1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ overloading.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/Overload.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/TypeOrdering.h"
21 #include "clang/Basic/Diagnostic.h"
22 #include "clang/Basic/DiagnosticOptions.h"
23 #include "clang/Basic/PartialDiagnostic.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "clang/Sema/Template.h"
29 #include "clang/Sema/TemplateDeduction.h"
30 #include "llvm/ADT/DenseSet.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include <algorithm>
36 #include <cstdlib>
37 
38 using namespace clang;
39 using namespace sema;
40 
41 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42   return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
43     return P->hasAttr<PassObjectSizeAttr>();
44   });
45 }
46 
47 /// A convenience routine for creating a decayed reference to a function.
48 static ExprResult
49 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
50                       const Expr *Base, bool HadMultipleCandidates,
51                       SourceLocation Loc = SourceLocation(),
52                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
53   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
54     return ExprError();
55   // If FoundDecl is different from Fn (such as if one is a template
56   // and the other a specialization), make sure DiagnoseUseOfDecl is
57   // called on both.
58   // FIXME: This would be more comprehensively addressed by modifying
59   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
60   // being used.
61   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
62     return ExprError();
63   if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
64     S.ResolveExceptionSpec(Loc, FPT);
65   DeclRefExpr *DRE = new (S.Context)
66       DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
67   if (HadMultipleCandidates)
68     DRE->setHadMultipleCandidates(true);
69 
70   S.MarkDeclRefReferenced(DRE, Base);
71   return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
72                              CK_FunctionToPointerDecay);
73 }
74 
75 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
76                                  bool InOverloadResolution,
77                                  StandardConversionSequence &SCS,
78                                  bool CStyle,
79                                  bool AllowObjCWritebackConversion);
80 
81 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
82                                                  QualType &ToType,
83                                                  bool InOverloadResolution,
84                                                  StandardConversionSequence &SCS,
85                                                  bool CStyle);
86 static OverloadingResult
87 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
88                         UserDefinedConversionSequence& User,
89                         OverloadCandidateSet& Conversions,
90                         bool AllowExplicit,
91                         bool AllowObjCConversionOnExplicit);
92 
93 
94 static ImplicitConversionSequence::CompareKind
95 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
96                                    const StandardConversionSequence& SCS1,
97                                    const StandardConversionSequence& SCS2);
98 
99 static ImplicitConversionSequence::CompareKind
100 CompareQualificationConversions(Sema &S,
101                                 const StandardConversionSequence& SCS1,
102                                 const StandardConversionSequence& SCS2);
103 
104 static ImplicitConversionSequence::CompareKind
105 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
106                                 const StandardConversionSequence& SCS1,
107                                 const StandardConversionSequence& SCS2);
108 
109 /// GetConversionRank - Retrieve the implicit conversion rank
110 /// corresponding to the given implicit conversion kind.
111 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
112   static const ImplicitConversionRank
113     Rank[(int)ICK_Num_Conversion_Kinds] = {
114     ICR_Exact_Match,
115     ICR_Exact_Match,
116     ICR_Exact_Match,
117     ICR_Exact_Match,
118     ICR_Exact_Match,
119     ICR_Exact_Match,
120     ICR_Promotion,
121     ICR_Promotion,
122     ICR_Promotion,
123     ICR_Conversion,
124     ICR_Conversion,
125     ICR_Conversion,
126     ICR_Conversion,
127     ICR_Conversion,
128     ICR_Conversion,
129     ICR_Conversion,
130     ICR_Conversion,
131     ICR_Conversion,
132     ICR_Conversion,
133     ICR_OCL_Scalar_Widening,
134     ICR_Complex_Real_Conversion,
135     ICR_Conversion,
136     ICR_Conversion,
137     ICR_Writeback_Conversion,
138     ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
139                      // it was omitted by the patch that added
140                      // ICK_Zero_Event_Conversion
141     ICR_C_Conversion,
142     ICR_C_Conversion_Extension
143   };
144   return Rank[(int)Kind];
145 }
146 
147 /// GetImplicitConversionName - Return the name of this kind of
148 /// implicit conversion.
149 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
150   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
151     "No conversion",
152     "Lvalue-to-rvalue",
153     "Array-to-pointer",
154     "Function-to-pointer",
155     "Function pointer conversion",
156     "Qualification",
157     "Integral promotion",
158     "Floating point promotion",
159     "Complex promotion",
160     "Integral conversion",
161     "Floating conversion",
162     "Complex conversion",
163     "Floating-integral conversion",
164     "Pointer conversion",
165     "Pointer-to-member conversion",
166     "Boolean conversion",
167     "Compatible-types conversion",
168     "Derived-to-base conversion",
169     "Vector conversion",
170     "Vector splat",
171     "Complex-real conversion",
172     "Block Pointer conversion",
173     "Transparent Union Conversion",
174     "Writeback conversion",
175     "OpenCL Zero Event Conversion",
176     "C specific type conversion",
177     "Incompatible pointer conversion"
178   };
179   return Name[Kind];
180 }
181 
182 /// StandardConversionSequence - Set the standard conversion
183 /// sequence to the identity conversion.
184 void StandardConversionSequence::setAsIdentityConversion() {
185   First = ICK_Identity;
186   Second = ICK_Identity;
187   Third = ICK_Identity;
188   DeprecatedStringLiteralToCharPtr = false;
189   QualificationIncludesObjCLifetime = false;
190   ReferenceBinding = false;
191   DirectBinding = false;
192   IsLvalueReference = true;
193   BindsToFunctionLvalue = false;
194   BindsToRvalue = false;
195   BindsImplicitObjectArgumentWithoutRefQualifier = false;
196   ObjCLifetimeConversionBinding = false;
197   CopyConstructor = nullptr;
198 }
199 
200 /// getRank - Retrieve the rank of this standard conversion sequence
201 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
202 /// implicit conversions.
203 ImplicitConversionRank StandardConversionSequence::getRank() const {
204   ImplicitConversionRank Rank = ICR_Exact_Match;
205   if  (GetConversionRank(First) > Rank)
206     Rank = GetConversionRank(First);
207   if  (GetConversionRank(Second) > Rank)
208     Rank = GetConversionRank(Second);
209   if  (GetConversionRank(Third) > Rank)
210     Rank = GetConversionRank(Third);
211   return Rank;
212 }
213 
214 /// isPointerConversionToBool - Determines whether this conversion is
215 /// a conversion of a pointer or pointer-to-member to bool. This is
216 /// used as part of the ranking of standard conversion sequences
217 /// (C++ 13.3.3.2p4).
218 bool StandardConversionSequence::isPointerConversionToBool() const {
219   // Note that FromType has not necessarily been transformed by the
220   // array-to-pointer or function-to-pointer implicit conversions, so
221   // check for their presence as well as checking whether FromType is
222   // a pointer.
223   if (getToType(1)->isBooleanType() &&
224       (getFromType()->isPointerType() ||
225        getFromType()->isMemberPointerType() ||
226        getFromType()->isObjCObjectPointerType() ||
227        getFromType()->isBlockPointerType() ||
228        getFromType()->isNullPtrType() ||
229        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
230     return true;
231 
232   return false;
233 }
234 
235 /// isPointerConversionToVoidPointer - Determines whether this
236 /// conversion is a conversion of a pointer to a void pointer. This is
237 /// used as part of the ranking of standard conversion sequences (C++
238 /// 13.3.3.2p4).
239 bool
240 StandardConversionSequence::
241 isPointerConversionToVoidPointer(ASTContext& Context) const {
242   QualType FromType = getFromType();
243   QualType ToType = getToType(1);
244 
245   // Note that FromType has not necessarily been transformed by the
246   // array-to-pointer implicit conversion, so check for its presence
247   // and redo the conversion to get a pointer.
248   if (First == ICK_Array_To_Pointer)
249     FromType = Context.getArrayDecayedType(FromType);
250 
251   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
252     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
253       return ToPtrType->getPointeeType()->isVoidType();
254 
255   return false;
256 }
257 
258 /// Skip any implicit casts which could be either part of a narrowing conversion
259 /// or after one in an implicit conversion.
260 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
261   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
262     switch (ICE->getCastKind()) {
263     case CK_NoOp:
264     case CK_IntegralCast:
265     case CK_IntegralToBoolean:
266     case CK_IntegralToFloating:
267     case CK_BooleanToSignedIntegral:
268     case CK_FloatingToIntegral:
269     case CK_FloatingToBoolean:
270     case CK_FloatingCast:
271       Converted = ICE->getSubExpr();
272       continue;
273 
274     default:
275       return Converted;
276     }
277   }
278 
279   return Converted;
280 }
281 
282 /// Check if this standard conversion sequence represents a narrowing
283 /// conversion, according to C++11 [dcl.init.list]p7.
284 ///
285 /// \param Ctx  The AST context.
286 /// \param Converted  The result of applying this standard conversion sequence.
287 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
288 ///        value of the expression prior to the narrowing conversion.
289 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
290 ///        type of the expression prior to the narrowing conversion.
291 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
292 ///        from floating point types to integral types should be ignored.
293 NarrowingKind StandardConversionSequence::getNarrowingKind(
294     ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
295     QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
296   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
297 
298   // C++11 [dcl.init.list]p7:
299   //   A narrowing conversion is an implicit conversion ...
300   QualType FromType = getToType(0);
301   QualType ToType = getToType(1);
302 
303   // A conversion to an enumeration type is narrowing if the conversion to
304   // the underlying type is narrowing. This only arises for expressions of
305   // the form 'Enum{init}'.
306   if (auto *ET = ToType->getAs<EnumType>())
307     ToType = ET->getDecl()->getIntegerType();
308 
309   switch (Second) {
310   // 'bool' is an integral type; dispatch to the right place to handle it.
311   case ICK_Boolean_Conversion:
312     if (FromType->isRealFloatingType())
313       goto FloatingIntegralConversion;
314     if (FromType->isIntegralOrUnscopedEnumerationType())
315       goto IntegralConversion;
316     // Boolean conversions can be from pointers and pointers to members
317     // [conv.bool], and those aren't considered narrowing conversions.
318     return NK_Not_Narrowing;
319 
320   // -- from a floating-point type to an integer type, or
321   //
322   // -- from an integer type or unscoped enumeration type to a floating-point
323   //    type, except where the source is a constant expression and the actual
324   //    value after conversion will fit into the target type and will produce
325   //    the original value when converted back to the original type, or
326   case ICK_Floating_Integral:
327   FloatingIntegralConversion:
328     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
329       return NK_Type_Narrowing;
330     } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
331                ToType->isRealFloatingType()) {
332       if (IgnoreFloatToIntegralConversion)
333         return NK_Not_Narrowing;
334       llvm::APSInt IntConstantValue;
335       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
336       assert(Initializer && "Unknown conversion expression");
337 
338       // If it's value-dependent, we can't tell whether it's narrowing.
339       if (Initializer->isValueDependent())
340         return NK_Dependent_Narrowing;
341 
342       if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
343         // Convert the integer to the floating type.
344         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
345         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
346                                 llvm::APFloat::rmNearestTiesToEven);
347         // And back.
348         llvm::APSInt ConvertedValue = IntConstantValue;
349         bool ignored;
350         Result.convertToInteger(ConvertedValue,
351                                 llvm::APFloat::rmTowardZero, &ignored);
352         // If the resulting value is different, this was a narrowing conversion.
353         if (IntConstantValue != ConvertedValue) {
354           ConstantValue = APValue(IntConstantValue);
355           ConstantType = Initializer->getType();
356           return NK_Constant_Narrowing;
357         }
358       } else {
359         // Variables are always narrowings.
360         return NK_Variable_Narrowing;
361       }
362     }
363     return NK_Not_Narrowing;
364 
365   // -- from long double to double or float, or from double to float, except
366   //    where the source is a constant expression and the actual value after
367   //    conversion is within the range of values that can be represented (even
368   //    if it cannot be represented exactly), or
369   case ICK_Floating_Conversion:
370     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
371         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
372       // FromType is larger than ToType.
373       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
374 
375       // If it's value-dependent, we can't tell whether it's narrowing.
376       if (Initializer->isValueDependent())
377         return NK_Dependent_Narrowing;
378 
379       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
380         // Constant!
381         assert(ConstantValue.isFloat());
382         llvm::APFloat FloatVal = ConstantValue.getFloat();
383         // Convert the source value into the target type.
384         bool ignored;
385         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
386           Ctx.getFloatTypeSemantics(ToType),
387           llvm::APFloat::rmNearestTiesToEven, &ignored);
388         // If there was no overflow, the source value is within the range of
389         // values that can be represented.
390         if (ConvertStatus & llvm::APFloat::opOverflow) {
391           ConstantType = Initializer->getType();
392           return NK_Constant_Narrowing;
393         }
394       } else {
395         return NK_Variable_Narrowing;
396       }
397     }
398     return NK_Not_Narrowing;
399 
400   // -- from an integer type or unscoped enumeration type to an integer type
401   //    that cannot represent all the values of the original type, except where
402   //    the source is a constant expression and the actual value after
403   //    conversion will fit into the target type and will produce the original
404   //    value when converted back to the original type.
405   case ICK_Integral_Conversion:
406   IntegralConversion: {
407     assert(FromType->isIntegralOrUnscopedEnumerationType());
408     assert(ToType->isIntegralOrUnscopedEnumerationType());
409     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
410     const unsigned FromWidth = Ctx.getIntWidth(FromType);
411     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
412     const unsigned ToWidth = Ctx.getIntWidth(ToType);
413 
414     if (FromWidth > ToWidth ||
415         (FromWidth == ToWidth && FromSigned != ToSigned) ||
416         (FromSigned && !ToSigned)) {
417       // Not all values of FromType can be represented in ToType.
418       llvm::APSInt InitializerValue;
419       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
420 
421       // If it's value-dependent, we can't tell whether it's narrowing.
422       if (Initializer->isValueDependent())
423         return NK_Dependent_Narrowing;
424 
425       if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
426         // Such conversions on variables are always narrowing.
427         return NK_Variable_Narrowing;
428       }
429       bool Narrowing = false;
430       if (FromWidth < ToWidth) {
431         // Negative -> unsigned is narrowing. Otherwise, more bits is never
432         // narrowing.
433         if (InitializerValue.isSigned() && InitializerValue.isNegative())
434           Narrowing = true;
435       } else {
436         // Add a bit to the InitializerValue so we don't have to worry about
437         // signed vs. unsigned comparisons.
438         InitializerValue = InitializerValue.extend(
439           InitializerValue.getBitWidth() + 1);
440         // Convert the initializer to and from the target width and signed-ness.
441         llvm::APSInt ConvertedValue = InitializerValue;
442         ConvertedValue = ConvertedValue.trunc(ToWidth);
443         ConvertedValue.setIsSigned(ToSigned);
444         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
445         ConvertedValue.setIsSigned(InitializerValue.isSigned());
446         // If the result is different, this was a narrowing conversion.
447         if (ConvertedValue != InitializerValue)
448           Narrowing = true;
449       }
450       if (Narrowing) {
451         ConstantType = Initializer->getType();
452         ConstantValue = APValue(InitializerValue);
453         return NK_Constant_Narrowing;
454       }
455     }
456     return NK_Not_Narrowing;
457   }
458 
459   default:
460     // Other kinds of conversions are not narrowings.
461     return NK_Not_Narrowing;
462   }
463 }
464 
465 /// dump - Print this standard conversion sequence to standard
466 /// error. Useful for debugging overloading issues.
467 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
468   raw_ostream &OS = llvm::errs();
469   bool PrintedSomething = false;
470   if (First != ICK_Identity) {
471     OS << GetImplicitConversionName(First);
472     PrintedSomething = true;
473   }
474 
475   if (Second != ICK_Identity) {
476     if (PrintedSomething) {
477       OS << " -> ";
478     }
479     OS << GetImplicitConversionName(Second);
480 
481     if (CopyConstructor) {
482       OS << " (by copy constructor)";
483     } else if (DirectBinding) {
484       OS << " (direct reference binding)";
485     } else if (ReferenceBinding) {
486       OS << " (reference binding)";
487     }
488     PrintedSomething = true;
489   }
490 
491   if (Third != ICK_Identity) {
492     if (PrintedSomething) {
493       OS << " -> ";
494     }
495     OS << GetImplicitConversionName(Third);
496     PrintedSomething = true;
497   }
498 
499   if (!PrintedSomething) {
500     OS << "No conversions required";
501   }
502 }
503 
504 /// dump - Print this user-defined conversion sequence to standard
505 /// error. Useful for debugging overloading issues.
506 void UserDefinedConversionSequence::dump() const {
507   raw_ostream &OS = llvm::errs();
508   if (Before.First || Before.Second || Before.Third) {
509     Before.dump();
510     OS << " -> ";
511   }
512   if (ConversionFunction)
513     OS << '\'' << *ConversionFunction << '\'';
514   else
515     OS << "aggregate initialization";
516   if (After.First || After.Second || After.Third) {
517     OS << " -> ";
518     After.dump();
519   }
520 }
521 
522 /// dump - Print this implicit conversion sequence to standard
523 /// error. Useful for debugging overloading issues.
524 void ImplicitConversionSequence::dump() const {
525   raw_ostream &OS = llvm::errs();
526   if (isStdInitializerListElement())
527     OS << "Worst std::initializer_list element conversion: ";
528   switch (ConversionKind) {
529   case StandardConversion:
530     OS << "Standard conversion: ";
531     Standard.dump();
532     break;
533   case UserDefinedConversion:
534     OS << "User-defined conversion: ";
535     UserDefined.dump();
536     break;
537   case EllipsisConversion:
538     OS << "Ellipsis conversion";
539     break;
540   case AmbiguousConversion:
541     OS << "Ambiguous conversion";
542     break;
543   case BadConversion:
544     OS << "Bad conversion";
545     break;
546   }
547 
548   OS << "\n";
549 }
550 
551 void AmbiguousConversionSequence::construct() {
552   new (&conversions()) ConversionSet();
553 }
554 
555 void AmbiguousConversionSequence::destruct() {
556   conversions().~ConversionSet();
557 }
558 
559 void
560 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
561   FromTypePtr = O.FromTypePtr;
562   ToTypePtr = O.ToTypePtr;
563   new (&conversions()) ConversionSet(O.conversions());
564 }
565 
566 namespace {
567   // Structure used by DeductionFailureInfo to store
568   // template argument information.
569   struct DFIArguments {
570     TemplateArgument FirstArg;
571     TemplateArgument SecondArg;
572   };
573   // Structure used by DeductionFailureInfo to store
574   // template parameter and template argument information.
575   struct DFIParamWithArguments : DFIArguments {
576     TemplateParameter Param;
577   };
578   // Structure used by DeductionFailureInfo to store template argument
579   // information and the index of the problematic call argument.
580   struct DFIDeducedMismatchArgs : DFIArguments {
581     TemplateArgumentList *TemplateArgs;
582     unsigned CallArgIndex;
583   };
584 }
585 
586 /// Convert from Sema's representation of template deduction information
587 /// to the form used in overload-candidate information.
588 DeductionFailureInfo
589 clang::MakeDeductionFailureInfo(ASTContext &Context,
590                                 Sema::TemplateDeductionResult TDK,
591                                 TemplateDeductionInfo &Info) {
592   DeductionFailureInfo Result;
593   Result.Result = static_cast<unsigned>(TDK);
594   Result.HasDiagnostic = false;
595   switch (TDK) {
596   case Sema::TDK_Invalid:
597   case Sema::TDK_InstantiationDepth:
598   case Sema::TDK_TooManyArguments:
599   case Sema::TDK_TooFewArguments:
600   case Sema::TDK_MiscellaneousDeductionFailure:
601   case Sema::TDK_CUDATargetMismatch:
602     Result.Data = nullptr;
603     break;
604 
605   case Sema::TDK_Incomplete:
606   case Sema::TDK_InvalidExplicitArguments:
607     Result.Data = Info.Param.getOpaqueValue();
608     break;
609 
610   case Sema::TDK_DeducedMismatch:
611   case Sema::TDK_DeducedMismatchNested: {
612     // FIXME: Should allocate from normal heap so that we can free this later.
613     auto *Saved = new (Context) DFIDeducedMismatchArgs;
614     Saved->FirstArg = Info.FirstArg;
615     Saved->SecondArg = Info.SecondArg;
616     Saved->TemplateArgs = Info.take();
617     Saved->CallArgIndex = Info.CallArgIndex;
618     Result.Data = Saved;
619     break;
620   }
621 
622   case Sema::TDK_NonDeducedMismatch: {
623     // FIXME: Should allocate from normal heap so that we can free this later.
624     DFIArguments *Saved = new (Context) DFIArguments;
625     Saved->FirstArg = Info.FirstArg;
626     Saved->SecondArg = Info.SecondArg;
627     Result.Data = Saved;
628     break;
629   }
630 
631   case Sema::TDK_IncompletePack:
632     // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
633   case Sema::TDK_Inconsistent:
634   case Sema::TDK_Underqualified: {
635     // FIXME: Should allocate from normal heap so that we can free this later.
636     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
637     Saved->Param = Info.Param;
638     Saved->FirstArg = Info.FirstArg;
639     Saved->SecondArg = Info.SecondArg;
640     Result.Data = Saved;
641     break;
642   }
643 
644   case Sema::TDK_SubstitutionFailure:
645     Result.Data = Info.take();
646     if (Info.hasSFINAEDiagnostic()) {
647       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
648           SourceLocation(), PartialDiagnostic::NullDiagnostic());
649       Info.takeSFINAEDiagnostic(*Diag);
650       Result.HasDiagnostic = true;
651     }
652     break;
653 
654   case Sema::TDK_Success:
655   case Sema::TDK_NonDependentConversionFailure:
656     llvm_unreachable("not a deduction failure");
657   }
658 
659   return Result;
660 }
661 
662 void DeductionFailureInfo::Destroy() {
663   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
664   case Sema::TDK_Success:
665   case Sema::TDK_Invalid:
666   case Sema::TDK_InstantiationDepth:
667   case Sema::TDK_Incomplete:
668   case Sema::TDK_TooManyArguments:
669   case Sema::TDK_TooFewArguments:
670   case Sema::TDK_InvalidExplicitArguments:
671   case Sema::TDK_CUDATargetMismatch:
672   case Sema::TDK_NonDependentConversionFailure:
673     break;
674 
675   case Sema::TDK_IncompletePack:
676   case Sema::TDK_Inconsistent:
677   case Sema::TDK_Underqualified:
678   case Sema::TDK_DeducedMismatch:
679   case Sema::TDK_DeducedMismatchNested:
680   case Sema::TDK_NonDeducedMismatch:
681     // FIXME: Destroy the data?
682     Data = nullptr;
683     break;
684 
685   case Sema::TDK_SubstitutionFailure:
686     // FIXME: Destroy the template argument list?
687     Data = nullptr;
688     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
689       Diag->~PartialDiagnosticAt();
690       HasDiagnostic = false;
691     }
692     break;
693 
694   // Unhandled
695   case Sema::TDK_MiscellaneousDeductionFailure:
696     break;
697   }
698 }
699 
700 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
701   if (HasDiagnostic)
702     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
703   return nullptr;
704 }
705 
706 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
707   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
708   case Sema::TDK_Success:
709   case Sema::TDK_Invalid:
710   case Sema::TDK_InstantiationDepth:
711   case Sema::TDK_TooManyArguments:
712   case Sema::TDK_TooFewArguments:
713   case Sema::TDK_SubstitutionFailure:
714   case Sema::TDK_DeducedMismatch:
715   case Sema::TDK_DeducedMismatchNested:
716   case Sema::TDK_NonDeducedMismatch:
717   case Sema::TDK_CUDATargetMismatch:
718   case Sema::TDK_NonDependentConversionFailure:
719     return TemplateParameter();
720 
721   case Sema::TDK_Incomplete:
722   case Sema::TDK_InvalidExplicitArguments:
723     return TemplateParameter::getFromOpaqueValue(Data);
724 
725   case Sema::TDK_IncompletePack:
726   case Sema::TDK_Inconsistent:
727   case Sema::TDK_Underqualified:
728     return static_cast<DFIParamWithArguments*>(Data)->Param;
729 
730   // Unhandled
731   case Sema::TDK_MiscellaneousDeductionFailure:
732     break;
733   }
734 
735   return TemplateParameter();
736 }
737 
738 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
739   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
740   case Sema::TDK_Success:
741   case Sema::TDK_Invalid:
742   case Sema::TDK_InstantiationDepth:
743   case Sema::TDK_TooManyArguments:
744   case Sema::TDK_TooFewArguments:
745   case Sema::TDK_Incomplete:
746   case Sema::TDK_IncompletePack:
747   case Sema::TDK_InvalidExplicitArguments:
748   case Sema::TDK_Inconsistent:
749   case Sema::TDK_Underqualified:
750   case Sema::TDK_NonDeducedMismatch:
751   case Sema::TDK_CUDATargetMismatch:
752   case Sema::TDK_NonDependentConversionFailure:
753     return nullptr;
754 
755   case Sema::TDK_DeducedMismatch:
756   case Sema::TDK_DeducedMismatchNested:
757     return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
758 
759   case Sema::TDK_SubstitutionFailure:
760     return static_cast<TemplateArgumentList*>(Data);
761 
762   // Unhandled
763   case Sema::TDK_MiscellaneousDeductionFailure:
764     break;
765   }
766 
767   return nullptr;
768 }
769 
770 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
771   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
772   case Sema::TDK_Success:
773   case Sema::TDK_Invalid:
774   case Sema::TDK_InstantiationDepth:
775   case Sema::TDK_Incomplete:
776   case Sema::TDK_TooManyArguments:
777   case Sema::TDK_TooFewArguments:
778   case Sema::TDK_InvalidExplicitArguments:
779   case Sema::TDK_SubstitutionFailure:
780   case Sema::TDK_CUDATargetMismatch:
781   case Sema::TDK_NonDependentConversionFailure:
782     return nullptr;
783 
784   case Sema::TDK_IncompletePack:
785   case Sema::TDK_Inconsistent:
786   case Sema::TDK_Underqualified:
787   case Sema::TDK_DeducedMismatch:
788   case Sema::TDK_DeducedMismatchNested:
789   case Sema::TDK_NonDeducedMismatch:
790     return &static_cast<DFIArguments*>(Data)->FirstArg;
791 
792   // Unhandled
793   case Sema::TDK_MiscellaneousDeductionFailure:
794     break;
795   }
796 
797   return nullptr;
798 }
799 
800 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
801   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
802   case Sema::TDK_Success:
803   case Sema::TDK_Invalid:
804   case Sema::TDK_InstantiationDepth:
805   case Sema::TDK_Incomplete:
806   case Sema::TDK_IncompletePack:
807   case Sema::TDK_TooManyArguments:
808   case Sema::TDK_TooFewArguments:
809   case Sema::TDK_InvalidExplicitArguments:
810   case Sema::TDK_SubstitutionFailure:
811   case Sema::TDK_CUDATargetMismatch:
812   case Sema::TDK_NonDependentConversionFailure:
813     return nullptr;
814 
815   case Sema::TDK_Inconsistent:
816   case Sema::TDK_Underqualified:
817   case Sema::TDK_DeducedMismatch:
818   case Sema::TDK_DeducedMismatchNested:
819   case Sema::TDK_NonDeducedMismatch:
820     return &static_cast<DFIArguments*>(Data)->SecondArg;
821 
822   // Unhandled
823   case Sema::TDK_MiscellaneousDeductionFailure:
824     break;
825   }
826 
827   return nullptr;
828 }
829 
830 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
831   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
832   case Sema::TDK_DeducedMismatch:
833   case Sema::TDK_DeducedMismatchNested:
834     return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
835 
836   default:
837     return llvm::None;
838   }
839 }
840 
841 void OverloadCandidateSet::destroyCandidates() {
842   for (iterator i = begin(), e = end(); i != e; ++i) {
843     for (auto &C : i->Conversions)
844       C.~ImplicitConversionSequence();
845     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
846       i->DeductionFailure.Destroy();
847   }
848 }
849 
850 void OverloadCandidateSet::clear(CandidateSetKind CSK) {
851   destroyCandidates();
852   SlabAllocator.Reset();
853   NumInlineBytesUsed = 0;
854   Candidates.clear();
855   Functions.clear();
856   Kind = CSK;
857 }
858 
859 namespace {
860   class UnbridgedCastsSet {
861     struct Entry {
862       Expr **Addr;
863       Expr *Saved;
864     };
865     SmallVector<Entry, 2> Entries;
866 
867   public:
868     void save(Sema &S, Expr *&E) {
869       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
870       Entry entry = { &E, E };
871       Entries.push_back(entry);
872       E = S.stripARCUnbridgedCast(E);
873     }
874 
875     void restore() {
876       for (SmallVectorImpl<Entry>::iterator
877              i = Entries.begin(), e = Entries.end(); i != e; ++i)
878         *i->Addr = i->Saved;
879     }
880   };
881 }
882 
883 /// checkPlaceholderForOverload - Do any interesting placeholder-like
884 /// preprocessing on the given expression.
885 ///
886 /// \param unbridgedCasts a collection to which to add unbridged casts;
887 ///   without this, they will be immediately diagnosed as errors
888 ///
889 /// Return true on unrecoverable error.
890 static bool
891 checkPlaceholderForOverload(Sema &S, Expr *&E,
892                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
893   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
894     // We can't handle overloaded expressions here because overload
895     // resolution might reasonably tweak them.
896     if (placeholder->getKind() == BuiltinType::Overload) return false;
897 
898     // If the context potentially accepts unbridged ARC casts, strip
899     // the unbridged cast and add it to the collection for later restoration.
900     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
901         unbridgedCasts) {
902       unbridgedCasts->save(S, E);
903       return false;
904     }
905 
906     // Go ahead and check everything else.
907     ExprResult result = S.CheckPlaceholderExpr(E);
908     if (result.isInvalid())
909       return true;
910 
911     E = result.get();
912     return false;
913   }
914 
915   // Nothing to do.
916   return false;
917 }
918 
919 /// checkArgPlaceholdersForOverload - Check a set of call operands for
920 /// placeholders.
921 static bool checkArgPlaceholdersForOverload(Sema &S,
922                                             MultiExprArg Args,
923                                             UnbridgedCastsSet &unbridged) {
924   for (unsigned i = 0, e = Args.size(); i != e; ++i)
925     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
926       return true;
927 
928   return false;
929 }
930 
931 /// Determine whether the given New declaration is an overload of the
932 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
933 /// New and Old cannot be overloaded, e.g., if New has the same signature as
934 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't
935 /// functions (or function templates) at all. When it does return Ovl_Match or
936 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
937 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
938 /// declaration.
939 ///
940 /// Example: Given the following input:
941 ///
942 ///   void f(int, float); // #1
943 ///   void f(int, int); // #2
944 ///   int f(int, int); // #3
945 ///
946 /// When we process #1, there is no previous declaration of "f", so IsOverload
947 /// will not be used.
948 ///
949 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing
950 /// the parameter types, we see that #1 and #2 are overloaded (since they have
951 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
952 /// unchanged.
953 ///
954 /// When we process #3, Old is an overload set containing #1 and #2. We compare
955 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
956 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
957 /// functions are not part of the signature), IsOverload returns Ovl_Match and
958 /// MatchedDecl will be set to point to the FunctionDecl for #2.
959 ///
960 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
961 /// by a using declaration. The rules for whether to hide shadow declarations
962 /// ignore some properties which otherwise figure into a function template's
963 /// signature.
964 Sema::OverloadKind
965 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
966                     NamedDecl *&Match, bool NewIsUsingDecl) {
967   for (LookupResult::iterator I = Old.begin(), E = Old.end();
968          I != E; ++I) {
969     NamedDecl *OldD = *I;
970 
971     bool OldIsUsingDecl = false;
972     if (isa<UsingShadowDecl>(OldD)) {
973       OldIsUsingDecl = true;
974 
975       // We can always introduce two using declarations into the same
976       // context, even if they have identical signatures.
977       if (NewIsUsingDecl) continue;
978 
979       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
980     }
981 
982     // A using-declaration does not conflict with another declaration
983     // if one of them is hidden.
984     if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
985       continue;
986 
987     // If either declaration was introduced by a using declaration,
988     // we'll need to use slightly different rules for matching.
989     // Essentially, these rules are the normal rules, except that
990     // function templates hide function templates with different
991     // return types or template parameter lists.
992     bool UseMemberUsingDeclRules =
993       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
994       !New->getFriendObjectKind();
995 
996     if (FunctionDecl *OldF = OldD->getAsFunction()) {
997       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
998         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
999           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1000           continue;
1001         }
1002 
1003         if (!isa<FunctionTemplateDecl>(OldD) &&
1004             !shouldLinkPossiblyHiddenDecl(*I, New))
1005           continue;
1006 
1007         Match = *I;
1008         return Ovl_Match;
1009       }
1010 
1011       // Builtins that have custom typechecking or have a reference should
1012       // not be overloadable or redeclarable.
1013       if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1014         Match = *I;
1015         return Ovl_NonFunction;
1016       }
1017     } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1018       // We can overload with these, which can show up when doing
1019       // redeclaration checks for UsingDecls.
1020       assert(Old.getLookupKind() == LookupUsingDeclName);
1021     } else if (isa<TagDecl>(OldD)) {
1022       // We can always overload with tags by hiding them.
1023     } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1024       // Optimistically assume that an unresolved using decl will
1025       // overload; if it doesn't, we'll have to diagnose during
1026       // template instantiation.
1027       //
1028       // Exception: if the scope is dependent and this is not a class
1029       // member, the using declaration can only introduce an enumerator.
1030       if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1031         Match = *I;
1032         return Ovl_NonFunction;
1033       }
1034     } else {
1035       // (C++ 13p1):
1036       //   Only function declarations can be overloaded; object and type
1037       //   declarations cannot be overloaded.
1038       Match = *I;
1039       return Ovl_NonFunction;
1040     }
1041   }
1042 
1043   // C++ [temp.friend]p1:
1044   //   For a friend function declaration that is not a template declaration:
1045   //    -- if the name of the friend is a qualified or unqualified template-id,
1046   //       [...], otherwise
1047   //    -- if the name of the friend is a qualified-id and a matching
1048   //       non-template function is found in the specified class or namespace,
1049   //       the friend declaration refers to that function, otherwise,
1050   //    -- if the name of the friend is a qualified-id and a matching function
1051   //       template is found in the specified class or namespace, the friend
1052   //       declaration refers to the deduced specialization of that function
1053   //       template, otherwise
1054   //    -- the name shall be an unqualified-id [...]
1055   // If we get here for a qualified friend declaration, we've just reached the
1056   // third bullet. If the type of the friend is dependent, skip this lookup
1057   // until instantiation.
1058   if (New->getFriendObjectKind() && New->getQualifier() &&
1059       !New->getDescribedFunctionTemplate() &&
1060       !New->getDependentSpecializationInfo() &&
1061       !New->getType()->isDependentType()) {
1062     LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1063     TemplateSpecResult.addAllDecls(Old);
1064     if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1065                                             /*QualifiedFriend*/true)) {
1066       New->setInvalidDecl();
1067       return Ovl_Overload;
1068     }
1069 
1070     Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1071     return Ovl_Match;
1072   }
1073 
1074   return Ovl_Overload;
1075 }
1076 
1077 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1078                       bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
1079   // C++ [basic.start.main]p2: This function shall not be overloaded.
1080   if (New->isMain())
1081     return false;
1082 
1083   // MSVCRT user defined entry points cannot be overloaded.
1084   if (New->isMSVCRTEntryPoint())
1085     return false;
1086 
1087   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1088   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1089 
1090   // C++ [temp.fct]p2:
1091   //   A function template can be overloaded with other function templates
1092   //   and with normal (non-template) functions.
1093   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1094     return true;
1095 
1096   // Is the function New an overload of the function Old?
1097   QualType OldQType = Context.getCanonicalType(Old->getType());
1098   QualType NewQType = Context.getCanonicalType(New->getType());
1099 
1100   // Compare the signatures (C++ 1.3.10) of the two functions to
1101   // determine whether they are overloads. If we find any mismatch
1102   // in the signature, they are overloads.
1103 
1104   // If either of these functions is a K&R-style function (no
1105   // prototype), then we consider them to have matching signatures.
1106   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1107       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1108     return false;
1109 
1110   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1111   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1112 
1113   // The signature of a function includes the types of its
1114   // parameters (C++ 1.3.10), which includes the presence or absence
1115   // of the ellipsis; see C++ DR 357).
1116   if (OldQType != NewQType &&
1117       (OldType->getNumParams() != NewType->getNumParams() ||
1118        OldType->isVariadic() != NewType->isVariadic() ||
1119        !FunctionParamTypesAreEqual(OldType, NewType)))
1120     return true;
1121 
1122   // C++ [temp.over.link]p4:
1123   //   The signature of a function template consists of its function
1124   //   signature, its return type and its template parameter list. The names
1125   //   of the template parameters are significant only for establishing the
1126   //   relationship between the template parameters and the rest of the
1127   //   signature.
1128   //
1129   // We check the return type and template parameter lists for function
1130   // templates first; the remaining checks follow.
1131   //
1132   // However, we don't consider either of these when deciding whether
1133   // a member introduced by a shadow declaration is hidden.
1134   if (!UseMemberUsingDeclRules && NewTemplate &&
1135       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1136                                        OldTemplate->getTemplateParameters(),
1137                                        false, TPL_TemplateMatch) ||
1138        !Context.hasSameType(Old->getDeclaredReturnType(),
1139                             New->getDeclaredReturnType())))
1140     return true;
1141 
1142   // If the function is a class member, its signature includes the
1143   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1144   //
1145   // As part of this, also check whether one of the member functions
1146   // is static, in which case they are not overloads (C++
1147   // 13.1p2). While not part of the definition of the signature,
1148   // this check is important to determine whether these functions
1149   // can be overloaded.
1150   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1151   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1152   if (OldMethod && NewMethod &&
1153       !OldMethod->isStatic() && !NewMethod->isStatic()) {
1154     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1155       if (!UseMemberUsingDeclRules &&
1156           (OldMethod->getRefQualifier() == RQ_None ||
1157            NewMethod->getRefQualifier() == RQ_None)) {
1158         // C++0x [over.load]p2:
1159         //   - Member function declarations with the same name and the same
1160         //     parameter-type-list as well as member function template
1161         //     declarations with the same name, the same parameter-type-list, and
1162         //     the same template parameter lists cannot be overloaded if any of
1163         //     them, but not all, have a ref-qualifier (8.3.5).
1164         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1165           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1166         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1167       }
1168       return true;
1169     }
1170 
1171     // We may not have applied the implicit const for a constexpr member
1172     // function yet (because we haven't yet resolved whether this is a static
1173     // or non-static member function). Add it now, on the assumption that this
1174     // is a redeclaration of OldMethod.
1175     auto OldQuals = OldMethod->getMethodQualifiers();
1176     auto NewQuals = NewMethod->getMethodQualifiers();
1177     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1178         !isa<CXXConstructorDecl>(NewMethod))
1179       NewQuals.addConst();
1180     // We do not allow overloading based off of '__restrict'.
1181     OldQuals.removeRestrict();
1182     NewQuals.removeRestrict();
1183     if (OldQuals != NewQuals)
1184       return true;
1185   }
1186 
1187   // Though pass_object_size is placed on parameters and takes an argument, we
1188   // consider it to be a function-level modifier for the sake of function
1189   // identity. Either the function has one or more parameters with
1190   // pass_object_size or it doesn't.
1191   if (functionHasPassObjectSizeParams(New) !=
1192       functionHasPassObjectSizeParams(Old))
1193     return true;
1194 
1195   // enable_if attributes are an order-sensitive part of the signature.
1196   for (specific_attr_iterator<EnableIfAttr>
1197          NewI = New->specific_attr_begin<EnableIfAttr>(),
1198          NewE = New->specific_attr_end<EnableIfAttr>(),
1199          OldI = Old->specific_attr_begin<EnableIfAttr>(),
1200          OldE = Old->specific_attr_end<EnableIfAttr>();
1201        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1202     if (NewI == NewE || OldI == OldE)
1203       return true;
1204     llvm::FoldingSetNodeID NewID, OldID;
1205     NewI->getCond()->Profile(NewID, Context, true);
1206     OldI->getCond()->Profile(OldID, Context, true);
1207     if (NewID != OldID)
1208       return true;
1209   }
1210 
1211   if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1212     // Don't allow overloading of destructors.  (In theory we could, but it
1213     // would be a giant change to clang.)
1214     if (isa<CXXDestructorDecl>(New))
1215       return false;
1216 
1217     CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1218                        OldTarget = IdentifyCUDATarget(Old);
1219     if (NewTarget == CFT_InvalidTarget)
1220       return false;
1221 
1222     assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.");
1223 
1224     // Allow overloading of functions with same signature and different CUDA
1225     // target attributes.
1226     return NewTarget != OldTarget;
1227   }
1228 
1229   // The signatures match; this is not an overload.
1230   return false;
1231 }
1232 
1233 /// Tries a user-defined conversion from From to ToType.
1234 ///
1235 /// Produces an implicit conversion sequence for when a standard conversion
1236 /// is not an option. See TryImplicitConversion for more information.
1237 static ImplicitConversionSequence
1238 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1239                          bool SuppressUserConversions,
1240                          bool AllowExplicit,
1241                          bool InOverloadResolution,
1242                          bool CStyle,
1243                          bool AllowObjCWritebackConversion,
1244                          bool AllowObjCConversionOnExplicit) {
1245   ImplicitConversionSequence ICS;
1246 
1247   if (SuppressUserConversions) {
1248     // We're not in the case above, so there is no conversion that
1249     // we can perform.
1250     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1251     return ICS;
1252   }
1253 
1254   // Attempt user-defined conversion.
1255   OverloadCandidateSet Conversions(From->getExprLoc(),
1256                                    OverloadCandidateSet::CSK_Normal);
1257   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1258                                   Conversions, AllowExplicit,
1259                                   AllowObjCConversionOnExplicit)) {
1260   case OR_Success:
1261   case OR_Deleted:
1262     ICS.setUserDefined();
1263     // C++ [over.ics.user]p4:
1264     //   A conversion of an expression of class type to the same class
1265     //   type is given Exact Match rank, and a conversion of an
1266     //   expression of class type to a base class of that type is
1267     //   given Conversion rank, in spite of the fact that a copy
1268     //   constructor (i.e., a user-defined conversion function) is
1269     //   called for those cases.
1270     if (CXXConstructorDecl *Constructor
1271           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1272       QualType FromCanon
1273         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1274       QualType ToCanon
1275         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1276       if (Constructor->isCopyConstructor() &&
1277           (FromCanon == ToCanon ||
1278            S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1279         // Turn this into a "standard" conversion sequence, so that it
1280         // gets ranked with standard conversion sequences.
1281         DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1282         ICS.setStandard();
1283         ICS.Standard.setAsIdentityConversion();
1284         ICS.Standard.setFromType(From->getType());
1285         ICS.Standard.setAllToTypes(ToType);
1286         ICS.Standard.CopyConstructor = Constructor;
1287         ICS.Standard.FoundCopyConstructor = Found;
1288         if (ToCanon != FromCanon)
1289           ICS.Standard.Second = ICK_Derived_To_Base;
1290       }
1291     }
1292     break;
1293 
1294   case OR_Ambiguous:
1295     ICS.setAmbiguous();
1296     ICS.Ambiguous.setFromType(From->getType());
1297     ICS.Ambiguous.setToType(ToType);
1298     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1299          Cand != Conversions.end(); ++Cand)
1300       if (Cand->Viable)
1301         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1302     break;
1303 
1304     // Fall through.
1305   case OR_No_Viable_Function:
1306     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1307     break;
1308   }
1309 
1310   return ICS;
1311 }
1312 
1313 /// TryImplicitConversion - Attempt to perform an implicit conversion
1314 /// from the given expression (Expr) to the given type (ToType). This
1315 /// function returns an implicit conversion sequence that can be used
1316 /// to perform the initialization. Given
1317 ///
1318 ///   void f(float f);
1319 ///   void g(int i) { f(i); }
1320 ///
1321 /// this routine would produce an implicit conversion sequence to
1322 /// describe the initialization of f from i, which will be a standard
1323 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1324 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1325 //
1326 /// Note that this routine only determines how the conversion can be
1327 /// performed; it does not actually perform the conversion. As such,
1328 /// it will not produce any diagnostics if no conversion is available,
1329 /// but will instead return an implicit conversion sequence of kind
1330 /// "BadConversion".
1331 ///
1332 /// If @p SuppressUserConversions, then user-defined conversions are
1333 /// not permitted.
1334 /// If @p AllowExplicit, then explicit user-defined conversions are
1335 /// permitted.
1336 ///
1337 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1338 /// writeback conversion, which allows __autoreleasing id* parameters to
1339 /// be initialized with __strong id* or __weak id* arguments.
1340 static ImplicitConversionSequence
1341 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1342                       bool SuppressUserConversions,
1343                       bool AllowExplicit,
1344                       bool InOverloadResolution,
1345                       bool CStyle,
1346                       bool AllowObjCWritebackConversion,
1347                       bool AllowObjCConversionOnExplicit) {
1348   ImplicitConversionSequence ICS;
1349   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1350                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1351     ICS.setStandard();
1352     return ICS;
1353   }
1354 
1355   if (!S.getLangOpts().CPlusPlus) {
1356     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1357     return ICS;
1358   }
1359 
1360   // C++ [over.ics.user]p4:
1361   //   A conversion of an expression of class type to the same class
1362   //   type is given Exact Match rank, and a conversion of an
1363   //   expression of class type to a base class of that type is
1364   //   given Conversion rank, in spite of the fact that a copy/move
1365   //   constructor (i.e., a user-defined conversion function) is
1366   //   called for those cases.
1367   QualType FromType = From->getType();
1368   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1369       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1370        S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1371     ICS.setStandard();
1372     ICS.Standard.setAsIdentityConversion();
1373     ICS.Standard.setFromType(FromType);
1374     ICS.Standard.setAllToTypes(ToType);
1375 
1376     // We don't actually check at this point whether there is a valid
1377     // copy/move constructor, since overloading just assumes that it
1378     // exists. When we actually perform initialization, we'll find the
1379     // appropriate constructor to copy the returned object, if needed.
1380     ICS.Standard.CopyConstructor = nullptr;
1381 
1382     // Determine whether this is considered a derived-to-base conversion.
1383     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1384       ICS.Standard.Second = ICK_Derived_To_Base;
1385 
1386     return ICS;
1387   }
1388 
1389   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1390                                   AllowExplicit, InOverloadResolution, CStyle,
1391                                   AllowObjCWritebackConversion,
1392                                   AllowObjCConversionOnExplicit);
1393 }
1394 
1395 ImplicitConversionSequence
1396 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1397                             bool SuppressUserConversions,
1398                             bool AllowExplicit,
1399                             bool InOverloadResolution,
1400                             bool CStyle,
1401                             bool AllowObjCWritebackConversion) {
1402   return ::TryImplicitConversion(*this, From, ToType,
1403                                  SuppressUserConversions, AllowExplicit,
1404                                  InOverloadResolution, CStyle,
1405                                  AllowObjCWritebackConversion,
1406                                  /*AllowObjCConversionOnExplicit=*/false);
1407 }
1408 
1409 /// PerformImplicitConversion - Perform an implicit conversion of the
1410 /// expression From to the type ToType. Returns the
1411 /// converted expression. Flavor is the kind of conversion we're
1412 /// performing, used in the error message. If @p AllowExplicit,
1413 /// explicit user-defined conversions are permitted.
1414 ExprResult
1415 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1416                                 AssignmentAction Action, bool AllowExplicit) {
1417   ImplicitConversionSequence ICS;
1418   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1419 }
1420 
1421 ExprResult
1422 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1423                                 AssignmentAction Action, bool AllowExplicit,
1424                                 ImplicitConversionSequence& ICS) {
1425   if (checkPlaceholderForOverload(*this, From))
1426     return ExprError();
1427 
1428   // Objective-C ARC: Determine whether we will allow the writeback conversion.
1429   bool AllowObjCWritebackConversion
1430     = getLangOpts().ObjCAutoRefCount &&
1431       (Action == AA_Passing || Action == AA_Sending);
1432   if (getLangOpts().ObjC)
1433     CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1434                                       From->getType(), From);
1435   ICS = ::TryImplicitConversion(*this, From, ToType,
1436                                 /*SuppressUserConversions=*/false,
1437                                 AllowExplicit,
1438                                 /*InOverloadResolution=*/false,
1439                                 /*CStyle=*/false,
1440                                 AllowObjCWritebackConversion,
1441                                 /*AllowObjCConversionOnExplicit=*/false);
1442   return PerformImplicitConversion(From, ToType, ICS, Action);
1443 }
1444 
1445 /// Determine whether the conversion from FromType to ToType is a valid
1446 /// conversion that strips "noexcept" or "noreturn" off the nested function
1447 /// type.
1448 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1449                                 QualType &ResultTy) {
1450   if (Context.hasSameUnqualifiedType(FromType, ToType))
1451     return false;
1452 
1453   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1454   //                    or F(t noexcept) -> F(t)
1455   // where F adds one of the following at most once:
1456   //   - a pointer
1457   //   - a member pointer
1458   //   - a block pointer
1459   // Changes here need matching changes in FindCompositePointerType.
1460   CanQualType CanTo = Context.getCanonicalType(ToType);
1461   CanQualType CanFrom = Context.getCanonicalType(FromType);
1462   Type::TypeClass TyClass = CanTo->getTypeClass();
1463   if (TyClass != CanFrom->getTypeClass()) return false;
1464   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1465     if (TyClass == Type::Pointer) {
1466       CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1467       CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1468     } else if (TyClass == Type::BlockPointer) {
1469       CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1470       CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1471     } else if (TyClass == Type::MemberPointer) {
1472       auto ToMPT = CanTo.getAs<MemberPointerType>();
1473       auto FromMPT = CanFrom.getAs<MemberPointerType>();
1474       // A function pointer conversion cannot change the class of the function.
1475       if (ToMPT->getClass() != FromMPT->getClass())
1476         return false;
1477       CanTo = ToMPT->getPointeeType();
1478       CanFrom = FromMPT->getPointeeType();
1479     } else {
1480       return false;
1481     }
1482 
1483     TyClass = CanTo->getTypeClass();
1484     if (TyClass != CanFrom->getTypeClass()) return false;
1485     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1486       return false;
1487   }
1488 
1489   const auto *FromFn = cast<FunctionType>(CanFrom);
1490   FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1491 
1492   const auto *ToFn = cast<FunctionType>(CanTo);
1493   FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1494 
1495   bool Changed = false;
1496 
1497   // Drop 'noreturn' if not present in target type.
1498   if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1499     FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1500     Changed = true;
1501   }
1502 
1503   // Drop 'noexcept' if not present in target type.
1504   if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1505     const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1506     if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1507       FromFn = cast<FunctionType>(
1508           Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1509                                                    EST_None)
1510                  .getTypePtr());
1511       Changed = true;
1512     }
1513 
1514     // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1515     // only if the ExtParameterInfo lists of the two function prototypes can be
1516     // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1517     SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1518     bool CanUseToFPT, CanUseFromFPT;
1519     if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1520                                       CanUseFromFPT, NewParamInfos) &&
1521         CanUseToFPT && !CanUseFromFPT) {
1522       FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1523       ExtInfo.ExtParameterInfos =
1524           NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1525       QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1526                                             FromFPT->getParamTypes(), ExtInfo);
1527       FromFn = QT->getAs<FunctionType>();
1528       Changed = true;
1529     }
1530   }
1531 
1532   if (!Changed)
1533     return false;
1534 
1535   assert(QualType(FromFn, 0).isCanonical());
1536   if (QualType(FromFn, 0) != CanTo) return false;
1537 
1538   ResultTy = ToType;
1539   return true;
1540 }
1541 
1542 /// Determine whether the conversion from FromType to ToType is a valid
1543 /// vector conversion.
1544 ///
1545 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1546 /// conversion.
1547 static bool IsVectorConversion(Sema &S, QualType FromType,
1548                                QualType ToType, ImplicitConversionKind &ICK) {
1549   // We need at least one of these types to be a vector type to have a vector
1550   // conversion.
1551   if (!ToType->isVectorType() && !FromType->isVectorType())
1552     return false;
1553 
1554   // Identical types require no conversions.
1555   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1556     return false;
1557 
1558   // There are no conversions between extended vector types, only identity.
1559   if (ToType->isExtVectorType()) {
1560     // There are no conversions between extended vector types other than the
1561     // identity conversion.
1562     if (FromType->isExtVectorType())
1563       return false;
1564 
1565     // Vector splat from any arithmetic type to a vector.
1566     if (FromType->isArithmeticType()) {
1567       ICK = ICK_Vector_Splat;
1568       return true;
1569     }
1570   }
1571 
1572   // We can perform the conversion between vector types in the following cases:
1573   // 1)vector types are equivalent AltiVec and GCC vector types
1574   // 2)lax vector conversions are permitted and the vector types are of the
1575   //   same size
1576   if (ToType->isVectorType() && FromType->isVectorType()) {
1577     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1578         S.isLaxVectorConversion(FromType, ToType)) {
1579       ICK = ICK_Vector_Conversion;
1580       return true;
1581     }
1582   }
1583 
1584   return false;
1585 }
1586 
1587 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1588                                 bool InOverloadResolution,
1589                                 StandardConversionSequence &SCS,
1590                                 bool CStyle);
1591 
1592 /// IsStandardConversion - Determines whether there is a standard
1593 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1594 /// expression From to the type ToType. Standard conversion sequences
1595 /// only consider non-class types; for conversions that involve class
1596 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1597 /// contain the standard conversion sequence required to perform this
1598 /// conversion and this routine will return true. Otherwise, this
1599 /// routine will return false and the value of SCS is unspecified.
1600 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1601                                  bool InOverloadResolution,
1602                                  StandardConversionSequence &SCS,
1603                                  bool CStyle,
1604                                  bool AllowObjCWritebackConversion) {
1605   QualType FromType = From->getType();
1606 
1607   // Standard conversions (C++ [conv])
1608   SCS.setAsIdentityConversion();
1609   SCS.IncompatibleObjC = false;
1610   SCS.setFromType(FromType);
1611   SCS.CopyConstructor = nullptr;
1612 
1613   // There are no standard conversions for class types in C++, so
1614   // abort early. When overloading in C, however, we do permit them.
1615   if (S.getLangOpts().CPlusPlus &&
1616       (FromType->isRecordType() || ToType->isRecordType()))
1617     return false;
1618 
1619   // The first conversion can be an lvalue-to-rvalue conversion,
1620   // array-to-pointer conversion, or function-to-pointer conversion
1621   // (C++ 4p1).
1622 
1623   if (FromType == S.Context.OverloadTy) {
1624     DeclAccessPair AccessPair;
1625     if (FunctionDecl *Fn
1626           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1627                                                  AccessPair)) {
1628       // We were able to resolve the address of the overloaded function,
1629       // so we can convert to the type of that function.
1630       FromType = Fn->getType();
1631       SCS.setFromType(FromType);
1632 
1633       // we can sometimes resolve &foo<int> regardless of ToType, so check
1634       // if the type matches (identity) or we are converting to bool
1635       if (!S.Context.hasSameUnqualifiedType(
1636                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1637         QualType resultTy;
1638         // if the function type matches except for [[noreturn]], it's ok
1639         if (!S.IsFunctionConversion(FromType,
1640               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1641           // otherwise, only a boolean conversion is standard
1642           if (!ToType->isBooleanType())
1643             return false;
1644       }
1645 
1646       // Check if the "from" expression is taking the address of an overloaded
1647       // function and recompute the FromType accordingly. Take advantage of the
1648       // fact that non-static member functions *must* have such an address-of
1649       // expression.
1650       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1651       if (Method && !Method->isStatic()) {
1652         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1653                "Non-unary operator on non-static member address");
1654         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1655                == UO_AddrOf &&
1656                "Non-address-of operator on non-static member address");
1657         const Type *ClassType
1658           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1659         FromType = S.Context.getMemberPointerType(FromType, ClassType);
1660       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1661         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1662                UO_AddrOf &&
1663                "Non-address-of operator for overloaded function expression");
1664         FromType = S.Context.getPointerType(FromType);
1665       }
1666 
1667       // Check that we've computed the proper type after overload resolution.
1668       // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1669       // be calling it from within an NDEBUG block.
1670       assert(S.Context.hasSameType(
1671         FromType,
1672         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1673     } else {
1674       return false;
1675     }
1676   }
1677   // Lvalue-to-rvalue conversion (C++11 4.1):
1678   //   A glvalue (3.10) of a non-function, non-array type T can
1679   //   be converted to a prvalue.
1680   bool argIsLValue = From->isGLValue();
1681   if (argIsLValue &&
1682       !FromType->isFunctionType() && !FromType->isArrayType() &&
1683       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1684     SCS.First = ICK_Lvalue_To_Rvalue;
1685 
1686     // C11 6.3.2.1p2:
1687     //   ... if the lvalue has atomic type, the value has the non-atomic version
1688     //   of the type of the lvalue ...
1689     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1690       FromType = Atomic->getValueType();
1691 
1692     // If T is a non-class type, the type of the rvalue is the
1693     // cv-unqualified version of T. Otherwise, the type of the rvalue
1694     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1695     // just strip the qualifiers because they don't matter.
1696     FromType = FromType.getUnqualifiedType();
1697   } else if (FromType->isArrayType()) {
1698     // Array-to-pointer conversion (C++ 4.2)
1699     SCS.First = ICK_Array_To_Pointer;
1700 
1701     // An lvalue or rvalue of type "array of N T" or "array of unknown
1702     // bound of T" can be converted to an rvalue of type "pointer to
1703     // T" (C++ 4.2p1).
1704     FromType = S.Context.getArrayDecayedType(FromType);
1705 
1706     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1707       // This conversion is deprecated in C++03 (D.4)
1708       SCS.DeprecatedStringLiteralToCharPtr = true;
1709 
1710       // For the purpose of ranking in overload resolution
1711       // (13.3.3.1.1), this conversion is considered an
1712       // array-to-pointer conversion followed by a qualification
1713       // conversion (4.4). (C++ 4.2p2)
1714       SCS.Second = ICK_Identity;
1715       SCS.Third = ICK_Qualification;
1716       SCS.QualificationIncludesObjCLifetime = false;
1717       SCS.setAllToTypes(FromType);
1718       return true;
1719     }
1720   } else if (FromType->isFunctionType() && argIsLValue) {
1721     // Function-to-pointer conversion (C++ 4.3).
1722     SCS.First = ICK_Function_To_Pointer;
1723 
1724     if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1725       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1726         if (!S.checkAddressOfFunctionIsAvailable(FD))
1727           return false;
1728 
1729     // An lvalue of function type T can be converted to an rvalue of
1730     // type "pointer to T." The result is a pointer to the
1731     // function. (C++ 4.3p1).
1732     FromType = S.Context.getPointerType(FromType);
1733   } else {
1734     // We don't require any conversions for the first step.
1735     SCS.First = ICK_Identity;
1736   }
1737   SCS.setToType(0, FromType);
1738 
1739   // The second conversion can be an integral promotion, floating
1740   // point promotion, integral conversion, floating point conversion,
1741   // floating-integral conversion, pointer conversion,
1742   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1743   // For overloading in C, this can also be a "compatible-type"
1744   // conversion.
1745   bool IncompatibleObjC = false;
1746   ImplicitConversionKind SecondICK = ICK_Identity;
1747   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1748     // The unqualified versions of the types are the same: there's no
1749     // conversion to do.
1750     SCS.Second = ICK_Identity;
1751   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1752     // Integral promotion (C++ 4.5).
1753     SCS.Second = ICK_Integral_Promotion;
1754     FromType = ToType.getUnqualifiedType();
1755   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1756     // Floating point promotion (C++ 4.6).
1757     SCS.Second = ICK_Floating_Promotion;
1758     FromType = ToType.getUnqualifiedType();
1759   } else if (S.IsComplexPromotion(FromType, ToType)) {
1760     // Complex promotion (Clang extension)
1761     SCS.Second = ICK_Complex_Promotion;
1762     FromType = ToType.getUnqualifiedType();
1763   } else if (ToType->isBooleanType() &&
1764              (FromType->isArithmeticType() ||
1765               FromType->isAnyPointerType() ||
1766               FromType->isBlockPointerType() ||
1767               FromType->isMemberPointerType() ||
1768               FromType->isNullPtrType())) {
1769     // Boolean conversions (C++ 4.12).
1770     SCS.Second = ICK_Boolean_Conversion;
1771     FromType = S.Context.BoolTy;
1772   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1773              ToType->isIntegralType(S.Context)) {
1774     // Integral conversions (C++ 4.7).
1775     SCS.Second = ICK_Integral_Conversion;
1776     FromType = ToType.getUnqualifiedType();
1777   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1778     // Complex conversions (C99 6.3.1.6)
1779     SCS.Second = ICK_Complex_Conversion;
1780     FromType = ToType.getUnqualifiedType();
1781   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1782              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1783     // Complex-real conversions (C99 6.3.1.7)
1784     SCS.Second = ICK_Complex_Real;
1785     FromType = ToType.getUnqualifiedType();
1786   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1787     // FIXME: disable conversions between long double and __float128 if
1788     // their representation is different until there is back end support
1789     // We of course allow this conversion if long double is really double.
1790     if (&S.Context.getFloatTypeSemantics(FromType) !=
1791         &S.Context.getFloatTypeSemantics(ToType)) {
1792       bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1793                                     ToType == S.Context.LongDoubleTy) ||
1794                                    (FromType == S.Context.LongDoubleTy &&
1795                                     ToType == S.Context.Float128Ty));
1796       if (Float128AndLongDouble &&
1797           (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1798            &llvm::APFloat::PPCDoubleDouble()))
1799         return false;
1800     }
1801     // Floating point conversions (C++ 4.8).
1802     SCS.Second = ICK_Floating_Conversion;
1803     FromType = ToType.getUnqualifiedType();
1804   } else if ((FromType->isRealFloatingType() &&
1805               ToType->isIntegralType(S.Context)) ||
1806              (FromType->isIntegralOrUnscopedEnumerationType() &&
1807               ToType->isRealFloatingType())) {
1808     // Floating-integral conversions (C++ 4.9).
1809     SCS.Second = ICK_Floating_Integral;
1810     FromType = ToType.getUnqualifiedType();
1811   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1812     SCS.Second = ICK_Block_Pointer_Conversion;
1813   } else if (AllowObjCWritebackConversion &&
1814              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1815     SCS.Second = ICK_Writeback_Conversion;
1816   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1817                                    FromType, IncompatibleObjC)) {
1818     // Pointer conversions (C++ 4.10).
1819     SCS.Second = ICK_Pointer_Conversion;
1820     SCS.IncompatibleObjC = IncompatibleObjC;
1821     FromType = FromType.getUnqualifiedType();
1822   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1823                                          InOverloadResolution, FromType)) {
1824     // Pointer to member conversions (4.11).
1825     SCS.Second = ICK_Pointer_Member;
1826   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1827     SCS.Second = SecondICK;
1828     FromType = ToType.getUnqualifiedType();
1829   } else if (!S.getLangOpts().CPlusPlus &&
1830              S.Context.typesAreCompatible(ToType, FromType)) {
1831     // Compatible conversions (Clang extension for C function overloading)
1832     SCS.Second = ICK_Compatible_Conversion;
1833     FromType = ToType.getUnqualifiedType();
1834   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1835                                              InOverloadResolution,
1836                                              SCS, CStyle)) {
1837     SCS.Second = ICK_TransparentUnionConversion;
1838     FromType = ToType;
1839   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1840                                  CStyle)) {
1841     // tryAtomicConversion has updated the standard conversion sequence
1842     // appropriately.
1843     return true;
1844   } else if (ToType->isEventT() &&
1845              From->isIntegerConstantExpr(S.getASTContext()) &&
1846              From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1847     SCS.Second = ICK_Zero_Event_Conversion;
1848     FromType = ToType;
1849   } else if (ToType->isQueueT() &&
1850              From->isIntegerConstantExpr(S.getASTContext()) &&
1851              (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1852     SCS.Second = ICK_Zero_Queue_Conversion;
1853     FromType = ToType;
1854   } else {
1855     // No second conversion required.
1856     SCS.Second = ICK_Identity;
1857   }
1858   SCS.setToType(1, FromType);
1859 
1860   // The third conversion can be a function pointer conversion or a
1861   // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1862   bool ObjCLifetimeConversion;
1863   if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1864     // Function pointer conversions (removing 'noexcept') including removal of
1865     // 'noreturn' (Clang extension).
1866     SCS.Third = ICK_Function_Conversion;
1867   } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1868                                          ObjCLifetimeConversion)) {
1869     SCS.Third = ICK_Qualification;
1870     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1871     FromType = ToType;
1872   } else {
1873     // No conversion required
1874     SCS.Third = ICK_Identity;
1875   }
1876 
1877   // C++ [over.best.ics]p6:
1878   //   [...] Any difference in top-level cv-qualification is
1879   //   subsumed by the initialization itself and does not constitute
1880   //   a conversion. [...]
1881   QualType CanonFrom = S.Context.getCanonicalType(FromType);
1882   QualType CanonTo = S.Context.getCanonicalType(ToType);
1883   if (CanonFrom.getLocalUnqualifiedType()
1884                                      == CanonTo.getLocalUnqualifiedType() &&
1885       CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1886     FromType = ToType;
1887     CanonFrom = CanonTo;
1888   }
1889 
1890   SCS.setToType(2, FromType);
1891 
1892   if (CanonFrom == CanonTo)
1893     return true;
1894 
1895   // If we have not converted the argument type to the parameter type,
1896   // this is a bad conversion sequence, unless we're resolving an overload in C.
1897   if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1898     return false;
1899 
1900   ExprResult ER = ExprResult{From};
1901   Sema::AssignConvertType Conv =
1902       S.CheckSingleAssignmentConstraints(ToType, ER,
1903                                          /*Diagnose=*/false,
1904                                          /*DiagnoseCFAudited=*/false,
1905                                          /*ConvertRHS=*/false);
1906   ImplicitConversionKind SecondConv;
1907   switch (Conv) {
1908   case Sema::Compatible:
1909     SecondConv = ICK_C_Only_Conversion;
1910     break;
1911   // For our purposes, discarding qualifiers is just as bad as using an
1912   // incompatible pointer. Note that an IncompatiblePointer conversion can drop
1913   // qualifiers, as well.
1914   case Sema::CompatiblePointerDiscardsQualifiers:
1915   case Sema::IncompatiblePointer:
1916   case Sema::IncompatiblePointerSign:
1917     SecondConv = ICK_Incompatible_Pointer_Conversion;
1918     break;
1919   default:
1920     return false;
1921   }
1922 
1923   // First can only be an lvalue conversion, so we pretend that this was the
1924   // second conversion. First should already be valid from earlier in the
1925   // function.
1926   SCS.Second = SecondConv;
1927   SCS.setToType(1, ToType);
1928 
1929   // Third is Identity, because Second should rank us worse than any other
1930   // conversion. This could also be ICK_Qualification, but it's simpler to just
1931   // lump everything in with the second conversion, and we don't gain anything
1932   // from making this ICK_Qualification.
1933   SCS.Third = ICK_Identity;
1934   SCS.setToType(2, ToType);
1935   return true;
1936 }
1937 
1938 static bool
1939 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1940                                      QualType &ToType,
1941                                      bool InOverloadResolution,
1942                                      StandardConversionSequence &SCS,
1943                                      bool CStyle) {
1944 
1945   const RecordType *UT = ToType->getAsUnionType();
1946   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1947     return false;
1948   // The field to initialize within the transparent union.
1949   RecordDecl *UD = UT->getDecl();
1950   // It's compatible if the expression matches any of the fields.
1951   for (const auto *it : UD->fields()) {
1952     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1953                              CStyle, /*ObjCWritebackConversion=*/false)) {
1954       ToType = it->getType();
1955       return true;
1956     }
1957   }
1958   return false;
1959 }
1960 
1961 /// IsIntegralPromotion - Determines whether the conversion from the
1962 /// expression From (whose potentially-adjusted type is FromType) to
1963 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
1964 /// sets PromotedType to the promoted type.
1965 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1966   const BuiltinType *To = ToType->getAs<BuiltinType>();
1967   // All integers are built-in.
1968   if (!To) {
1969     return false;
1970   }
1971 
1972   // An rvalue of type char, signed char, unsigned char, short int, or
1973   // unsigned short int can be converted to an rvalue of type int if
1974   // int can represent all the values of the source type; otherwise,
1975   // the source rvalue can be converted to an rvalue of type unsigned
1976   // int (C++ 4.5p1).
1977   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1978       !FromType->isEnumeralType()) {
1979     if (// We can promote any signed, promotable integer type to an int
1980         (FromType->isSignedIntegerType() ||
1981          // We can promote any unsigned integer type whose size is
1982          // less than int to an int.
1983          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
1984       return To->getKind() == BuiltinType::Int;
1985     }
1986 
1987     return To->getKind() == BuiltinType::UInt;
1988   }
1989 
1990   // C++11 [conv.prom]p3:
1991   //   A prvalue of an unscoped enumeration type whose underlying type is not
1992   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1993   //   following types that can represent all the values of the enumeration
1994   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1995   //   unsigned int, long int, unsigned long int, long long int, or unsigned
1996   //   long long int. If none of the types in that list can represent all the
1997   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1998   //   type can be converted to an rvalue a prvalue of the extended integer type
1999   //   with lowest integer conversion rank (4.13) greater than the rank of long
2000   //   long in which all the values of the enumeration can be represented. If
2001   //   there are two such extended types, the signed one is chosen.
2002   // C++11 [conv.prom]p4:
2003   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
2004   //   can be converted to a prvalue of its underlying type. Moreover, if
2005   //   integral promotion can be applied to its underlying type, a prvalue of an
2006   //   unscoped enumeration type whose underlying type is fixed can also be
2007   //   converted to a prvalue of the promoted underlying type.
2008   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2009     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2010     // provided for a scoped enumeration.
2011     if (FromEnumType->getDecl()->isScoped())
2012       return false;
2013 
2014     // We can perform an integral promotion to the underlying type of the enum,
2015     // even if that's not the promoted type. Note that the check for promoting
2016     // the underlying type is based on the type alone, and does not consider
2017     // the bitfield-ness of the actual source expression.
2018     if (FromEnumType->getDecl()->isFixed()) {
2019       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2020       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2021              IsIntegralPromotion(nullptr, Underlying, ToType);
2022     }
2023 
2024     // We have already pre-calculated the promotion type, so this is trivial.
2025     if (ToType->isIntegerType() &&
2026         isCompleteType(From->getBeginLoc(), FromType))
2027       return Context.hasSameUnqualifiedType(
2028           ToType, FromEnumType->getDecl()->getPromotionType());
2029 
2030     // C++ [conv.prom]p5:
2031     //   If the bit-field has an enumerated type, it is treated as any other
2032     //   value of that type for promotion purposes.
2033     //
2034     // ... so do not fall through into the bit-field checks below in C++.
2035     if (getLangOpts().CPlusPlus)
2036       return false;
2037   }
2038 
2039   // C++0x [conv.prom]p2:
2040   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2041   //   to an rvalue a prvalue of the first of the following types that can
2042   //   represent all the values of its underlying type: int, unsigned int,
2043   //   long int, unsigned long int, long long int, or unsigned long long int.
2044   //   If none of the types in that list can represent all the values of its
2045   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
2046   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
2047   //   type.
2048   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2049       ToType->isIntegerType()) {
2050     // Determine whether the type we're converting from is signed or
2051     // unsigned.
2052     bool FromIsSigned = FromType->isSignedIntegerType();
2053     uint64_t FromSize = Context.getTypeSize(FromType);
2054 
2055     // The types we'll try to promote to, in the appropriate
2056     // order. Try each of these types.
2057     QualType PromoteTypes[6] = {
2058       Context.IntTy, Context.UnsignedIntTy,
2059       Context.LongTy, Context.UnsignedLongTy ,
2060       Context.LongLongTy, Context.UnsignedLongLongTy
2061     };
2062     for (int Idx = 0; Idx < 6; ++Idx) {
2063       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2064       if (FromSize < ToSize ||
2065           (FromSize == ToSize &&
2066            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2067         // We found the type that we can promote to. If this is the
2068         // type we wanted, we have a promotion. Otherwise, no
2069         // promotion.
2070         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2071       }
2072     }
2073   }
2074 
2075   // An rvalue for an integral bit-field (9.6) can be converted to an
2076   // rvalue of type int if int can represent all the values of the
2077   // bit-field; otherwise, it can be converted to unsigned int if
2078   // unsigned int can represent all the values of the bit-field. If
2079   // the bit-field is larger yet, no integral promotion applies to
2080   // it. If the bit-field has an enumerated type, it is treated as any
2081   // other value of that type for promotion purposes (C++ 4.5p3).
2082   // FIXME: We should delay checking of bit-fields until we actually perform the
2083   // conversion.
2084   //
2085   // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2086   // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2087   // bit-fields and those whose underlying type is larger than int) for GCC
2088   // compatibility.
2089   if (From) {
2090     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2091       llvm::APSInt BitWidth;
2092       if (FromType->isIntegralType(Context) &&
2093           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
2094         llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
2095         ToSize = Context.getTypeSize(ToType);
2096 
2097         // Are we promoting to an int from a bitfield that fits in an int?
2098         if (BitWidth < ToSize ||
2099             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
2100           return To->getKind() == BuiltinType::Int;
2101         }
2102 
2103         // Are we promoting to an unsigned int from an unsigned bitfield
2104         // that fits into an unsigned int?
2105         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
2106           return To->getKind() == BuiltinType::UInt;
2107         }
2108 
2109         return false;
2110       }
2111     }
2112   }
2113 
2114   // An rvalue of type bool can be converted to an rvalue of type int,
2115   // with false becoming zero and true becoming one (C++ 4.5p4).
2116   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2117     return true;
2118   }
2119 
2120   return false;
2121 }
2122 
2123 /// IsFloatingPointPromotion - Determines whether the conversion from
2124 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2125 /// returns true and sets PromotedType to the promoted type.
2126 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2127   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2128     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2129       /// An rvalue of type float can be converted to an rvalue of type
2130       /// double. (C++ 4.6p1).
2131       if (FromBuiltin->getKind() == BuiltinType::Float &&
2132           ToBuiltin->getKind() == BuiltinType::Double)
2133         return true;
2134 
2135       // C99 6.3.1.5p1:
2136       //   When a float is promoted to double or long double, or a
2137       //   double is promoted to long double [...].
2138       if (!getLangOpts().CPlusPlus &&
2139           (FromBuiltin->getKind() == BuiltinType::Float ||
2140            FromBuiltin->getKind() == BuiltinType::Double) &&
2141           (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2142            ToBuiltin->getKind() == BuiltinType::Float128))
2143         return true;
2144 
2145       // Half can be promoted to float.
2146       if (!getLangOpts().NativeHalfType &&
2147            FromBuiltin->getKind() == BuiltinType::Half &&
2148           ToBuiltin->getKind() == BuiltinType::Float)
2149         return true;
2150     }
2151 
2152   return false;
2153 }
2154 
2155 /// Determine if a conversion is a complex promotion.
2156 ///
2157 /// A complex promotion is defined as a complex -> complex conversion
2158 /// where the conversion between the underlying real types is a
2159 /// floating-point or integral promotion.
2160 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2161   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2162   if (!FromComplex)
2163     return false;
2164 
2165   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2166   if (!ToComplex)
2167     return false;
2168 
2169   return IsFloatingPointPromotion(FromComplex->getElementType(),
2170                                   ToComplex->getElementType()) ||
2171     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2172                         ToComplex->getElementType());
2173 }
2174 
2175 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2176 /// the pointer type FromPtr to a pointer to type ToPointee, with the
2177 /// same type qualifiers as FromPtr has on its pointee type. ToType,
2178 /// if non-empty, will be a pointer to ToType that may or may not have
2179 /// the right set of qualifiers on its pointee.
2180 ///
2181 static QualType
2182 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2183                                    QualType ToPointee, QualType ToType,
2184                                    ASTContext &Context,
2185                                    bool StripObjCLifetime = false) {
2186   assert((FromPtr->getTypeClass() == Type::Pointer ||
2187           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2188          "Invalid similarly-qualified pointer type");
2189 
2190   /// Conversions to 'id' subsume cv-qualifier conversions.
2191   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2192     return ToType.getUnqualifiedType();
2193 
2194   QualType CanonFromPointee
2195     = Context.getCanonicalType(FromPtr->getPointeeType());
2196   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2197   Qualifiers Quals = CanonFromPointee.getQualifiers();
2198 
2199   if (StripObjCLifetime)
2200     Quals.removeObjCLifetime();
2201 
2202   // Exact qualifier match -> return the pointer type we're converting to.
2203   if (CanonToPointee.getLocalQualifiers() == Quals) {
2204     // ToType is exactly what we need. Return it.
2205     if (!ToType.isNull())
2206       return ToType.getUnqualifiedType();
2207 
2208     // Build a pointer to ToPointee. It has the right qualifiers
2209     // already.
2210     if (isa<ObjCObjectPointerType>(ToType))
2211       return Context.getObjCObjectPointerType(ToPointee);
2212     return Context.getPointerType(ToPointee);
2213   }
2214 
2215   // Just build a canonical type that has the right qualifiers.
2216   QualType QualifiedCanonToPointee
2217     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2218 
2219   if (isa<ObjCObjectPointerType>(ToType))
2220     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2221   return Context.getPointerType(QualifiedCanonToPointee);
2222 }
2223 
2224 static bool isNullPointerConstantForConversion(Expr *Expr,
2225                                                bool InOverloadResolution,
2226                                                ASTContext &Context) {
2227   // Handle value-dependent integral null pointer constants correctly.
2228   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2229   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2230       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2231     return !InOverloadResolution;
2232 
2233   return Expr->isNullPointerConstant(Context,
2234                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2235                                         : Expr::NPC_ValueDependentIsNull);
2236 }
2237 
2238 /// IsPointerConversion - Determines whether the conversion of the
2239 /// expression From, which has the (possibly adjusted) type FromType,
2240 /// can be converted to the type ToType via a pointer conversion (C++
2241 /// 4.10). If so, returns true and places the converted type (that
2242 /// might differ from ToType in its cv-qualifiers at some level) into
2243 /// ConvertedType.
2244 ///
2245 /// This routine also supports conversions to and from block pointers
2246 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2247 /// pointers to interfaces. FIXME: Once we've determined the
2248 /// appropriate overloading rules for Objective-C, we may want to
2249 /// split the Objective-C checks into a different routine; however,
2250 /// GCC seems to consider all of these conversions to be pointer
2251 /// conversions, so for now they live here. IncompatibleObjC will be
2252 /// set if the conversion is an allowed Objective-C conversion that
2253 /// should result in a warning.
2254 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2255                                bool InOverloadResolution,
2256                                QualType& ConvertedType,
2257                                bool &IncompatibleObjC) {
2258   IncompatibleObjC = false;
2259   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2260                               IncompatibleObjC))
2261     return true;
2262 
2263   // Conversion from a null pointer constant to any Objective-C pointer type.
2264   if (ToType->isObjCObjectPointerType() &&
2265       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2266     ConvertedType = ToType;
2267     return true;
2268   }
2269 
2270   // Blocks: Block pointers can be converted to void*.
2271   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2272       ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2273     ConvertedType = ToType;
2274     return true;
2275   }
2276   // Blocks: A null pointer constant can be converted to a block
2277   // pointer type.
2278   if (ToType->isBlockPointerType() &&
2279       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2280     ConvertedType = ToType;
2281     return true;
2282   }
2283 
2284   // If the left-hand-side is nullptr_t, the right side can be a null
2285   // pointer constant.
2286   if (ToType->isNullPtrType() &&
2287       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2288     ConvertedType = ToType;
2289     return true;
2290   }
2291 
2292   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2293   if (!ToTypePtr)
2294     return false;
2295 
2296   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2297   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2298     ConvertedType = ToType;
2299     return true;
2300   }
2301 
2302   // Beyond this point, both types need to be pointers
2303   // , including objective-c pointers.
2304   QualType ToPointeeType = ToTypePtr->getPointeeType();
2305   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2306       !getLangOpts().ObjCAutoRefCount) {
2307     ConvertedType = BuildSimilarlyQualifiedPointerType(
2308                                       FromType->getAs<ObjCObjectPointerType>(),
2309                                                        ToPointeeType,
2310                                                        ToType, Context);
2311     return true;
2312   }
2313   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2314   if (!FromTypePtr)
2315     return false;
2316 
2317   QualType FromPointeeType = FromTypePtr->getPointeeType();
2318 
2319   // If the unqualified pointee types are the same, this can't be a
2320   // pointer conversion, so don't do all of the work below.
2321   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2322     return false;
2323 
2324   // An rvalue of type "pointer to cv T," where T is an object type,
2325   // can be converted to an rvalue of type "pointer to cv void" (C++
2326   // 4.10p2).
2327   if (FromPointeeType->isIncompleteOrObjectType() &&
2328       ToPointeeType->isVoidType()) {
2329     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2330                                                        ToPointeeType,
2331                                                        ToType, Context,
2332                                                    /*StripObjCLifetime=*/true);
2333     return true;
2334   }
2335 
2336   // MSVC allows implicit function to void* type conversion.
2337   if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2338       ToPointeeType->isVoidType()) {
2339     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2340                                                        ToPointeeType,
2341                                                        ToType, Context);
2342     return true;
2343   }
2344 
2345   // When we're overloading in C, we allow a special kind of pointer
2346   // conversion for compatible-but-not-identical pointee types.
2347   if (!getLangOpts().CPlusPlus &&
2348       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2349     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2350                                                        ToPointeeType,
2351                                                        ToType, Context);
2352     return true;
2353   }
2354 
2355   // C++ [conv.ptr]p3:
2356   //
2357   //   An rvalue of type "pointer to cv D," where D is a class type,
2358   //   can be converted to an rvalue of type "pointer to cv B," where
2359   //   B is a base class (clause 10) of D. If B is an inaccessible
2360   //   (clause 11) or ambiguous (10.2) base class of D, a program that
2361   //   necessitates this conversion is ill-formed. The result of the
2362   //   conversion is a pointer to the base class sub-object of the
2363   //   derived class object. The null pointer value is converted to
2364   //   the null pointer value of the destination type.
2365   //
2366   // Note that we do not check for ambiguity or inaccessibility
2367   // here. That is handled by CheckPointerConversion.
2368   if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2369       ToPointeeType->isRecordType() &&
2370       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2371       IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2372     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2373                                                        ToPointeeType,
2374                                                        ToType, Context);
2375     return true;
2376   }
2377 
2378   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2379       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2380     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2381                                                        ToPointeeType,
2382                                                        ToType, Context);
2383     return true;
2384   }
2385 
2386   return false;
2387 }
2388 
2389 /// Adopt the given qualifiers for the given type.
2390 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2391   Qualifiers TQs = T.getQualifiers();
2392 
2393   // Check whether qualifiers already match.
2394   if (TQs == Qs)
2395     return T;
2396 
2397   if (Qs.compatiblyIncludes(TQs))
2398     return Context.getQualifiedType(T, Qs);
2399 
2400   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2401 }
2402 
2403 /// isObjCPointerConversion - Determines whether this is an
2404 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2405 /// with the same arguments and return values.
2406 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2407                                    QualType& ConvertedType,
2408                                    bool &IncompatibleObjC) {
2409   if (!getLangOpts().ObjC)
2410     return false;
2411 
2412   // The set of qualifiers on the type we're converting from.
2413   Qualifiers FromQualifiers = FromType.getQualifiers();
2414 
2415   // First, we handle all conversions on ObjC object pointer types.
2416   const ObjCObjectPointerType* ToObjCPtr =
2417     ToType->getAs<ObjCObjectPointerType>();
2418   const ObjCObjectPointerType *FromObjCPtr =
2419     FromType->getAs<ObjCObjectPointerType>();
2420 
2421   if (ToObjCPtr && FromObjCPtr) {
2422     // If the pointee types are the same (ignoring qualifications),
2423     // then this is not a pointer conversion.
2424     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2425                                        FromObjCPtr->getPointeeType()))
2426       return false;
2427 
2428     // Conversion between Objective-C pointers.
2429     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2430       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2431       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2432       if (getLangOpts().CPlusPlus && LHS && RHS &&
2433           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2434                                                 FromObjCPtr->getPointeeType()))
2435         return false;
2436       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2437                                                    ToObjCPtr->getPointeeType(),
2438                                                          ToType, Context);
2439       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2440       return true;
2441     }
2442 
2443     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2444       // Okay: this is some kind of implicit downcast of Objective-C
2445       // interfaces, which is permitted. However, we're going to
2446       // complain about it.
2447       IncompatibleObjC = true;
2448       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2449                                                    ToObjCPtr->getPointeeType(),
2450                                                          ToType, Context);
2451       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2452       return true;
2453     }
2454   }
2455   // Beyond this point, both types need to be C pointers or block pointers.
2456   QualType ToPointeeType;
2457   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2458     ToPointeeType = ToCPtr->getPointeeType();
2459   else if (const BlockPointerType *ToBlockPtr =
2460             ToType->getAs<BlockPointerType>()) {
2461     // Objective C++: We're able to convert from a pointer to any object
2462     // to a block pointer type.
2463     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2464       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2465       return true;
2466     }
2467     ToPointeeType = ToBlockPtr->getPointeeType();
2468   }
2469   else if (FromType->getAs<BlockPointerType>() &&
2470            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2471     // Objective C++: We're able to convert from a block pointer type to a
2472     // pointer to any object.
2473     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2474     return true;
2475   }
2476   else
2477     return false;
2478 
2479   QualType FromPointeeType;
2480   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2481     FromPointeeType = FromCPtr->getPointeeType();
2482   else if (const BlockPointerType *FromBlockPtr =
2483            FromType->getAs<BlockPointerType>())
2484     FromPointeeType = FromBlockPtr->getPointeeType();
2485   else
2486     return false;
2487 
2488   // If we have pointers to pointers, recursively check whether this
2489   // is an Objective-C conversion.
2490   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2491       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2492                               IncompatibleObjC)) {
2493     // We always complain about this conversion.
2494     IncompatibleObjC = true;
2495     ConvertedType = Context.getPointerType(ConvertedType);
2496     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2497     return true;
2498   }
2499   // Allow conversion of pointee being objective-c pointer to another one;
2500   // as in I* to id.
2501   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2502       ToPointeeType->getAs<ObjCObjectPointerType>() &&
2503       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2504                               IncompatibleObjC)) {
2505 
2506     ConvertedType = Context.getPointerType(ConvertedType);
2507     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2508     return true;
2509   }
2510 
2511   // If we have pointers to functions or blocks, check whether the only
2512   // differences in the argument and result types are in Objective-C
2513   // pointer conversions. If so, we permit the conversion (but
2514   // complain about it).
2515   const FunctionProtoType *FromFunctionType
2516     = FromPointeeType->getAs<FunctionProtoType>();
2517   const FunctionProtoType *ToFunctionType
2518     = ToPointeeType->getAs<FunctionProtoType>();
2519   if (FromFunctionType && ToFunctionType) {
2520     // If the function types are exactly the same, this isn't an
2521     // Objective-C pointer conversion.
2522     if (Context.getCanonicalType(FromPointeeType)
2523           == Context.getCanonicalType(ToPointeeType))
2524       return false;
2525 
2526     // Perform the quick checks that will tell us whether these
2527     // function types are obviously different.
2528     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2529         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2530         FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2531       return false;
2532 
2533     bool HasObjCConversion = false;
2534     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2535         Context.getCanonicalType(ToFunctionType->getReturnType())) {
2536       // Okay, the types match exactly. Nothing to do.
2537     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2538                                        ToFunctionType->getReturnType(),
2539                                        ConvertedType, IncompatibleObjC)) {
2540       // Okay, we have an Objective-C pointer conversion.
2541       HasObjCConversion = true;
2542     } else {
2543       // Function types are too different. Abort.
2544       return false;
2545     }
2546 
2547     // Check argument types.
2548     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2549          ArgIdx != NumArgs; ++ArgIdx) {
2550       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2551       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2552       if (Context.getCanonicalType(FromArgType)
2553             == Context.getCanonicalType(ToArgType)) {
2554         // Okay, the types match exactly. Nothing to do.
2555       } else if (isObjCPointerConversion(FromArgType, ToArgType,
2556                                          ConvertedType, IncompatibleObjC)) {
2557         // Okay, we have an Objective-C pointer conversion.
2558         HasObjCConversion = true;
2559       } else {
2560         // Argument types are too different. Abort.
2561         return false;
2562       }
2563     }
2564 
2565     if (HasObjCConversion) {
2566       // We had an Objective-C conversion. Allow this pointer
2567       // conversion, but complain about it.
2568       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2569       IncompatibleObjC = true;
2570       return true;
2571     }
2572   }
2573 
2574   return false;
2575 }
2576 
2577 /// Determine whether this is an Objective-C writeback conversion,
2578 /// used for parameter passing when performing automatic reference counting.
2579 ///
2580 /// \param FromType The type we're converting form.
2581 ///
2582 /// \param ToType The type we're converting to.
2583 ///
2584 /// \param ConvertedType The type that will be produced after applying
2585 /// this conversion.
2586 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2587                                      QualType &ConvertedType) {
2588   if (!getLangOpts().ObjCAutoRefCount ||
2589       Context.hasSameUnqualifiedType(FromType, ToType))
2590     return false;
2591 
2592   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2593   QualType ToPointee;
2594   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2595     ToPointee = ToPointer->getPointeeType();
2596   else
2597     return false;
2598 
2599   Qualifiers ToQuals = ToPointee.getQualifiers();
2600   if (!ToPointee->isObjCLifetimeType() ||
2601       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2602       !ToQuals.withoutObjCLifetime().empty())
2603     return false;
2604 
2605   // Argument must be a pointer to __strong to __weak.
2606   QualType FromPointee;
2607   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2608     FromPointee = FromPointer->getPointeeType();
2609   else
2610     return false;
2611 
2612   Qualifiers FromQuals = FromPointee.getQualifiers();
2613   if (!FromPointee->isObjCLifetimeType() ||
2614       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2615        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2616     return false;
2617 
2618   // Make sure that we have compatible qualifiers.
2619   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2620   if (!ToQuals.compatiblyIncludes(FromQuals))
2621     return false;
2622 
2623   // Remove qualifiers from the pointee type we're converting from; they
2624   // aren't used in the compatibility check belong, and we'll be adding back
2625   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2626   FromPointee = FromPointee.getUnqualifiedType();
2627 
2628   // The unqualified form of the pointee types must be compatible.
2629   ToPointee = ToPointee.getUnqualifiedType();
2630   bool IncompatibleObjC;
2631   if (Context.typesAreCompatible(FromPointee, ToPointee))
2632     FromPointee = ToPointee;
2633   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2634                                     IncompatibleObjC))
2635     return false;
2636 
2637   /// Construct the type we're converting to, which is a pointer to
2638   /// __autoreleasing pointee.
2639   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2640   ConvertedType = Context.getPointerType(FromPointee);
2641   return true;
2642 }
2643 
2644 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2645                                     QualType& ConvertedType) {
2646   QualType ToPointeeType;
2647   if (const BlockPointerType *ToBlockPtr =
2648         ToType->getAs<BlockPointerType>())
2649     ToPointeeType = ToBlockPtr->getPointeeType();
2650   else
2651     return false;
2652 
2653   QualType FromPointeeType;
2654   if (const BlockPointerType *FromBlockPtr =
2655       FromType->getAs<BlockPointerType>())
2656     FromPointeeType = FromBlockPtr->getPointeeType();
2657   else
2658     return false;
2659   // We have pointer to blocks, check whether the only
2660   // differences in the argument and result types are in Objective-C
2661   // pointer conversions. If so, we permit the conversion.
2662 
2663   const FunctionProtoType *FromFunctionType
2664     = FromPointeeType->getAs<FunctionProtoType>();
2665   const FunctionProtoType *ToFunctionType
2666     = ToPointeeType->getAs<FunctionProtoType>();
2667 
2668   if (!FromFunctionType || !ToFunctionType)
2669     return false;
2670 
2671   if (Context.hasSameType(FromPointeeType, ToPointeeType))
2672     return true;
2673 
2674   // Perform the quick checks that will tell us whether these
2675   // function types are obviously different.
2676   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2677       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2678     return false;
2679 
2680   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2681   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2682   if (FromEInfo != ToEInfo)
2683     return false;
2684 
2685   bool IncompatibleObjC = false;
2686   if (Context.hasSameType(FromFunctionType->getReturnType(),
2687                           ToFunctionType->getReturnType())) {
2688     // Okay, the types match exactly. Nothing to do.
2689   } else {
2690     QualType RHS = FromFunctionType->getReturnType();
2691     QualType LHS = ToFunctionType->getReturnType();
2692     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2693         !RHS.hasQualifiers() && LHS.hasQualifiers())
2694        LHS = LHS.getUnqualifiedType();
2695 
2696      if (Context.hasSameType(RHS,LHS)) {
2697        // OK exact match.
2698      } else if (isObjCPointerConversion(RHS, LHS,
2699                                         ConvertedType, IncompatibleObjC)) {
2700      if (IncompatibleObjC)
2701        return false;
2702      // Okay, we have an Objective-C pointer conversion.
2703      }
2704      else
2705        return false;
2706    }
2707 
2708    // Check argument types.
2709    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2710         ArgIdx != NumArgs; ++ArgIdx) {
2711      IncompatibleObjC = false;
2712      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2713      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2714      if (Context.hasSameType(FromArgType, ToArgType)) {
2715        // Okay, the types match exactly. Nothing to do.
2716      } else if (isObjCPointerConversion(ToArgType, FromArgType,
2717                                         ConvertedType, IncompatibleObjC)) {
2718        if (IncompatibleObjC)
2719          return false;
2720        // Okay, we have an Objective-C pointer conversion.
2721      } else
2722        // Argument types are too different. Abort.
2723        return false;
2724    }
2725 
2726    SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2727    bool CanUseToFPT, CanUseFromFPT;
2728    if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2729                                       CanUseToFPT, CanUseFromFPT,
2730                                       NewParamInfos))
2731      return false;
2732 
2733    ConvertedType = ToType;
2734    return true;
2735 }
2736 
2737 enum {
2738   ft_default,
2739   ft_different_class,
2740   ft_parameter_arity,
2741   ft_parameter_mismatch,
2742   ft_return_type,
2743   ft_qualifer_mismatch,
2744   ft_noexcept
2745 };
2746 
2747 /// Attempts to get the FunctionProtoType from a Type. Handles
2748 /// MemberFunctionPointers properly.
2749 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2750   if (auto *FPT = FromType->getAs<FunctionProtoType>())
2751     return FPT;
2752 
2753   if (auto *MPT = FromType->getAs<MemberPointerType>())
2754     return MPT->getPointeeType()->getAs<FunctionProtoType>();
2755 
2756   return nullptr;
2757 }
2758 
2759 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2760 /// function types.  Catches different number of parameter, mismatch in
2761 /// parameter types, and different return types.
2762 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2763                                       QualType FromType, QualType ToType) {
2764   // If either type is not valid, include no extra info.
2765   if (FromType.isNull() || ToType.isNull()) {
2766     PDiag << ft_default;
2767     return;
2768   }
2769 
2770   // Get the function type from the pointers.
2771   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2772     const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2773                             *ToMember = ToType->getAs<MemberPointerType>();
2774     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2775       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2776             << QualType(FromMember->getClass(), 0);
2777       return;
2778     }
2779     FromType = FromMember->getPointeeType();
2780     ToType = ToMember->getPointeeType();
2781   }
2782 
2783   if (FromType->isPointerType())
2784     FromType = FromType->getPointeeType();
2785   if (ToType->isPointerType())
2786     ToType = ToType->getPointeeType();
2787 
2788   // Remove references.
2789   FromType = FromType.getNonReferenceType();
2790   ToType = ToType.getNonReferenceType();
2791 
2792   // Don't print extra info for non-specialized template functions.
2793   if (FromType->isInstantiationDependentType() &&
2794       !FromType->getAs<TemplateSpecializationType>()) {
2795     PDiag << ft_default;
2796     return;
2797   }
2798 
2799   // No extra info for same types.
2800   if (Context.hasSameType(FromType, ToType)) {
2801     PDiag << ft_default;
2802     return;
2803   }
2804 
2805   const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2806                           *ToFunction = tryGetFunctionProtoType(ToType);
2807 
2808   // Both types need to be function types.
2809   if (!FromFunction || !ToFunction) {
2810     PDiag << ft_default;
2811     return;
2812   }
2813 
2814   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2815     PDiag << ft_parameter_arity << ToFunction->getNumParams()
2816           << FromFunction->getNumParams();
2817     return;
2818   }
2819 
2820   // Handle different parameter types.
2821   unsigned ArgPos;
2822   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2823     PDiag << ft_parameter_mismatch << ArgPos + 1
2824           << ToFunction->getParamType(ArgPos)
2825           << FromFunction->getParamType(ArgPos);
2826     return;
2827   }
2828 
2829   // Handle different return type.
2830   if (!Context.hasSameType(FromFunction->getReturnType(),
2831                            ToFunction->getReturnType())) {
2832     PDiag << ft_return_type << ToFunction->getReturnType()
2833           << FromFunction->getReturnType();
2834     return;
2835   }
2836 
2837   if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2838     PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2839           << FromFunction->getMethodQuals();
2840     return;
2841   }
2842 
2843   // Handle exception specification differences on canonical type (in C++17
2844   // onwards).
2845   if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2846           ->isNothrow() !=
2847       cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2848           ->isNothrow()) {
2849     PDiag << ft_noexcept;
2850     return;
2851   }
2852 
2853   // Unable to find a difference, so add no extra info.
2854   PDiag << ft_default;
2855 }
2856 
2857 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2858 /// for equality of their argument types. Caller has already checked that
2859 /// they have same number of arguments.  If the parameters are different,
2860 /// ArgPos will have the parameter index of the first different parameter.
2861 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2862                                       const FunctionProtoType *NewType,
2863                                       unsigned *ArgPos) {
2864   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2865                                               N = NewType->param_type_begin(),
2866                                               E = OldType->param_type_end();
2867        O && (O != E); ++O, ++N) {
2868     if (!Context.hasSameType(O->getUnqualifiedType(),
2869                              N->getUnqualifiedType())) {
2870       if (ArgPos)
2871         *ArgPos = O - OldType->param_type_begin();
2872       return false;
2873     }
2874   }
2875   return true;
2876 }
2877 
2878 /// CheckPointerConversion - Check the pointer conversion from the
2879 /// expression From to the type ToType. This routine checks for
2880 /// ambiguous or inaccessible derived-to-base pointer
2881 /// conversions for which IsPointerConversion has already returned
2882 /// true. It returns true and produces a diagnostic if there was an
2883 /// error, or returns false otherwise.
2884 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2885                                   CastKind &Kind,
2886                                   CXXCastPath& BasePath,
2887                                   bool IgnoreBaseAccess,
2888                                   bool Diagnose) {
2889   QualType FromType = From->getType();
2890   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2891 
2892   Kind = CK_BitCast;
2893 
2894   if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2895       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2896           Expr::NPCK_ZeroExpression) {
2897     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2898       DiagRuntimeBehavior(From->getExprLoc(), From,
2899                           PDiag(diag::warn_impcast_bool_to_null_pointer)
2900                             << ToType << From->getSourceRange());
2901     else if (!isUnevaluatedContext())
2902       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2903         << ToType << From->getSourceRange();
2904   }
2905   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2906     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2907       QualType FromPointeeType = FromPtrType->getPointeeType(),
2908                ToPointeeType   = ToPtrType->getPointeeType();
2909 
2910       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2911           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2912         // We must have a derived-to-base conversion. Check an
2913         // ambiguous or inaccessible conversion.
2914         unsigned InaccessibleID = 0;
2915         unsigned AmbigiousID = 0;
2916         if (Diagnose) {
2917           InaccessibleID = diag::err_upcast_to_inaccessible_base;
2918           AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
2919         }
2920         if (CheckDerivedToBaseConversion(
2921                 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
2922                 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
2923                 &BasePath, IgnoreBaseAccess))
2924           return true;
2925 
2926         // The conversion was successful.
2927         Kind = CK_DerivedToBase;
2928       }
2929 
2930       if (Diagnose && !IsCStyleOrFunctionalCast &&
2931           FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
2932         assert(getLangOpts().MSVCCompat &&
2933                "this should only be possible with MSVCCompat!");
2934         Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
2935             << From->getSourceRange();
2936       }
2937     }
2938   } else if (const ObjCObjectPointerType *ToPtrType =
2939                ToType->getAs<ObjCObjectPointerType>()) {
2940     if (const ObjCObjectPointerType *FromPtrType =
2941           FromType->getAs<ObjCObjectPointerType>()) {
2942       // Objective-C++ conversions are always okay.
2943       // FIXME: We should have a different class of conversions for the
2944       // Objective-C++ implicit conversions.
2945       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2946         return false;
2947     } else if (FromType->isBlockPointerType()) {
2948       Kind = CK_BlockPointerToObjCPointerCast;
2949     } else {
2950       Kind = CK_CPointerToObjCPointerCast;
2951     }
2952   } else if (ToType->isBlockPointerType()) {
2953     if (!FromType->isBlockPointerType())
2954       Kind = CK_AnyPointerToBlockPointerCast;
2955   }
2956 
2957   // We shouldn't fall into this case unless it's valid for other
2958   // reasons.
2959   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2960     Kind = CK_NullToPointer;
2961 
2962   return false;
2963 }
2964 
2965 /// IsMemberPointerConversion - Determines whether the conversion of the
2966 /// expression From, which has the (possibly adjusted) type FromType, can be
2967 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
2968 /// If so, returns true and places the converted type (that might differ from
2969 /// ToType in its cv-qualifiers at some level) into ConvertedType.
2970 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2971                                      QualType ToType,
2972                                      bool InOverloadResolution,
2973                                      QualType &ConvertedType) {
2974   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2975   if (!ToTypePtr)
2976     return false;
2977 
2978   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2979   if (From->isNullPointerConstant(Context,
2980                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2981                                         : Expr::NPC_ValueDependentIsNull)) {
2982     ConvertedType = ToType;
2983     return true;
2984   }
2985 
2986   // Otherwise, both types have to be member pointers.
2987   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2988   if (!FromTypePtr)
2989     return false;
2990 
2991   // A pointer to member of B can be converted to a pointer to member of D,
2992   // where D is derived from B (C++ 4.11p2).
2993   QualType FromClass(FromTypePtr->getClass(), 0);
2994   QualType ToClass(ToTypePtr->getClass(), 0);
2995 
2996   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2997       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
2998     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2999                                                  ToClass.getTypePtr());
3000     return true;
3001   }
3002 
3003   return false;
3004 }
3005 
3006 /// CheckMemberPointerConversion - Check the member pointer conversion from the
3007 /// expression From to the type ToType. This routine checks for ambiguous or
3008 /// virtual or inaccessible base-to-derived member pointer conversions
3009 /// for which IsMemberPointerConversion has already returned true. It returns
3010 /// true and produces a diagnostic if there was an error, or returns false
3011 /// otherwise.
3012 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3013                                         CastKind &Kind,
3014                                         CXXCastPath &BasePath,
3015                                         bool IgnoreBaseAccess) {
3016   QualType FromType = From->getType();
3017   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3018   if (!FromPtrType) {
3019     // This must be a null pointer to member pointer conversion
3020     assert(From->isNullPointerConstant(Context,
3021                                        Expr::NPC_ValueDependentIsNull) &&
3022            "Expr must be null pointer constant!");
3023     Kind = CK_NullToMemberPointer;
3024     return false;
3025   }
3026 
3027   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3028   assert(ToPtrType && "No member pointer cast has a target type "
3029                       "that is not a member pointer.");
3030 
3031   QualType FromClass = QualType(FromPtrType->getClass(), 0);
3032   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
3033 
3034   // FIXME: What about dependent types?
3035   assert(FromClass->isRecordType() && "Pointer into non-class.");
3036   assert(ToClass->isRecordType() && "Pointer into non-class.");
3037 
3038   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3039                      /*DetectVirtual=*/true);
3040   bool DerivationOkay =
3041       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3042   assert(DerivationOkay &&
3043          "Should not have been called if derivation isn't OK.");
3044   (void)DerivationOkay;
3045 
3046   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3047                                   getUnqualifiedType())) {
3048     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3049     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3050       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3051     return true;
3052   }
3053 
3054   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3055     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3056       << FromClass << ToClass << QualType(VBase, 0)
3057       << From->getSourceRange();
3058     return true;
3059   }
3060 
3061   if (!IgnoreBaseAccess)
3062     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3063                          Paths.front(),
3064                          diag::err_downcast_from_inaccessible_base);
3065 
3066   // Must be a base to derived member conversion.
3067   BuildBasePathArray(Paths, BasePath);
3068   Kind = CK_BaseToDerivedMemberPointer;
3069   return false;
3070 }
3071 
3072 /// Determine whether the lifetime conversion between the two given
3073 /// qualifiers sets is nontrivial.
3074 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3075                                                Qualifiers ToQuals) {
3076   // Converting anything to const __unsafe_unretained is trivial.
3077   if (ToQuals.hasConst() &&
3078       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3079     return false;
3080 
3081   return true;
3082 }
3083 
3084 /// IsQualificationConversion - Determines whether the conversion from
3085 /// an rvalue of type FromType to ToType is a qualification conversion
3086 /// (C++ 4.4).
3087 ///
3088 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3089 /// when the qualification conversion involves a change in the Objective-C
3090 /// object lifetime.
3091 bool
3092 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3093                                 bool CStyle, bool &ObjCLifetimeConversion) {
3094   FromType = Context.getCanonicalType(FromType);
3095   ToType = Context.getCanonicalType(ToType);
3096   ObjCLifetimeConversion = false;
3097 
3098   // If FromType and ToType are the same type, this is not a
3099   // qualification conversion.
3100   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3101     return false;
3102 
3103   // (C++ 4.4p4):
3104   //   A conversion can add cv-qualifiers at levels other than the first
3105   //   in multi-level pointers, subject to the following rules: [...]
3106   bool PreviousToQualsIncludeConst = true;
3107   bool UnwrappedAnyPointer = false;
3108   while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3109     // Within each iteration of the loop, we check the qualifiers to
3110     // determine if this still looks like a qualification
3111     // conversion. Then, if all is well, we unwrap one more level of
3112     // pointers or pointers-to-members and do it all again
3113     // until there are no more pointers or pointers-to-members left to
3114     // unwrap.
3115     UnwrappedAnyPointer = true;
3116 
3117     Qualifiers FromQuals = FromType.getQualifiers();
3118     Qualifiers ToQuals = ToType.getQualifiers();
3119 
3120     // Ignore __unaligned qualifier if this type is void.
3121     if (ToType.getUnqualifiedType()->isVoidType())
3122       FromQuals.removeUnaligned();
3123 
3124     // Objective-C ARC:
3125     //   Check Objective-C lifetime conversions.
3126     if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
3127         UnwrappedAnyPointer) {
3128       if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3129         if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3130           ObjCLifetimeConversion = true;
3131         FromQuals.removeObjCLifetime();
3132         ToQuals.removeObjCLifetime();
3133       } else {
3134         // Qualification conversions cannot cast between different
3135         // Objective-C lifetime qualifiers.
3136         return false;
3137       }
3138     }
3139 
3140     // Allow addition/removal of GC attributes but not changing GC attributes.
3141     if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3142         (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3143       FromQuals.removeObjCGCAttr();
3144       ToQuals.removeObjCGCAttr();
3145     }
3146 
3147     //   -- for every j > 0, if const is in cv 1,j then const is in cv
3148     //      2,j, and similarly for volatile.
3149     if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3150       return false;
3151 
3152     //   -- if the cv 1,j and cv 2,j are different, then const is in
3153     //      every cv for 0 < k < j.
3154     if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
3155         && !PreviousToQualsIncludeConst)
3156       return false;
3157 
3158     // Keep track of whether all prior cv-qualifiers in the "to" type
3159     // include const.
3160     PreviousToQualsIncludeConst
3161       = PreviousToQualsIncludeConst && ToQuals.hasConst();
3162   }
3163 
3164   // Allows address space promotion by language rules implemented in
3165   // Type::Qualifiers::isAddressSpaceSupersetOf.
3166   Qualifiers FromQuals = FromType.getQualifiers();
3167   Qualifiers ToQuals = ToType.getQualifiers();
3168   if (!ToQuals.isAddressSpaceSupersetOf(FromQuals) &&
3169       !FromQuals.isAddressSpaceSupersetOf(ToQuals)) {
3170     return false;
3171   }
3172 
3173   // We are left with FromType and ToType being the pointee types
3174   // after unwrapping the original FromType and ToType the same number
3175   // of types. If we unwrapped any pointers, and if FromType and
3176   // ToType have the same unqualified type (since we checked
3177   // qualifiers above), then this is a qualification conversion.
3178   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3179 }
3180 
3181 /// - Determine whether this is a conversion from a scalar type to an
3182 /// atomic type.
3183 ///
3184 /// If successful, updates \c SCS's second and third steps in the conversion
3185 /// sequence to finish the conversion.
3186 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3187                                 bool InOverloadResolution,
3188                                 StandardConversionSequence &SCS,
3189                                 bool CStyle) {
3190   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3191   if (!ToAtomic)
3192     return false;
3193 
3194   StandardConversionSequence InnerSCS;
3195   if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3196                             InOverloadResolution, InnerSCS,
3197                             CStyle, /*AllowObjCWritebackConversion=*/false))
3198     return false;
3199 
3200   SCS.Second = InnerSCS.Second;
3201   SCS.setToType(1, InnerSCS.getToType(1));
3202   SCS.Third = InnerSCS.Third;
3203   SCS.QualificationIncludesObjCLifetime
3204     = InnerSCS.QualificationIncludesObjCLifetime;
3205   SCS.setToType(2, InnerSCS.getToType(2));
3206   return true;
3207 }
3208 
3209 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3210                                               CXXConstructorDecl *Constructor,
3211                                               QualType Type) {
3212   const FunctionProtoType *CtorType =
3213       Constructor->getType()->getAs<FunctionProtoType>();
3214   if (CtorType->getNumParams() > 0) {
3215     QualType FirstArg = CtorType->getParamType(0);
3216     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3217       return true;
3218   }
3219   return false;
3220 }
3221 
3222 static OverloadingResult
3223 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3224                                        CXXRecordDecl *To,
3225                                        UserDefinedConversionSequence &User,
3226                                        OverloadCandidateSet &CandidateSet,
3227                                        bool AllowExplicit) {
3228   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3229   for (auto *D : S.LookupConstructors(To)) {
3230     auto Info = getConstructorInfo(D);
3231     if (!Info)
3232       continue;
3233 
3234     bool Usable = !Info.Constructor->isInvalidDecl() &&
3235                   S.isInitListConstructor(Info.Constructor) &&
3236                   (AllowExplicit || !Info.Constructor->isExplicit());
3237     if (Usable) {
3238       // If the first argument is (a reference to) the target type,
3239       // suppress conversions.
3240       bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3241           S.Context, Info.Constructor, ToType);
3242       if (Info.ConstructorTmpl)
3243         S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3244                                        /*ExplicitArgs*/ nullptr, From,
3245                                        CandidateSet, SuppressUserConversions,
3246                                        /*PartialOverloading*/ false,
3247                                        AllowExplicit);
3248       else
3249         S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3250                                CandidateSet, SuppressUserConversions,
3251                                /*PartialOverloading*/ false, AllowExplicit);
3252     }
3253   }
3254 
3255   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3256 
3257   OverloadCandidateSet::iterator Best;
3258   switch (auto Result =
3259               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3260   case OR_Deleted:
3261   case OR_Success: {
3262     // Record the standard conversion we used and the conversion function.
3263     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3264     QualType ThisType = Constructor->getThisType();
3265     // Initializer lists don't have conversions as such.
3266     User.Before.setAsIdentityConversion();
3267     User.HadMultipleCandidates = HadMultipleCandidates;
3268     User.ConversionFunction = Constructor;
3269     User.FoundConversionFunction = Best->FoundDecl;
3270     User.After.setAsIdentityConversion();
3271     User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3272     User.After.setAllToTypes(ToType);
3273     return Result;
3274   }
3275 
3276   case OR_No_Viable_Function:
3277     return OR_No_Viable_Function;
3278   case OR_Ambiguous:
3279     return OR_Ambiguous;
3280   }
3281 
3282   llvm_unreachable("Invalid OverloadResult!");
3283 }
3284 
3285 /// Determines whether there is a user-defined conversion sequence
3286 /// (C++ [over.ics.user]) that converts expression From to the type
3287 /// ToType. If such a conversion exists, User will contain the
3288 /// user-defined conversion sequence that performs such a conversion
3289 /// and this routine will return true. Otherwise, this routine returns
3290 /// false and User is unspecified.
3291 ///
3292 /// \param AllowExplicit  true if the conversion should consider C++0x
3293 /// "explicit" conversion functions as well as non-explicit conversion
3294 /// functions (C++0x [class.conv.fct]p2).
3295 ///
3296 /// \param AllowObjCConversionOnExplicit true if the conversion should
3297 /// allow an extra Objective-C pointer conversion on uses of explicit
3298 /// constructors. Requires \c AllowExplicit to also be set.
3299 static OverloadingResult
3300 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3301                         UserDefinedConversionSequence &User,
3302                         OverloadCandidateSet &CandidateSet,
3303                         bool AllowExplicit,
3304                         bool AllowObjCConversionOnExplicit) {
3305   assert(AllowExplicit || !AllowObjCConversionOnExplicit);
3306   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3307 
3308   // Whether we will only visit constructors.
3309   bool ConstructorsOnly = false;
3310 
3311   // If the type we are conversion to is a class type, enumerate its
3312   // constructors.
3313   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3314     // C++ [over.match.ctor]p1:
3315     //   When objects of class type are direct-initialized (8.5), or
3316     //   copy-initialized from an expression of the same or a
3317     //   derived class type (8.5), overload resolution selects the
3318     //   constructor. [...] For copy-initialization, the candidate
3319     //   functions are all the converting constructors (12.3.1) of
3320     //   that class. The argument list is the expression-list within
3321     //   the parentheses of the initializer.
3322     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3323         (From->getType()->getAs<RecordType>() &&
3324          S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3325       ConstructorsOnly = true;
3326 
3327     if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3328       // We're not going to find any constructors.
3329     } else if (CXXRecordDecl *ToRecordDecl
3330                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3331 
3332       Expr **Args = &From;
3333       unsigned NumArgs = 1;
3334       bool ListInitializing = false;
3335       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3336         // But first, see if there is an init-list-constructor that will work.
3337         OverloadingResult Result = IsInitializerListConstructorConversion(
3338             S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3339         if (Result != OR_No_Viable_Function)
3340           return Result;
3341         // Never mind.
3342         CandidateSet.clear(
3343             OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3344 
3345         // If we're list-initializing, we pass the individual elements as
3346         // arguments, not the entire list.
3347         Args = InitList->getInits();
3348         NumArgs = InitList->getNumInits();
3349         ListInitializing = true;
3350       }
3351 
3352       for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3353         auto Info = getConstructorInfo(D);
3354         if (!Info)
3355           continue;
3356 
3357         bool Usable = !Info.Constructor->isInvalidDecl();
3358         if (ListInitializing)
3359           Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
3360         else
3361           Usable = Usable &&
3362                    Info.Constructor->isConvertingConstructor(AllowExplicit);
3363         if (Usable) {
3364           bool SuppressUserConversions = !ConstructorsOnly;
3365           if (SuppressUserConversions && ListInitializing) {
3366             SuppressUserConversions = false;
3367             if (NumArgs == 1) {
3368               // If the first argument is (a reference to) the target type,
3369               // suppress conversions.
3370               SuppressUserConversions = isFirstArgumentCompatibleWithType(
3371                   S.Context, Info.Constructor, ToType);
3372             }
3373           }
3374           if (Info.ConstructorTmpl)
3375             S.AddTemplateOverloadCandidate(
3376                 Info.ConstructorTmpl, Info.FoundDecl,
3377                 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3378                 CandidateSet, SuppressUserConversions,
3379                 /*PartialOverloading*/ false, AllowExplicit);
3380           else
3381             // Allow one user-defined conversion when user specifies a
3382             // From->ToType conversion via an static cast (c-style, etc).
3383             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3384                                    llvm::makeArrayRef(Args, NumArgs),
3385                                    CandidateSet, SuppressUserConversions,
3386                                    /*PartialOverloading*/ false, AllowExplicit);
3387         }
3388       }
3389     }
3390   }
3391 
3392   // Enumerate conversion functions, if we're allowed to.
3393   if (ConstructorsOnly || isa<InitListExpr>(From)) {
3394   } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3395     // No conversion functions from incomplete types.
3396   } else if (const RecordType *FromRecordType =
3397                  From->getType()->getAs<RecordType>()) {
3398     if (CXXRecordDecl *FromRecordDecl
3399          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3400       // Add all of the conversion functions as candidates.
3401       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3402       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3403         DeclAccessPair FoundDecl = I.getPair();
3404         NamedDecl *D = FoundDecl.getDecl();
3405         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3406         if (isa<UsingShadowDecl>(D))
3407           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3408 
3409         CXXConversionDecl *Conv;
3410         FunctionTemplateDecl *ConvTemplate;
3411         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3412           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3413         else
3414           Conv = cast<CXXConversionDecl>(D);
3415 
3416         if (AllowExplicit || !Conv->isExplicit()) {
3417           if (ConvTemplate)
3418             S.AddTemplateConversionCandidate(
3419                 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3420                 CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit);
3421           else
3422             S.AddConversionCandidate(
3423                 Conv, FoundDecl, ActingContext, From, ToType, CandidateSet,
3424                 AllowObjCConversionOnExplicit, AllowExplicit);
3425         }
3426       }
3427     }
3428   }
3429 
3430   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3431 
3432   OverloadCandidateSet::iterator Best;
3433   switch (auto Result =
3434               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3435   case OR_Success:
3436   case OR_Deleted:
3437     // Record the standard conversion we used and the conversion function.
3438     if (CXXConstructorDecl *Constructor
3439           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3440       // C++ [over.ics.user]p1:
3441       //   If the user-defined conversion is specified by a
3442       //   constructor (12.3.1), the initial standard conversion
3443       //   sequence converts the source type to the type required by
3444       //   the argument of the constructor.
3445       //
3446       QualType ThisType = Constructor->getThisType();
3447       if (isa<InitListExpr>(From)) {
3448         // Initializer lists don't have conversions as such.
3449         User.Before.setAsIdentityConversion();
3450       } else {
3451         if (Best->Conversions[0].isEllipsis())
3452           User.EllipsisConversion = true;
3453         else {
3454           User.Before = Best->Conversions[0].Standard;
3455           User.EllipsisConversion = false;
3456         }
3457       }
3458       User.HadMultipleCandidates = HadMultipleCandidates;
3459       User.ConversionFunction = Constructor;
3460       User.FoundConversionFunction = Best->FoundDecl;
3461       User.After.setAsIdentityConversion();
3462       User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3463       User.After.setAllToTypes(ToType);
3464       return Result;
3465     }
3466     if (CXXConversionDecl *Conversion
3467                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
3468       // C++ [over.ics.user]p1:
3469       //
3470       //   [...] If the user-defined conversion is specified by a
3471       //   conversion function (12.3.2), the initial standard
3472       //   conversion sequence converts the source type to the
3473       //   implicit object parameter of the conversion function.
3474       User.Before = Best->Conversions[0].Standard;
3475       User.HadMultipleCandidates = HadMultipleCandidates;
3476       User.ConversionFunction = Conversion;
3477       User.FoundConversionFunction = Best->FoundDecl;
3478       User.EllipsisConversion = false;
3479 
3480       // C++ [over.ics.user]p2:
3481       //   The second standard conversion sequence converts the
3482       //   result of the user-defined conversion to the target type
3483       //   for the sequence. Since an implicit conversion sequence
3484       //   is an initialization, the special rules for
3485       //   initialization by user-defined conversion apply when
3486       //   selecting the best user-defined conversion for a
3487       //   user-defined conversion sequence (see 13.3.3 and
3488       //   13.3.3.1).
3489       User.After = Best->FinalConversion;
3490       return Result;
3491     }
3492     llvm_unreachable("Not a constructor or conversion function?");
3493 
3494   case OR_No_Viable_Function:
3495     return OR_No_Viable_Function;
3496 
3497   case OR_Ambiguous:
3498     return OR_Ambiguous;
3499   }
3500 
3501   llvm_unreachable("Invalid OverloadResult!");
3502 }
3503 
3504 bool
3505 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3506   ImplicitConversionSequence ICS;
3507   OverloadCandidateSet CandidateSet(From->getExprLoc(),
3508                                     OverloadCandidateSet::CSK_Normal);
3509   OverloadingResult OvResult =
3510     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3511                             CandidateSet, false, false);
3512 
3513   if (!(OvResult == OR_Ambiguous ||
3514         (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3515     return false;
3516 
3517   auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, From);
3518   if (OvResult == OR_Ambiguous)
3519     Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3520         << From->getType() << ToType << From->getSourceRange();
3521   else { // OR_No_Viable_Function && !CandidateSet.empty()
3522     if (!RequireCompleteType(From->getBeginLoc(), ToType,
3523                              diag::err_typecheck_nonviable_condition_incomplete,
3524                              From->getType(), From->getSourceRange()))
3525       Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3526           << false << From->getType() << From->getSourceRange() << ToType;
3527   }
3528 
3529   CandidateSet.NoteCandidates(
3530                               *this, From, Cands);
3531   return true;
3532 }
3533 
3534 /// Compare the user-defined conversion functions or constructors
3535 /// of two user-defined conversion sequences to determine whether any ordering
3536 /// is possible.
3537 static ImplicitConversionSequence::CompareKind
3538 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3539                            FunctionDecl *Function2) {
3540   if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11)
3541     return ImplicitConversionSequence::Indistinguishable;
3542 
3543   // Objective-C++:
3544   //   If both conversion functions are implicitly-declared conversions from
3545   //   a lambda closure type to a function pointer and a block pointer,
3546   //   respectively, always prefer the conversion to a function pointer,
3547   //   because the function pointer is more lightweight and is more likely
3548   //   to keep code working.
3549   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3550   if (!Conv1)
3551     return ImplicitConversionSequence::Indistinguishable;
3552 
3553   CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3554   if (!Conv2)
3555     return ImplicitConversionSequence::Indistinguishable;
3556 
3557   if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3558     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3559     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3560     if (Block1 != Block2)
3561       return Block1 ? ImplicitConversionSequence::Worse
3562                     : ImplicitConversionSequence::Better;
3563   }
3564 
3565   return ImplicitConversionSequence::Indistinguishable;
3566 }
3567 
3568 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3569     const ImplicitConversionSequence &ICS) {
3570   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3571          (ICS.isUserDefined() &&
3572           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3573 }
3574 
3575 /// CompareImplicitConversionSequences - Compare two implicit
3576 /// conversion sequences to determine whether one is better than the
3577 /// other or if they are indistinguishable (C++ 13.3.3.2).
3578 static ImplicitConversionSequence::CompareKind
3579 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3580                                    const ImplicitConversionSequence& ICS1,
3581                                    const ImplicitConversionSequence& ICS2)
3582 {
3583   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3584   // conversion sequences (as defined in 13.3.3.1)
3585   //   -- a standard conversion sequence (13.3.3.1.1) is a better
3586   //      conversion sequence than a user-defined conversion sequence or
3587   //      an ellipsis conversion sequence, and
3588   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3589   //      conversion sequence than an ellipsis conversion sequence
3590   //      (13.3.3.1.3).
3591   //
3592   // C++0x [over.best.ics]p10:
3593   //   For the purpose of ranking implicit conversion sequences as
3594   //   described in 13.3.3.2, the ambiguous conversion sequence is
3595   //   treated as a user-defined sequence that is indistinguishable
3596   //   from any other user-defined conversion sequence.
3597 
3598   // String literal to 'char *' conversion has been deprecated in C++03. It has
3599   // been removed from C++11. We still accept this conversion, if it happens at
3600   // the best viable function. Otherwise, this conversion is considered worse
3601   // than ellipsis conversion. Consider this as an extension; this is not in the
3602   // standard. For example:
3603   //
3604   // int &f(...);    // #1
3605   // void f(char*);  // #2
3606   // void g() { int &r = f("foo"); }
3607   //
3608   // In C++03, we pick #2 as the best viable function.
3609   // In C++11, we pick #1 as the best viable function, because ellipsis
3610   // conversion is better than string-literal to char* conversion (since there
3611   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3612   // convert arguments, #2 would be the best viable function in C++11.
3613   // If the best viable function has this conversion, a warning will be issued
3614   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3615 
3616   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3617       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3618       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3619     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3620                ? ImplicitConversionSequence::Worse
3621                : ImplicitConversionSequence::Better;
3622 
3623   if (ICS1.getKindRank() < ICS2.getKindRank())
3624     return ImplicitConversionSequence::Better;
3625   if (ICS2.getKindRank() < ICS1.getKindRank())
3626     return ImplicitConversionSequence::Worse;
3627 
3628   // The following checks require both conversion sequences to be of
3629   // the same kind.
3630   if (ICS1.getKind() != ICS2.getKind())
3631     return ImplicitConversionSequence::Indistinguishable;
3632 
3633   ImplicitConversionSequence::CompareKind Result =
3634       ImplicitConversionSequence::Indistinguishable;
3635 
3636   // Two implicit conversion sequences of the same form are
3637   // indistinguishable conversion sequences unless one of the
3638   // following rules apply: (C++ 13.3.3.2p3):
3639 
3640   // List-initialization sequence L1 is a better conversion sequence than
3641   // list-initialization sequence L2 if:
3642   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3643   //   if not that,
3644   // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3645   //   and N1 is smaller than N2.,
3646   // even if one of the other rules in this paragraph would otherwise apply.
3647   if (!ICS1.isBad()) {
3648     if (ICS1.isStdInitializerListElement() &&
3649         !ICS2.isStdInitializerListElement())
3650       return ImplicitConversionSequence::Better;
3651     if (!ICS1.isStdInitializerListElement() &&
3652         ICS2.isStdInitializerListElement())
3653       return ImplicitConversionSequence::Worse;
3654   }
3655 
3656   if (ICS1.isStandard())
3657     // Standard conversion sequence S1 is a better conversion sequence than
3658     // standard conversion sequence S2 if [...]
3659     Result = CompareStandardConversionSequences(S, Loc,
3660                                                 ICS1.Standard, ICS2.Standard);
3661   else if (ICS1.isUserDefined()) {
3662     // User-defined conversion sequence U1 is a better conversion
3663     // sequence than another user-defined conversion sequence U2 if
3664     // they contain the same user-defined conversion function or
3665     // constructor and if the second standard conversion sequence of
3666     // U1 is better than the second standard conversion sequence of
3667     // U2 (C++ 13.3.3.2p3).
3668     if (ICS1.UserDefined.ConversionFunction ==
3669           ICS2.UserDefined.ConversionFunction)
3670       Result = CompareStandardConversionSequences(S, Loc,
3671                                                   ICS1.UserDefined.After,
3672                                                   ICS2.UserDefined.After);
3673     else
3674       Result = compareConversionFunctions(S,
3675                                           ICS1.UserDefined.ConversionFunction,
3676                                           ICS2.UserDefined.ConversionFunction);
3677   }
3678 
3679   return Result;
3680 }
3681 
3682 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3683 // determine if one is a proper subset of the other.
3684 static ImplicitConversionSequence::CompareKind
3685 compareStandardConversionSubsets(ASTContext &Context,
3686                                  const StandardConversionSequence& SCS1,
3687                                  const StandardConversionSequence& SCS2) {
3688   ImplicitConversionSequence::CompareKind Result
3689     = ImplicitConversionSequence::Indistinguishable;
3690 
3691   // the identity conversion sequence is considered to be a subsequence of
3692   // any non-identity conversion sequence
3693   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3694     return ImplicitConversionSequence::Better;
3695   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3696     return ImplicitConversionSequence::Worse;
3697 
3698   if (SCS1.Second != SCS2.Second) {
3699     if (SCS1.Second == ICK_Identity)
3700       Result = ImplicitConversionSequence::Better;
3701     else if (SCS2.Second == ICK_Identity)
3702       Result = ImplicitConversionSequence::Worse;
3703     else
3704       return ImplicitConversionSequence::Indistinguishable;
3705   } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3706     return ImplicitConversionSequence::Indistinguishable;
3707 
3708   if (SCS1.Third == SCS2.Third) {
3709     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3710                              : ImplicitConversionSequence::Indistinguishable;
3711   }
3712 
3713   if (SCS1.Third == ICK_Identity)
3714     return Result == ImplicitConversionSequence::Worse
3715              ? ImplicitConversionSequence::Indistinguishable
3716              : ImplicitConversionSequence::Better;
3717 
3718   if (SCS2.Third == ICK_Identity)
3719     return Result == ImplicitConversionSequence::Better
3720              ? ImplicitConversionSequence::Indistinguishable
3721              : ImplicitConversionSequence::Worse;
3722 
3723   return ImplicitConversionSequence::Indistinguishable;
3724 }
3725 
3726 /// Determine whether one of the given reference bindings is better
3727 /// than the other based on what kind of bindings they are.
3728 static bool
3729 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3730                              const StandardConversionSequence &SCS2) {
3731   // C++0x [over.ics.rank]p3b4:
3732   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3733   //      implicit object parameter of a non-static member function declared
3734   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3735   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3736   //      lvalue reference to a function lvalue and S2 binds an rvalue
3737   //      reference*.
3738   //
3739   // FIXME: Rvalue references. We're going rogue with the above edits,
3740   // because the semantics in the current C++0x working paper (N3225 at the
3741   // time of this writing) break the standard definition of std::forward
3742   // and std::reference_wrapper when dealing with references to functions.
3743   // Proposed wording changes submitted to CWG for consideration.
3744   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3745       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3746     return false;
3747 
3748   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3749           SCS2.IsLvalueReference) ||
3750          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3751           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3752 }
3753 
3754 /// CompareStandardConversionSequences - Compare two standard
3755 /// conversion sequences to determine whether one is better than the
3756 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3757 static ImplicitConversionSequence::CompareKind
3758 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3759                                    const StandardConversionSequence& SCS1,
3760                                    const StandardConversionSequence& SCS2)
3761 {
3762   // Standard conversion sequence S1 is a better conversion sequence
3763   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3764 
3765   //  -- S1 is a proper subsequence of S2 (comparing the conversion
3766   //     sequences in the canonical form defined by 13.3.3.1.1,
3767   //     excluding any Lvalue Transformation; the identity conversion
3768   //     sequence is considered to be a subsequence of any
3769   //     non-identity conversion sequence) or, if not that,
3770   if (ImplicitConversionSequence::CompareKind CK
3771         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3772     return CK;
3773 
3774   //  -- the rank of S1 is better than the rank of S2 (by the rules
3775   //     defined below), or, if not that,
3776   ImplicitConversionRank Rank1 = SCS1.getRank();
3777   ImplicitConversionRank Rank2 = SCS2.getRank();
3778   if (Rank1 < Rank2)
3779     return ImplicitConversionSequence::Better;
3780   else if (Rank2 < Rank1)
3781     return ImplicitConversionSequence::Worse;
3782 
3783   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3784   // are indistinguishable unless one of the following rules
3785   // applies:
3786 
3787   //   A conversion that is not a conversion of a pointer, or
3788   //   pointer to member, to bool is better than another conversion
3789   //   that is such a conversion.
3790   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3791     return SCS2.isPointerConversionToBool()
3792              ? ImplicitConversionSequence::Better
3793              : ImplicitConversionSequence::Worse;
3794 
3795   // C++ [over.ics.rank]p4b2:
3796   //
3797   //   If class B is derived directly or indirectly from class A,
3798   //   conversion of B* to A* is better than conversion of B* to
3799   //   void*, and conversion of A* to void* is better than conversion
3800   //   of B* to void*.
3801   bool SCS1ConvertsToVoid
3802     = SCS1.isPointerConversionToVoidPointer(S.Context);
3803   bool SCS2ConvertsToVoid
3804     = SCS2.isPointerConversionToVoidPointer(S.Context);
3805   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3806     // Exactly one of the conversion sequences is a conversion to
3807     // a void pointer; it's the worse conversion.
3808     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3809                               : ImplicitConversionSequence::Worse;
3810   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3811     // Neither conversion sequence converts to a void pointer; compare
3812     // their derived-to-base conversions.
3813     if (ImplicitConversionSequence::CompareKind DerivedCK
3814           = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3815       return DerivedCK;
3816   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3817              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3818     // Both conversion sequences are conversions to void
3819     // pointers. Compare the source types to determine if there's an
3820     // inheritance relationship in their sources.
3821     QualType FromType1 = SCS1.getFromType();
3822     QualType FromType2 = SCS2.getFromType();
3823 
3824     // Adjust the types we're converting from via the array-to-pointer
3825     // conversion, if we need to.
3826     if (SCS1.First == ICK_Array_To_Pointer)
3827       FromType1 = S.Context.getArrayDecayedType(FromType1);
3828     if (SCS2.First == ICK_Array_To_Pointer)
3829       FromType2 = S.Context.getArrayDecayedType(FromType2);
3830 
3831     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3832     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3833 
3834     if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3835       return ImplicitConversionSequence::Better;
3836     else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3837       return ImplicitConversionSequence::Worse;
3838 
3839     // Objective-C++: If one interface is more specific than the
3840     // other, it is the better one.
3841     const ObjCObjectPointerType* FromObjCPtr1
3842       = FromType1->getAs<ObjCObjectPointerType>();
3843     const ObjCObjectPointerType* FromObjCPtr2
3844       = FromType2->getAs<ObjCObjectPointerType>();
3845     if (FromObjCPtr1 && FromObjCPtr2) {
3846       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3847                                                           FromObjCPtr2);
3848       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3849                                                            FromObjCPtr1);
3850       if (AssignLeft != AssignRight) {
3851         return AssignLeft? ImplicitConversionSequence::Better
3852                          : ImplicitConversionSequence::Worse;
3853       }
3854     }
3855   }
3856 
3857   // Compare based on qualification conversions (C++ 13.3.3.2p3,
3858   // bullet 3).
3859   if (ImplicitConversionSequence::CompareKind QualCK
3860         = CompareQualificationConversions(S, SCS1, SCS2))
3861     return QualCK;
3862 
3863   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3864     // Check for a better reference binding based on the kind of bindings.
3865     if (isBetterReferenceBindingKind(SCS1, SCS2))
3866       return ImplicitConversionSequence::Better;
3867     else if (isBetterReferenceBindingKind(SCS2, SCS1))
3868       return ImplicitConversionSequence::Worse;
3869 
3870     // C++ [over.ics.rank]p3b4:
3871     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3872     //      which the references refer are the same type except for
3873     //      top-level cv-qualifiers, and the type to which the reference
3874     //      initialized by S2 refers is more cv-qualified than the type
3875     //      to which the reference initialized by S1 refers.
3876     QualType T1 = SCS1.getToType(2);
3877     QualType T2 = SCS2.getToType(2);
3878     T1 = S.Context.getCanonicalType(T1);
3879     T2 = S.Context.getCanonicalType(T2);
3880     Qualifiers T1Quals, T2Quals;
3881     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3882     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3883     if (UnqualT1 == UnqualT2) {
3884       // Objective-C++ ARC: If the references refer to objects with different
3885       // lifetimes, prefer bindings that don't change lifetime.
3886       if (SCS1.ObjCLifetimeConversionBinding !=
3887                                           SCS2.ObjCLifetimeConversionBinding) {
3888         return SCS1.ObjCLifetimeConversionBinding
3889                                            ? ImplicitConversionSequence::Worse
3890                                            : ImplicitConversionSequence::Better;
3891       }
3892 
3893       // If the type is an array type, promote the element qualifiers to the
3894       // type for comparison.
3895       if (isa<ArrayType>(T1) && T1Quals)
3896         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3897       if (isa<ArrayType>(T2) && T2Quals)
3898         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3899       if (T2.isMoreQualifiedThan(T1))
3900         return ImplicitConversionSequence::Better;
3901       else if (T1.isMoreQualifiedThan(T2))
3902         return ImplicitConversionSequence::Worse;
3903     }
3904   }
3905 
3906   // In Microsoft mode, prefer an integral conversion to a
3907   // floating-to-integral conversion if the integral conversion
3908   // is between types of the same size.
3909   // For example:
3910   // void f(float);
3911   // void f(int);
3912   // int main {
3913   //    long a;
3914   //    f(a);
3915   // }
3916   // Here, MSVC will call f(int) instead of generating a compile error
3917   // as clang will do in standard mode.
3918   if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3919       SCS2.Second == ICK_Floating_Integral &&
3920       S.Context.getTypeSize(SCS1.getFromType()) ==
3921           S.Context.getTypeSize(SCS1.getToType(2)))
3922     return ImplicitConversionSequence::Better;
3923 
3924   // Prefer a compatible vector conversion over a lax vector conversion
3925   // For example:
3926   //
3927   // typedef float __v4sf __attribute__((__vector_size__(16)));
3928   // void f(vector float);
3929   // void f(vector signed int);
3930   // int main() {
3931   //   __v4sf a;
3932   //   f(a);
3933   // }
3934   // Here, we'd like to choose f(vector float) and not
3935   // report an ambiguous call error
3936   if (SCS1.Second == ICK_Vector_Conversion &&
3937       SCS2.Second == ICK_Vector_Conversion) {
3938     bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3939         SCS1.getFromType(), SCS1.getToType(2));
3940     bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3941         SCS2.getFromType(), SCS2.getToType(2));
3942 
3943     if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
3944       return SCS1IsCompatibleVectorConversion
3945                  ? ImplicitConversionSequence::Better
3946                  : ImplicitConversionSequence::Worse;
3947   }
3948 
3949   return ImplicitConversionSequence::Indistinguishable;
3950 }
3951 
3952 /// CompareQualificationConversions - Compares two standard conversion
3953 /// sequences to determine whether they can be ranked based on their
3954 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3955 static ImplicitConversionSequence::CompareKind
3956 CompareQualificationConversions(Sema &S,
3957                                 const StandardConversionSequence& SCS1,
3958                                 const StandardConversionSequence& SCS2) {
3959   // C++ 13.3.3.2p3:
3960   //  -- S1 and S2 differ only in their qualification conversion and
3961   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3962   //     cv-qualification signature of type T1 is a proper subset of
3963   //     the cv-qualification signature of type T2, and S1 is not the
3964   //     deprecated string literal array-to-pointer conversion (4.2).
3965   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3966       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3967     return ImplicitConversionSequence::Indistinguishable;
3968 
3969   // FIXME: the example in the standard doesn't use a qualification
3970   // conversion (!)
3971   QualType T1 = SCS1.getToType(2);
3972   QualType T2 = SCS2.getToType(2);
3973   T1 = S.Context.getCanonicalType(T1);
3974   T2 = S.Context.getCanonicalType(T2);
3975   Qualifiers T1Quals, T2Quals;
3976   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3977   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3978 
3979   // If the types are the same, we won't learn anything by unwrapped
3980   // them.
3981   if (UnqualT1 == UnqualT2)
3982     return ImplicitConversionSequence::Indistinguishable;
3983 
3984   // If the type is an array type, promote the element qualifiers to the type
3985   // for comparison.
3986   if (isa<ArrayType>(T1) && T1Quals)
3987     T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3988   if (isa<ArrayType>(T2) && T2Quals)
3989     T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3990 
3991   ImplicitConversionSequence::CompareKind Result
3992     = ImplicitConversionSequence::Indistinguishable;
3993 
3994   // Objective-C++ ARC:
3995   //   Prefer qualification conversions not involving a change in lifetime
3996   //   to qualification conversions that do not change lifetime.
3997   if (SCS1.QualificationIncludesObjCLifetime !=
3998                                       SCS2.QualificationIncludesObjCLifetime) {
3999     Result = SCS1.QualificationIncludesObjCLifetime
4000                ? ImplicitConversionSequence::Worse
4001                : ImplicitConversionSequence::Better;
4002   }
4003 
4004   while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4005     // Within each iteration of the loop, we check the qualifiers to
4006     // determine if this still looks like a qualification
4007     // conversion. Then, if all is well, we unwrap one more level of
4008     // pointers or pointers-to-members and do it all again
4009     // until there are no more pointers or pointers-to-members left
4010     // to unwrap. This essentially mimics what
4011     // IsQualificationConversion does, but here we're checking for a
4012     // strict subset of qualifiers.
4013     if (T1.getQualifiers().withoutObjCLifetime() ==
4014         T2.getQualifiers().withoutObjCLifetime())
4015       // The qualifiers are the same, so this doesn't tell us anything
4016       // about how the sequences rank.
4017       // ObjC ownership quals are omitted above as they interfere with
4018       // the ARC overload rule.
4019       ;
4020     else if (T2.isMoreQualifiedThan(T1)) {
4021       // T1 has fewer qualifiers, so it could be the better sequence.
4022       if (Result == ImplicitConversionSequence::Worse)
4023         // Neither has qualifiers that are a subset of the other's
4024         // qualifiers.
4025         return ImplicitConversionSequence::Indistinguishable;
4026 
4027       Result = ImplicitConversionSequence::Better;
4028     } else if (T1.isMoreQualifiedThan(T2)) {
4029       // T2 has fewer qualifiers, so it could be the better sequence.
4030       if (Result == ImplicitConversionSequence::Better)
4031         // Neither has qualifiers that are a subset of the other's
4032         // qualifiers.
4033         return ImplicitConversionSequence::Indistinguishable;
4034 
4035       Result = ImplicitConversionSequence::Worse;
4036     } else {
4037       // Qualifiers are disjoint.
4038       return ImplicitConversionSequence::Indistinguishable;
4039     }
4040 
4041     // If the types after this point are equivalent, we're done.
4042     if (S.Context.hasSameUnqualifiedType(T1, T2))
4043       break;
4044   }
4045 
4046   // Check that the winning standard conversion sequence isn't using
4047   // the deprecated string literal array to pointer conversion.
4048   switch (Result) {
4049   case ImplicitConversionSequence::Better:
4050     if (SCS1.DeprecatedStringLiteralToCharPtr)
4051       Result = ImplicitConversionSequence::Indistinguishable;
4052     break;
4053 
4054   case ImplicitConversionSequence::Indistinguishable:
4055     break;
4056 
4057   case ImplicitConversionSequence::Worse:
4058     if (SCS2.DeprecatedStringLiteralToCharPtr)
4059       Result = ImplicitConversionSequence::Indistinguishable;
4060     break;
4061   }
4062 
4063   return Result;
4064 }
4065 
4066 /// CompareDerivedToBaseConversions - Compares two standard conversion
4067 /// sequences to determine whether they can be ranked based on their
4068 /// various kinds of derived-to-base conversions (C++
4069 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
4070 /// conversions between Objective-C interface types.
4071 static ImplicitConversionSequence::CompareKind
4072 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4073                                 const StandardConversionSequence& SCS1,
4074                                 const StandardConversionSequence& SCS2) {
4075   QualType FromType1 = SCS1.getFromType();
4076   QualType ToType1 = SCS1.getToType(1);
4077   QualType FromType2 = SCS2.getFromType();
4078   QualType ToType2 = SCS2.getToType(1);
4079 
4080   // Adjust the types we're converting from via the array-to-pointer
4081   // conversion, if we need to.
4082   if (SCS1.First == ICK_Array_To_Pointer)
4083     FromType1 = S.Context.getArrayDecayedType(FromType1);
4084   if (SCS2.First == ICK_Array_To_Pointer)
4085     FromType2 = S.Context.getArrayDecayedType(FromType2);
4086 
4087   // Canonicalize all of the types.
4088   FromType1 = S.Context.getCanonicalType(FromType1);
4089   ToType1 = S.Context.getCanonicalType(ToType1);
4090   FromType2 = S.Context.getCanonicalType(FromType2);
4091   ToType2 = S.Context.getCanonicalType(ToType2);
4092 
4093   // C++ [over.ics.rank]p4b3:
4094   //
4095   //   If class B is derived directly or indirectly from class A and
4096   //   class C is derived directly or indirectly from B,
4097   //
4098   // Compare based on pointer conversions.
4099   if (SCS1.Second == ICK_Pointer_Conversion &&
4100       SCS2.Second == ICK_Pointer_Conversion &&
4101       /*FIXME: Remove if Objective-C id conversions get their own rank*/
4102       FromType1->isPointerType() && FromType2->isPointerType() &&
4103       ToType1->isPointerType() && ToType2->isPointerType()) {
4104     QualType FromPointee1
4105       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4106     QualType ToPointee1
4107       = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4108     QualType FromPointee2
4109       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4110     QualType ToPointee2
4111       = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4112 
4113     //   -- conversion of C* to B* is better than conversion of C* to A*,
4114     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4115       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4116         return ImplicitConversionSequence::Better;
4117       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4118         return ImplicitConversionSequence::Worse;
4119     }
4120 
4121     //   -- conversion of B* to A* is better than conversion of C* to A*,
4122     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4123       if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4124         return ImplicitConversionSequence::Better;
4125       else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4126         return ImplicitConversionSequence::Worse;
4127     }
4128   } else if (SCS1.Second == ICK_Pointer_Conversion &&
4129              SCS2.Second == ICK_Pointer_Conversion) {
4130     const ObjCObjectPointerType *FromPtr1
4131       = FromType1->getAs<ObjCObjectPointerType>();
4132     const ObjCObjectPointerType *FromPtr2
4133       = FromType2->getAs<ObjCObjectPointerType>();
4134     const ObjCObjectPointerType *ToPtr1
4135       = ToType1->getAs<ObjCObjectPointerType>();
4136     const ObjCObjectPointerType *ToPtr2
4137       = ToType2->getAs<ObjCObjectPointerType>();
4138 
4139     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4140       // Apply the same conversion ranking rules for Objective-C pointer types
4141       // that we do for C++ pointers to class types. However, we employ the
4142       // Objective-C pseudo-subtyping relationship used for assignment of
4143       // Objective-C pointer types.
4144       bool FromAssignLeft
4145         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4146       bool FromAssignRight
4147         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4148       bool ToAssignLeft
4149         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4150       bool ToAssignRight
4151         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4152 
4153       // A conversion to an a non-id object pointer type or qualified 'id'
4154       // type is better than a conversion to 'id'.
4155       if (ToPtr1->isObjCIdType() &&
4156           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4157         return ImplicitConversionSequence::Worse;
4158       if (ToPtr2->isObjCIdType() &&
4159           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4160         return ImplicitConversionSequence::Better;
4161 
4162       // A conversion to a non-id object pointer type is better than a
4163       // conversion to a qualified 'id' type
4164       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4165         return ImplicitConversionSequence::Worse;
4166       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4167         return ImplicitConversionSequence::Better;
4168 
4169       // A conversion to an a non-Class object pointer type or qualified 'Class'
4170       // type is better than a conversion to 'Class'.
4171       if (ToPtr1->isObjCClassType() &&
4172           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4173         return ImplicitConversionSequence::Worse;
4174       if (ToPtr2->isObjCClassType() &&
4175           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4176         return ImplicitConversionSequence::Better;
4177 
4178       // A conversion to a non-Class object pointer type is better than a
4179       // conversion to a qualified 'Class' type.
4180       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4181         return ImplicitConversionSequence::Worse;
4182       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4183         return ImplicitConversionSequence::Better;
4184 
4185       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
4186       if (S.Context.hasSameType(FromType1, FromType2) &&
4187           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4188           (ToAssignLeft != ToAssignRight)) {
4189         if (FromPtr1->isSpecialized()) {
4190           // "conversion of B<A> * to B * is better than conversion of B * to
4191           // C *.
4192           bool IsFirstSame =
4193               FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4194           bool IsSecondSame =
4195               FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4196           if (IsFirstSame) {
4197             if (!IsSecondSame)
4198               return ImplicitConversionSequence::Better;
4199           } else if (IsSecondSame)
4200             return ImplicitConversionSequence::Worse;
4201         }
4202         return ToAssignLeft? ImplicitConversionSequence::Worse
4203                            : ImplicitConversionSequence::Better;
4204       }
4205 
4206       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
4207       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4208           (FromAssignLeft != FromAssignRight))
4209         return FromAssignLeft? ImplicitConversionSequence::Better
4210         : ImplicitConversionSequence::Worse;
4211     }
4212   }
4213 
4214   // Ranking of member-pointer types.
4215   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4216       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4217       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4218     const MemberPointerType * FromMemPointer1 =
4219                                         FromType1->getAs<MemberPointerType>();
4220     const MemberPointerType * ToMemPointer1 =
4221                                           ToType1->getAs<MemberPointerType>();
4222     const MemberPointerType * FromMemPointer2 =
4223                                           FromType2->getAs<MemberPointerType>();
4224     const MemberPointerType * ToMemPointer2 =
4225                                           ToType2->getAs<MemberPointerType>();
4226     const Type *FromPointeeType1 = FromMemPointer1->getClass();
4227     const Type *ToPointeeType1 = ToMemPointer1->getClass();
4228     const Type *FromPointeeType2 = FromMemPointer2->getClass();
4229     const Type *ToPointeeType2 = ToMemPointer2->getClass();
4230     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4231     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4232     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4233     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4234     // conversion of A::* to B::* is better than conversion of A::* to C::*,
4235     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4236       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4237         return ImplicitConversionSequence::Worse;
4238       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4239         return ImplicitConversionSequence::Better;
4240     }
4241     // conversion of B::* to C::* is better than conversion of A::* to C::*
4242     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4243       if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4244         return ImplicitConversionSequence::Better;
4245       else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4246         return ImplicitConversionSequence::Worse;
4247     }
4248   }
4249 
4250   if (SCS1.Second == ICK_Derived_To_Base) {
4251     //   -- conversion of C to B is better than conversion of C to A,
4252     //   -- binding of an expression of type C to a reference of type
4253     //      B& is better than binding an expression of type C to a
4254     //      reference of type A&,
4255     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4256         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4257       if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4258         return ImplicitConversionSequence::Better;
4259       else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4260         return ImplicitConversionSequence::Worse;
4261     }
4262 
4263     //   -- conversion of B to A is better than conversion of C to A.
4264     //   -- binding of an expression of type B to a reference of type
4265     //      A& is better than binding an expression of type C to a
4266     //      reference of type A&,
4267     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4268         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4269       if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4270         return ImplicitConversionSequence::Better;
4271       else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4272         return ImplicitConversionSequence::Worse;
4273     }
4274   }
4275 
4276   return ImplicitConversionSequence::Indistinguishable;
4277 }
4278 
4279 /// Determine whether the given type is valid, e.g., it is not an invalid
4280 /// C++ class.
4281 static bool isTypeValid(QualType T) {
4282   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4283     return !Record->isInvalidDecl();
4284 
4285   return true;
4286 }
4287 
4288 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4289 /// determine whether they are reference-related,
4290 /// reference-compatible, reference-compatible with added
4291 /// qualification, or incompatible, for use in C++ initialization by
4292 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4293 /// type, and the first type (T1) is the pointee type of the reference
4294 /// type being initialized.
4295 Sema::ReferenceCompareResult
4296 Sema::CompareReferenceRelationship(SourceLocation Loc,
4297                                    QualType OrigT1, QualType OrigT2,
4298                                    bool &DerivedToBase,
4299                                    bool &ObjCConversion,
4300                                    bool &ObjCLifetimeConversion) {
4301   assert(!OrigT1->isReferenceType() &&
4302     "T1 must be the pointee type of the reference type");
4303   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4304 
4305   QualType T1 = Context.getCanonicalType(OrigT1);
4306   QualType T2 = Context.getCanonicalType(OrigT2);
4307   Qualifiers T1Quals, T2Quals;
4308   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4309   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4310 
4311   // C++ [dcl.init.ref]p4:
4312   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4313   //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4314   //   T1 is a base class of T2.
4315   DerivedToBase = false;
4316   ObjCConversion = false;
4317   ObjCLifetimeConversion = false;
4318   QualType ConvertedT2;
4319   if (UnqualT1 == UnqualT2) {
4320     // Nothing to do.
4321   } else if (isCompleteType(Loc, OrigT2) &&
4322              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4323              IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4324     DerivedToBase = true;
4325   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4326            UnqualT2->isObjCObjectOrInterfaceType() &&
4327            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4328     ObjCConversion = true;
4329   else if (UnqualT2->isFunctionType() &&
4330            IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2))
4331     // C++1z [dcl.init.ref]p4:
4332     //   cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept
4333     //   function" and T1 is "function"
4334     //
4335     // We extend this to also apply to 'noreturn', so allow any function
4336     // conversion between function types.
4337     return Ref_Compatible;
4338   else
4339     return Ref_Incompatible;
4340 
4341   // At this point, we know that T1 and T2 are reference-related (at
4342   // least).
4343 
4344   // If the type is an array type, promote the element qualifiers to the type
4345   // for comparison.
4346   if (isa<ArrayType>(T1) && T1Quals)
4347     T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4348   if (isa<ArrayType>(T2) && T2Quals)
4349     T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4350 
4351   // C++ [dcl.init.ref]p4:
4352   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4353   //   reference-related to T2 and cv1 is the same cv-qualification
4354   //   as, or greater cv-qualification than, cv2. For purposes of
4355   //   overload resolution, cases for which cv1 is greater
4356   //   cv-qualification than cv2 are identified as
4357   //   reference-compatible with added qualification (see 13.3.3.2).
4358   //
4359   // Note that we also require equivalence of Objective-C GC and address-space
4360   // qualifiers when performing these computations, so that e.g., an int in
4361   // address space 1 is not reference-compatible with an int in address
4362   // space 2.
4363   if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4364       T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4365     if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4366       ObjCLifetimeConversion = true;
4367 
4368     T1Quals.removeObjCLifetime();
4369     T2Quals.removeObjCLifetime();
4370   }
4371 
4372   // MS compiler ignores __unaligned qualifier for references; do the same.
4373   T1Quals.removeUnaligned();
4374   T2Quals.removeUnaligned();
4375 
4376   if (T1Quals.compatiblyIncludes(T2Quals))
4377     return Ref_Compatible;
4378   else
4379     return Ref_Related;
4380 }
4381 
4382 /// Look for a user-defined conversion to a value reference-compatible
4383 ///        with DeclType. Return true if something definite is found.
4384 static bool
4385 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4386                          QualType DeclType, SourceLocation DeclLoc,
4387                          Expr *Init, QualType T2, bool AllowRvalues,
4388                          bool AllowExplicit) {
4389   assert(T2->isRecordType() && "Can only find conversions of record types.");
4390   CXXRecordDecl *T2RecordDecl
4391     = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4392 
4393   OverloadCandidateSet CandidateSet(
4394       DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4395   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4396   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4397     NamedDecl *D = *I;
4398     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4399     if (isa<UsingShadowDecl>(D))
4400       D = cast<UsingShadowDecl>(D)->getTargetDecl();
4401 
4402     FunctionTemplateDecl *ConvTemplate
4403       = dyn_cast<FunctionTemplateDecl>(D);
4404     CXXConversionDecl *Conv;
4405     if (ConvTemplate)
4406       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4407     else
4408       Conv = cast<CXXConversionDecl>(D);
4409 
4410     // If this is an explicit conversion, and we're not allowed to consider
4411     // explicit conversions, skip it.
4412     if (!AllowExplicit && Conv->isExplicit())
4413       continue;
4414 
4415     if (AllowRvalues) {
4416       bool DerivedToBase = false;
4417       bool ObjCConversion = false;
4418       bool ObjCLifetimeConversion = false;
4419 
4420       // If we are initializing an rvalue reference, don't permit conversion
4421       // functions that return lvalues.
4422       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4423         const ReferenceType *RefType
4424           = Conv->getConversionType()->getAs<LValueReferenceType>();
4425         if (RefType && !RefType->getPointeeType()->isFunctionType())
4426           continue;
4427       }
4428 
4429       if (!ConvTemplate &&
4430           S.CompareReferenceRelationship(
4431             DeclLoc,
4432             Conv->getConversionType().getNonReferenceType()
4433               .getUnqualifiedType(),
4434             DeclType.getNonReferenceType().getUnqualifiedType(),
4435             DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4436           Sema::Ref_Incompatible)
4437         continue;
4438     } else {
4439       // If the conversion function doesn't return a reference type,
4440       // it can't be considered for this conversion. An rvalue reference
4441       // is only acceptable if its referencee is a function type.
4442 
4443       const ReferenceType *RefType =
4444         Conv->getConversionType()->getAs<ReferenceType>();
4445       if (!RefType ||
4446           (!RefType->isLValueReferenceType() &&
4447            !RefType->getPointeeType()->isFunctionType()))
4448         continue;
4449     }
4450 
4451     if (ConvTemplate)
4452       S.AddTemplateConversionCandidate(
4453           ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4454           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4455     else
4456       S.AddConversionCandidate(
4457           Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4458           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4459   }
4460 
4461   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4462 
4463   OverloadCandidateSet::iterator Best;
4464   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4465   case OR_Success:
4466     // C++ [over.ics.ref]p1:
4467     //
4468     //   [...] If the parameter binds directly to the result of
4469     //   applying a conversion function to the argument
4470     //   expression, the implicit conversion sequence is a
4471     //   user-defined conversion sequence (13.3.3.1.2), with the
4472     //   second standard conversion sequence either an identity
4473     //   conversion or, if the conversion function returns an
4474     //   entity of a type that is a derived class of the parameter
4475     //   type, a derived-to-base Conversion.
4476     if (!Best->FinalConversion.DirectBinding)
4477       return false;
4478 
4479     ICS.setUserDefined();
4480     ICS.UserDefined.Before = Best->Conversions[0].Standard;
4481     ICS.UserDefined.After = Best->FinalConversion;
4482     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4483     ICS.UserDefined.ConversionFunction = Best->Function;
4484     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4485     ICS.UserDefined.EllipsisConversion = false;
4486     assert(ICS.UserDefined.After.ReferenceBinding &&
4487            ICS.UserDefined.After.DirectBinding &&
4488            "Expected a direct reference binding!");
4489     return true;
4490 
4491   case OR_Ambiguous:
4492     ICS.setAmbiguous();
4493     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4494          Cand != CandidateSet.end(); ++Cand)
4495       if (Cand->Viable)
4496         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4497     return true;
4498 
4499   case OR_No_Viable_Function:
4500   case OR_Deleted:
4501     // There was no suitable conversion, or we found a deleted
4502     // conversion; continue with other checks.
4503     return false;
4504   }
4505 
4506   llvm_unreachable("Invalid OverloadResult!");
4507 }
4508 
4509 /// Compute an implicit conversion sequence for reference
4510 /// initialization.
4511 static ImplicitConversionSequence
4512 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4513                  SourceLocation DeclLoc,
4514                  bool SuppressUserConversions,
4515                  bool AllowExplicit) {
4516   assert(DeclType->isReferenceType() && "Reference init needs a reference");
4517 
4518   // Most paths end in a failed conversion.
4519   ImplicitConversionSequence ICS;
4520   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4521 
4522   QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4523   QualType T2 = Init->getType();
4524 
4525   // If the initializer is the address of an overloaded function, try
4526   // to resolve the overloaded function. If all goes well, T2 is the
4527   // type of the resulting function.
4528   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4529     DeclAccessPair Found;
4530     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4531                                                                 false, Found))
4532       T2 = Fn->getType();
4533   }
4534 
4535   // Compute some basic properties of the types and the initializer.
4536   bool isRValRef = DeclType->isRValueReferenceType();
4537   bool DerivedToBase = false;
4538   bool ObjCConversion = false;
4539   bool ObjCLifetimeConversion = false;
4540   Expr::Classification InitCategory = Init->Classify(S.Context);
4541   Sema::ReferenceCompareResult RefRelationship
4542     = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4543                                      ObjCConversion, ObjCLifetimeConversion);
4544 
4545 
4546   // C++0x [dcl.init.ref]p5:
4547   //   A reference to type "cv1 T1" is initialized by an expression
4548   //   of type "cv2 T2" as follows:
4549 
4550   //     -- If reference is an lvalue reference and the initializer expression
4551   if (!isRValRef) {
4552     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4553     //        reference-compatible with "cv2 T2," or
4554     //
4555     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4556     if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4557       // C++ [over.ics.ref]p1:
4558       //   When a parameter of reference type binds directly (8.5.3)
4559       //   to an argument expression, the implicit conversion sequence
4560       //   is the identity conversion, unless the argument expression
4561       //   has a type that is a derived class of the parameter type,
4562       //   in which case the implicit conversion sequence is a
4563       //   derived-to-base Conversion (13.3.3.1).
4564       ICS.setStandard();
4565       ICS.Standard.First = ICK_Identity;
4566       ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4567                          : ObjCConversion? ICK_Compatible_Conversion
4568                          : ICK_Identity;
4569       ICS.Standard.Third = ICK_Identity;
4570       ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4571       ICS.Standard.setToType(0, T2);
4572       ICS.Standard.setToType(1, T1);
4573       ICS.Standard.setToType(2, T1);
4574       ICS.Standard.ReferenceBinding = true;
4575       ICS.Standard.DirectBinding = true;
4576       ICS.Standard.IsLvalueReference = !isRValRef;
4577       ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4578       ICS.Standard.BindsToRvalue = false;
4579       ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4580       ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4581       ICS.Standard.CopyConstructor = nullptr;
4582       ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4583 
4584       // Nothing more to do: the inaccessibility/ambiguity check for
4585       // derived-to-base conversions is suppressed when we're
4586       // computing the implicit conversion sequence (C++
4587       // [over.best.ics]p2).
4588       return ICS;
4589     }
4590 
4591     //       -- has a class type (i.e., T2 is a class type), where T1 is
4592     //          not reference-related to T2, and can be implicitly
4593     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4594     //          is reference-compatible with "cv3 T3" 92) (this
4595     //          conversion is selected by enumerating the applicable
4596     //          conversion functions (13.3.1.6) and choosing the best
4597     //          one through overload resolution (13.3)),
4598     if (!SuppressUserConversions && T2->isRecordType() &&
4599         S.isCompleteType(DeclLoc, T2) &&
4600         RefRelationship == Sema::Ref_Incompatible) {
4601       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4602                                    Init, T2, /*AllowRvalues=*/false,
4603                                    AllowExplicit))
4604         return ICS;
4605     }
4606   }
4607 
4608   //     -- Otherwise, the reference shall be an lvalue reference to a
4609   //        non-volatile const type (i.e., cv1 shall be const), or the reference
4610   //        shall be an rvalue reference.
4611   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4612     return ICS;
4613 
4614   //       -- If the initializer expression
4615   //
4616   //            -- is an xvalue, class prvalue, array prvalue or function
4617   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4618   if (RefRelationship == Sema::Ref_Compatible &&
4619       (InitCategory.isXValue() ||
4620        (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4621        (InitCategory.isLValue() && T2->isFunctionType()))) {
4622     ICS.setStandard();
4623     ICS.Standard.First = ICK_Identity;
4624     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4625                       : ObjCConversion? ICK_Compatible_Conversion
4626                       : ICK_Identity;
4627     ICS.Standard.Third = ICK_Identity;
4628     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4629     ICS.Standard.setToType(0, T2);
4630     ICS.Standard.setToType(1, T1);
4631     ICS.Standard.setToType(2, T1);
4632     ICS.Standard.ReferenceBinding = true;
4633     // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4634     // binding unless we're binding to a class prvalue.
4635     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4636     // allow the use of rvalue references in C++98/03 for the benefit of
4637     // standard library implementors; therefore, we need the xvalue check here.
4638     ICS.Standard.DirectBinding =
4639       S.getLangOpts().CPlusPlus11 ||
4640       !(InitCategory.isPRValue() || T2->isRecordType());
4641     ICS.Standard.IsLvalueReference = !isRValRef;
4642     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4643     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4644     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4645     ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4646     ICS.Standard.CopyConstructor = nullptr;
4647     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4648     return ICS;
4649   }
4650 
4651   //            -- has a class type (i.e., T2 is a class type), where T1 is not
4652   //               reference-related to T2, and can be implicitly converted to
4653   //               an xvalue, class prvalue, or function lvalue of type
4654   //               "cv3 T3", where "cv1 T1" is reference-compatible with
4655   //               "cv3 T3",
4656   //
4657   //          then the reference is bound to the value of the initializer
4658   //          expression in the first case and to the result of the conversion
4659   //          in the second case (or, in either case, to an appropriate base
4660   //          class subobject).
4661   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4662       T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4663       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4664                                Init, T2, /*AllowRvalues=*/true,
4665                                AllowExplicit)) {
4666     // In the second case, if the reference is an rvalue reference
4667     // and the second standard conversion sequence of the
4668     // user-defined conversion sequence includes an lvalue-to-rvalue
4669     // conversion, the program is ill-formed.
4670     if (ICS.isUserDefined() && isRValRef &&
4671         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4672       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4673 
4674     return ICS;
4675   }
4676 
4677   // A temporary of function type cannot be created; don't even try.
4678   if (T1->isFunctionType())
4679     return ICS;
4680 
4681   //       -- Otherwise, a temporary of type "cv1 T1" is created and
4682   //          initialized from the initializer expression using the
4683   //          rules for a non-reference copy initialization (8.5). The
4684   //          reference is then bound to the temporary. If T1 is
4685   //          reference-related to T2, cv1 must be the same
4686   //          cv-qualification as, or greater cv-qualification than,
4687   //          cv2; otherwise, the program is ill-formed.
4688   if (RefRelationship == Sema::Ref_Related) {
4689     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4690     // we would be reference-compatible or reference-compatible with
4691     // added qualification. But that wasn't the case, so the reference
4692     // initialization fails.
4693     //
4694     // Note that we only want to check address spaces and cvr-qualifiers here.
4695     // ObjC GC, lifetime and unaligned qualifiers aren't important.
4696     Qualifiers T1Quals = T1.getQualifiers();
4697     Qualifiers T2Quals = T2.getQualifiers();
4698     T1Quals.removeObjCGCAttr();
4699     T1Quals.removeObjCLifetime();
4700     T2Quals.removeObjCGCAttr();
4701     T2Quals.removeObjCLifetime();
4702     // MS compiler ignores __unaligned qualifier for references; do the same.
4703     T1Quals.removeUnaligned();
4704     T2Quals.removeUnaligned();
4705     if (!T1Quals.compatiblyIncludes(T2Quals))
4706       return ICS;
4707   }
4708 
4709   // If at least one of the types is a class type, the types are not
4710   // related, and we aren't allowed any user conversions, the
4711   // reference binding fails. This case is important for breaking
4712   // recursion, since TryImplicitConversion below will attempt to
4713   // create a temporary through the use of a copy constructor.
4714   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4715       (T1->isRecordType() || T2->isRecordType()))
4716     return ICS;
4717 
4718   // If T1 is reference-related to T2 and the reference is an rvalue
4719   // reference, the initializer expression shall not be an lvalue.
4720   if (RefRelationship >= Sema::Ref_Related &&
4721       isRValRef && Init->Classify(S.Context).isLValue())
4722     return ICS;
4723 
4724   // C++ [over.ics.ref]p2:
4725   //   When a parameter of reference type is not bound directly to
4726   //   an argument expression, the conversion sequence is the one
4727   //   required to convert the argument expression to the
4728   //   underlying type of the reference according to
4729   //   13.3.3.1. Conceptually, this conversion sequence corresponds
4730   //   to copy-initializing a temporary of the underlying type with
4731   //   the argument expression. Any difference in top-level
4732   //   cv-qualification is subsumed by the initialization itself
4733   //   and does not constitute a conversion.
4734   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4735                               /*AllowExplicit=*/false,
4736                               /*InOverloadResolution=*/false,
4737                               /*CStyle=*/false,
4738                               /*AllowObjCWritebackConversion=*/false,
4739                               /*AllowObjCConversionOnExplicit=*/false);
4740 
4741   // Of course, that's still a reference binding.
4742   if (ICS.isStandard()) {
4743     ICS.Standard.ReferenceBinding = true;
4744     ICS.Standard.IsLvalueReference = !isRValRef;
4745     ICS.Standard.BindsToFunctionLvalue = false;
4746     ICS.Standard.BindsToRvalue = true;
4747     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4748     ICS.Standard.ObjCLifetimeConversionBinding = false;
4749   } else if (ICS.isUserDefined()) {
4750     const ReferenceType *LValRefType =
4751         ICS.UserDefined.ConversionFunction->getReturnType()
4752             ->getAs<LValueReferenceType>();
4753 
4754     // C++ [over.ics.ref]p3:
4755     //   Except for an implicit object parameter, for which see 13.3.1, a
4756     //   standard conversion sequence cannot be formed if it requires [...]
4757     //   binding an rvalue reference to an lvalue other than a function
4758     //   lvalue.
4759     // Note that the function case is not possible here.
4760     if (DeclType->isRValueReferenceType() && LValRefType) {
4761       // FIXME: This is the wrong BadConversionSequence. The problem is binding
4762       // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4763       // reference to an rvalue!
4764       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4765       return ICS;
4766     }
4767 
4768     ICS.UserDefined.After.ReferenceBinding = true;
4769     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4770     ICS.UserDefined.After.BindsToFunctionLvalue = false;
4771     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4772     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4773     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4774   }
4775 
4776   return ICS;
4777 }
4778 
4779 static ImplicitConversionSequence
4780 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4781                       bool SuppressUserConversions,
4782                       bool InOverloadResolution,
4783                       bool AllowObjCWritebackConversion,
4784                       bool AllowExplicit = false);
4785 
4786 /// TryListConversion - Try to copy-initialize a value of type ToType from the
4787 /// initializer list From.
4788 static ImplicitConversionSequence
4789 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4790                   bool SuppressUserConversions,
4791                   bool InOverloadResolution,
4792                   bool AllowObjCWritebackConversion) {
4793   // C++11 [over.ics.list]p1:
4794   //   When an argument is an initializer list, it is not an expression and
4795   //   special rules apply for converting it to a parameter type.
4796 
4797   ImplicitConversionSequence Result;
4798   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4799 
4800   // We need a complete type for what follows. Incomplete types can never be
4801   // initialized from init lists.
4802   if (!S.isCompleteType(From->getBeginLoc(), ToType))
4803     return Result;
4804 
4805   // Per DR1467:
4806   //   If the parameter type is a class X and the initializer list has a single
4807   //   element of type cv U, where U is X or a class derived from X, the
4808   //   implicit conversion sequence is the one required to convert the element
4809   //   to the parameter type.
4810   //
4811   //   Otherwise, if the parameter type is a character array [... ]
4812   //   and the initializer list has a single element that is an
4813   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4814   //   implicit conversion sequence is the identity conversion.
4815   if (From->getNumInits() == 1) {
4816     if (ToType->isRecordType()) {
4817       QualType InitType = From->getInit(0)->getType();
4818       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4819           S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
4820         return TryCopyInitialization(S, From->getInit(0), ToType,
4821                                      SuppressUserConversions,
4822                                      InOverloadResolution,
4823                                      AllowObjCWritebackConversion);
4824     }
4825     // FIXME: Check the other conditions here: array of character type,
4826     // initializer is a string literal.
4827     if (ToType->isArrayType()) {
4828       InitializedEntity Entity =
4829         InitializedEntity::InitializeParameter(S.Context, ToType,
4830                                                /*Consumed=*/false);
4831       if (S.CanPerformCopyInitialization(Entity, From)) {
4832         Result.setStandard();
4833         Result.Standard.setAsIdentityConversion();
4834         Result.Standard.setFromType(ToType);
4835         Result.Standard.setAllToTypes(ToType);
4836         return Result;
4837       }
4838     }
4839   }
4840 
4841   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4842   // C++11 [over.ics.list]p2:
4843   //   If the parameter type is std::initializer_list<X> or "array of X" and
4844   //   all the elements can be implicitly converted to X, the implicit
4845   //   conversion sequence is the worst conversion necessary to convert an
4846   //   element of the list to X.
4847   //
4848   // C++14 [over.ics.list]p3:
4849   //   Otherwise, if the parameter type is "array of N X", if the initializer
4850   //   list has exactly N elements or if it has fewer than N elements and X is
4851   //   default-constructible, and if all the elements of the initializer list
4852   //   can be implicitly converted to X, the implicit conversion sequence is
4853   //   the worst conversion necessary to convert an element of the list to X.
4854   //
4855   // FIXME: We're missing a lot of these checks.
4856   bool toStdInitializerList = false;
4857   QualType X;
4858   if (ToType->isArrayType())
4859     X = S.Context.getAsArrayType(ToType)->getElementType();
4860   else
4861     toStdInitializerList = S.isStdInitializerList(ToType, &X);
4862   if (!X.isNull()) {
4863     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4864       Expr *Init = From->getInit(i);
4865       ImplicitConversionSequence ICS =
4866           TryCopyInitialization(S, Init, X, SuppressUserConversions,
4867                                 InOverloadResolution,
4868                                 AllowObjCWritebackConversion);
4869       // If a single element isn't convertible, fail.
4870       if (ICS.isBad()) {
4871         Result = ICS;
4872         break;
4873       }
4874       // Otherwise, look for the worst conversion.
4875       if (Result.isBad() || CompareImplicitConversionSequences(
4876                                 S, From->getBeginLoc(), ICS, Result) ==
4877                                 ImplicitConversionSequence::Worse)
4878         Result = ICS;
4879     }
4880 
4881     // For an empty list, we won't have computed any conversion sequence.
4882     // Introduce the identity conversion sequence.
4883     if (From->getNumInits() == 0) {
4884       Result.setStandard();
4885       Result.Standard.setAsIdentityConversion();
4886       Result.Standard.setFromType(ToType);
4887       Result.Standard.setAllToTypes(ToType);
4888     }
4889 
4890     Result.setStdInitializerListElement(toStdInitializerList);
4891     return Result;
4892   }
4893 
4894   // C++14 [over.ics.list]p4:
4895   // C++11 [over.ics.list]p3:
4896   //   Otherwise, if the parameter is a non-aggregate class X and overload
4897   //   resolution chooses a single best constructor [...] the implicit
4898   //   conversion sequence is a user-defined conversion sequence. If multiple
4899   //   constructors are viable but none is better than the others, the
4900   //   implicit conversion sequence is a user-defined conversion sequence.
4901   if (ToType->isRecordType() && !ToType->isAggregateType()) {
4902     // This function can deal with initializer lists.
4903     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4904                                     /*AllowExplicit=*/false,
4905                                     InOverloadResolution, /*CStyle=*/false,
4906                                     AllowObjCWritebackConversion,
4907                                     /*AllowObjCConversionOnExplicit=*/false);
4908   }
4909 
4910   // C++14 [over.ics.list]p5:
4911   // C++11 [over.ics.list]p4:
4912   //   Otherwise, if the parameter has an aggregate type which can be
4913   //   initialized from the initializer list [...] the implicit conversion
4914   //   sequence is a user-defined conversion sequence.
4915   if (ToType->isAggregateType()) {
4916     // Type is an aggregate, argument is an init list. At this point it comes
4917     // down to checking whether the initialization works.
4918     // FIXME: Find out whether this parameter is consumed or not.
4919     // FIXME: Expose SemaInit's aggregate initialization code so that we don't
4920     // need to call into the initialization code here; overload resolution
4921     // should not be doing that.
4922     InitializedEntity Entity =
4923         InitializedEntity::InitializeParameter(S.Context, ToType,
4924                                                /*Consumed=*/false);
4925     if (S.CanPerformCopyInitialization(Entity, From)) {
4926       Result.setUserDefined();
4927       Result.UserDefined.Before.setAsIdentityConversion();
4928       // Initializer lists don't have a type.
4929       Result.UserDefined.Before.setFromType(QualType());
4930       Result.UserDefined.Before.setAllToTypes(QualType());
4931 
4932       Result.UserDefined.After.setAsIdentityConversion();
4933       Result.UserDefined.After.setFromType(ToType);
4934       Result.UserDefined.After.setAllToTypes(ToType);
4935       Result.UserDefined.ConversionFunction = nullptr;
4936     }
4937     return Result;
4938   }
4939 
4940   // C++14 [over.ics.list]p6:
4941   // C++11 [over.ics.list]p5:
4942   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4943   if (ToType->isReferenceType()) {
4944     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4945     // mention initializer lists in any way. So we go by what list-
4946     // initialization would do and try to extrapolate from that.
4947 
4948     QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4949 
4950     // If the initializer list has a single element that is reference-related
4951     // to the parameter type, we initialize the reference from that.
4952     if (From->getNumInits() == 1) {
4953       Expr *Init = From->getInit(0);
4954 
4955       QualType T2 = Init->getType();
4956 
4957       // If the initializer is the address of an overloaded function, try
4958       // to resolve the overloaded function. If all goes well, T2 is the
4959       // type of the resulting function.
4960       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4961         DeclAccessPair Found;
4962         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4963                                    Init, ToType, false, Found))
4964           T2 = Fn->getType();
4965       }
4966 
4967       // Compute some basic properties of the types and the initializer.
4968       bool dummy1 = false;
4969       bool dummy2 = false;
4970       bool dummy3 = false;
4971       Sema::ReferenceCompareResult RefRelationship =
4972           S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2, dummy1,
4973                                          dummy2, dummy3);
4974 
4975       if (RefRelationship >= Sema::Ref_Related) {
4976         return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
4977                                 SuppressUserConversions,
4978                                 /*AllowExplicit=*/false);
4979       }
4980     }
4981 
4982     // Otherwise, we bind the reference to a temporary created from the
4983     // initializer list.
4984     Result = TryListConversion(S, From, T1, SuppressUserConversions,
4985                                InOverloadResolution,
4986                                AllowObjCWritebackConversion);
4987     if (Result.isFailure())
4988       return Result;
4989     assert(!Result.isEllipsis() &&
4990            "Sub-initialization cannot result in ellipsis conversion.");
4991 
4992     // Can we even bind to a temporary?
4993     if (ToType->isRValueReferenceType() ||
4994         (T1.isConstQualified() && !T1.isVolatileQualified())) {
4995       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4996                                             Result.UserDefined.After;
4997       SCS.ReferenceBinding = true;
4998       SCS.IsLvalueReference = ToType->isLValueReferenceType();
4999       SCS.BindsToRvalue = true;
5000       SCS.BindsToFunctionLvalue = false;
5001       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5002       SCS.ObjCLifetimeConversionBinding = false;
5003     } else
5004       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5005                     From, ToType);
5006     return Result;
5007   }
5008 
5009   // C++14 [over.ics.list]p7:
5010   // C++11 [over.ics.list]p6:
5011   //   Otherwise, if the parameter type is not a class:
5012   if (!ToType->isRecordType()) {
5013     //    - if the initializer list has one element that is not itself an
5014     //      initializer list, the implicit conversion sequence is the one
5015     //      required to convert the element to the parameter type.
5016     unsigned NumInits = From->getNumInits();
5017     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5018       Result = TryCopyInitialization(S, From->getInit(0), ToType,
5019                                      SuppressUserConversions,
5020                                      InOverloadResolution,
5021                                      AllowObjCWritebackConversion);
5022     //    - if the initializer list has no elements, the implicit conversion
5023     //      sequence is the identity conversion.
5024     else if (NumInits == 0) {
5025       Result.setStandard();
5026       Result.Standard.setAsIdentityConversion();
5027       Result.Standard.setFromType(ToType);
5028       Result.Standard.setAllToTypes(ToType);
5029     }
5030     return Result;
5031   }
5032 
5033   // C++14 [over.ics.list]p8:
5034   // C++11 [over.ics.list]p7:
5035   //   In all cases other than those enumerated above, no conversion is possible
5036   return Result;
5037 }
5038 
5039 /// TryCopyInitialization - Try to copy-initialize a value of type
5040 /// ToType from the expression From. Return the implicit conversion
5041 /// sequence required to pass this argument, which may be a bad
5042 /// conversion sequence (meaning that the argument cannot be passed to
5043 /// a parameter of this type). If @p SuppressUserConversions, then we
5044 /// do not permit any user-defined conversion sequences.
5045 static ImplicitConversionSequence
5046 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5047                       bool SuppressUserConversions,
5048                       bool InOverloadResolution,
5049                       bool AllowObjCWritebackConversion,
5050                       bool AllowExplicit) {
5051   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5052     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5053                              InOverloadResolution,AllowObjCWritebackConversion);
5054 
5055   if (ToType->isReferenceType())
5056     return TryReferenceInit(S, From, ToType,
5057                             /*FIXME:*/ From->getBeginLoc(),
5058                             SuppressUserConversions, AllowExplicit);
5059 
5060   return TryImplicitConversion(S, From, ToType,
5061                                SuppressUserConversions,
5062                                /*AllowExplicit=*/false,
5063                                InOverloadResolution,
5064                                /*CStyle=*/false,
5065                                AllowObjCWritebackConversion,
5066                                /*AllowObjCConversionOnExplicit=*/false);
5067 }
5068 
5069 static bool TryCopyInitialization(const CanQualType FromQTy,
5070                                   const CanQualType ToQTy,
5071                                   Sema &S,
5072                                   SourceLocation Loc,
5073                                   ExprValueKind FromVK) {
5074   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5075   ImplicitConversionSequence ICS =
5076     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5077 
5078   return !ICS.isBad();
5079 }
5080 
5081 /// TryObjectArgumentInitialization - Try to initialize the object
5082 /// parameter of the given member function (@c Method) from the
5083 /// expression @p From.
5084 static ImplicitConversionSequence
5085 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5086                                 Expr::Classification FromClassification,
5087                                 CXXMethodDecl *Method,
5088                                 CXXRecordDecl *ActingContext) {
5089   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5090   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5091   //                 const volatile object.
5092   Qualifiers Quals;
5093   if (isa<CXXDestructorDecl>(Method)) {
5094     Quals.addConst();
5095     Quals.addVolatile();
5096   } else {
5097     Quals = Method->getMethodQualifiers();
5098   }
5099 
5100   QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5101 
5102   // Set up the conversion sequence as a "bad" conversion, to allow us
5103   // to exit early.
5104   ImplicitConversionSequence ICS;
5105 
5106   // We need to have an object of class type.
5107   if (const PointerType *PT = FromType->getAs<PointerType>()) {
5108     FromType = PT->getPointeeType();
5109 
5110     // When we had a pointer, it's implicitly dereferenced, so we
5111     // better have an lvalue.
5112     assert(FromClassification.isLValue());
5113   }
5114 
5115   assert(FromType->isRecordType());
5116 
5117   // C++0x [over.match.funcs]p4:
5118   //   For non-static member functions, the type of the implicit object
5119   //   parameter is
5120   //
5121   //     - "lvalue reference to cv X" for functions declared without a
5122   //        ref-qualifier or with the & ref-qualifier
5123   //     - "rvalue reference to cv X" for functions declared with the &&
5124   //        ref-qualifier
5125   //
5126   // where X is the class of which the function is a member and cv is the
5127   // cv-qualification on the member function declaration.
5128   //
5129   // However, when finding an implicit conversion sequence for the argument, we
5130   // are not allowed to perform user-defined conversions
5131   // (C++ [over.match.funcs]p5). We perform a simplified version of
5132   // reference binding here, that allows class rvalues to bind to
5133   // non-constant references.
5134 
5135   // First check the qualifiers.
5136   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5137   if (ImplicitParamType.getCVRQualifiers()
5138                                     != FromTypeCanon.getLocalCVRQualifiers() &&
5139       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5140     ICS.setBad(BadConversionSequence::bad_qualifiers,
5141                FromType, ImplicitParamType);
5142     return ICS;
5143   }
5144 
5145   if (FromTypeCanon.getQualifiers().hasAddressSpace()) {
5146     Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5147     Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5148     if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5149       ICS.setBad(BadConversionSequence::bad_qualifiers,
5150                  FromType, ImplicitParamType);
5151       return ICS;
5152     }
5153   }
5154 
5155   // Check that we have either the same type or a derived type. It
5156   // affects the conversion rank.
5157   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5158   ImplicitConversionKind SecondKind;
5159   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5160     SecondKind = ICK_Identity;
5161   } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5162     SecondKind = ICK_Derived_To_Base;
5163   else {
5164     ICS.setBad(BadConversionSequence::unrelated_class,
5165                FromType, ImplicitParamType);
5166     return ICS;
5167   }
5168 
5169   // Check the ref-qualifier.
5170   switch (Method->getRefQualifier()) {
5171   case RQ_None:
5172     // Do nothing; we don't care about lvalueness or rvalueness.
5173     break;
5174 
5175   case RQ_LValue:
5176     if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5177       // non-const lvalue reference cannot bind to an rvalue
5178       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5179                  ImplicitParamType);
5180       return ICS;
5181     }
5182     break;
5183 
5184   case RQ_RValue:
5185     if (!FromClassification.isRValue()) {
5186       // rvalue reference cannot bind to an lvalue
5187       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5188                  ImplicitParamType);
5189       return ICS;
5190     }
5191     break;
5192   }
5193 
5194   // Success. Mark this as a reference binding.
5195   ICS.setStandard();
5196   ICS.Standard.setAsIdentityConversion();
5197   ICS.Standard.Second = SecondKind;
5198   ICS.Standard.setFromType(FromType);
5199   ICS.Standard.setAllToTypes(ImplicitParamType);
5200   ICS.Standard.ReferenceBinding = true;
5201   ICS.Standard.DirectBinding = true;
5202   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5203   ICS.Standard.BindsToFunctionLvalue = false;
5204   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5205   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5206     = (Method->getRefQualifier() == RQ_None);
5207   return ICS;
5208 }
5209 
5210 /// PerformObjectArgumentInitialization - Perform initialization of
5211 /// the implicit object parameter for the given Method with the given
5212 /// expression.
5213 ExprResult
5214 Sema::PerformObjectArgumentInitialization(Expr *From,
5215                                           NestedNameSpecifier *Qualifier,
5216                                           NamedDecl *FoundDecl,
5217                                           CXXMethodDecl *Method) {
5218   QualType FromRecordType, DestType;
5219   QualType ImplicitParamRecordType  =
5220     Method->getThisType()->getAs<PointerType>()->getPointeeType();
5221 
5222   Expr::Classification FromClassification;
5223   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5224     FromRecordType = PT->getPointeeType();
5225     DestType = Method->getThisType();
5226     FromClassification = Expr::Classification::makeSimpleLValue();
5227   } else {
5228     FromRecordType = From->getType();
5229     DestType = ImplicitParamRecordType;
5230     FromClassification = From->Classify(Context);
5231 
5232     // When performing member access on an rvalue, materialize a temporary.
5233     if (From->isRValue()) {
5234       From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5235                                             Method->getRefQualifier() !=
5236                                                 RefQualifierKind::RQ_RValue);
5237     }
5238   }
5239 
5240   // Note that we always use the true parent context when performing
5241   // the actual argument initialization.
5242   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5243       *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5244       Method->getParent());
5245   if (ICS.isBad()) {
5246     switch (ICS.Bad.Kind) {
5247     case BadConversionSequence::bad_qualifiers: {
5248       Qualifiers FromQs = FromRecordType.getQualifiers();
5249       Qualifiers ToQs = DestType.getQualifiers();
5250       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5251       if (CVR) {
5252         Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5253             << Method->getDeclName() << FromRecordType << (CVR - 1)
5254             << From->getSourceRange();
5255         Diag(Method->getLocation(), diag::note_previous_decl)
5256           << Method->getDeclName();
5257         return ExprError();
5258       }
5259       break;
5260     }
5261 
5262     case BadConversionSequence::lvalue_ref_to_rvalue:
5263     case BadConversionSequence::rvalue_ref_to_lvalue: {
5264       bool IsRValueQualified =
5265         Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5266       Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5267           << Method->getDeclName() << FromClassification.isRValue()
5268           << IsRValueQualified;
5269       Diag(Method->getLocation(), diag::note_previous_decl)
5270         << Method->getDeclName();
5271       return ExprError();
5272     }
5273 
5274     case BadConversionSequence::no_conversion:
5275     case BadConversionSequence::unrelated_class:
5276       break;
5277     }
5278 
5279     return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5280            << ImplicitParamRecordType << FromRecordType
5281            << From->getSourceRange();
5282   }
5283 
5284   if (ICS.Standard.Second == ICK_Derived_To_Base) {
5285     ExprResult FromRes =
5286       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5287     if (FromRes.isInvalid())
5288       return ExprError();
5289     From = FromRes.get();
5290   }
5291 
5292   if (!Context.hasSameType(From->getType(), DestType)) {
5293     CastKind CK;
5294     if (FromRecordType.getAddressSpace() != DestType.getAddressSpace())
5295       CK = CK_AddressSpaceConversion;
5296     else
5297       CK = CK_NoOp;
5298     From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5299   }
5300   return From;
5301 }
5302 
5303 /// TryContextuallyConvertToBool - Attempt to contextually convert the
5304 /// expression From to bool (C++0x [conv]p3).
5305 static ImplicitConversionSequence
5306 TryContextuallyConvertToBool(Sema &S, Expr *From) {
5307   return TryImplicitConversion(S, From, S.Context.BoolTy,
5308                                /*SuppressUserConversions=*/false,
5309                                /*AllowExplicit=*/true,
5310                                /*InOverloadResolution=*/false,
5311                                /*CStyle=*/false,
5312                                /*AllowObjCWritebackConversion=*/false,
5313                                /*AllowObjCConversionOnExplicit=*/false);
5314 }
5315 
5316 /// PerformContextuallyConvertToBool - Perform a contextual conversion
5317 /// of the expression From to bool (C++0x [conv]p3).
5318 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5319   if (checkPlaceholderForOverload(*this, From))
5320     return ExprError();
5321 
5322   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5323   if (!ICS.isBad())
5324     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5325 
5326   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5327     return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5328            << From->getType() << From->getSourceRange();
5329   return ExprError();
5330 }
5331 
5332 /// Check that the specified conversion is permitted in a converted constant
5333 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5334 /// is acceptable.
5335 static bool CheckConvertedConstantConversions(Sema &S,
5336                                               StandardConversionSequence &SCS) {
5337   // Since we know that the target type is an integral or unscoped enumeration
5338   // type, most conversion kinds are impossible. All possible First and Third
5339   // conversions are fine.
5340   switch (SCS.Second) {
5341   case ICK_Identity:
5342   case ICK_Function_Conversion:
5343   case ICK_Integral_Promotion:
5344   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5345   case ICK_Zero_Queue_Conversion:
5346     return true;
5347 
5348   case ICK_Boolean_Conversion:
5349     // Conversion from an integral or unscoped enumeration type to bool is
5350     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5351     // conversion, so we allow it in a converted constant expression.
5352     //
5353     // FIXME: Per core issue 1407, we should not allow this, but that breaks
5354     // a lot of popular code. We should at least add a warning for this
5355     // (non-conforming) extension.
5356     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5357            SCS.getToType(2)->isBooleanType();
5358 
5359   case ICK_Pointer_Conversion:
5360   case ICK_Pointer_Member:
5361     // C++1z: null pointer conversions and null member pointer conversions are
5362     // only permitted if the source type is std::nullptr_t.
5363     return SCS.getFromType()->isNullPtrType();
5364 
5365   case ICK_Floating_Promotion:
5366   case ICK_Complex_Promotion:
5367   case ICK_Floating_Conversion:
5368   case ICK_Complex_Conversion:
5369   case ICK_Floating_Integral:
5370   case ICK_Compatible_Conversion:
5371   case ICK_Derived_To_Base:
5372   case ICK_Vector_Conversion:
5373   case ICK_Vector_Splat:
5374   case ICK_Complex_Real:
5375   case ICK_Block_Pointer_Conversion:
5376   case ICK_TransparentUnionConversion:
5377   case ICK_Writeback_Conversion:
5378   case ICK_Zero_Event_Conversion:
5379   case ICK_C_Only_Conversion:
5380   case ICK_Incompatible_Pointer_Conversion:
5381     return false;
5382 
5383   case ICK_Lvalue_To_Rvalue:
5384   case ICK_Array_To_Pointer:
5385   case ICK_Function_To_Pointer:
5386     llvm_unreachable("found a first conversion kind in Second");
5387 
5388   case ICK_Qualification:
5389     llvm_unreachable("found a third conversion kind in Second");
5390 
5391   case ICK_Num_Conversion_Kinds:
5392     break;
5393   }
5394 
5395   llvm_unreachable("unknown conversion kind");
5396 }
5397 
5398 /// CheckConvertedConstantExpression - Check that the expression From is a
5399 /// converted constant expression of type T, perform the conversion and produce
5400 /// the converted expression, per C++11 [expr.const]p3.
5401 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5402                                                    QualType T, APValue &Value,
5403                                                    Sema::CCEKind CCE,
5404                                                    bool RequireInt) {
5405   assert(S.getLangOpts().CPlusPlus11 &&
5406          "converted constant expression outside C++11");
5407 
5408   if (checkPlaceholderForOverload(S, From))
5409     return ExprError();
5410 
5411   // C++1z [expr.const]p3:
5412   //  A converted constant expression of type T is an expression,
5413   //  implicitly converted to type T, where the converted
5414   //  expression is a constant expression and the implicit conversion
5415   //  sequence contains only [... list of conversions ...].
5416   // C++1z [stmt.if]p2:
5417   //  If the if statement is of the form if constexpr, the value of the
5418   //  condition shall be a contextually converted constant expression of type
5419   //  bool.
5420   ImplicitConversionSequence ICS =
5421       CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
5422           ? TryContextuallyConvertToBool(S, From)
5423           : TryCopyInitialization(S, From, T,
5424                                   /*SuppressUserConversions=*/false,
5425                                   /*InOverloadResolution=*/false,
5426                                   /*AllowObjcWritebackConversion=*/false,
5427                                   /*AllowExplicit=*/false);
5428   StandardConversionSequence *SCS = nullptr;
5429   switch (ICS.getKind()) {
5430   case ImplicitConversionSequence::StandardConversion:
5431     SCS = &ICS.Standard;
5432     break;
5433   case ImplicitConversionSequence::UserDefinedConversion:
5434     // We are converting to a non-class type, so the Before sequence
5435     // must be trivial.
5436     SCS = &ICS.UserDefined.After;
5437     break;
5438   case ImplicitConversionSequence::AmbiguousConversion:
5439   case ImplicitConversionSequence::BadConversion:
5440     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5441       return S.Diag(From->getBeginLoc(),
5442                     diag::err_typecheck_converted_constant_expression)
5443              << From->getType() << From->getSourceRange() << T;
5444     return ExprError();
5445 
5446   case ImplicitConversionSequence::EllipsisConversion:
5447     llvm_unreachable("ellipsis conversion in converted constant expression");
5448   }
5449 
5450   // Check that we would only use permitted conversions.
5451   if (!CheckConvertedConstantConversions(S, *SCS)) {
5452     return S.Diag(From->getBeginLoc(),
5453                   diag::err_typecheck_converted_constant_expression_disallowed)
5454            << From->getType() << From->getSourceRange() << T;
5455   }
5456   // [...] and where the reference binding (if any) binds directly.
5457   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5458     return S.Diag(From->getBeginLoc(),
5459                   diag::err_typecheck_converted_constant_expression_indirect)
5460            << From->getType() << From->getSourceRange() << T;
5461   }
5462 
5463   ExprResult Result =
5464       S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5465   if (Result.isInvalid())
5466     return Result;
5467 
5468   // Check for a narrowing implicit conversion.
5469   APValue PreNarrowingValue;
5470   QualType PreNarrowingType;
5471   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5472                                 PreNarrowingType)) {
5473   case NK_Dependent_Narrowing:
5474     // Implicit conversion to a narrower type, but the expression is
5475     // value-dependent so we can't tell whether it's actually narrowing.
5476   case NK_Variable_Narrowing:
5477     // Implicit conversion to a narrower type, and the value is not a constant
5478     // expression. We'll diagnose this in a moment.
5479   case NK_Not_Narrowing:
5480     break;
5481 
5482   case NK_Constant_Narrowing:
5483     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5484         << CCE << /*Constant*/ 1
5485         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5486     break;
5487 
5488   case NK_Type_Narrowing:
5489     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5490         << CCE << /*Constant*/ 0 << From->getType() << T;
5491     break;
5492   }
5493 
5494   if (Result.get()->isValueDependent()) {
5495     Value = APValue();
5496     return Result;
5497   }
5498 
5499   // Check the expression is a constant expression.
5500   SmallVector<PartialDiagnosticAt, 8> Notes;
5501   Expr::EvalResult Eval;
5502   Eval.Diag = &Notes;
5503   Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg
5504                                    ? Expr::EvaluateForMangling
5505                                    : Expr::EvaluateForCodeGen;
5506 
5507   if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) ||
5508       (RequireInt && !Eval.Val.isInt())) {
5509     // The expression can't be folded, so we can't keep it at this position in
5510     // the AST.
5511     Result = ExprError();
5512   } else {
5513     Value = Eval.Val;
5514 
5515     if (Notes.empty()) {
5516       // It's a constant expression.
5517       return ConstantExpr::Create(S.Context, Result.get());
5518     }
5519   }
5520 
5521   // It's not a constant expression. Produce an appropriate diagnostic.
5522   if (Notes.size() == 1 &&
5523       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5524     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5525   else {
5526     S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5527         << CCE << From->getSourceRange();
5528     for (unsigned I = 0; I < Notes.size(); ++I)
5529       S.Diag(Notes[I].first, Notes[I].second);
5530   }
5531   return ExprError();
5532 }
5533 
5534 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5535                                                   APValue &Value, CCEKind CCE) {
5536   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5537 }
5538 
5539 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5540                                                   llvm::APSInt &Value,
5541                                                   CCEKind CCE) {
5542   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5543 
5544   APValue V;
5545   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5546   if (!R.isInvalid() && !R.get()->isValueDependent())
5547     Value = V.getInt();
5548   return R;
5549 }
5550 
5551 
5552 /// dropPointerConversions - If the given standard conversion sequence
5553 /// involves any pointer conversions, remove them.  This may change
5554 /// the result type of the conversion sequence.
5555 static void dropPointerConversion(StandardConversionSequence &SCS) {
5556   if (SCS.Second == ICK_Pointer_Conversion) {
5557     SCS.Second = ICK_Identity;
5558     SCS.Third = ICK_Identity;
5559     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5560   }
5561 }
5562 
5563 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5564 /// convert the expression From to an Objective-C pointer type.
5565 static ImplicitConversionSequence
5566 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5567   // Do an implicit conversion to 'id'.
5568   QualType Ty = S.Context.getObjCIdType();
5569   ImplicitConversionSequence ICS
5570     = TryImplicitConversion(S, From, Ty,
5571                             // FIXME: Are these flags correct?
5572                             /*SuppressUserConversions=*/false,
5573                             /*AllowExplicit=*/true,
5574                             /*InOverloadResolution=*/false,
5575                             /*CStyle=*/false,
5576                             /*AllowObjCWritebackConversion=*/false,
5577                             /*AllowObjCConversionOnExplicit=*/true);
5578 
5579   // Strip off any final conversions to 'id'.
5580   switch (ICS.getKind()) {
5581   case ImplicitConversionSequence::BadConversion:
5582   case ImplicitConversionSequence::AmbiguousConversion:
5583   case ImplicitConversionSequence::EllipsisConversion:
5584     break;
5585 
5586   case ImplicitConversionSequence::UserDefinedConversion:
5587     dropPointerConversion(ICS.UserDefined.After);
5588     break;
5589 
5590   case ImplicitConversionSequence::StandardConversion:
5591     dropPointerConversion(ICS.Standard);
5592     break;
5593   }
5594 
5595   return ICS;
5596 }
5597 
5598 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5599 /// conversion of the expression From to an Objective-C pointer type.
5600 /// Returns a valid but null ExprResult if no conversion sequence exists.
5601 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5602   if (checkPlaceholderForOverload(*this, From))
5603     return ExprError();
5604 
5605   QualType Ty = Context.getObjCIdType();
5606   ImplicitConversionSequence ICS =
5607     TryContextuallyConvertToObjCPointer(*this, From);
5608   if (!ICS.isBad())
5609     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5610   return ExprResult();
5611 }
5612 
5613 /// Determine whether the provided type is an integral type, or an enumeration
5614 /// type of a permitted flavor.
5615 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5616   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5617                                  : T->isIntegralOrUnscopedEnumerationType();
5618 }
5619 
5620 static ExprResult
5621 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5622                             Sema::ContextualImplicitConverter &Converter,
5623                             QualType T, UnresolvedSetImpl &ViableConversions) {
5624 
5625   if (Converter.Suppress)
5626     return ExprError();
5627 
5628   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5629   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5630     CXXConversionDecl *Conv =
5631         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5632     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5633     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5634   }
5635   return From;
5636 }
5637 
5638 static bool
5639 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5640                            Sema::ContextualImplicitConverter &Converter,
5641                            QualType T, bool HadMultipleCandidates,
5642                            UnresolvedSetImpl &ExplicitConversions) {
5643   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5644     DeclAccessPair Found = ExplicitConversions[0];
5645     CXXConversionDecl *Conversion =
5646         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5647 
5648     // The user probably meant to invoke the given explicit
5649     // conversion; use it.
5650     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5651     std::string TypeStr;
5652     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5653 
5654     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5655         << FixItHint::CreateInsertion(From->getBeginLoc(),
5656                                       "static_cast<" + TypeStr + ">(")
5657         << FixItHint::CreateInsertion(
5658                SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5659     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5660 
5661     // If we aren't in a SFINAE context, build a call to the
5662     // explicit conversion function.
5663     if (SemaRef.isSFINAEContext())
5664       return true;
5665 
5666     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5667     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5668                                                        HadMultipleCandidates);
5669     if (Result.isInvalid())
5670       return true;
5671     // Record usage of conversion in an implicit cast.
5672     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5673                                     CK_UserDefinedConversion, Result.get(),
5674                                     nullptr, Result.get()->getValueKind());
5675   }
5676   return false;
5677 }
5678 
5679 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5680                              Sema::ContextualImplicitConverter &Converter,
5681                              QualType T, bool HadMultipleCandidates,
5682                              DeclAccessPair &Found) {
5683   CXXConversionDecl *Conversion =
5684       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5685   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5686 
5687   QualType ToType = Conversion->getConversionType().getNonReferenceType();
5688   if (!Converter.SuppressConversion) {
5689     if (SemaRef.isSFINAEContext())
5690       return true;
5691 
5692     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5693         << From->getSourceRange();
5694   }
5695 
5696   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5697                                                      HadMultipleCandidates);
5698   if (Result.isInvalid())
5699     return true;
5700   // Record usage of conversion in an implicit cast.
5701   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5702                                   CK_UserDefinedConversion, Result.get(),
5703                                   nullptr, Result.get()->getValueKind());
5704   return false;
5705 }
5706 
5707 static ExprResult finishContextualImplicitConversion(
5708     Sema &SemaRef, SourceLocation Loc, Expr *From,
5709     Sema::ContextualImplicitConverter &Converter) {
5710   if (!Converter.match(From->getType()) && !Converter.Suppress)
5711     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5712         << From->getSourceRange();
5713 
5714   return SemaRef.DefaultLvalueConversion(From);
5715 }
5716 
5717 static void
5718 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5719                                   UnresolvedSetImpl &ViableConversions,
5720                                   OverloadCandidateSet &CandidateSet) {
5721   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5722     DeclAccessPair FoundDecl = ViableConversions[I];
5723     NamedDecl *D = FoundDecl.getDecl();
5724     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5725     if (isa<UsingShadowDecl>(D))
5726       D = cast<UsingShadowDecl>(D)->getTargetDecl();
5727 
5728     CXXConversionDecl *Conv;
5729     FunctionTemplateDecl *ConvTemplate;
5730     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5731       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5732     else
5733       Conv = cast<CXXConversionDecl>(D);
5734 
5735     if (ConvTemplate)
5736       SemaRef.AddTemplateConversionCandidate(
5737           ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5738           /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
5739     else
5740       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5741                                      ToType, CandidateSet,
5742                                      /*AllowObjCConversionOnExplicit=*/false,
5743                                      /*AllowExplicit*/ true);
5744   }
5745 }
5746 
5747 /// Attempt to convert the given expression to a type which is accepted
5748 /// by the given converter.
5749 ///
5750 /// This routine will attempt to convert an expression of class type to a
5751 /// type accepted by the specified converter. In C++11 and before, the class
5752 /// must have a single non-explicit conversion function converting to a matching
5753 /// type. In C++1y, there can be multiple such conversion functions, but only
5754 /// one target type.
5755 ///
5756 /// \param Loc The source location of the construct that requires the
5757 /// conversion.
5758 ///
5759 /// \param From The expression we're converting from.
5760 ///
5761 /// \param Converter Used to control and diagnose the conversion process.
5762 ///
5763 /// \returns The expression, converted to an integral or enumeration type if
5764 /// successful.
5765 ExprResult Sema::PerformContextualImplicitConversion(
5766     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5767   // We can't perform any more checking for type-dependent expressions.
5768   if (From->isTypeDependent())
5769     return From;
5770 
5771   // Process placeholders immediately.
5772   if (From->hasPlaceholderType()) {
5773     ExprResult result = CheckPlaceholderExpr(From);
5774     if (result.isInvalid())
5775       return result;
5776     From = result.get();
5777   }
5778 
5779   // If the expression already has a matching type, we're golden.
5780   QualType T = From->getType();
5781   if (Converter.match(T))
5782     return DefaultLvalueConversion(From);
5783 
5784   // FIXME: Check for missing '()' if T is a function type?
5785 
5786   // We can only perform contextual implicit conversions on objects of class
5787   // type.
5788   const RecordType *RecordTy = T->getAs<RecordType>();
5789   if (!RecordTy || !getLangOpts().CPlusPlus) {
5790     if (!Converter.Suppress)
5791       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5792     return From;
5793   }
5794 
5795   // We must have a complete class type.
5796   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5797     ContextualImplicitConverter &Converter;
5798     Expr *From;
5799 
5800     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5801         : Converter(Converter), From(From) {}
5802 
5803     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5804       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5805     }
5806   } IncompleteDiagnoser(Converter, From);
5807 
5808   if (Converter.Suppress ? !isCompleteType(Loc, T)
5809                          : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5810     return From;
5811 
5812   // Look for a conversion to an integral or enumeration type.
5813   UnresolvedSet<4>
5814       ViableConversions; // These are *potentially* viable in C++1y.
5815   UnresolvedSet<4> ExplicitConversions;
5816   const auto &Conversions =
5817       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5818 
5819   bool HadMultipleCandidates =
5820       (std::distance(Conversions.begin(), Conversions.end()) > 1);
5821 
5822   // To check that there is only one target type, in C++1y:
5823   QualType ToType;
5824   bool HasUniqueTargetType = true;
5825 
5826   // Collect explicit or viable (potentially in C++1y) conversions.
5827   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5828     NamedDecl *D = (*I)->getUnderlyingDecl();
5829     CXXConversionDecl *Conversion;
5830     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5831     if (ConvTemplate) {
5832       if (getLangOpts().CPlusPlus14)
5833         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5834       else
5835         continue; // C++11 does not consider conversion operator templates(?).
5836     } else
5837       Conversion = cast<CXXConversionDecl>(D);
5838 
5839     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
5840            "Conversion operator templates are considered potentially "
5841            "viable in C++1y");
5842 
5843     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5844     if (Converter.match(CurToType) || ConvTemplate) {
5845 
5846       if (Conversion->isExplicit()) {
5847         // FIXME: For C++1y, do we need this restriction?
5848         // cf. diagnoseNoViableConversion()
5849         if (!ConvTemplate)
5850           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5851       } else {
5852         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5853           if (ToType.isNull())
5854             ToType = CurToType.getUnqualifiedType();
5855           else if (HasUniqueTargetType &&
5856                    (CurToType.getUnqualifiedType() != ToType))
5857             HasUniqueTargetType = false;
5858         }
5859         ViableConversions.addDecl(I.getDecl(), I.getAccess());
5860       }
5861     }
5862   }
5863 
5864   if (getLangOpts().CPlusPlus14) {
5865     // C++1y [conv]p6:
5866     // ... An expression e of class type E appearing in such a context
5867     // is said to be contextually implicitly converted to a specified
5868     // type T and is well-formed if and only if e can be implicitly
5869     // converted to a type T that is determined as follows: E is searched
5870     // for conversion functions whose return type is cv T or reference to
5871     // cv T such that T is allowed by the context. There shall be
5872     // exactly one such T.
5873 
5874     // If no unique T is found:
5875     if (ToType.isNull()) {
5876       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5877                                      HadMultipleCandidates,
5878                                      ExplicitConversions))
5879         return ExprError();
5880       return finishContextualImplicitConversion(*this, Loc, From, Converter);
5881     }
5882 
5883     // If more than one unique Ts are found:
5884     if (!HasUniqueTargetType)
5885       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5886                                          ViableConversions);
5887 
5888     // If one unique T is found:
5889     // First, build a candidate set from the previously recorded
5890     // potentially viable conversions.
5891     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5892     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5893                                       CandidateSet);
5894 
5895     // Then, perform overload resolution over the candidate set.
5896     OverloadCandidateSet::iterator Best;
5897     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5898     case OR_Success: {
5899       // Apply this conversion.
5900       DeclAccessPair Found =
5901           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5902       if (recordConversion(*this, Loc, From, Converter, T,
5903                            HadMultipleCandidates, Found))
5904         return ExprError();
5905       break;
5906     }
5907     case OR_Ambiguous:
5908       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5909                                          ViableConversions);
5910     case OR_No_Viable_Function:
5911       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5912                                      HadMultipleCandidates,
5913                                      ExplicitConversions))
5914         return ExprError();
5915       LLVM_FALLTHROUGH;
5916     case OR_Deleted:
5917       // We'll complain below about a non-integral condition type.
5918       break;
5919     }
5920   } else {
5921     switch (ViableConversions.size()) {
5922     case 0: {
5923       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5924                                      HadMultipleCandidates,
5925                                      ExplicitConversions))
5926         return ExprError();
5927 
5928       // We'll complain below about a non-integral condition type.
5929       break;
5930     }
5931     case 1: {
5932       // Apply this conversion.
5933       DeclAccessPair Found = ViableConversions[0];
5934       if (recordConversion(*this, Loc, From, Converter, T,
5935                            HadMultipleCandidates, Found))
5936         return ExprError();
5937       break;
5938     }
5939     default:
5940       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5941                                          ViableConversions);
5942     }
5943   }
5944 
5945   return finishContextualImplicitConversion(*this, Loc, From, Converter);
5946 }
5947 
5948 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
5949 /// an acceptable non-member overloaded operator for a call whose
5950 /// arguments have types T1 (and, if non-empty, T2). This routine
5951 /// implements the check in C++ [over.match.oper]p3b2 concerning
5952 /// enumeration types.
5953 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
5954                                                    FunctionDecl *Fn,
5955                                                    ArrayRef<Expr *> Args) {
5956   QualType T1 = Args[0]->getType();
5957   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
5958 
5959   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
5960     return true;
5961 
5962   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
5963     return true;
5964 
5965   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
5966   if (Proto->getNumParams() < 1)
5967     return false;
5968 
5969   if (T1->isEnumeralType()) {
5970     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
5971     if (Context.hasSameUnqualifiedType(T1, ArgType))
5972       return true;
5973   }
5974 
5975   if (Proto->getNumParams() < 2)
5976     return false;
5977 
5978   if (!T2.isNull() && T2->isEnumeralType()) {
5979     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
5980     if (Context.hasSameUnqualifiedType(T2, ArgType))
5981       return true;
5982   }
5983 
5984   return false;
5985 }
5986 
5987 /// AddOverloadCandidate - Adds the given function to the set of
5988 /// candidate functions, using the given function call arguments.  If
5989 /// @p SuppressUserConversions, then don't allow user-defined
5990 /// conversions via constructors or conversion operators.
5991 ///
5992 /// \param PartialOverloading true if we are performing "partial" overloading
5993 /// based on an incomplete set of function arguments. This feature is used by
5994 /// code completion.
5995 void Sema::AddOverloadCandidate(
5996     FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
5997     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
5998     bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
5999     ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions) {
6000   const FunctionProtoType *Proto
6001     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6002   assert(Proto && "Functions without a prototype cannot be overloaded");
6003   assert(!Function->getDescribedFunctionTemplate() &&
6004          "Use AddTemplateOverloadCandidate for function templates");
6005 
6006   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6007     if (!isa<CXXConstructorDecl>(Method)) {
6008       // If we get here, it's because we're calling a member function
6009       // that is named without a member access expression (e.g.,
6010       // "this->f") that was either written explicitly or created
6011       // implicitly. This can happen with a qualified call to a member
6012       // function, e.g., X::f(). We use an empty type for the implied
6013       // object argument (C++ [over.call.func]p3), and the acting context
6014       // is irrelevant.
6015       AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6016                          Expr::Classification::makeSimpleLValue(), Args,
6017                          CandidateSet, SuppressUserConversions,
6018                          PartialOverloading, EarlyConversions);
6019       return;
6020     }
6021     // We treat a constructor like a non-member function, since its object
6022     // argument doesn't participate in overload resolution.
6023   }
6024 
6025   if (!CandidateSet.isNewCandidate(Function))
6026     return;
6027 
6028   // C++ [over.match.oper]p3:
6029   //   if no operand has a class type, only those non-member functions in the
6030   //   lookup set that have a first parameter of type T1 or "reference to
6031   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6032   //   is a right operand) a second parameter of type T2 or "reference to
6033   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
6034   //   candidate functions.
6035   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6036       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6037     return;
6038 
6039   // C++11 [class.copy]p11: [DR1402]
6040   //   A defaulted move constructor that is defined as deleted is ignored by
6041   //   overload resolution.
6042   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6043   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6044       Constructor->isMoveConstructor())
6045     return;
6046 
6047   // Overload resolution is always an unevaluated context.
6048   EnterExpressionEvaluationContext Unevaluated(
6049       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6050 
6051   // Add this candidate
6052   OverloadCandidate &Candidate =
6053       CandidateSet.addCandidate(Args.size(), EarlyConversions);
6054   Candidate.FoundDecl = FoundDecl;
6055   Candidate.Function = Function;
6056   Candidate.Viable = true;
6057   Candidate.IsSurrogate = false;
6058   Candidate.IsADLCandidate = IsADLCandidate;
6059   Candidate.IgnoreObjectArgument = false;
6060   Candidate.ExplicitCallArguments = Args.size();
6061 
6062   if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6063       !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6064     Candidate.Viable = false;
6065     Candidate.FailureKind = ovl_non_default_multiversion_function;
6066     return;
6067   }
6068 
6069   if (Constructor) {
6070     // C++ [class.copy]p3:
6071     //   A member function template is never instantiated to perform the copy
6072     //   of a class object to an object of its class type.
6073     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6074     if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6075         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6076          IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6077                        ClassType))) {
6078       Candidate.Viable = false;
6079       Candidate.FailureKind = ovl_fail_illegal_constructor;
6080       return;
6081     }
6082 
6083     // C++ [over.match.funcs]p8: (proposed DR resolution)
6084     //   A constructor inherited from class type C that has a first parameter
6085     //   of type "reference to P" (including such a constructor instantiated
6086     //   from a template) is excluded from the set of candidate functions when
6087     //   constructing an object of type cv D if the argument list has exactly
6088     //   one argument and D is reference-related to P and P is reference-related
6089     //   to C.
6090     auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6091     if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6092         Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6093       QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6094       QualType C = Context.getRecordType(Constructor->getParent());
6095       QualType D = Context.getRecordType(Shadow->getParent());
6096       SourceLocation Loc = Args.front()->getExprLoc();
6097       if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6098           (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6099         Candidate.Viable = false;
6100         Candidate.FailureKind = ovl_fail_inhctor_slice;
6101         return;
6102       }
6103     }
6104   }
6105 
6106   unsigned NumParams = Proto->getNumParams();
6107 
6108   // (C++ 13.3.2p2): A candidate function having fewer than m
6109   // parameters is viable only if it has an ellipsis in its parameter
6110   // list (8.3.5).
6111   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6112       !Proto->isVariadic()) {
6113     Candidate.Viable = false;
6114     Candidate.FailureKind = ovl_fail_too_many_arguments;
6115     return;
6116   }
6117 
6118   // (C++ 13.3.2p2): A candidate function having more than m parameters
6119   // is viable only if the (m+1)st parameter has a default argument
6120   // (8.3.6). For the purposes of overload resolution, the
6121   // parameter list is truncated on the right, so that there are
6122   // exactly m parameters.
6123   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6124   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6125     // Not enough arguments.
6126     Candidate.Viable = false;
6127     Candidate.FailureKind = ovl_fail_too_few_arguments;
6128     return;
6129   }
6130 
6131   // (CUDA B.1): Check for invalid calls between targets.
6132   if (getLangOpts().CUDA)
6133     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6134       // Skip the check for callers that are implicit members, because in this
6135       // case we may not yet know what the member's target is; the target is
6136       // inferred for the member automatically, based on the bases and fields of
6137       // the class.
6138       if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6139         Candidate.Viable = false;
6140         Candidate.FailureKind = ovl_fail_bad_target;
6141         return;
6142       }
6143 
6144   // Determine the implicit conversion sequences for each of the
6145   // arguments.
6146   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6147     if (Candidate.Conversions[ArgIdx].isInitialized()) {
6148       // We already formed a conversion sequence for this parameter during
6149       // template argument deduction.
6150     } else if (ArgIdx < NumParams) {
6151       // (C++ 13.3.2p3): for F to be a viable function, there shall
6152       // exist for each argument an implicit conversion sequence
6153       // (13.3.3.1) that converts that argument to the corresponding
6154       // parameter of F.
6155       QualType ParamType = Proto->getParamType(ArgIdx);
6156       Candidate.Conversions[ArgIdx] = TryCopyInitialization(
6157           *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6158           /*InOverloadResolution=*/true,
6159           /*AllowObjCWritebackConversion=*/
6160           getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6161       if (Candidate.Conversions[ArgIdx].isBad()) {
6162         Candidate.Viable = false;
6163         Candidate.FailureKind = ovl_fail_bad_conversion;
6164         return;
6165       }
6166     } else {
6167       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6168       // argument for which there is no corresponding parameter is
6169       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6170       Candidate.Conversions[ArgIdx].setEllipsis();
6171     }
6172   }
6173 
6174   if (!AllowExplicit) {
6175     ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Function);
6176     if (ES.getKind() != ExplicitSpecKind::ResolvedFalse) {
6177       Candidate.Viable = false;
6178       Candidate.FailureKind = ovl_fail_explicit_resolved;
6179       return;
6180     }
6181   }
6182 
6183   if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
6184     Candidate.Viable = false;
6185     Candidate.FailureKind = ovl_fail_enable_if;
6186     Candidate.DeductionFailure.Data = FailedAttr;
6187     return;
6188   }
6189 
6190   if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) {
6191     Candidate.Viable = false;
6192     Candidate.FailureKind = ovl_fail_ext_disabled;
6193     return;
6194   }
6195 }
6196 
6197 ObjCMethodDecl *
6198 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6199                        SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6200   if (Methods.size() <= 1)
6201     return nullptr;
6202 
6203   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6204     bool Match = true;
6205     ObjCMethodDecl *Method = Methods[b];
6206     unsigned NumNamedArgs = Sel.getNumArgs();
6207     // Method might have more arguments than selector indicates. This is due
6208     // to addition of c-style arguments in method.
6209     if (Method->param_size() > NumNamedArgs)
6210       NumNamedArgs = Method->param_size();
6211     if (Args.size() < NumNamedArgs)
6212       continue;
6213 
6214     for (unsigned i = 0; i < NumNamedArgs; i++) {
6215       // We can't do any type-checking on a type-dependent argument.
6216       if (Args[i]->isTypeDependent()) {
6217         Match = false;
6218         break;
6219       }
6220 
6221       ParmVarDecl *param = Method->parameters()[i];
6222       Expr *argExpr = Args[i];
6223       assert(argExpr && "SelectBestMethod(): missing expression");
6224 
6225       // Strip the unbridged-cast placeholder expression off unless it's
6226       // a consumed argument.
6227       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6228           !param->hasAttr<CFConsumedAttr>())
6229         argExpr = stripARCUnbridgedCast(argExpr);
6230 
6231       // If the parameter is __unknown_anytype, move on to the next method.
6232       if (param->getType() == Context.UnknownAnyTy) {
6233         Match = false;
6234         break;
6235       }
6236 
6237       ImplicitConversionSequence ConversionState
6238         = TryCopyInitialization(*this, argExpr, param->getType(),
6239                                 /*SuppressUserConversions*/false,
6240                                 /*InOverloadResolution=*/true,
6241                                 /*AllowObjCWritebackConversion=*/
6242                                 getLangOpts().ObjCAutoRefCount,
6243                                 /*AllowExplicit*/false);
6244       // This function looks for a reasonably-exact match, so we consider
6245       // incompatible pointer conversions to be a failure here.
6246       if (ConversionState.isBad() ||
6247           (ConversionState.isStandard() &&
6248            ConversionState.Standard.Second ==
6249                ICK_Incompatible_Pointer_Conversion)) {
6250         Match = false;
6251         break;
6252       }
6253     }
6254     // Promote additional arguments to variadic methods.
6255     if (Match && Method->isVariadic()) {
6256       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6257         if (Args[i]->isTypeDependent()) {
6258           Match = false;
6259           break;
6260         }
6261         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6262                                                           nullptr);
6263         if (Arg.isInvalid()) {
6264           Match = false;
6265           break;
6266         }
6267       }
6268     } else {
6269       // Check for extra arguments to non-variadic methods.
6270       if (Args.size() != NumNamedArgs)
6271         Match = false;
6272       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6273         // Special case when selectors have no argument. In this case, select
6274         // one with the most general result type of 'id'.
6275         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6276           QualType ReturnT = Methods[b]->getReturnType();
6277           if (ReturnT->isObjCIdType())
6278             return Methods[b];
6279         }
6280       }
6281     }
6282 
6283     if (Match)
6284       return Method;
6285   }
6286   return nullptr;
6287 }
6288 
6289 static bool
6290 convertArgsForAvailabilityChecks(Sema &S, FunctionDecl *Function, Expr *ThisArg,
6291                                  ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap,
6292                                  bool MissingImplicitThis, Expr *&ConvertedThis,
6293                                  SmallVectorImpl<Expr *> &ConvertedArgs) {
6294   if (ThisArg) {
6295     CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6296     assert(!isa<CXXConstructorDecl>(Method) &&
6297            "Shouldn't have `this` for ctors!");
6298     assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
6299     ExprResult R = S.PerformObjectArgumentInitialization(
6300         ThisArg, /*Qualifier=*/nullptr, Method, Method);
6301     if (R.isInvalid())
6302       return false;
6303     ConvertedThis = R.get();
6304   } else {
6305     if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6306       (void)MD;
6307       assert((MissingImplicitThis || MD->isStatic() ||
6308               isa<CXXConstructorDecl>(MD)) &&
6309              "Expected `this` for non-ctor instance methods");
6310     }
6311     ConvertedThis = nullptr;
6312   }
6313 
6314   // Ignore any variadic arguments. Converting them is pointless, since the
6315   // user can't refer to them in the function condition.
6316   unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6317 
6318   // Convert the arguments.
6319   for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6320     ExprResult R;
6321     R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6322                                         S.Context, Function->getParamDecl(I)),
6323                                     SourceLocation(), Args[I]);
6324 
6325     if (R.isInvalid())
6326       return false;
6327 
6328     ConvertedArgs.push_back(R.get());
6329   }
6330 
6331   if (Trap.hasErrorOccurred())
6332     return false;
6333 
6334   // Push default arguments if needed.
6335   if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6336     for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6337       ParmVarDecl *P = Function->getParamDecl(i);
6338       Expr *DefArg = P->hasUninstantiatedDefaultArg()
6339                          ? P->getUninstantiatedDefaultArg()
6340                          : P->getDefaultArg();
6341       // This can only happen in code completion, i.e. when PartialOverloading
6342       // is true.
6343       if (!DefArg)
6344         return false;
6345       ExprResult R =
6346           S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6347                                           S.Context, Function->getParamDecl(i)),
6348                                       SourceLocation(), DefArg);
6349       if (R.isInvalid())
6350         return false;
6351       ConvertedArgs.push_back(R.get());
6352     }
6353 
6354     if (Trap.hasErrorOccurred())
6355       return false;
6356   }
6357   return true;
6358 }
6359 
6360 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
6361                                   bool MissingImplicitThis) {
6362   auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6363   if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6364     return nullptr;
6365 
6366   SFINAETrap Trap(*this);
6367   SmallVector<Expr *, 16> ConvertedArgs;
6368   // FIXME: We should look into making enable_if late-parsed.
6369   Expr *DiscardedThis;
6370   if (!convertArgsForAvailabilityChecks(
6371           *this, Function, /*ThisArg=*/nullptr, Args, Trap,
6372           /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6373     return *EnableIfAttrs.begin();
6374 
6375   for (auto *EIA : EnableIfAttrs) {
6376     APValue Result;
6377     // FIXME: This doesn't consider value-dependent cases, because doing so is
6378     // very difficult. Ideally, we should handle them more gracefully.
6379     if (EIA->getCond()->isValueDependent() ||
6380         !EIA->getCond()->EvaluateWithSubstitution(
6381             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6382       return EIA;
6383 
6384     if (!Result.isInt() || !Result.getInt().getBoolValue())
6385       return EIA;
6386   }
6387   return nullptr;
6388 }
6389 
6390 template <typename CheckFn>
6391 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6392                                         bool ArgDependent, SourceLocation Loc,
6393                                         CheckFn &&IsSuccessful) {
6394   SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6395   for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6396     if (ArgDependent == DIA->getArgDependent())
6397       Attrs.push_back(DIA);
6398   }
6399 
6400   // Common case: No diagnose_if attributes, so we can quit early.
6401   if (Attrs.empty())
6402     return false;
6403 
6404   auto WarningBegin = std::stable_partition(
6405       Attrs.begin(), Attrs.end(),
6406       [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6407 
6408   // Note that diagnose_if attributes are late-parsed, so they appear in the
6409   // correct order (unlike enable_if attributes).
6410   auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6411                                IsSuccessful);
6412   if (ErrAttr != WarningBegin) {
6413     const DiagnoseIfAttr *DIA = *ErrAttr;
6414     S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6415     S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6416         << DIA->getParent() << DIA->getCond()->getSourceRange();
6417     return true;
6418   }
6419 
6420   for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6421     if (IsSuccessful(DIA)) {
6422       S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6423       S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6424           << DIA->getParent() << DIA->getCond()->getSourceRange();
6425     }
6426 
6427   return false;
6428 }
6429 
6430 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6431                                                const Expr *ThisArg,
6432                                                ArrayRef<const Expr *> Args,
6433                                                SourceLocation Loc) {
6434   return diagnoseDiagnoseIfAttrsWith(
6435       *this, Function, /*ArgDependent=*/true, Loc,
6436       [&](const DiagnoseIfAttr *DIA) {
6437         APValue Result;
6438         // It's sane to use the same Args for any redecl of this function, since
6439         // EvaluateWithSubstitution only cares about the position of each
6440         // argument in the arg list, not the ParmVarDecl* it maps to.
6441         if (!DIA->getCond()->EvaluateWithSubstitution(
6442                 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6443           return false;
6444         return Result.isInt() && Result.getInt().getBoolValue();
6445       });
6446 }
6447 
6448 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6449                                                  SourceLocation Loc) {
6450   return diagnoseDiagnoseIfAttrsWith(
6451       *this, ND, /*ArgDependent=*/false, Loc,
6452       [&](const DiagnoseIfAttr *DIA) {
6453         bool Result;
6454         return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6455                Result;
6456       });
6457 }
6458 
6459 /// Add all of the function declarations in the given function set to
6460 /// the overload candidate set.
6461 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6462                                  ArrayRef<Expr *> Args,
6463                                  OverloadCandidateSet &CandidateSet,
6464                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6465                                  bool SuppressUserConversions,
6466                                  bool PartialOverloading,
6467                                  bool FirstArgumentIsBase) {
6468   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6469     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6470     ArrayRef<Expr *> FunctionArgs = Args;
6471 
6472     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6473     FunctionDecl *FD =
6474         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6475 
6476     if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6477       QualType ObjectType;
6478       Expr::Classification ObjectClassification;
6479       if (Args.size() > 0) {
6480         if (Expr *E = Args[0]) {
6481           // Use the explicit base to restrict the lookup:
6482           ObjectType = E->getType();
6483           // Pointers in the object arguments are implicitly dereferenced, so we
6484           // always classify them as l-values.
6485           if (!ObjectType.isNull() && ObjectType->isPointerType())
6486             ObjectClassification = Expr::Classification::makeSimpleLValue();
6487           else
6488             ObjectClassification = E->Classify(Context);
6489         } // .. else there is an implicit base.
6490         FunctionArgs = Args.slice(1);
6491       }
6492       if (FunTmpl) {
6493         AddMethodTemplateCandidate(
6494             FunTmpl, F.getPair(),
6495             cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6496             ExplicitTemplateArgs, ObjectType, ObjectClassification,
6497             FunctionArgs, CandidateSet, SuppressUserConversions,
6498             PartialOverloading);
6499       } else {
6500         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6501                            cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6502                            ObjectClassification, FunctionArgs, CandidateSet,
6503                            SuppressUserConversions, PartialOverloading);
6504       }
6505     } else {
6506       // This branch handles both standalone functions and static methods.
6507 
6508       // Slice the first argument (which is the base) when we access
6509       // static method as non-static.
6510       if (Args.size() > 0 &&
6511           (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6512                         !isa<CXXConstructorDecl>(FD)))) {
6513         assert(cast<CXXMethodDecl>(FD)->isStatic());
6514         FunctionArgs = Args.slice(1);
6515       }
6516       if (FunTmpl) {
6517         AddTemplateOverloadCandidate(
6518             FunTmpl, F.getPair(), ExplicitTemplateArgs, FunctionArgs,
6519             CandidateSet, SuppressUserConversions, PartialOverloading);
6520       } else {
6521         AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6522                              SuppressUserConversions, PartialOverloading);
6523       }
6524     }
6525   }
6526 }
6527 
6528 /// AddMethodCandidate - Adds a named decl (which is some kind of
6529 /// method) as a method candidate to the given overload set.
6530 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
6531                               QualType ObjectType,
6532                               Expr::Classification ObjectClassification,
6533                               ArrayRef<Expr *> Args,
6534                               OverloadCandidateSet& CandidateSet,
6535                               bool SuppressUserConversions) {
6536   NamedDecl *Decl = FoundDecl.getDecl();
6537   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6538 
6539   if (isa<UsingShadowDecl>(Decl))
6540     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6541 
6542   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6543     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
6544            "Expected a member function template");
6545     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6546                                /*ExplicitArgs*/ nullptr, ObjectType,
6547                                ObjectClassification, Args, CandidateSet,
6548                                SuppressUserConversions);
6549   } else {
6550     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6551                        ObjectType, ObjectClassification, Args, CandidateSet,
6552                        SuppressUserConversions);
6553   }
6554 }
6555 
6556 /// AddMethodCandidate - Adds the given C++ member function to the set
6557 /// of candidate functions, using the given function call arguments
6558 /// and the object argument (@c Object). For example, in a call
6559 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6560 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6561 /// allow user-defined conversions via constructors or conversion
6562 /// operators.
6563 void
6564 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6565                          CXXRecordDecl *ActingContext, QualType ObjectType,
6566                          Expr::Classification ObjectClassification,
6567                          ArrayRef<Expr *> Args,
6568                          OverloadCandidateSet &CandidateSet,
6569                          bool SuppressUserConversions,
6570                          bool PartialOverloading,
6571                          ConversionSequenceList EarlyConversions) {
6572   const FunctionProtoType *Proto
6573     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6574   assert(Proto && "Methods without a prototype cannot be overloaded");
6575   assert(!isa<CXXConstructorDecl>(Method) &&
6576          "Use AddOverloadCandidate for constructors");
6577 
6578   if (!CandidateSet.isNewCandidate(Method))
6579     return;
6580 
6581   // C++11 [class.copy]p23: [DR1402]
6582   //   A defaulted move assignment operator that is defined as deleted is
6583   //   ignored by overload resolution.
6584   if (Method->isDefaulted() && Method->isDeleted() &&
6585       Method->isMoveAssignmentOperator())
6586     return;
6587 
6588   // Overload resolution is always an unevaluated context.
6589   EnterExpressionEvaluationContext Unevaluated(
6590       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6591 
6592   // Add this candidate
6593   OverloadCandidate &Candidate =
6594       CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6595   Candidate.FoundDecl = FoundDecl;
6596   Candidate.Function = Method;
6597   Candidate.IsSurrogate = false;
6598   Candidate.IgnoreObjectArgument = false;
6599   Candidate.ExplicitCallArguments = Args.size();
6600 
6601   unsigned NumParams = Proto->getNumParams();
6602 
6603   // (C++ 13.3.2p2): A candidate function having fewer than m
6604   // parameters is viable only if it has an ellipsis in its parameter
6605   // list (8.3.5).
6606   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6607       !Proto->isVariadic()) {
6608     Candidate.Viable = false;
6609     Candidate.FailureKind = ovl_fail_too_many_arguments;
6610     return;
6611   }
6612 
6613   // (C++ 13.3.2p2): A candidate function having more than m parameters
6614   // is viable only if the (m+1)st parameter has a default argument
6615   // (8.3.6). For the purposes of overload resolution, the
6616   // parameter list is truncated on the right, so that there are
6617   // exactly m parameters.
6618   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6619   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6620     // Not enough arguments.
6621     Candidate.Viable = false;
6622     Candidate.FailureKind = ovl_fail_too_few_arguments;
6623     return;
6624   }
6625 
6626   Candidate.Viable = true;
6627 
6628   if (Method->isStatic() || ObjectType.isNull())
6629     // The implicit object argument is ignored.
6630     Candidate.IgnoreObjectArgument = true;
6631   else {
6632     // Determine the implicit conversion sequence for the object
6633     // parameter.
6634     Candidate.Conversions[0] = TryObjectArgumentInitialization(
6635         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6636         Method, ActingContext);
6637     if (Candidate.Conversions[0].isBad()) {
6638       Candidate.Viable = false;
6639       Candidate.FailureKind = ovl_fail_bad_conversion;
6640       return;
6641     }
6642   }
6643 
6644   // (CUDA B.1): Check for invalid calls between targets.
6645   if (getLangOpts().CUDA)
6646     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6647       if (!IsAllowedCUDACall(Caller, Method)) {
6648         Candidate.Viable = false;
6649         Candidate.FailureKind = ovl_fail_bad_target;
6650         return;
6651       }
6652 
6653   // Determine the implicit conversion sequences for each of the
6654   // arguments.
6655   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6656     if (Candidate.Conversions[ArgIdx + 1].isInitialized()) {
6657       // We already formed a conversion sequence for this parameter during
6658       // template argument deduction.
6659     } else if (ArgIdx < NumParams) {
6660       // (C++ 13.3.2p3): for F to be a viable function, there shall
6661       // exist for each argument an implicit conversion sequence
6662       // (13.3.3.1) that converts that argument to the corresponding
6663       // parameter of F.
6664       QualType ParamType = Proto->getParamType(ArgIdx);
6665       Candidate.Conversions[ArgIdx + 1]
6666         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6667                                 SuppressUserConversions,
6668                                 /*InOverloadResolution=*/true,
6669                                 /*AllowObjCWritebackConversion=*/
6670                                   getLangOpts().ObjCAutoRefCount);
6671       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6672         Candidate.Viable = false;
6673         Candidate.FailureKind = ovl_fail_bad_conversion;
6674         return;
6675       }
6676     } else {
6677       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6678       // argument for which there is no corresponding parameter is
6679       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6680       Candidate.Conversions[ArgIdx + 1].setEllipsis();
6681     }
6682   }
6683 
6684   if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6685     Candidate.Viable = false;
6686     Candidate.FailureKind = ovl_fail_enable_if;
6687     Candidate.DeductionFailure.Data = FailedAttr;
6688     return;
6689   }
6690 
6691   if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
6692       !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6693     Candidate.Viable = false;
6694     Candidate.FailureKind = ovl_non_default_multiversion_function;
6695   }
6696 }
6697 
6698 /// Add a C++ member function template as a candidate to the candidate
6699 /// set, using template argument deduction to produce an appropriate member
6700 /// function template specialization.
6701 void
6702 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
6703                                  DeclAccessPair FoundDecl,
6704                                  CXXRecordDecl *ActingContext,
6705                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6706                                  QualType ObjectType,
6707                                  Expr::Classification ObjectClassification,
6708                                  ArrayRef<Expr *> Args,
6709                                  OverloadCandidateSet& CandidateSet,
6710                                  bool SuppressUserConversions,
6711                                  bool PartialOverloading) {
6712   if (!CandidateSet.isNewCandidate(MethodTmpl))
6713     return;
6714 
6715   // C++ [over.match.funcs]p7:
6716   //   In each case where a candidate is a function template, candidate
6717   //   function template specializations are generated using template argument
6718   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6719   //   candidate functions in the usual way.113) A given name can refer to one
6720   //   or more function templates and also to a set of overloaded non-template
6721   //   functions. In such a case, the candidate functions generated from each
6722   //   function template are combined with the set of non-template candidate
6723   //   functions.
6724   TemplateDeductionInfo Info(CandidateSet.getLocation());
6725   FunctionDecl *Specialization = nullptr;
6726   ConversionSequenceList Conversions;
6727   if (TemplateDeductionResult Result = DeduceTemplateArguments(
6728           MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
6729           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6730             return CheckNonDependentConversions(
6731                 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
6732                 SuppressUserConversions, ActingContext, ObjectType,
6733                 ObjectClassification);
6734           })) {
6735     OverloadCandidate &Candidate =
6736         CandidateSet.addCandidate(Conversions.size(), Conversions);
6737     Candidate.FoundDecl = FoundDecl;
6738     Candidate.Function = MethodTmpl->getTemplatedDecl();
6739     Candidate.Viable = false;
6740     Candidate.IsSurrogate = false;
6741     Candidate.IgnoreObjectArgument =
6742         cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
6743         ObjectType.isNull();
6744     Candidate.ExplicitCallArguments = Args.size();
6745     if (Result == TDK_NonDependentConversionFailure)
6746       Candidate.FailureKind = ovl_fail_bad_conversion;
6747     else {
6748       Candidate.FailureKind = ovl_fail_bad_deduction;
6749       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6750                                                             Info);
6751     }
6752     return;
6753   }
6754 
6755   // Add the function template specialization produced by template argument
6756   // deduction as a candidate.
6757   assert(Specialization && "Missing member function template specialization?");
6758   assert(isa<CXXMethodDecl>(Specialization) &&
6759          "Specialization is not a member function?");
6760   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6761                      ActingContext, ObjectType, ObjectClassification, Args,
6762                      CandidateSet, SuppressUserConversions, PartialOverloading,
6763                      Conversions);
6764 }
6765 
6766 /// Add a C++ function template specialization as a candidate
6767 /// in the candidate set, using template argument deduction to produce
6768 /// an appropriate function template specialization.
6769 void Sema::AddTemplateOverloadCandidate(
6770     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
6771     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
6772     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6773     bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate) {
6774   if (!CandidateSet.isNewCandidate(FunctionTemplate))
6775     return;
6776 
6777   // C++ [over.match.funcs]p7:
6778   //   In each case where a candidate is a function template, candidate
6779   //   function template specializations are generated using template argument
6780   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6781   //   candidate functions in the usual way.113) A given name can refer to one
6782   //   or more function templates and also to a set of overloaded non-template
6783   //   functions. In such a case, the candidate functions generated from each
6784   //   function template are combined with the set of non-template candidate
6785   //   functions.
6786   TemplateDeductionInfo Info(CandidateSet.getLocation());
6787   FunctionDecl *Specialization = nullptr;
6788   ConversionSequenceList Conversions;
6789   if (TemplateDeductionResult Result = DeduceTemplateArguments(
6790           FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
6791           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6792             return CheckNonDependentConversions(FunctionTemplate, ParamTypes,
6793                                                 Args, CandidateSet, Conversions,
6794                                                 SuppressUserConversions);
6795           })) {
6796     OverloadCandidate &Candidate =
6797         CandidateSet.addCandidate(Conversions.size(), Conversions);
6798     Candidate.FoundDecl = FoundDecl;
6799     Candidate.Function = FunctionTemplate->getTemplatedDecl();
6800     Candidate.Viable = false;
6801     Candidate.IsSurrogate = false;
6802     Candidate.IsADLCandidate = IsADLCandidate;
6803     // Ignore the object argument if there is one, since we don't have an object
6804     // type.
6805     Candidate.IgnoreObjectArgument =
6806         isa<CXXMethodDecl>(Candidate.Function) &&
6807         !isa<CXXConstructorDecl>(Candidate.Function);
6808     Candidate.ExplicitCallArguments = Args.size();
6809     if (Result == TDK_NonDependentConversionFailure)
6810       Candidate.FailureKind = ovl_fail_bad_conversion;
6811     else {
6812       Candidate.FailureKind = ovl_fail_bad_deduction;
6813       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6814                                                             Info);
6815     }
6816     return;
6817   }
6818 
6819   // Add the function template specialization produced by template argument
6820   // deduction as a candidate.
6821   assert(Specialization && "Missing function template specialization?");
6822   AddOverloadCandidate(
6823       Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
6824       PartialOverloading, AllowExplicit,
6825       /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions);
6826 }
6827 
6828 /// Check that implicit conversion sequences can be formed for each argument
6829 /// whose corresponding parameter has a non-dependent type, per DR1391's
6830 /// [temp.deduct.call]p10.
6831 bool Sema::CheckNonDependentConversions(
6832     FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
6833     ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
6834     ConversionSequenceList &Conversions, bool SuppressUserConversions,
6835     CXXRecordDecl *ActingContext, QualType ObjectType,
6836     Expr::Classification ObjectClassification) {
6837   // FIXME: The cases in which we allow explicit conversions for constructor
6838   // arguments never consider calling a constructor template. It's not clear
6839   // that is correct.
6840   const bool AllowExplicit = false;
6841 
6842   auto *FD = FunctionTemplate->getTemplatedDecl();
6843   auto *Method = dyn_cast<CXXMethodDecl>(FD);
6844   bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
6845   unsigned ThisConversions = HasThisConversion ? 1 : 0;
6846 
6847   Conversions =
6848       CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
6849 
6850   // Overload resolution is always an unevaluated context.
6851   EnterExpressionEvaluationContext Unevaluated(
6852       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6853 
6854   // For a method call, check the 'this' conversion here too. DR1391 doesn't
6855   // require that, but this check should never result in a hard error, and
6856   // overload resolution is permitted to sidestep instantiations.
6857   if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
6858       !ObjectType.isNull()) {
6859     Conversions[0] = TryObjectArgumentInitialization(
6860         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6861         Method, ActingContext);
6862     if (Conversions[0].isBad())
6863       return true;
6864   }
6865 
6866   for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
6867        ++I) {
6868     QualType ParamType = ParamTypes[I];
6869     if (!ParamType->isDependentType()) {
6870       Conversions[ThisConversions + I]
6871         = TryCopyInitialization(*this, Args[I], ParamType,
6872                                 SuppressUserConversions,
6873                                 /*InOverloadResolution=*/true,
6874                                 /*AllowObjCWritebackConversion=*/
6875                                   getLangOpts().ObjCAutoRefCount,
6876                                 AllowExplicit);
6877       if (Conversions[ThisConversions + I].isBad())
6878         return true;
6879     }
6880   }
6881 
6882   return false;
6883 }
6884 
6885 /// Determine whether this is an allowable conversion from the result
6886 /// of an explicit conversion operator to the expected type, per C++
6887 /// [over.match.conv]p1 and [over.match.ref]p1.
6888 ///
6889 /// \param ConvType The return type of the conversion function.
6890 ///
6891 /// \param ToType The type we are converting to.
6892 ///
6893 /// \param AllowObjCPointerConversion Allow a conversion from one
6894 /// Objective-C pointer to another.
6895 ///
6896 /// \returns true if the conversion is allowable, false otherwise.
6897 static bool isAllowableExplicitConversion(Sema &S,
6898                                           QualType ConvType, QualType ToType,
6899                                           bool AllowObjCPointerConversion) {
6900   QualType ToNonRefType = ToType.getNonReferenceType();
6901 
6902   // Easy case: the types are the same.
6903   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
6904     return true;
6905 
6906   // Allow qualification conversions.
6907   bool ObjCLifetimeConversion;
6908   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
6909                                   ObjCLifetimeConversion))
6910     return true;
6911 
6912   // If we're not allowed to consider Objective-C pointer conversions,
6913   // we're done.
6914   if (!AllowObjCPointerConversion)
6915     return false;
6916 
6917   // Is this an Objective-C pointer conversion?
6918   bool IncompatibleObjC = false;
6919   QualType ConvertedType;
6920   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
6921                                    IncompatibleObjC);
6922 }
6923 
6924 /// AddConversionCandidate - Add a C++ conversion function as a
6925 /// candidate in the candidate set (C++ [over.match.conv],
6926 /// C++ [over.match.copy]). From is the expression we're converting from,
6927 /// and ToType is the type that we're eventually trying to convert to
6928 /// (which may or may not be the same type as the type that the
6929 /// conversion function produces).
6930 void Sema::AddConversionCandidate(
6931     CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
6932     CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
6933     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
6934     bool AllowExplicit, bool AllowResultConversion) {
6935   assert(!Conversion->getDescribedFunctionTemplate() &&
6936          "Conversion function templates use AddTemplateConversionCandidate");
6937   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
6938   if (!CandidateSet.isNewCandidate(Conversion))
6939     return;
6940 
6941   // If the conversion function has an undeduced return type, trigger its
6942   // deduction now.
6943   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
6944     if (DeduceReturnType(Conversion, From->getExprLoc()))
6945       return;
6946     ConvType = Conversion->getConversionType().getNonReferenceType();
6947   }
6948 
6949   // If we don't allow any conversion of the result type, ignore conversion
6950   // functions that don't convert to exactly (possibly cv-qualified) T.
6951   if (!AllowResultConversion &&
6952       !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
6953     return;
6954 
6955   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
6956   // operator is only a candidate if its return type is the target type or
6957   // can be converted to the target type with a qualification conversion.
6958   if (Conversion->isExplicit() &&
6959       !isAllowableExplicitConversion(*this, ConvType, ToType,
6960                                      AllowObjCConversionOnExplicit))
6961     return;
6962 
6963   // Overload resolution is always an unevaluated context.
6964   EnterExpressionEvaluationContext Unevaluated(
6965       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6966 
6967   // Add this candidate
6968   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
6969   Candidate.FoundDecl = FoundDecl;
6970   Candidate.Function = Conversion;
6971   Candidate.IsSurrogate = false;
6972   Candidate.IgnoreObjectArgument = false;
6973   Candidate.FinalConversion.setAsIdentityConversion();
6974   Candidate.FinalConversion.setFromType(ConvType);
6975   Candidate.FinalConversion.setAllToTypes(ToType);
6976   Candidate.Viable = true;
6977   Candidate.ExplicitCallArguments = 1;
6978 
6979   // C++ [over.match.funcs]p4:
6980   //   For conversion functions, the function is considered to be a member of
6981   //   the class of the implicit implied object argument for the purpose of
6982   //   defining the type of the implicit object parameter.
6983   //
6984   // Determine the implicit conversion sequence for the implicit
6985   // object parameter.
6986   QualType ImplicitParamType = From->getType();
6987   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
6988     ImplicitParamType = FromPtrType->getPointeeType();
6989   CXXRecordDecl *ConversionContext
6990     = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
6991 
6992   Candidate.Conversions[0] = TryObjectArgumentInitialization(
6993       *this, CandidateSet.getLocation(), From->getType(),
6994       From->Classify(Context), Conversion, ConversionContext);
6995 
6996   if (Candidate.Conversions[0].isBad()) {
6997     Candidate.Viable = false;
6998     Candidate.FailureKind = ovl_fail_bad_conversion;
6999     return;
7000   }
7001 
7002   // We won't go through a user-defined type conversion function to convert a
7003   // derived to base as such conversions are given Conversion Rank. They only
7004   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7005   QualType FromCanon
7006     = Context.getCanonicalType(From->getType().getUnqualifiedType());
7007   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7008   if (FromCanon == ToCanon ||
7009       IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7010     Candidate.Viable = false;
7011     Candidate.FailureKind = ovl_fail_trivial_conversion;
7012     return;
7013   }
7014 
7015   // To determine what the conversion from the result of calling the
7016   // conversion function to the type we're eventually trying to
7017   // convert to (ToType), we need to synthesize a call to the
7018   // conversion function and attempt copy initialization from it. This
7019   // makes sure that we get the right semantics with respect to
7020   // lvalues/rvalues and the type. Fortunately, we can allocate this
7021   // call on the stack and we don't need its arguments to be
7022   // well-formed.
7023   DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7024                             VK_LValue, From->getBeginLoc());
7025   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7026                                 Context.getPointerType(Conversion->getType()),
7027                                 CK_FunctionToPointerDecay,
7028                                 &ConversionRef, VK_RValue);
7029 
7030   QualType ConversionType = Conversion->getConversionType();
7031   if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7032     Candidate.Viable = false;
7033     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7034     return;
7035   }
7036 
7037   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7038 
7039   // Note that it is safe to allocate CallExpr on the stack here because
7040   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7041   // allocator).
7042   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7043 
7044   llvm::AlignedCharArray<alignof(CallExpr), sizeof(CallExpr) + sizeof(Stmt *)>
7045       Buffer;
7046   CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7047       Buffer.buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7048 
7049   ImplicitConversionSequence ICS =
7050       TryCopyInitialization(*this, TheTemporaryCall, ToType,
7051                             /*SuppressUserConversions=*/true,
7052                             /*InOverloadResolution=*/false,
7053                             /*AllowObjCWritebackConversion=*/false);
7054 
7055   switch (ICS.getKind()) {
7056   case ImplicitConversionSequence::StandardConversion:
7057     Candidate.FinalConversion = ICS.Standard;
7058 
7059     // C++ [over.ics.user]p3:
7060     //   If the user-defined conversion is specified by a specialization of a
7061     //   conversion function template, the second standard conversion sequence
7062     //   shall have exact match rank.
7063     if (Conversion->getPrimaryTemplate() &&
7064         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7065       Candidate.Viable = false;
7066       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7067       return;
7068     }
7069 
7070     // C++0x [dcl.init.ref]p5:
7071     //    In the second case, if the reference is an rvalue reference and
7072     //    the second standard conversion sequence of the user-defined
7073     //    conversion sequence includes an lvalue-to-rvalue conversion, the
7074     //    program is ill-formed.
7075     if (ToType->isRValueReferenceType() &&
7076         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7077       Candidate.Viable = false;
7078       Candidate.FailureKind = ovl_fail_bad_final_conversion;
7079       return;
7080     }
7081     break;
7082 
7083   case ImplicitConversionSequence::BadConversion:
7084     Candidate.Viable = false;
7085     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7086     return;
7087 
7088   default:
7089     llvm_unreachable(
7090            "Can only end up with a standard conversion sequence or failure");
7091   }
7092 
7093   if (!AllowExplicit && Conversion->getExplicitSpecifier().getKind() !=
7094                             ExplicitSpecKind::ResolvedFalse) {
7095     Candidate.Viable = false;
7096     Candidate.FailureKind = ovl_fail_explicit_resolved;
7097     return;
7098   }
7099 
7100   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7101     Candidate.Viable = false;
7102     Candidate.FailureKind = ovl_fail_enable_if;
7103     Candidate.DeductionFailure.Data = FailedAttr;
7104     return;
7105   }
7106 
7107   if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7108       !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7109     Candidate.Viable = false;
7110     Candidate.FailureKind = ovl_non_default_multiversion_function;
7111   }
7112 }
7113 
7114 /// Adds a conversion function template specialization
7115 /// candidate to the overload set, using template argument deduction
7116 /// to deduce the template arguments of the conversion function
7117 /// template from the type that we are converting to (C++
7118 /// [temp.deduct.conv]).
7119 void Sema::AddTemplateConversionCandidate(
7120     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7121     CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7122     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7123     bool AllowExplicit, bool AllowResultConversion) {
7124   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
7125          "Only conversion function templates permitted here");
7126 
7127   if (!CandidateSet.isNewCandidate(FunctionTemplate))
7128     return;
7129 
7130   TemplateDeductionInfo Info(CandidateSet.getLocation());
7131   CXXConversionDecl *Specialization = nullptr;
7132   if (TemplateDeductionResult Result
7133         = DeduceTemplateArguments(FunctionTemplate, ToType,
7134                                   Specialization, Info)) {
7135     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7136     Candidate.FoundDecl = FoundDecl;
7137     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7138     Candidate.Viable = false;
7139     Candidate.FailureKind = ovl_fail_bad_deduction;
7140     Candidate.IsSurrogate = false;
7141     Candidate.IgnoreObjectArgument = false;
7142     Candidate.ExplicitCallArguments = 1;
7143     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7144                                                           Info);
7145     return;
7146   }
7147 
7148   // Add the conversion function template specialization produced by
7149   // template argument deduction as a candidate.
7150   assert(Specialization && "Missing function template specialization?");
7151   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7152                          CandidateSet, AllowObjCConversionOnExplicit,
7153                          AllowExplicit, AllowResultConversion);
7154 }
7155 
7156 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7157 /// converts the given @c Object to a function pointer via the
7158 /// conversion function @c Conversion, and then attempts to call it
7159 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
7160 /// the type of function that we'll eventually be calling.
7161 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7162                                  DeclAccessPair FoundDecl,
7163                                  CXXRecordDecl *ActingContext,
7164                                  const FunctionProtoType *Proto,
7165                                  Expr *Object,
7166                                  ArrayRef<Expr *> Args,
7167                                  OverloadCandidateSet& CandidateSet) {
7168   if (!CandidateSet.isNewCandidate(Conversion))
7169     return;
7170 
7171   // Overload resolution is always an unevaluated context.
7172   EnterExpressionEvaluationContext Unevaluated(
7173       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7174 
7175   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7176   Candidate.FoundDecl = FoundDecl;
7177   Candidate.Function = nullptr;
7178   Candidate.Surrogate = Conversion;
7179   Candidate.Viable = true;
7180   Candidate.IsSurrogate = true;
7181   Candidate.IgnoreObjectArgument = false;
7182   Candidate.ExplicitCallArguments = Args.size();
7183 
7184   // Determine the implicit conversion sequence for the implicit
7185   // object parameter.
7186   ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7187       *this, CandidateSet.getLocation(), Object->getType(),
7188       Object->Classify(Context), Conversion, ActingContext);
7189   if (ObjectInit.isBad()) {
7190     Candidate.Viable = false;
7191     Candidate.FailureKind = ovl_fail_bad_conversion;
7192     Candidate.Conversions[0] = ObjectInit;
7193     return;
7194   }
7195 
7196   // The first conversion is actually a user-defined conversion whose
7197   // first conversion is ObjectInit's standard conversion (which is
7198   // effectively a reference binding). Record it as such.
7199   Candidate.Conversions[0].setUserDefined();
7200   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7201   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7202   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7203   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7204   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7205   Candidate.Conversions[0].UserDefined.After
7206     = Candidate.Conversions[0].UserDefined.Before;
7207   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7208 
7209   // Find the
7210   unsigned NumParams = Proto->getNumParams();
7211 
7212   // (C++ 13.3.2p2): A candidate function having fewer than m
7213   // parameters is viable only if it has an ellipsis in its parameter
7214   // list (8.3.5).
7215   if (Args.size() > NumParams && !Proto->isVariadic()) {
7216     Candidate.Viable = false;
7217     Candidate.FailureKind = ovl_fail_too_many_arguments;
7218     return;
7219   }
7220 
7221   // Function types don't have any default arguments, so just check if
7222   // we have enough arguments.
7223   if (Args.size() < NumParams) {
7224     // Not enough arguments.
7225     Candidate.Viable = false;
7226     Candidate.FailureKind = ovl_fail_too_few_arguments;
7227     return;
7228   }
7229 
7230   // Determine the implicit conversion sequences for each of the
7231   // arguments.
7232   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7233     if (ArgIdx < NumParams) {
7234       // (C++ 13.3.2p3): for F to be a viable function, there shall
7235       // exist for each argument an implicit conversion sequence
7236       // (13.3.3.1) that converts that argument to the corresponding
7237       // parameter of F.
7238       QualType ParamType = Proto->getParamType(ArgIdx);
7239       Candidate.Conversions[ArgIdx + 1]
7240         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7241                                 /*SuppressUserConversions=*/false,
7242                                 /*InOverloadResolution=*/false,
7243                                 /*AllowObjCWritebackConversion=*/
7244                                   getLangOpts().ObjCAutoRefCount);
7245       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7246         Candidate.Viable = false;
7247         Candidate.FailureKind = ovl_fail_bad_conversion;
7248         return;
7249       }
7250     } else {
7251       // (C++ 13.3.2p2): For the purposes of overload resolution, any
7252       // argument for which there is no corresponding parameter is
7253       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7254       Candidate.Conversions[ArgIdx + 1].setEllipsis();
7255     }
7256   }
7257 
7258   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7259     Candidate.Viable = false;
7260     Candidate.FailureKind = ovl_fail_enable_if;
7261     Candidate.DeductionFailure.Data = FailedAttr;
7262     return;
7263   }
7264 }
7265 
7266 /// Add overload candidates for overloaded operators that are
7267 /// member functions.
7268 ///
7269 /// Add the overloaded operator candidates that are member functions
7270 /// for the operator Op that was used in an operator expression such
7271 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
7272 /// CandidateSet will store the added overload candidates. (C++
7273 /// [over.match.oper]).
7274 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7275                                        SourceLocation OpLoc,
7276                                        ArrayRef<Expr *> Args,
7277                                        OverloadCandidateSet& CandidateSet,
7278                                        SourceRange OpRange) {
7279   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7280 
7281   // C++ [over.match.oper]p3:
7282   //   For a unary operator @ with an operand of a type whose
7283   //   cv-unqualified version is T1, and for a binary operator @ with
7284   //   a left operand of a type whose cv-unqualified version is T1 and
7285   //   a right operand of a type whose cv-unqualified version is T2,
7286   //   three sets of candidate functions, designated member
7287   //   candidates, non-member candidates and built-in candidates, are
7288   //   constructed as follows:
7289   QualType T1 = Args[0]->getType();
7290 
7291   //     -- If T1 is a complete class type or a class currently being
7292   //        defined, the set of member candidates is the result of the
7293   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7294   //        the set of member candidates is empty.
7295   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7296     // Complete the type if it can be completed.
7297     if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7298       return;
7299     // If the type is neither complete nor being defined, bail out now.
7300     if (!T1Rec->getDecl()->getDefinition())
7301       return;
7302 
7303     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7304     LookupQualifiedName(Operators, T1Rec->getDecl());
7305     Operators.suppressDiagnostics();
7306 
7307     for (LookupResult::iterator Oper = Operators.begin(),
7308                              OperEnd = Operators.end();
7309          Oper != OperEnd;
7310          ++Oper)
7311       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7312                          Args[0]->Classify(Context), Args.slice(1),
7313                          CandidateSet, /*SuppressUserConversions=*/false);
7314   }
7315 }
7316 
7317 /// AddBuiltinCandidate - Add a candidate for a built-in
7318 /// operator. ResultTy and ParamTys are the result and parameter types
7319 /// of the built-in candidate, respectively. Args and NumArgs are the
7320 /// arguments being passed to the candidate. IsAssignmentOperator
7321 /// should be true when this built-in candidate is an assignment
7322 /// operator. NumContextualBoolArguments is the number of arguments
7323 /// (at the beginning of the argument list) that will be contextually
7324 /// converted to bool.
7325 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7326                                OverloadCandidateSet& CandidateSet,
7327                                bool IsAssignmentOperator,
7328                                unsigned NumContextualBoolArguments) {
7329   // Overload resolution is always an unevaluated context.
7330   EnterExpressionEvaluationContext Unevaluated(
7331       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7332 
7333   // Add this candidate
7334   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7335   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7336   Candidate.Function = nullptr;
7337   Candidate.IsSurrogate = false;
7338   Candidate.IgnoreObjectArgument = false;
7339   std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7340 
7341   // Determine the implicit conversion sequences for each of the
7342   // arguments.
7343   Candidate.Viable = true;
7344   Candidate.ExplicitCallArguments = Args.size();
7345   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7346     // C++ [over.match.oper]p4:
7347     //   For the built-in assignment operators, conversions of the
7348     //   left operand are restricted as follows:
7349     //     -- no temporaries are introduced to hold the left operand, and
7350     //     -- no user-defined conversions are applied to the left
7351     //        operand to achieve a type match with the left-most
7352     //        parameter of a built-in candidate.
7353     //
7354     // We block these conversions by turning off user-defined
7355     // conversions, since that is the only way that initialization of
7356     // a reference to a non-class type can occur from something that
7357     // is not of the same type.
7358     if (ArgIdx < NumContextualBoolArguments) {
7359       assert(ParamTys[ArgIdx] == Context.BoolTy &&
7360              "Contextual conversion to bool requires bool type");
7361       Candidate.Conversions[ArgIdx]
7362         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7363     } else {
7364       Candidate.Conversions[ArgIdx]
7365         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7366                                 ArgIdx == 0 && IsAssignmentOperator,
7367                                 /*InOverloadResolution=*/false,
7368                                 /*AllowObjCWritebackConversion=*/
7369                                   getLangOpts().ObjCAutoRefCount);
7370     }
7371     if (Candidate.Conversions[ArgIdx].isBad()) {
7372       Candidate.Viable = false;
7373       Candidate.FailureKind = ovl_fail_bad_conversion;
7374       break;
7375     }
7376   }
7377 }
7378 
7379 namespace {
7380 
7381 /// BuiltinCandidateTypeSet - A set of types that will be used for the
7382 /// candidate operator functions for built-in operators (C++
7383 /// [over.built]). The types are separated into pointer types and
7384 /// enumeration types.
7385 class BuiltinCandidateTypeSet  {
7386   /// TypeSet - A set of types.
7387   typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7388                           llvm::SmallPtrSet<QualType, 8>> TypeSet;
7389 
7390   /// PointerTypes - The set of pointer types that will be used in the
7391   /// built-in candidates.
7392   TypeSet PointerTypes;
7393 
7394   /// MemberPointerTypes - The set of member pointer types that will be
7395   /// used in the built-in candidates.
7396   TypeSet MemberPointerTypes;
7397 
7398   /// EnumerationTypes - The set of enumeration types that will be
7399   /// used in the built-in candidates.
7400   TypeSet EnumerationTypes;
7401 
7402   /// The set of vector types that will be used in the built-in
7403   /// candidates.
7404   TypeSet VectorTypes;
7405 
7406   /// A flag indicating non-record types are viable candidates
7407   bool HasNonRecordTypes;
7408 
7409   /// A flag indicating whether either arithmetic or enumeration types
7410   /// were present in the candidate set.
7411   bool HasArithmeticOrEnumeralTypes;
7412 
7413   /// A flag indicating whether the nullptr type was present in the
7414   /// candidate set.
7415   bool HasNullPtrType;
7416 
7417   /// Sema - The semantic analysis instance where we are building the
7418   /// candidate type set.
7419   Sema &SemaRef;
7420 
7421   /// Context - The AST context in which we will build the type sets.
7422   ASTContext &Context;
7423 
7424   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7425                                                const Qualifiers &VisibleQuals);
7426   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7427 
7428 public:
7429   /// iterator - Iterates through the types that are part of the set.
7430   typedef TypeSet::iterator iterator;
7431 
7432   BuiltinCandidateTypeSet(Sema &SemaRef)
7433     : HasNonRecordTypes(false),
7434       HasArithmeticOrEnumeralTypes(false),
7435       HasNullPtrType(false),
7436       SemaRef(SemaRef),
7437       Context(SemaRef.Context) { }
7438 
7439   void AddTypesConvertedFrom(QualType Ty,
7440                              SourceLocation Loc,
7441                              bool AllowUserConversions,
7442                              bool AllowExplicitConversions,
7443                              const Qualifiers &VisibleTypeConversionsQuals);
7444 
7445   /// pointer_begin - First pointer type found;
7446   iterator pointer_begin() { return PointerTypes.begin(); }
7447 
7448   /// pointer_end - Past the last pointer type found;
7449   iterator pointer_end() { return PointerTypes.end(); }
7450 
7451   /// member_pointer_begin - First member pointer type found;
7452   iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
7453 
7454   /// member_pointer_end - Past the last member pointer type found;
7455   iterator member_pointer_end() { return MemberPointerTypes.end(); }
7456 
7457   /// enumeration_begin - First enumeration type found;
7458   iterator enumeration_begin() { return EnumerationTypes.begin(); }
7459 
7460   /// enumeration_end - Past the last enumeration type found;
7461   iterator enumeration_end() { return EnumerationTypes.end(); }
7462 
7463   iterator vector_begin() { return VectorTypes.begin(); }
7464   iterator vector_end() { return VectorTypes.end(); }
7465 
7466   bool hasNonRecordTypes() { return HasNonRecordTypes; }
7467   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7468   bool hasNullPtrType() const { return HasNullPtrType; }
7469 };
7470 
7471 } // end anonymous namespace
7472 
7473 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7474 /// the set of pointer types along with any more-qualified variants of
7475 /// that type. For example, if @p Ty is "int const *", this routine
7476 /// will add "int const *", "int const volatile *", "int const
7477 /// restrict *", and "int const volatile restrict *" to the set of
7478 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7479 /// false otherwise.
7480 ///
7481 /// FIXME: what to do about extended qualifiers?
7482 bool
7483 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7484                                              const Qualifiers &VisibleQuals) {
7485 
7486   // Insert this type.
7487   if (!PointerTypes.insert(Ty))
7488     return false;
7489 
7490   QualType PointeeTy;
7491   const PointerType *PointerTy = Ty->getAs<PointerType>();
7492   bool buildObjCPtr = false;
7493   if (!PointerTy) {
7494     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7495     PointeeTy = PTy->getPointeeType();
7496     buildObjCPtr = true;
7497   } else {
7498     PointeeTy = PointerTy->getPointeeType();
7499   }
7500 
7501   // Don't add qualified variants of arrays. For one, they're not allowed
7502   // (the qualifier would sink to the element type), and for another, the
7503   // only overload situation where it matters is subscript or pointer +- int,
7504   // and those shouldn't have qualifier variants anyway.
7505   if (PointeeTy->isArrayType())
7506     return true;
7507 
7508   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7509   bool hasVolatile = VisibleQuals.hasVolatile();
7510   bool hasRestrict = VisibleQuals.hasRestrict();
7511 
7512   // Iterate through all strict supersets of BaseCVR.
7513   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7514     if ((CVR | BaseCVR) != CVR) continue;
7515     // Skip over volatile if no volatile found anywhere in the types.
7516     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7517 
7518     // Skip over restrict if no restrict found anywhere in the types, or if
7519     // the type cannot be restrict-qualified.
7520     if ((CVR & Qualifiers::Restrict) &&
7521         (!hasRestrict ||
7522          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7523       continue;
7524 
7525     // Build qualified pointee type.
7526     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7527 
7528     // Build qualified pointer type.
7529     QualType QPointerTy;
7530     if (!buildObjCPtr)
7531       QPointerTy = Context.getPointerType(QPointeeTy);
7532     else
7533       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7534 
7535     // Insert qualified pointer type.
7536     PointerTypes.insert(QPointerTy);
7537   }
7538 
7539   return true;
7540 }
7541 
7542 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7543 /// to the set of pointer types along with any more-qualified variants of
7544 /// that type. For example, if @p Ty is "int const *", this routine
7545 /// will add "int const *", "int const volatile *", "int const
7546 /// restrict *", and "int const volatile restrict *" to the set of
7547 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7548 /// false otherwise.
7549 ///
7550 /// FIXME: what to do about extended qualifiers?
7551 bool
7552 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7553     QualType Ty) {
7554   // Insert this type.
7555   if (!MemberPointerTypes.insert(Ty))
7556     return false;
7557 
7558   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7559   assert(PointerTy && "type was not a member pointer type!");
7560 
7561   QualType PointeeTy = PointerTy->getPointeeType();
7562   // Don't add qualified variants of arrays. For one, they're not allowed
7563   // (the qualifier would sink to the element type), and for another, the
7564   // only overload situation where it matters is subscript or pointer +- int,
7565   // and those shouldn't have qualifier variants anyway.
7566   if (PointeeTy->isArrayType())
7567     return true;
7568   const Type *ClassTy = PointerTy->getClass();
7569 
7570   // Iterate through all strict supersets of the pointee type's CVR
7571   // qualifiers.
7572   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7573   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7574     if ((CVR | BaseCVR) != CVR) continue;
7575 
7576     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7577     MemberPointerTypes.insert(
7578       Context.getMemberPointerType(QPointeeTy, ClassTy));
7579   }
7580 
7581   return true;
7582 }
7583 
7584 /// AddTypesConvertedFrom - Add each of the types to which the type @p
7585 /// Ty can be implicit converted to the given set of @p Types. We're
7586 /// primarily interested in pointer types and enumeration types. We also
7587 /// take member pointer types, for the conditional operator.
7588 /// AllowUserConversions is true if we should look at the conversion
7589 /// functions of a class type, and AllowExplicitConversions if we
7590 /// should also include the explicit conversion functions of a class
7591 /// type.
7592 void
7593 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7594                                                SourceLocation Loc,
7595                                                bool AllowUserConversions,
7596                                                bool AllowExplicitConversions,
7597                                                const Qualifiers &VisibleQuals) {
7598   // Only deal with canonical types.
7599   Ty = Context.getCanonicalType(Ty);
7600 
7601   // Look through reference types; they aren't part of the type of an
7602   // expression for the purposes of conversions.
7603   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7604     Ty = RefTy->getPointeeType();
7605 
7606   // If we're dealing with an array type, decay to the pointer.
7607   if (Ty->isArrayType())
7608     Ty = SemaRef.Context.getArrayDecayedType(Ty);
7609 
7610   // Otherwise, we don't care about qualifiers on the type.
7611   Ty = Ty.getLocalUnqualifiedType();
7612 
7613   // Flag if we ever add a non-record type.
7614   const RecordType *TyRec = Ty->getAs<RecordType>();
7615   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
7616 
7617   // Flag if we encounter an arithmetic type.
7618   HasArithmeticOrEnumeralTypes =
7619     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
7620 
7621   if (Ty->isObjCIdType() || Ty->isObjCClassType())
7622     PointerTypes.insert(Ty);
7623   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
7624     // Insert our type, and its more-qualified variants, into the set
7625     // of types.
7626     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
7627       return;
7628   } else if (Ty->isMemberPointerType()) {
7629     // Member pointers are far easier, since the pointee can't be converted.
7630     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
7631       return;
7632   } else if (Ty->isEnumeralType()) {
7633     HasArithmeticOrEnumeralTypes = true;
7634     EnumerationTypes.insert(Ty);
7635   } else if (Ty->isVectorType()) {
7636     // We treat vector types as arithmetic types in many contexts as an
7637     // extension.
7638     HasArithmeticOrEnumeralTypes = true;
7639     VectorTypes.insert(Ty);
7640   } else if (Ty->isNullPtrType()) {
7641     HasNullPtrType = true;
7642   } else if (AllowUserConversions && TyRec) {
7643     // No conversion functions in incomplete types.
7644     if (!SemaRef.isCompleteType(Loc, Ty))
7645       return;
7646 
7647     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7648     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7649       if (isa<UsingShadowDecl>(D))
7650         D = cast<UsingShadowDecl>(D)->getTargetDecl();
7651 
7652       // Skip conversion function templates; they don't tell us anything
7653       // about which builtin types we can convert to.
7654       if (isa<FunctionTemplateDecl>(D))
7655         continue;
7656 
7657       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7658       if (AllowExplicitConversions || !Conv->isExplicit()) {
7659         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
7660                               VisibleQuals);
7661       }
7662     }
7663   }
7664 }
7665 /// Helper function for adjusting address spaces for the pointer or reference
7666 /// operands of builtin operators depending on the argument.
7667 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
7668                                                         Expr *Arg) {
7669   return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
7670 }
7671 
7672 /// Helper function for AddBuiltinOperatorCandidates() that adds
7673 /// the volatile- and non-volatile-qualified assignment operators for the
7674 /// given type to the candidate set.
7675 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
7676                                                    QualType T,
7677                                                    ArrayRef<Expr *> Args,
7678                                     OverloadCandidateSet &CandidateSet) {
7679   QualType ParamTypes[2];
7680 
7681   // T& operator=(T&, T)
7682   ParamTypes[0] = S.Context.getLValueReferenceType(
7683       AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
7684   ParamTypes[1] = T;
7685   S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7686                         /*IsAssignmentOperator=*/true);
7687 
7688   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
7689     // volatile T& operator=(volatile T&, T)
7690     ParamTypes[0] = S.Context.getLValueReferenceType(
7691         AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
7692                                                 Args[0]));
7693     ParamTypes[1] = T;
7694     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7695                           /*IsAssignmentOperator=*/true);
7696   }
7697 }
7698 
7699 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
7700 /// if any, found in visible type conversion functions found in ArgExpr's type.
7701 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
7702     Qualifiers VRQuals;
7703     const RecordType *TyRec;
7704     if (const MemberPointerType *RHSMPType =
7705         ArgExpr->getType()->getAs<MemberPointerType>())
7706       TyRec = RHSMPType->getClass()->getAs<RecordType>();
7707     else
7708       TyRec = ArgExpr->getType()->getAs<RecordType>();
7709     if (!TyRec) {
7710       // Just to be safe, assume the worst case.
7711       VRQuals.addVolatile();
7712       VRQuals.addRestrict();
7713       return VRQuals;
7714     }
7715 
7716     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7717     if (!ClassDecl->hasDefinition())
7718       return VRQuals;
7719 
7720     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7721       if (isa<UsingShadowDecl>(D))
7722         D = cast<UsingShadowDecl>(D)->getTargetDecl();
7723       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7724         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7725         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7726           CanTy = ResTypeRef->getPointeeType();
7727         // Need to go down the pointer/mempointer chain and add qualifiers
7728         // as see them.
7729         bool done = false;
7730         while (!done) {
7731           if (CanTy.isRestrictQualified())
7732             VRQuals.addRestrict();
7733           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7734             CanTy = ResTypePtr->getPointeeType();
7735           else if (const MemberPointerType *ResTypeMPtr =
7736                 CanTy->getAs<MemberPointerType>())
7737             CanTy = ResTypeMPtr->getPointeeType();
7738           else
7739             done = true;
7740           if (CanTy.isVolatileQualified())
7741             VRQuals.addVolatile();
7742           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7743             return VRQuals;
7744         }
7745       }
7746     }
7747     return VRQuals;
7748 }
7749 
7750 namespace {
7751 
7752 /// Helper class to manage the addition of builtin operator overload
7753 /// candidates. It provides shared state and utility methods used throughout
7754 /// the process, as well as a helper method to add each group of builtin
7755 /// operator overloads from the standard to a candidate set.
7756 class BuiltinOperatorOverloadBuilder {
7757   // Common instance state available to all overload candidate addition methods.
7758   Sema &S;
7759   ArrayRef<Expr *> Args;
7760   Qualifiers VisibleTypeConversionsQuals;
7761   bool HasArithmeticOrEnumeralCandidateType;
7762   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7763   OverloadCandidateSet &CandidateSet;
7764 
7765   static constexpr int ArithmeticTypesCap = 24;
7766   SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
7767 
7768   // Define some indices used to iterate over the arithemetic types in
7769   // ArithmeticTypes.  The "promoted arithmetic types" are the arithmetic
7770   // types are that preserved by promotion (C++ [over.built]p2).
7771   unsigned FirstIntegralType,
7772            LastIntegralType;
7773   unsigned FirstPromotedIntegralType,
7774            LastPromotedIntegralType;
7775   unsigned FirstPromotedArithmeticType,
7776            LastPromotedArithmeticType;
7777   unsigned NumArithmeticTypes;
7778 
7779   void InitArithmeticTypes() {
7780     // Start of promoted types.
7781     FirstPromotedArithmeticType = 0;
7782     ArithmeticTypes.push_back(S.Context.FloatTy);
7783     ArithmeticTypes.push_back(S.Context.DoubleTy);
7784     ArithmeticTypes.push_back(S.Context.LongDoubleTy);
7785     if (S.Context.getTargetInfo().hasFloat128Type())
7786       ArithmeticTypes.push_back(S.Context.Float128Ty);
7787 
7788     // Start of integral types.
7789     FirstIntegralType = ArithmeticTypes.size();
7790     FirstPromotedIntegralType = ArithmeticTypes.size();
7791     ArithmeticTypes.push_back(S.Context.IntTy);
7792     ArithmeticTypes.push_back(S.Context.LongTy);
7793     ArithmeticTypes.push_back(S.Context.LongLongTy);
7794     if (S.Context.getTargetInfo().hasInt128Type())
7795       ArithmeticTypes.push_back(S.Context.Int128Ty);
7796     ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
7797     ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
7798     ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
7799     if (S.Context.getTargetInfo().hasInt128Type())
7800       ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
7801     LastPromotedIntegralType = ArithmeticTypes.size();
7802     LastPromotedArithmeticType = ArithmeticTypes.size();
7803     // End of promoted types.
7804 
7805     ArithmeticTypes.push_back(S.Context.BoolTy);
7806     ArithmeticTypes.push_back(S.Context.CharTy);
7807     ArithmeticTypes.push_back(S.Context.WCharTy);
7808     if (S.Context.getLangOpts().Char8)
7809       ArithmeticTypes.push_back(S.Context.Char8Ty);
7810     ArithmeticTypes.push_back(S.Context.Char16Ty);
7811     ArithmeticTypes.push_back(S.Context.Char32Ty);
7812     ArithmeticTypes.push_back(S.Context.SignedCharTy);
7813     ArithmeticTypes.push_back(S.Context.ShortTy);
7814     ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
7815     ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
7816     LastIntegralType = ArithmeticTypes.size();
7817     NumArithmeticTypes = ArithmeticTypes.size();
7818     // End of integral types.
7819     // FIXME: What about complex? What about half?
7820 
7821     assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
7822            "Enough inline storage for all arithmetic types.");
7823   }
7824 
7825   /// Helper method to factor out the common pattern of adding overloads
7826   /// for '++' and '--' builtin operators.
7827   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7828                                            bool HasVolatile,
7829                                            bool HasRestrict) {
7830     QualType ParamTypes[2] = {
7831       S.Context.getLValueReferenceType(CandidateTy),
7832       S.Context.IntTy
7833     };
7834 
7835     // Non-volatile version.
7836     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7837 
7838     // Use a heuristic to reduce number of builtin candidates in the set:
7839     // add volatile version only if there are conversions to a volatile type.
7840     if (HasVolatile) {
7841       ParamTypes[0] =
7842         S.Context.getLValueReferenceType(
7843           S.Context.getVolatileType(CandidateTy));
7844       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7845     }
7846 
7847     // Add restrict version only if there are conversions to a restrict type
7848     // and our candidate type is a non-restrict-qualified pointer.
7849     if (HasRestrict && CandidateTy->isAnyPointerType() &&
7850         !CandidateTy.isRestrictQualified()) {
7851       ParamTypes[0]
7852         = S.Context.getLValueReferenceType(
7853             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
7854       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7855 
7856       if (HasVolatile) {
7857         ParamTypes[0]
7858           = S.Context.getLValueReferenceType(
7859               S.Context.getCVRQualifiedType(CandidateTy,
7860                                             (Qualifiers::Volatile |
7861                                              Qualifiers::Restrict)));
7862         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7863       }
7864     }
7865 
7866   }
7867 
7868 public:
7869   BuiltinOperatorOverloadBuilder(
7870     Sema &S, ArrayRef<Expr *> Args,
7871     Qualifiers VisibleTypeConversionsQuals,
7872     bool HasArithmeticOrEnumeralCandidateType,
7873     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
7874     OverloadCandidateSet &CandidateSet)
7875     : S(S), Args(Args),
7876       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
7877       HasArithmeticOrEnumeralCandidateType(
7878         HasArithmeticOrEnumeralCandidateType),
7879       CandidateTypes(CandidateTypes),
7880       CandidateSet(CandidateSet) {
7881 
7882     InitArithmeticTypes();
7883   }
7884 
7885   // Increment is deprecated for bool since C++17.
7886   //
7887   // C++ [over.built]p3:
7888   //
7889   //   For every pair (T, VQ), where T is an arithmetic type other
7890   //   than bool, and VQ is either volatile or empty, there exist
7891   //   candidate operator functions of the form
7892   //
7893   //       VQ T&      operator++(VQ T&);
7894   //       T          operator++(VQ T&, int);
7895   //
7896   // C++ [over.built]p4:
7897   //
7898   //   For every pair (T, VQ), where T is an arithmetic type other
7899   //   than bool, and VQ is either volatile or empty, there exist
7900   //   candidate operator functions of the form
7901   //
7902   //       VQ T&      operator--(VQ T&);
7903   //       T          operator--(VQ T&, int);
7904   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
7905     if (!HasArithmeticOrEnumeralCandidateType)
7906       return;
7907 
7908     for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
7909       const auto TypeOfT = ArithmeticTypes[Arith];
7910       if (TypeOfT == S.Context.BoolTy) {
7911         if (Op == OO_MinusMinus)
7912           continue;
7913         if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
7914           continue;
7915       }
7916       addPlusPlusMinusMinusStyleOverloads(
7917         TypeOfT,
7918         VisibleTypeConversionsQuals.hasVolatile(),
7919         VisibleTypeConversionsQuals.hasRestrict());
7920     }
7921   }
7922 
7923   // C++ [over.built]p5:
7924   //
7925   //   For every pair (T, VQ), where T is a cv-qualified or
7926   //   cv-unqualified object type, and VQ is either volatile or
7927   //   empty, there exist candidate operator functions of the form
7928   //
7929   //       T*VQ&      operator++(T*VQ&);
7930   //       T*VQ&      operator--(T*VQ&);
7931   //       T*         operator++(T*VQ&, int);
7932   //       T*         operator--(T*VQ&, int);
7933   void addPlusPlusMinusMinusPointerOverloads() {
7934     for (BuiltinCandidateTypeSet::iterator
7935               Ptr = CandidateTypes[0].pointer_begin(),
7936            PtrEnd = CandidateTypes[0].pointer_end();
7937          Ptr != PtrEnd; ++Ptr) {
7938       // Skip pointer types that aren't pointers to object types.
7939       if (!(*Ptr)->getPointeeType()->isObjectType())
7940         continue;
7941 
7942       addPlusPlusMinusMinusStyleOverloads(*Ptr,
7943         (!(*Ptr).isVolatileQualified() &&
7944          VisibleTypeConversionsQuals.hasVolatile()),
7945         (!(*Ptr).isRestrictQualified() &&
7946          VisibleTypeConversionsQuals.hasRestrict()));
7947     }
7948   }
7949 
7950   // C++ [over.built]p6:
7951   //   For every cv-qualified or cv-unqualified object type T, there
7952   //   exist candidate operator functions of the form
7953   //
7954   //       T&         operator*(T*);
7955   //
7956   // C++ [over.built]p7:
7957   //   For every function type T that does not have cv-qualifiers or a
7958   //   ref-qualifier, there exist candidate operator functions of the form
7959   //       T&         operator*(T*);
7960   void addUnaryStarPointerOverloads() {
7961     for (BuiltinCandidateTypeSet::iterator
7962               Ptr = CandidateTypes[0].pointer_begin(),
7963            PtrEnd = CandidateTypes[0].pointer_end();
7964          Ptr != PtrEnd; ++Ptr) {
7965       QualType ParamTy = *Ptr;
7966       QualType PointeeTy = ParamTy->getPointeeType();
7967       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
7968         continue;
7969 
7970       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
7971         if (Proto->getMethodQuals() || Proto->getRefQualifier())
7972           continue;
7973 
7974       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
7975     }
7976   }
7977 
7978   // C++ [over.built]p9:
7979   //  For every promoted arithmetic type T, there exist candidate
7980   //  operator functions of the form
7981   //
7982   //       T         operator+(T);
7983   //       T         operator-(T);
7984   void addUnaryPlusOrMinusArithmeticOverloads() {
7985     if (!HasArithmeticOrEnumeralCandidateType)
7986       return;
7987 
7988     for (unsigned Arith = FirstPromotedArithmeticType;
7989          Arith < LastPromotedArithmeticType; ++Arith) {
7990       QualType ArithTy = ArithmeticTypes[Arith];
7991       S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
7992     }
7993 
7994     // Extension: We also add these operators for vector types.
7995     for (BuiltinCandidateTypeSet::iterator
7996               Vec = CandidateTypes[0].vector_begin(),
7997            VecEnd = CandidateTypes[0].vector_end();
7998          Vec != VecEnd; ++Vec) {
7999       QualType VecTy = *Vec;
8000       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8001     }
8002   }
8003 
8004   // C++ [over.built]p8:
8005   //   For every type T, there exist candidate operator functions of
8006   //   the form
8007   //
8008   //       T*         operator+(T*);
8009   void addUnaryPlusPointerOverloads() {
8010     for (BuiltinCandidateTypeSet::iterator
8011               Ptr = CandidateTypes[0].pointer_begin(),
8012            PtrEnd = CandidateTypes[0].pointer_end();
8013          Ptr != PtrEnd; ++Ptr) {
8014       QualType ParamTy = *Ptr;
8015       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8016     }
8017   }
8018 
8019   // C++ [over.built]p10:
8020   //   For every promoted integral type T, there exist candidate
8021   //   operator functions of the form
8022   //
8023   //        T         operator~(T);
8024   void addUnaryTildePromotedIntegralOverloads() {
8025     if (!HasArithmeticOrEnumeralCandidateType)
8026       return;
8027 
8028     for (unsigned Int = FirstPromotedIntegralType;
8029          Int < LastPromotedIntegralType; ++Int) {
8030       QualType IntTy = ArithmeticTypes[Int];
8031       S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8032     }
8033 
8034     // Extension: We also add this operator for vector types.
8035     for (BuiltinCandidateTypeSet::iterator
8036               Vec = CandidateTypes[0].vector_begin(),
8037            VecEnd = CandidateTypes[0].vector_end();
8038          Vec != VecEnd; ++Vec) {
8039       QualType VecTy = *Vec;
8040       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8041     }
8042   }
8043 
8044   // C++ [over.match.oper]p16:
8045   //   For every pointer to member type T or type std::nullptr_t, there
8046   //   exist candidate operator functions of the form
8047   //
8048   //        bool operator==(T,T);
8049   //        bool operator!=(T,T);
8050   void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8051     /// Set of (canonical) types that we've already handled.
8052     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8053 
8054     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8055       for (BuiltinCandidateTypeSet::iterator
8056                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8057              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8058            MemPtr != MemPtrEnd;
8059            ++MemPtr) {
8060         // Don't add the same builtin candidate twice.
8061         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8062           continue;
8063 
8064         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8065         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8066       }
8067 
8068       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8069         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8070         if (AddedTypes.insert(NullPtrTy).second) {
8071           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8072           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8073         }
8074       }
8075     }
8076   }
8077 
8078   // C++ [over.built]p15:
8079   //
8080   //   For every T, where T is an enumeration type or a pointer type,
8081   //   there exist candidate operator functions of the form
8082   //
8083   //        bool       operator<(T, T);
8084   //        bool       operator>(T, T);
8085   //        bool       operator<=(T, T);
8086   //        bool       operator>=(T, T);
8087   //        bool       operator==(T, T);
8088   //        bool       operator!=(T, T);
8089   //           R       operator<=>(T, T)
8090   void addGenericBinaryPointerOrEnumeralOverloads() {
8091     // C++ [over.match.oper]p3:
8092     //   [...]the built-in candidates include all of the candidate operator
8093     //   functions defined in 13.6 that, compared to the given operator, [...]
8094     //   do not have the same parameter-type-list as any non-template non-member
8095     //   candidate.
8096     //
8097     // Note that in practice, this only affects enumeration types because there
8098     // aren't any built-in candidates of record type, and a user-defined operator
8099     // must have an operand of record or enumeration type. Also, the only other
8100     // overloaded operator with enumeration arguments, operator=,
8101     // cannot be overloaded for enumeration types, so this is the only place
8102     // where we must suppress candidates like this.
8103     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8104       UserDefinedBinaryOperators;
8105 
8106     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8107       if (CandidateTypes[ArgIdx].enumeration_begin() !=
8108           CandidateTypes[ArgIdx].enumeration_end()) {
8109         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8110                                          CEnd = CandidateSet.end();
8111              C != CEnd; ++C) {
8112           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8113             continue;
8114 
8115           if (C->Function->isFunctionTemplateSpecialization())
8116             continue;
8117 
8118           QualType FirstParamType =
8119             C->Function->getParamDecl(0)->getType().getUnqualifiedType();
8120           QualType SecondParamType =
8121             C->Function->getParamDecl(1)->getType().getUnqualifiedType();
8122 
8123           // Skip if either parameter isn't of enumeral type.
8124           if (!FirstParamType->isEnumeralType() ||
8125               !SecondParamType->isEnumeralType())
8126             continue;
8127 
8128           // Add this operator to the set of known user-defined operators.
8129           UserDefinedBinaryOperators.insert(
8130             std::make_pair(S.Context.getCanonicalType(FirstParamType),
8131                            S.Context.getCanonicalType(SecondParamType)));
8132         }
8133       }
8134     }
8135 
8136     /// Set of (canonical) types that we've already handled.
8137     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8138 
8139     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8140       for (BuiltinCandidateTypeSet::iterator
8141                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8142              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8143            Ptr != PtrEnd; ++Ptr) {
8144         // Don't add the same builtin candidate twice.
8145         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8146           continue;
8147 
8148         QualType ParamTypes[2] = { *Ptr, *Ptr };
8149         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8150       }
8151       for (BuiltinCandidateTypeSet::iterator
8152                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8153              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8154            Enum != EnumEnd; ++Enum) {
8155         CanQualType CanonType = S.Context.getCanonicalType(*Enum);
8156 
8157         // Don't add the same builtin candidate twice, or if a user defined
8158         // candidate exists.
8159         if (!AddedTypes.insert(CanonType).second ||
8160             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8161                                                             CanonType)))
8162           continue;
8163         QualType ParamTypes[2] = { *Enum, *Enum };
8164         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8165       }
8166     }
8167   }
8168 
8169   // C++ [over.built]p13:
8170   //
8171   //   For every cv-qualified or cv-unqualified object type T
8172   //   there exist candidate operator functions of the form
8173   //
8174   //      T*         operator+(T*, ptrdiff_t);
8175   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
8176   //      T*         operator-(T*, ptrdiff_t);
8177   //      T*         operator+(ptrdiff_t, T*);
8178   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
8179   //
8180   // C++ [over.built]p14:
8181   //
8182   //   For every T, where T is a pointer to object type, there
8183   //   exist candidate operator functions of the form
8184   //
8185   //      ptrdiff_t  operator-(T, T);
8186   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8187     /// Set of (canonical) types that we've already handled.
8188     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8189 
8190     for (int Arg = 0; Arg < 2; ++Arg) {
8191       QualType AsymmetricParamTypes[2] = {
8192         S.Context.getPointerDiffType(),
8193         S.Context.getPointerDiffType(),
8194       };
8195       for (BuiltinCandidateTypeSet::iterator
8196                 Ptr = CandidateTypes[Arg].pointer_begin(),
8197              PtrEnd = CandidateTypes[Arg].pointer_end();
8198            Ptr != PtrEnd; ++Ptr) {
8199         QualType PointeeTy = (*Ptr)->getPointeeType();
8200         if (!PointeeTy->isObjectType())
8201           continue;
8202 
8203         AsymmetricParamTypes[Arg] = *Ptr;
8204         if (Arg == 0 || Op == OO_Plus) {
8205           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8206           // T* operator+(ptrdiff_t, T*);
8207           S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8208         }
8209         if (Op == OO_Minus) {
8210           // ptrdiff_t operator-(T, T);
8211           if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8212             continue;
8213 
8214           QualType ParamTypes[2] = { *Ptr, *Ptr };
8215           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8216         }
8217       }
8218     }
8219   }
8220 
8221   // C++ [over.built]p12:
8222   //
8223   //   For every pair of promoted arithmetic types L and R, there
8224   //   exist candidate operator functions of the form
8225   //
8226   //        LR         operator*(L, R);
8227   //        LR         operator/(L, R);
8228   //        LR         operator+(L, R);
8229   //        LR         operator-(L, R);
8230   //        bool       operator<(L, R);
8231   //        bool       operator>(L, R);
8232   //        bool       operator<=(L, R);
8233   //        bool       operator>=(L, R);
8234   //        bool       operator==(L, R);
8235   //        bool       operator!=(L, R);
8236   //
8237   //   where LR is the result of the usual arithmetic conversions
8238   //   between types L and R.
8239   //
8240   // C++ [over.built]p24:
8241   //
8242   //   For every pair of promoted arithmetic types L and R, there exist
8243   //   candidate operator functions of the form
8244   //
8245   //        LR       operator?(bool, L, R);
8246   //
8247   //   where LR is the result of the usual arithmetic conversions
8248   //   between types L and R.
8249   // Our candidates ignore the first parameter.
8250   void addGenericBinaryArithmeticOverloads() {
8251     if (!HasArithmeticOrEnumeralCandidateType)
8252       return;
8253 
8254     for (unsigned Left = FirstPromotedArithmeticType;
8255          Left < LastPromotedArithmeticType; ++Left) {
8256       for (unsigned Right = FirstPromotedArithmeticType;
8257            Right < LastPromotedArithmeticType; ++Right) {
8258         QualType LandR[2] = { ArithmeticTypes[Left],
8259                               ArithmeticTypes[Right] };
8260         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8261       }
8262     }
8263 
8264     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8265     // conditional operator for vector types.
8266     for (BuiltinCandidateTypeSet::iterator
8267               Vec1 = CandidateTypes[0].vector_begin(),
8268            Vec1End = CandidateTypes[0].vector_end();
8269          Vec1 != Vec1End; ++Vec1) {
8270       for (BuiltinCandidateTypeSet::iterator
8271                 Vec2 = CandidateTypes[1].vector_begin(),
8272              Vec2End = CandidateTypes[1].vector_end();
8273            Vec2 != Vec2End; ++Vec2) {
8274         QualType LandR[2] = { *Vec1, *Vec2 };
8275         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8276       }
8277     }
8278   }
8279 
8280   // C++2a [over.built]p14:
8281   //
8282   //   For every integral type T there exists a candidate operator function
8283   //   of the form
8284   //
8285   //        std::strong_ordering operator<=>(T, T)
8286   //
8287   // C++2a [over.built]p15:
8288   //
8289   //   For every pair of floating-point types L and R, there exists a candidate
8290   //   operator function of the form
8291   //
8292   //       std::partial_ordering operator<=>(L, R);
8293   //
8294   // FIXME: The current specification for integral types doesn't play nice with
8295   // the direction of p0946r0, which allows mixed integral and unscoped-enum
8296   // comparisons. Under the current spec this can lead to ambiguity during
8297   // overload resolution. For example:
8298   //
8299   //   enum A : int {a};
8300   //   auto x = (a <=> (long)42);
8301   //
8302   //   error: call is ambiguous for arguments 'A' and 'long'.
8303   //   note: candidate operator<=>(int, int)
8304   //   note: candidate operator<=>(long, long)
8305   //
8306   // To avoid this error, this function deviates from the specification and adds
8307   // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8308   // arithmetic types (the same as the generic relational overloads).
8309   //
8310   // For now this function acts as a placeholder.
8311   void addThreeWayArithmeticOverloads() {
8312     addGenericBinaryArithmeticOverloads();
8313   }
8314 
8315   // C++ [over.built]p17:
8316   //
8317   //   For every pair of promoted integral types L and R, there
8318   //   exist candidate operator functions of the form
8319   //
8320   //      LR         operator%(L, R);
8321   //      LR         operator&(L, R);
8322   //      LR         operator^(L, R);
8323   //      LR         operator|(L, R);
8324   //      L          operator<<(L, R);
8325   //      L          operator>>(L, R);
8326   //
8327   //   where LR is the result of the usual arithmetic conversions
8328   //   between types L and R.
8329   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
8330     if (!HasArithmeticOrEnumeralCandidateType)
8331       return;
8332 
8333     for (unsigned Left = FirstPromotedIntegralType;
8334          Left < LastPromotedIntegralType; ++Left) {
8335       for (unsigned Right = FirstPromotedIntegralType;
8336            Right < LastPromotedIntegralType; ++Right) {
8337         QualType LandR[2] = { ArithmeticTypes[Left],
8338                               ArithmeticTypes[Right] };
8339         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8340       }
8341     }
8342   }
8343 
8344   // C++ [over.built]p20:
8345   //
8346   //   For every pair (T, VQ), where T is an enumeration or
8347   //   pointer to member type and VQ is either volatile or
8348   //   empty, there exist candidate operator functions of the form
8349   //
8350   //        VQ T&      operator=(VQ T&, T);
8351   void addAssignmentMemberPointerOrEnumeralOverloads() {
8352     /// Set of (canonical) types that we've already handled.
8353     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8354 
8355     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8356       for (BuiltinCandidateTypeSet::iterator
8357                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8358              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8359            Enum != EnumEnd; ++Enum) {
8360         if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8361           continue;
8362 
8363         AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
8364       }
8365 
8366       for (BuiltinCandidateTypeSet::iterator
8367                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8368              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8369            MemPtr != MemPtrEnd; ++MemPtr) {
8370         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8371           continue;
8372 
8373         AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
8374       }
8375     }
8376   }
8377 
8378   // C++ [over.built]p19:
8379   //
8380   //   For every pair (T, VQ), where T is any type and VQ is either
8381   //   volatile or empty, there exist candidate operator functions
8382   //   of the form
8383   //
8384   //        T*VQ&      operator=(T*VQ&, T*);
8385   //
8386   // C++ [over.built]p21:
8387   //
8388   //   For every pair (T, VQ), where T is a cv-qualified or
8389   //   cv-unqualified object type and VQ is either volatile or
8390   //   empty, there exist candidate operator functions of the form
8391   //
8392   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
8393   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
8394   void addAssignmentPointerOverloads(bool isEqualOp) {
8395     /// Set of (canonical) types that we've already handled.
8396     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8397 
8398     for (BuiltinCandidateTypeSet::iterator
8399               Ptr = CandidateTypes[0].pointer_begin(),
8400            PtrEnd = CandidateTypes[0].pointer_end();
8401          Ptr != PtrEnd; ++Ptr) {
8402       // If this is operator=, keep track of the builtin candidates we added.
8403       if (isEqualOp)
8404         AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
8405       else if (!(*Ptr)->getPointeeType()->isObjectType())
8406         continue;
8407 
8408       // non-volatile version
8409       QualType ParamTypes[2] = {
8410         S.Context.getLValueReferenceType(*Ptr),
8411         isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
8412       };
8413       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8414                             /*IsAssigmentOperator=*/ isEqualOp);
8415 
8416       bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8417                           VisibleTypeConversionsQuals.hasVolatile();
8418       if (NeedVolatile) {
8419         // volatile version
8420         ParamTypes[0] =
8421           S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8422         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8423                               /*IsAssigmentOperator=*/isEqualOp);
8424       }
8425 
8426       if (!(*Ptr).isRestrictQualified() &&
8427           VisibleTypeConversionsQuals.hasRestrict()) {
8428         // restrict version
8429         ParamTypes[0]
8430           = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8431         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8432                               /*IsAssigmentOperator=*/isEqualOp);
8433 
8434         if (NeedVolatile) {
8435           // volatile restrict version
8436           ParamTypes[0]
8437             = S.Context.getLValueReferenceType(
8438                 S.Context.getCVRQualifiedType(*Ptr,
8439                                               (Qualifiers::Volatile |
8440                                                Qualifiers::Restrict)));
8441           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8442                                 /*IsAssigmentOperator=*/isEqualOp);
8443         }
8444       }
8445     }
8446 
8447     if (isEqualOp) {
8448       for (BuiltinCandidateTypeSet::iterator
8449                 Ptr = CandidateTypes[1].pointer_begin(),
8450              PtrEnd = CandidateTypes[1].pointer_end();
8451            Ptr != PtrEnd; ++Ptr) {
8452         // Make sure we don't add the same candidate twice.
8453         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8454           continue;
8455 
8456         QualType ParamTypes[2] = {
8457           S.Context.getLValueReferenceType(*Ptr),
8458           *Ptr,
8459         };
8460 
8461         // non-volatile version
8462         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8463                               /*IsAssigmentOperator=*/true);
8464 
8465         bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8466                            VisibleTypeConversionsQuals.hasVolatile();
8467         if (NeedVolatile) {
8468           // volatile version
8469           ParamTypes[0] =
8470             S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8471           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8472                                 /*IsAssigmentOperator=*/true);
8473         }
8474 
8475         if (!(*Ptr).isRestrictQualified() &&
8476             VisibleTypeConversionsQuals.hasRestrict()) {
8477           // restrict version
8478           ParamTypes[0]
8479             = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8480           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8481                                 /*IsAssigmentOperator=*/true);
8482 
8483           if (NeedVolatile) {
8484             // volatile restrict version
8485             ParamTypes[0]
8486               = S.Context.getLValueReferenceType(
8487                   S.Context.getCVRQualifiedType(*Ptr,
8488                                                 (Qualifiers::Volatile |
8489                                                  Qualifiers::Restrict)));
8490             S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8491                                   /*IsAssigmentOperator=*/true);
8492           }
8493         }
8494       }
8495     }
8496   }
8497 
8498   // C++ [over.built]p18:
8499   //
8500   //   For every triple (L, VQ, R), where L is an arithmetic type,
8501   //   VQ is either volatile or empty, and R is a promoted
8502   //   arithmetic type, there exist candidate operator functions of
8503   //   the form
8504   //
8505   //        VQ L&      operator=(VQ L&, R);
8506   //        VQ L&      operator*=(VQ L&, R);
8507   //        VQ L&      operator/=(VQ L&, R);
8508   //        VQ L&      operator+=(VQ L&, R);
8509   //        VQ L&      operator-=(VQ L&, R);
8510   void addAssignmentArithmeticOverloads(bool isEqualOp) {
8511     if (!HasArithmeticOrEnumeralCandidateType)
8512       return;
8513 
8514     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8515       for (unsigned Right = FirstPromotedArithmeticType;
8516            Right < LastPromotedArithmeticType; ++Right) {
8517         QualType ParamTypes[2];
8518         ParamTypes[1] = ArithmeticTypes[Right];
8519         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8520             S, ArithmeticTypes[Left], Args[0]);
8521         // Add this built-in operator as a candidate (VQ is empty).
8522         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8523         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8524                               /*IsAssigmentOperator=*/isEqualOp);
8525 
8526         // Add this built-in operator as a candidate (VQ is 'volatile').
8527         if (VisibleTypeConversionsQuals.hasVolatile()) {
8528           ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8529           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8530           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8531                                 /*IsAssigmentOperator=*/isEqualOp);
8532         }
8533       }
8534     }
8535 
8536     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8537     for (BuiltinCandidateTypeSet::iterator
8538               Vec1 = CandidateTypes[0].vector_begin(),
8539            Vec1End = CandidateTypes[0].vector_end();
8540          Vec1 != Vec1End; ++Vec1) {
8541       for (BuiltinCandidateTypeSet::iterator
8542                 Vec2 = CandidateTypes[1].vector_begin(),
8543              Vec2End = CandidateTypes[1].vector_end();
8544            Vec2 != Vec2End; ++Vec2) {
8545         QualType ParamTypes[2];
8546         ParamTypes[1] = *Vec2;
8547         // Add this built-in operator as a candidate (VQ is empty).
8548         ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
8549         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8550                               /*IsAssigmentOperator=*/isEqualOp);
8551 
8552         // Add this built-in operator as a candidate (VQ is 'volatile').
8553         if (VisibleTypeConversionsQuals.hasVolatile()) {
8554           ParamTypes[0] = S.Context.getVolatileType(*Vec1);
8555           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8556           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8557                                 /*IsAssigmentOperator=*/isEqualOp);
8558         }
8559       }
8560     }
8561   }
8562 
8563   // C++ [over.built]p22:
8564   //
8565   //   For every triple (L, VQ, R), where L is an integral type, VQ
8566   //   is either volatile or empty, and R is a promoted integral
8567   //   type, there exist candidate operator functions of the form
8568   //
8569   //        VQ L&       operator%=(VQ L&, R);
8570   //        VQ L&       operator<<=(VQ L&, R);
8571   //        VQ L&       operator>>=(VQ L&, R);
8572   //        VQ L&       operator&=(VQ L&, R);
8573   //        VQ L&       operator^=(VQ L&, R);
8574   //        VQ L&       operator|=(VQ L&, R);
8575   void addAssignmentIntegralOverloads() {
8576     if (!HasArithmeticOrEnumeralCandidateType)
8577       return;
8578 
8579     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8580       for (unsigned Right = FirstPromotedIntegralType;
8581            Right < LastPromotedIntegralType; ++Right) {
8582         QualType ParamTypes[2];
8583         ParamTypes[1] = ArithmeticTypes[Right];
8584         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8585             S, ArithmeticTypes[Left], Args[0]);
8586         // Add this built-in operator as a candidate (VQ is empty).
8587         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8588         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8589         if (VisibleTypeConversionsQuals.hasVolatile()) {
8590           // Add this built-in operator as a candidate (VQ is 'volatile').
8591           ParamTypes[0] = LeftBaseTy;
8592           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8593           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8594           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8595         }
8596       }
8597     }
8598   }
8599 
8600   // C++ [over.operator]p23:
8601   //
8602   //   There also exist candidate operator functions of the form
8603   //
8604   //        bool        operator!(bool);
8605   //        bool        operator&&(bool, bool);
8606   //        bool        operator||(bool, bool);
8607   void addExclaimOverload() {
8608     QualType ParamTy = S.Context.BoolTy;
8609     S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
8610                           /*IsAssignmentOperator=*/false,
8611                           /*NumContextualBoolArguments=*/1);
8612   }
8613   void addAmpAmpOrPipePipeOverload() {
8614     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8615     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8616                           /*IsAssignmentOperator=*/false,
8617                           /*NumContextualBoolArguments=*/2);
8618   }
8619 
8620   // C++ [over.built]p13:
8621   //
8622   //   For every cv-qualified or cv-unqualified object type T there
8623   //   exist candidate operator functions of the form
8624   //
8625   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
8626   //        T&         operator[](T*, ptrdiff_t);
8627   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
8628   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
8629   //        T&         operator[](ptrdiff_t, T*);
8630   void addSubscriptOverloads() {
8631     for (BuiltinCandidateTypeSet::iterator
8632               Ptr = CandidateTypes[0].pointer_begin(),
8633            PtrEnd = CandidateTypes[0].pointer_end();
8634          Ptr != PtrEnd; ++Ptr) {
8635       QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
8636       QualType PointeeType = (*Ptr)->getPointeeType();
8637       if (!PointeeType->isObjectType())
8638         continue;
8639 
8640       // T& operator[](T*, ptrdiff_t)
8641       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8642     }
8643 
8644     for (BuiltinCandidateTypeSet::iterator
8645               Ptr = CandidateTypes[1].pointer_begin(),
8646            PtrEnd = CandidateTypes[1].pointer_end();
8647          Ptr != PtrEnd; ++Ptr) {
8648       QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
8649       QualType PointeeType = (*Ptr)->getPointeeType();
8650       if (!PointeeType->isObjectType())
8651         continue;
8652 
8653       // T& operator[](ptrdiff_t, T*)
8654       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8655     }
8656   }
8657 
8658   // C++ [over.built]p11:
8659   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8660   //    C1 is the same type as C2 or is a derived class of C2, T is an object
8661   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8662   //    there exist candidate operator functions of the form
8663   //
8664   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8665   //
8666   //    where CV12 is the union of CV1 and CV2.
8667   void addArrowStarOverloads() {
8668     for (BuiltinCandidateTypeSet::iterator
8669              Ptr = CandidateTypes[0].pointer_begin(),
8670            PtrEnd = CandidateTypes[0].pointer_end();
8671          Ptr != PtrEnd; ++Ptr) {
8672       QualType C1Ty = (*Ptr);
8673       QualType C1;
8674       QualifierCollector Q1;
8675       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8676       if (!isa<RecordType>(C1))
8677         continue;
8678       // heuristic to reduce number of builtin candidates in the set.
8679       // Add volatile/restrict version only if there are conversions to a
8680       // volatile/restrict type.
8681       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8682         continue;
8683       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8684         continue;
8685       for (BuiltinCandidateTypeSet::iterator
8686                 MemPtr = CandidateTypes[1].member_pointer_begin(),
8687              MemPtrEnd = CandidateTypes[1].member_pointer_end();
8688            MemPtr != MemPtrEnd; ++MemPtr) {
8689         const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8690         QualType C2 = QualType(mptr->getClass(), 0);
8691         C2 = C2.getUnqualifiedType();
8692         if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
8693           break;
8694         QualType ParamTypes[2] = { *Ptr, *MemPtr };
8695         // build CV12 T&
8696         QualType T = mptr->getPointeeType();
8697         if (!VisibleTypeConversionsQuals.hasVolatile() &&
8698             T.isVolatileQualified())
8699           continue;
8700         if (!VisibleTypeConversionsQuals.hasRestrict() &&
8701             T.isRestrictQualified())
8702           continue;
8703         T = Q1.apply(S.Context, T);
8704         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8705       }
8706     }
8707   }
8708 
8709   // Note that we don't consider the first argument, since it has been
8710   // contextually converted to bool long ago. The candidates below are
8711   // therefore added as binary.
8712   //
8713   // C++ [over.built]p25:
8714   //   For every type T, where T is a pointer, pointer-to-member, or scoped
8715   //   enumeration type, there exist candidate operator functions of the form
8716   //
8717   //        T        operator?(bool, T, T);
8718   //
8719   void addConditionalOperatorOverloads() {
8720     /// Set of (canonical) types that we've already handled.
8721     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8722 
8723     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8724       for (BuiltinCandidateTypeSet::iterator
8725                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8726              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8727            Ptr != PtrEnd; ++Ptr) {
8728         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8729           continue;
8730 
8731         QualType ParamTypes[2] = { *Ptr, *Ptr };
8732         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8733       }
8734 
8735       for (BuiltinCandidateTypeSet::iterator
8736                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8737              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8738            MemPtr != MemPtrEnd; ++MemPtr) {
8739         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8740           continue;
8741 
8742         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8743         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8744       }
8745 
8746       if (S.getLangOpts().CPlusPlus11) {
8747         for (BuiltinCandidateTypeSet::iterator
8748                   Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8749                EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8750              Enum != EnumEnd; ++Enum) {
8751           if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
8752             continue;
8753 
8754           if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8755             continue;
8756 
8757           QualType ParamTypes[2] = { *Enum, *Enum };
8758           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8759         }
8760       }
8761     }
8762   }
8763 };
8764 
8765 } // end anonymous namespace
8766 
8767 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
8768 /// operator overloads to the candidate set (C++ [over.built]), based
8769 /// on the operator @p Op and the arguments given. For example, if the
8770 /// operator is a binary '+', this routine might add "int
8771 /// operator+(int, int)" to cover integer addition.
8772 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8773                                         SourceLocation OpLoc,
8774                                         ArrayRef<Expr *> Args,
8775                                         OverloadCandidateSet &CandidateSet) {
8776   // Find all of the types that the arguments can convert to, but only
8777   // if the operator we're looking at has built-in operator candidates
8778   // that make use of these types. Also record whether we encounter non-record
8779   // candidate types or either arithmetic or enumeral candidate types.
8780   Qualifiers VisibleTypeConversionsQuals;
8781   VisibleTypeConversionsQuals.addConst();
8782   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8783     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8784 
8785   bool HasNonRecordCandidateType = false;
8786   bool HasArithmeticOrEnumeralCandidateType = false;
8787   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8788   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8789     CandidateTypes.emplace_back(*this);
8790     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8791                                                  OpLoc,
8792                                                  true,
8793                                                  (Op == OO_Exclaim ||
8794                                                   Op == OO_AmpAmp ||
8795                                                   Op == OO_PipePipe),
8796                                                  VisibleTypeConversionsQuals);
8797     HasNonRecordCandidateType = HasNonRecordCandidateType ||
8798         CandidateTypes[ArgIdx].hasNonRecordTypes();
8799     HasArithmeticOrEnumeralCandidateType =
8800         HasArithmeticOrEnumeralCandidateType ||
8801         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8802   }
8803 
8804   // Exit early when no non-record types have been added to the candidate set
8805   // for any of the arguments to the operator.
8806   //
8807   // We can't exit early for !, ||, or &&, since there we have always have
8808   // 'bool' overloads.
8809   if (!HasNonRecordCandidateType &&
8810       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8811     return;
8812 
8813   // Setup an object to manage the common state for building overloads.
8814   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8815                                            VisibleTypeConversionsQuals,
8816                                            HasArithmeticOrEnumeralCandidateType,
8817                                            CandidateTypes, CandidateSet);
8818 
8819   // Dispatch over the operation to add in only those overloads which apply.
8820   switch (Op) {
8821   case OO_None:
8822   case NUM_OVERLOADED_OPERATORS:
8823     llvm_unreachable("Expected an overloaded operator");
8824 
8825   case OO_New:
8826   case OO_Delete:
8827   case OO_Array_New:
8828   case OO_Array_Delete:
8829   case OO_Call:
8830     llvm_unreachable(
8831                     "Special operators don't use AddBuiltinOperatorCandidates");
8832 
8833   case OO_Comma:
8834   case OO_Arrow:
8835   case OO_Coawait:
8836     // C++ [over.match.oper]p3:
8837     //   -- For the operator ',', the unary operator '&', the
8838     //      operator '->', or the operator 'co_await', the
8839     //      built-in candidates set is empty.
8840     break;
8841 
8842   case OO_Plus: // '+' is either unary or binary
8843     if (Args.size() == 1)
8844       OpBuilder.addUnaryPlusPointerOverloads();
8845     LLVM_FALLTHROUGH;
8846 
8847   case OO_Minus: // '-' is either unary or binary
8848     if (Args.size() == 1) {
8849       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
8850     } else {
8851       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
8852       OpBuilder.addGenericBinaryArithmeticOverloads();
8853     }
8854     break;
8855 
8856   case OO_Star: // '*' is either unary or binary
8857     if (Args.size() == 1)
8858       OpBuilder.addUnaryStarPointerOverloads();
8859     else
8860       OpBuilder.addGenericBinaryArithmeticOverloads();
8861     break;
8862 
8863   case OO_Slash:
8864     OpBuilder.addGenericBinaryArithmeticOverloads();
8865     break;
8866 
8867   case OO_PlusPlus:
8868   case OO_MinusMinus:
8869     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
8870     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
8871     break;
8872 
8873   case OO_EqualEqual:
8874   case OO_ExclaimEqual:
8875     OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
8876     LLVM_FALLTHROUGH;
8877 
8878   case OO_Less:
8879   case OO_Greater:
8880   case OO_LessEqual:
8881   case OO_GreaterEqual:
8882     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
8883     OpBuilder.addGenericBinaryArithmeticOverloads();
8884     break;
8885 
8886   case OO_Spaceship:
8887     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
8888     OpBuilder.addThreeWayArithmeticOverloads();
8889     break;
8890 
8891   case OO_Percent:
8892   case OO_Caret:
8893   case OO_Pipe:
8894   case OO_LessLess:
8895   case OO_GreaterGreater:
8896     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8897     break;
8898 
8899   case OO_Amp: // '&' is either unary or binary
8900     if (Args.size() == 1)
8901       // C++ [over.match.oper]p3:
8902       //   -- For the operator ',', the unary operator '&', or the
8903       //      operator '->', the built-in candidates set is empty.
8904       break;
8905 
8906     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8907     break;
8908 
8909   case OO_Tilde:
8910     OpBuilder.addUnaryTildePromotedIntegralOverloads();
8911     break;
8912 
8913   case OO_Equal:
8914     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
8915     LLVM_FALLTHROUGH;
8916 
8917   case OO_PlusEqual:
8918   case OO_MinusEqual:
8919     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
8920     LLVM_FALLTHROUGH;
8921 
8922   case OO_StarEqual:
8923   case OO_SlashEqual:
8924     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
8925     break;
8926 
8927   case OO_PercentEqual:
8928   case OO_LessLessEqual:
8929   case OO_GreaterGreaterEqual:
8930   case OO_AmpEqual:
8931   case OO_CaretEqual:
8932   case OO_PipeEqual:
8933     OpBuilder.addAssignmentIntegralOverloads();
8934     break;
8935 
8936   case OO_Exclaim:
8937     OpBuilder.addExclaimOverload();
8938     break;
8939 
8940   case OO_AmpAmp:
8941   case OO_PipePipe:
8942     OpBuilder.addAmpAmpOrPipePipeOverload();
8943     break;
8944 
8945   case OO_Subscript:
8946     OpBuilder.addSubscriptOverloads();
8947     break;
8948 
8949   case OO_ArrowStar:
8950     OpBuilder.addArrowStarOverloads();
8951     break;
8952 
8953   case OO_Conditional:
8954     OpBuilder.addConditionalOperatorOverloads();
8955     OpBuilder.addGenericBinaryArithmeticOverloads();
8956     break;
8957   }
8958 }
8959 
8960 /// Add function candidates found via argument-dependent lookup
8961 /// to the set of overloading candidates.
8962 ///
8963 /// This routine performs argument-dependent name lookup based on the
8964 /// given function name (which may also be an operator name) and adds
8965 /// all of the overload candidates found by ADL to the overload
8966 /// candidate set (C++ [basic.lookup.argdep]).
8967 void
8968 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
8969                                            SourceLocation Loc,
8970                                            ArrayRef<Expr *> Args,
8971                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
8972                                            OverloadCandidateSet& CandidateSet,
8973                                            bool PartialOverloading) {
8974   ADLResult Fns;
8975 
8976   // FIXME: This approach for uniquing ADL results (and removing
8977   // redundant candidates from the set) relies on pointer-equality,
8978   // which means we need to key off the canonical decl.  However,
8979   // always going back to the canonical decl might not get us the
8980   // right set of default arguments.  What default arguments are
8981   // we supposed to consider on ADL candidates, anyway?
8982 
8983   // FIXME: Pass in the explicit template arguments?
8984   ArgumentDependentLookup(Name, Loc, Args, Fns);
8985 
8986   // Erase all of the candidates we already knew about.
8987   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
8988                                    CandEnd = CandidateSet.end();
8989        Cand != CandEnd; ++Cand)
8990     if (Cand->Function) {
8991       Fns.erase(Cand->Function);
8992       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
8993         Fns.erase(FunTmpl);
8994     }
8995 
8996   // For each of the ADL candidates we found, add it to the overload
8997   // set.
8998   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
8999     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9000 
9001     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9002       if (ExplicitTemplateArgs)
9003         continue;
9004 
9005       AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet,
9006                            /*SupressUserConversions=*/false, PartialOverloading,
9007                            /*AllowExplicit*/ true,
9008                            /*AllowExplicitConversions*/ false,
9009                            ADLCallKind::UsesADL);
9010     } else {
9011       AddTemplateOverloadCandidate(
9012           cast<FunctionTemplateDecl>(*I), FoundDecl, ExplicitTemplateArgs, Args,
9013           CandidateSet,
9014           /*SuppressUserConversions=*/false, PartialOverloading,
9015           /*AllowExplicit*/true, ADLCallKind::UsesADL);
9016     }
9017   }
9018 }
9019 
9020 namespace {
9021 enum class Comparison { Equal, Better, Worse };
9022 }
9023 
9024 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9025 /// overload resolution.
9026 ///
9027 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9028 /// Cand1's first N enable_if attributes have precisely the same conditions as
9029 /// Cand2's first N enable_if attributes (where N = the number of enable_if
9030 /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9031 ///
9032 /// Note that you can have a pair of candidates such that Cand1's enable_if
9033 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9034 /// worse than Cand1's.
9035 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9036                                        const FunctionDecl *Cand2) {
9037   // Common case: One (or both) decls don't have enable_if attrs.
9038   bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9039   bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9040   if (!Cand1Attr || !Cand2Attr) {
9041     if (Cand1Attr == Cand2Attr)
9042       return Comparison::Equal;
9043     return Cand1Attr ? Comparison::Better : Comparison::Worse;
9044   }
9045 
9046   auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9047   auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9048 
9049   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9050   for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9051     Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9052     Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9053 
9054     // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9055     // has fewer enable_if attributes than Cand2, and vice versa.
9056     if (!Cand1A)
9057       return Comparison::Worse;
9058     if (!Cand2A)
9059       return Comparison::Better;
9060 
9061     Cand1ID.clear();
9062     Cand2ID.clear();
9063 
9064     (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9065     (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9066     if (Cand1ID != Cand2ID)
9067       return Comparison::Worse;
9068   }
9069 
9070   return Comparison::Equal;
9071 }
9072 
9073 static bool isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9074                                           const OverloadCandidate &Cand2) {
9075   if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9076       !Cand2.Function->isMultiVersion())
9077     return false;
9078 
9079   // If Cand1 is invalid, it cannot be a better match, if Cand2 is invalid, this
9080   // is obviously better.
9081   if (Cand1.Function->isInvalidDecl()) return false;
9082   if (Cand2.Function->isInvalidDecl()) return true;
9083 
9084   // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9085   // cpu_dispatch, else arbitrarily based on the identifiers.
9086   bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9087   bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9088   const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9089   const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9090 
9091   if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9092     return false;
9093 
9094   if (Cand1CPUDisp && !Cand2CPUDisp)
9095     return true;
9096   if (Cand2CPUDisp && !Cand1CPUDisp)
9097     return false;
9098 
9099   if (Cand1CPUSpec && Cand2CPUSpec) {
9100     if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9101       return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size();
9102 
9103     std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9104         FirstDiff = std::mismatch(
9105             Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9106             Cand2CPUSpec->cpus_begin(),
9107             [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9108               return LHS->getName() == RHS->getName();
9109             });
9110 
9111     assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
9112            "Two different cpu-specific versions should not have the same "
9113            "identifier list, otherwise they'd be the same decl!");
9114     return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName();
9115   }
9116   llvm_unreachable("No way to get here unless both had cpu_dispatch");
9117 }
9118 
9119 /// isBetterOverloadCandidate - Determines whether the first overload
9120 /// candidate is a better candidate than the second (C++ 13.3.3p1).
9121 bool clang::isBetterOverloadCandidate(
9122     Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9123     SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9124   // Define viable functions to be better candidates than non-viable
9125   // functions.
9126   if (!Cand2.Viable)
9127     return Cand1.Viable;
9128   else if (!Cand1.Viable)
9129     return false;
9130 
9131   // C++ [over.match.best]p1:
9132   //
9133   //   -- if F is a static member function, ICS1(F) is defined such
9134   //      that ICS1(F) is neither better nor worse than ICS1(G) for
9135   //      any function G, and, symmetrically, ICS1(G) is neither
9136   //      better nor worse than ICS1(F).
9137   unsigned StartArg = 0;
9138   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9139     StartArg = 1;
9140 
9141   auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9142     // We don't allow incompatible pointer conversions in C++.
9143     if (!S.getLangOpts().CPlusPlus)
9144       return ICS.isStandard() &&
9145              ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9146 
9147     // The only ill-formed conversion we allow in C++ is the string literal to
9148     // char* conversion, which is only considered ill-formed after C++11.
9149     return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9150            hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9151   };
9152 
9153   // Define functions that don't require ill-formed conversions for a given
9154   // argument to be better candidates than functions that do.
9155   unsigned NumArgs = Cand1.Conversions.size();
9156   assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
9157   bool HasBetterConversion = false;
9158   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9159     bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9160     bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9161     if (Cand1Bad != Cand2Bad) {
9162       if (Cand1Bad)
9163         return false;
9164       HasBetterConversion = true;
9165     }
9166   }
9167 
9168   if (HasBetterConversion)
9169     return true;
9170 
9171   // C++ [over.match.best]p1:
9172   //   A viable function F1 is defined to be a better function than another
9173   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
9174   //   conversion sequence than ICSi(F2), and then...
9175   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9176     switch (CompareImplicitConversionSequences(S, Loc,
9177                                                Cand1.Conversions[ArgIdx],
9178                                                Cand2.Conversions[ArgIdx])) {
9179     case ImplicitConversionSequence::Better:
9180       // Cand1 has a better conversion sequence.
9181       HasBetterConversion = true;
9182       break;
9183 
9184     case ImplicitConversionSequence::Worse:
9185       // Cand1 can't be better than Cand2.
9186       return false;
9187 
9188     case ImplicitConversionSequence::Indistinguishable:
9189       // Do nothing.
9190       break;
9191     }
9192   }
9193 
9194   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
9195   //       ICSj(F2), or, if not that,
9196   if (HasBetterConversion)
9197     return true;
9198 
9199   //   -- the context is an initialization by user-defined conversion
9200   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
9201   //      from the return type of F1 to the destination type (i.e.,
9202   //      the type of the entity being initialized) is a better
9203   //      conversion sequence than the standard conversion sequence
9204   //      from the return type of F2 to the destination type.
9205   if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9206       Cand1.Function && Cand2.Function &&
9207       isa<CXXConversionDecl>(Cand1.Function) &&
9208       isa<CXXConversionDecl>(Cand2.Function)) {
9209     // First check whether we prefer one of the conversion functions over the
9210     // other. This only distinguishes the results in non-standard, extension
9211     // cases such as the conversion from a lambda closure type to a function
9212     // pointer or block.
9213     ImplicitConversionSequence::CompareKind Result =
9214         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9215     if (Result == ImplicitConversionSequence::Indistinguishable)
9216       Result = CompareStandardConversionSequences(S, Loc,
9217                                                   Cand1.FinalConversion,
9218                                                   Cand2.FinalConversion);
9219 
9220     if (Result != ImplicitConversionSequence::Indistinguishable)
9221       return Result == ImplicitConversionSequence::Better;
9222 
9223     // FIXME: Compare kind of reference binding if conversion functions
9224     // convert to a reference type used in direct reference binding, per
9225     // C++14 [over.match.best]p1 section 2 bullet 3.
9226   }
9227 
9228   // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9229   // as combined with the resolution to CWG issue 243.
9230   //
9231   // When the context is initialization by constructor ([over.match.ctor] or
9232   // either phase of [over.match.list]), a constructor is preferred over
9233   // a conversion function.
9234   if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9235       Cand1.Function && Cand2.Function &&
9236       isa<CXXConstructorDecl>(Cand1.Function) !=
9237           isa<CXXConstructorDecl>(Cand2.Function))
9238     return isa<CXXConstructorDecl>(Cand1.Function);
9239 
9240   //    -- F1 is a non-template function and F2 is a function template
9241   //       specialization, or, if not that,
9242   bool Cand1IsSpecialization = Cand1.Function &&
9243                                Cand1.Function->getPrimaryTemplate();
9244   bool Cand2IsSpecialization = Cand2.Function &&
9245                                Cand2.Function->getPrimaryTemplate();
9246   if (Cand1IsSpecialization != Cand2IsSpecialization)
9247     return Cand2IsSpecialization;
9248 
9249   //   -- F1 and F2 are function template specializations, and the function
9250   //      template for F1 is more specialized than the template for F2
9251   //      according to the partial ordering rules described in 14.5.5.2, or,
9252   //      if not that,
9253   if (Cand1IsSpecialization && Cand2IsSpecialization) {
9254     if (FunctionTemplateDecl *BetterTemplate
9255           = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
9256                                          Cand2.Function->getPrimaryTemplate(),
9257                                          Loc,
9258                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
9259                                                              : TPOC_Call,
9260                                          Cand1.ExplicitCallArguments,
9261                                          Cand2.ExplicitCallArguments))
9262       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9263   }
9264 
9265   // FIXME: Work around a defect in the C++17 inheriting constructor wording.
9266   // A derived-class constructor beats an (inherited) base class constructor.
9267   bool Cand1IsInherited =
9268       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9269   bool Cand2IsInherited =
9270       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9271   if (Cand1IsInherited != Cand2IsInherited)
9272     return Cand2IsInherited;
9273   else if (Cand1IsInherited) {
9274     assert(Cand2IsInherited);
9275     auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9276     auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9277     if (Cand1Class->isDerivedFrom(Cand2Class))
9278       return true;
9279     if (Cand2Class->isDerivedFrom(Cand1Class))
9280       return false;
9281     // Inherited from sibling base classes: still ambiguous.
9282   }
9283 
9284   // Check C++17 tie-breakers for deduction guides.
9285   {
9286     auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9287     auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9288     if (Guide1 && Guide2) {
9289       //  -- F1 is generated from a deduction-guide and F2 is not
9290       if (Guide1->isImplicit() != Guide2->isImplicit())
9291         return Guide2->isImplicit();
9292 
9293       //  -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9294       if (Guide1->isCopyDeductionCandidate())
9295         return true;
9296     }
9297   }
9298 
9299   // Check for enable_if value-based overload resolution.
9300   if (Cand1.Function && Cand2.Function) {
9301     Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9302     if (Cmp != Comparison::Equal)
9303       return Cmp == Comparison::Better;
9304   }
9305 
9306   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9307     FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9308     return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9309            S.IdentifyCUDAPreference(Caller, Cand2.Function);
9310   }
9311 
9312   bool HasPS1 = Cand1.Function != nullptr &&
9313                 functionHasPassObjectSizeParams(Cand1.Function);
9314   bool HasPS2 = Cand2.Function != nullptr &&
9315                 functionHasPassObjectSizeParams(Cand2.Function);
9316   if (HasPS1 != HasPS2 && HasPS1)
9317     return true;
9318 
9319   return isBetterMultiversionCandidate(Cand1, Cand2);
9320 }
9321 
9322 /// Determine whether two declarations are "equivalent" for the purposes of
9323 /// name lookup and overload resolution. This applies when the same internal/no
9324 /// linkage entity is defined by two modules (probably by textually including
9325 /// the same header). In such a case, we don't consider the declarations to
9326 /// declare the same entity, but we also don't want lookups with both
9327 /// declarations visible to be ambiguous in some cases (this happens when using
9328 /// a modularized libstdc++).
9329 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9330                                                   const NamedDecl *B) {
9331   auto *VA = dyn_cast_or_null<ValueDecl>(A);
9332   auto *VB = dyn_cast_or_null<ValueDecl>(B);
9333   if (!VA || !VB)
9334     return false;
9335 
9336   // The declarations must be declaring the same name as an internal linkage
9337   // entity in different modules.
9338   if (!VA->getDeclContext()->getRedeclContext()->Equals(
9339           VB->getDeclContext()->getRedeclContext()) ||
9340       getOwningModule(const_cast<ValueDecl *>(VA)) ==
9341           getOwningModule(const_cast<ValueDecl *>(VB)) ||
9342       VA->isExternallyVisible() || VB->isExternallyVisible())
9343     return false;
9344 
9345   // Check that the declarations appear to be equivalent.
9346   //
9347   // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9348   // For constants and functions, we should check the initializer or body is
9349   // the same. For non-constant variables, we shouldn't allow it at all.
9350   if (Context.hasSameType(VA->getType(), VB->getType()))
9351     return true;
9352 
9353   // Enum constants within unnamed enumerations will have different types, but
9354   // may still be similar enough to be interchangeable for our purposes.
9355   if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9356     if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9357       // Only handle anonymous enums. If the enumerations were named and
9358       // equivalent, they would have been merged to the same type.
9359       auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9360       auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9361       if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9362           !Context.hasSameType(EnumA->getIntegerType(),
9363                                EnumB->getIntegerType()))
9364         return false;
9365       // Allow this only if the value is the same for both enumerators.
9366       return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9367     }
9368   }
9369 
9370   // Nothing else is sufficiently similar.
9371   return false;
9372 }
9373 
9374 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9375     SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9376   Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9377 
9378   Module *M = getOwningModule(const_cast<NamedDecl*>(D));
9379   Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9380       << !M << (M ? M->getFullModuleName() : "");
9381 
9382   for (auto *E : Equiv) {
9383     Module *M = getOwningModule(const_cast<NamedDecl*>(E));
9384     Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9385         << !M << (M ? M->getFullModuleName() : "");
9386   }
9387 }
9388 
9389 /// Computes the best viable function (C++ 13.3.3)
9390 /// within an overload candidate set.
9391 ///
9392 /// \param Loc The location of the function name (or operator symbol) for
9393 /// which overload resolution occurs.
9394 ///
9395 /// \param Best If overload resolution was successful or found a deleted
9396 /// function, \p Best points to the candidate function found.
9397 ///
9398 /// \returns The result of overload resolution.
9399 OverloadingResult
9400 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9401                                          iterator &Best) {
9402   llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9403   std::transform(begin(), end(), std::back_inserter(Candidates),
9404                  [](OverloadCandidate &Cand) { return &Cand; });
9405 
9406   // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9407   // are accepted by both clang and NVCC. However, during a particular
9408   // compilation mode only one call variant is viable. We need to
9409   // exclude non-viable overload candidates from consideration based
9410   // only on their host/device attributes. Specifically, if one
9411   // candidate call is WrongSide and the other is SameSide, we ignore
9412   // the WrongSide candidate.
9413   if (S.getLangOpts().CUDA) {
9414     const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9415     bool ContainsSameSideCandidate =
9416         llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9417           return Cand->Function &&
9418                  S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9419                      Sema::CFP_SameSide;
9420         });
9421     if (ContainsSameSideCandidate) {
9422       auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9423         return Cand->Function &&
9424                S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9425                    Sema::CFP_WrongSide;
9426       };
9427       llvm::erase_if(Candidates, IsWrongSideCandidate);
9428     }
9429   }
9430 
9431   // Find the best viable function.
9432   Best = end();
9433   for (auto *Cand : Candidates)
9434     if (Cand->Viable)
9435       if (Best == end() ||
9436           isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
9437         Best = Cand;
9438 
9439   // If we didn't find any viable functions, abort.
9440   if (Best == end())
9441     return OR_No_Viable_Function;
9442 
9443   llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
9444 
9445   // Make sure that this function is better than every other viable
9446   // function. If not, we have an ambiguity.
9447   for (auto *Cand : Candidates) {
9448     if (Cand->Viable && Cand != Best &&
9449         !isBetterOverloadCandidate(S, *Best, *Cand, Loc, Kind)) {
9450       if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
9451                                                    Cand->Function)) {
9452         EquivalentCands.push_back(Cand->Function);
9453         continue;
9454       }
9455 
9456       Best = end();
9457       return OR_Ambiguous;
9458     }
9459   }
9460 
9461   // Best is the best viable function.
9462   if (Best->Function && Best->Function->isDeleted())
9463     return OR_Deleted;
9464 
9465   if (!EquivalentCands.empty())
9466     S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
9467                                                     EquivalentCands);
9468 
9469   return OR_Success;
9470 }
9471 
9472 namespace {
9473 
9474 enum OverloadCandidateKind {
9475   oc_function,
9476   oc_method,
9477   oc_constructor,
9478   oc_implicit_default_constructor,
9479   oc_implicit_copy_constructor,
9480   oc_implicit_move_constructor,
9481   oc_implicit_copy_assignment,
9482   oc_implicit_move_assignment,
9483   oc_inherited_constructor
9484 };
9485 
9486 enum OverloadCandidateSelect {
9487   ocs_non_template,
9488   ocs_template,
9489   ocs_described_template,
9490 };
9491 
9492 static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
9493 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
9494                           std::string &Description) {
9495 
9496   bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
9497   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
9498     isTemplate = true;
9499     Description = S.getTemplateArgumentBindingsText(
9500         FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
9501   }
9502 
9503   OverloadCandidateSelect Select = [&]() {
9504     if (!Description.empty())
9505       return ocs_described_template;
9506     return isTemplate ? ocs_template : ocs_non_template;
9507   }();
9508 
9509   OverloadCandidateKind Kind = [&]() {
9510     if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
9511       if (!Ctor->isImplicit()) {
9512         if (isa<ConstructorUsingShadowDecl>(Found))
9513           return oc_inherited_constructor;
9514         else
9515           return oc_constructor;
9516       }
9517 
9518       if (Ctor->isDefaultConstructor())
9519         return oc_implicit_default_constructor;
9520 
9521       if (Ctor->isMoveConstructor())
9522         return oc_implicit_move_constructor;
9523 
9524       assert(Ctor->isCopyConstructor() &&
9525              "unexpected sort of implicit constructor");
9526       return oc_implicit_copy_constructor;
9527     }
9528 
9529     if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
9530       // This actually gets spelled 'candidate function' for now, but
9531       // it doesn't hurt to split it out.
9532       if (!Meth->isImplicit())
9533         return oc_method;
9534 
9535       if (Meth->isMoveAssignmentOperator())
9536         return oc_implicit_move_assignment;
9537 
9538       if (Meth->isCopyAssignmentOperator())
9539         return oc_implicit_copy_assignment;
9540 
9541       assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
9542       return oc_method;
9543     }
9544 
9545     return oc_function;
9546   }();
9547 
9548   return std::make_pair(Kind, Select);
9549 }
9550 
9551 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
9552   // FIXME: It'd be nice to only emit a note once per using-decl per overload
9553   // set.
9554   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
9555     S.Diag(FoundDecl->getLocation(),
9556            diag::note_ovl_candidate_inherited_constructor)
9557       << Shadow->getNominatedBaseClass();
9558 }
9559 
9560 } // end anonymous namespace
9561 
9562 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
9563                                     const FunctionDecl *FD) {
9564   for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
9565     bool AlwaysTrue;
9566     if (EnableIf->getCond()->isValueDependent() ||
9567         !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
9568       return false;
9569     if (!AlwaysTrue)
9570       return false;
9571   }
9572   return true;
9573 }
9574 
9575 /// Returns true if we can take the address of the function.
9576 ///
9577 /// \param Complain - If true, we'll emit a diagnostic
9578 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
9579 ///   we in overload resolution?
9580 /// \param Loc - The location of the statement we're complaining about. Ignored
9581 ///   if we're not complaining, or if we're in overload resolution.
9582 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
9583                                               bool Complain,
9584                                               bool InOverloadResolution,
9585                                               SourceLocation Loc) {
9586   if (!isFunctionAlwaysEnabled(S.Context, FD)) {
9587     if (Complain) {
9588       if (InOverloadResolution)
9589         S.Diag(FD->getBeginLoc(),
9590                diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
9591       else
9592         S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
9593     }
9594     return false;
9595   }
9596 
9597   auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
9598     return P->hasAttr<PassObjectSizeAttr>();
9599   });
9600   if (I == FD->param_end())
9601     return true;
9602 
9603   if (Complain) {
9604     // Add one to ParamNo because it's user-facing
9605     unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
9606     if (InOverloadResolution)
9607       S.Diag(FD->getLocation(),
9608              diag::note_ovl_candidate_has_pass_object_size_params)
9609           << ParamNo;
9610     else
9611       S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
9612           << FD << ParamNo;
9613   }
9614   return false;
9615 }
9616 
9617 static bool checkAddressOfCandidateIsAvailable(Sema &S,
9618                                                const FunctionDecl *FD) {
9619   return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
9620                                            /*InOverloadResolution=*/true,
9621                                            /*Loc=*/SourceLocation());
9622 }
9623 
9624 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
9625                                              bool Complain,
9626                                              SourceLocation Loc) {
9627   return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
9628                                              /*InOverloadResolution=*/false,
9629                                              Loc);
9630 }
9631 
9632 // Notes the location of an overload candidate.
9633 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
9634                                  QualType DestType, bool TakingAddress) {
9635   if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
9636     return;
9637   if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
9638       !Fn->getAttr<TargetAttr>()->isDefaultVersion())
9639     return;
9640 
9641   std::string FnDesc;
9642   std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
9643       ClassifyOverloadCandidate(*this, Found, Fn, FnDesc);
9644   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
9645                          << (unsigned)KSPair.first << (unsigned)KSPair.second
9646                          << Fn << FnDesc;
9647 
9648   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
9649   Diag(Fn->getLocation(), PD);
9650   MaybeEmitInheritedConstructorNote(*this, Found);
9651 }
9652 
9653 // Notes the location of all overload candidates designated through
9654 // OverloadedExpr
9655 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
9656                                      bool TakingAddress) {
9657   assert(OverloadedExpr->getType() == Context.OverloadTy);
9658 
9659   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
9660   OverloadExpr *OvlExpr = Ovl.Expression;
9661 
9662   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9663                             IEnd = OvlExpr->decls_end();
9664        I != IEnd; ++I) {
9665     if (FunctionTemplateDecl *FunTmpl =
9666                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
9667       NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), DestType,
9668                             TakingAddress);
9669     } else if (FunctionDecl *Fun
9670                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
9671       NoteOverloadCandidate(*I, Fun, DestType, TakingAddress);
9672     }
9673   }
9674 }
9675 
9676 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
9677 /// "lead" diagnostic; it will be given two arguments, the source and
9678 /// target types of the conversion.
9679 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
9680                                  Sema &S,
9681                                  SourceLocation CaretLoc,
9682                                  const PartialDiagnostic &PDiag) const {
9683   S.Diag(CaretLoc, PDiag)
9684     << Ambiguous.getFromType() << Ambiguous.getToType();
9685   // FIXME: The note limiting machinery is borrowed from
9686   // OverloadCandidateSet::NoteCandidates; there's an opportunity for
9687   // refactoring here.
9688   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9689   unsigned CandsShown = 0;
9690   AmbiguousConversionSequence::const_iterator I, E;
9691   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
9692     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9693       break;
9694     ++CandsShown;
9695     S.NoteOverloadCandidate(I->first, I->second);
9696   }
9697   if (I != E)
9698     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
9699 }
9700 
9701 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
9702                                   unsigned I, bool TakingCandidateAddress) {
9703   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
9704   assert(Conv.isBad());
9705   assert(Cand->Function && "for now, candidate must be a function");
9706   FunctionDecl *Fn = Cand->Function;
9707 
9708   // There's a conversion slot for the object argument if this is a
9709   // non-constructor method.  Note that 'I' corresponds the
9710   // conversion-slot index.
9711   bool isObjectArgument = false;
9712   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
9713     if (I == 0)
9714       isObjectArgument = true;
9715     else
9716       I--;
9717   }
9718 
9719   std::string FnDesc;
9720   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
9721       ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
9722 
9723   Expr *FromExpr = Conv.Bad.FromExpr;
9724   QualType FromTy = Conv.Bad.getFromType();
9725   QualType ToTy = Conv.Bad.getToType();
9726 
9727   if (FromTy == S.Context.OverloadTy) {
9728     assert(FromExpr && "overload set argument came from implicit argument?");
9729     Expr *E = FromExpr->IgnoreParens();
9730     if (isa<UnaryOperator>(E))
9731       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
9732     DeclarationName Name = cast<OverloadExpr>(E)->getName();
9733 
9734     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
9735         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9736         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
9737         << Name << I + 1;
9738     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9739     return;
9740   }
9741 
9742   // Do some hand-waving analysis to see if the non-viability is due
9743   // to a qualifier mismatch.
9744   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
9745   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
9746   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
9747     CToTy = RT->getPointeeType();
9748   else {
9749     // TODO: detect and diagnose the full richness of const mismatches.
9750     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
9751       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
9752         CFromTy = FromPT->getPointeeType();
9753         CToTy = ToPT->getPointeeType();
9754       }
9755   }
9756 
9757   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
9758       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
9759     Qualifiers FromQs = CFromTy.getQualifiers();
9760     Qualifiers ToQs = CToTy.getQualifiers();
9761 
9762     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
9763       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
9764           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9765           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9766           << ToTy << (unsigned)isObjectArgument << I + 1;
9767       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9768       return;
9769     }
9770 
9771     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9772       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
9773           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9774           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9775           << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
9776           << (unsigned)isObjectArgument << I + 1;
9777       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9778       return;
9779     }
9780 
9781     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
9782       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
9783           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9784           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9785           << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
9786           << (unsigned)isObjectArgument << I + 1;
9787       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9788       return;
9789     }
9790 
9791     if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
9792       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
9793           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9794           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9795           << FromQs.hasUnaligned() << I + 1;
9796       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9797       return;
9798     }
9799 
9800     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
9801     assert(CVR && "unexpected qualifiers mismatch");
9802 
9803     if (isObjectArgument) {
9804       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
9805           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9806           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9807           << (CVR - 1);
9808     } else {
9809       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
9810           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9811           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9812           << (CVR - 1) << I + 1;
9813     }
9814     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9815     return;
9816   }
9817 
9818   // Special diagnostic for failure to convert an initializer list, since
9819   // telling the user that it has type void is not useful.
9820   if (FromExpr && isa<InitListExpr>(FromExpr)) {
9821     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
9822         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9823         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9824         << ToTy << (unsigned)isObjectArgument << I + 1;
9825     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9826     return;
9827   }
9828 
9829   // Diagnose references or pointers to incomplete types differently,
9830   // since it's far from impossible that the incompleteness triggered
9831   // the failure.
9832   QualType TempFromTy = FromTy.getNonReferenceType();
9833   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
9834     TempFromTy = PTy->getPointeeType();
9835   if (TempFromTy->isIncompleteType()) {
9836     // Emit the generic diagnostic and, optionally, add the hints to it.
9837     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
9838         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9839         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9840         << ToTy << (unsigned)isObjectArgument << I + 1
9841         << (unsigned)(Cand->Fix.Kind);
9842 
9843     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9844     return;
9845   }
9846 
9847   // Diagnose base -> derived pointer conversions.
9848   unsigned BaseToDerivedConversion = 0;
9849   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
9850     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
9851       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9852                                                FromPtrTy->getPointeeType()) &&
9853           !FromPtrTy->getPointeeType()->isIncompleteType() &&
9854           !ToPtrTy->getPointeeType()->isIncompleteType() &&
9855           S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
9856                           FromPtrTy->getPointeeType()))
9857         BaseToDerivedConversion = 1;
9858     }
9859   } else if (const ObjCObjectPointerType *FromPtrTy
9860                                     = FromTy->getAs<ObjCObjectPointerType>()) {
9861     if (const ObjCObjectPointerType *ToPtrTy
9862                                         = ToTy->getAs<ObjCObjectPointerType>())
9863       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
9864         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
9865           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9866                                                 FromPtrTy->getPointeeType()) &&
9867               FromIface->isSuperClassOf(ToIface))
9868             BaseToDerivedConversion = 2;
9869   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
9870     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
9871         !FromTy->isIncompleteType() &&
9872         !ToRefTy->getPointeeType()->isIncompleteType() &&
9873         S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
9874       BaseToDerivedConversion = 3;
9875     } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
9876                ToTy.getNonReferenceType().getCanonicalType() ==
9877                FromTy.getNonReferenceType().getCanonicalType()) {
9878       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
9879           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9880           << (unsigned)isObjectArgument << I + 1
9881           << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
9882       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9883       return;
9884     }
9885   }
9886 
9887   if (BaseToDerivedConversion) {
9888     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
9889         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9890         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9891         << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
9892     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9893     return;
9894   }
9895 
9896   if (isa<ObjCObjectPointerType>(CFromTy) &&
9897       isa<PointerType>(CToTy)) {
9898       Qualifiers FromQs = CFromTy.getQualifiers();
9899       Qualifiers ToQs = CToTy.getQualifiers();
9900       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9901         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
9902             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
9903             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9904             << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
9905         MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9906         return;
9907       }
9908   }
9909 
9910   if (TakingCandidateAddress &&
9911       !checkAddressOfCandidateIsAvailable(S, Cand->Function))
9912     return;
9913 
9914   // Emit the generic diagnostic and, optionally, add the hints to it.
9915   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
9916   FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9917         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9918         << ToTy << (unsigned)isObjectArgument << I + 1
9919         << (unsigned)(Cand->Fix.Kind);
9920 
9921   // If we can fix the conversion, suggest the FixIts.
9922   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
9923        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
9924     FDiag << *HI;
9925   S.Diag(Fn->getLocation(), FDiag);
9926 
9927   MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9928 }
9929 
9930 /// Additional arity mismatch diagnosis specific to a function overload
9931 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
9932 /// over a candidate in any candidate set.
9933 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
9934                                unsigned NumArgs) {
9935   FunctionDecl *Fn = Cand->Function;
9936   unsigned MinParams = Fn->getMinRequiredArguments();
9937 
9938   // With invalid overloaded operators, it's possible that we think we
9939   // have an arity mismatch when in fact it looks like we have the
9940   // right number of arguments, because only overloaded operators have
9941   // the weird behavior of overloading member and non-member functions.
9942   // Just don't report anything.
9943   if (Fn->isInvalidDecl() &&
9944       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
9945     return true;
9946 
9947   if (NumArgs < MinParams) {
9948     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
9949            (Cand->FailureKind == ovl_fail_bad_deduction &&
9950             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
9951   } else {
9952     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
9953            (Cand->FailureKind == ovl_fail_bad_deduction &&
9954             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
9955   }
9956 
9957   return false;
9958 }
9959 
9960 /// General arity mismatch diagnosis over a candidate in a candidate set.
9961 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
9962                                   unsigned NumFormalArgs) {
9963   assert(isa<FunctionDecl>(D) &&
9964       "The templated declaration should at least be a function"
9965       " when diagnosing bad template argument deduction due to too many"
9966       " or too few arguments");
9967 
9968   FunctionDecl *Fn = cast<FunctionDecl>(D);
9969 
9970   // TODO: treat calls to a missing default constructor as a special case
9971   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
9972   unsigned MinParams = Fn->getMinRequiredArguments();
9973 
9974   // at least / at most / exactly
9975   unsigned mode, modeCount;
9976   if (NumFormalArgs < MinParams) {
9977     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
9978         FnTy->isTemplateVariadic())
9979       mode = 0; // "at least"
9980     else
9981       mode = 2; // "exactly"
9982     modeCount = MinParams;
9983   } else {
9984     if (MinParams != FnTy->getNumParams())
9985       mode = 1; // "at most"
9986     else
9987       mode = 2; // "exactly"
9988     modeCount = FnTy->getNumParams();
9989   }
9990 
9991   std::string Description;
9992   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
9993       ClassifyOverloadCandidate(S, Found, Fn, Description);
9994 
9995   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
9996     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
9997         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
9998         << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
9999   else
10000     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10001         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10002         << Description << mode << modeCount << NumFormalArgs;
10003 
10004   MaybeEmitInheritedConstructorNote(S, Found);
10005 }
10006 
10007 /// Arity mismatch diagnosis specific to a function overload candidate.
10008 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10009                                   unsigned NumFormalArgs) {
10010   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10011     DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10012 }
10013 
10014 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10015   if (TemplateDecl *TD = Templated->getDescribedTemplate())
10016     return TD;
10017   llvm_unreachable("Unsupported: Getting the described template declaration"
10018                    " for bad deduction diagnosis");
10019 }
10020 
10021 /// Diagnose a failed template-argument deduction.
10022 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10023                                  DeductionFailureInfo &DeductionFailure,
10024                                  unsigned NumArgs,
10025                                  bool TakingCandidateAddress) {
10026   TemplateParameter Param = DeductionFailure.getTemplateParameter();
10027   NamedDecl *ParamD;
10028   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10029   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10030   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10031   switch (DeductionFailure.Result) {
10032   case Sema::TDK_Success:
10033     llvm_unreachable("TDK_success while diagnosing bad deduction");
10034 
10035   case Sema::TDK_Incomplete: {
10036     assert(ParamD && "no parameter found for incomplete deduction result");
10037     S.Diag(Templated->getLocation(),
10038            diag::note_ovl_candidate_incomplete_deduction)
10039         << ParamD->getDeclName();
10040     MaybeEmitInheritedConstructorNote(S, Found);
10041     return;
10042   }
10043 
10044   case Sema::TDK_IncompletePack: {
10045     assert(ParamD && "no parameter found for incomplete deduction result");
10046     S.Diag(Templated->getLocation(),
10047            diag::note_ovl_candidate_incomplete_deduction_pack)
10048         << ParamD->getDeclName()
10049         << (DeductionFailure.getFirstArg()->pack_size() + 1)
10050         << *DeductionFailure.getFirstArg();
10051     MaybeEmitInheritedConstructorNote(S, Found);
10052     return;
10053   }
10054 
10055   case Sema::TDK_Underqualified: {
10056     assert(ParamD && "no parameter found for bad qualifiers deduction result");
10057     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10058 
10059     QualType Param = DeductionFailure.getFirstArg()->getAsType();
10060 
10061     // Param will have been canonicalized, but it should just be a
10062     // qualified version of ParamD, so move the qualifiers to that.
10063     QualifierCollector Qs;
10064     Qs.strip(Param);
10065     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10066     assert(S.Context.hasSameType(Param, NonCanonParam));
10067 
10068     // Arg has also been canonicalized, but there's nothing we can do
10069     // about that.  It also doesn't matter as much, because it won't
10070     // have any template parameters in it (because deduction isn't
10071     // done on dependent types).
10072     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10073 
10074     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10075         << ParamD->getDeclName() << Arg << NonCanonParam;
10076     MaybeEmitInheritedConstructorNote(S, Found);
10077     return;
10078   }
10079 
10080   case Sema::TDK_Inconsistent: {
10081     assert(ParamD && "no parameter found for inconsistent deduction result");
10082     int which = 0;
10083     if (isa<TemplateTypeParmDecl>(ParamD))
10084       which = 0;
10085     else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10086       // Deduction might have failed because we deduced arguments of two
10087       // different types for a non-type template parameter.
10088       // FIXME: Use a different TDK value for this.
10089       QualType T1 =
10090           DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10091       QualType T2 =
10092           DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10093       if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10094         S.Diag(Templated->getLocation(),
10095                diag::note_ovl_candidate_inconsistent_deduction_types)
10096           << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10097           << *DeductionFailure.getSecondArg() << T2;
10098         MaybeEmitInheritedConstructorNote(S, Found);
10099         return;
10100       }
10101 
10102       which = 1;
10103     } else {
10104       which = 2;
10105     }
10106 
10107     S.Diag(Templated->getLocation(),
10108            diag::note_ovl_candidate_inconsistent_deduction)
10109         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10110         << *DeductionFailure.getSecondArg();
10111     MaybeEmitInheritedConstructorNote(S, Found);
10112     return;
10113   }
10114 
10115   case Sema::TDK_InvalidExplicitArguments:
10116     assert(ParamD && "no parameter found for invalid explicit arguments");
10117     if (ParamD->getDeclName())
10118       S.Diag(Templated->getLocation(),
10119              diag::note_ovl_candidate_explicit_arg_mismatch_named)
10120           << ParamD->getDeclName();
10121     else {
10122       int index = 0;
10123       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10124         index = TTP->getIndex();
10125       else if (NonTypeTemplateParmDecl *NTTP
10126                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10127         index = NTTP->getIndex();
10128       else
10129         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10130       S.Diag(Templated->getLocation(),
10131              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10132           << (index + 1);
10133     }
10134     MaybeEmitInheritedConstructorNote(S, Found);
10135     return;
10136 
10137   case Sema::TDK_TooManyArguments:
10138   case Sema::TDK_TooFewArguments:
10139     DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10140     return;
10141 
10142   case Sema::TDK_InstantiationDepth:
10143     S.Diag(Templated->getLocation(),
10144            diag::note_ovl_candidate_instantiation_depth);
10145     MaybeEmitInheritedConstructorNote(S, Found);
10146     return;
10147 
10148   case Sema::TDK_SubstitutionFailure: {
10149     // Format the template argument list into the argument string.
10150     SmallString<128> TemplateArgString;
10151     if (TemplateArgumentList *Args =
10152             DeductionFailure.getTemplateArgumentList()) {
10153       TemplateArgString = " ";
10154       TemplateArgString += S.getTemplateArgumentBindingsText(
10155           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10156     }
10157 
10158     // If this candidate was disabled by enable_if, say so.
10159     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10160     if (PDiag && PDiag->second.getDiagID() ==
10161           diag::err_typename_nested_not_found_enable_if) {
10162       // FIXME: Use the source range of the condition, and the fully-qualified
10163       //        name of the enable_if template. These are both present in PDiag.
10164       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10165         << "'enable_if'" << TemplateArgString;
10166       return;
10167     }
10168 
10169     // We found a specific requirement that disabled the enable_if.
10170     if (PDiag && PDiag->second.getDiagID() ==
10171         diag::err_typename_nested_not_found_requirement) {
10172       S.Diag(Templated->getLocation(),
10173              diag::note_ovl_candidate_disabled_by_requirement)
10174         << PDiag->second.getStringArg(0) << TemplateArgString;
10175       return;
10176     }
10177 
10178     // Format the SFINAE diagnostic into the argument string.
10179     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10180     //        formatted message in another diagnostic.
10181     SmallString<128> SFINAEArgString;
10182     SourceRange R;
10183     if (PDiag) {
10184       SFINAEArgString = ": ";
10185       R = SourceRange(PDiag->first, PDiag->first);
10186       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10187     }
10188 
10189     S.Diag(Templated->getLocation(),
10190            diag::note_ovl_candidate_substitution_failure)
10191         << TemplateArgString << SFINAEArgString << R;
10192     MaybeEmitInheritedConstructorNote(S, Found);
10193     return;
10194   }
10195 
10196   case Sema::TDK_DeducedMismatch:
10197   case Sema::TDK_DeducedMismatchNested: {
10198     // Format the template argument list into the argument string.
10199     SmallString<128> TemplateArgString;
10200     if (TemplateArgumentList *Args =
10201             DeductionFailure.getTemplateArgumentList()) {
10202       TemplateArgString = " ";
10203       TemplateArgString += S.getTemplateArgumentBindingsText(
10204           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10205     }
10206 
10207     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10208         << (*DeductionFailure.getCallArgIndex() + 1)
10209         << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
10210         << TemplateArgString
10211         << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
10212     break;
10213   }
10214 
10215   case Sema::TDK_NonDeducedMismatch: {
10216     // FIXME: Provide a source location to indicate what we couldn't match.
10217     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
10218     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
10219     if (FirstTA.getKind() == TemplateArgument::Template &&
10220         SecondTA.getKind() == TemplateArgument::Template) {
10221       TemplateName FirstTN = FirstTA.getAsTemplate();
10222       TemplateName SecondTN = SecondTA.getAsTemplate();
10223       if (FirstTN.getKind() == TemplateName::Template &&
10224           SecondTN.getKind() == TemplateName::Template) {
10225         if (FirstTN.getAsTemplateDecl()->getName() ==
10226             SecondTN.getAsTemplateDecl()->getName()) {
10227           // FIXME: This fixes a bad diagnostic where both templates are named
10228           // the same.  This particular case is a bit difficult since:
10229           // 1) It is passed as a string to the diagnostic printer.
10230           // 2) The diagnostic printer only attempts to find a better
10231           //    name for types, not decls.
10232           // Ideally, this should folded into the diagnostic printer.
10233           S.Diag(Templated->getLocation(),
10234                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10235               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10236           return;
10237         }
10238       }
10239     }
10240 
10241     if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10242         !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10243       return;
10244 
10245     // FIXME: For generic lambda parameters, check if the function is a lambda
10246     // call operator, and if so, emit a prettier and more informative
10247     // diagnostic that mentions 'auto' and lambda in addition to
10248     // (or instead of?) the canonical template type parameters.
10249     S.Diag(Templated->getLocation(),
10250            diag::note_ovl_candidate_non_deduced_mismatch)
10251         << FirstTA << SecondTA;
10252     return;
10253   }
10254   // TODO: diagnose these individually, then kill off
10255   // note_ovl_candidate_bad_deduction, which is uselessly vague.
10256   case Sema::TDK_MiscellaneousDeductionFailure:
10257     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10258     MaybeEmitInheritedConstructorNote(S, Found);
10259     return;
10260   case Sema::TDK_CUDATargetMismatch:
10261     S.Diag(Templated->getLocation(),
10262            diag::note_cuda_ovl_candidate_target_mismatch);
10263     return;
10264   }
10265 }
10266 
10267 /// Diagnose a failed template-argument deduction, for function calls.
10268 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10269                                  unsigned NumArgs,
10270                                  bool TakingCandidateAddress) {
10271   unsigned TDK = Cand->DeductionFailure.Result;
10272   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10273     if (CheckArityMismatch(S, Cand, NumArgs))
10274       return;
10275   }
10276   DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
10277                        Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
10278 }
10279 
10280 /// CUDA: diagnose an invalid call across targets.
10281 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
10282   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
10283   FunctionDecl *Callee = Cand->Function;
10284 
10285   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
10286                            CalleeTarget = S.IdentifyCUDATarget(Callee);
10287 
10288   std::string FnDesc;
10289   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10290       ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, FnDesc);
10291 
10292   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
10293       << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
10294       << FnDesc /* Ignored */
10295       << CalleeTarget << CallerTarget;
10296 
10297   // This could be an implicit constructor for which we could not infer the
10298   // target due to a collsion. Diagnose that case.
10299   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
10300   if (Meth != nullptr && Meth->isImplicit()) {
10301     CXXRecordDecl *ParentClass = Meth->getParent();
10302     Sema::CXXSpecialMember CSM;
10303 
10304     switch (FnKindPair.first) {
10305     default:
10306       return;
10307     case oc_implicit_default_constructor:
10308       CSM = Sema::CXXDefaultConstructor;
10309       break;
10310     case oc_implicit_copy_constructor:
10311       CSM = Sema::CXXCopyConstructor;
10312       break;
10313     case oc_implicit_move_constructor:
10314       CSM = Sema::CXXMoveConstructor;
10315       break;
10316     case oc_implicit_copy_assignment:
10317       CSM = Sema::CXXCopyAssignment;
10318       break;
10319     case oc_implicit_move_assignment:
10320       CSM = Sema::CXXMoveAssignment;
10321       break;
10322     };
10323 
10324     bool ConstRHS = false;
10325     if (Meth->getNumParams()) {
10326       if (const ReferenceType *RT =
10327               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
10328         ConstRHS = RT->getPointeeType().isConstQualified();
10329       }
10330     }
10331 
10332     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
10333                                               /* ConstRHS */ ConstRHS,
10334                                               /* Diagnose */ true);
10335   }
10336 }
10337 
10338 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
10339   FunctionDecl *Callee = Cand->Function;
10340   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
10341 
10342   S.Diag(Callee->getLocation(),
10343          diag::note_ovl_candidate_disabled_by_function_cond_attr)
10344       << Attr->getCond()->getSourceRange() << Attr->getMessage();
10345 }
10346 
10347 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
10348   ExplicitSpecifier ES;
10349   const char *DeclName;
10350   switch (Cand->Function->getDeclKind()) {
10351   case Decl::Kind::CXXConstructor:
10352     ES = cast<CXXConstructorDecl>(Cand->Function)->getExplicitSpecifier();
10353     DeclName = "constructor";
10354     break;
10355   case Decl::Kind::CXXConversion:
10356     ES = cast<CXXConversionDecl>(Cand->Function)->getExplicitSpecifier();
10357     DeclName = "conversion operator";
10358     break;
10359   case Decl::Kind::CXXDeductionGuide:
10360     ES = cast<CXXDeductionGuideDecl>(Cand->Function)->getExplicitSpecifier();
10361     DeclName = "deductiong guide";
10362     break;
10363   default:
10364     llvm_unreachable("invalid Decl");
10365   }
10366   assert(ES.getExpr() && "null expression should be handled before");
10367   S.Diag(Cand->Function->getLocation(),
10368          diag::note_ovl_candidate_explicit_forbidden)
10369       << DeclName;
10370   S.Diag(ES.getExpr()->getBeginLoc(),
10371          diag::note_explicit_bool_resolved_to_true);
10372 }
10373 
10374 static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) {
10375   FunctionDecl *Callee = Cand->Function;
10376 
10377   S.Diag(Callee->getLocation(),
10378          diag::note_ovl_candidate_disabled_by_extension)
10379     << S.getOpenCLExtensionsFromDeclExtMap(Callee);
10380 }
10381 
10382 /// Generates a 'note' diagnostic for an overload candidate.  We've
10383 /// already generated a primary error at the call site.
10384 ///
10385 /// It really does need to be a single diagnostic with its caret
10386 /// pointed at the candidate declaration.  Yes, this creates some
10387 /// major challenges of technical writing.  Yes, this makes pointing
10388 /// out problems with specific arguments quite awkward.  It's still
10389 /// better than generating twenty screens of text for every failed
10390 /// overload.
10391 ///
10392 /// It would be great to be able to express per-candidate problems
10393 /// more richly for those diagnostic clients that cared, but we'd
10394 /// still have to be just as careful with the default diagnostics.
10395 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
10396                                   unsigned NumArgs,
10397                                   bool TakingCandidateAddress) {
10398   FunctionDecl *Fn = Cand->Function;
10399 
10400   // Note deleted candidates, but only if they're viable.
10401   if (Cand->Viable) {
10402     if (Fn->isDeleted()) {
10403       std::string FnDesc;
10404       std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10405           ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
10406 
10407       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
10408           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10409           << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
10410       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10411       return;
10412     }
10413 
10414     // We don't really have anything else to say about viable candidates.
10415     S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10416     return;
10417   }
10418 
10419   switch (Cand->FailureKind) {
10420   case ovl_fail_too_many_arguments:
10421   case ovl_fail_too_few_arguments:
10422     return DiagnoseArityMismatch(S, Cand, NumArgs);
10423 
10424   case ovl_fail_bad_deduction:
10425     return DiagnoseBadDeduction(S, Cand, NumArgs,
10426                                 TakingCandidateAddress);
10427 
10428   case ovl_fail_illegal_constructor: {
10429     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
10430       << (Fn->getPrimaryTemplate() ? 1 : 0);
10431     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10432     return;
10433   }
10434 
10435   case ovl_fail_trivial_conversion:
10436   case ovl_fail_bad_final_conversion:
10437   case ovl_fail_final_conversion_not_exact:
10438     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10439 
10440   case ovl_fail_bad_conversion: {
10441     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
10442     for (unsigned N = Cand->Conversions.size(); I != N; ++I)
10443       if (Cand->Conversions[I].isBad())
10444         return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
10445 
10446     // FIXME: this currently happens when we're called from SemaInit
10447     // when user-conversion overload fails.  Figure out how to handle
10448     // those conditions and diagnose them well.
10449     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10450   }
10451 
10452   case ovl_fail_bad_target:
10453     return DiagnoseBadTarget(S, Cand);
10454 
10455   case ovl_fail_enable_if:
10456     return DiagnoseFailedEnableIfAttr(S, Cand);
10457 
10458   case ovl_fail_explicit_resolved:
10459     return DiagnoseFailedExplicitSpec(S, Cand);
10460 
10461   case ovl_fail_ext_disabled:
10462     return DiagnoseOpenCLExtensionDisabled(S, Cand);
10463 
10464   case ovl_fail_inhctor_slice:
10465     // It's generally not interesting to note copy/move constructors here.
10466     if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
10467       return;
10468     S.Diag(Fn->getLocation(),
10469            diag::note_ovl_candidate_inherited_constructor_slice)
10470       << (Fn->getPrimaryTemplate() ? 1 : 0)
10471       << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
10472     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10473     return;
10474 
10475   case ovl_fail_addr_not_available: {
10476     bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
10477     (void)Available;
10478     assert(!Available);
10479     break;
10480   }
10481   case ovl_non_default_multiversion_function:
10482     // Do nothing, these should simply be ignored.
10483     break;
10484   }
10485 }
10486 
10487 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
10488   // Desugar the type of the surrogate down to a function type,
10489   // retaining as many typedefs as possible while still showing
10490   // the function type (and, therefore, its parameter types).
10491   QualType FnType = Cand->Surrogate->getConversionType();
10492   bool isLValueReference = false;
10493   bool isRValueReference = false;
10494   bool isPointer = false;
10495   if (const LValueReferenceType *FnTypeRef =
10496         FnType->getAs<LValueReferenceType>()) {
10497     FnType = FnTypeRef->getPointeeType();
10498     isLValueReference = true;
10499   } else if (const RValueReferenceType *FnTypeRef =
10500                FnType->getAs<RValueReferenceType>()) {
10501     FnType = FnTypeRef->getPointeeType();
10502     isRValueReference = true;
10503   }
10504   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
10505     FnType = FnTypePtr->getPointeeType();
10506     isPointer = true;
10507   }
10508   // Desugar down to a function type.
10509   FnType = QualType(FnType->getAs<FunctionType>(), 0);
10510   // Reconstruct the pointer/reference as appropriate.
10511   if (isPointer) FnType = S.Context.getPointerType(FnType);
10512   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
10513   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
10514 
10515   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
10516     << FnType;
10517 }
10518 
10519 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
10520                                          SourceLocation OpLoc,
10521                                          OverloadCandidate *Cand) {
10522   assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
10523   std::string TypeStr("operator");
10524   TypeStr += Opc;
10525   TypeStr += "(";
10526   TypeStr += Cand->BuiltinParamTypes[0].getAsString();
10527   if (Cand->Conversions.size() == 1) {
10528     TypeStr += ")";
10529     S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
10530   } else {
10531     TypeStr += ", ";
10532     TypeStr += Cand->BuiltinParamTypes[1].getAsString();
10533     TypeStr += ")";
10534     S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
10535   }
10536 }
10537 
10538 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
10539                                          OverloadCandidate *Cand) {
10540   for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
10541     if (ICS.isBad()) break; // all meaningless after first invalid
10542     if (!ICS.isAmbiguous()) continue;
10543 
10544     ICS.DiagnoseAmbiguousConversion(
10545         S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
10546   }
10547 }
10548 
10549 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
10550   if (Cand->Function)
10551     return Cand->Function->getLocation();
10552   if (Cand->IsSurrogate)
10553     return Cand->Surrogate->getLocation();
10554   return SourceLocation();
10555 }
10556 
10557 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
10558   switch ((Sema::TemplateDeductionResult)DFI.Result) {
10559   case Sema::TDK_Success:
10560   case Sema::TDK_NonDependentConversionFailure:
10561     llvm_unreachable("non-deduction failure while diagnosing bad deduction");
10562 
10563   case Sema::TDK_Invalid:
10564   case Sema::TDK_Incomplete:
10565   case Sema::TDK_IncompletePack:
10566     return 1;
10567 
10568   case Sema::TDK_Underqualified:
10569   case Sema::TDK_Inconsistent:
10570     return 2;
10571 
10572   case Sema::TDK_SubstitutionFailure:
10573   case Sema::TDK_DeducedMismatch:
10574   case Sema::TDK_DeducedMismatchNested:
10575   case Sema::TDK_NonDeducedMismatch:
10576   case Sema::TDK_MiscellaneousDeductionFailure:
10577   case Sema::TDK_CUDATargetMismatch:
10578     return 3;
10579 
10580   case Sema::TDK_InstantiationDepth:
10581     return 4;
10582 
10583   case Sema::TDK_InvalidExplicitArguments:
10584     return 5;
10585 
10586   case Sema::TDK_TooManyArguments:
10587   case Sema::TDK_TooFewArguments:
10588     return 6;
10589   }
10590   llvm_unreachable("Unhandled deduction result");
10591 }
10592 
10593 namespace {
10594 struct CompareOverloadCandidatesForDisplay {
10595   Sema &S;
10596   SourceLocation Loc;
10597   size_t NumArgs;
10598   OverloadCandidateSet::CandidateSetKind CSK;
10599 
10600   CompareOverloadCandidatesForDisplay(
10601       Sema &S, SourceLocation Loc, size_t NArgs,
10602       OverloadCandidateSet::CandidateSetKind CSK)
10603       : S(S), NumArgs(NArgs), CSK(CSK) {}
10604 
10605   bool operator()(const OverloadCandidate *L,
10606                   const OverloadCandidate *R) {
10607     // Fast-path this check.
10608     if (L == R) return false;
10609 
10610     // Order first by viability.
10611     if (L->Viable) {
10612       if (!R->Viable) return true;
10613 
10614       // TODO: introduce a tri-valued comparison for overload
10615       // candidates.  Would be more worthwhile if we had a sort
10616       // that could exploit it.
10617       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
10618         return true;
10619       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
10620         return false;
10621     } else if (R->Viable)
10622       return false;
10623 
10624     assert(L->Viable == R->Viable);
10625 
10626     // Criteria by which we can sort non-viable candidates:
10627     if (!L->Viable) {
10628       // 1. Arity mismatches come after other candidates.
10629       if (L->FailureKind == ovl_fail_too_many_arguments ||
10630           L->FailureKind == ovl_fail_too_few_arguments) {
10631         if (R->FailureKind == ovl_fail_too_many_arguments ||
10632             R->FailureKind == ovl_fail_too_few_arguments) {
10633           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
10634           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
10635           if (LDist == RDist) {
10636             if (L->FailureKind == R->FailureKind)
10637               // Sort non-surrogates before surrogates.
10638               return !L->IsSurrogate && R->IsSurrogate;
10639             // Sort candidates requiring fewer parameters than there were
10640             // arguments given after candidates requiring more parameters
10641             // than there were arguments given.
10642             return L->FailureKind == ovl_fail_too_many_arguments;
10643           }
10644           return LDist < RDist;
10645         }
10646         return false;
10647       }
10648       if (R->FailureKind == ovl_fail_too_many_arguments ||
10649           R->FailureKind == ovl_fail_too_few_arguments)
10650         return true;
10651 
10652       // 2. Bad conversions come first and are ordered by the number
10653       // of bad conversions and quality of good conversions.
10654       if (L->FailureKind == ovl_fail_bad_conversion) {
10655         if (R->FailureKind != ovl_fail_bad_conversion)
10656           return true;
10657 
10658         // The conversion that can be fixed with a smaller number of changes,
10659         // comes first.
10660         unsigned numLFixes = L->Fix.NumConversionsFixed;
10661         unsigned numRFixes = R->Fix.NumConversionsFixed;
10662         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
10663         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
10664         if (numLFixes != numRFixes) {
10665           return numLFixes < numRFixes;
10666         }
10667 
10668         // If there's any ordering between the defined conversions...
10669         // FIXME: this might not be transitive.
10670         assert(L->Conversions.size() == R->Conversions.size());
10671 
10672         int leftBetter = 0;
10673         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
10674         for (unsigned E = L->Conversions.size(); I != E; ++I) {
10675           switch (CompareImplicitConversionSequences(S, Loc,
10676                                                      L->Conversions[I],
10677                                                      R->Conversions[I])) {
10678           case ImplicitConversionSequence::Better:
10679             leftBetter++;
10680             break;
10681 
10682           case ImplicitConversionSequence::Worse:
10683             leftBetter--;
10684             break;
10685 
10686           case ImplicitConversionSequence::Indistinguishable:
10687             break;
10688           }
10689         }
10690         if (leftBetter > 0) return true;
10691         if (leftBetter < 0) return false;
10692 
10693       } else if (R->FailureKind == ovl_fail_bad_conversion)
10694         return false;
10695 
10696       if (L->FailureKind == ovl_fail_bad_deduction) {
10697         if (R->FailureKind != ovl_fail_bad_deduction)
10698           return true;
10699 
10700         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10701           return RankDeductionFailure(L->DeductionFailure)
10702                < RankDeductionFailure(R->DeductionFailure);
10703       } else if (R->FailureKind == ovl_fail_bad_deduction)
10704         return false;
10705 
10706       // TODO: others?
10707     }
10708 
10709     // Sort everything else by location.
10710     SourceLocation LLoc = GetLocationForCandidate(L);
10711     SourceLocation RLoc = GetLocationForCandidate(R);
10712 
10713     // Put candidates without locations (e.g. builtins) at the end.
10714     if (LLoc.isInvalid()) return false;
10715     if (RLoc.isInvalid()) return true;
10716 
10717     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10718   }
10719 };
10720 }
10721 
10722 /// CompleteNonViableCandidate - Normally, overload resolution only
10723 /// computes up to the first bad conversion. Produces the FixIt set if
10724 /// possible.
10725 static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
10726                                        ArrayRef<Expr *> Args) {
10727   assert(!Cand->Viable);
10728 
10729   // Don't do anything on failures other than bad conversion.
10730   if (Cand->FailureKind != ovl_fail_bad_conversion) return;
10731 
10732   // We only want the FixIts if all the arguments can be corrected.
10733   bool Unfixable = false;
10734   // Use a implicit copy initialization to check conversion fixes.
10735   Cand->Fix.setConversionChecker(TryCopyInitialization);
10736 
10737   // Attempt to fix the bad conversion.
10738   unsigned ConvCount = Cand->Conversions.size();
10739   for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
10740        ++ConvIdx) {
10741     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
10742     if (Cand->Conversions[ConvIdx].isInitialized() &&
10743         Cand->Conversions[ConvIdx].isBad()) {
10744       Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10745       break;
10746     }
10747   }
10748 
10749   // FIXME: this should probably be preserved from the overload
10750   // operation somehow.
10751   bool SuppressUserConversions = false;
10752 
10753   unsigned ConvIdx = 0;
10754   ArrayRef<QualType> ParamTypes;
10755 
10756   if (Cand->IsSurrogate) {
10757     QualType ConvType
10758       = Cand->Surrogate->getConversionType().getNonReferenceType();
10759     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10760       ConvType = ConvPtrType->getPointeeType();
10761     ParamTypes = ConvType->getAs<FunctionProtoType>()->getParamTypes();
10762     // Conversion 0 is 'this', which doesn't have a corresponding argument.
10763     ConvIdx = 1;
10764   } else if (Cand->Function) {
10765     ParamTypes =
10766         Cand->Function->getType()->getAs<FunctionProtoType>()->getParamTypes();
10767     if (isa<CXXMethodDecl>(Cand->Function) &&
10768         !isa<CXXConstructorDecl>(Cand->Function)) {
10769       // Conversion 0 is 'this', which doesn't have a corresponding argument.
10770       ConvIdx = 1;
10771     }
10772   } else {
10773     // Builtin operator.
10774     assert(ConvCount <= 3);
10775     ParamTypes = Cand->BuiltinParamTypes;
10776   }
10777 
10778   // Fill in the rest of the conversions.
10779   for (unsigned ArgIdx = 0; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
10780     if (Cand->Conversions[ConvIdx].isInitialized()) {
10781       // We've already checked this conversion.
10782     } else if (ArgIdx < ParamTypes.size()) {
10783       if (ParamTypes[ArgIdx]->isDependentType())
10784         Cand->Conversions[ConvIdx].setAsIdentityConversion(
10785             Args[ArgIdx]->getType());
10786       else {
10787         Cand->Conversions[ConvIdx] =
10788             TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ArgIdx],
10789                                   SuppressUserConversions,
10790                                   /*InOverloadResolution=*/true,
10791                                   /*AllowObjCWritebackConversion=*/
10792                                   S.getLangOpts().ObjCAutoRefCount);
10793         // Store the FixIt in the candidate if it exists.
10794         if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
10795           Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10796       }
10797     } else
10798       Cand->Conversions[ConvIdx].setEllipsis();
10799   }
10800 }
10801 
10802 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
10803     Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
10804     SourceLocation OpLoc,
10805     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
10806   // Sort the candidates by viability and position.  Sorting directly would
10807   // be prohibitive, so we make a set of pointers and sort those.
10808   SmallVector<OverloadCandidate*, 32> Cands;
10809   if (OCD == OCD_AllCandidates) Cands.reserve(size());
10810   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10811     if (!Filter(*Cand))
10812       continue;
10813     if (Cand->Viable)
10814       Cands.push_back(Cand);
10815     else if (OCD == OCD_AllCandidates) {
10816       CompleteNonViableCandidate(S, Cand, Args);
10817       if (Cand->Function || Cand->IsSurrogate)
10818         Cands.push_back(Cand);
10819       // Otherwise, this a non-viable builtin candidate.  We do not, in general,
10820       // want to list every possible builtin candidate.
10821     }
10822   }
10823 
10824   llvm::stable_sort(
10825       Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
10826 
10827   return Cands;
10828 }
10829 
10830 /// When overload resolution fails, prints diagnostic messages containing the
10831 /// candidates in the candidate set.
10832 void OverloadCandidateSet::NoteCandidates(PartialDiagnosticAt PD,
10833     Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
10834     StringRef Opc, SourceLocation OpLoc,
10835     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
10836 
10837   auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
10838 
10839   S.Diag(PD.first, PD.second);
10840 
10841   NoteCandidates(S, Args, Cands, Opc, OpLoc);
10842 }
10843 
10844 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
10845                                           ArrayRef<OverloadCandidate *> Cands,
10846                                           StringRef Opc, SourceLocation OpLoc) {
10847   bool ReportedAmbiguousConversions = false;
10848 
10849   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10850   unsigned CandsShown = 0;
10851   auto I = Cands.begin(), E = Cands.end();
10852   for (; I != E; ++I) {
10853     OverloadCandidate *Cand = *I;
10854 
10855     // Set an arbitrary limit on the number of candidate functions we'll spam
10856     // the user with.  FIXME: This limit should depend on details of the
10857     // candidate list.
10858     if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
10859       break;
10860     }
10861     ++CandsShown;
10862 
10863     if (Cand->Function)
10864       NoteFunctionCandidate(S, Cand, Args.size(),
10865                             /*TakingCandidateAddress=*/false);
10866     else if (Cand->IsSurrogate)
10867       NoteSurrogateCandidate(S, Cand);
10868     else {
10869       assert(Cand->Viable &&
10870              "Non-viable built-in candidates are not added to Cands.");
10871       // Generally we only see ambiguities including viable builtin
10872       // operators if overload resolution got screwed up by an
10873       // ambiguous user-defined conversion.
10874       //
10875       // FIXME: It's quite possible for different conversions to see
10876       // different ambiguities, though.
10877       if (!ReportedAmbiguousConversions) {
10878         NoteAmbiguousUserConversions(S, OpLoc, Cand);
10879         ReportedAmbiguousConversions = true;
10880       }
10881 
10882       // If this is a viable builtin, print it.
10883       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
10884     }
10885   }
10886 
10887   if (I != E)
10888     S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
10889 }
10890 
10891 static SourceLocation
10892 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
10893   return Cand->Specialization ? Cand->Specialization->getLocation()
10894                               : SourceLocation();
10895 }
10896 
10897 namespace {
10898 struct CompareTemplateSpecCandidatesForDisplay {
10899   Sema &S;
10900   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
10901 
10902   bool operator()(const TemplateSpecCandidate *L,
10903                   const TemplateSpecCandidate *R) {
10904     // Fast-path this check.
10905     if (L == R)
10906       return false;
10907 
10908     // Assuming that both candidates are not matches...
10909 
10910     // Sort by the ranking of deduction failures.
10911     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10912       return RankDeductionFailure(L->DeductionFailure) <
10913              RankDeductionFailure(R->DeductionFailure);
10914 
10915     // Sort everything else by location.
10916     SourceLocation LLoc = GetLocationForCandidate(L);
10917     SourceLocation RLoc = GetLocationForCandidate(R);
10918 
10919     // Put candidates without locations (e.g. builtins) at the end.
10920     if (LLoc.isInvalid())
10921       return false;
10922     if (RLoc.isInvalid())
10923       return true;
10924 
10925     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10926   }
10927 };
10928 }
10929 
10930 /// Diagnose a template argument deduction failure.
10931 /// We are treating these failures as overload failures due to bad
10932 /// deductions.
10933 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
10934                                                  bool ForTakingAddress) {
10935   DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
10936                        DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
10937 }
10938 
10939 void TemplateSpecCandidateSet::destroyCandidates() {
10940   for (iterator i = begin(), e = end(); i != e; ++i) {
10941     i->DeductionFailure.Destroy();
10942   }
10943 }
10944 
10945 void TemplateSpecCandidateSet::clear() {
10946   destroyCandidates();
10947   Candidates.clear();
10948 }
10949 
10950 /// NoteCandidates - When no template specialization match is found, prints
10951 /// diagnostic messages containing the non-matching specializations that form
10952 /// the candidate set.
10953 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
10954 /// OCD == OCD_AllCandidates and Cand->Viable == false.
10955 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
10956   // Sort the candidates by position (assuming no candidate is a match).
10957   // Sorting directly would be prohibitive, so we make a set of pointers
10958   // and sort those.
10959   SmallVector<TemplateSpecCandidate *, 32> Cands;
10960   Cands.reserve(size());
10961   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10962     if (Cand->Specialization)
10963       Cands.push_back(Cand);
10964     // Otherwise, this is a non-matching builtin candidate.  We do not,
10965     // in general, want to list every possible builtin candidate.
10966   }
10967 
10968   llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
10969 
10970   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
10971   // for generalization purposes (?).
10972   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10973 
10974   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
10975   unsigned CandsShown = 0;
10976   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10977     TemplateSpecCandidate *Cand = *I;
10978 
10979     // Set an arbitrary limit on the number of candidates we'll spam
10980     // the user with.  FIXME: This limit should depend on details of the
10981     // candidate list.
10982     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
10983       break;
10984     ++CandsShown;
10985 
10986     assert(Cand->Specialization &&
10987            "Non-matching built-in candidates are not added to Cands.");
10988     Cand->NoteDeductionFailure(S, ForTakingAddress);
10989   }
10990 
10991   if (I != E)
10992     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
10993 }
10994 
10995 // [PossiblyAFunctionType]  -->   [Return]
10996 // NonFunctionType --> NonFunctionType
10997 // R (A) --> R(A)
10998 // R (*)(A) --> R (A)
10999 // R (&)(A) --> R (A)
11000 // R (S::*)(A) --> R (A)
11001 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
11002   QualType Ret = PossiblyAFunctionType;
11003   if (const PointerType *ToTypePtr =
11004     PossiblyAFunctionType->getAs<PointerType>())
11005     Ret = ToTypePtr->getPointeeType();
11006   else if (const ReferenceType *ToTypeRef =
11007     PossiblyAFunctionType->getAs<ReferenceType>())
11008     Ret = ToTypeRef->getPointeeType();
11009   else if (const MemberPointerType *MemTypePtr =
11010     PossiblyAFunctionType->getAs<MemberPointerType>())
11011     Ret = MemTypePtr->getPointeeType();
11012   Ret =
11013     Context.getCanonicalType(Ret).getUnqualifiedType();
11014   return Ret;
11015 }
11016 
11017 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11018                                  bool Complain = true) {
11019   if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11020       S.DeduceReturnType(FD, Loc, Complain))
11021     return true;
11022 
11023   auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11024   if (S.getLangOpts().CPlusPlus17 &&
11025       isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11026       !S.ResolveExceptionSpec(Loc, FPT))
11027     return true;
11028 
11029   return false;
11030 }
11031 
11032 namespace {
11033 // A helper class to help with address of function resolution
11034 // - allows us to avoid passing around all those ugly parameters
11035 class AddressOfFunctionResolver {
11036   Sema& S;
11037   Expr* SourceExpr;
11038   const QualType& TargetType;
11039   QualType TargetFunctionType; // Extracted function type from target type
11040 
11041   bool Complain;
11042   //DeclAccessPair& ResultFunctionAccessPair;
11043   ASTContext& Context;
11044 
11045   bool TargetTypeIsNonStaticMemberFunction;
11046   bool FoundNonTemplateFunction;
11047   bool StaticMemberFunctionFromBoundPointer;
11048   bool HasComplained;
11049 
11050   OverloadExpr::FindResult OvlExprInfo;
11051   OverloadExpr *OvlExpr;
11052   TemplateArgumentListInfo OvlExplicitTemplateArgs;
11053   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11054   TemplateSpecCandidateSet FailedCandidates;
11055 
11056 public:
11057   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11058                             const QualType &TargetType, bool Complain)
11059       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11060         Complain(Complain), Context(S.getASTContext()),
11061         TargetTypeIsNonStaticMemberFunction(
11062             !!TargetType->getAs<MemberPointerType>()),
11063         FoundNonTemplateFunction(false),
11064         StaticMemberFunctionFromBoundPointer(false),
11065         HasComplained(false),
11066         OvlExprInfo(OverloadExpr::find(SourceExpr)),
11067         OvlExpr(OvlExprInfo.Expression),
11068         FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11069     ExtractUnqualifiedFunctionTypeFromTargetType();
11070 
11071     if (TargetFunctionType->isFunctionType()) {
11072       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11073         if (!UME->isImplicitAccess() &&
11074             !S.ResolveSingleFunctionTemplateSpecialization(UME))
11075           StaticMemberFunctionFromBoundPointer = true;
11076     } else if (OvlExpr->hasExplicitTemplateArgs()) {
11077       DeclAccessPair dap;
11078       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11079               OvlExpr, false, &dap)) {
11080         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11081           if (!Method->isStatic()) {
11082             // If the target type is a non-function type and the function found
11083             // is a non-static member function, pretend as if that was the
11084             // target, it's the only possible type to end up with.
11085             TargetTypeIsNonStaticMemberFunction = true;
11086 
11087             // And skip adding the function if its not in the proper form.
11088             // We'll diagnose this due to an empty set of functions.
11089             if (!OvlExprInfo.HasFormOfMemberPointer)
11090               return;
11091           }
11092 
11093         Matches.push_back(std::make_pair(dap, Fn));
11094       }
11095       return;
11096     }
11097 
11098     if (OvlExpr->hasExplicitTemplateArgs())
11099       OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11100 
11101     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11102       // C++ [over.over]p4:
11103       //   If more than one function is selected, [...]
11104       if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
11105         if (FoundNonTemplateFunction)
11106           EliminateAllTemplateMatches();
11107         else
11108           EliminateAllExceptMostSpecializedTemplate();
11109       }
11110     }
11111 
11112     if (S.getLangOpts().CUDA && Matches.size() > 1)
11113       EliminateSuboptimalCudaMatches();
11114   }
11115 
11116   bool hasComplained() const { return HasComplained; }
11117 
11118 private:
11119   bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
11120     QualType Discard;
11121     return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
11122            S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
11123   }
11124 
11125   /// \return true if A is considered a better overload candidate for the
11126   /// desired type than B.
11127   bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
11128     // If A doesn't have exactly the correct type, we don't want to classify it
11129     // as "better" than anything else. This way, the user is required to
11130     // disambiguate for us if there are multiple candidates and no exact match.
11131     return candidateHasExactlyCorrectType(A) &&
11132            (!candidateHasExactlyCorrectType(B) ||
11133             compareEnableIfAttrs(S, A, B) == Comparison::Better);
11134   }
11135 
11136   /// \return true if we were able to eliminate all but one overload candidate,
11137   /// false otherwise.
11138   bool eliminiateSuboptimalOverloadCandidates() {
11139     // Same algorithm as overload resolution -- one pass to pick the "best",
11140     // another pass to be sure that nothing is better than the best.
11141     auto Best = Matches.begin();
11142     for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
11143       if (isBetterCandidate(I->second, Best->second))
11144         Best = I;
11145 
11146     const FunctionDecl *BestFn = Best->second;
11147     auto IsBestOrInferiorToBest = [this, BestFn](
11148         const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
11149       return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
11150     };
11151 
11152     // Note: We explicitly leave Matches unmodified if there isn't a clear best
11153     // option, so we can potentially give the user a better error
11154     if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
11155       return false;
11156     Matches[0] = *Best;
11157     Matches.resize(1);
11158     return true;
11159   }
11160 
11161   bool isTargetTypeAFunction() const {
11162     return TargetFunctionType->isFunctionType();
11163   }
11164 
11165   // [ToType]     [Return]
11166 
11167   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
11168   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
11169   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
11170   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
11171     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
11172   }
11173 
11174   // return true if any matching specializations were found
11175   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
11176                                    const DeclAccessPair& CurAccessFunPair) {
11177     if (CXXMethodDecl *Method
11178               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
11179       // Skip non-static function templates when converting to pointer, and
11180       // static when converting to member pointer.
11181       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11182         return false;
11183     }
11184     else if (TargetTypeIsNonStaticMemberFunction)
11185       return false;
11186 
11187     // C++ [over.over]p2:
11188     //   If the name is a function template, template argument deduction is
11189     //   done (14.8.2.2), and if the argument deduction succeeds, the
11190     //   resulting template argument list is used to generate a single
11191     //   function template specialization, which is added to the set of
11192     //   overloaded functions considered.
11193     FunctionDecl *Specialization = nullptr;
11194     TemplateDeductionInfo Info(FailedCandidates.getLocation());
11195     if (Sema::TemplateDeductionResult Result
11196           = S.DeduceTemplateArguments(FunctionTemplate,
11197                                       &OvlExplicitTemplateArgs,
11198                                       TargetFunctionType, Specialization,
11199                                       Info, /*IsAddressOfFunction*/true)) {
11200       // Make a note of the failed deduction for diagnostics.
11201       FailedCandidates.addCandidate()
11202           .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
11203                MakeDeductionFailureInfo(Context, Result, Info));
11204       return false;
11205     }
11206 
11207     // Template argument deduction ensures that we have an exact match or
11208     // compatible pointer-to-function arguments that would be adjusted by ICS.
11209     // This function template specicalization works.
11210     assert(S.isSameOrCompatibleFunctionType(
11211               Context.getCanonicalType(Specialization->getType()),
11212               Context.getCanonicalType(TargetFunctionType)));
11213 
11214     if (!S.checkAddressOfFunctionIsAvailable(Specialization))
11215       return false;
11216 
11217     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
11218     return true;
11219   }
11220 
11221   bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
11222                                       const DeclAccessPair& CurAccessFunPair) {
11223     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11224       // Skip non-static functions when converting to pointer, and static
11225       // when converting to member pointer.
11226       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11227         return false;
11228     }
11229     else if (TargetTypeIsNonStaticMemberFunction)
11230       return false;
11231 
11232     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
11233       if (S.getLangOpts().CUDA)
11234         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
11235           if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
11236             return false;
11237       if (FunDecl->isMultiVersion()) {
11238         const auto *TA = FunDecl->getAttr<TargetAttr>();
11239         if (TA && !TA->isDefaultVersion())
11240           return false;
11241       }
11242 
11243       // If any candidate has a placeholder return type, trigger its deduction
11244       // now.
11245       if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
11246                                Complain)) {
11247         HasComplained |= Complain;
11248         return false;
11249       }
11250 
11251       if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
11252         return false;
11253 
11254       // If we're in C, we need to support types that aren't exactly identical.
11255       if (!S.getLangOpts().CPlusPlus ||
11256           candidateHasExactlyCorrectType(FunDecl)) {
11257         Matches.push_back(std::make_pair(
11258             CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
11259         FoundNonTemplateFunction = true;
11260         return true;
11261       }
11262     }
11263 
11264     return false;
11265   }
11266 
11267   bool FindAllFunctionsThatMatchTargetTypeExactly() {
11268     bool Ret = false;
11269 
11270     // If the overload expression doesn't have the form of a pointer to
11271     // member, don't try to convert it to a pointer-to-member type.
11272     if (IsInvalidFormOfPointerToMemberFunction())
11273       return false;
11274 
11275     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11276                                E = OvlExpr->decls_end();
11277          I != E; ++I) {
11278       // Look through any using declarations to find the underlying function.
11279       NamedDecl *Fn = (*I)->getUnderlyingDecl();
11280 
11281       // C++ [over.over]p3:
11282       //   Non-member functions and static member functions match
11283       //   targets of type "pointer-to-function" or "reference-to-function."
11284       //   Nonstatic member functions match targets of
11285       //   type "pointer-to-member-function."
11286       // Note that according to DR 247, the containing class does not matter.
11287       if (FunctionTemplateDecl *FunctionTemplate
11288                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
11289         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
11290           Ret = true;
11291       }
11292       // If we have explicit template arguments supplied, skip non-templates.
11293       else if (!OvlExpr->hasExplicitTemplateArgs() &&
11294                AddMatchingNonTemplateFunction(Fn, I.getPair()))
11295         Ret = true;
11296     }
11297     assert(Ret || Matches.empty());
11298     return Ret;
11299   }
11300 
11301   void EliminateAllExceptMostSpecializedTemplate() {
11302     //   [...] and any given function template specialization F1 is
11303     //   eliminated if the set contains a second function template
11304     //   specialization whose function template is more specialized
11305     //   than the function template of F1 according to the partial
11306     //   ordering rules of 14.5.5.2.
11307 
11308     // The algorithm specified above is quadratic. We instead use a
11309     // two-pass algorithm (similar to the one used to identify the
11310     // best viable function in an overload set) that identifies the
11311     // best function template (if it exists).
11312 
11313     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
11314     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
11315       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
11316 
11317     // TODO: It looks like FailedCandidates does not serve much purpose
11318     // here, since the no_viable diagnostic has index 0.
11319     UnresolvedSetIterator Result = S.getMostSpecialized(
11320         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
11321         SourceExpr->getBeginLoc(), S.PDiag(),
11322         S.PDiag(diag::err_addr_ovl_ambiguous)
11323             << Matches[0].second->getDeclName(),
11324         S.PDiag(diag::note_ovl_candidate)
11325             << (unsigned)oc_function << (unsigned)ocs_described_template,
11326         Complain, TargetFunctionType);
11327 
11328     if (Result != MatchesCopy.end()) {
11329       // Make it the first and only element
11330       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
11331       Matches[0].second = cast<FunctionDecl>(*Result);
11332       Matches.resize(1);
11333     } else
11334       HasComplained |= Complain;
11335   }
11336 
11337   void EliminateAllTemplateMatches() {
11338     //   [...] any function template specializations in the set are
11339     //   eliminated if the set also contains a non-template function, [...]
11340     for (unsigned I = 0, N = Matches.size(); I != N; ) {
11341       if (Matches[I].second->getPrimaryTemplate() == nullptr)
11342         ++I;
11343       else {
11344         Matches[I] = Matches[--N];
11345         Matches.resize(N);
11346       }
11347     }
11348   }
11349 
11350   void EliminateSuboptimalCudaMatches() {
11351     S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
11352   }
11353 
11354 public:
11355   void ComplainNoMatchesFound() const {
11356     assert(Matches.empty());
11357     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
11358         << OvlExpr->getName() << TargetFunctionType
11359         << OvlExpr->getSourceRange();
11360     if (FailedCandidates.empty())
11361       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11362                                   /*TakingAddress=*/true);
11363     else {
11364       // We have some deduction failure messages. Use them to diagnose
11365       // the function templates, and diagnose the non-template candidates
11366       // normally.
11367       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11368                                  IEnd = OvlExpr->decls_end();
11369            I != IEnd; ++I)
11370         if (FunctionDecl *Fun =
11371                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
11372           if (!functionHasPassObjectSizeParams(Fun))
11373             S.NoteOverloadCandidate(*I, Fun, TargetFunctionType,
11374                                     /*TakingAddress=*/true);
11375       FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
11376     }
11377   }
11378 
11379   bool IsInvalidFormOfPointerToMemberFunction() const {
11380     return TargetTypeIsNonStaticMemberFunction &&
11381       !OvlExprInfo.HasFormOfMemberPointer;
11382   }
11383 
11384   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
11385       // TODO: Should we condition this on whether any functions might
11386       // have matched, or is it more appropriate to do that in callers?
11387       // TODO: a fixit wouldn't hurt.
11388       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
11389         << TargetType << OvlExpr->getSourceRange();
11390   }
11391 
11392   bool IsStaticMemberFunctionFromBoundPointer() const {
11393     return StaticMemberFunctionFromBoundPointer;
11394   }
11395 
11396   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
11397     S.Diag(OvlExpr->getBeginLoc(),
11398            diag::err_invalid_form_pointer_member_function)
11399         << OvlExpr->getSourceRange();
11400   }
11401 
11402   void ComplainOfInvalidConversion() const {
11403     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
11404         << OvlExpr->getName() << TargetType;
11405   }
11406 
11407   void ComplainMultipleMatchesFound() const {
11408     assert(Matches.size() > 1);
11409     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
11410         << OvlExpr->getName() << OvlExpr->getSourceRange();
11411     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11412                                 /*TakingAddress=*/true);
11413   }
11414 
11415   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
11416 
11417   int getNumMatches() const { return Matches.size(); }
11418 
11419   FunctionDecl* getMatchingFunctionDecl() const {
11420     if (Matches.size() != 1) return nullptr;
11421     return Matches[0].second;
11422   }
11423 
11424   const DeclAccessPair* getMatchingFunctionAccessPair() const {
11425     if (Matches.size() != 1) return nullptr;
11426     return &Matches[0].first;
11427   }
11428 };
11429 }
11430 
11431 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
11432 /// an overloaded function (C++ [over.over]), where @p From is an
11433 /// expression with overloaded function type and @p ToType is the type
11434 /// we're trying to resolve to. For example:
11435 ///
11436 /// @code
11437 /// int f(double);
11438 /// int f(int);
11439 ///
11440 /// int (*pfd)(double) = f; // selects f(double)
11441 /// @endcode
11442 ///
11443 /// This routine returns the resulting FunctionDecl if it could be
11444 /// resolved, and NULL otherwise. When @p Complain is true, this
11445 /// routine will emit diagnostics if there is an error.
11446 FunctionDecl *
11447 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
11448                                          QualType TargetType,
11449                                          bool Complain,
11450                                          DeclAccessPair &FoundResult,
11451                                          bool *pHadMultipleCandidates) {
11452   assert(AddressOfExpr->getType() == Context.OverloadTy);
11453 
11454   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
11455                                      Complain);
11456   int NumMatches = Resolver.getNumMatches();
11457   FunctionDecl *Fn = nullptr;
11458   bool ShouldComplain = Complain && !Resolver.hasComplained();
11459   if (NumMatches == 0 && ShouldComplain) {
11460     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
11461       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
11462     else
11463       Resolver.ComplainNoMatchesFound();
11464   }
11465   else if (NumMatches > 1 && ShouldComplain)
11466     Resolver.ComplainMultipleMatchesFound();
11467   else if (NumMatches == 1) {
11468     Fn = Resolver.getMatchingFunctionDecl();
11469     assert(Fn);
11470     if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
11471       ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
11472     FoundResult = *Resolver.getMatchingFunctionAccessPair();
11473     if (Complain) {
11474       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
11475         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
11476       else
11477         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
11478     }
11479   }
11480 
11481   if (pHadMultipleCandidates)
11482     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
11483   return Fn;
11484 }
11485 
11486 /// Given an expression that refers to an overloaded function, try to
11487 /// resolve that function to a single function that can have its address taken.
11488 /// This will modify `Pair` iff it returns non-null.
11489 ///
11490 /// This routine can only realistically succeed if all but one candidates in the
11491 /// overload set for SrcExpr cannot have their addresses taken.
11492 FunctionDecl *
11493 Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
11494                                                   DeclAccessPair &Pair) {
11495   OverloadExpr::FindResult R = OverloadExpr::find(E);
11496   OverloadExpr *Ovl = R.Expression;
11497   FunctionDecl *Result = nullptr;
11498   DeclAccessPair DAP;
11499   // Don't use the AddressOfResolver because we're specifically looking for
11500   // cases where we have one overload candidate that lacks
11501   // enable_if/pass_object_size/...
11502   for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
11503     auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
11504     if (!FD)
11505       return nullptr;
11506 
11507     if (!checkAddressOfFunctionIsAvailable(FD))
11508       continue;
11509 
11510     // We have more than one result; quit.
11511     if (Result)
11512       return nullptr;
11513     DAP = I.getPair();
11514     Result = FD;
11515   }
11516 
11517   if (Result)
11518     Pair = DAP;
11519   return Result;
11520 }
11521 
11522 /// Given an overloaded function, tries to turn it into a non-overloaded
11523 /// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
11524 /// will perform access checks, diagnose the use of the resultant decl, and, if
11525 /// requested, potentially perform a function-to-pointer decay.
11526 ///
11527 /// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
11528 /// Otherwise, returns true. This may emit diagnostics and return true.
11529 bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
11530     ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
11531   Expr *E = SrcExpr.get();
11532   assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
11533 
11534   DeclAccessPair DAP;
11535   FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
11536   if (!Found || Found->isCPUDispatchMultiVersion() ||
11537       Found->isCPUSpecificMultiVersion())
11538     return false;
11539 
11540   // Emitting multiple diagnostics for a function that is both inaccessible and
11541   // unavailable is consistent with our behavior elsewhere. So, always check
11542   // for both.
11543   DiagnoseUseOfDecl(Found, E->getExprLoc());
11544   CheckAddressOfMemberAccess(E, DAP);
11545   Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
11546   if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
11547     SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
11548   else
11549     SrcExpr = Fixed;
11550   return true;
11551 }
11552 
11553 /// Given an expression that refers to an overloaded function, try to
11554 /// resolve that overloaded function expression down to a single function.
11555 ///
11556 /// This routine can only resolve template-ids that refer to a single function
11557 /// template, where that template-id refers to a single template whose template
11558 /// arguments are either provided by the template-id or have defaults,
11559 /// as described in C++0x [temp.arg.explicit]p3.
11560 ///
11561 /// If no template-ids are found, no diagnostics are emitted and NULL is
11562 /// returned.
11563 FunctionDecl *
11564 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
11565                                                   bool Complain,
11566                                                   DeclAccessPair *FoundResult) {
11567   // C++ [over.over]p1:
11568   //   [...] [Note: any redundant set of parentheses surrounding the
11569   //   overloaded function name is ignored (5.1). ]
11570   // C++ [over.over]p1:
11571   //   [...] The overloaded function name can be preceded by the &
11572   //   operator.
11573 
11574   // If we didn't actually find any template-ids, we're done.
11575   if (!ovl->hasExplicitTemplateArgs())
11576     return nullptr;
11577 
11578   TemplateArgumentListInfo ExplicitTemplateArgs;
11579   ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
11580   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
11581 
11582   // Look through all of the overloaded functions, searching for one
11583   // whose type matches exactly.
11584   FunctionDecl *Matched = nullptr;
11585   for (UnresolvedSetIterator I = ovl->decls_begin(),
11586          E = ovl->decls_end(); I != E; ++I) {
11587     // C++0x [temp.arg.explicit]p3:
11588     //   [...] In contexts where deduction is done and fails, or in contexts
11589     //   where deduction is not done, if a template argument list is
11590     //   specified and it, along with any default template arguments,
11591     //   identifies a single function template specialization, then the
11592     //   template-id is an lvalue for the function template specialization.
11593     FunctionTemplateDecl *FunctionTemplate
11594       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
11595 
11596     // C++ [over.over]p2:
11597     //   If the name is a function template, template argument deduction is
11598     //   done (14.8.2.2), and if the argument deduction succeeds, the
11599     //   resulting template argument list is used to generate a single
11600     //   function template specialization, which is added to the set of
11601     //   overloaded functions considered.
11602     FunctionDecl *Specialization = nullptr;
11603     TemplateDeductionInfo Info(FailedCandidates.getLocation());
11604     if (TemplateDeductionResult Result
11605           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
11606                                     Specialization, Info,
11607                                     /*IsAddressOfFunction*/true)) {
11608       // Make a note of the failed deduction for diagnostics.
11609       // TODO: Actually use the failed-deduction info?
11610       FailedCandidates.addCandidate()
11611           .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
11612                MakeDeductionFailureInfo(Context, Result, Info));
11613       continue;
11614     }
11615 
11616     assert(Specialization && "no specialization and no error?");
11617 
11618     // Multiple matches; we can't resolve to a single declaration.
11619     if (Matched) {
11620       if (Complain) {
11621         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
11622           << ovl->getName();
11623         NoteAllOverloadCandidates(ovl);
11624       }
11625       return nullptr;
11626     }
11627 
11628     Matched = Specialization;
11629     if (FoundResult) *FoundResult = I.getPair();
11630   }
11631 
11632   if (Matched &&
11633       completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
11634     return nullptr;
11635 
11636   return Matched;
11637 }
11638 
11639 // Resolve and fix an overloaded expression that can be resolved
11640 // because it identifies a single function template specialization.
11641 //
11642 // Last three arguments should only be supplied if Complain = true
11643 //
11644 // Return true if it was logically possible to so resolve the
11645 // expression, regardless of whether or not it succeeded.  Always
11646 // returns true if 'complain' is set.
11647 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
11648                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
11649                       bool complain, SourceRange OpRangeForComplaining,
11650                                            QualType DestTypeForComplaining,
11651                                             unsigned DiagIDForComplaining) {
11652   assert(SrcExpr.get()->getType() == Context.OverloadTy);
11653 
11654   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
11655 
11656   DeclAccessPair found;
11657   ExprResult SingleFunctionExpression;
11658   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
11659                            ovl.Expression, /*complain*/ false, &found)) {
11660     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
11661       SrcExpr = ExprError();
11662       return true;
11663     }
11664 
11665     // It is only correct to resolve to an instance method if we're
11666     // resolving a form that's permitted to be a pointer to member.
11667     // Otherwise we'll end up making a bound member expression, which
11668     // is illegal in all the contexts we resolve like this.
11669     if (!ovl.HasFormOfMemberPointer &&
11670         isa<CXXMethodDecl>(fn) &&
11671         cast<CXXMethodDecl>(fn)->isInstance()) {
11672       if (!complain) return false;
11673 
11674       Diag(ovl.Expression->getExprLoc(),
11675            diag::err_bound_member_function)
11676         << 0 << ovl.Expression->getSourceRange();
11677 
11678       // TODO: I believe we only end up here if there's a mix of
11679       // static and non-static candidates (otherwise the expression
11680       // would have 'bound member' type, not 'overload' type).
11681       // Ideally we would note which candidate was chosen and why
11682       // the static candidates were rejected.
11683       SrcExpr = ExprError();
11684       return true;
11685     }
11686 
11687     // Fix the expression to refer to 'fn'.
11688     SingleFunctionExpression =
11689         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
11690 
11691     // If desired, do function-to-pointer decay.
11692     if (doFunctionPointerConverion) {
11693       SingleFunctionExpression =
11694         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
11695       if (SingleFunctionExpression.isInvalid()) {
11696         SrcExpr = ExprError();
11697         return true;
11698       }
11699     }
11700   }
11701 
11702   if (!SingleFunctionExpression.isUsable()) {
11703     if (complain) {
11704       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
11705         << ovl.Expression->getName()
11706         << DestTypeForComplaining
11707         << OpRangeForComplaining
11708         << ovl.Expression->getQualifierLoc().getSourceRange();
11709       NoteAllOverloadCandidates(SrcExpr.get());
11710 
11711       SrcExpr = ExprError();
11712       return true;
11713     }
11714 
11715     return false;
11716   }
11717 
11718   SrcExpr = SingleFunctionExpression;
11719   return true;
11720 }
11721 
11722 /// Add a single candidate to the overload set.
11723 static void AddOverloadedCallCandidate(Sema &S,
11724                                        DeclAccessPair FoundDecl,
11725                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
11726                                        ArrayRef<Expr *> Args,
11727                                        OverloadCandidateSet &CandidateSet,
11728                                        bool PartialOverloading,
11729                                        bool KnownValid) {
11730   NamedDecl *Callee = FoundDecl.getDecl();
11731   if (isa<UsingShadowDecl>(Callee))
11732     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
11733 
11734   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
11735     if (ExplicitTemplateArgs) {
11736       assert(!KnownValid && "Explicit template arguments?");
11737       return;
11738     }
11739     // Prevent ill-formed function decls to be added as overload candidates.
11740     if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
11741       return;
11742 
11743     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
11744                            /*SuppressUsedConversions=*/false,
11745                            PartialOverloading);
11746     return;
11747   }
11748 
11749   if (FunctionTemplateDecl *FuncTemplate
11750       = dyn_cast<FunctionTemplateDecl>(Callee)) {
11751     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
11752                                    ExplicitTemplateArgs, Args, CandidateSet,
11753                                    /*SuppressUsedConversions=*/false,
11754                                    PartialOverloading);
11755     return;
11756   }
11757 
11758   assert(!KnownValid && "unhandled case in overloaded call candidate");
11759 }
11760 
11761 /// Add the overload candidates named by callee and/or found by argument
11762 /// dependent lookup to the given overload set.
11763 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
11764                                        ArrayRef<Expr *> Args,
11765                                        OverloadCandidateSet &CandidateSet,
11766                                        bool PartialOverloading) {
11767 
11768 #ifndef NDEBUG
11769   // Verify that ArgumentDependentLookup is consistent with the rules
11770   // in C++0x [basic.lookup.argdep]p3:
11771   //
11772   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
11773   //   and let Y be the lookup set produced by argument dependent
11774   //   lookup (defined as follows). If X contains
11775   //
11776   //     -- a declaration of a class member, or
11777   //
11778   //     -- a block-scope function declaration that is not a
11779   //        using-declaration, or
11780   //
11781   //     -- a declaration that is neither a function or a function
11782   //        template
11783   //
11784   //   then Y is empty.
11785 
11786   if (ULE->requiresADL()) {
11787     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11788            E = ULE->decls_end(); I != E; ++I) {
11789       assert(!(*I)->getDeclContext()->isRecord());
11790       assert(isa<UsingShadowDecl>(*I) ||
11791              !(*I)->getDeclContext()->isFunctionOrMethod());
11792       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
11793     }
11794   }
11795 #endif
11796 
11797   // It would be nice to avoid this copy.
11798   TemplateArgumentListInfo TABuffer;
11799   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11800   if (ULE->hasExplicitTemplateArgs()) {
11801     ULE->copyTemplateArgumentsInto(TABuffer);
11802     ExplicitTemplateArgs = &TABuffer;
11803   }
11804 
11805   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11806          E = ULE->decls_end(); I != E; ++I)
11807     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
11808                                CandidateSet, PartialOverloading,
11809                                /*KnownValid*/ true);
11810 
11811   if (ULE->requiresADL())
11812     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
11813                                          Args, ExplicitTemplateArgs,
11814                                          CandidateSet, PartialOverloading);
11815 }
11816 
11817 /// Determine whether a declaration with the specified name could be moved into
11818 /// a different namespace.
11819 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
11820   switch (Name.getCXXOverloadedOperator()) {
11821   case OO_New: case OO_Array_New:
11822   case OO_Delete: case OO_Array_Delete:
11823     return false;
11824 
11825   default:
11826     return true;
11827   }
11828 }
11829 
11830 /// Attempt to recover from an ill-formed use of a non-dependent name in a
11831 /// template, where the non-dependent name was declared after the template
11832 /// was defined. This is common in code written for a compilers which do not
11833 /// correctly implement two-stage name lookup.
11834 ///
11835 /// Returns true if a viable candidate was found and a diagnostic was issued.
11836 static bool
11837 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
11838                        const CXXScopeSpec &SS, LookupResult &R,
11839                        OverloadCandidateSet::CandidateSetKind CSK,
11840                        TemplateArgumentListInfo *ExplicitTemplateArgs,
11841                        ArrayRef<Expr *> Args,
11842                        bool *DoDiagnoseEmptyLookup = nullptr) {
11843   if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
11844     return false;
11845 
11846   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
11847     if (DC->isTransparentContext())
11848       continue;
11849 
11850     SemaRef.LookupQualifiedName(R, DC);
11851 
11852     if (!R.empty()) {
11853       R.suppressDiagnostics();
11854 
11855       if (isa<CXXRecordDecl>(DC)) {
11856         // Don't diagnose names we find in classes; we get much better
11857         // diagnostics for these from DiagnoseEmptyLookup.
11858         R.clear();
11859         if (DoDiagnoseEmptyLookup)
11860           *DoDiagnoseEmptyLookup = true;
11861         return false;
11862       }
11863 
11864       OverloadCandidateSet Candidates(FnLoc, CSK);
11865       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
11866         AddOverloadedCallCandidate(SemaRef, I.getPair(),
11867                                    ExplicitTemplateArgs, Args,
11868                                    Candidates, false, /*KnownValid*/ false);
11869 
11870       OverloadCandidateSet::iterator Best;
11871       if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
11872         // No viable functions. Don't bother the user with notes for functions
11873         // which don't work and shouldn't be found anyway.
11874         R.clear();
11875         return false;
11876       }
11877 
11878       // Find the namespaces where ADL would have looked, and suggest
11879       // declaring the function there instead.
11880       Sema::AssociatedNamespaceSet AssociatedNamespaces;
11881       Sema::AssociatedClassSet AssociatedClasses;
11882       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
11883                                                  AssociatedNamespaces,
11884                                                  AssociatedClasses);
11885       Sema::AssociatedNamespaceSet SuggestedNamespaces;
11886       if (canBeDeclaredInNamespace(R.getLookupName())) {
11887         DeclContext *Std = SemaRef.getStdNamespace();
11888         for (Sema::AssociatedNamespaceSet::iterator
11889                it = AssociatedNamespaces.begin(),
11890                end = AssociatedNamespaces.end(); it != end; ++it) {
11891           // Never suggest declaring a function within namespace 'std'.
11892           if (Std && Std->Encloses(*it))
11893             continue;
11894 
11895           // Never suggest declaring a function within a namespace with a
11896           // reserved name, like __gnu_cxx.
11897           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
11898           if (NS &&
11899               NS->getQualifiedNameAsString().find("__") != std::string::npos)
11900             continue;
11901 
11902           SuggestedNamespaces.insert(*it);
11903         }
11904       }
11905 
11906       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
11907         << R.getLookupName();
11908       if (SuggestedNamespaces.empty()) {
11909         SemaRef.Diag(Best->Function->getLocation(),
11910                      diag::note_not_found_by_two_phase_lookup)
11911           << R.getLookupName() << 0;
11912       } else if (SuggestedNamespaces.size() == 1) {
11913         SemaRef.Diag(Best->Function->getLocation(),
11914                      diag::note_not_found_by_two_phase_lookup)
11915           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
11916       } else {
11917         // FIXME: It would be useful to list the associated namespaces here,
11918         // but the diagnostics infrastructure doesn't provide a way to produce
11919         // a localized representation of a list of items.
11920         SemaRef.Diag(Best->Function->getLocation(),
11921                      diag::note_not_found_by_two_phase_lookup)
11922           << R.getLookupName() << 2;
11923       }
11924 
11925       // Try to recover by calling this function.
11926       return true;
11927     }
11928 
11929     R.clear();
11930   }
11931 
11932   return false;
11933 }
11934 
11935 /// Attempt to recover from ill-formed use of a non-dependent operator in a
11936 /// template, where the non-dependent operator was declared after the template
11937 /// was defined.
11938 ///
11939 /// Returns true if a viable candidate was found and a diagnostic was issued.
11940 static bool
11941 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
11942                                SourceLocation OpLoc,
11943                                ArrayRef<Expr *> Args) {
11944   DeclarationName OpName =
11945     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
11946   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
11947   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
11948                                 OverloadCandidateSet::CSK_Operator,
11949                                 /*ExplicitTemplateArgs=*/nullptr, Args);
11950 }
11951 
11952 namespace {
11953 class BuildRecoveryCallExprRAII {
11954   Sema &SemaRef;
11955 public:
11956   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
11957     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
11958     SemaRef.IsBuildingRecoveryCallExpr = true;
11959   }
11960 
11961   ~BuildRecoveryCallExprRAII() {
11962     SemaRef.IsBuildingRecoveryCallExpr = false;
11963   }
11964 };
11965 
11966 }
11967 
11968 /// Attempts to recover from a call where no functions were found.
11969 ///
11970 /// Returns true if new candidates were found.
11971 static ExprResult
11972 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
11973                       UnresolvedLookupExpr *ULE,
11974                       SourceLocation LParenLoc,
11975                       MutableArrayRef<Expr *> Args,
11976                       SourceLocation RParenLoc,
11977                       bool EmptyLookup, bool AllowTypoCorrection) {
11978   // Do not try to recover if it is already building a recovery call.
11979   // This stops infinite loops for template instantiations like
11980   //
11981   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
11982   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
11983   //
11984   if (SemaRef.IsBuildingRecoveryCallExpr)
11985     return ExprError();
11986   BuildRecoveryCallExprRAII RCE(SemaRef);
11987 
11988   CXXScopeSpec SS;
11989   SS.Adopt(ULE->getQualifierLoc());
11990   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
11991 
11992   TemplateArgumentListInfo TABuffer;
11993   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11994   if (ULE->hasExplicitTemplateArgs()) {
11995     ULE->copyTemplateArgumentsInto(TABuffer);
11996     ExplicitTemplateArgs = &TABuffer;
11997   }
11998 
11999   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
12000                  Sema::LookupOrdinaryName);
12001   bool DoDiagnoseEmptyLookup = EmptyLookup;
12002   if (!DiagnoseTwoPhaseLookup(
12003           SemaRef, Fn->getExprLoc(), SS, R, OverloadCandidateSet::CSK_Normal,
12004           ExplicitTemplateArgs, Args, &DoDiagnoseEmptyLookup)) {
12005     NoTypoCorrectionCCC NoTypoValidator{};
12006     FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12007                                                 ExplicitTemplateArgs != nullptr,
12008                                                 dyn_cast<MemberExpr>(Fn));
12009     CorrectionCandidateCallback &Validator =
12010         AllowTypoCorrection
12011             ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12012             : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12013     if (!DoDiagnoseEmptyLookup ||
12014         SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12015                                     Args))
12016       return ExprError();
12017   }
12018 
12019   assert(!R.empty() && "lookup results empty despite recovery");
12020 
12021   // If recovery created an ambiguity, just bail out.
12022   if (R.isAmbiguous()) {
12023     R.suppressDiagnostics();
12024     return ExprError();
12025   }
12026 
12027   // Build an implicit member call if appropriate.  Just drop the
12028   // casts and such from the call, we don't really care.
12029   ExprResult NewFn = ExprError();
12030   if ((*R.begin())->isCXXClassMember())
12031     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12032                                                     ExplicitTemplateArgs, S);
12033   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
12034     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
12035                                         ExplicitTemplateArgs);
12036   else
12037     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
12038 
12039   if (NewFn.isInvalid())
12040     return ExprError();
12041 
12042   // This shouldn't cause an infinite loop because we're giving it
12043   // an expression with viable lookup results, which should never
12044   // end up here.
12045   return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
12046                                MultiExprArg(Args.data(), Args.size()),
12047                                RParenLoc);
12048 }
12049 
12050 /// Constructs and populates an OverloadedCandidateSet from
12051 /// the given function.
12052 /// \returns true when an the ExprResult output parameter has been set.
12053 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
12054                                   UnresolvedLookupExpr *ULE,
12055                                   MultiExprArg Args,
12056                                   SourceLocation RParenLoc,
12057                                   OverloadCandidateSet *CandidateSet,
12058                                   ExprResult *Result) {
12059 #ifndef NDEBUG
12060   if (ULE->requiresADL()) {
12061     // To do ADL, we must have found an unqualified name.
12062     assert(!ULE->getQualifier() && "qualified name with ADL");
12063 
12064     // We don't perform ADL for implicit declarations of builtins.
12065     // Verify that this was correctly set up.
12066     FunctionDecl *F;
12067     if (ULE->decls_begin() != ULE->decls_end() &&
12068         ULE->decls_begin() + 1 == ULE->decls_end() &&
12069         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
12070         F->getBuiltinID() && F->isImplicit())
12071       llvm_unreachable("performing ADL for builtin");
12072 
12073     // We don't perform ADL in C.
12074     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
12075   }
12076 #endif
12077 
12078   UnbridgedCastsSet UnbridgedCasts;
12079   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
12080     *Result = ExprError();
12081     return true;
12082   }
12083 
12084   // Add the functions denoted by the callee to the set of candidate
12085   // functions, including those from argument-dependent lookup.
12086   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
12087 
12088   if (getLangOpts().MSVCCompat &&
12089       CurContext->isDependentContext() && !isSFINAEContext() &&
12090       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
12091 
12092     OverloadCandidateSet::iterator Best;
12093     if (CandidateSet->empty() ||
12094         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
12095             OR_No_Viable_Function) {
12096       // In Microsoft mode, if we are inside a template class member function
12097       // then create a type dependent CallExpr. The goal is to postpone name
12098       // lookup to instantiation time to be able to search into type dependent
12099       // base classes.
12100       CallExpr *CE = CallExpr::Create(Context, Fn, Args, Context.DependentTy,
12101                                       VK_RValue, RParenLoc);
12102       CE->setTypeDependent(true);
12103       CE->setValueDependent(true);
12104       CE->setInstantiationDependent(true);
12105       *Result = CE;
12106       return true;
12107     }
12108   }
12109 
12110   if (CandidateSet->empty())
12111     return false;
12112 
12113   UnbridgedCasts.restore();
12114   return false;
12115 }
12116 
12117 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
12118 /// the completed call expression. If overload resolution fails, emits
12119 /// diagnostics and returns ExprError()
12120 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12121                                            UnresolvedLookupExpr *ULE,
12122                                            SourceLocation LParenLoc,
12123                                            MultiExprArg Args,
12124                                            SourceLocation RParenLoc,
12125                                            Expr *ExecConfig,
12126                                            OverloadCandidateSet *CandidateSet,
12127                                            OverloadCandidateSet::iterator *Best,
12128                                            OverloadingResult OverloadResult,
12129                                            bool AllowTypoCorrection) {
12130   if (CandidateSet->empty())
12131     return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
12132                                  RParenLoc, /*EmptyLookup=*/true,
12133                                  AllowTypoCorrection);
12134 
12135   switch (OverloadResult) {
12136   case OR_Success: {
12137     FunctionDecl *FDecl = (*Best)->Function;
12138     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
12139     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
12140       return ExprError();
12141     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12142     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12143                                          ExecConfig, /*IsExecConfig=*/false,
12144                                          (*Best)->IsADLCandidate);
12145   }
12146 
12147   case OR_No_Viable_Function: {
12148     // Try to recover by looking for viable functions which the user might
12149     // have meant to call.
12150     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
12151                                                 Args, RParenLoc,
12152                                                 /*EmptyLookup=*/false,
12153                                                 AllowTypoCorrection);
12154     if (!Recovery.isInvalid())
12155       return Recovery;
12156 
12157     // If the user passes in a function that we can't take the address of, we
12158     // generally end up emitting really bad error messages. Here, we attempt to
12159     // emit better ones.
12160     for (const Expr *Arg : Args) {
12161       if (!Arg->getType()->isFunctionType())
12162         continue;
12163       if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
12164         auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
12165         if (FD &&
12166             !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
12167                                                        Arg->getExprLoc()))
12168           return ExprError();
12169       }
12170     }
12171 
12172     CandidateSet->NoteCandidates(
12173         PartialDiagnosticAt(
12174             Fn->getBeginLoc(),
12175             SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
12176                 << ULE->getName() << Fn->getSourceRange()),
12177         SemaRef, OCD_AllCandidates, Args);
12178     break;
12179   }
12180 
12181   case OR_Ambiguous:
12182     CandidateSet->NoteCandidates(
12183         PartialDiagnosticAt(Fn->getBeginLoc(),
12184                             SemaRef.PDiag(diag::err_ovl_ambiguous_call)
12185                                 << ULE->getName() << Fn->getSourceRange()),
12186         SemaRef, OCD_ViableCandidates, Args);
12187     break;
12188 
12189   case OR_Deleted: {
12190     CandidateSet->NoteCandidates(
12191         PartialDiagnosticAt(Fn->getBeginLoc(),
12192                             SemaRef.PDiag(diag::err_ovl_deleted_call)
12193                                 << ULE->getName() << Fn->getSourceRange()),
12194         SemaRef, OCD_AllCandidates, Args);
12195 
12196     // We emitted an error for the unavailable/deleted function call but keep
12197     // the call in the AST.
12198     FunctionDecl *FDecl = (*Best)->Function;
12199     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12200     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12201                                          ExecConfig, /*IsExecConfig=*/false,
12202                                          (*Best)->IsADLCandidate);
12203   }
12204   }
12205 
12206   // Overload resolution failed.
12207   return ExprError();
12208 }
12209 
12210 static void markUnaddressableCandidatesUnviable(Sema &S,
12211                                                 OverloadCandidateSet &CS) {
12212   for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
12213     if (I->Viable &&
12214         !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
12215       I->Viable = false;
12216       I->FailureKind = ovl_fail_addr_not_available;
12217     }
12218   }
12219 }
12220 
12221 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
12222 /// (which eventually refers to the declaration Func) and the call
12223 /// arguments Args/NumArgs, attempt to resolve the function call down
12224 /// to a specific function. If overload resolution succeeds, returns
12225 /// the call expression produced by overload resolution.
12226 /// Otherwise, emits diagnostics and returns ExprError.
12227 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
12228                                          UnresolvedLookupExpr *ULE,
12229                                          SourceLocation LParenLoc,
12230                                          MultiExprArg Args,
12231                                          SourceLocation RParenLoc,
12232                                          Expr *ExecConfig,
12233                                          bool AllowTypoCorrection,
12234                                          bool CalleesAddressIsTaken) {
12235   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
12236                                     OverloadCandidateSet::CSK_Normal);
12237   ExprResult result;
12238 
12239   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
12240                              &result))
12241     return result;
12242 
12243   // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
12244   // functions that aren't addressible are considered unviable.
12245   if (CalleesAddressIsTaken)
12246     markUnaddressableCandidatesUnviable(*this, CandidateSet);
12247 
12248   OverloadCandidateSet::iterator Best;
12249   OverloadingResult OverloadResult =
12250       CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
12251 
12252   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
12253                                   ExecConfig, &CandidateSet, &Best,
12254                                   OverloadResult, AllowTypoCorrection);
12255 }
12256 
12257 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
12258   return Functions.size() > 1 ||
12259     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
12260 }
12261 
12262 /// Create a unary operation that may resolve to an overloaded
12263 /// operator.
12264 ///
12265 /// \param OpLoc The location of the operator itself (e.g., '*').
12266 ///
12267 /// \param Opc The UnaryOperatorKind that describes this operator.
12268 ///
12269 /// \param Fns The set of non-member functions that will be
12270 /// considered by overload resolution. The caller needs to build this
12271 /// set based on the context using, e.g.,
12272 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12273 /// set should not contain any member functions; those will be added
12274 /// by CreateOverloadedUnaryOp().
12275 ///
12276 /// \param Input The input argument.
12277 ExprResult
12278 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
12279                               const UnresolvedSetImpl &Fns,
12280                               Expr *Input, bool PerformADL) {
12281   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
12282   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
12283   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12284   // TODO: provide better source location info.
12285   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12286 
12287   if (checkPlaceholderForOverload(*this, Input))
12288     return ExprError();
12289 
12290   Expr *Args[2] = { Input, nullptr };
12291   unsigned NumArgs = 1;
12292 
12293   // For post-increment and post-decrement, add the implicit '0' as
12294   // the second argument, so that we know this is a post-increment or
12295   // post-decrement.
12296   if (Opc == UO_PostInc || Opc == UO_PostDec) {
12297     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
12298     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
12299                                      SourceLocation());
12300     NumArgs = 2;
12301   }
12302 
12303   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
12304 
12305   if (Input->isTypeDependent()) {
12306     if (Fns.empty())
12307       return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
12308                                          VK_RValue, OK_Ordinary, OpLoc, false);
12309 
12310     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12311     UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12312         Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12313         /*ADL*/ true, IsOverloaded(Fns), Fns.begin(), Fns.end());
12314     return CXXOperatorCallExpr::Create(Context, Op, Fn, ArgsArray,
12315                                        Context.DependentTy, VK_RValue, OpLoc,
12316                                        FPOptions());
12317   }
12318 
12319   // Build an empty overload set.
12320   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12321 
12322   // Add the candidates from the given function set.
12323   AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
12324 
12325   // Add operator candidates that are member functions.
12326   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12327 
12328   // Add candidates from ADL.
12329   if (PerformADL) {
12330     AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
12331                                          /*ExplicitTemplateArgs*/nullptr,
12332                                          CandidateSet);
12333   }
12334 
12335   // Add builtin operator candidates.
12336   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12337 
12338   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12339 
12340   // Perform overload resolution.
12341   OverloadCandidateSet::iterator Best;
12342   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12343   case OR_Success: {
12344     // We found a built-in operator or an overloaded operator.
12345     FunctionDecl *FnDecl = Best->Function;
12346 
12347     if (FnDecl) {
12348       Expr *Base = nullptr;
12349       // We matched an overloaded operator. Build a call to that
12350       // operator.
12351 
12352       // Convert the arguments.
12353       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12354         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
12355 
12356         ExprResult InputRes =
12357           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
12358                                               Best->FoundDecl, Method);
12359         if (InputRes.isInvalid())
12360           return ExprError();
12361         Base = Input = InputRes.get();
12362       } else {
12363         // Convert the arguments.
12364         ExprResult InputInit
12365           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12366                                                       Context,
12367                                                       FnDecl->getParamDecl(0)),
12368                                       SourceLocation(),
12369                                       Input);
12370         if (InputInit.isInvalid())
12371           return ExprError();
12372         Input = InputInit.get();
12373       }
12374 
12375       // Build the actual expression node.
12376       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
12377                                                 Base, HadMultipleCandidates,
12378                                                 OpLoc);
12379       if (FnExpr.isInvalid())
12380         return ExprError();
12381 
12382       // Determine the result type.
12383       QualType ResultTy = FnDecl->getReturnType();
12384       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12385       ResultTy = ResultTy.getNonLValueExprType(Context);
12386 
12387       Args[0] = Input;
12388       CallExpr *TheCall = CXXOperatorCallExpr::Create(
12389           Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
12390           FPOptions(), Best->IsADLCandidate);
12391 
12392       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
12393         return ExprError();
12394 
12395       if (CheckFunctionCall(FnDecl, TheCall,
12396                             FnDecl->getType()->castAs<FunctionProtoType>()))
12397         return ExprError();
12398 
12399       return MaybeBindToTemporary(TheCall);
12400     } else {
12401       // We matched a built-in operator. Convert the arguments, then
12402       // break out so that we will build the appropriate built-in
12403       // operator node.
12404       ExprResult InputRes = PerformImplicitConversion(
12405           Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
12406           CCK_ForBuiltinOverloadedOp);
12407       if (InputRes.isInvalid())
12408         return ExprError();
12409       Input = InputRes.get();
12410       break;
12411     }
12412   }
12413 
12414   case OR_No_Viable_Function:
12415     // This is an erroneous use of an operator which can be overloaded by
12416     // a non-member function. Check for non-member operators which were
12417     // defined too late to be candidates.
12418     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
12419       // FIXME: Recover by calling the found function.
12420       return ExprError();
12421 
12422     // No viable function; fall through to handling this as a
12423     // built-in operator, which will produce an error message for us.
12424     break;
12425 
12426   case OR_Ambiguous:
12427     CandidateSet.NoteCandidates(
12428         PartialDiagnosticAt(OpLoc,
12429                             PDiag(diag::err_ovl_ambiguous_oper_unary)
12430                                 << UnaryOperator::getOpcodeStr(Opc)
12431                                 << Input->getType() << Input->getSourceRange()),
12432         *this, OCD_ViableCandidates, ArgsArray,
12433         UnaryOperator::getOpcodeStr(Opc), OpLoc);
12434     return ExprError();
12435 
12436   case OR_Deleted:
12437     CandidateSet.NoteCandidates(
12438         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
12439                                        << UnaryOperator::getOpcodeStr(Opc)
12440                                        << Input->getSourceRange()),
12441         *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
12442         OpLoc);
12443     return ExprError();
12444   }
12445 
12446   // Either we found no viable overloaded operator or we matched a
12447   // built-in operator. In either case, fall through to trying to
12448   // build a built-in operation.
12449   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
12450 }
12451 
12452 /// Create a binary operation that may resolve to an overloaded
12453 /// operator.
12454 ///
12455 /// \param OpLoc The location of the operator itself (e.g., '+').
12456 ///
12457 /// \param Opc The BinaryOperatorKind that describes this operator.
12458 ///
12459 /// \param Fns The set of non-member functions that will be
12460 /// considered by overload resolution. The caller needs to build this
12461 /// set based on the context using, e.g.,
12462 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12463 /// set should not contain any member functions; those will be added
12464 /// by CreateOverloadedBinOp().
12465 ///
12466 /// \param LHS Left-hand argument.
12467 /// \param RHS Right-hand argument.
12468 ExprResult
12469 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
12470                             BinaryOperatorKind Opc,
12471                             const UnresolvedSetImpl &Fns,
12472                             Expr *LHS, Expr *RHS, bool PerformADL) {
12473   Expr *Args[2] = { LHS, RHS };
12474   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
12475 
12476   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
12477   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12478 
12479   // If either side is type-dependent, create an appropriate dependent
12480   // expression.
12481   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12482     if (Fns.empty()) {
12483       // If there are no functions to store, just build a dependent
12484       // BinaryOperator or CompoundAssignment.
12485       if (Opc <= BO_Assign || Opc > BO_OrAssign)
12486         return new (Context) BinaryOperator(
12487             Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
12488             OpLoc, FPFeatures);
12489 
12490       return new (Context) CompoundAssignOperator(
12491           Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
12492           Context.DependentTy, Context.DependentTy, OpLoc,
12493           FPFeatures);
12494     }
12495 
12496     // FIXME: save results of ADL from here?
12497     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12498     // TODO: provide better source location info in DNLoc component.
12499     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12500     UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12501         Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12502         /*ADL*/ PerformADL, IsOverloaded(Fns), Fns.begin(), Fns.end());
12503     return CXXOperatorCallExpr::Create(Context, Op, Fn, Args,
12504                                        Context.DependentTy, VK_RValue, OpLoc,
12505                                        FPFeatures);
12506   }
12507 
12508   // Always do placeholder-like conversions on the RHS.
12509   if (checkPlaceholderForOverload(*this, Args[1]))
12510     return ExprError();
12511 
12512   // Do placeholder-like conversion on the LHS; note that we should
12513   // not get here with a PseudoObject LHS.
12514   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
12515   if (checkPlaceholderForOverload(*this, Args[0]))
12516     return ExprError();
12517 
12518   // If this is the assignment operator, we only perform overload resolution
12519   // if the left-hand side is a class or enumeration type. This is actually
12520   // a hack. The standard requires that we do overload resolution between the
12521   // various built-in candidates, but as DR507 points out, this can lead to
12522   // problems. So we do it this way, which pretty much follows what GCC does.
12523   // Note that we go the traditional code path for compound assignment forms.
12524   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
12525     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12526 
12527   // If this is the .* operator, which is not overloadable, just
12528   // create a built-in binary operator.
12529   if (Opc == BO_PtrMemD)
12530     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12531 
12532   // Build an empty overload set.
12533   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12534 
12535   // Add the candidates from the given function set.
12536   AddFunctionCandidates(Fns, Args, CandidateSet);
12537 
12538   // Add operator candidates that are member functions.
12539   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12540 
12541   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
12542   // performed for an assignment operator (nor for operator[] nor operator->,
12543   // which don't get here).
12544   if (Opc != BO_Assign && PerformADL)
12545     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
12546                                          /*ExplicitTemplateArgs*/ nullptr,
12547                                          CandidateSet);
12548 
12549   // Add builtin operator candidates.
12550   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12551 
12552   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12553 
12554   // Perform overload resolution.
12555   OverloadCandidateSet::iterator Best;
12556   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12557     case OR_Success: {
12558       // We found a built-in operator or an overloaded operator.
12559       FunctionDecl *FnDecl = Best->Function;
12560 
12561       if (FnDecl) {
12562         Expr *Base = nullptr;
12563         // We matched an overloaded operator. Build a call to that
12564         // operator.
12565 
12566         // Convert the arguments.
12567         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12568           // Best->Access is only meaningful for class members.
12569           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
12570 
12571           ExprResult Arg1 =
12572             PerformCopyInitialization(
12573               InitializedEntity::InitializeParameter(Context,
12574                                                      FnDecl->getParamDecl(0)),
12575               SourceLocation(), Args[1]);
12576           if (Arg1.isInvalid())
12577             return ExprError();
12578 
12579           ExprResult Arg0 =
12580             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12581                                                 Best->FoundDecl, Method);
12582           if (Arg0.isInvalid())
12583             return ExprError();
12584           Base = Args[0] = Arg0.getAs<Expr>();
12585           Args[1] = RHS = Arg1.getAs<Expr>();
12586         } else {
12587           // Convert the arguments.
12588           ExprResult Arg0 = PerformCopyInitialization(
12589             InitializedEntity::InitializeParameter(Context,
12590                                                    FnDecl->getParamDecl(0)),
12591             SourceLocation(), Args[0]);
12592           if (Arg0.isInvalid())
12593             return ExprError();
12594 
12595           ExprResult Arg1 =
12596             PerformCopyInitialization(
12597               InitializedEntity::InitializeParameter(Context,
12598                                                      FnDecl->getParamDecl(1)),
12599               SourceLocation(), Args[1]);
12600           if (Arg1.isInvalid())
12601             return ExprError();
12602           Args[0] = LHS = Arg0.getAs<Expr>();
12603           Args[1] = RHS = Arg1.getAs<Expr>();
12604         }
12605 
12606         // Build the actual expression node.
12607         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12608                                                   Best->FoundDecl, Base,
12609                                                   HadMultipleCandidates, OpLoc);
12610         if (FnExpr.isInvalid())
12611           return ExprError();
12612 
12613         // Determine the result type.
12614         QualType ResultTy = FnDecl->getReturnType();
12615         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12616         ResultTy = ResultTy.getNonLValueExprType(Context);
12617 
12618         CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
12619             Context, Op, FnExpr.get(), Args, ResultTy, VK, OpLoc, FPFeatures,
12620             Best->IsADLCandidate);
12621 
12622         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
12623                                 FnDecl))
12624           return ExprError();
12625 
12626         ArrayRef<const Expr *> ArgsArray(Args, 2);
12627         const Expr *ImplicitThis = nullptr;
12628         // Cut off the implicit 'this'.
12629         if (isa<CXXMethodDecl>(FnDecl)) {
12630           ImplicitThis = ArgsArray[0];
12631           ArgsArray = ArgsArray.slice(1);
12632         }
12633 
12634         // Check for a self move.
12635         if (Op == OO_Equal)
12636           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
12637 
12638         checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
12639                   isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
12640                   VariadicDoesNotApply);
12641 
12642         return MaybeBindToTemporary(TheCall);
12643       } else {
12644         // We matched a built-in operator. Convert the arguments, then
12645         // break out so that we will build the appropriate built-in
12646         // operator node.
12647         ExprResult ArgsRes0 = PerformImplicitConversion(
12648             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
12649             AA_Passing, CCK_ForBuiltinOverloadedOp);
12650         if (ArgsRes0.isInvalid())
12651           return ExprError();
12652         Args[0] = ArgsRes0.get();
12653 
12654         ExprResult ArgsRes1 = PerformImplicitConversion(
12655             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
12656             AA_Passing, CCK_ForBuiltinOverloadedOp);
12657         if (ArgsRes1.isInvalid())
12658           return ExprError();
12659         Args[1] = ArgsRes1.get();
12660         break;
12661       }
12662     }
12663 
12664     case OR_No_Viable_Function: {
12665       // C++ [over.match.oper]p9:
12666       //   If the operator is the operator , [...] and there are no
12667       //   viable functions, then the operator is assumed to be the
12668       //   built-in operator and interpreted according to clause 5.
12669       if (Opc == BO_Comma)
12670         break;
12671 
12672       // For class as left operand for assignment or compound assignment
12673       // operator do not fall through to handling in built-in, but report that
12674       // no overloaded assignment operator found
12675       ExprResult Result = ExprError();
12676       StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
12677       auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
12678                                                    Args, OpLoc);
12679       if (Args[0]->getType()->isRecordType() &&
12680           Opc >= BO_Assign && Opc <= BO_OrAssign) {
12681         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
12682              << BinaryOperator::getOpcodeStr(Opc)
12683              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12684         if (Args[0]->getType()->isIncompleteType()) {
12685           Diag(OpLoc, diag::note_assign_lhs_incomplete)
12686             << Args[0]->getType()
12687             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12688         }
12689       } else {
12690         // This is an erroneous use of an operator which can be overloaded by
12691         // a non-member function. Check for non-member operators which were
12692         // defined too late to be candidates.
12693         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
12694           // FIXME: Recover by calling the found function.
12695           return ExprError();
12696 
12697         // No viable function; try to create a built-in operation, which will
12698         // produce an error. Then, show the non-viable candidates.
12699         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12700       }
12701       assert(Result.isInvalid() &&
12702              "C++ binary operator overloading is missing candidates!");
12703       CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
12704       return Result;
12705     }
12706 
12707     case OR_Ambiguous:
12708       CandidateSet.NoteCandidates(
12709           PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
12710                                          << BinaryOperator::getOpcodeStr(Opc)
12711                                          << Args[0]->getType()
12712                                          << Args[1]->getType()
12713                                          << Args[0]->getSourceRange()
12714                                          << Args[1]->getSourceRange()),
12715           *this, OCD_ViableCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
12716           OpLoc);
12717       return ExprError();
12718 
12719     case OR_Deleted:
12720       if (isImplicitlyDeleted(Best->Function)) {
12721         CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12722         Diag(OpLoc, diag::err_ovl_deleted_special_oper)
12723           << Context.getRecordType(Method->getParent())
12724           << getSpecialMember(Method);
12725 
12726         // The user probably meant to call this special member. Just
12727         // explain why it's deleted.
12728         NoteDeletedFunction(Method);
12729         return ExprError();
12730       }
12731       CandidateSet.NoteCandidates(
12732           PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
12733                                          << BinaryOperator::getOpcodeStr(Opc)
12734                                          << Args[0]->getSourceRange()
12735                                          << Args[1]->getSourceRange()),
12736           *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
12737           OpLoc);
12738       return ExprError();
12739   }
12740 
12741   // We matched a built-in operator; build it.
12742   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12743 }
12744 
12745 ExprResult
12746 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
12747                                          SourceLocation RLoc,
12748                                          Expr *Base, Expr *Idx) {
12749   Expr *Args[2] = { Base, Idx };
12750   DeclarationName OpName =
12751       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
12752 
12753   // If either side is type-dependent, create an appropriate dependent
12754   // expression.
12755   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12756 
12757     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12758     // CHECKME: no 'operator' keyword?
12759     DeclarationNameInfo OpNameInfo(OpName, LLoc);
12760     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12761     UnresolvedLookupExpr *Fn
12762       = UnresolvedLookupExpr::Create(Context, NamingClass,
12763                                      NestedNameSpecifierLoc(), OpNameInfo,
12764                                      /*ADL*/ true, /*Overloaded*/ false,
12765                                      UnresolvedSetIterator(),
12766                                      UnresolvedSetIterator());
12767     // Can't add any actual overloads yet
12768 
12769     return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn, Args,
12770                                        Context.DependentTy, VK_RValue, RLoc,
12771                                        FPOptions());
12772   }
12773 
12774   // Handle placeholders on both operands.
12775   if (checkPlaceholderForOverload(*this, Args[0]))
12776     return ExprError();
12777   if (checkPlaceholderForOverload(*this, Args[1]))
12778     return ExprError();
12779 
12780   // Build an empty overload set.
12781   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
12782 
12783   // Subscript can only be overloaded as a member function.
12784 
12785   // Add operator candidates that are member functions.
12786   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12787 
12788   // Add builtin operator candidates.
12789   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12790 
12791   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12792 
12793   // Perform overload resolution.
12794   OverloadCandidateSet::iterator Best;
12795   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
12796     case OR_Success: {
12797       // We found a built-in operator or an overloaded operator.
12798       FunctionDecl *FnDecl = Best->Function;
12799 
12800       if (FnDecl) {
12801         // We matched an overloaded operator. Build a call to that
12802         // operator.
12803 
12804         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
12805 
12806         // Convert the arguments.
12807         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
12808         ExprResult Arg0 =
12809           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12810                                               Best->FoundDecl, Method);
12811         if (Arg0.isInvalid())
12812           return ExprError();
12813         Args[0] = Arg0.get();
12814 
12815         // Convert the arguments.
12816         ExprResult InputInit
12817           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12818                                                       Context,
12819                                                       FnDecl->getParamDecl(0)),
12820                                       SourceLocation(),
12821                                       Args[1]);
12822         if (InputInit.isInvalid())
12823           return ExprError();
12824 
12825         Args[1] = InputInit.getAs<Expr>();
12826 
12827         // Build the actual expression node.
12828         DeclarationNameInfo OpLocInfo(OpName, LLoc);
12829         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12830         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12831                                                   Best->FoundDecl,
12832                                                   Base,
12833                                                   HadMultipleCandidates,
12834                                                   OpLocInfo.getLoc(),
12835                                                   OpLocInfo.getInfo());
12836         if (FnExpr.isInvalid())
12837           return ExprError();
12838 
12839         // Determine the result type
12840         QualType ResultTy = FnDecl->getReturnType();
12841         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12842         ResultTy = ResultTy.getNonLValueExprType(Context);
12843 
12844         CXXOperatorCallExpr *TheCall =
12845             CXXOperatorCallExpr::Create(Context, OO_Subscript, FnExpr.get(),
12846                                         Args, ResultTy, VK, RLoc, FPOptions());
12847 
12848         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
12849           return ExprError();
12850 
12851         if (CheckFunctionCall(Method, TheCall,
12852                               Method->getType()->castAs<FunctionProtoType>()))
12853           return ExprError();
12854 
12855         return MaybeBindToTemporary(TheCall);
12856       } else {
12857         // We matched a built-in operator. Convert the arguments, then
12858         // break out so that we will build the appropriate built-in
12859         // operator node.
12860         ExprResult ArgsRes0 = PerformImplicitConversion(
12861             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
12862             AA_Passing, CCK_ForBuiltinOverloadedOp);
12863         if (ArgsRes0.isInvalid())
12864           return ExprError();
12865         Args[0] = ArgsRes0.get();
12866 
12867         ExprResult ArgsRes1 = PerformImplicitConversion(
12868             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
12869             AA_Passing, CCK_ForBuiltinOverloadedOp);
12870         if (ArgsRes1.isInvalid())
12871           return ExprError();
12872         Args[1] = ArgsRes1.get();
12873 
12874         break;
12875       }
12876     }
12877 
12878     case OR_No_Viable_Function: {
12879       PartialDiagnostic PD = CandidateSet.empty()
12880           ? (PDiag(diag::err_ovl_no_oper)
12881              << Args[0]->getType() << /*subscript*/ 0
12882              << Args[0]->getSourceRange() << Args[1]->getSourceRange())
12883           : (PDiag(diag::err_ovl_no_viable_subscript)
12884              << Args[0]->getType() << Args[0]->getSourceRange()
12885              << Args[1]->getSourceRange());
12886       CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
12887                                   OCD_AllCandidates, Args, "[]", LLoc);
12888       return ExprError();
12889     }
12890 
12891     case OR_Ambiguous:
12892       CandidateSet.NoteCandidates(
12893           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
12894                                         << "[]" << Args[0]->getType()
12895                                         << Args[1]->getType()
12896                                         << Args[0]->getSourceRange()
12897                                         << Args[1]->getSourceRange()),
12898           *this, OCD_ViableCandidates, Args, "[]", LLoc);
12899       return ExprError();
12900 
12901     case OR_Deleted:
12902       CandidateSet.NoteCandidates(
12903           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
12904                                         << "[]" << Args[0]->getSourceRange()
12905                                         << Args[1]->getSourceRange()),
12906           *this, OCD_AllCandidates, Args, "[]", LLoc);
12907       return ExprError();
12908     }
12909 
12910   // We matched a built-in operator; build it.
12911   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
12912 }
12913 
12914 /// BuildCallToMemberFunction - Build a call to a member
12915 /// function. MemExpr is the expression that refers to the member
12916 /// function (and includes the object parameter), Args/NumArgs are the
12917 /// arguments to the function call (not including the object
12918 /// parameter). The caller needs to validate that the member
12919 /// expression refers to a non-static member function or an overloaded
12920 /// member function.
12921 ExprResult
12922 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
12923                                 SourceLocation LParenLoc,
12924                                 MultiExprArg Args,
12925                                 SourceLocation RParenLoc) {
12926   assert(MemExprE->getType() == Context.BoundMemberTy ||
12927          MemExprE->getType() == Context.OverloadTy);
12928 
12929   // Dig out the member expression. This holds both the object
12930   // argument and the member function we're referring to.
12931   Expr *NakedMemExpr = MemExprE->IgnoreParens();
12932 
12933   // Determine whether this is a call to a pointer-to-member function.
12934   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
12935     assert(op->getType() == Context.BoundMemberTy);
12936     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
12937 
12938     QualType fnType =
12939       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
12940 
12941     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
12942     QualType resultType = proto->getCallResultType(Context);
12943     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
12944 
12945     // Check that the object type isn't more qualified than the
12946     // member function we're calling.
12947     Qualifiers funcQuals = proto->getMethodQuals();
12948 
12949     QualType objectType = op->getLHS()->getType();
12950     if (op->getOpcode() == BO_PtrMemI)
12951       objectType = objectType->castAs<PointerType>()->getPointeeType();
12952     Qualifiers objectQuals = objectType.getQualifiers();
12953 
12954     Qualifiers difference = objectQuals - funcQuals;
12955     difference.removeObjCGCAttr();
12956     difference.removeAddressSpace();
12957     if (difference) {
12958       std::string qualsString = difference.getAsString();
12959       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
12960         << fnType.getUnqualifiedType()
12961         << qualsString
12962         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
12963     }
12964 
12965     CXXMemberCallExpr *call =
12966         CXXMemberCallExpr::Create(Context, MemExprE, Args, resultType,
12967                                   valueKind, RParenLoc, proto->getNumParams());
12968 
12969     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
12970                             call, nullptr))
12971       return ExprError();
12972 
12973     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
12974       return ExprError();
12975 
12976     if (CheckOtherCall(call, proto))
12977       return ExprError();
12978 
12979     return MaybeBindToTemporary(call);
12980   }
12981 
12982   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
12983     return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue,
12984                             RParenLoc);
12985 
12986   UnbridgedCastsSet UnbridgedCasts;
12987   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
12988     return ExprError();
12989 
12990   MemberExpr *MemExpr;
12991   CXXMethodDecl *Method = nullptr;
12992   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
12993   NestedNameSpecifier *Qualifier = nullptr;
12994   if (isa<MemberExpr>(NakedMemExpr)) {
12995     MemExpr = cast<MemberExpr>(NakedMemExpr);
12996     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
12997     FoundDecl = MemExpr->getFoundDecl();
12998     Qualifier = MemExpr->getQualifier();
12999     UnbridgedCasts.restore();
13000   } else {
13001     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
13002     Qualifier = UnresExpr->getQualifier();
13003 
13004     QualType ObjectType = UnresExpr->getBaseType();
13005     Expr::Classification ObjectClassification
13006       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
13007                             : UnresExpr->getBase()->Classify(Context);
13008 
13009     // Add overload candidates
13010     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
13011                                       OverloadCandidateSet::CSK_Normal);
13012 
13013     // FIXME: avoid copy.
13014     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13015     if (UnresExpr->hasExplicitTemplateArgs()) {
13016       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13017       TemplateArgs = &TemplateArgsBuffer;
13018     }
13019 
13020     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
13021            E = UnresExpr->decls_end(); I != E; ++I) {
13022 
13023       NamedDecl *Func = *I;
13024       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
13025       if (isa<UsingShadowDecl>(Func))
13026         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
13027 
13028 
13029       // Microsoft supports direct constructor calls.
13030       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
13031         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
13032                              CandidateSet,
13033                              /*SuppressUserConversions*/ false);
13034       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
13035         // If explicit template arguments were provided, we can't call a
13036         // non-template member function.
13037         if (TemplateArgs)
13038           continue;
13039 
13040         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
13041                            ObjectClassification, Args, CandidateSet,
13042                            /*SuppressUserConversions=*/false);
13043       } else {
13044         AddMethodTemplateCandidate(
13045             cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
13046             TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
13047             /*SuppressUsedConversions=*/false);
13048       }
13049     }
13050 
13051     DeclarationName DeclName = UnresExpr->getMemberName();
13052 
13053     UnbridgedCasts.restore();
13054 
13055     OverloadCandidateSet::iterator Best;
13056     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
13057                                             Best)) {
13058     case OR_Success:
13059       Method = cast<CXXMethodDecl>(Best->Function);
13060       FoundDecl = Best->FoundDecl;
13061       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
13062       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
13063         return ExprError();
13064       // If FoundDecl is different from Method (such as if one is a template
13065       // and the other a specialization), make sure DiagnoseUseOfDecl is
13066       // called on both.
13067       // FIXME: This would be more comprehensively addressed by modifying
13068       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
13069       // being used.
13070       if (Method != FoundDecl.getDecl() &&
13071                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
13072         return ExprError();
13073       break;
13074 
13075     case OR_No_Viable_Function:
13076       CandidateSet.NoteCandidates(
13077           PartialDiagnosticAt(
13078               UnresExpr->getMemberLoc(),
13079               PDiag(diag::err_ovl_no_viable_member_function_in_call)
13080                   << DeclName << MemExprE->getSourceRange()),
13081           *this, OCD_AllCandidates, Args);
13082       // FIXME: Leaking incoming expressions!
13083       return ExprError();
13084 
13085     case OR_Ambiguous:
13086       CandidateSet.NoteCandidates(
13087           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13088                               PDiag(diag::err_ovl_ambiguous_member_call)
13089                                   << DeclName << MemExprE->getSourceRange()),
13090           *this, OCD_AllCandidates, Args);
13091       // FIXME: Leaking incoming expressions!
13092       return ExprError();
13093 
13094     case OR_Deleted:
13095       CandidateSet.NoteCandidates(
13096           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13097                               PDiag(diag::err_ovl_deleted_member_call)
13098                                   << DeclName << MemExprE->getSourceRange()),
13099           *this, OCD_AllCandidates, Args);
13100       // FIXME: Leaking incoming expressions!
13101       return ExprError();
13102     }
13103 
13104     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
13105 
13106     // If overload resolution picked a static member, build a
13107     // non-member call based on that function.
13108     if (Method->isStatic()) {
13109       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
13110                                    RParenLoc);
13111     }
13112 
13113     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
13114   }
13115 
13116   QualType ResultType = Method->getReturnType();
13117   ExprValueKind VK = Expr::getValueKindForType(ResultType);
13118   ResultType = ResultType.getNonLValueExprType(Context);
13119 
13120   assert(Method && "Member call to something that isn't a method?");
13121   const auto *Proto = Method->getType()->getAs<FunctionProtoType>();
13122   CXXMemberCallExpr *TheCall =
13123       CXXMemberCallExpr::Create(Context, MemExprE, Args, ResultType, VK,
13124                                 RParenLoc, Proto->getNumParams());
13125 
13126   // Check for a valid return type.
13127   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
13128                           TheCall, Method))
13129     return ExprError();
13130 
13131   // Convert the object argument (for a non-static member function call).
13132   // We only need to do this if there was actually an overload; otherwise
13133   // it was done at lookup.
13134   if (!Method->isStatic()) {
13135     ExprResult ObjectArg =
13136       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
13137                                           FoundDecl, Method);
13138     if (ObjectArg.isInvalid())
13139       return ExprError();
13140     MemExpr->setBase(ObjectArg.get());
13141   }
13142 
13143   // Convert the rest of the arguments
13144   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
13145                               RParenLoc))
13146     return ExprError();
13147 
13148   DiagnoseSentinelCalls(Method, LParenLoc, Args);
13149 
13150   if (CheckFunctionCall(Method, TheCall, Proto))
13151     return ExprError();
13152 
13153   // In the case the method to call was not selected by the overloading
13154   // resolution process, we still need to handle the enable_if attribute. Do
13155   // that here, so it will not hide previous -- and more relevant -- errors.
13156   if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
13157     if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
13158       Diag(MemE->getMemberLoc(),
13159            diag::err_ovl_no_viable_member_function_in_call)
13160           << Method << Method->getSourceRange();
13161       Diag(Method->getLocation(),
13162            diag::note_ovl_candidate_disabled_by_function_cond_attr)
13163           << Attr->getCond()->getSourceRange() << Attr->getMessage();
13164       return ExprError();
13165     }
13166   }
13167 
13168   if ((isa<CXXConstructorDecl>(CurContext) ||
13169        isa<CXXDestructorDecl>(CurContext)) &&
13170       TheCall->getMethodDecl()->isPure()) {
13171     const CXXMethodDecl *MD = TheCall->getMethodDecl();
13172 
13173     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
13174         MemExpr->performsVirtualDispatch(getLangOpts())) {
13175       Diag(MemExpr->getBeginLoc(),
13176            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
13177           << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
13178           << MD->getParent()->getDeclName();
13179 
13180       Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
13181       if (getLangOpts().AppleKext)
13182         Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
13183             << MD->getParent()->getDeclName() << MD->getDeclName();
13184     }
13185   }
13186 
13187   if (CXXDestructorDecl *DD =
13188           dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
13189     // a->A::f() doesn't go through the vtable, except in AppleKext mode.
13190     bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
13191     CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
13192                          CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
13193                          MemExpr->getMemberLoc());
13194   }
13195 
13196   return MaybeBindToTemporary(TheCall);
13197 }
13198 
13199 /// BuildCallToObjectOfClassType - Build a call to an object of class
13200 /// type (C++ [over.call.object]), which can end up invoking an
13201 /// overloaded function call operator (@c operator()) or performing a
13202 /// user-defined conversion on the object argument.
13203 ExprResult
13204 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
13205                                    SourceLocation LParenLoc,
13206                                    MultiExprArg Args,
13207                                    SourceLocation RParenLoc) {
13208   if (checkPlaceholderForOverload(*this, Obj))
13209     return ExprError();
13210   ExprResult Object = Obj;
13211 
13212   UnbridgedCastsSet UnbridgedCasts;
13213   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
13214     return ExprError();
13215 
13216   assert(Object.get()->getType()->isRecordType() &&
13217          "Requires object type argument");
13218   const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
13219 
13220   // C++ [over.call.object]p1:
13221   //  If the primary-expression E in the function call syntax
13222   //  evaluates to a class object of type "cv T", then the set of
13223   //  candidate functions includes at least the function call
13224   //  operators of T. The function call operators of T are obtained by
13225   //  ordinary lookup of the name operator() in the context of
13226   //  (E).operator().
13227   OverloadCandidateSet CandidateSet(LParenLoc,
13228                                     OverloadCandidateSet::CSK_Operator);
13229   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
13230 
13231   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
13232                           diag::err_incomplete_object_call, Object.get()))
13233     return true;
13234 
13235   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
13236   LookupQualifiedName(R, Record->getDecl());
13237   R.suppressDiagnostics();
13238 
13239   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13240        Oper != OperEnd; ++Oper) {
13241     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
13242                        Object.get()->Classify(Context), Args, CandidateSet,
13243                        /*SuppressUserConversions=*/false);
13244   }
13245 
13246   // C++ [over.call.object]p2:
13247   //   In addition, for each (non-explicit in C++0x) conversion function
13248   //   declared in T of the form
13249   //
13250   //        operator conversion-type-id () cv-qualifier;
13251   //
13252   //   where cv-qualifier is the same cv-qualification as, or a
13253   //   greater cv-qualification than, cv, and where conversion-type-id
13254   //   denotes the type "pointer to function of (P1,...,Pn) returning
13255   //   R", or the type "reference to pointer to function of
13256   //   (P1,...,Pn) returning R", or the type "reference to function
13257   //   of (P1,...,Pn) returning R", a surrogate call function [...]
13258   //   is also considered as a candidate function. Similarly,
13259   //   surrogate call functions are added to the set of candidate
13260   //   functions for each conversion function declared in an
13261   //   accessible base class provided the function is not hidden
13262   //   within T by another intervening declaration.
13263   const auto &Conversions =
13264       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
13265   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
13266     NamedDecl *D = *I;
13267     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
13268     if (isa<UsingShadowDecl>(D))
13269       D = cast<UsingShadowDecl>(D)->getTargetDecl();
13270 
13271     // Skip over templated conversion functions; they aren't
13272     // surrogates.
13273     if (isa<FunctionTemplateDecl>(D))
13274       continue;
13275 
13276     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
13277     if (!Conv->isExplicit()) {
13278       // Strip the reference type (if any) and then the pointer type (if
13279       // any) to get down to what might be a function type.
13280       QualType ConvType = Conv->getConversionType().getNonReferenceType();
13281       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
13282         ConvType = ConvPtrType->getPointeeType();
13283 
13284       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
13285       {
13286         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
13287                               Object.get(), Args, CandidateSet);
13288       }
13289     }
13290   }
13291 
13292   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13293 
13294   // Perform overload resolution.
13295   OverloadCandidateSet::iterator Best;
13296   switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
13297                                           Best)) {
13298   case OR_Success:
13299     // Overload resolution succeeded; we'll build the appropriate call
13300     // below.
13301     break;
13302 
13303   case OR_No_Viable_Function: {
13304     PartialDiagnostic PD =
13305         CandidateSet.empty()
13306             ? (PDiag(diag::err_ovl_no_oper)
13307                << Object.get()->getType() << /*call*/ 1
13308                << Object.get()->getSourceRange())
13309             : (PDiag(diag::err_ovl_no_viable_object_call)
13310                << Object.get()->getType() << Object.get()->getSourceRange());
13311     CandidateSet.NoteCandidates(
13312         PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
13313         OCD_AllCandidates, Args);
13314     break;
13315   }
13316   case OR_Ambiguous:
13317     CandidateSet.NoteCandidates(
13318         PartialDiagnosticAt(Object.get()->getBeginLoc(),
13319                             PDiag(diag::err_ovl_ambiguous_object_call)
13320                                 << Object.get()->getType()
13321                                 << Object.get()->getSourceRange()),
13322         *this, OCD_ViableCandidates, Args);
13323     break;
13324 
13325   case OR_Deleted:
13326     CandidateSet.NoteCandidates(
13327         PartialDiagnosticAt(Object.get()->getBeginLoc(),
13328                             PDiag(diag::err_ovl_deleted_object_call)
13329                                 << Object.get()->getType()
13330                                 << Object.get()->getSourceRange()),
13331         *this, OCD_AllCandidates, Args);
13332     break;
13333   }
13334 
13335   if (Best == CandidateSet.end())
13336     return true;
13337 
13338   UnbridgedCasts.restore();
13339 
13340   if (Best->Function == nullptr) {
13341     // Since there is no function declaration, this is one of the
13342     // surrogate candidates. Dig out the conversion function.
13343     CXXConversionDecl *Conv
13344       = cast<CXXConversionDecl>(
13345                          Best->Conversions[0].UserDefined.ConversionFunction);
13346 
13347     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
13348                               Best->FoundDecl);
13349     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
13350       return ExprError();
13351     assert(Conv == Best->FoundDecl.getDecl() &&
13352              "Found Decl & conversion-to-functionptr should be same, right?!");
13353     // We selected one of the surrogate functions that converts the
13354     // object parameter to a function pointer. Perform the conversion
13355     // on the object argument, then let BuildCallExpr finish the job.
13356 
13357     // Create an implicit member expr to refer to the conversion operator.
13358     // and then call it.
13359     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
13360                                              Conv, HadMultipleCandidates);
13361     if (Call.isInvalid())
13362       return ExprError();
13363     // Record usage of conversion in an implicit cast.
13364     Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
13365                                     CK_UserDefinedConversion, Call.get(),
13366                                     nullptr, VK_RValue);
13367 
13368     return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
13369   }
13370 
13371   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
13372 
13373   // We found an overloaded operator(). Build a CXXOperatorCallExpr
13374   // that calls this method, using Object for the implicit object
13375   // parameter and passing along the remaining arguments.
13376   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13377 
13378   // An error diagnostic has already been printed when parsing the declaration.
13379   if (Method->isInvalidDecl())
13380     return ExprError();
13381 
13382   const FunctionProtoType *Proto =
13383     Method->getType()->getAs<FunctionProtoType>();
13384 
13385   unsigned NumParams = Proto->getNumParams();
13386 
13387   DeclarationNameInfo OpLocInfo(
13388                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
13389   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
13390   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13391                                            Obj, HadMultipleCandidates,
13392                                            OpLocInfo.getLoc(),
13393                                            OpLocInfo.getInfo());
13394   if (NewFn.isInvalid())
13395     return true;
13396 
13397   // The number of argument slots to allocate in the call. If we have default
13398   // arguments we need to allocate space for them as well. We additionally
13399   // need one more slot for the object parameter.
13400   unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
13401 
13402   // Build the full argument list for the method call (the implicit object
13403   // parameter is placed at the beginning of the list).
13404   SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
13405 
13406   bool IsError = false;
13407 
13408   // Initialize the implicit object parameter.
13409   ExprResult ObjRes =
13410     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
13411                                         Best->FoundDecl, Method);
13412   if (ObjRes.isInvalid())
13413     IsError = true;
13414   else
13415     Object = ObjRes;
13416   MethodArgs[0] = Object.get();
13417 
13418   // Check the argument types.
13419   for (unsigned i = 0; i != NumParams; i++) {
13420     Expr *Arg;
13421     if (i < Args.size()) {
13422       Arg = Args[i];
13423 
13424       // Pass the argument.
13425 
13426       ExprResult InputInit
13427         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13428                                                     Context,
13429                                                     Method->getParamDecl(i)),
13430                                     SourceLocation(), Arg);
13431 
13432       IsError |= InputInit.isInvalid();
13433       Arg = InputInit.getAs<Expr>();
13434     } else {
13435       ExprResult DefArg
13436         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
13437       if (DefArg.isInvalid()) {
13438         IsError = true;
13439         break;
13440       }
13441 
13442       Arg = DefArg.getAs<Expr>();
13443     }
13444 
13445     MethodArgs[i + 1] = Arg;
13446   }
13447 
13448   // If this is a variadic call, handle args passed through "...".
13449   if (Proto->isVariadic()) {
13450     // Promote the arguments (C99 6.5.2.2p7).
13451     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
13452       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
13453                                                         nullptr);
13454       IsError |= Arg.isInvalid();
13455       MethodArgs[i + 1] = Arg.get();
13456     }
13457   }
13458 
13459   if (IsError)
13460     return true;
13461 
13462   DiagnoseSentinelCalls(Method, LParenLoc, Args);
13463 
13464   // Once we've built TheCall, all of the expressions are properly owned.
13465   QualType ResultTy = Method->getReturnType();
13466   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13467   ResultTy = ResultTy.getNonLValueExprType(Context);
13468 
13469   CXXOperatorCallExpr *TheCall =
13470       CXXOperatorCallExpr::Create(Context, OO_Call, NewFn.get(), MethodArgs,
13471                                   ResultTy, VK, RParenLoc, FPOptions());
13472 
13473   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
13474     return true;
13475 
13476   if (CheckFunctionCall(Method, TheCall, Proto))
13477     return true;
13478 
13479   return MaybeBindToTemporary(TheCall);
13480 }
13481 
13482 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
13483 ///  (if one exists), where @c Base is an expression of class type and
13484 /// @c Member is the name of the member we're trying to find.
13485 ExprResult
13486 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
13487                                bool *NoArrowOperatorFound) {
13488   assert(Base->getType()->isRecordType() &&
13489          "left-hand side must have class type");
13490 
13491   if (checkPlaceholderForOverload(*this, Base))
13492     return ExprError();
13493 
13494   SourceLocation Loc = Base->getExprLoc();
13495 
13496   // C++ [over.ref]p1:
13497   //
13498   //   [...] An expression x->m is interpreted as (x.operator->())->m
13499   //   for a class object x of type T if T::operator->() exists and if
13500   //   the operator is selected as the best match function by the
13501   //   overload resolution mechanism (13.3).
13502   DeclarationName OpName =
13503     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
13504   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
13505   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
13506 
13507   if (RequireCompleteType(Loc, Base->getType(),
13508                           diag::err_typecheck_incomplete_tag, Base))
13509     return ExprError();
13510 
13511   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
13512   LookupQualifiedName(R, BaseRecord->getDecl());
13513   R.suppressDiagnostics();
13514 
13515   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13516        Oper != OperEnd; ++Oper) {
13517     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
13518                        None, CandidateSet, /*SuppressUserConversions=*/false);
13519   }
13520 
13521   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13522 
13523   // Perform overload resolution.
13524   OverloadCandidateSet::iterator Best;
13525   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13526   case OR_Success:
13527     // Overload resolution succeeded; we'll build the call below.
13528     break;
13529 
13530   case OR_No_Viable_Function: {
13531     auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
13532     if (CandidateSet.empty()) {
13533       QualType BaseType = Base->getType();
13534       if (NoArrowOperatorFound) {
13535         // Report this specific error to the caller instead of emitting a
13536         // diagnostic, as requested.
13537         *NoArrowOperatorFound = true;
13538         return ExprError();
13539       }
13540       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
13541         << BaseType << Base->getSourceRange();
13542       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
13543         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
13544           << FixItHint::CreateReplacement(OpLoc, ".");
13545       }
13546     } else
13547       Diag(OpLoc, diag::err_ovl_no_viable_oper)
13548         << "operator->" << Base->getSourceRange();
13549     CandidateSet.NoteCandidates(*this, Base, Cands);
13550     return ExprError();
13551   }
13552   case OR_Ambiguous:
13553     CandidateSet.NoteCandidates(
13554         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
13555                                        << "->" << Base->getType()
13556                                        << Base->getSourceRange()),
13557         *this, OCD_ViableCandidates, Base);
13558     return ExprError();
13559 
13560   case OR_Deleted:
13561     CandidateSet.NoteCandidates(
13562         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13563                                        << "->" << Base->getSourceRange()),
13564         *this, OCD_AllCandidates, Base);
13565     return ExprError();
13566   }
13567 
13568   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
13569 
13570   // Convert the object parameter.
13571   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13572   ExprResult BaseResult =
13573     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
13574                                         Best->FoundDecl, Method);
13575   if (BaseResult.isInvalid())
13576     return ExprError();
13577   Base = BaseResult.get();
13578 
13579   // Build the operator call.
13580   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13581                                             Base, HadMultipleCandidates, OpLoc);
13582   if (FnExpr.isInvalid())
13583     return ExprError();
13584 
13585   QualType ResultTy = Method->getReturnType();
13586   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13587   ResultTy = ResultTy.getNonLValueExprType(Context);
13588   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13589       Context, OO_Arrow, FnExpr.get(), Base, ResultTy, VK, OpLoc, FPOptions());
13590 
13591   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
13592     return ExprError();
13593 
13594   if (CheckFunctionCall(Method, TheCall,
13595                         Method->getType()->castAs<FunctionProtoType>()))
13596     return ExprError();
13597 
13598   return MaybeBindToTemporary(TheCall);
13599 }
13600 
13601 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
13602 /// a literal operator described by the provided lookup results.
13603 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
13604                                           DeclarationNameInfo &SuffixInfo,
13605                                           ArrayRef<Expr*> Args,
13606                                           SourceLocation LitEndLoc,
13607                                        TemplateArgumentListInfo *TemplateArgs) {
13608   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
13609 
13610   OverloadCandidateSet CandidateSet(UDSuffixLoc,
13611                                     OverloadCandidateSet::CSK_Normal);
13612   AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
13613                         /*SuppressUserConversions=*/true);
13614 
13615   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13616 
13617   // Perform overload resolution. This will usually be trivial, but might need
13618   // to perform substitutions for a literal operator template.
13619   OverloadCandidateSet::iterator Best;
13620   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
13621   case OR_Success:
13622   case OR_Deleted:
13623     break;
13624 
13625   case OR_No_Viable_Function:
13626     CandidateSet.NoteCandidates(
13627         PartialDiagnosticAt(UDSuffixLoc,
13628                             PDiag(diag::err_ovl_no_viable_function_in_call)
13629                                 << R.getLookupName()),
13630         *this, OCD_AllCandidates, Args);
13631     return ExprError();
13632 
13633   case OR_Ambiguous:
13634     CandidateSet.NoteCandidates(
13635         PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
13636                                                 << R.getLookupName()),
13637         *this, OCD_ViableCandidates, Args);
13638     return ExprError();
13639   }
13640 
13641   FunctionDecl *FD = Best->Function;
13642   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
13643                                         nullptr, HadMultipleCandidates,
13644                                         SuffixInfo.getLoc(),
13645                                         SuffixInfo.getInfo());
13646   if (Fn.isInvalid())
13647     return true;
13648 
13649   // Check the argument types. This should almost always be a no-op, except
13650   // that array-to-pointer decay is applied to string literals.
13651   Expr *ConvArgs[2];
13652   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
13653     ExprResult InputInit = PerformCopyInitialization(
13654       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
13655       SourceLocation(), Args[ArgIdx]);
13656     if (InputInit.isInvalid())
13657       return true;
13658     ConvArgs[ArgIdx] = InputInit.get();
13659   }
13660 
13661   QualType ResultTy = FD->getReturnType();
13662   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13663   ResultTy = ResultTy.getNonLValueExprType(Context);
13664 
13665   UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
13666       Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
13667       VK, LitEndLoc, UDSuffixLoc);
13668 
13669   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
13670     return ExprError();
13671 
13672   if (CheckFunctionCall(FD, UDL, nullptr))
13673     return ExprError();
13674 
13675   return MaybeBindToTemporary(UDL);
13676 }
13677 
13678 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
13679 /// given LookupResult is non-empty, it is assumed to describe a member which
13680 /// will be invoked. Otherwise, the function will be found via argument
13681 /// dependent lookup.
13682 /// CallExpr is set to a valid expression and FRS_Success returned on success,
13683 /// otherwise CallExpr is set to ExprError() and some non-success value
13684 /// is returned.
13685 Sema::ForRangeStatus
13686 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
13687                                 SourceLocation RangeLoc,
13688                                 const DeclarationNameInfo &NameInfo,
13689                                 LookupResult &MemberLookup,
13690                                 OverloadCandidateSet *CandidateSet,
13691                                 Expr *Range, ExprResult *CallExpr) {
13692   Scope *S = nullptr;
13693 
13694   CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
13695   if (!MemberLookup.empty()) {
13696     ExprResult MemberRef =
13697         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
13698                                  /*IsPtr=*/false, CXXScopeSpec(),
13699                                  /*TemplateKWLoc=*/SourceLocation(),
13700                                  /*FirstQualifierInScope=*/nullptr,
13701                                  MemberLookup,
13702                                  /*TemplateArgs=*/nullptr, S);
13703     if (MemberRef.isInvalid()) {
13704       *CallExpr = ExprError();
13705       return FRS_DiagnosticIssued;
13706     }
13707     *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
13708     if (CallExpr->isInvalid()) {
13709       *CallExpr = ExprError();
13710       return FRS_DiagnosticIssued;
13711     }
13712   } else {
13713     UnresolvedSet<0> FoundNames;
13714     UnresolvedLookupExpr *Fn =
13715       UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
13716                                    NestedNameSpecifierLoc(), NameInfo,
13717                                    /*NeedsADL=*/true, /*Overloaded=*/false,
13718                                    FoundNames.begin(), FoundNames.end());
13719 
13720     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
13721                                                     CandidateSet, CallExpr);
13722     if (CandidateSet->empty() || CandidateSetError) {
13723       *CallExpr = ExprError();
13724       return FRS_NoViableFunction;
13725     }
13726     OverloadCandidateSet::iterator Best;
13727     OverloadingResult OverloadResult =
13728         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
13729 
13730     if (OverloadResult == OR_No_Viable_Function) {
13731       *CallExpr = ExprError();
13732       return FRS_NoViableFunction;
13733     }
13734     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
13735                                          Loc, nullptr, CandidateSet, &Best,
13736                                          OverloadResult,
13737                                          /*AllowTypoCorrection=*/false);
13738     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
13739       *CallExpr = ExprError();
13740       return FRS_DiagnosticIssued;
13741     }
13742   }
13743   return FRS_Success;
13744 }
13745 
13746 
13747 /// FixOverloadedFunctionReference - E is an expression that refers to
13748 /// a C++ overloaded function (possibly with some parentheses and
13749 /// perhaps a '&' around it). We have resolved the overloaded function
13750 /// to the function declaration Fn, so patch up the expression E to
13751 /// refer (possibly indirectly) to Fn. Returns the new expr.
13752 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
13753                                            FunctionDecl *Fn) {
13754   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
13755     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
13756                                                    Found, Fn);
13757     if (SubExpr == PE->getSubExpr())
13758       return PE;
13759 
13760     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
13761   }
13762 
13763   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
13764     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
13765                                                    Found, Fn);
13766     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
13767                                SubExpr->getType()) &&
13768            "Implicit cast type cannot be determined from overload");
13769     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
13770     if (SubExpr == ICE->getSubExpr())
13771       return ICE;
13772 
13773     return ImplicitCastExpr::Create(Context, ICE->getType(),
13774                                     ICE->getCastKind(),
13775                                     SubExpr, nullptr,
13776                                     ICE->getValueKind());
13777   }
13778 
13779   if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
13780     if (!GSE->isResultDependent()) {
13781       Expr *SubExpr =
13782           FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
13783       if (SubExpr == GSE->getResultExpr())
13784         return GSE;
13785 
13786       // Replace the resulting type information before rebuilding the generic
13787       // selection expression.
13788       ArrayRef<Expr *> A = GSE->getAssocExprs();
13789       SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
13790       unsigned ResultIdx = GSE->getResultIndex();
13791       AssocExprs[ResultIdx] = SubExpr;
13792 
13793       return GenericSelectionExpr::Create(
13794           Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
13795           GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
13796           GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
13797           ResultIdx);
13798     }
13799     // Rather than fall through to the unreachable, return the original generic
13800     // selection expression.
13801     return GSE;
13802   }
13803 
13804   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
13805     assert(UnOp->getOpcode() == UO_AddrOf &&
13806            "Can only take the address of an overloaded function");
13807     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
13808       if (Method->isStatic()) {
13809         // Do nothing: static member functions aren't any different
13810         // from non-member functions.
13811       } else {
13812         // Fix the subexpression, which really has to be an
13813         // UnresolvedLookupExpr holding an overloaded member function
13814         // or template.
13815         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13816                                                        Found, Fn);
13817         if (SubExpr == UnOp->getSubExpr())
13818           return UnOp;
13819 
13820         assert(isa<DeclRefExpr>(SubExpr)
13821                && "fixed to something other than a decl ref");
13822         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
13823                && "fixed to a member ref with no nested name qualifier");
13824 
13825         // We have taken the address of a pointer to member
13826         // function. Perform the computation here so that we get the
13827         // appropriate pointer to member type.
13828         QualType ClassType
13829           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
13830         QualType MemPtrType
13831           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
13832         // Under the MS ABI, lock down the inheritance model now.
13833         if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13834           (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
13835 
13836         return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
13837                                            VK_RValue, OK_Ordinary,
13838                                            UnOp->getOperatorLoc(), false);
13839       }
13840     }
13841     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13842                                                    Found, Fn);
13843     if (SubExpr == UnOp->getSubExpr())
13844       return UnOp;
13845 
13846     return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
13847                                      Context.getPointerType(SubExpr->getType()),
13848                                        VK_RValue, OK_Ordinary,
13849                                        UnOp->getOperatorLoc(), false);
13850   }
13851 
13852   // C++ [except.spec]p17:
13853   //   An exception-specification is considered to be needed when:
13854   //   - in an expression the function is the unique lookup result or the
13855   //     selected member of a set of overloaded functions
13856   if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
13857     ResolveExceptionSpec(E->getExprLoc(), FPT);
13858 
13859   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
13860     // FIXME: avoid copy.
13861     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13862     if (ULE->hasExplicitTemplateArgs()) {
13863       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
13864       TemplateArgs = &TemplateArgsBuffer;
13865     }
13866 
13867     DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13868                                            ULE->getQualifierLoc(),
13869                                            ULE->getTemplateKeywordLoc(),
13870                                            Fn,
13871                                            /*enclosing*/ false, // FIXME?
13872                                            ULE->getNameLoc(),
13873                                            Fn->getType(),
13874                                            VK_LValue,
13875                                            Found.getDecl(),
13876                                            TemplateArgs);
13877     MarkDeclRefReferenced(DRE);
13878     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
13879     return DRE;
13880   }
13881 
13882   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
13883     // FIXME: avoid copy.
13884     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13885     if (MemExpr->hasExplicitTemplateArgs()) {
13886       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13887       TemplateArgs = &TemplateArgsBuffer;
13888     }
13889 
13890     Expr *Base;
13891 
13892     // If we're filling in a static method where we used to have an
13893     // implicit member access, rewrite to a simple decl ref.
13894     if (MemExpr->isImplicitAccess()) {
13895       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13896         DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13897                                                MemExpr->getQualifierLoc(),
13898                                                MemExpr->getTemplateKeywordLoc(),
13899                                                Fn,
13900                                                /*enclosing*/ false,
13901                                                MemExpr->getMemberLoc(),
13902                                                Fn->getType(),
13903                                                VK_LValue,
13904                                                Found.getDecl(),
13905                                                TemplateArgs);
13906         MarkDeclRefReferenced(DRE);
13907         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
13908         return DRE;
13909       } else {
13910         SourceLocation Loc = MemExpr->getMemberLoc();
13911         if (MemExpr->getQualifier())
13912           Loc = MemExpr->getQualifierLoc().getBeginLoc();
13913         Base =
13914             BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*isImplicit=*/true);
13915       }
13916     } else
13917       Base = MemExpr->getBase();
13918 
13919     ExprValueKind valueKind;
13920     QualType type;
13921     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13922       valueKind = VK_LValue;
13923       type = Fn->getType();
13924     } else {
13925       valueKind = VK_RValue;
13926       type = Context.BoundMemberTy;
13927     }
13928 
13929     MemberExpr *ME = MemberExpr::Create(
13930         Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
13931         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
13932         MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind,
13933         OK_Ordinary);
13934     ME->setHadMultipleCandidates(true);
13935     MarkMemberReferenced(ME);
13936     return ME;
13937   }
13938 
13939   llvm_unreachable("Invalid reference to overloaded function");
13940 }
13941 
13942 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
13943                                                 DeclAccessPair Found,
13944                                                 FunctionDecl *Fn) {
13945   return FixOverloadedFunctionReference(E.get(), Found, Fn);
13946 }
13947