0].getAsArrayIndex() == 0 && 7028 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { 7029 // Per defect report (no number yet): 7030 // ... other than a pointer to the first element of a complete array 7031 // object. 7032 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() || 7033 Value.isLValueOnePastTheEnd()) { 7034 Diag(StartLoc, diag::err_non_type_template_arg_subobject) 7035 << Value.getAsString(Context, ParamType); 7036 return ExprError(); 7037 } 7038 assert((VD || !ParamType->isReferenceType()) && 7039 "null reference should not be a constant expression"); 7040 assert((!VD || !ParamType->isNullPtrType()) && 7041 "non-null value of type nullptr_t?"); 7042 Converted = VD ? TemplateArgument(VD, CanonParamType) 7043 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 7044 break; 7045 } 7046 case APValue::Struct: 7047 case APValue::Union: 7048 // Get or create the corresponding template parameter object. 7049 Converted = TemplateArgument( 7050 Context.getTemplateParamObjectDecl(CanonParamType, Value), 7051 CanonParamType); 7052 break; 7053 case APValue::AddrLabelDiff: 7054 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); 7055 case APValue::FixedPoint: 7056 case APValue::Float: 7057 case APValue::ComplexInt: 7058 case APValue::ComplexFloat: 7059 case APValue::Vector: 7060 case APValue::Array: 7061 return Diag(StartLoc, diag::err_non_type_template_arg_unsupported) 7062 << ParamType; 7063 } 7064 7065 return ArgResult.get(); 7066 } 7067 7068 // C++ [temp.arg.nontype]p5: 7069 // The following conversions are performed on each expression used 7070 // as a non-type template-argument. If a non-type 7071 // template-argument cannot be converted to the type of the 7072 // corresponding template-parameter then the program is 7073 // ill-formed. 7074 if (ParamType->isIntegralOrEnumerationType()) { 7075 // C++11: 7076 // -- for a non-type template-parameter of integral or 7077 // enumeration type, conversions permitted in a converted 7078 // constant expression are applied. 7079 // 7080 // C++98: 7081 // -- for a non-type template-parameter of integral or 7082 // enumeration type, integral promotions (4.5) and integral 7083 // conversions (4.7) are applied. 7084 7085 if (getLangOpts().CPlusPlus11) { 7086 // C++ [temp.arg.nontype]p1: 7087 // A template-argument for a non-type, non-template template-parameter 7088 // shall be one of: 7089 // 7090 // -- for a non-type template-parameter of integral or enumeration 7091 // type, a converted constant expression of the type of the 7092 // template-parameter; or 7093 llvm::APSInt Value; 7094 ExprResult ArgResult = 7095 CheckConvertedConstantExpression(Arg, ParamType, Value, 7096 CCEK_TemplateArg); 7097 if (ArgResult.isInvalid()) 7098 return ExprError(); 7099 7100 // We can't check arbitrary value-dependent arguments. 7101 if (ArgResult.get()->isValueDependent()) { 7102 Converted = TemplateArgument(ArgResult.get()); 7103 return ArgResult; 7104 } 7105 7106 // Widen the argument value to sizeof(parameter type). This is almost 7107 // always a no-op, except when the parameter type is bool. In 7108 // that case, this may extend the argument from 1 bit to 8 bits. 7109 QualType IntegerType = ParamType; 7110 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 7111 IntegerType = Enum->getDecl()->getIntegerType(); 7112 Value = Value.extOrTrunc(IntegerType->isBitIntType() 7113 ? Context.getIntWidth(IntegerType) 7114 : Context.getTypeSize(IntegerType)); 7115 7116 Converted = TemplateArgument(Context, Value, 7117 Context.getCanonicalType(ParamType)); 7118 return ArgResult; 7119 } 7120 7121 ExprResult ArgResult = DefaultLvalueConversion(Arg); 7122 if (ArgResult.isInvalid()) 7123 return ExprError(); 7124 Arg = ArgResult.get(); 7125 7126 QualType ArgType = Arg->getType(); 7127 7128 // C++ [temp.arg.nontype]p1: 7129 // A template-argument for a non-type, non-template 7130 // template-parameter shall be one of: 7131 // 7132 // -- an integral constant-expression of integral or enumeration 7133 // type; or 7134 // -- the name of a non-type template-parameter; or 7135 llvm::APSInt Value; 7136 if (!ArgType->isIntegralOrEnumerationType()) { 7137 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) 7138 << ArgType << Arg->getSourceRange(); 7139 Diag(Param->getLocation(), diag::note_template_param_here); 7140 return ExprError(); 7141 } else if (!Arg->isValueDependent()) { 7142 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 7143 QualType T; 7144 7145 public: 7146 TmplArgICEDiagnoser(QualType T) : T(T) { } 7147 7148 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 7149 SourceLocation Loc) override { 7150 return S.Diag(Loc, diag::err_template_arg_not_ice) << T; 7151 } 7152 } Diagnoser(ArgType); 7153 7154 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get(); 7155 if (!Arg) 7156 return ExprError(); 7157 } 7158 7159 // From here on out, all we care about is the unqualified form 7160 // of the argument type. 7161 ArgType = ArgType.getUnqualifiedType(); 7162 7163 // Try to convert the argument to the parameter's type. 7164 if (Context.hasSameType(ParamType, ArgType)) { 7165 // Okay: no conversion necessary 7166 } else if (ParamType->isBooleanType()) { 7167 // This is an integral-to-boolean conversion. 7168 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 7169 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 7170 !ParamType->isEnumeralType()) { 7171 // This is an integral promotion or conversion. 7172 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 7173 } else { 7174 // We can't perform this conversion. 7175 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 7176 << Arg->getType() << ParamType << Arg->getSourceRange(); 7177 Diag(Param->getLocation(), diag::note_template_param_here); 7178 return ExprError(); 7179 } 7180 7181 // Add the value of this argument to the list of converted 7182 // arguments. We use the bitwidth and signedness of the template 7183 // parameter. 7184 if (Arg->isValueDependent()) { 7185 // The argument is value-dependent. Create a new 7186 // TemplateArgument with the converted expression. 7187 Converted = TemplateArgument(Arg); 7188 return Arg; 7189 } 7190 7191 QualType IntegerType = Context.getCanonicalType(ParamType); 7192 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 7193 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 7194 7195 if (ParamType->isBooleanType()) { 7196 // Value must be zero or one. 7197 Value = Value != 0; 7198 unsigned AllowedBits = Context.getTypeSize(IntegerType); 7199 if (Value.getBitWidth() != AllowedBits) 7200 Value = Value.extOrTrunc(AllowedBits); 7201 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7202 } else { 7203 llvm::APSInt OldValue = Value; 7204 7205 // Coerce the template argument's value to the value it will have 7206 // based on the template parameter's type. 7207 unsigned AllowedBits = IntegerType->isBitIntType() 7208 ? Context.getIntWidth(IntegerType) 7209 : Context.getTypeSize(IntegerType); 7210 if (Value.getBitWidth() != AllowedBits) 7211 Value = Value.extOrTrunc(AllowedBits); 7212 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7213 7214 // Complain if an unsigned parameter received a negative value. 7215 if (IntegerType->isUnsignedIntegerOrEnumerationType() && 7216 (OldValue.isSigned() && OldValue.isNegative())) { 7217 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) 7218 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7219 << Arg->getSourceRange(); 7220 Diag(Param->getLocation(), diag::note_template_param_here); 7221 } 7222 7223 // Complain if we overflowed the template parameter's type. 7224 unsigned RequiredBits; 7225 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 7226 RequiredBits = OldValue.getActiveBits(); 7227 else if (OldValue.isUnsigned()) 7228 RequiredBits = OldValue.getActiveBits() + 1; 7229 else 7230 RequiredBits = OldValue.getMinSignedBits(); 7231 if (RequiredBits > AllowedBits) { 7232 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) 7233 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7234 << Arg->getSourceRange(); 7235 Diag(Param->getLocation(), diag::note_template_param_here); 7236 } 7237 } 7238 7239 Converted = TemplateArgument(Context, Value, 7240 ParamType->isEnumeralType() 7241 ? Context.getCanonicalType(ParamType) 7242 : IntegerType); 7243 return Arg; 7244 } 7245 7246 QualType ArgType = Arg->getType(); 7247 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 7248 7249 // Handle pointer-to-function, reference-to-function, and 7250 // pointer-to-member-function all in (roughly) the same way. 7251 if (// -- For a non-type template-parameter of type pointer to 7252 // function, only the function-to-pointer conversion (4.3) is 7253 // applied. If the template-argument represents a set of 7254 // overloaded functions (or a pointer to such), the matching 7255 // function is selected from the set (13.4). 7256 (ParamType->isPointerType() && 7257 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || 7258 // -- For a non-type template-parameter of type reference to 7259 // function, no conversions apply. If the template-argument 7260 // represents a set of overloaded functions, the matching 7261 // function is selected from the set (13.4). 7262 (ParamType->isReferenceType() && 7263 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 7264 // -- For a non-type template-parameter of type pointer to 7265 // member function, no conversions apply. If the 7266 // template-argument represents a set of overloaded member 7267 // functions, the matching member function is selected from 7268 // the set (13.4). 7269 (ParamType->isMemberPointerType() && 7270 ParamType->castAs<MemberPointerType>()->getPointeeType() 7271 ->isFunctionType())) { 7272 7273 if (Arg->getType() == Context.OverloadTy) { 7274 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 7275 true, 7276 FoundResult)) { 7277 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7278 return ExprError(); 7279 7280 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7281 ArgType = Arg->getType(); 7282 } else 7283 return ExprError(); 7284 } 7285 7286 if (!ParamType->isMemberPointerType()) { 7287 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7288 ParamType, 7289 Arg, Converted)) 7290 return ExprError(); 7291 return Arg; 7292 } 7293 7294 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 7295 Converted)) 7296 return ExprError(); 7297 return Arg; 7298 } 7299 7300 if (ParamType->isPointerType()) { 7301 // -- for a non-type template-parameter of type pointer to 7302 // object, qualification conversions (4.4) and the 7303 // array-to-pointer conversion (4.2) are applied. 7304 // C++0x also allows a value of std::nullptr_t. 7305 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 7306 "Only object pointers allowed here"); 7307 7308 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7309 ParamType, 7310 Arg, Converted)) 7311 return ExprError(); 7312 return Arg; 7313 } 7314 7315 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 7316 // -- For a non-type template-parameter of type reference to 7317 // object, no conversions apply. The type referred to by the 7318 // reference may be more cv-qualified than the (otherwise 7319 // identical) type of the template-argument. The 7320 // template-parameter is bound directly to the 7321 // template-argument, which must be an lvalue. 7322 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 7323 "Only object references allowed here"); 7324 7325 if (Arg->getType() == Context.OverloadTy) { 7326 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 7327 ParamRefType->getPointeeType(), 7328 true, 7329 FoundResult)) { 7330 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7331 return ExprError(); 7332 7333 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7334 ArgType = Arg->getType(); 7335 } else 7336 return ExprError(); 7337 } 7338 7339 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7340 ParamType, 7341 Arg, Converted)) 7342 return ExprError(); 7343 return Arg; 7344 } 7345 7346 // Deal with parameters of type std::nullptr_t. 7347 if (ParamType->isNullPtrType()) { 7348 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7349 Converted = TemplateArgument(Arg); 7350 return Arg; 7351 } 7352 7353 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 7354 case NPV_NotNullPointer: 7355 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 7356 << Arg->getType() << ParamType; 7357 Diag(Param->getLocation(), diag::note_template_param_here); 7358 return ExprError(); 7359 7360 case NPV_Error: 7361 return ExprError(); 7362 7363 case NPV_NullPointer: 7364 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 7365 Converted = TemplateArgument(Context.getCanonicalType(ParamType), 7366 /*isNullPtr*/true); 7367 return Arg; 7368 } 7369 } 7370 7371 // -- For a non-type template-parameter of type pointer to data 7372 // member, qualification conversions (4.4) are applied. 7373 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 7374 7375 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 7376 Converted)) 7377 return ExprError(); 7378 return Arg; 7379 } 7380 7381 static void DiagnoseTemplateParameterListArityMismatch( 7382 Sema &S, TemplateParameterList *New, TemplateParameterList *Old, 7383 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); 7384 7385 /// Check a template argument against its corresponding 7386 /// template template parameter. 7387 /// 7388 /// This routine implements the semantics of C++ [temp.arg.template]. 7389 /// It returns true if an error occurred, and false otherwise. 7390 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, 7391 TemplateParameterList *Params, 7392 TemplateArgumentLoc &Arg) { 7393 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 7394 TemplateDecl *Template = Name.getAsTemplateDecl(); 7395 if (!Template) { 7396 // Any dependent template name is fine. 7397 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 7398 return false; 7399 } 7400 7401 if (Template->isInvalidDecl()) 7402 return true; 7403 7404 // C++0x [temp.arg.template]p1: 7405 // A template-argument for a template template-parameter shall be 7406 // the name of a class template or an alias template, expressed as an 7407 // id-expression. When the template-argument names a class template, only 7408 // primary class templates are considered when matching the 7409 // template template argument with the corresponding parameter; 7410 // partial specializations are not considered even if their 7411 // parameter lists match that of the template template parameter. 7412 // 7413 // Note that we also allow template template parameters here, which 7414 // will happen when we are dealing with, e.g., class template 7415 // partial specializations. 7416 if (!isa<ClassTemplateDecl>(Template) && 7417 !isa<TemplateTemplateParmDecl>(Template) && 7418 !isa<TypeAliasTemplateDecl>(Template) && 7419 !isa<BuiltinTemplateDecl>(Template)) { 7420 assert(isa<FunctionTemplateDecl>(Template) && 7421 "Only function templates are possible here"); 7422 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); 7423 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 7424 << Template; 7425 } 7426 7427 // C++1z [temp.arg.template]p3: (DR 150) 7428 // A template-argument matches a template template-parameter P when P 7429 // is at least as specialized as the template-argument A. 7430 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a 7431 // defect report resolution from C++17 and shouldn't be introduced by 7432 // concepts. 7433 if (getLangOpts().RelaxedTemplateTemplateArgs) { 7434 // Quick check for the common case: 7435 // If P contains a parameter pack, then A [...] matches P if each of A's 7436 // template parameters matches the corresponding template parameter in 7437 // the template-parameter-list of P. 7438 if (TemplateParameterListsAreEqual( 7439 Template->getTemplateParameters(), Params, false, 7440 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) && 7441 // If the argument has no associated constraints, then the parameter is 7442 // definitely at least as specialized as the argument. 7443 // Otherwise - we need a more thorough check. 7444 !Template->hasAssociatedConstraints()) 7445 return false; 7446 7447 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template, 7448 Arg.getLocation())) { 7449 // C++2a[temp.func.order]p2 7450 // [...] If both deductions succeed, the partial ordering selects the 7451 // more constrained template as described by the rules in 7452 // [temp.constr.order]. 7453 SmallVector<const Expr *, 3> ParamsAC, TemplateAC; 7454 Params->getAssociatedConstraints(ParamsAC); 7455 // C++2a[temp.arg.template]p3 7456 // [...] In this comparison, if P is unconstrained, the constraints on A 7457 // are not considered. 7458 if (ParamsAC.empty()) 7459 return false; 7460 Template->getAssociatedConstraints(TemplateAC); 7461 bool IsParamAtLeastAsConstrained; 7462 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, 7463 IsParamAtLeastAsConstrained)) 7464 return true; 7465 if (!IsParamAtLeastAsConstrained) { 7466 Diag(Arg.getLocation(), 7467 diag::err_template_template_parameter_not_at_least_as_constrained) 7468 << Template << Param << Arg.getSourceRange(); 7469 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; 7470 Diag(Template->getLocation(), diag::note_entity_declared_at) 7471 << Template; 7472 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, 7473 TemplateAC); 7474 return true; 7475 } 7476 return false; 7477 } 7478 // FIXME: Produce better diagnostics for deduction failures. 7479 } 7480 7481 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 7482 Params, 7483 true, 7484 TPL_TemplateTemplateArgumentMatch, 7485 Arg.getLocation()); 7486 } 7487 7488 /// Given a non-type template argument that refers to a 7489 /// declaration and the type of its corresponding non-type template 7490 /// parameter, produce an expression that properly refers to that 7491 /// declaration. 7492 ExprResult 7493 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 7494 QualType ParamType, 7495 SourceLocation Loc) { 7496 // C++ [temp.param]p8: 7497 // 7498 // A non-type template-parameter of type "array of T" or 7499 // "function returning T" is adjusted to be of type "pointer to 7500 // T" or "pointer to function returning T", respectively. 7501 if (ParamType->isArrayType()) 7502 ParamType = Context.getArrayDecayedType(ParamType); 7503 else if (ParamType->isFunctionType()) 7504 ParamType = Context.getPointerType(ParamType); 7505 7506 // For a NULL non-type template argument, return nullptr casted to the 7507 // parameter's type. 7508 if (Arg.getKind() == TemplateArgument::NullPtr) { 7509 return ImpCastExprToType( 7510 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 7511 ParamType, 7512 ParamType->getAs<MemberPointerType>() 7513 ? CK_NullToMemberPointer 7514 : CK_NullToPointer); 7515 } 7516 assert(Arg.getKind() == TemplateArgument::Declaration && 7517 "Only declaration template arguments permitted here"); 7518 7519 ValueDecl *VD = Arg.getAsDecl(); 7520 7521 CXXScopeSpec SS; 7522 if (ParamType->isMemberPointerType()) { 7523 // If this is a pointer to member, we need to use a qualified name to 7524 // form a suitable pointer-to-member constant. 7525 assert(VD->getDeclContext()->isRecord() && 7526 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 7527 isa<IndirectFieldDecl>(VD))); 7528 QualType ClassType 7529 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 7530 NestedNameSpecifier *Qualifier 7531 = NestedNameSpecifier::Create(Context, nullptr, false, 7532 ClassType.getTypePtr()); 7533 SS.MakeTrivial(Context, Qualifier, Loc); 7534 } 7535 7536 ExprResult RefExpr = BuildDeclarationNameExpr( 7537 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); 7538 if (RefExpr.isInvalid()) 7539 return ExprError(); 7540 7541 // For a pointer, the argument declaration is the pointee. Take its address. 7542 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); 7543 if (ParamType->isPointerType() && !ElemT.isNull() && 7544 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) { 7545 // Decay an array argument if we want a pointer to its first element. 7546 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 7547 if (RefExpr.isInvalid()) 7548 return ExprError(); 7549 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 7550 // For any other pointer, take the address (or form a pointer-to-member). 7551 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 7552 if (RefExpr.isInvalid()) 7553 return ExprError(); 7554 } else if (ParamType->isRecordType()) { 7555 assert(isa<TemplateParamObjectDecl>(VD) && 7556 "arg for class template param not a template parameter object"); 7557 // No conversions apply in this case. 7558 return RefExpr; 7559 } else { 7560 assert(ParamType->isReferenceType() && 7561 "unexpected type for decl template argument"); 7562 } 7563 7564 // At this point we should have the right value category. 7565 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && 7566 "value kind mismatch for non-type template argument"); 7567 7568 // The type of the template parameter can differ from the type of the 7569 // argument in various ways; convert it now if necessary. 7570 QualType DestExprType = ParamType.getNonLValueExprType(Context); 7571 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) { 7572 CastKind CK; 7573 QualType Ignored; 7574 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) || 7575 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) { 7576 CK = CK_NoOp; 7577 } else if (ParamType->isVoidPointerType() && 7578 RefExpr.get()->getType()->isPointerType()) { 7579 CK = CK_BitCast; 7580 } else { 7581 // FIXME: Pointers to members can need conversion derived-to-base or 7582 // base-to-derived conversions. We currently don't retain enough 7583 // information to convert properly (we need to track a cast path or 7584 // subobject number in the template argument). 7585 llvm_unreachable( 7586 "unexpected conversion required for non-type template argument"); 7587 } 7588 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK, 7589 RefExpr.get()->getValueKind()); 7590 } 7591 7592 return RefExpr; 7593 } 7594 7595 /// Construct a new expression that refers to the given 7596 /// integral template argument with the given source-location 7597 /// information. 7598 /// 7599 /// This routine takes care of the mapping from an integral template 7600 /// argument (which may have any integral type) to the appropriate 7601 /// literal value. 7602 ExprResult 7603 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 7604 SourceLocation Loc) { 7605 assert(Arg.getKind() == TemplateArgument::Integral && 7606 "Operation is only valid for integral template arguments"); 7607 QualType OrigT = Arg.getIntegralType(); 7608 7609 // If this is an enum type that we're instantiating, we need to use an integer 7610 // type the same size as the enumerator. We don't want to build an 7611 // IntegerLiteral with enum type. The integer type of an enum type can be of 7612 // any integral type with C++11 enum classes, make sure we create the right 7613 // type of literal for it. 7614 QualType T = OrigT; 7615 if (const EnumType *ET = OrigT->getAs<EnumType>()) 7616 T = ET->getDecl()->getIntegerType(); 7617 7618 Expr *E; 7619 if (T->isAnyCharacterType()) { 7620 CharacterLiteral::CharacterKind Kind; 7621 if (T->isWideCharType()) 7622 Kind = CharacterLiteral::Wide; 7623 else if (T->isChar8Type() && getLangOpts().Char8) 7624 Kind = CharacterLiteral::UTF8; 7625 else if (T->isChar16Type()) 7626 Kind = CharacterLiteral::UTF16; 7627 else if (T->isChar32Type()) 7628 Kind = CharacterLiteral::UTF32; 7629 else 7630 Kind = CharacterLiteral::Ascii; 7631 7632 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 7633 Kind, T, Loc); 7634 } else if (T->isBooleanType()) { 7635 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 7636 T, Loc); 7637 } else if (T->isNullPtrType()) { 7638 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 7639 } else { 7640 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 7641 } 7642 7643 if (OrigT->isEnumeralType()) { 7644 // FIXME: This is a hack. We need a better way to handle substituted 7645 // non-type template parameters. 7646 E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E, 7647 nullptr, CurFPFeatureOverrides(), 7648 Context.getTrivialTypeSourceInfo(OrigT, Loc), 7649 Loc, Loc); 7650 } 7651 7652 return E; 7653 } 7654 7655 /// Match two template parameters within template parameter lists. 7656 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 7657 bool Complain, 7658 Sema::TemplateParameterListEqualKind Kind, 7659 SourceLocation TemplateArgLoc) { 7660 // Check the actual kind (type, non-type, template). 7661 if (Old->getKind() != New->getKind()) { 7662 if (Complain) { 7663 unsigned NextDiag = diag::err_template_param_different_kind; 7664 if (TemplateArgLoc.isValid()) { 7665 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7666 NextDiag = diag::note_template_param_different_kind; 7667 } 7668 S.Diag(New->getLocation(), NextDiag) 7669 << (Kind != Sema::TPL_TemplateMatch); 7670 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 7671 << (Kind != Sema::TPL_TemplateMatch); 7672 } 7673 7674 return false; 7675 } 7676 7677 // Check that both are parameter packs or neither are parameter packs. 7678 // However, if we are matching a template template argument to a 7679 // template template parameter, the template template parameter can have 7680 // a parameter pack where the template template argument does not. 7681 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 7682 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 7683 Old->isTemplateParameterPack())) { 7684 if (Complain) { 7685 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 7686 if (TemplateArgLoc.isValid()) { 7687 S.Diag(TemplateArgLoc, 7688 diag::err_template_arg_template_params_mismatch); 7689 NextDiag = diag::note_template_parameter_pack_non_pack; 7690 } 7691 7692 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 7693 : isa<NonTypeTemplateParmDecl>(New)? 1 7694 : 2; 7695 S.Diag(New->getLocation(), NextDiag) 7696 << ParamKind << New->isParameterPack(); 7697 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 7698 << ParamKind << Old->isParameterPack(); 7699 } 7700 7701 return false; 7702 } 7703 7704 // For non-type template parameters, check the type of the parameter. 7705 if (NonTypeTemplateParmDecl *OldNTTP 7706 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 7707 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 7708 7709 // If we are matching a template template argument to a template 7710 // template parameter and one of the non-type template parameter types 7711 // is dependent, then we must wait until template instantiation time 7712 // to actually compare the arguments. 7713 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch || 7714 (!OldNTTP->getType()->isDependentType() && 7715 !NewNTTP->getType()->isDependentType())) 7716 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 7717 if (Complain) { 7718 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 7719 if (TemplateArgLoc.isValid()) { 7720 S.Diag(TemplateArgLoc, 7721 diag::err_template_arg_template_params_mismatch); 7722 NextDiag = diag::note_template_nontype_parm_different_type; 7723 } 7724 S.Diag(NewNTTP->getLocation(), NextDiag) 7725 << NewNTTP->getType() 7726 << (Kind != Sema::TPL_TemplateMatch); 7727 S.Diag(OldNTTP->getLocation(), 7728 diag::note_template_nontype_parm_prev_declaration) 7729 << OldNTTP->getType(); 7730 } 7731 7732 return false; 7733 } 7734 } 7735 // For template template parameters, check the template parameter types. 7736 // The template parameter lists of template template 7737 // parameters must agree. 7738 else if (TemplateTemplateParmDecl *OldTTP 7739 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 7740 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 7741 if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 7742 OldTTP->getTemplateParameters(), 7743 Complain, 7744 (Kind == Sema::TPL_TemplateMatch 7745 ? Sema::TPL_TemplateTemplateParmMatch 7746 : Kind), 7747 TemplateArgLoc)) 7748 return false; 7749 } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) { 7750 const Expr *NewC = nullptr, *OldC = nullptr; 7751 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint()) 7752 NewC = TC->getImmediatelyDeclaredConstraint(); 7753 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint()) 7754 OldC = TC->getImmediatelyDeclaredConstraint(); 7755 7756 auto Diagnose = [&] { 7757 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), 7758 diag::err_template_different_type_constraint); 7759 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), 7760 diag::note_template_prev_declaration) << /*declaration*/0; 7761 }; 7762 7763 if (!NewC != !OldC) { 7764 if (Complain) 7765 Diagnose(); 7766 return false; 7767 } 7768 7769 if (NewC) { 7770 llvm::FoldingSetNodeID OldCID, NewCID; 7771 OldC->Profile(OldCID, S.Context, /*Canonical=*/true); 7772 NewC->Profile(NewCID, S.Context, /*Canonical=*/true); 7773 if (OldCID != NewCID) { 7774 if (Complain) 7775 Diagnose(); 7776 return false; 7777 } 7778 } 7779 } 7780 7781 return true; 7782 } 7783 7784 /// Diagnose a known arity mismatch when comparing template argument 7785 /// lists. 7786 static 7787 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 7788 TemplateParameterList *New, 7789 TemplateParameterList *Old, 7790 Sema::TemplateParameterListEqualKind Kind, 7791 SourceLocation TemplateArgLoc) { 7792 unsigned NextDiag = diag::err_template_param_list_different_arity; 7793 if (TemplateArgLoc.isValid()) { 7794 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7795 NextDiag = diag::note_template_param_list_different_arity; 7796 } 7797 S.Diag(New->getTemplateLoc(), NextDiag) 7798 << (New->size() > Old->size()) 7799 << (Kind != Sema::TPL_TemplateMatch) 7800 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 7801 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 7802 << (Kind != Sema::TPL_TemplateMatch) 7803 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 7804 } 7805 7806 /// Determine whether the given template parameter lists are 7807 /// equivalent. 7808 /// 7809 /// \param New The new template parameter list, typically written in the 7810 /// source code as part of a new template declaration. 7811 /// 7812 /// \param Old The old template parameter list, typically found via 7813 /// name lookup of the template declared with this template parameter 7814 /// list. 7815 /// 7816 /// \param Complain If true, this routine will produce a diagnostic if 7817 /// the template parameter lists are not equivalent. 7818 /// 7819 /// \param Kind describes how we are to match the template parameter lists. 7820 /// 7821 /// \param TemplateArgLoc If this source location is valid, then we 7822 /// are actually checking the template parameter list of a template 7823 /// argument (New) against the template parameter list of its 7824 /// corresponding template template parameter (Old). We produce 7825 /// slightly different diagnostics in this scenario. 7826 /// 7827 /// \returns True if the template parameter lists are equal, false 7828 /// otherwise. 7829 bool 7830 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 7831 TemplateParameterList *Old, 7832 bool Complain, 7833 TemplateParameterListEqualKind Kind, 7834 SourceLocation TemplateArgLoc) { 7835 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 7836 if (Complain) 7837 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7838 TemplateArgLoc); 7839 7840 return false; 7841 } 7842 7843 // C++0x [temp.arg.template]p3: 7844 // A template-argument matches a template template-parameter (call it P) 7845 // when each of the template parameters in the template-parameter-list of 7846 // the template-argument's corresponding class template or alias template 7847 // (call it A) matches the corresponding template parameter in the 7848 // template-parameter-list of P. [...] 7849 TemplateParameterList::iterator NewParm = New->begin(); 7850 TemplateParameterList::iterator NewParmEnd = New->end(); 7851 for (TemplateParameterList::iterator OldParm = Old->begin(), 7852 OldParmEnd = Old->end(); 7853 OldParm != OldParmEnd; ++OldParm) { 7854 if (Kind != TPL_TemplateTemplateArgumentMatch || 7855 !(*OldParm)->isTemplateParameterPack()) { 7856 if (NewParm == NewParmEnd) { 7857 if (Complain) 7858 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7859 TemplateArgLoc); 7860 7861 return false; 7862 } 7863 7864 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7865 Kind, TemplateArgLoc)) 7866 return false; 7867 7868 ++NewParm; 7869 continue; 7870 } 7871 7872 // C++0x [temp.arg.template]p3: 7873 // [...] When P's template- parameter-list contains a template parameter 7874 // pack (14.5.3), the template parameter pack will match zero or more 7875 // template parameters or template parameter packs in the 7876 // template-parameter-list of A with the same type and form as the 7877 // template parameter pack in P (ignoring whether those template 7878 // parameters are template parameter packs). 7879 for (; NewParm != NewParmEnd; ++NewParm) { 7880 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7881 Kind, TemplateArgLoc)) 7882 return false; 7883 } 7884 } 7885 7886 // Make sure we exhausted all of the arguments. 7887 if (NewParm != NewParmEnd) { 7888 if (Complain) 7889 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7890 TemplateArgLoc); 7891 7892 return false; 7893 } 7894 7895 if (Kind != TPL_TemplateTemplateArgumentMatch) { 7896 const Expr *NewRC = New->getRequiresClause(); 7897 const Expr *OldRC = Old->getRequiresClause(); 7898 7899 auto Diagnose = [&] { 7900 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), 7901 diag::err_template_different_requires_clause); 7902 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), 7903 diag::note_template_prev_declaration) << /*declaration*/0; 7904 }; 7905 7906 if (!NewRC != !OldRC) { 7907 if (Complain) 7908 Diagnose(); 7909 return false; 7910 } 7911 7912 if (NewRC) { 7913 llvm::FoldingSetNodeID OldRCID, NewRCID; 7914 OldRC->Profile(OldRCID, Context, /*Canonical=*/true); 7915 NewRC->Profile(NewRCID, Context, /*Canonical=*/true); 7916 if (OldRCID != NewRCID) { 7917 if (Complain) 7918 Diagnose(); 7919 return false; 7920 } 7921 } 7922 } 7923 7924 return true; 7925 } 7926 7927 /// Check whether a template can be declared within this scope. 7928 /// 7929 /// If the template declaration is valid in this scope, returns 7930 /// false. Otherwise, issues a diagnostic and returns true. 7931 bool 7932 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 7933 if (!S) 7934 return false; 7935 7936 // Find the nearest enclosing declaration scope. 7937 while ((S->getFlags() & Scope::DeclScope) == 0 || 7938 (S->getFlags() & Scope::TemplateParamScope) != 0) 7939 S = S->getParent(); 7940 7941 // C++ [temp.pre]p6: [P2096] 7942 // A template, explicit specialization, or partial specialization shall not 7943 // have C linkage. 7944 DeclContext *Ctx = S->getEntity(); 7945 if (Ctx && Ctx->isExternCContext()) { 7946 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 7947 << TemplateParams->getSourceRange(); 7948 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) 7949 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 7950 return true; 7951 } 7952 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr; 7953 7954 // C++ [temp]p2: 7955 // A template-declaration can appear only as a namespace scope or 7956 // class scope declaration. 7957 // C++ [temp.expl.spec]p3: 7958 // An explicit specialization may be declared in any scope in which the 7959 // corresponding primary template may be defined. 7960 // C++ [temp.class.spec]p6: [P2096] 7961 // A partial specialization may be declared in any scope in which the 7962 // corresponding primary template may be defined. 7963 if (Ctx) { 7964 if (Ctx->isFileContext()) 7965 return false; 7966 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 7967 // C++ [temp.mem]p2: 7968 // A local class shall not have member templates. 7969 if (RD->isLocalClass()) 7970 return Diag(TemplateParams->getTemplateLoc(), 7971 diag::err_template_inside_local_class) 7972 << TemplateParams->getSourceRange(); 7973 else 7974 return false; 7975 } 7976 } 7977 7978 return Diag(TemplateParams->getTemplateLoc(), 7979 diag::err_template_outside_namespace_or_class_scope) 7980 << TemplateParams->getSourceRange(); 7981 } 7982 7983 /// Determine what kind of template specialization the given declaration 7984 /// is. 7985 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 7986 if (!D) 7987 return TSK_Undeclared; 7988 7989 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 7990 return Record->getTemplateSpecializationKind(); 7991 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 7992 return Function->getTemplateSpecializationKind(); 7993 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 7994 return Var->getTemplateSpecializationKind(); 7995 7996 return TSK_Undeclared; 7997 } 7998 7999 /// Check whether a specialization is well-formed in the current 8000 /// context. 8001 /// 8002 /// This routine determines whether a template specialization can be declared 8003 /// in the current context (C++ [temp.expl.spec]p2). 8004 /// 8005 /// \param S the semantic analysis object for which this check is being 8006 /// performed. 8007 /// 8008 /// \param Specialized the entity being specialized or instantiated, which 8009 /// may be a kind of template (class template, function template, etc.) or 8010 /// a member of a class template (member function, static data member, 8011 /// member class). 8012 /// 8013 /// \param PrevDecl the previous declaration of this entity, if any. 8014 /// 8015 /// \param Loc the location of the explicit specialization or instantiation of 8016 /// this entity. 8017 /// 8018 /// \param IsPartialSpecialization whether this is a partial specialization of 8019 /// a class template. 8020 /// 8021 /// \returns true if there was an error that we cannot recover from, false 8022 /// otherwise. 8023 static bool CheckTemplateSpecializationScope(Sema &S, 8024 NamedDecl *Specialized, 8025 NamedDecl *PrevDecl, 8026 SourceLocation Loc, 8027 bool IsPartialSpecialization) { 8028 // Keep these "kind" numbers in sync with the %select statements in the 8029 // various diagnostics emitted by this routine. 8030 int EntityKind = 0; 8031 if (isa<ClassTemplateDecl>(Specialized)) 8032 EntityKind = IsPartialSpecialization? 1 : 0; 8033 else if (isa<VarTemplateDecl>(Specialized)) 8034 EntityKind = IsPartialSpecialization ? 3 : 2; 8035 else if (isa<FunctionTemplateDecl>(Specialized)) 8036 EntityKind = 4; 8037 else if (isa<CXXMethodDecl>(Specialized)) 8038 EntityKind = 5; 8039 else if (isa<VarDecl>(Specialized)) 8040 EntityKind = 6; 8041 else if (isa<RecordDecl>(Specialized)) 8042 EntityKind = 7; 8043 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 8044 EntityKind = 8; 8045 else { 8046 S.Diag(Loc, diag::err_template_spec_unknown_kind) 8047 << S.getLangOpts().CPlusPlus11; 8048 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8049 return true; 8050 } 8051 8052 // C++ [temp.expl.spec]p2: 8053 // An explicit specialization may be declared in any scope in which 8054 // the corresponding primary template may be defined. 8055 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 8056 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 8057 << Specialized; 8058 return true; 8059 } 8060 8061 // C++ [temp.class.spec]p6: 8062 // A class template partial specialization may be declared in any 8063 // scope in which the primary template may be defined. 8064 DeclContext *SpecializedContext = 8065 Specialized->getDeclContext()->getRedeclContext(); 8066 DeclContext *DC = S.CurContext->getRedeclContext(); 8067 8068 // Make sure that this redeclaration (or definition) occurs in the same 8069 // scope or an enclosing namespace. 8070 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) 8071 : DC->Equals(SpecializedContext))) { 8072 if (isa<TranslationUnitDecl>(SpecializedContext)) 8073 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 8074 << EntityKind << Specialized; 8075 else { 8076 auto *ND = cast<NamedDecl>(SpecializedContext); 8077 int Diag = diag::err_template_spec_redecl_out_of_scope; 8078 if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) 8079 Diag = diag::ext_ms_template_spec_redecl_out_of_scope; 8080 S.Diag(Loc, Diag) << EntityKind << Specialized 8081 << ND << isa<CXXRecordDecl>(ND); 8082 } 8083 8084 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8085 8086 // Don't allow specializing in the wrong class during error recovery. 8087 // Otherwise, things can go horribly wrong. 8088 if (DC->isRecord()) 8089 return true; 8090 } 8091 8092 return false; 8093 } 8094 8095 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { 8096 if (!E->isTypeDependent()) 8097 return SourceLocation(); 8098 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8099 Checker.TraverseStmt(E); 8100 if (Checker.MatchLoc.isInvalid()) 8101 return E->getSourceRange(); 8102 return Checker.MatchLoc; 8103 } 8104 8105 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 8106 if (!TL.getType()->isDependentType()) 8107 return SourceLocation(); 8108 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8109 Checker.TraverseTypeLoc(TL); 8110 if (Checker.MatchLoc.isInvalid()) 8111 return TL.getSourceRange(); 8112 return Checker.MatchLoc; 8113 } 8114 8115 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs 8116 /// that checks non-type template partial specialization arguments. 8117 static bool CheckNonTypeTemplatePartialSpecializationArgs( 8118 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 8119 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 8120 for (unsigned I = 0; I != NumArgs; ++I) { 8121 if (Args[I].getKind() == TemplateArgument::Pack) { 8122 if (CheckNonTypeTemplatePartialSpecializationArgs( 8123 S, TemplateNameLoc, Param, Args[I].pack_begin(), 8124 Args[I].pack_size(), IsDefaultArgument)) 8125 return true; 8126 8127 continue; 8128 } 8129 8130 if (Args[I].getKind() != TemplateArgument::Expression) 8131 continue; 8132 8133 Expr *ArgExpr = Args[I].getAsExpr(); 8134 8135 // We can have a pack expansion of any of the bullets below. 8136 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 8137 ArgExpr = Expansion->getPattern(); 8138 8139 // Strip off any implicit casts we added as part of type checking. 8140 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 8141 ArgExpr = ICE->getSubExpr(); 8142 8143 // C++ [temp.class.spec]p8: 8144 // A non-type argument is non-specialized if it is the name of a 8145 // non-type parameter. All other non-type arguments are 8146 // specialized. 8147 // 8148 // Below, we check the two conditions that only apply to 8149 // specialized non-type arguments, so skip any non-specialized 8150 // arguments. 8151 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 8152 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 8153 continue; 8154 8155 // C++ [temp.class.spec]p9: 8156 // Within the argument list of a class template partial 8157 // specialization, the following restrictions apply: 8158 // -- A partially specialized non-type argument expression 8159 // shall not involve a template parameter of the partial 8160 // specialization except when the argument expression is a 8161 // simple identifier. 8162 // -- The type of a template parameter corresponding to a 8163 // specialized non-type argument shall not be dependent on a 8164 // parameter of the specialization. 8165 // DR1315 removes the first bullet, leaving an incoherent set of rules. 8166 // We implement a compromise between the original rules and DR1315: 8167 // -- A specialized non-type template argument shall not be 8168 // type-dependent and the corresponding template parameter 8169 // shall have a non-dependent type. 8170 SourceRange ParamUseRange = 8171 findTemplateParameterInType(Param->getDepth(), ArgExpr); 8172 if (ParamUseRange.isValid()) { 8173 if (IsDefaultArgument) { 8174 S.Diag(TemplateNameLoc, 8175 diag::err_dependent_non_type_arg_in_partial_spec); 8176 S.Diag(ParamUseRange.getBegin(), 8177 diag::note_dependent_non_type_default_arg_in_partial_spec) 8178 << ParamUseRange; 8179 } else { 8180 S.Diag(ParamUseRange.getBegin(), 8181 diag::err_dependent_non_type_arg_in_partial_spec) 8182 << ParamUseRange; 8183 } 8184 return true; 8185 } 8186 8187 ParamUseRange = findTemplateParameter( 8188 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 8189 if (ParamUseRange.isValid()) { 8190 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), 8191 diag::err_dependent_typed_non_type_arg_in_partial_spec) 8192 << Param->getType(); 8193 S.Diag(Param->getLocation(), diag::note_template_param_here) 8194 << (IsDefaultArgument ? ParamUseRange : SourceRange()) 8195 << ParamUseRange; 8196 return true; 8197 } 8198 } 8199 8200 return false; 8201 } 8202 8203 /// Check the non-type template arguments of a class template 8204 /// partial specialization according to C++ [temp.class.spec]p9. 8205 /// 8206 /// \param TemplateNameLoc the location of the template name. 8207 /// \param PrimaryTemplate the template parameters of the primary class 8208 /// template. 8209 /// \param NumExplicit the number of explicitly-specified template arguments. 8210 /// \param TemplateArgs the template arguments of the class template 8211 /// partial specialization. 8212 /// 8213 /// \returns \c true if there was an error, \c false otherwise. 8214 bool Sema::CheckTemplatePartialSpecializationArgs( 8215 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, 8216 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { 8217 // We have to be conservative when checking a template in a dependent 8218 // context. 8219 if (PrimaryTemplate->getDeclContext()->isDependentContext()) 8220 return false; 8221 8222 TemplateParameterList *TemplateParams = 8223 PrimaryTemplate->getTemplateParameters(); 8224 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8225 NonTypeTemplateParmDecl *Param 8226 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 8227 if (!Param) 8228 continue; 8229 8230 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, 8231 Param, &TemplateArgs[I], 8232 1, I >= NumExplicit)) 8233 return true; 8234 } 8235 8236 return false; 8237 } 8238 8239 DeclResult Sema::ActOnClassTemplateSpecialization( 8240 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 8241 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, 8242 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, 8243 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { 8244 assert(TUK != TUK_Reference && "References are not specializations"); 8245 8246 // NOTE: KWLoc is the location of the tag keyword. This will instead 8247 // store the location of the outermost template keyword in the declaration. 8248 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 8249 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; 8250 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 8251 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 8252 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 8253 8254 // Find the class template we're specializing 8255 TemplateName Name = TemplateId.Template.get(); 8256 ClassTemplateDecl *ClassTemplate 8257 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 8258 8259 if (!ClassTemplate) { 8260 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 8261 << (Name.getAsTemplateDecl() && 8262 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 8263 return true; 8264 } 8265 8266 bool isMemberSpecialization = false; 8267 bool isPartialSpecialization = false; 8268 8269 // Check the validity of the template headers that introduce this 8270 // template. 8271 // FIXME: We probably shouldn't complain about these headers for 8272 // friend declarations. 8273 bool Invalid = false; 8274 TemplateParameterList *TemplateParams = 8275 MatchTemplateParametersToScopeSpecifier( 8276 KWLoc, TemplateNameLoc, SS, &TemplateId, 8277 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization, 8278 Invalid); 8279 if (Invalid) 8280 return true; 8281 8282 // Check that we can declare a template specialization here. 8283 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams)) 8284 return true; 8285 8286 if (TemplateParams && TemplateParams->size() > 0) { 8287 isPartialSpecialization = true; 8288 8289 if (TUK == TUK_Friend) { 8290 Diag(KWLoc, diag::err_partial_specialization_friend) 8291 << SourceRange(LAngleLoc, RAngleLoc); 8292 return true; 8293 } 8294 8295 // C++ [temp.class.spec]p10: 8296 // The template parameter list of a specialization shall not 8297 // contain default template argument values. 8298 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8299 Decl *Param = TemplateParams->getParam(I); 8300 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 8301 if (TTP->hasDefaultArgument()) { 8302 Diag(TTP->getDefaultArgumentLoc(), 8303 diag::err_default_arg_in_partial_spec); 8304 TTP->removeDefaultArgument(); 8305 } 8306 } else if (NonTypeTemplateParmDecl *NTTP 8307 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 8308 if (Expr *DefArg = NTTP->getDefaultArgument()) { 8309 Diag(NTTP->getDefaultArgumentLoc(), 8310 diag::err_default_arg_in_partial_spec) 8311 << DefArg->getSourceRange(); 8312 NTTP->removeDefaultArgument(); 8313 } 8314 } else { 8315 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 8316 if (TTP->hasDefaultArgument()) { 8317 Diag(TTP->getDefaultArgument().getLocation(), 8318 diag::err_default_arg_in_partial_spec) 8319 << TTP->getDefaultArgument().getSourceRange(); 8320 TTP->removeDefaultArgument(); 8321 } 8322 } 8323 } 8324 } else if (TemplateParams) { 8325 if (TUK == TUK_Friend) 8326 Diag(KWLoc, diag::err_template_spec_friend) 8327 << FixItHint::CreateRemoval( 8328 SourceRange(TemplateParams->getTemplateLoc(), 8329 TemplateParams->getRAngleLoc())) 8330 << SourceRange(LAngleLoc, RAngleLoc); 8331 } else { 8332 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); 8333 } 8334 8335 // Check that the specialization uses the same tag kind as the 8336 // original template. 8337 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 8338 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 8339 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 8340 Kind, TUK == TUK_Definition, KWLoc, 8341 ClassTemplate->getIdentifier())) { 8342 Diag(KWLoc, diag::err_use_with_wrong_tag) 8343 << ClassTemplate 8344 << FixItHint::CreateReplacement(KWLoc, 8345 ClassTemplate->getTemplatedDecl()->getKindName()); 8346 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 8347 diag::note_previous_use); 8348 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 8349 } 8350 8351 // Translate the parser's template argument list in our AST format. 8352 TemplateArgumentListInfo TemplateArgs = 8353 makeTemplateArgumentListInfo(*this, TemplateId); 8354 8355 // Check for unexpanded parameter packs in any of the template arguments. 8356 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 8357 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 8358 UPPC_PartialSpecialization)) 8359 return true; 8360 8361 // Check that the template argument list is well-formed for this 8362 // template. 8363 SmallVector<TemplateArgument, 4> Converted; 8364 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 8365 TemplateArgs, false, Converted, 8366 /*UpdateArgsWithConversions=*/true)) 8367 return true; 8368 8369 // Find the class template (partial) specialization declaration that 8370 // corresponds to these arguments. 8371 if (isPartialSpecialization) { 8372 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, 8373 TemplateArgs.size(), Converted)) 8374 return true; 8375 8376 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we 8377 // also do it during instantiation. 8378 if (!Name.isDependent() && 8379 !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, 8380 Converted)) { 8381 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 8382 << ClassTemplate->getDeclName(); 8383 isPartialSpecialization = false; 8384 } 8385 } 8386 8387 void *InsertPos = nullptr; 8388 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 8389 8390 if (isPartialSpecialization) 8391 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, 8392 TemplateParams, 8393 InsertPos); 8394 else 8395 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos); 8396 8397 ClassTemplateSpecializationDecl *Specialization = nullptr; 8398 8399 // Check whether we can declare a class template specialization in 8400 // the current scope. 8401 if (TUK != TUK_Friend && 8402 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 8403 TemplateNameLoc, 8404 isPartialSpecialization)) 8405 return true; 8406 8407 // The canonical type 8408 QualType CanonType; 8409 if (isPartialSpecialization) { 8410 // Build the canonical type that describes the converted template 8411 // arguments of the class template partial specialization. 8412 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8413 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 8414 Converted); 8415 8416 if (Context.hasSameType(CanonType, 8417 ClassTemplate->getInjectedClassNameSpecialization()) && 8418 (!Context.getLangOpts().CPlusPlus20 || 8419 !TemplateParams->hasAssociatedConstraints())) { 8420 // C++ [temp.class.spec]p9b3: 8421 // 8422 // -- The argument list of the specialization shall not be identical 8423 // to the implicit argument list of the primary template. 8424 // 8425 // This rule has since been removed, because it's redundant given DR1495, 8426 // but we keep it because it produces better diagnostics and recovery. 8427 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 8428 << /*class template*/0 << (TUK == TUK_Definition) 8429 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 8430 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 8431 ClassTemplate->getIdentifier(), 8432 TemplateNameLoc, 8433 Attr, 8434 TemplateParams, 8435 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 8436 /*FriendLoc*/SourceLocation(), 8437 TemplateParameterLists.size() - 1, 8438 TemplateParameterLists.data()); 8439 } 8440 8441 // Create a new class template partial specialization declaration node. 8442 ClassTemplatePartialSpecializationDecl *PrevPartial 8443 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 8444 ClassTemplatePartialSpecializationDecl *Partial 8445 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 8446 ClassTemplate->getDeclContext(), 8447 KWLoc, TemplateNameLoc, 8448 TemplateParams, 8449 ClassTemplate, 8450 Converted, 8451 TemplateArgs, 8452 CanonType, 8453 PrevPartial); 8454 SetNestedNameSpecifier(*this, Partial, SS); 8455 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 8456 Partial->setTemplateParameterListsInfo( 8457 Context, TemplateParameterLists.drop_back(1)); 8458 } 8459 8460 if (!PrevPartial) 8461 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 8462 Specialization = Partial; 8463 8464 // If we are providing an explicit specialization of a member class 8465 // template specialization, make a note of that. 8466 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 8467 PrevPartial->setMemberSpecialization(); 8468 8469 CheckTemplatePartialSpecialization(Partial); 8470 } else { 8471 // Create a new class template specialization declaration node for 8472 // this explicit specialization or friend declaration. 8473 Specialization 8474 = ClassTemplateSpecializationDecl::Create(Context, Kind, 8475 ClassTemplate->getDeclContext(), 8476 KWLoc, TemplateNameLoc, 8477 ClassTemplate, 8478 Converted, 8479 PrevDecl); 8480 SetNestedNameSpecifier(*this, Specialization, SS); 8481 if (TemplateParameterLists.size() > 0) { 8482 Specialization->setTemplateParameterListsInfo(Context, 8483 TemplateParameterLists); 8484 } 8485 8486 if (!PrevDecl) 8487 ClassTemplate->AddSpecialization(Specialization, InsertPos); 8488 8489 if (CurContext->isDependentContext()) { 8490 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8491 CanonType = Context.getTemplateSpecializationType( 8492 CanonTemplate, Converted); 8493 } else { 8494 CanonType = Context.getTypeDeclType(Specialization); 8495 } 8496 } 8497 8498 // C++ [temp.expl.spec]p6: 8499 // If a template, a member template or the member of a class template is 8500 // explicitly specialized then that specialization shall be declared 8501 // before the first use of that specialization that would cause an implicit 8502 // instantiation to take place, in every translation unit in which such a 8503 // use occurs; no diagnostic is required. 8504 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 8505 bool Okay = false; 8506 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8507 // Is there any previous explicit specialization declaration? 8508 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8509 Okay = true; 8510 break; 8511 } 8512 } 8513 8514 if (!Okay) { 8515 SourceRange Range(TemplateNameLoc, RAngleLoc); 8516 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 8517 << Context.getTypeDeclType(Specialization) << Range; 8518 8519 Diag(PrevDecl->getPointOfInstantiation(), 8520 diag::note_instantiation_required_here) 8521 << (PrevDecl->getTemplateSpecializationKind() 8522 != TSK_ImplicitInstantiation); 8523 return true; 8524 } 8525 } 8526 8527 // If this is not a friend, note that this is an explicit specialization. 8528 if (TUK != TUK_Friend) 8529 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 8530 8531 // Check that this isn't a redefinition of this specialization. 8532 if (TUK == TUK_Definition) { 8533 RecordDecl *Def = Specialization->getDefinition(); 8534 NamedDecl *Hidden = nullptr; 8535 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 8536 SkipBody->ShouldSkip = true; 8537 SkipBody->Previous = Def; 8538 makeMergedDefinitionVisible(Hidden); 8539 } else if (Def) { 8540 SourceRange Range(TemplateNameLoc, RAngleLoc); 8541 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; 8542 Diag(Def->getLocation(), diag::note_previous_definition); 8543 Specialization->setInvalidDecl(); 8544 return true; 8545 } 8546 } 8547 8548 ProcessDeclAttributeList(S, Specialization, Attr); 8549 8550 // Add alignment attributes if necessary; these attributes are checked when 8551 // the ASTContext lays out the structure. 8552 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 8553 AddAlignmentAttributesForRecord(Specialization); 8554 AddMsStructLayoutForRecord(Specialization); 8555 } 8556 8557 if (ModulePrivateLoc.isValid()) 8558 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 8559 << (isPartialSpecialization? 1 : 0) 8560 << FixItHint::CreateRemoval(ModulePrivateLoc); 8561 8562 // Build the fully-sugared type for this class template 8563 // specialization as the user wrote in the specialization 8564 // itself. This means that we'll pretty-print the type retrieved 8565 // from the specialization's declaration the way that the user 8566 // actually wrote the specialization, rather than formatting the 8567 // name based on the "canonical" representation used to store the 8568 // template arguments in the specialization. 8569 TypeSourceInfo *WrittenTy 8570 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 8571 TemplateArgs, CanonType); 8572 if (TUK != TUK_Friend) { 8573 Specialization->setTypeAsWritten(WrittenTy); 8574 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 8575 } 8576 8577 // C++ [temp.expl.spec]p9: 8578 // A template explicit specialization is in the scope of the 8579 // namespace in which the template was defined. 8580 // 8581 // We actually implement this paragraph where we set the semantic 8582 // context (in the creation of the ClassTemplateSpecializationDecl), 8583 // but we also maintain the lexical context where the actual 8584 // definition occurs. 8585 Specialization->setLexicalDeclContext(CurContext); 8586 8587 // We may be starting the definition of this specialization. 8588 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 8589 Specialization->startDefinition(); 8590 8591 if (TUK == TUK_Friend) { 8592 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 8593 TemplateNameLoc, 8594 WrittenTy, 8595 /*FIXME:*/KWLoc); 8596 Friend->setAccess(AS_public); 8597 CurContext->addDecl(Friend); 8598 } else { 8599 // Add the specialization into its lexical context, so that it can 8600 // be seen when iterating through the list of declarations in that 8601 // context. However, specializations are not found by name lookup. 8602 CurContext->addDecl(Specialization); 8603 } 8604 8605 if (SkipBody && SkipBody->ShouldSkip) 8606 return SkipBody->Previous; 8607 8608 return Specialization; 8609 } 8610 8611 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 8612 MultiTemplateParamsArg TemplateParameterLists, 8613 Declarator &D) { 8614 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 8615 ActOnDocumentableDecl(NewDecl); 8616 return NewDecl; 8617 } 8618 8619 Decl *Sema::ActOnConceptDefinition(Scope *S, 8620 MultiTemplateParamsArg TemplateParameterLists, 8621 IdentifierInfo *Name, SourceLocation NameLoc, 8622 Expr *ConstraintExpr) { 8623 DeclContext *DC = CurContext; 8624 8625 if (!DC->getRedeclContext()->isFileContext()) { 8626 Diag(NameLoc, 8627 diag::err_concept_decls_may_only_appear_in_global_namespace_scope); 8628 return nullptr; 8629 } 8630 8631 if (TemplateParameterLists.size() > 1) { 8632 Diag(NameLoc, diag::err_concept_extra_headers); 8633 return nullptr; 8634 } 8635 8636 if (TemplateParameterLists.front()->size() == 0) { 8637 Diag(NameLoc, diag::err_concept_no_parameters); 8638 return nullptr; 8639 } 8640 8641 if (DiagnoseUnexpandedParameterPack(ConstraintExpr)) 8642 return nullptr; 8643 8644 ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name, 8645 TemplateParameterLists.front(), 8646 ConstraintExpr); 8647 8648 if (NewDecl->hasAssociatedConstraints()) { 8649 // C++2a [temp.concept]p4: 8650 // A concept shall not have associated constraints. 8651 Diag(NameLoc, diag::err_concept_no_associated_constraints); 8652 NewDecl->setInvalidDecl(); 8653 } 8654 8655 // Check for conflicting previous declaration. 8656 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc); 8657 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8658 ForVisibleRedeclaration); 8659 LookupName(Previous, S); 8660 8661 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false, 8662 /*AllowInlineNamespace*/false); 8663 if (!Previous.empty()) { 8664 auto *Old = Previous.getRepresentativeDecl(); 8665 Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition : 8666 diag::err_redefinition_different_kind) << NewDecl->getDeclName(); 8667 Diag(Old->getLocation(), diag::note_previous_definition); 8668 } 8669 8670 ActOnDocumentableDecl(NewDecl); 8671 PushOnScopeChains(NewDecl, S); 8672 return NewDecl; 8673 } 8674 8675 /// \brief Strips various properties off an implicit instantiation 8676 /// that has just been explicitly specialized. 8677 static void StripImplicitInstantiation(NamedDecl *D) { 8678 D->dropAttr<DLLImportAttr>(); 8679 D->dropAttr<DLLExportAttr>(); 8680 8681 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 8682 FD->setInlineSpecified(false); 8683 } 8684 8685 /// Compute the diagnostic location for an explicit instantiation 8686 // declaration or definition. 8687 static SourceLocation DiagLocForExplicitInstantiation( 8688 NamedDecl* D, SourceLocation PointOfInstantiation) { 8689 // Explicit instantiations following a specialization have no effect and 8690 // hence no PointOfInstantiation. In that case, walk decl backwards 8691 // until a valid name loc is found. 8692 SourceLocation PrevDiagLoc = PointOfInstantiation; 8693 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 8694 Prev = Prev->getPreviousDecl()) { 8695 PrevDiagLoc = Prev->getLocation(); 8696 } 8697 assert(PrevDiagLoc.isValid() && 8698 "Explicit instantiation without point of instantiation?"); 8699 return PrevDiagLoc; 8700 } 8701 8702 /// Diagnose cases where we have an explicit template specialization 8703 /// before/after an explicit template instantiation, producing diagnostics 8704 /// for those cases where they are required and determining whether the 8705 /// new specialization/instantiation will have any effect. 8706 /// 8707 /// \param NewLoc the location of the new explicit specialization or 8708 /// instantiation. 8709 /// 8710 /// \param NewTSK the kind of the new explicit specialization or instantiation. 8711 /// 8712 /// \param PrevDecl the previous declaration of the entity. 8713 /// 8714 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 8715 /// 8716 /// \param PrevPointOfInstantiation if valid, indicates where the previous 8717 /// declaration was instantiated (either implicitly or explicitly). 8718 /// 8719 /// \param HasNoEffect will be set to true to indicate that the new 8720 /// specialization or instantiation has no effect and should be ignored. 8721 /// 8722 /// \returns true if there was an error that should prevent the introduction of 8723 /// the new declaration into the AST, false otherwise. 8724 bool 8725 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 8726 TemplateSpecializationKind NewTSK, 8727 NamedDecl *PrevDecl, 8728 TemplateSpecializationKind PrevTSK, 8729 SourceLocation PrevPointOfInstantiation, 8730 bool &HasNoEffect) { 8731 HasNoEffect = false; 8732 8733 switch (NewTSK) { 8734 case TSK_Undeclared: 8735 case TSK_ImplicitInstantiation: 8736 assert( 8737 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 8738 "previous declaration must be implicit!"); 8739 return false; 8740 8741 case TSK_ExplicitSpecialization: 8742 switch (PrevTSK) { 8743 case TSK_Undeclared: 8744 case TSK_ExplicitSpecialization: 8745 // Okay, we're just specializing something that is either already 8746 // explicitly specialized or has merely been mentioned without any 8747 // instantiation. 8748 return false; 8749 8750 case TSK_ImplicitInstantiation: 8751 if (PrevPointOfInstantiation.isInvalid()) { 8752 // The declaration itself has not actually been instantiated, so it is 8753 // still okay to specialize it. 8754 StripImplicitInstantiation(PrevDecl); 8755 return false; 8756 } 8757 // Fall through 8758 LLVM_FALLTHROUGH; 8759 8760 case TSK_ExplicitInstantiationDeclaration: 8761 case TSK_ExplicitInstantiationDefinition: 8762 assert((PrevTSK == TSK_ImplicitInstantiation || 8763 PrevPointOfInstantiation.isValid()) && 8764 "Explicit instantiation without point of instantiation?"); 8765 8766 // C++ [temp.expl.spec]p6: 8767 // If a template, a member template or the member of a class template 8768 // is explicitly specialized then that specialization shall be declared 8769 // before the first use of that specialization that would cause an 8770 // implicit instantiation to take place, in every translation unit in 8771 // which such a use occurs; no diagnostic is required. 8772 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8773 // Is there any previous explicit specialization declaration? 8774 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 8775 return false; 8776 } 8777 8778 Diag(NewLoc, diag::err_specialization_after_instantiation) 8779 << PrevDecl; 8780 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 8781 << (PrevTSK != TSK_ImplicitInstantiation); 8782 8783 return true; 8784 } 8785 llvm_unreachable("The switch over PrevTSK must be exhaustive."); 8786 8787 case TSK_ExplicitInstantiationDeclaration: 8788 switch (PrevTSK) { 8789 case TSK_ExplicitInstantiationDeclaration: 8790 // This explicit instantiation declaration is redundant (that's okay). 8791 HasNoEffect = true; 8792 return false; 8793 8794 case TSK_Undeclared: 8795 case TSK_ImplicitInstantiation: 8796 // We're explicitly instantiating something that may have already been 8797 // implicitly instantiated; that's fine. 8798 return false; 8799 8800 case TSK_ExplicitSpecialization: 8801 // C++0x [temp.explicit]p4: 8802 // For a given set of template parameters, if an explicit instantiation 8803 // of a template appears after a declaration of an explicit 8804 // specialization for that template, the explicit instantiation has no 8805 // effect. 8806 HasNoEffect = true; 8807 return false; 8808 8809 case TSK_ExplicitInstantiationDefinition: 8810 // C++0x [temp.explicit]p10: 8811 // If an entity is the subject of both an explicit instantiation 8812 // declaration and an explicit instantiation definition in the same 8813 // translation unit, the definition shall follow the declaration. 8814 Diag(NewLoc, 8815 diag::err_explicit_instantiation_declaration_after_definition); 8816 8817 // Explicit instantiations following a specialization have no effect and 8818 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 8819 // until a valid name loc is found. 8820 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8821 diag::note_explicit_instantiation_definition_here); 8822 HasNoEffect = true; 8823 return false; 8824 } 8825 llvm_unreachable("Unexpected TemplateSpecializationKind!"); 8826 8827 case TSK_ExplicitInstantiationDefinition: 8828 switch (PrevTSK) { 8829 case TSK_Undeclared: 8830 case TSK_ImplicitInstantiation: 8831 // We're explicitly instantiating something that may have already been 8832 // implicitly instantiated; that's fine. 8833 return false; 8834 8835 case TSK_ExplicitSpecialization: 8836 // C++ DR 259, C++0x [temp.explicit]p4: 8837 // For a given set of template parameters, if an explicit 8838 // instantiation of a template appears after a declaration of 8839 // an explicit specialization for that template, the explicit 8840 // instantiation has no effect. 8841 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) 8842 << PrevDecl; 8843 Diag(PrevDecl->getLocation(), 8844 diag::note_previous_template_specialization); 8845 HasNoEffect = true; 8846 return false; 8847 8848 case TSK_ExplicitInstantiationDeclaration: 8849 // We're explicitly instantiating a definition for something for which we 8850 // were previously asked to suppress instantiations. That's fine. 8851 8852 // C++0x [temp.explicit]p4: 8853 // For a given set of template parameters, if an explicit instantiation 8854 // of a template appears after a declaration of an explicit 8855 // specialization for that template, the explicit instantiation has no 8856 // effect. 8857 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8858 // Is there any previous explicit specialization declaration? 8859 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8860 HasNoEffect = true; 8861 break; 8862 } 8863 } 8864 8865 return false; 8866 8867 case TSK_ExplicitInstantiationDefinition: 8868 // C++0x [temp.spec]p5: 8869 // For a given template and a given set of template-arguments, 8870 // - an explicit instantiation definition shall appear at most once 8871 // in a program, 8872 8873 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 8874 Diag(NewLoc, (getLangOpts().MSVCCompat) 8875 ? diag::ext_explicit_instantiation_duplicate 8876 : diag::err_explicit_instantiation_duplicate) 8877 << PrevDecl; 8878 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8879 diag::note_previous_explicit_instantiation); 8880 HasNoEffect = true; 8881 return false; 8882 } 8883 } 8884 8885 llvm_unreachable("Missing specialization/instantiation case?"); 8886 } 8887 8888 /// Perform semantic analysis for the given dependent function 8889 /// template specialization. 8890 /// 8891 /// The only possible way to get a dependent function template specialization 8892 /// is with a friend declaration, like so: 8893 /// 8894 /// \code 8895 /// template \<class T> void foo(T); 8896 /// template \<class T> class A { 8897 /// friend void foo<>(T); 8898 /// }; 8899 /// \endcode 8900 /// 8901 /// There really isn't any useful analysis we can do here, so we 8902 /// just store the information. 8903 bool 8904 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 8905 const TemplateArgumentListInfo &ExplicitTemplateArgs, 8906 LookupResult &Previous) { 8907 // Remove anything from Previous that isn't a function template in 8908 // the correct context. 8909 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8910 LookupResult::Filter F = Previous.makeFilter(); 8911 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; 8912 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; 8913 while (F.hasNext()) { 8914 NamedDecl *D = F.next()->getUnderlyingDecl(); 8915 if (!isa<FunctionTemplateDecl>(D)) { 8916 F.erase(); 8917 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); 8918 continue; 8919 } 8920 8921 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8922 D->getDeclContext()->getRedeclContext())) { 8923 F.erase(); 8924 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); 8925 continue; 8926 } 8927 } 8928 F.done(); 8929 8930 if (Previous.empty()) { 8931 Diag(FD->getLocation(), 8932 diag::err_dependent_function_template_spec_no_match); 8933 for (auto &P : DiscardedCandidates) 8934 Diag(P.second->getLocation(), 8935 diag::note_dependent_function_template_spec_discard_reason) 8936 << P.first; 8937 return true; 8938 } 8939 8940 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 8941 ExplicitTemplateArgs); 8942 return false; 8943 } 8944 8945 /// Perform semantic analysis for the given function template 8946 /// specialization. 8947 /// 8948 /// This routine performs all of the semantic analysis required for an 8949 /// explicit function template specialization. On successful completion, 8950 /// the function declaration \p FD will become a function template 8951 /// specialization. 8952 /// 8953 /// \param FD the function declaration, which will be updated to become a 8954 /// function template specialization. 8955 /// 8956 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 8957 /// if any. Note that this may be valid info even when 0 arguments are 8958 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 8959 /// as it anyway contains info on the angle brackets locations. 8960 /// 8961 /// \param Previous the set of declarations that may be specialized by 8962 /// this function specialization. 8963 /// 8964 /// \param QualifiedFriend whether this is a lookup for a qualified friend 8965 /// declaration with no explicit template argument list that might be 8966 /// befriending a function template specialization. 8967 bool Sema::CheckFunctionTemplateSpecialization( 8968 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 8969 LookupResult &Previous, bool QualifiedFriend) { 8970 // The set of function template specializations that could match this 8971 // explicit function template specialization. 8972 UnresolvedSet<8> Candidates; 8973 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), 8974 /*ForTakingAddress=*/false); 8975 8976 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> 8977 ConvertedTemplateArgs; 8978 8979 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8980 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8981 I != E; ++I) { 8982 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 8983 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 8984 // Only consider templates found within the same semantic lookup scope as 8985 // FD. 8986 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8987 Ovl->getDeclContext()->getRedeclContext())) 8988 continue; 8989 8990 // When matching a constexpr member function template specialization 8991 // against the primary template, we don't yet know whether the 8992 // specialization has an implicit 'const' (because we don't know whether 8993 // it will be a static member function until we know which template it 8994 // specializes), so adjust it now assuming it specializes this template. 8995 QualType FT = FD->getType(); 8996 if (FD->isConstexpr()) { 8997 CXXMethodDecl *OldMD = 8998 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 8999 if (OldMD && OldMD->isConst()) { 9000 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 9001 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 9002 EPI.TypeQuals.addConst(); 9003 FT = Context.getFunctionType(FPT->getReturnType(), 9004 FPT->getParamTypes(), EPI); 9005 } 9006 } 9007 9008 TemplateArgumentListInfo Args; 9009 if (ExplicitTemplateArgs) 9010 Args = *ExplicitTemplateArgs; 9011 9012 // C++ [temp.expl.spec]p11: 9013 // A trailing template-argument can be left unspecified in the 9014 // template-id naming an explicit function template specialization 9015 // provided it can be deduced from the function argument type. 9016 // Perform template argument deduction to determine whether we may be 9017 // specializing this template. 9018 // FIXME: It is somewhat wasteful to build 9019 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 9020 FunctionDecl *Specialization = nullptr; 9021 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 9022 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 9023 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, 9024 Info)) { 9025 // Template argument deduction failed; record why it failed, so 9026 // that we can provide nifty diagnostics. 9027 FailedCandidates.addCandidate().set( 9028 I.getPair(), FunTmpl->getTemplatedDecl(), 9029 MakeDeductionFailureInfo(Context, TDK, Info)); 9030 (void)TDK; 9031 continue; 9032 } 9033 9034 // Target attributes are part of the cuda function signature, so 9035 // the deduced template's cuda target must match that of the 9036 // specialization. Given that C++ template deduction does not 9037 // take target attributes into account, we reject candidates 9038 // here that have a different target. 9039 if (LangOpts.CUDA && 9040 IdentifyCUDATarget(Specialization, 9041 /* IgnoreImplicitHDAttr = */ true) != 9042 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) { 9043 FailedCandidates.addCandidate().set( 9044 I.getPair(), FunTmpl->getTemplatedDecl(), 9045 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 9046 continue; 9047 } 9048 9049 // Record this candidate. 9050 if (ExplicitTemplateArgs) 9051 ConvertedTemplateArgs[Specialization] = std::move(Args); 9052 Candidates.addDecl(Specialization, I.getAccess()); 9053 } 9054 } 9055 9056 // For a qualified friend declaration (with no explicit marker to indicate 9057 // that a template specialization was intended), note all (template and 9058 // non-template) candidates. 9059 if (QualifiedFriend && Candidates.empty()) { 9060 Diag(FD->getLocation(), diag::err_qualified_friend_no_match) 9061 << FD->getDeclName() << FDLookupContext; 9062 // FIXME: We should form a single candidate list and diagnose all 9063 // candidates at once, to get proper sorting and limiting. 9064 for (auto *OldND : Previous) { 9065 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl())) 9066 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false); 9067 } 9068 FailedCandidates.NoteCandidates(*this, FD->getLocation()); 9069 return true; 9070 } 9071 9072 // Find the most specialized function template. 9073 UnresolvedSetIterator Result = getMostSpecialized( 9074 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), 9075 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 9076 PDiag(diag::err_function_template_spec_ambiguous) 9077 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 9078 PDiag(diag::note_function_template_spec_matched)); 9079 9080 if (Result == Candidates.end()) 9081 return true; 9082 9083 // Ignore access information; it doesn't figure into redeclaration checking. 9084 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 9085 9086 FunctionTemplateSpecializationInfo *SpecInfo 9087 = Specialization->getTemplateSpecializationInfo(); 9088 assert(SpecInfo && "Function template specialization info missing?"); 9089 9090 // Note: do not overwrite location info if previous template 9091 // specialization kind was explicit. 9092 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 9093 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 9094 Specialization->setLocation(FD->getLocation()); 9095 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); 9096 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 9097 // function can differ from the template declaration with respect to 9098 // the constexpr specifier. 9099 // FIXME: We need an update record for this AST mutation. 9100 // FIXME: What if there are multiple such prior declarations (for instance, 9101 // from different modules)? 9102 Specialization->setConstexprKind(FD->getConstexprKind()); 9103 } 9104 9105 // FIXME: Check if the prior specialization has a point of instantiation. 9106 // If so, we have run afoul of . 9107 9108 // If this is a friend declaration, then we're not really declaring 9109 // an explicit specialization. 9110 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 9111 9112 // Check the scope of this explicit specialization. 9113 if (!isFriend && 9114 CheckTemplateSpecializationScope(*this, 9115 Specialization->getPrimaryTemplate(), 9116 Specialization, FD->getLocation(), 9117 false)) 9118 return true; 9119 9120 // C++ [temp.expl.spec]p6: 9121 // If a template, a member template or the member of a class template is 9122 // explicitly specialized then that specialization shall be declared 9123 // before the first use of that specialization that would cause an implicit 9124 // instantiation to take place, in every translation unit in which such a 9125 // use occurs; no diagnostic is required. 9126 bool HasNoEffect = false; 9127 if (!isFriend && 9128 CheckSpecializationInstantiationRedecl(FD->getLocation(), 9129 TSK_ExplicitSpecialization, 9130 Specialization, 9131 SpecInfo->getTemplateSpecializationKind(), 9132 SpecInfo->getPointOfInstantiation(), 9133 HasNoEffect)) 9134 return true; 9135 9136 // Mark the prior declaration as an explicit specialization, so that later 9137 // clients know that this is an explicit specialization. 9138 if (!isFriend) { 9139 // Since explicit specializations do not inherit '=delete' from their 9140 // primary function template - check if the 'specialization' that was 9141 // implicitly generated (during template argument deduction for partial 9142 // ordering) from the most specialized of all the function templates that 9143 // 'FD' could have been specializing, has a 'deleted' definition. If so, 9144 // first check that it was implicitly generated during template argument 9145 // deduction by making sure it wasn't referenced, and then reset the deleted 9146 // flag to not-deleted, so that we can inherit that information from 'FD'. 9147 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && 9148 !Specialization->getCanonicalDecl()->isReferenced()) { 9149 // FIXME: This assert will not hold in the presence of modules. 9150 assert( 9151 Specialization->getCanonicalDecl() == Specialization && 9152 "This must be the only existing declaration of this specialization"); 9153 // FIXME: We need an update record for this AST mutation. 9154 Specialization->setDeletedAsWritten(false); 9155 } 9156 // FIXME: We need an update record for this AST mutation. 9157 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9158 MarkUnusedFileScopedDecl(Specialization); 9159 } 9160 9161 // Turn the given function declaration into a function template 9162 // specialization, with the template arguments from the previous 9163 // specialization. 9164 // Take copies of (semantic and syntactic) template argument lists. 9165 const TemplateArgumentList* TemplArgs = new (Context) 9166 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 9167 FD->setFunctionTemplateSpecialization( 9168 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, 9169 SpecInfo->getTemplateSpecializationKind(), 9170 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); 9171 9172 // A function template specialization inherits the target attributes 9173 // of its template. (We require the attributes explicitly in the 9174 // code to match, but a template may have implicit attributes by 9175 // virtue e.g. of being constexpr, and it passes these implicit 9176 // attributes on to its specializations.) 9177 if (LangOpts.CUDA) 9178 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate()); 9179 9180 // The "previous declaration" for this function template specialization is 9181 // the prior function template specialization. 9182 Previous.clear(); 9183 Previous.addDecl(Specialization); 9184 return false; 9185 } 9186 9187 /// Perform semantic analysis for the given non-template member 9188 /// specialization. 9189 /// 9190 /// This routine performs all of the semantic analysis required for an 9191 /// explicit member function specialization. On successful completion, 9192 /// the function declaration \p FD will become a member function 9193 /// specialization. 9194 /// 9195 /// \param Member the member declaration, which will be updated to become a 9196 /// specialization. 9197 /// 9198 /// \param Previous the set of declarations, one of which may be specialized 9199 /// by this function specialization; the set will be modified to contain the 9200 /// redeclared member. 9201 bool 9202 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 9203 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 9204 9205 // Try to find the member we are instantiating. 9206 NamedDecl *FoundInstantiation = nullptr; 9207 NamedDecl *Instantiation = nullptr; 9208 NamedDecl *InstantiatedFrom = nullptr; 9209 MemberSpecializationInfo *MSInfo = nullptr; 9210 9211 if (Previous.empty()) { 9212 // Nowhere to look anyway. 9213 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 9214 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 9215 I != E; ++I) { 9216 NamedDecl *D = (*I)->getUnderlyingDecl(); 9217 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 9218 QualType Adjusted = Function->getType(); 9219 if (!hasExplicitCallingConv(Adjusted)) 9220 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 9221 // This doesn't handle deduced return types, but both function 9222 // declarations should be undeduced at this point. 9223 if (Context.hasSameType(Adjusted, Method->getType())) { 9224 FoundInstantiation = *I; 9225 Instantiation = Method; 9226 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 9227 MSInfo = Method->getMemberSpecializationInfo(); 9228 break; 9229 } 9230 } 9231 } 9232 } else if (isa<VarDecl>(Member)) { 9233 VarDecl *PrevVar; 9234 if (Previous.isSingleResult() && 9235 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 9236 if (PrevVar->isStaticDataMember()) { 9237 FoundInstantiation = Previous.getRepresentativeDecl(); 9238 Instantiation = PrevVar; 9239 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 9240 MSInfo = PrevVar->getMemberSpecializationInfo(); 9241 } 9242 } else if (isa<RecordDecl>(Member)) { 9243 CXXRecordDecl *PrevRecord; 9244 if (Previous.isSingleResult() && 9245 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 9246 FoundInstantiation = Previous.getRepresentativeDecl(); 9247 Instantiation = PrevRecord; 9248 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 9249 MSInfo = PrevRecord->getMemberSpecializationInfo(); 9250 } 9251 } else if (isa<EnumDecl>(Member)) { 9252 EnumDecl *PrevEnum; 9253 if (Previous.isSingleResult() && 9254 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 9255 FoundInstantiation = Previous.getRepresentativeDecl(); 9256 Instantiation = PrevEnum; 9257 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 9258 MSInfo = PrevEnum->getMemberSpecializationInfo(); 9259 } 9260 } 9261 9262 if (!Instantiation) { 9263 // There is no previous declaration that matches. Since member 9264 // specializations are always out-of-line, the caller will complain about 9265 // this mismatch later. 9266 return false; 9267 } 9268 9269 // A member specialization in a friend declaration isn't really declaring 9270 // an explicit specialization, just identifying a specific (possibly implicit) 9271 // specialization. Don't change the template specialization kind. 9272 // 9273 // FIXME: Is this really valid? Other compilers reject. 9274 if (Member->getFriendObjectKind() != Decl::FOK_None) { 9275 // Preserve instantiation information. 9276 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 9277 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 9278 cast<CXXMethodDecl>(InstantiatedFrom), 9279 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 9280 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 9281 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 9282 cast<CXXRecordDecl>(InstantiatedFrom), 9283 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 9284 } 9285 9286 Previous.clear(); 9287 Previous.addDecl(FoundInstantiation); 9288 return false; 9289 } 9290 9291 // Make sure that this is a specialization of a member. 9292 if (!InstantiatedFrom) { 9293 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 9294 << Member; 9295 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 9296 return true; 9297 } 9298 9299 // C++ [temp.expl.spec]p6: 9300 // If a template, a member template or the member of a class template is 9301 // explicitly specialized then that specialization shall be declared 9302 // before the first use of that specialization that would cause an implicit 9303 // instantiation to take place, in every translation unit in which such a 9304 // use occurs; no diagnostic is required. 9305 assert(MSInfo && "Member specialization info missing?"); 9306 9307 bool HasNoEffect = false; 9308 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 9309 TSK_ExplicitSpecialization, 9310 Instantiation, 9311 MSInfo->getTemplateSpecializationKind(), 9312 MSInfo->getPointOfInstantiation(), 9313 HasNoEffect)) 9314 return true; 9315 9316 // Check the scope of this explicit specialization. 9317 if (CheckTemplateSpecializationScope(*this, 9318 InstantiatedFrom, 9319 Instantiation, Member->getLocation(), 9320 false)) 9321 return true; 9322 9323 // Note that this member specialization is an "instantiation of" the 9324 // corresponding member of the original template. 9325 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { 9326 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 9327 if (InstantiationFunction->getTemplateSpecializationKind() == 9328 TSK_ImplicitInstantiation) { 9329 // Explicit specializations of member functions of class templates do not 9330 // inherit '=delete' from the member function they are specializing. 9331 if (InstantiationFunction->isDeleted()) { 9332 // FIXME: This assert will not hold in the presence of modules. 9333 assert(InstantiationFunction->getCanonicalDecl() == 9334 InstantiationFunction); 9335 // FIXME: We need an update record for this AST mutation. 9336 InstantiationFunction->setDeletedAsWritten(false); 9337 } 9338 } 9339 9340 MemberFunction->setInstantiationOfMemberFunction( 9341 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9342 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { 9343 MemberVar->setInstantiationOfStaticDataMember( 9344 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9345 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { 9346 MemberClass->setInstantiationOfMemberClass( 9347 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9348 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { 9349 MemberEnum->setInstantiationOfMemberEnum( 9350 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9351 } else { 9352 llvm_unreachable("unknown member specialization kind"); 9353 } 9354 9355 // Save the caller the trouble of having to figure out which declaration 9356 // this specialization matches. 9357 Previous.clear(); 9358 Previous.addDecl(FoundInstantiation); 9359 return false; 9360 } 9361 9362 /// Complete the explicit specialization of a member of a class template by 9363 /// updating the instantiated member to be marked as an explicit specialization. 9364 /// 9365 /// \param OrigD The member declaration instantiated from the template. 9366 /// \param Loc The location of the explicit specialization of the member. 9367 template<typename DeclT> 9368 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, 9369 SourceLocation Loc) { 9370 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 9371 return; 9372 9373 // FIXME: Inform AST mutation listeners of this AST mutation. 9374 // FIXME: If there are multiple in-class declarations of the member (from 9375 // multiple modules, or a declaration and later definition of a member type), 9376 // should we update all of them? 9377 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9378 OrigD->setLocation(Loc); 9379 } 9380 9381 void Sema::CompleteMemberSpecialization(NamedDecl *Member, 9382 LookupResult &Previous) { 9383 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); 9384 if (Instantiation == Member) 9385 return; 9386 9387 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) 9388 completeMemberSpecializationImpl(*this, Function, Member->getLocation()); 9389 else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) 9390 completeMemberSpecializationImpl(*this, Var, Member->getLocation()); 9391 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) 9392 completeMemberSpecializationImpl(*this, Record, Member->getLocation()); 9393 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) 9394 completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); 9395 else 9396 llvm_unreachable("unknown member specialization kind"); 9397 } 9398 9399 /// Check the scope of an explicit instantiation. 9400 /// 9401 /// \returns true if a serious error occurs, false otherwise. 9402 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 9403 SourceLocation InstLoc, 9404 bool WasQualifiedName) { 9405 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 9406 DeclContext *CurContext = S.CurContext->getRedeclContext(); 9407 9408 if (CurContext->isRecord()) { 9409 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 9410 << D; 9411 return true; 9412 } 9413 9414 // C++11 [temp.explicit]p3: 9415 // An explicit instantiation shall appear in an enclosing namespace of its 9416 // template. If the name declared in the explicit instantiation is an 9417 // unqualified name, the explicit instantiation shall appear in the 9418 // namespace where its template is declared or, if that namespace is inline 9419 // (7.3.1), any namespace from its enclosing namespace set. 9420 // 9421 // This is DR275, which we do not retroactively apply to C++98/03. 9422 if (WasQualifiedName) { 9423 if (CurContext->Encloses(OrigContext)) 9424 return false; 9425 } else { 9426 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 9427 return false; 9428 } 9429 9430 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 9431 if (WasQualifiedName) 9432 S.Diag(InstLoc, 9433 S.getLangOpts().CPlusPlus11? 9434 diag::err_explicit_instantiation_out_of_scope : 9435 diag::warn_explicit_instantiation_out_of_scope_0x) 9436 << D << NS; 9437 else 9438 S.Diag(InstLoc, 9439 S.getLangOpts().CPlusPlus11? 9440 diag::err_explicit_instantiation_unqualified_wrong_namespace : 9441 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 9442 << D << NS; 9443 } else 9444 S.Diag(InstLoc, 9445 S.getLangOpts().CPlusPlus11? 9446 diag::err_explicit_instantiation_must_be_global : 9447 diag::warn_explicit_instantiation_must_be_global_0x) 9448 << D; 9449 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 9450 return false; 9451 } 9452 9453 /// Common checks for whether an explicit instantiation of \p D is valid. 9454 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, 9455 SourceLocation InstLoc, 9456 bool WasQualifiedName, 9457 TemplateSpecializationKind TSK) { 9458 // C++ [temp.explicit]p13: 9459 // An explicit instantiation declaration shall not name a specialization of 9460 // a template with internal linkage. 9461 if (TSK == TSK_ExplicitInstantiationDeclaration && 9462 D->getFormalLinkage() == InternalLinkage) { 9463 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; 9464 return true; 9465 } 9466 9467 // C++11 [temp.explicit]p3: [DR 275] 9468 // An explicit instantiation shall appear in an enclosing namespace of its 9469 // template. 9470 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) 9471 return true; 9472 9473 return false; 9474 } 9475 9476 /// Determine whether the given scope specifier has a template-id in it. 9477 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 9478 if (!SS.isSet()) 9479 return false; 9480 9481 // C++11 [temp.explicit]p3: 9482 // If the explicit instantiation is for a member function, a member class 9483 // or a static data member of a class template specialization, the name of 9484 // the class template specialization in the qualified-id for the member 9485 // name shall be a simple-template-id. 9486 // 9487 // C++98 has the same restriction, just worded differently. 9488 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 9489 NNS = NNS->getPrefix()) 9490 if (const Type *T = NNS->getAsType()) 9491 if (isa<TemplateSpecializationType>(T)) 9492 return true; 9493 9494 return false; 9495 } 9496 9497 /// Make a dllexport or dllimport attr on a class template specialization take 9498 /// effect. 9499 static void dllExportImportClassTemplateSpecialization( 9500 Sema &S, ClassTemplateSpecializationDecl *Def) { 9501 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); 9502 assert(A && "dllExportImportClassTemplateSpecialization called " 9503 "on Def without dllexport or dllimport"); 9504 9505 // We reject explicit instantiations in class scope, so there should 9506 // never be any delayed exported classes to worry about. 9507 assert(S.DelayedDllExportClasses.empty() && 9508 "delayed exports present at explicit instantiation"); 9509 S.checkClassLevelDLLAttribute(Def); 9510 9511 // Propagate attribute to base class templates. 9512 for (auto &B : Def->bases()) { 9513 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 9514 B.getType()->getAsCXXRecordDecl())) 9515 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); 9516 } 9517 9518 S.referenceDLLExportedClassMethods(); 9519 } 9520 9521 // Explicit instantiation of a class template specialization 9522 DeclResult Sema::ActOnExplicitInstantiation( 9523 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, 9524 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, 9525 TemplateTy TemplateD, SourceLocation TemplateNameLoc, 9526 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, 9527 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { 9528 // Find the class template we're specializing 9529 TemplateName Name = TemplateD.get(); 9530 TemplateDecl *TD = Name.getAsTemplateDecl(); 9531 // Check that the specialization uses the same tag kind as the 9532 // original template. 9533 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 9534 assert(Kind != TTK_Enum && 9535 "Invalid enum tag in class template explicit instantiation!"); 9536 9537 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); 9538 9539 if (!ClassTemplate) { 9540 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); 9541 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind; 9542 Diag(TD->getLocation(), diag::note_previous_use); 9543 return true; 9544 } 9545 9546 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 9547 Kind, /*isDefinition*/false, KWLoc, 9548 ClassTemplate->getIdentifier())) { 9549 Diag(KWLoc, diag::err_use_with_wrong_tag) 9550 << ClassTemplate 9551 << FixItHint::CreateReplacement(KWLoc, 9552 ClassTemplate->getTemplatedDecl()->getKindName()); 9553 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 9554 diag::note_previous_use); 9555 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 9556 } 9557 9558 // C++0x [temp.explicit]p2: 9559 // There are two forms of explicit instantiation: an explicit instantiation 9560 // definition and an explicit instantiation declaration. An explicit 9561 // instantiation declaration begins with the extern keyword. [...] 9562 TemplateSpecializationKind TSK = ExternLoc.isInvalid() 9563 ? TSK_ExplicitInstantiationDefinition 9564 : TSK_ExplicitInstantiationDeclaration; 9565 9566 if (TSK == TSK_ExplicitInstantiationDeclaration && 9567 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9568 // Check for dllexport class template instantiation declarations, 9569 // except for MinGW mode. 9570 for (const ParsedAttr &AL : Attr) { 9571 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9572 Diag(ExternLoc, 9573 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9574 Diag(AL.getLoc(), diag::note_attribute); 9575 break; 9576 } 9577 } 9578 9579 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { 9580 Diag(ExternLoc, 9581 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9582 Diag(A->getLocation(), diag::note_attribute); 9583 } 9584 } 9585 9586 // In MSVC mode, dllimported explicit instantiation definitions are treated as 9587 // instantiation declarations for most purposes. 9588 bool DLLImportExplicitInstantiationDef = false; 9589 if (TSK == TSK_ExplicitInstantiationDefinition && 9590 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9591 // Check for dllimport class template instantiation definitions. 9592 bool DLLImport = 9593 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); 9594 for (const ParsedAttr &AL : Attr) { 9595 if (AL.getKind() == ParsedAttr::AT_DLLImport) 9596 DLLImport = true; 9597 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9598 // dllexport trumps dllimport here. 9599 DLLImport = false; 9600 break; 9601 } 9602 } 9603 if (DLLImport) { 9604 TSK = TSK_ExplicitInstantiationDeclaration; 9605 DLLImportExplicitInstantiationDef = true; 9606 } 9607 } 9608 9609 // Translate the parser's template argument list in our AST format. 9610 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 9611 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 9612 9613 // Check that the template argument list is well-formed for this 9614 // template. 9615 SmallVector<TemplateArgument, 4> Converted; 9616 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 9617 TemplateArgs, false, Converted, 9618 /*UpdateArgsWithConversions=*/true)) 9619 return true; 9620 9621 // Find the class template specialization declaration that 9622 // corresponds to these arguments. 9623 void *InsertPos = nullptr; 9624 ClassTemplateSpecializationDecl *PrevDecl 9625 = ClassTemplate->findSpecialization(Converted, InsertPos); 9626 9627 TemplateSpecializationKind PrevDecl_TSK 9628 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 9629 9630 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && 9631 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9632 // Check for dllexport class template instantiation definitions in MinGW 9633 // mode, if a previous declaration of the instantiation was seen. 9634 for (const ParsedAttr &AL : Attr) { 9635 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9636 Diag(AL.getLoc(), 9637 diag::warn_attribute_dllexport_explicit_instantiation_def); 9638 break; 9639 } 9640 } 9641 } 9642 9643 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, 9644 SS.isSet(), TSK)) 9645 return true; 9646 9647 ClassTemplateSpecializationDecl *Specialization = nullptr; 9648 9649 bool HasNoEffect = false; 9650 if (PrevDecl) { 9651 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 9652 PrevDecl, PrevDecl_TSK, 9653 PrevDecl->getPointOfInstantiation(), 9654 HasNoEffect)) 9655 return PrevDecl; 9656 9657 // Even though HasNoEffect == true means that this explicit instantiation 9658 // has no effect on semantics, we go on to put its syntax in the AST. 9659 9660 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 9661 PrevDecl_TSK == TSK_Undeclared) { 9662 // Since the only prior class template specialization with these 9663 // arguments was referenced but not declared, reuse that 9664 // declaration node as our own, updating the source location 9665 // for the template name to reflect our new declaration. 9666 // (Other source locations will be updated later.) 9667 Specialization = PrevDecl; 9668 Specialization->setLocation(TemplateNameLoc); 9669 PrevDecl = nullptr; 9670 } 9671 9672 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9673 DLLImportExplicitInstantiationDef) { 9674 // The new specialization might add a dllimport attribute. 9675 HasNoEffect = false; 9676 } 9677 } 9678 9679 if (!Specialization) { 9680 // Create a new class template specialization declaration node for 9681 // this explicit specialization. 9682 Specialization 9683 = ClassTemplateSpecializationDecl::Create(Context, Kind, 9684 ClassTemplate->getDeclContext(), 9685 KWLoc, TemplateNameLoc, 9686 ClassTemplate, 9687 Converted, 9688 PrevDecl); 9689 SetNestedNameSpecifier(*this, Specialization, SS); 9690 9691 if (!HasNoEffect && !PrevDecl) { 9692 // Insert the new specialization. 9693 ClassTemplate->AddSpecialization(Specialization, InsertPos); 9694 } 9695 } 9696 9697 // Build the fully-sugared type for this explicit instantiation as 9698 // the user wrote in the explicit instantiation itself. This means 9699 // that we'll pretty-print the type retrieved from the 9700 // specialization's declaration the way that the user actually wrote 9701 // the explicit instantiation, rather than formatting the name based 9702 // on the "canonical" representation used to store the template 9703 // arguments in the specialization. 9704 TypeSourceInfo *WrittenTy 9705 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 9706 TemplateArgs, 9707 Context.getTypeDeclType(Specialization)); 9708 Specialization->setTypeAsWritten(WrittenTy); 9709 9710 // Set source locations for keywords. 9711 Specialization->setExternLoc(ExternLoc); 9712 Specialization->setTemplateKeywordLoc(TemplateLoc); 9713 Specialization->setBraceRange(SourceRange()); 9714 9715 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); 9716 ProcessDeclAttributeList(S, Specialization, Attr); 9717 9718 // Add the explicit instantiation into its lexical context. However, 9719 // since explicit instantiations are never found by name lookup, we 9720 // just put it into the declaration context directly. 9721 Specialization->setLexicalDeclContext(CurContext); 9722 CurContext->addDecl(Specialization); 9723 9724 // Syntax is now OK, so return if it has no other effect on semantics. 9725 if (HasNoEffect) { 9726 // Set the template specialization kind. 9727 Specialization->setTemplateSpecializationKind(TSK); 9728 return Specialization; 9729 } 9730 9731 // C++ [temp.explicit]p3: 9732 // A definition of a class template or class member template 9733 // shall be in scope at the point of the explicit instantiation of 9734 // the class template or class member template. 9735 // 9736 // This check comes when we actually try to perform the 9737 // instantiation. 9738 ClassTemplateSpecializationDecl *Def 9739 = cast_or_null<ClassTemplateSpecializationDecl>( 9740 Specialization->getDefinition()); 9741 if (!Def) 9742 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 9743 else if (TSK == TSK_ExplicitInstantiationDefinition) { 9744 MarkVTableUsed(TemplateNameLoc, Specialization, true); 9745 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 9746 } 9747 9748 // Instantiate the members of this class template specialization. 9749 Def = cast_or_null<ClassTemplateSpecializationDecl>( 9750 Specialization->getDefinition()); 9751 if (Def) { 9752 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 9753 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 9754 // TSK_ExplicitInstantiationDefinition 9755 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 9756 (TSK == TSK_ExplicitInstantiationDefinition || 9757 DLLImportExplicitInstantiationDef)) { 9758 // FIXME: Need to notify the ASTMutationListener that we did this. 9759 Def->setTemplateSpecializationKind(TSK); 9760 9761 if (!getDLLAttr(Def) && getDLLAttr(Specialization) && 9762 (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 9763 !Context.getTargetInfo().getTriple().isPS())) { 9764 // An explicit instantiation definition can add a dll attribute to a 9765 // template with a previous instantiation declaration. MinGW doesn't 9766 // allow this. 9767 auto *A = cast<InheritableAttr>( 9768 getDLLAttr(Specialization)->clone(getASTContext())); 9769 A->setInherited(true); 9770 Def->addAttr(A); 9771 dllExportImportClassTemplateSpecialization(*this, Def); 9772 } 9773 } 9774 9775 // Fix a TSK_ImplicitInstantiation followed by a 9776 // TSK_ExplicitInstantiationDefinition 9777 bool NewlyDLLExported = 9778 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); 9779 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && 9780 (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 9781 !Context.getTargetInfo().getTriple().isPS())) { 9782 // An explicit instantiation definition can add a dll attribute to a 9783 // template with a previous implicit instantiation. MinGW doesn't allow 9784 // this. We limit clang to only adding dllexport, to avoid potentially 9785 // strange codegen behavior. For example, if we extend this conditional 9786 // to dllimport, and we have a source file calling a method on an 9787 // implicitly instantiated template class instance and then declaring a 9788 // dllimport explicit instantiation definition for the same template 9789 // class, the codegen for the method call will not respect the dllimport, 9790 // while it will with cl. The Def will already have the DLL attribute, 9791 // since the Def and Specialization will be the same in the case of 9792 // Old_TSK == TSK_ImplicitInstantiation, and we already added the 9793 // attribute to the Specialization; we just need to make it take effect. 9794 assert(Def == Specialization && 9795 "Def and Specialization should match for implicit instantiation"); 9796 dllExportImportClassTemplateSpecialization(*this, Def); 9797 } 9798 9799 // In MinGW mode, export the template instantiation if the declaration 9800 // was marked dllexport. 9801 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9802 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && 9803 PrevDecl->hasAttr<DLLExportAttr>()) { 9804 dllExportImportClassTemplateSpecialization(*this, Def); 9805 } 9806 9807 if (Def->hasAttr<MSInheritanceAttr>()) { 9808 Specialization->addAttr(Def->getAttr<MSInheritanceAttr>()); 9809 Consumer.AssignInheritanceModel(Specialization); 9810 } 9811 9812 // Set the template specialization kind. Make sure it is set before 9813 // instantiating the members which will trigger ASTConsumer callbacks. 9814 Specialization->setTemplateSpecializationKind(TSK); 9815 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 9816 } else { 9817 9818 // Set the template specialization kind. 9819 Specialization->setTemplateSpecializationKind(TSK); 9820 } 9821 9822 return Specialization; 9823 } 9824 9825 // Explicit instantiation of a member class of a class template. 9826 DeclResult 9827 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, 9828 SourceLocation TemplateLoc, unsigned TagSpec, 9829 SourceLocation KWLoc, CXXScopeSpec &SS, 9830 IdentifierInfo *Name, SourceLocation NameLoc, 9831 const ParsedAttributesView &Attr) { 9832 9833 bool Owned = false; 9834 bool IsDependent = false; 9835 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 9836 KWLoc, SS, Name, NameLoc, Attr, AS_none, 9837 /*ModulePrivateLoc=*/SourceLocation(), 9838 MultiTemplateParamsArg(), Owned, IsDependent, 9839 SourceLocation(), false, TypeResult(), 9840 /*IsTypeSpecifier*/false, 9841 /*IsTemplateParamOrArg*/false); 9842 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 9843 9844 if (!TagD) 9845 return true; 9846 9847 TagDecl *Tag = cast<TagDecl>(TagD); 9848 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 9849 9850 if (Tag->isInvalidDecl()) 9851 return true; 9852 9853 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 9854 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 9855 if (!Pattern) { 9856 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 9857 << Context.getTypeDeclType(Record); 9858 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 9859 return true; 9860 } 9861 9862 // C++0x [temp.explicit]p2: 9863 // If the explicit instantiation is for a class or member class, the 9864 // elaborated-type-specifier in the declaration shall include a 9865 // simple-template-id. 9866 // 9867 // C++98 has the same restriction, just worded differently. 9868 if (!ScopeSpecifierHasTemplateId(SS)) 9869 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 9870 << Record << SS.getRange(); 9871 9872 // C++0x [temp.explicit]p2: 9873 // There are two forms of explicit instantiation: an explicit instantiation 9874 // definition and an explicit instantiation declaration. An explicit 9875 // instantiation declaration begins with the extern keyword. [...] 9876 TemplateSpecializationKind TSK 9877 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 9878 : TSK_ExplicitInstantiationDeclaration; 9879 9880 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); 9881 9882 // Verify that it is okay to explicitly instantiate here. 9883 CXXRecordDecl *PrevDecl 9884 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 9885 if (!PrevDecl && Record->getDefinition()) 9886 PrevDecl = Record; 9887 if (PrevDecl) { 9888 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 9889 bool HasNoEffect = false; 9890 assert(MSInfo && "No member specialization information?"); 9891 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 9892 PrevDecl, 9893 MSInfo->getTemplateSpecializationKind(), 9894 MSInfo->getPointOfInstantiation(), 9895 HasNoEffect)) 9896 return true; 9897 if (HasNoEffect) 9898 return TagD; 9899 } 9900 9901 CXXRecordDecl *RecordDef 9902 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9903 if (!RecordDef) { 9904 // C++ [temp.explicit]p3: 9905 // A definition of a member class of a class template shall be in scope 9906 // at the point of an explicit instantiation of the member class. 9907 CXXRecordDecl *Def 9908 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 9909 if (!Def) { 9910 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 9911 << 0 << Record->getDeclName() << Record->getDeclContext(); 9912 Diag(Pattern->getLocation(), diag::note_forward_declaration) 9913 << Pattern; 9914 return true; 9915 } else { 9916 if (InstantiateClass(NameLoc, Record, Def, 9917 getTemplateInstantiationArgs(Record), 9918 TSK)) 9919 return true; 9920 9921 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9922 if (!RecordDef) 9923 return true; 9924 } 9925 } 9926 9927 // Instantiate all of the members of the class. 9928 InstantiateClassMembers(NameLoc, RecordDef, 9929 getTemplateInstantiationArgs(Record), TSK); 9930 9931 if (TSK == TSK_ExplicitInstantiationDefinition) 9932 MarkVTableUsed(NameLoc, RecordDef, true); 9933 9934 // FIXME: We don't have any representation for explicit instantiations of 9935 // member classes. Such a representation is not needed for compilation, but it 9936 // should be available for clients that want to see all of the declarations in 9937 // the source code. 9938 return TagD; 9939 } 9940 9941 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 9942 SourceLocation ExternLoc, 9943 SourceLocation TemplateLoc, 9944 Declarator &D) { 9945 // Explicit instantiations always require a name. 9946 // TODO: check if/when DNInfo should replace Name. 9947 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 9948 DeclarationName Name = NameInfo.getName(); 9949 if (!Name) { 9950 if (!D.isInvalidType()) 9951 Diag(D.getDeclSpec().getBeginLoc(), 9952 diag::err_explicit_instantiation_requires_name) 9953 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 9954 9955 return true; 9956 } 9957 9958 // The scope passed in may not be a decl scope. Zip up the scope tree until 9959 // we find one that is. 9960 while ((S->getFlags() & Scope::DeclScope) == 0 || 9961 (S->getFlags() & Scope::TemplateParamScope) != 0) 9962 S = S->getParent(); 9963 9964 // Determine the type of the declaration. 9965 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 9966 QualType R = T->getType(); 9967 if (R.isNull()) 9968 return true; 9969 9970 // C++ [dcl.stc]p1: 9971 // A storage-class-specifier shall not be specified in [...] an explicit 9972 // instantiation (14.7.2) directive. 9973 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 9974 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 9975 << Name; 9976 return true; 9977 } else if (D.getDeclSpec().getStorageClassSpec() 9978 != DeclSpec::SCS_unspecified) { 9979 // Complain about then remove the storage class specifier. 9980 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 9981 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 9982 9983 D.getMutableDeclSpec().ClearStorageClassSpecs(); 9984 } 9985 9986 // C++0x [temp.explicit]p1: 9987 // [...] An explicit instantiation of a function template shall not use the 9988 // inline or constexpr specifiers. 9989 // Presumably, this also applies to member functions of class templates as 9990 // well. 9991 if (D.getDeclSpec().isInlineSpecified()) 9992 Diag(D.getDeclSpec().getInlineSpecLoc(), 9993 getLangOpts().CPlusPlus11 ? 9994 diag::err_explicit_instantiation_inline : 9995 diag::warn_explicit_instantiation_inline_0x) 9996 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 9997 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) 9998 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 9999 // not already specified. 10000 Diag(D.getDeclSpec().getConstexprSpecLoc(), 10001 diag::err_explicit_instantiation_constexpr); 10002 10003 // A deduction guide is not on the list of entities that can be explicitly 10004 // instantiated. 10005 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 10006 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) 10007 << /*explicit instantiation*/ 0; 10008 return true; 10009 } 10010 10011 // C++0x [temp.explicit]p2: 10012 // There are two forms of explicit instantiation: an explicit instantiation 10013 // definition and an explicit instantiation declaration. An explicit 10014 // instantiation declaration begins with the extern keyword. [...] 10015 TemplateSpecializationKind TSK 10016 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 10017 : TSK_ExplicitInstantiationDeclaration; 10018 10019 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 10020 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 10021 10022 if (!R->isFunctionType()) { 10023 // C++ [temp.explicit]p1: 10024 // A [...] static data member of a class template can be explicitly 10025 // instantiated from the member definition associated with its class 10026 // template. 10027 // C++1y [temp.explicit]p1: 10028 // A [...] variable [...] template specialization can be explicitly 10029 // instantiated from its template. 10030 if (Previous.isAmbiguous()) 10031 return true; 10032 10033 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 10034 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 10035 10036 if (!PrevTemplate) { 10037 if (!Prev || !Prev->isStaticDataMember()) { 10038 // We expect to see a static data member here. 10039 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 10040 << Name; 10041 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10042 P != PEnd; ++P) 10043 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 10044 return true; 10045 } 10046 10047 if (!Prev->getInstantiatedFromStaticDataMember()) { 10048 // FIXME: Check for explicit specialization? 10049 Diag(D.getIdentifierLoc(), 10050 diag::err_explicit_instantiation_data_member_not_instantiated) 10051 << Prev; 10052 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 10053 // FIXME: Can we provide a note showing where this was declared? 10054 return true; 10055 } 10056 } else { 10057 // Explicitly instantiate a variable template. 10058 10059 // C++1y [dcl.spec.auto]p6: 10060 // ... A program that uses auto or decltype(auto) in a context not 10061 // explicitly allowed in this section is ill-formed. 10062 // 10063 // This includes auto-typed variable template instantiations. 10064 if (R->isUndeducedType()) { 10065 Diag(T->getTypeLoc().getBeginLoc(), 10066 diag::err_auto_not_allowed_var_inst); 10067 return true; 10068 } 10069 10070 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 10071 // C++1y [temp.explicit]p3: 10072 // If the explicit instantiation is for a variable, the unqualified-id 10073 // in the declaration shall be a template-id. 10074 Diag(D.getIdentifierLoc(), 10075 diag::err_explicit_instantiation_without_template_id) 10076 << PrevTemplate; 10077 Diag(PrevTemplate->getLocation(), 10078 diag::note_explicit_instantiation_here); 10079 return true; 10080 } 10081 10082 // Translate the parser's template argument list into our AST format. 10083 TemplateArgumentListInfo TemplateArgs = 10084 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10085 10086 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 10087 D.getIdentifierLoc(), TemplateArgs); 10088 if (Res.isInvalid()) 10089 return true; 10090 10091 if (!Res.isUsable()) { 10092 // We somehow specified dependent template arguments in an explicit 10093 // instantiation. This should probably only happen during error 10094 // recovery. 10095 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent); 10096 return true; 10097 } 10098 10099 // Ignore access control bits, we don't need them for redeclaration 10100 // checking. 10101 Prev = cast<VarDecl>(Res.get()); 10102 } 10103 10104 // C++0x [temp.explicit]p2: 10105 // If the explicit instantiation is for a member function, a member class 10106 // or a static data member of a class template specialization, the name of 10107 // the class template specialization in the qualified-id for the member 10108 // name shall be a simple-template-id. 10109 // 10110 // C++98 has the same restriction, just worded differently. 10111 // 10112 // This does not apply to variable template specializations, where the 10113 // template-id is in the unqualified-id instead. 10114 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 10115 Diag(D.getIdentifierLoc(), 10116 diag::ext_explicit_instantiation_without_qualified_id) 10117 << Prev << D.getCXXScopeSpec().getRange(); 10118 10119 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); 10120 10121 // Verify that it is okay to explicitly instantiate here. 10122 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 10123 SourceLocation POI = Prev->getPointOfInstantiation(); 10124 bool HasNoEffect = false; 10125 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 10126 PrevTSK, POI, HasNoEffect)) 10127 return true; 10128 10129 if (!HasNoEffect) { 10130 // Instantiate static data member or variable template. 10131 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10132 // Merge attributes. 10133 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); 10134 if (TSK == TSK_ExplicitInstantiationDefinition) 10135 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 10136 } 10137 10138 // Check the new variable specialization against the parsed input. 10139 if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) { 10140 Diag(T->getTypeLoc().getBeginLoc(), 10141 diag::err_invalid_var_template_spec_type) 10142 << 0 << PrevTemplate << R << Prev->getType(); 10143 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 10144 << 2 << PrevTemplate->getDeclName(); 10145 return true; 10146 } 10147 10148 // FIXME: Create an ExplicitInstantiation node? 10149 return (Decl*) nullptr; 10150 } 10151 10152 // If the declarator is a template-id, translate the parser's template 10153 // argument list into our AST format. 10154 bool HasExplicitTemplateArgs = false; 10155 TemplateArgumentListInfo TemplateArgs; 10156 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 10157 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10158 HasExplicitTemplateArgs = true; 10159 } 10160 10161 // C++ [temp.explicit]p1: 10162 // A [...] function [...] can be explicitly instantiated from its template. 10163 // A member function [...] of a class template can be explicitly 10164 // instantiated from the member definition associated with its class 10165 // template. 10166 UnresolvedSet<8> TemplateMatches; 10167 FunctionDecl *NonTemplateMatch = nullptr; 10168 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 10169 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10170 P != PEnd; ++P) { 10171 NamedDecl *Prev = *P; 10172 if (!HasExplicitTemplateArgs) { 10173 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 10174 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), 10175 /*AdjustExceptionSpec*/true); 10176 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 10177 if (Method->getPrimaryTemplate()) { 10178 TemplateMatches.addDecl(Method, P.getAccess()); 10179 } else { 10180 // FIXME: Can this assert ever happen? Needs a test. 10181 assert(!NonTemplateMatch && "Multiple NonTemplateMatches"); 10182 NonTemplateMatch = Method; 10183 } 10184 } 10185 } 10186 } 10187 10188 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 10189 if (!FunTmpl) 10190 continue; 10191 10192 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 10193 FunctionDecl *Specialization = nullptr; 10194 if (TemplateDeductionResult TDK 10195 = DeduceTemplateArguments(FunTmpl, 10196 (HasExplicitTemplateArgs ? &TemplateArgs 10197 : nullptr), 10198 R, Specialization, Info)) { 10199 // Keep track of almost-matches. 10200 FailedCandidates.addCandidate() 10201 .set(P.getPair(), FunTmpl->getTemplatedDecl(), 10202 MakeDeductionFailureInfo(Context, TDK, Info)); 10203 (void)TDK; 10204 continue; 10205 } 10206 10207 // Target attributes are part of the cuda function signature, so 10208 // the cuda target of the instantiated function must match that of its 10209 // template. Given that C++ template deduction does not take 10210 // target attributes into account, we reject candidates here that 10211 // have a different target. 10212 if (LangOpts.CUDA && 10213 IdentifyCUDATarget(Specialization, 10214 /* IgnoreImplicitHDAttr = */ true) != 10215 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) { 10216 FailedCandidates.addCandidate().set( 10217 P.getPair(), FunTmpl->getTemplatedDecl(), 10218 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 10219 continue; 10220 } 10221 10222 TemplateMatches.addDecl(Specialization, P.getAccess()); 10223 } 10224 10225 FunctionDecl *Specialization = NonTemplateMatch; 10226 if (!Specialization) { 10227 // Find the most specialized function template specialization. 10228 UnresolvedSetIterator Result = getMostSpecialized( 10229 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, 10230 D.getIdentifierLoc(), 10231 PDiag(diag::err_explicit_instantiation_not_known) << Name, 10232 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 10233 PDiag(diag::note_explicit_instantiation_candidate)); 10234 10235 if (Result == TemplateMatches.end()) 10236 return true; 10237 10238 // Ignore access control bits, we don't need them for redeclaration checking. 10239 Specialization = cast<FunctionDecl>(*Result); 10240 } 10241 10242 // C++11 [except.spec]p4 10243 // In an explicit instantiation an exception-specification may be specified, 10244 // but is not required. 10245 // If an exception-specification is specified in an explicit instantiation 10246 // directive, it shall be compatible with the exception-specifications of 10247 // other declarations of that function. 10248 if (auto *FPT = R->getAs<FunctionProtoType>()) 10249 if (FPT->hasExceptionSpec()) { 10250 unsigned DiagID = 10251 diag::err_mismatched_exception_spec_explicit_instantiation; 10252 if (getLangOpts().MicrosoftExt) 10253 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 10254 bool Result = CheckEquivalentExceptionSpec( 10255 PDiag(DiagID) << Specialization->getType(), 10256 PDiag(diag::note_explicit_instantiation_here), 10257 Specialization->getType()->getAs<FunctionProtoType>(), 10258 Specialization->getLocation(), FPT, D.getBeginLoc()); 10259 // In Microsoft mode, mismatching exception specifications just cause a 10260 // warning. 10261 if (!getLangOpts().MicrosoftExt && Result) 10262 return true; 10263 } 10264 10265 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 10266 Diag(D.getIdentifierLoc(), 10267 diag::err_explicit_instantiation_member_function_not_instantiated) 10268 << Specialization 10269 << (Specialization->getTemplateSpecializationKind() == 10270 TSK_ExplicitSpecialization); 10271 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 10272 return true; 10273 } 10274 10275 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 10276 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 10277 PrevDecl = Specialization; 10278 10279 if (PrevDecl) { 10280 bool HasNoEffect = false; 10281 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 10282 PrevDecl, 10283 PrevDecl->getTemplateSpecializationKind(), 10284 PrevDecl->getPointOfInstantiation(), 10285 HasNoEffect)) 10286 return true; 10287 10288 // FIXME: We may still want to build some representation of this 10289 // explicit specialization. 10290 if (HasNoEffect) 10291 return (Decl*) nullptr; 10292 } 10293 10294 // HACK: libc++ has a bug where it attempts to explicitly instantiate the 10295 // functions 10296 // valarray<size_t>::valarray(size_t) and 10297 // valarray<size_t>::~valarray() 10298 // that it declared to have internal linkage with the internal_linkage 10299 // attribute. Ignore the explicit instantiation declaration in this case. 10300 if (Specialization->hasAttr<InternalLinkageAttr>() && 10301 TSK == TSK_ExplicitInstantiationDeclaration) { 10302 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) 10303 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && 10304 RD->isInStdNamespace()) 10305 return (Decl*) nullptr; 10306 } 10307 10308 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); 10309 10310 // In MSVC mode, dllimported explicit instantiation definitions are treated as 10311 // instantiation declarations. 10312 if (TSK == TSK_ExplicitInstantiationDefinition && 10313 Specialization->hasAttr<DLLImportAttr>() && 10314 Context.getTargetInfo().getCXXABI().isMicrosoft()) 10315 TSK = TSK_ExplicitInstantiationDeclaration; 10316 10317 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10318 10319 if (Specialization->isDefined()) { 10320 // Let the ASTConsumer know that this function has been explicitly 10321 // instantiated now, and its linkage might have changed. 10322 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 10323 } else if (TSK == TSK_ExplicitInstantiationDefinition) 10324 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 10325 10326 // C++0x [temp.explicit]p2: 10327 // If the explicit instantiation is for a member function, a member class 10328 // or a static data member of a class template specialization, the name of 10329 // the class template specialization in the qualified-id for the member 10330 // name shall be a simple-template-id. 10331 // 10332 // C++98 has the same restriction, just worded differently. 10333 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 10334 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && 10335 D.getCXXScopeSpec().isSet() && 10336 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 10337 Diag(D.getIdentifierLoc(), 10338 diag::ext_explicit_instantiation_without_qualified_id) 10339 << Specialization << D.getCXXScopeSpec().getRange(); 10340 10341 CheckExplicitInstantiation( 10342 *this, 10343 FunTmpl ? (NamedDecl *)FunTmpl 10344 : Specialization->getInstantiatedFromMemberFunction(), 10345 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); 10346 10347 // FIXME: Create some kind of ExplicitInstantiationDecl here. 10348 return (Decl*) nullptr; 10349 } 10350 10351 TypeResult 10352 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 10353 const CXXScopeSpec &SS, IdentifierInfo *Name, 10354 SourceLocation TagLoc, SourceLocation NameLoc) { 10355 // This has to hold, because SS is expected to be defined. 10356 assert(Name && "Expected a name in a dependent tag"); 10357 10358 NestedNameSpecifier *NNS = SS.getScopeRep(); 10359 if (!NNS) 10360 return true; 10361 10362 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 10363 10364 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 10365 Diag(NameLoc, diag::err_dependent_tag_decl) 10366 << (TUK == TUK_Definition) << Kind << SS.getRange(); 10367 return true; 10368 } 10369 10370 // Create the resulting type. 10371 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 10372 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 10373 10374 // Create type-source location information for this type. 10375 TypeLocBuilder TLB; 10376 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 10377 TL.setElaboratedKeywordLoc(TagLoc); 10378 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10379 TL.setNameLoc(NameLoc); 10380 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 10381 } 10382 10383 TypeResult 10384 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 10385 const CXXScopeSpec &SS, const IdentifierInfo &II, 10386 SourceLocation IdLoc) { 10387 if (SS.isInvalid()) 10388 return true; 10389 10390 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10391 Diag(TypenameLoc, 10392 getLangOpts().CPlusPlus11 ? 10393 diag::warn_cxx98_compat_typename_outside_of_template : 10394 diag::ext_typename_outside_of_template) 10395 << FixItHint::CreateRemoval(TypenameLoc); 10396 10397 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10398 TypeSourceInfo *TSI = nullptr; 10399 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 10400 TypenameLoc, QualifierLoc, II, IdLoc, &TSI, 10401 /*DeducedTSTContext=*/true); 10402 if (T.isNull()) 10403 return true; 10404 return CreateParsedType(T, TSI); 10405 } 10406 10407 TypeResult 10408 Sema::ActOnTypenameType(Scope *S, 10409 SourceLocation TypenameLoc, 10410 const CXXScopeSpec &SS, 10411 SourceLocation TemplateKWLoc, 10412 TemplateTy TemplateIn, 10413 IdentifierInfo *TemplateII, 10414 SourceLocation TemplateIILoc, 10415 SourceLocation LAngleLoc, 10416 ASTTemplateArgsPtr TemplateArgsIn, 10417 SourceLocation RAngleLoc) { 10418 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10419 Diag(TypenameLoc, 10420 getLangOpts().CPlusPlus11 ? 10421 diag::warn_cxx98_compat_typename_outside_of_template : 10422 diag::ext_typename_outside_of_template) 10423 << FixItHint::CreateRemoval(TypenameLoc); 10424 10425 // Strangely, non-type results are not ignored by this lookup, so the 10426 // program is ill-formed if it finds an injected-class-name. 10427 if (TypenameLoc.isValid()) { 10428 auto *LookupRD = 10429 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); 10430 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 10431 Diag(TemplateIILoc, 10432 diag::ext_out_of_line_qualified_id_type_names_constructor) 10433 << TemplateII << 0 /*injected-class-name used as template name*/ 10434 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); 10435 } 10436 } 10437 10438 // Translate the parser's template argument list in our AST format. 10439 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 10440 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 10441 10442 TemplateName Template = TemplateIn.get(); 10443 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 10444 // Construct a dependent template specialization type. 10445 assert(DTN && "dependent template has non-dependent name?"); 10446 assert(DTN->getQualifier() == SS.getScopeRep()); 10447 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 10448 DTN->getQualifier(), 10449 DTN->getIdentifier(), 10450 TemplateArgs); 10451 10452 // Create source-location information for this type. 10453 TypeLocBuilder Builder; 10454 DependentTemplateSpecializationTypeLoc SpecTL 10455 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 10456 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 10457 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 10458 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10459 SpecTL.setTemplateNameLoc(TemplateIILoc); 10460 SpecTL.setLAngleLoc(LAngleLoc); 10461 SpecTL.setRAngleLoc(RAngleLoc); 10462 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10463 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10464 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 10465 } 10466 10467 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 10468 if (T.isNull()) 10469 return true; 10470 10471 // Provide source-location information for the template specialization type. 10472 TypeLocBuilder Builder; 10473 TemplateSpecializationTypeLoc SpecTL 10474 = Builder.push<TemplateSpecializationTypeLoc>(T); 10475 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10476 SpecTL.setTemplateNameLoc(TemplateIILoc); 10477 SpecTL.setLAngleLoc(LAngleLoc); 10478 SpecTL.setRAngleLoc(RAngleLoc); 10479 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10480 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10481 10482 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 10483 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 10484 TL.setElaboratedKeywordLoc(TypenameLoc); 10485 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10486 10487 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 10488 return CreateParsedType(T, TSI); 10489 } 10490 10491 10492 /// Determine whether this failed name lookup should be treated as being 10493 /// disabled by a usage of std::enable_if. 10494 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 10495 SourceRange &CondRange, Expr *&Cond) { 10496 // We must be looking for a ::type... 10497 if (!II.isStr("type")) 10498 return false; 10499 10500 // ... within an explicitly-written template specialization... 10501 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 10502 return false; 10503 TypeLoc EnableIfTy = NNS.getTypeLoc(); 10504 TemplateSpecializationTypeLoc EnableIfTSTLoc = 10505 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 10506 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 10507 return false; 10508 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); 10509 10510 // ... which names a complete class template declaration... 10511 const TemplateDecl *EnableIfDecl = 10512 EnableIfTST->getTemplateName().getAsTemplateDecl(); 10513 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 10514 return false; 10515 10516 // ... called "enable_if". 10517 const IdentifierInfo *EnableIfII = 10518 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 10519 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 10520 return false; 10521 10522 // Assume the first template argument is the condition. 10523 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 10524 10525 // Dig out the condition. 10526 Cond = nullptr; 10527 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() 10528 != TemplateArgument::Expression) 10529 return true; 10530 10531 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); 10532 10533 // Ignore Boolean literals; they add no value. 10534 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) 10535 Cond = nullptr; 10536 10537 return true; 10538 } 10539 10540 QualType 10541 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10542 SourceLocation KeywordLoc, 10543 NestedNameSpecifierLoc QualifierLoc, 10544 const IdentifierInfo &II, 10545 SourceLocation IILoc, 10546 TypeSourceInfo **TSI, 10547 bool DeducedTSTContext) { 10548 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, 10549 DeducedTSTContext); 10550 if (T.isNull()) 10551 return QualType(); 10552 10553 *TSI = Context.CreateTypeSourceInfo(T); 10554 if (isa<DependentNameType>(T)) { 10555 DependentNameTypeLoc TL = 10556 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); 10557 TL.setElaboratedKeywordLoc(KeywordLoc); 10558 TL.setQualifierLoc(QualifierLoc); 10559 TL.setNameLoc(IILoc); 10560 } else { 10561 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); 10562 TL.setElaboratedKeywordLoc(KeywordLoc); 10563 TL.setQualifierLoc(QualifierLoc); 10564 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); 10565 } 10566 return T; 10567 } 10568 10569 /// Build the type that describes a C++ typename specifier, 10570 /// e.g., "typename T::type". 10571 QualType 10572 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10573 SourceLocation KeywordLoc, 10574 NestedNameSpecifierLoc QualifierLoc, 10575 const IdentifierInfo &II, 10576 SourceLocation IILoc, bool DeducedTSTContext) { 10577 CXXScopeSpec SS; 10578 SS.Adopt(QualifierLoc); 10579 10580 DeclContext *Ctx = nullptr; 10581 if (QualifierLoc) { 10582 Ctx = computeDeclContext(SS); 10583 if (!Ctx) { 10584 // If the nested-name-specifier is dependent and couldn't be 10585 // resolved to a type, build a typename type. 10586 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 10587 return Context.getDependentNameType(Keyword, 10588 QualifierLoc.getNestedNameSpecifier(), 10589 &II); 10590 } 10591 10592 // If the nested-name-specifier refers to the current instantiation, 10593 // the "typename" keyword itself is superfluous. In C++03, the 10594 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 10595 // allows such extraneous "typename" keywords, and we retroactively 10596 // apply this DR to C++03 code with only a warning. In any case we continue. 10597 10598 if (RequireCompleteDeclContext(SS, Ctx)) 10599 return QualType(); 10600 } 10601 10602 DeclarationName Name(&II); 10603 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 10604 if (Ctx) 10605 LookupQualifiedName(Result, Ctx, SS); 10606 else 10607 LookupName(Result, CurScope); 10608 unsigned DiagID = 0; 10609 Decl *Referenced = nullptr; 10610 switch (Result.getResultKind()) { 10611 case LookupResult::NotFound: { 10612 // If we're looking up 'type' within a template named 'enable_if', produce 10613 // a more specific diagnostic. 10614 SourceRange CondRange; 10615 Expr *Cond = nullptr; 10616 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) { 10617 // If we have a condition, narrow it down to the specific failed 10618 // condition. 10619 if (Cond) { 10620 Expr *FailedCond; 10621 std::string FailedDescription; 10622 std::tie(FailedCond, FailedDescription) = 10623 findFailedBooleanCondition(Cond); 10624 10625 Diag(FailedCond->getExprLoc(), 10626 diag::err_typename_nested_not_found_requirement) 10627 << FailedDescription 10628 << FailedCond->getSourceRange(); 10629 return QualType(); 10630 } 10631 10632 Diag(CondRange.getBegin(), 10633 diag::err_typename_nested_not_found_enable_if) 10634 << Ctx << CondRange; 10635 return QualType(); 10636 } 10637 10638 DiagID = Ctx ? diag::err_typename_nested_not_found 10639 : diag::err_unknown_typename; 10640 break; 10641 } 10642 10643 case LookupResult::FoundUnresolvedValue: { 10644 // We found a using declaration that is a value. Most likely, the using 10645 // declaration itself is meant to have the 'typename' keyword. 10646 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10647 IILoc); 10648 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 10649 << Name << Ctx << FullRange; 10650 if (UnresolvedUsingValueDecl *Using 10651 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 10652 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 10653 Diag(Loc, diag::note_using_value_decl_missing_typename) 10654 << FixItHint::CreateInsertion(Loc, "typename "); 10655 } 10656 } 10657 // Fall through to create a dependent typename type, from which we can recover 10658 // better. 10659 LLVM_FALLTHROUGH; 10660 10661 case LookupResult::NotFoundInCurrentInstantiation: 10662 // Okay, it's a member of an unknown instantiation. 10663 return Context.getDependentNameType(Keyword, 10664 QualifierLoc.getNestedNameSpecifier(), 10665 &II); 10666 10667 case LookupResult::Found: 10668 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 10669 // C++ [class.qual]p2: 10670 // In a lookup in which function names are not ignored and the 10671 // nested-name-specifier nominates a class C, if the name specified 10672 // after the nested-name-specifier, when looked up in C, is the 10673 // injected-class-name of C [...] then the name is instead considered 10674 // to name the constructor of class C. 10675 // 10676 // Unlike in an elaborated-type-specifier, function names are not ignored 10677 // in typename-specifier lookup. However, they are ignored in all the 10678 // contexts where we form a typename type with no keyword (that is, in 10679 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). 10680 // 10681 // FIXME: That's not strictly true: mem-initializer-id lookup does not 10682 // ignore functions, but that appears to be an oversight. 10683 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); 10684 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); 10685 if (Keyword == ETK_Typename && LookupRD && FoundRD && 10686 FoundRD->isInjectedClassName() && 10687 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 10688 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) 10689 << &II << 1 << 0 /*'typename' keyword used*/; 10690 10691 // We found a type. Build an ElaboratedType, since the 10692 // typename-specifier was just sugar. 10693 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 10694 return Context.getElaboratedType(Keyword, 10695 QualifierLoc.getNestedNameSpecifier(), 10696 Context.getTypeDeclType(Type)); 10697 } 10698 10699 // C++ [dcl.type.simple]p2: 10700 // A type-specifier of the form 10701 // typename[opt] nested-name-specifier[opt] template-name 10702 // is a placeholder for a deduced class type [...]. 10703 if (getLangOpts().CPlusPlus17) { 10704 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { 10705 if (!DeducedTSTContext) { 10706 QualType T(QualifierLoc 10707 ? QualifierLoc.getNestedNameSpecifier()->getAsType() 10708 : nullptr, 0); 10709 if (!T.isNull()) 10710 Diag(IILoc, diag::err_dependent_deduced_tst) 10711 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; 10712 else 10713 Diag(IILoc, diag::err_deduced_tst) 10714 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); 10715 Diag(TD->getLocation(), diag::note_template_decl_here); 10716 return QualType(); 10717 } 10718 return Context.getElaboratedType( 10719 Keyword, QualifierLoc.getNestedNameSpecifier(), 10720 Context.getDeducedTemplateSpecializationType(TemplateName(TD), 10721 QualType(), false)); 10722 } 10723 } 10724 10725 DiagID = Ctx ? diag::err_typename_nested_not_type 10726 : diag::err_typename_not_type; 10727 Referenced = Result.getFoundDecl(); 10728 break; 10729 10730 case LookupResult::FoundOverloaded: 10731 DiagID = Ctx ? diag::err_typename_nested_not_type 10732 : diag::err_typename_not_type; 10733 Referenced = *Result.begin(); 10734 break; 10735 10736 case LookupResult::Ambiguous: 10737 return QualType(); 10738 } 10739 10740 // If we get here, it's because name lookup did not find a 10741 // type. Emit an appropriate diagnostic and return an error. 10742 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10743 IILoc); 10744 if (Ctx) 10745 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 10746 else 10747 Diag(IILoc, DiagID) << FullRange << Name; 10748 if (Referenced) 10749 Diag(Referenced->getLocation(), 10750 Ctx ? diag::note_typename_member_refers_here 10751 : diag::note_typename_refers_here) 10752 << Name; 10753 return QualType(); 10754 } 10755 10756 namespace { 10757 // See Sema::RebuildTypeInCurrentInstantiation 10758 class CurrentInstantiationRebuilder 10759 : public TreeTransform<CurrentInstantiationRebuilder> { 10760 SourceLocation Loc; 10761 DeclarationName Entity; 10762 10763 public: 10764 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 10765 10766 CurrentInstantiationRebuilder(Sema &SemaRef, 10767 SourceLocation Loc, 10768 DeclarationName Entity) 10769 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 10770 Loc(Loc), Entity(Entity) { } 10771 10772 /// Determine whether the given type \p T has already been 10773 /// transformed. 10774 /// 10775 /// For the purposes of type reconstruction, a type has already been 10776 /// transformed if it is NULL or if it is not dependent. 10777 bool AlreadyTransformed(QualType T) { 10778 return T.isNull() || !T->isInstantiationDependentType(); 10779 } 10780 10781 /// Returns the location of the entity whose type is being 10782 /// rebuilt. 10783 SourceLocation getBaseLocation() { return Loc; } 10784 10785 /// Returns the name of the entity whose type is being rebuilt. 10786 DeclarationName getBaseEntity() { return Entity; } 10787 10788 /// Sets the "base" location and entity when that 10789 /// information is known based on another transformation. 10790 void setBase(SourceLocation Loc, DeclarationName Entity) { 10791 this->Loc = Loc; 10792 this->Entity = Entity; 10793 } 10794 10795 ExprResult TransformLambdaExpr(LambdaExpr *E) { 10796 // Lambdas never need to be transformed. 10797 return E; 10798 } 10799 }; 10800 } // end anonymous namespace 10801 10802 /// Rebuilds a type within the context of the current instantiation. 10803 /// 10804 /// The type \p T is part of the type of an out-of-line member definition of 10805 /// a class template (or class template partial specialization) that was parsed 10806 /// and constructed before we entered the scope of the class template (or 10807 /// partial specialization thereof). This routine will rebuild that type now 10808 /// that we have entered the declarator's scope, which may produce different 10809 /// canonical types, e.g., 10810 /// 10811 /// \code 10812 /// template<typename T> 10813 /// struct X { 10814 /// typedef T* pointer; 10815 /// pointer data(); 10816 /// }; 10817 /// 10818 /// template<typename T> 10819 /// typename X<T>::pointer X<T>::data() { ... } 10820 /// \endcode 10821 /// 10822 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 10823 /// since we do not know that we can look into X<T> when we parsed the type. 10824 /// This function will rebuild the type, performing the lookup of "pointer" 10825 /// in X<T> and returning an ElaboratedType whose canonical type is the same 10826 /// as the canonical type of T*, allowing the return types of the out-of-line 10827 /// definition and the declaration to match. 10828 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 10829 SourceLocation Loc, 10830 DeclarationName Name) { 10831 if (!T || !T->getType()->isInstantiationDependentType()) 10832 return T; 10833 10834 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 10835 return Rebuilder.TransformType(T); 10836 } 10837 10838 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 10839 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 10840 DeclarationName()); 10841 return Rebuilder.TransformExpr(E); 10842 } 10843 10844 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 10845 if (SS.isInvalid()) 10846 return true; 10847 10848 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10849 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 10850 DeclarationName()); 10851 NestedNameSpecifierLoc Rebuilt 10852 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 10853 if (!Rebuilt) 10854 return true; 10855 10856 SS.Adopt(Rebuilt); 10857 return false; 10858 } 10859 10860 /// Rebuild the template parameters now that we know we're in a current 10861 /// instantiation. 10862 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 10863 TemplateParameterList *Params) { 10864 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10865 Decl *Param = Params->getParam(I); 10866 10867 // There is nothing to rebuild in a type parameter. 10868 if (isa<TemplateTypeParmDecl>(Param)) 10869 continue; 10870 10871 // Rebuild the template parameter list of a template template parameter. 10872 if (TemplateTemplateParmDecl *TTP 10873 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 10874 if (RebuildTemplateParamsInCurrentInstantiation( 10875 TTP->getTemplateParameters())) 10876 return true; 10877 10878 continue; 10879 } 10880 10881 // Rebuild the type of a non-type template parameter. 10882 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 10883 TypeSourceInfo *NewTSI 10884 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 10885 NTTP->getLocation(), 10886 NTTP->getDeclName()); 10887 if (!NewTSI) 10888 return true; 10889 10890 if (NewTSI->getType()->isUndeducedType()) { 10891 // C++17 [temp.dep.expr]p3: 10892 // An id-expression is type-dependent if it contains 10893 // - an identifier associated by name lookup with a non-type 10894 // template-parameter declared with a type that contains a 10895 // placeholder type (7.1.7.4), 10896 NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI); 10897 } 10898 10899 if (NewTSI != NTTP->getTypeSourceInfo()) { 10900 NTTP->setTypeSourceInfo(NewTSI); 10901 NTTP->setType(NewTSI->getType()); 10902 } 10903 } 10904 10905 return false; 10906 } 10907 10908 /// Produces a formatted string that describes the binding of 10909 /// template parameters to template arguments. 10910 std::string 10911 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10912 const TemplateArgumentList &Args) { 10913 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 10914 } 10915 10916 std::string 10917 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10918 const TemplateArgument *Args, 10919 unsigned NumArgs) { 10920 SmallString<128> Str; 10921 llvm::raw_svector_ostream Out(Str); 10922 10923 if (!Params || Params->size() == 0 || NumArgs == 0) 10924 return std::string(); 10925 10926 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10927 if (I >= NumArgs) 10928 break; 10929 10930 if (I == 0) 10931 Out << "[with "; 10932 else 10933 Out << ", "; 10934 10935 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 10936 Out << Id->getName(); 10937 } else { 10938 Out << '$' << I; 10939 } 10940 10941 Out << " = "; 10942 Args[I].print(getPrintingPolicy(), Out, 10943 TemplateParameterList::shouldIncludeTypeForArgument( 10944 getPrintingPolicy(), Params, I)); 10945 } 10946 10947 Out << ']'; 10948 return std::string(Out.str()); 10949 } 10950 10951 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 10952 CachedTokens &Toks) { 10953 if (!FD) 10954 return; 10955 10956 auto LPT = std::make_unique<LateParsedTemplate>(); 10957 10958 // Take tokens to avoid allocations 10959 LPT->Toks.swap(Toks); 10960 LPT->D = FnD; 10961 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); 10962 10963 FD->setLateTemplateParsed(true); 10964 } 10965 10966 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 10967 if (!FD) 10968 return; 10969 FD->setLateTemplateParsed(false); 10970 } 10971 10972 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 10973 DeclContext *DC = CurContext; 10974 10975 while (DC) { 10976 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 10977 const FunctionDecl *FD = RD->isLocalClass(); 10978 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 10979 } else if (DC->isTranslationUnit() || DC->isNamespace()) 10980 return false; 10981 10982 DC = DC->getParent(); 10983 } 10984 return false; 10985 } 10986 10987 namespace { 10988 /// Walk the path from which a declaration was instantiated, and check 10989 /// that every explicit specialization along that path is visible. This enforces 10990 /// C++ [temp.expl.spec]/6: 10991 /// 10992 /// If a template, a member template or a member of a class template is 10993 /// explicitly specialized then that specialization shall be declared before 10994 /// the first use of that specialization that would cause an implicit 10995 /// instantiation to take place, in every translation unit in which such a 10996 /// use occurs; no diagnostic is required. 10997 /// 10998 /// and also C++ [temp.class.spec]/1: 10999 /// 11000 /// A partial specialization shall be declared before the first use of a 11001 /// class template specialization that would make use of the partial 11002 /// specialization as the result of an implicit or explicit instantiation 11003 /// in every translation unit in which such a use occurs; no diagnostic is 11004 /// required. 11005 class ExplicitSpecializationVisibilityChecker { 11006 Sema &S; 11007 SourceLocation Loc; 11008 llvm::SmallVector<Module *, 8> Modules; 11009 11010 public: 11011 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc) 11012 : S(S), Loc(Loc) {} 11013 11014 void check(NamedDecl *ND) { 11015 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 11016 return checkImpl(FD); 11017 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) 11018 return checkImpl(RD); 11019 if (auto *VD = dyn_cast<VarDecl>(ND)) 11020 return checkImpl(VD); 11021 if (auto *ED = dyn_cast<EnumDecl>(ND)) 11022 return checkImpl(ED); 11023 } 11024 11025 private: 11026 void diagnose(NamedDecl *D, bool IsPartialSpec) { 11027 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization 11028 : Sema::MissingImportKind::ExplicitSpecialization; 11029 const bool Recover = true; 11030 11031 // If we got a custom set of modules (because only a subset of the 11032 // declarations are interesting), use them, otherwise let 11033 // diagnoseMissingImport intelligently pick some. 11034 if (Modules.empty()) 11035 S.diagnoseMissingImport(Loc, D, Kind, Recover); 11036 else 11037 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); 11038 } 11039 11040 // Check a specific declaration. There are three problematic cases: 11041 // 11042 // 1) The declaration is an explicit specialization of a template 11043 // specialization. 11044 // 2) The declaration is an explicit specialization of a member of an 11045 // templated class. 11046 // 3) The declaration is an instantiation of a template, and that template 11047 // is an explicit specialization of a member of a templated class. 11048 // 11049 // We don't need to go any deeper than that, as the instantiation of the 11050 // surrounding class / etc is not triggered by whatever triggered this 11051 // instantiation, and thus should be checked elsewhere. 11052 template<typename SpecDecl> 11053 void checkImpl(SpecDecl *Spec) { 11054 bool IsHiddenExplicitSpecialization = false; 11055 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { 11056 IsHiddenExplicitSpecialization = 11057 Spec->getMemberSpecializationInfo() 11058 ? !S.hasVisibleMemberSpecialization(Spec, &Modules) 11059 : !S.hasVisibleExplicitSpecialization(Spec, &Modules); 11060 } else { 11061 checkInstantiated(Spec); 11062 } 11063 11064 if (IsHiddenExplicitSpecialization) 11065 diagnose(Spec->getMostRecentDecl(), false); 11066 } 11067 11068 void checkInstantiated(FunctionDecl *FD) { 11069 if (auto *TD = FD->getPrimaryTemplate()) 11070 checkTemplate(TD); 11071 } 11072 11073 void checkInstantiated(CXXRecordDecl *RD) { 11074 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); 11075 if (!SD) 11076 return; 11077 11078 auto From = SD->getSpecializedTemplateOrPartial(); 11079 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) 11080 checkTemplate(TD); 11081 else if (auto *TD = 11082 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 11083 if (!S.hasVisibleDeclaration(TD)) 11084 diagnose(TD, true); 11085 checkTemplate(TD); 11086 } 11087 } 11088 11089 void checkInstantiated(VarDecl *RD) { 11090 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); 11091 if (!SD) 11092 return; 11093 11094 auto From = SD->getSpecializedTemplateOrPartial(); 11095 if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) 11096 checkTemplate(TD); 11097 else if (auto *TD = 11098 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 11099 if (!S.hasVisibleDeclaration(TD)) 11100 diagnose(TD, true); 11101 checkTemplate(TD); 11102 } 11103 } 11104 11105 void checkInstantiated(EnumDecl *FD) {} 11106 11107 template<typename TemplDecl> 11108 void checkTemplate(TemplDecl *TD) { 11109 if (TD->isMemberSpecialization()) { 11110 if (!S.hasVisibleMemberSpecialization(TD, &Modules)) 11111 diagnose(TD->getMostRecentDecl(), false); 11112 } 11113 } 11114 }; 11115 } // end anonymous namespace 11116 11117 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { 11118 if (!getLangOpts().Modules) 11119 return; 11120 11121 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec); 11122 } 11123