1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file provides Sema routines for C++ overloading. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Overload.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ExprObjC.h" 21 #include "clang/AST/TypeOrdering.h" 22 #include "clang/Basic/Diagnostic.h" 23 #include "clang/Basic/DiagnosticOptions.h" 24 #include "clang/Basic/PartialDiagnostic.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/Sema/Initialization.h" 27 #include "clang/Sema/Lookup.h" 28 #include "clang/Sema/SemaInternal.h" 29 #include "clang/Sema/Template.h" 30 #include "clang/Sema/TemplateDeduction.h" 31 #include "llvm/ADT/DenseSet.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallString.h" 36 #include <algorithm> 37 #include <cstdlib> 38 39 using namespace clang; 40 using namespace sema; 41 42 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { 43 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { 44 return P->hasAttr<PassObjectSizeAttr>(); 45 }); 46 } 47 48 /// A convenience routine for creating a decayed reference to a function. 49 static ExprResult 50 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, 51 const Expr *Base, bool HadMultipleCandidates, 52 SourceLocation Loc = SourceLocation(), 53 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ 54 if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) 55 return ExprError(); 56 // If FoundDecl is different from Fn (such as if one is a template 57 // and the other a specialization), make sure DiagnoseUseOfDecl is 58 // called on both. 59 // FIXME: This would be more comprehensively addressed by modifying 60 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 61 // being used. 62 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) 63 return ExprError(); 64 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) 65 S.ResolveExceptionSpec(Loc, FPT); 66 DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(), 67 VK_LValue, Loc, LocInfo); 68 if (HadMultipleCandidates) 69 DRE->setHadMultipleCandidates(true); 70 71 S.MarkDeclRefReferenced(DRE, Base); 72 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), 73 CK_FunctionToPointerDecay); 74 } 75 76 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 77 bool InOverloadResolution, 78 StandardConversionSequence &SCS, 79 bool CStyle, 80 bool AllowObjCWritebackConversion); 81 82 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 83 QualType &ToType, 84 bool InOverloadResolution, 85 StandardConversionSequence &SCS, 86 bool CStyle); 87 static OverloadingResult 88 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 89 UserDefinedConversionSequence& User, 90 OverloadCandidateSet& Conversions, 91 bool AllowExplicit, 92 bool AllowObjCConversionOnExplicit); 93 94 95 static ImplicitConversionSequence::CompareKind 96 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 97 const StandardConversionSequence& SCS1, 98 const StandardConversionSequence& SCS2); 99 100 static ImplicitConversionSequence::CompareKind 101 CompareQualificationConversions(Sema &S, 102 const StandardConversionSequence& SCS1, 103 const StandardConversionSequence& SCS2); 104 105 static ImplicitConversionSequence::CompareKind 106 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 107 const StandardConversionSequence& SCS1, 108 const StandardConversionSequence& SCS2); 109 110 /// GetConversionRank - Retrieve the implicit conversion rank 111 /// corresponding to the given implicit conversion kind. 112 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { 113 static const ImplicitConversionRank 114 Rank[(int)ICK_Num_Conversion_Kinds] = { 115 ICR_Exact_Match, 116 ICR_Exact_Match, 117 ICR_Exact_Match, 118 ICR_Exact_Match, 119 ICR_Exact_Match, 120 ICR_Exact_Match, 121 ICR_Promotion, 122 ICR_Promotion, 123 ICR_Promotion, 124 ICR_Conversion, 125 ICR_Conversion, 126 ICR_Conversion, 127 ICR_Conversion, 128 ICR_Conversion, 129 ICR_Conversion, 130 ICR_Conversion, 131 ICR_Conversion, 132 ICR_Conversion, 133 ICR_Conversion, 134 ICR_OCL_Scalar_Widening, 135 ICR_Complex_Real_Conversion, 136 ICR_Conversion, 137 ICR_Conversion, 138 ICR_Writeback_Conversion, 139 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- 140 // it was omitted by the patch that added 141 // ICK_Zero_Event_Conversion 142 ICR_C_Conversion, 143 ICR_C_Conversion_Extension 144 }; 145 return Rank[(int)Kind]; 146 } 147 148 /// GetImplicitConversionName - Return the name of this kind of 149 /// implicit conversion. 150 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 151 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 152 "No conversion", 153 "Lvalue-to-rvalue", 154 "Array-to-pointer", 155 "Function-to-pointer", 156 "Function pointer conversion", 157 "Qualification", 158 "Integral promotion", 159 "Floating point promotion", 160 "Complex promotion", 161 "Integral conversion", 162 "Floating conversion", 163 "Complex conversion", 164 "Floating-integral conversion", 165 "Pointer conversion", 166 "Pointer-to-member conversion", 167 "Boolean conversion", 168 "Compatible-types conversion", 169 "Derived-to-base conversion", 170 "Vector conversion", 171 "Vector splat", 172 "Complex-real conversion", 173 "Block Pointer conversion", 174 "Transparent Union Conversion", 175 "Writeback conversion", 176 "OpenCL Zero Event Conversion", 177 "C specific type conversion", 178 "Incompatible pointer conversion" 179 }; 180 return Name[Kind]; 181 } 182 183 /// StandardConversionSequence - Set the standard conversion 184 /// sequence to the identity conversion. 185 void StandardConversionSequence::setAsIdentityConversion() { 186 First = ICK_Identity; 187 Second = ICK_Identity; 188 Third = ICK_Identity; 189 DeprecatedStringLiteralToCharPtr = false; 190 QualificationIncludesObjCLifetime = false; 191 ReferenceBinding = false; 192 DirectBinding = false; 193 IsLvalueReference = true; 194 BindsToFunctionLvalue = false; 195 BindsToRvalue = false; 196 BindsImplicitObjectArgumentWithoutRefQualifier = false; 197 ObjCLifetimeConversionBinding = false; 198 CopyConstructor = nullptr; 199 } 200 201 /// getRank - Retrieve the rank of this standard conversion sequence 202 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 203 /// implicit conversions. 204 ImplicitConversionRank StandardConversionSequence::getRank() const { 205 ImplicitConversionRank Rank = ICR_Exact_Match; 206 if (GetConversionRank(First) > Rank) 207 Rank = GetConversionRank(First); 208 if (GetConversionRank(Second) > Rank) 209 Rank = GetConversionRank(Second); 210 if (GetConversionRank(Third) > Rank) 211 Rank = GetConversionRank(Third); 212 return Rank; 213 } 214 215 /// isPointerConversionToBool - Determines whether this conversion is 216 /// a conversion of a pointer or pointer-to-member to bool. This is 217 /// used as part of the ranking of standard conversion sequences 218 /// (C++ 13.3.3.2p4). 219 bool StandardConversionSequence::isPointerConversionToBool() const { 220 // Note that FromType has not necessarily been transformed by the 221 // array-to-pointer or function-to-pointer implicit conversions, so 222 // check for their presence as well as checking whether FromType is 223 // a pointer. 224 if (getToType(1)->isBooleanType() && 225 (getFromType()->isPointerType() || 226 getFromType()->isObjCObjectPointerType() || 227 getFromType()->isBlockPointerType() || 228 getFromType()->isNullPtrType() || 229 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 230 return true; 231 232 return false; 233 } 234 235 /// isPointerConversionToVoidPointer - Determines whether this 236 /// conversion is a conversion of a pointer to a void pointer. This is 237 /// used as part of the ranking of standard conversion sequences (C++ 238 /// 13.3.3.2p4). 239 bool 240 StandardConversionSequence:: 241 isPointerConversionToVoidPointer(ASTContext& Context) const { 242 QualType FromType = getFromType(); 243 QualType ToType = getToType(1); 244 245 // Note that FromType has not necessarily been transformed by the 246 // array-to-pointer implicit conversion, so check for its presence 247 // and redo the conversion to get a pointer. 248 if (First == ICK_Array_To_Pointer) 249 FromType = Context.getArrayDecayedType(FromType); 250 251 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 252 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 253 return ToPtrType->getPointeeType()->isVoidType(); 254 255 return false; 256 } 257 258 /// Skip any implicit casts which could be either part of a narrowing conversion 259 /// or after one in an implicit conversion. 260 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) { 261 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { 262 switch (ICE->getCastKind()) { 263 case CK_NoOp: 264 case CK_IntegralCast: 265 case CK_IntegralToBoolean: 266 case CK_IntegralToFloating: 267 case CK_BooleanToSignedIntegral: 268 case CK_FloatingToIntegral: 269 case CK_FloatingToBoolean: 270 case CK_FloatingCast: 271 Converted = ICE->getSubExpr(); 272 continue; 273 274 default: 275 return Converted; 276 } 277 } 278 279 return Converted; 280 } 281 282 /// Check if this standard conversion sequence represents a narrowing 283 /// conversion, according to C++11 [dcl.init.list]p7. 284 /// 285 /// \param Ctx The AST context. 286 /// \param Converted The result of applying this standard conversion sequence. 287 /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the 288 /// value of the expression prior to the narrowing conversion. 289 /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the 290 /// type of the expression prior to the narrowing conversion. 291 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions 292 /// from floating point types to integral types should be ignored. 293 NarrowingKind StandardConversionSequence::getNarrowingKind( 294 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, 295 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { 296 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"); 297 298 // C++11 [dcl.init.list]p7: 299 // A narrowing conversion is an implicit conversion ... 300 QualType FromType = getToType(0); 301 QualType ToType = getToType(1); 302 303 // A conversion to an enumeration type is narrowing if the conversion to 304 // the underlying type is narrowing. This only arises for expressions of 305 // the form 'Enum{init}'. 306 if (auto *ET = ToType->getAs<EnumType>()) 307 ToType = ET->getDecl()->getIntegerType(); 308 309 switch (Second) { 310 // 'bool' is an integral type; dispatch to the right place to handle it. 311 case ICK_Boolean_Conversion: 312 if (FromType->isRealFloatingType()) 313 goto FloatingIntegralConversion; 314 if (FromType->isIntegralOrUnscopedEnumerationType()) 315 goto IntegralConversion; 316 // Boolean conversions can be from pointers and pointers to members 317 // [conv.bool], and those aren't considered narrowing conversions. 318 return NK_Not_Narrowing; 319 320 // -- from a floating-point type to an integer type, or 321 // 322 // -- from an integer type or unscoped enumeration type to a floating-point 323 // type, except where the source is a constant expression and the actual 324 // value after conversion will fit into the target type and will produce 325 // the original value when converted back to the original type, or 326 case ICK_Floating_Integral: 327 FloatingIntegralConversion: 328 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { 329 return NK_Type_Narrowing; 330 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 331 ToType->isRealFloatingType()) { 332 if (IgnoreFloatToIntegralConversion) 333 return NK_Not_Narrowing; 334 llvm::APSInt IntConstantValue; 335 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 336 assert(Initializer && "Unknown conversion expression"); 337 338 // If it's value-dependent, we can't tell whether it's narrowing. 339 if (Initializer->isValueDependent()) 340 return NK_Dependent_Narrowing; 341 342 if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) { 343 // Convert the integer to the floating type. 344 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); 345 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(), 346 llvm::APFloat::rmNearestTiesToEven); 347 // And back. 348 llvm::APSInt ConvertedValue = IntConstantValue; 349 bool ignored; 350 Result.convertToInteger(ConvertedValue, 351 llvm::APFloat::rmTowardZero, &ignored); 352 // If the resulting value is different, this was a narrowing conversion. 353 if (IntConstantValue != ConvertedValue) { 354 ConstantValue = APValue(IntConstantValue); 355 ConstantType = Initializer->getType(); 356 return NK_Constant_Narrowing; 357 } 358 } else { 359 // Variables are always narrowings. 360 return NK_Variable_Narrowing; 361 } 362 } 363 return NK_Not_Narrowing; 364 365 // -- from long double to double or float, or from double to float, except 366 // where the source is a constant expression and the actual value after 367 // conversion is within the range of values that can be represented (even 368 // if it cannot be represented exactly), or 369 case ICK_Floating_Conversion: 370 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && 371 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { 372 // FromType is larger than ToType. 373 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 374 375 // If it's value-dependent, we can't tell whether it's narrowing. 376 if (Initializer->isValueDependent()) 377 return NK_Dependent_Narrowing; 378 379 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { 380 // Constant! 381 assert(ConstantValue.isFloat()); 382 llvm::APFloat FloatVal = ConstantValue.getFloat(); 383 // Convert the source value into the target type. 384 bool ignored; 385 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( 386 Ctx.getFloatTypeSemantics(ToType), 387 llvm::APFloat::rmNearestTiesToEven, &ignored); 388 // If there was no overflow, the source value is within the range of 389 // values that can be represented. 390 if (ConvertStatus & llvm::APFloat::opOverflow) { 391 ConstantType = Initializer->getType(); 392 return NK_Constant_Narrowing; 393 } 394 } else { 395 return NK_Variable_Narrowing; 396 } 397 } 398 return NK_Not_Narrowing; 399 400 // -- from an integer type or unscoped enumeration type to an integer type 401 // that cannot represent all the values of the original type, except where 402 // the source is a constant expression and the actual value after 403 // conversion will fit into the target type and will produce the original 404 // value when converted back to the original type. 405 case ICK_Integral_Conversion: 406 IntegralConversion: { 407 assert(FromType->isIntegralOrUnscopedEnumerationType()); 408 assert(ToType->isIntegralOrUnscopedEnumerationType()); 409 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); 410 const unsigned FromWidth = Ctx.getIntWidth(FromType); 411 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); 412 const unsigned ToWidth = Ctx.getIntWidth(ToType); 413 414 if (FromWidth > ToWidth || 415 (FromWidth == ToWidth && FromSigned != ToSigned) || 416 (FromSigned && !ToSigned)) { 417 // Not all values of FromType can be represented in ToType. 418 llvm::APSInt InitializerValue; 419 const Expr *Initializer = IgnoreNarrowingConversion(Converted); 420 421 // If it's value-dependent, we can't tell whether it's narrowing. 422 if (Initializer->isValueDependent()) 423 return NK_Dependent_Narrowing; 424 425 if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) { 426 // Such conversions on variables are always narrowing. 427 return NK_Variable_Narrowing; 428 } 429 bool Narrowing = false; 430 if (FromWidth < ToWidth) { 431 // Negative -> unsigned is narrowing. Otherwise, more bits is never 432 // narrowing. 433 if (InitializerValue.isSigned() && InitializerValue.isNegative()) 434 Narrowing = true; 435 } else { 436 // Add a bit to the InitializerValue so we don't have to worry about 437 // signed vs. unsigned comparisons. 438 InitializerValue = InitializerValue.extend( 439 InitializerValue.getBitWidth() + 1); 440 // Convert the initializer to and from the target width and signed-ness. 441 llvm::APSInt ConvertedValue = InitializerValue; 442 ConvertedValue = ConvertedValue.trunc(ToWidth); 443 ConvertedValue.setIsSigned(ToSigned); 444 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); 445 ConvertedValue.setIsSigned(InitializerValue.isSigned()); 446 // If the result is different, this was a narrowing conversion. 447 if (ConvertedValue != InitializerValue) 448 Narrowing = true; 449 } 450 if (Narrowing) { 451 ConstantType = Initializer->getType(); 452 ConstantValue = APValue(InitializerValue); 453 return NK_Constant_Narrowing; 454 } 455 } 456 return NK_Not_Narrowing; 457 } 458 459 default: 460 // Other kinds of conversions are not narrowings. 461 return NK_Not_Narrowing; 462 } 463 } 464 465 /// dump - Print this standard conversion sequence to standard 466 /// error. Useful for debugging overloading issues. 467 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const { 468 raw_ostream &OS = llvm::errs(); 469 bool PrintedSomething = false; 470 if (First != ICK_Identity) { 471 OS << GetImplicitConversionName(First); 472 PrintedSomething = true; 473 } 474 475 if (Second != ICK_Identity) { 476 if (PrintedSomething) { 477 OS << " -> "; 478 } 479 OS << GetImplicitConversionName(Second); 480 481 if (CopyConstructor) { 482 OS << " (by copy constructor)"; 483 } else if (DirectBinding) { 484 OS << " (direct reference binding)"; 485 } else if (ReferenceBinding) { 486 OS << " (reference binding)"; 487 } 488 PrintedSomething = true; 489 } 490 491 if (Third != ICK_Identity) { 492 if (PrintedSomething) { 493 OS << " -> "; 494 } 495 OS << GetImplicitConversionName(Third); 496 PrintedSomething = true; 497 } 498 499 if (!PrintedSomething) { 500 OS << "No conversions required"; 501 } 502 } 503 504 /// dump - Print this user-defined conversion sequence to standard 505 /// error. Useful for debugging overloading issues. 506 void UserDefinedConversionSequence::dump() const { 507 raw_ostream &OS = llvm::errs(); 508 if (Before.First || Before.Second || Before.Third) { 509 Before.dump(); 510 OS << " -> "; 511 } 512 if (ConversionFunction) 513 OS << '\'' << *ConversionFunction << '\''; 514 else 515 OS << "aggregate initialization"; 516 if (After.First || After.Second || After.Third) { 517 OS << " -> "; 518 After.dump(); 519 } 520 } 521 522 /// dump - Print this implicit conversion sequence to standard 523 /// error. Useful for debugging overloading issues. 524 void ImplicitConversionSequence::dump() const { 525 raw_ostream &OS = llvm::errs(); 526 if (isStdInitializerListElement()) 527 OS << "Worst std::initializer_list element conversion: "; 528 switch (ConversionKind) { 529 case StandardConversion: 530 OS << "Standard conversion: "; 531 Standard.dump(); 532 break; 533 case UserDefinedConversion: 534 OS << "User-defined conversion: "; 535 UserDefined.dump(); 536 break; 537 case EllipsisConversion: 538 OS << "Ellipsis conversion"; 539 break; 540 case AmbiguousConversion: 541 OS << "Ambiguous conversion"; 542 break; 543 case BadConversion: 544 OS << "Bad conversion"; 545 break; 546 } 547 548 OS << "\n"; 549 } 550 551 void AmbiguousConversionSequence::construct() { 552 new (&conversions()) ConversionSet(); 553 } 554 555 void AmbiguousConversionSequence::destruct() { 556 conversions().~ConversionSet(); 557 } 558 559 void 560 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 561 FromTypePtr = O.FromTypePtr; 562 ToTypePtr = O.ToTypePtr; 563 new (&conversions()) ConversionSet(O.conversions()); 564 } 565 566 namespace { 567 // Structure used by DeductionFailureInfo to store 568 // template argument information. 569 struct DFIArguments { 570 TemplateArgument FirstArg; 571 TemplateArgument SecondArg; 572 }; 573 // Structure used by DeductionFailureInfo to store 574 // template parameter and template argument information. 575 struct DFIParamWithArguments : DFIArguments { 576 TemplateParameter Param; 577 }; 578 // Structure used by DeductionFailureInfo to store template argument 579 // information and the index of the problematic call argument. 580 struct DFIDeducedMismatchArgs : DFIArguments { 581 TemplateArgumentList *TemplateArgs; 582 unsigned CallArgIndex; 583 }; 584 } 585 586 /// Convert from Sema's representation of template deduction information 587 /// to the form used in overload-candidate information. 588 DeductionFailureInfo 589 clang::MakeDeductionFailureInfo(ASTContext &Context, 590 Sema::TemplateDeductionResult TDK, 591 TemplateDeductionInfo &Info) { 592 DeductionFailureInfo Result; 593 Result.Result = static_cast<unsigned>(TDK); 594 Result.HasDiagnostic = false; 595 switch (TDK) { 596 case Sema::TDK_Invalid: 597 case Sema::TDK_InstantiationDepth: 598 case Sema::TDK_TooManyArguments: 599 case Sema::TDK_TooFewArguments: 600 case Sema::TDK_MiscellaneousDeductionFailure: 601 case Sema::TDK_CUDATargetMismatch: 602 Result.Data = nullptr; 603 break; 604 605 case Sema::TDK_Incomplete: 606 case Sema::TDK_InvalidExplicitArguments: 607 Result.Data = Info.Param.getOpaqueValue(); 608 break; 609 610 case Sema::TDK_DeducedMismatch: 611 case Sema::TDK_DeducedMismatchNested: { 612 // FIXME: Should allocate from normal heap so that we can free this later. 613 auto *Saved = new (Context) DFIDeducedMismatchArgs; 614 Saved->FirstArg = Info.FirstArg; 615 Saved->SecondArg = Info.SecondArg; 616 Saved->TemplateArgs = Info.take(); 617 Saved->CallArgIndex = Info.CallArgIndex; 618 Result.Data = Saved; 619 break; 620 } 621 622 case Sema::TDK_NonDeducedMismatch: { 623 // FIXME: Should allocate from normal heap so that we can free this later. 624 DFIArguments *Saved = new (Context) DFIArguments; 625 Saved->FirstArg = Info.FirstArg; 626 Saved->SecondArg = Info.SecondArg; 627 Result.Data = Saved; 628 break; 629 } 630 631 case Sema::TDK_Inconsistent: 632 case Sema::TDK_Underqualified: { 633 // FIXME: Should allocate from normal heap so that we can free this later. 634 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 635 Saved->Param = Info.Param; 636 Saved->FirstArg = Info.FirstArg; 637 Saved->SecondArg = Info.SecondArg; 638 Result.Data = Saved; 639 break; 640 } 641 642 case Sema::TDK_SubstitutionFailure: 643 Result.Data = Info.take(); 644 if (Info.hasSFINAEDiagnostic()) { 645 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( 646 SourceLocation(), PartialDiagnostic::NullDiagnostic()); 647 Info.takeSFINAEDiagnostic(*Diag); 648 Result.HasDiagnostic = true; 649 } 650 break; 651 652 case Sema::TDK_Success: 653 case Sema::TDK_NonDependentConversionFailure: 654 llvm_unreachable("not a deduction failure"); 655 } 656 657 return Result; 658 } 659 660 void DeductionFailureInfo::Destroy() { 661 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 662 case Sema::TDK_Success: 663 case Sema::TDK_Invalid: 664 case Sema::TDK_InstantiationDepth: 665 case Sema::TDK_Incomplete: 666 case Sema::TDK_TooManyArguments: 667 case Sema::TDK_TooFewArguments: 668 case Sema::TDK_InvalidExplicitArguments: 669 case Sema::TDK_CUDATargetMismatch: 670 case Sema::TDK_NonDependentConversionFailure: 671 break; 672 673 case Sema::TDK_Inconsistent: 674 case Sema::TDK_Underqualified: 675 case Sema::TDK_DeducedMismatch: 676 case Sema::TDK_DeducedMismatchNested: 677 case Sema::TDK_NonDeducedMismatch: 678 // FIXME: Destroy the data? 679 Data = nullptr; 680 break; 681 682 case Sema::TDK_SubstitutionFailure: 683 // FIXME: Destroy the template argument list? 684 Data = nullptr; 685 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 686 Diag->~PartialDiagnosticAt(); 687 HasDiagnostic = false; 688 } 689 break; 690 691 // Unhandled 692 case Sema::TDK_MiscellaneousDeductionFailure: 693 break; 694 } 695 } 696 697 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { 698 if (HasDiagnostic) 699 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); 700 return nullptr; 701 } 702 703 TemplateParameter DeductionFailureInfo::getTemplateParameter() { 704 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 705 case Sema::TDK_Success: 706 case Sema::TDK_Invalid: 707 case Sema::TDK_InstantiationDepth: 708 case Sema::TDK_TooManyArguments: 709 case Sema::TDK_TooFewArguments: 710 case Sema::TDK_SubstitutionFailure: 711 case Sema::TDK_DeducedMismatch: 712 case Sema::TDK_DeducedMismatchNested: 713 case Sema::TDK_NonDeducedMismatch: 714 case Sema::TDK_CUDATargetMismatch: 715 case Sema::TDK_NonDependentConversionFailure: 716 return TemplateParameter(); 717 718 case Sema::TDK_Incomplete: 719 case Sema::TDK_InvalidExplicitArguments: 720 return TemplateParameter::getFromOpaqueValue(Data); 721 722 case Sema::TDK_Inconsistent: 723 case Sema::TDK_Underqualified: 724 return static_cast<DFIParamWithArguments*>(Data)->Param; 725 726 // Unhandled 727 case Sema::TDK_MiscellaneousDeductionFailure: 728 break; 729 } 730 731 return TemplateParameter(); 732 } 733 734 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { 735 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 736 case Sema::TDK_Success: 737 case Sema::TDK_Invalid: 738 case Sema::TDK_InstantiationDepth: 739 case Sema::TDK_TooManyArguments: 740 case Sema::TDK_TooFewArguments: 741 case Sema::TDK_Incomplete: 742 case Sema::TDK_InvalidExplicitArguments: 743 case Sema::TDK_Inconsistent: 744 case Sema::TDK_Underqualified: 745 case Sema::TDK_NonDeducedMismatch: 746 case Sema::TDK_CUDATargetMismatch: 747 case Sema::TDK_NonDependentConversionFailure: 748 return nullptr; 749 750 case Sema::TDK_DeducedMismatch: 751 case Sema::TDK_DeducedMismatchNested: 752 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; 753 754 case Sema::TDK_SubstitutionFailure: 755 return static_cast<TemplateArgumentList*>(Data); 756 757 // Unhandled 758 case Sema::TDK_MiscellaneousDeductionFailure: 759 break; 760 } 761 762 return nullptr; 763 } 764 765 const TemplateArgument *DeductionFailureInfo::getFirstArg() { 766 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 767 case Sema::TDK_Success: 768 case Sema::TDK_Invalid: 769 case Sema::TDK_InstantiationDepth: 770 case Sema::TDK_Incomplete: 771 case Sema::TDK_TooManyArguments: 772 case Sema::TDK_TooFewArguments: 773 case Sema::TDK_InvalidExplicitArguments: 774 case Sema::TDK_SubstitutionFailure: 775 case Sema::TDK_CUDATargetMismatch: 776 case Sema::TDK_NonDependentConversionFailure: 777 return nullptr; 778 779 case Sema::TDK_Inconsistent: 780 case Sema::TDK_Underqualified: 781 case Sema::TDK_DeducedMismatch: 782 case Sema::TDK_DeducedMismatchNested: 783 case Sema::TDK_NonDeducedMismatch: 784 return &static_cast<DFIArguments*>(Data)->FirstArg; 785 786 // Unhandled 787 case Sema::TDK_MiscellaneousDeductionFailure: 788 break; 789 } 790 791 return nullptr; 792 } 793 794 const TemplateArgument *DeductionFailureInfo::getSecondArg() { 795 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 796 case Sema::TDK_Success: 797 case Sema::TDK_Invalid: 798 case Sema::TDK_InstantiationDepth: 799 case Sema::TDK_Incomplete: 800 case Sema::TDK_TooManyArguments: 801 case Sema::TDK_TooFewArguments: 802 case Sema::TDK_InvalidExplicitArguments: 803 case Sema::TDK_SubstitutionFailure: 804 case Sema::TDK_CUDATargetMismatch: 805 case Sema::TDK_NonDependentConversionFailure: 806 return nullptr; 807 808 case Sema::TDK_Inconsistent: 809 case Sema::TDK_Underqualified: 810 case Sema::TDK_DeducedMismatch: 811 case Sema::TDK_DeducedMismatchNested: 812 case Sema::TDK_NonDeducedMismatch: 813 return &static_cast<DFIArguments*>(Data)->SecondArg; 814 815 // Unhandled 816 case Sema::TDK_MiscellaneousDeductionFailure: 817 break; 818 } 819 820 return nullptr; 821 } 822 823 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() { 824 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 825 case Sema::TDK_DeducedMismatch: 826 case Sema::TDK_DeducedMismatchNested: 827 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; 828 829 default: 830 return llvm::None; 831 } 832 } 833 834 void OverloadCandidateSet::destroyCandidates() { 835 for (iterator i = begin(), e = end(); i != e; ++i) { 836 for (auto &C : i->Conversions) 837 C.~ImplicitConversionSequence(); 838 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) 839 i->DeductionFailure.Destroy(); 840 } 841 } 842 843 void OverloadCandidateSet::clear(CandidateSetKind CSK) { 844 destroyCandidates(); 845 SlabAllocator.Reset(); 846 NumInlineBytesUsed = 0; 847 Candidates.clear(); 848 Functions.clear(); 849 Kind = CSK; 850 } 851 852 namespace { 853 class UnbridgedCastsSet { 854 struct Entry { 855 Expr **Addr; 856 Expr *Saved; 857 }; 858 SmallVector<Entry, 2> Entries; 859 860 public: 861 void save(Sema &S, Expr *&E) { 862 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 863 Entry entry = { &E, E }; 864 Entries.push_back(entry); 865 E = S.stripARCUnbridgedCast(E); 866 } 867 868 void restore() { 869 for (SmallVectorImpl<Entry>::iterator 870 i = Entries.begin(), e = Entries.end(); i != e; ++i) 871 *i->Addr = i->Saved; 872 } 873 }; 874 } 875 876 /// checkPlaceholderForOverload - Do any interesting placeholder-like 877 /// preprocessing on the given expression. 878 /// 879 /// \param unbridgedCasts a collection to which to add unbridged casts; 880 /// without this, they will be immediately diagnosed as errors 881 /// 882 /// Return true on unrecoverable error. 883 static bool 884 checkPlaceholderForOverload(Sema &S, Expr *&E, 885 UnbridgedCastsSet *unbridgedCasts = nullptr) { 886 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { 887 // We can't handle overloaded expressions here because overload 888 // resolution might reasonably tweak them. 889 if (placeholder->getKind() == BuiltinType::Overload) return false; 890 891 // If the context potentially accepts unbridged ARC casts, strip 892 // the unbridged cast and add it to the collection for later restoration. 893 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && 894 unbridgedCasts) { 895 unbridgedCasts->save(S, E); 896 return false; 897 } 898 899 // Go ahead and check everything else. 900 ExprResult result = S.CheckPlaceholderExpr(E); 901 if (result.isInvalid()) 902 return true; 903 904 E = result.get(); 905 return false; 906 } 907 908 // Nothing to do. 909 return false; 910 } 911 912 /// checkArgPlaceholdersForOverload - Check a set of call operands for 913 /// placeholders. 914 static bool checkArgPlaceholdersForOverload(Sema &S, 915 MultiExprArg Args, 916 UnbridgedCastsSet &unbridged) { 917 for (unsigned i = 0, e = Args.size(); i != e; ++i) 918 if (checkPlaceholderForOverload(S, Args[i], &unbridged)) 919 return true; 920 921 return false; 922 } 923 924 /// Determine whether the given New declaration is an overload of the 925 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if 926 /// New and Old cannot be overloaded, e.g., if New has the same signature as 927 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't 928 /// functions (or function templates) at all. When it does return Ovl_Match or 929 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be 930 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying 931 /// declaration. 932 /// 933 /// Example: Given the following input: 934 /// 935 /// void f(int, float); // #1 936 /// void f(int, int); // #2 937 /// int f(int, int); // #3 938 /// 939 /// When we process #1, there is no previous declaration of "f", so IsOverload 940 /// will not be used. 941 /// 942 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing 943 /// the parameter types, we see that #1 and #2 are overloaded (since they have 944 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is 945 /// unchanged. 946 /// 947 /// When we process #3, Old is an overload set containing #1 and #2. We compare 948 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then 949 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of 950 /// functions are not part of the signature), IsOverload returns Ovl_Match and 951 /// MatchedDecl will be set to point to the FunctionDecl for #2. 952 /// 953 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class 954 /// by a using declaration. The rules for whether to hide shadow declarations 955 /// ignore some properties which otherwise figure into a function template's 956 /// signature. 957 Sema::OverloadKind 958 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 959 NamedDecl *&Match, bool NewIsUsingDecl) { 960 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 961 I != E; ++I) { 962 NamedDecl *OldD = *I; 963 964 bool OldIsUsingDecl = false; 965 if (isa<UsingShadowDecl>(OldD)) { 966 OldIsUsingDecl = true; 967 968 // We can always introduce two using declarations into the same 969 // context, even if they have identical signatures. 970 if (NewIsUsingDecl) continue; 971 972 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 973 } 974 975 // A using-declaration does not conflict with another declaration 976 // if one of them is hidden. 977 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) 978 continue; 979 980 // If either declaration was introduced by a using declaration, 981 // we'll need to use slightly different rules for matching. 982 // Essentially, these rules are the normal rules, except that 983 // function templates hide function templates with different 984 // return types or template parameter lists. 985 bool UseMemberUsingDeclRules = 986 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && 987 !New->getFriendObjectKind(); 988 989 if (FunctionDecl *OldF = OldD->getAsFunction()) { 990 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 991 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 992 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 993 continue; 994 } 995 996 if (!isa<FunctionTemplateDecl>(OldD) && 997 !shouldLinkPossiblyHiddenDecl(*I, New)) 998 continue; 999 1000 Match = *I; 1001 return Ovl_Match; 1002 } 1003 1004 // Builtins that have custom typechecking or have a reference should 1005 // not be overloadable or redeclarable. 1006 if (!getASTContext().canBuiltinBeRedeclared(OldF)) { 1007 Match = *I; 1008 return Ovl_NonFunction; 1009 } 1010 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { 1011 // We can overload with these, which can show up when doing 1012 // redeclaration checks for UsingDecls. 1013 assert(Old.getLookupKind() == LookupUsingDeclName); 1014 } else if (isa<TagDecl>(OldD)) { 1015 // We can always overload with tags by hiding them. 1016 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { 1017 // Optimistically assume that an unresolved using decl will 1018 // overload; if it doesn't, we'll have to diagnose during 1019 // template instantiation. 1020 // 1021 // Exception: if the scope is dependent and this is not a class 1022 // member, the using declaration can only introduce an enumerator. 1023 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { 1024 Match = *I; 1025 return Ovl_NonFunction; 1026 } 1027 } else { 1028 // (C++ 13p1): 1029 // Only function declarations can be overloaded; object and type 1030 // declarations cannot be overloaded. 1031 Match = *I; 1032 return Ovl_NonFunction; 1033 } 1034 } 1035 1036 return Ovl_Overload; 1037 } 1038 1039 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 1040 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) { 1041 // C++ [basic.start.main]p2: This function shall not be overloaded. 1042 if (New->isMain()) 1043 return false; 1044 1045 // MSVCRT user defined entry points cannot be overloaded. 1046 if (New->isMSVCRTEntryPoint()) 1047 return false; 1048 1049 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 1050 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 1051 1052 // C++ [temp.fct]p2: 1053 // A function template can be overloaded with other function templates 1054 // and with normal (non-template) functions. 1055 if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) 1056 return true; 1057 1058 // Is the function New an overload of the function Old? 1059 QualType OldQType = Context.getCanonicalType(Old->getType()); 1060 QualType NewQType = Context.getCanonicalType(New->getType()); 1061 1062 // Compare the signatures (C++ 1.3.10) of the two functions to 1063 // determine whether they are overloads. If we find any mismatch 1064 // in the signature, they are overloads. 1065 1066 // If either of these functions is a K&R-style function (no 1067 // prototype), then we consider them to have matching signatures. 1068 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 1069 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 1070 return false; 1071 1072 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); 1073 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); 1074 1075 // The signature of a function includes the types of its 1076 // parameters (C++ 1.3.10), which includes the presence or absence 1077 // of the ellipsis; see C++ DR 357). 1078 if (OldQType != NewQType && 1079 (OldType->getNumParams() != NewType->getNumParams() || 1080 OldType->isVariadic() != NewType->isVariadic() || 1081 !FunctionParamTypesAreEqual(OldType, NewType))) 1082 return true; 1083 1084 // C++ [temp.over.link]p4: 1085 // The signature of a function template consists of its function 1086 // signature, its return type and its template parameter list. The names 1087 // of the template parameters are significant only for establishing the 1088 // relationship between the template parameters and the rest of the 1089 // signature. 1090 // 1091 // We check the return type and template parameter lists for function 1092 // templates first; the remaining checks follow. 1093 // 1094 // However, we don't consider either of these when deciding whether 1095 // a member introduced by a shadow declaration is hidden. 1096 if (!UseMemberUsingDeclRules && NewTemplate && 1097 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 1098 OldTemplate->getTemplateParameters(), 1099 false, TPL_TemplateMatch) || 1100 OldType->getReturnType() != NewType->getReturnType())) 1101 return true; 1102 1103 // If the function is a class member, its signature includes the 1104 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 1105 // 1106 // As part of this, also check whether one of the member functions 1107 // is static, in which case they are not overloads (C++ 1108 // 13.1p2). While not part of the definition of the signature, 1109 // this check is important to determine whether these functions 1110 // can be overloaded. 1111 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 1112 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 1113 if (OldMethod && NewMethod && 1114 !OldMethod->isStatic() && !NewMethod->isStatic()) { 1115 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { 1116 if (!UseMemberUsingDeclRules && 1117 (OldMethod->getRefQualifier() == RQ_None || 1118 NewMethod->getRefQualifier() == RQ_None)) { 1119 // C++0x [over.load]p2: 1120 // - Member function declarations with the same name and the same 1121 // parameter-type-list as well as member function template 1122 // declarations with the same name, the same parameter-type-list, and 1123 // the same template parameter lists cannot be overloaded if any of 1124 // them, but not all, have a ref-qualifier (8.3.5). 1125 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 1126 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 1127 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 1128 } 1129 return true; 1130 } 1131 1132 // We may not have applied the implicit const for a constexpr member 1133 // function yet (because we haven't yet resolved whether this is a static 1134 // or non-static member function). Add it now, on the assumption that this 1135 // is a redeclaration of OldMethod. 1136 unsigned OldQuals = OldMethod->getTypeQualifiers(); 1137 unsigned NewQuals = NewMethod->getTypeQualifiers(); 1138 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && 1139 !isa<CXXConstructorDecl>(NewMethod)) 1140 NewQuals |= Qualifiers::Const; 1141 1142 // We do not allow overloading based off of '__restrict'. 1143 OldQuals &= ~Qualifiers::Restrict; 1144 NewQuals &= ~Qualifiers::Restrict; 1145 if (OldQuals != NewQuals) 1146 return true; 1147 } 1148 1149 // Though pass_object_size is placed on parameters and takes an argument, we 1150 // consider it to be a function-level modifier for the sake of function 1151 // identity. Either the function has one or more parameters with 1152 // pass_object_size or it doesn't. 1153 if (functionHasPassObjectSizeParams(New) != 1154 functionHasPassObjectSizeParams(Old)) 1155 return true; 1156 1157 // enable_if attributes are an order-sensitive part of the signature. 1158 for (specific_attr_iterator<EnableIfAttr> 1159 NewI = New->specific_attr_begin<EnableIfAttr>(), 1160 NewE = New->specific_attr_end<EnableIfAttr>(), 1161 OldI = Old->specific_attr_begin<EnableIfAttr>(), 1162 OldE = Old->specific_attr_end<EnableIfAttr>(); 1163 NewI != NewE || OldI != OldE; ++NewI, ++OldI) { 1164 if (NewI == NewE || OldI == OldE) 1165 return true; 1166 llvm::FoldingSetNodeID NewID, OldID; 1167 NewI->getCond()->Profile(NewID, Context, true); 1168 OldI->getCond()->Profile(OldID, Context, true); 1169 if (NewID != OldID) 1170 return true; 1171 } 1172 1173 if (getLangOpts().CUDA && ConsiderCudaAttrs) { 1174 // Don't allow overloading of destructors. (In theory we could, but it 1175 // would be a giant change to clang.) 1176 if (isa<CXXDestructorDecl>(New)) 1177 return false; 1178 1179 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), 1180 OldTarget = IdentifyCUDATarget(Old); 1181 if (NewTarget == CFT_InvalidTarget) 1182 return false; 1183 1184 assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."); 1185 1186 // Allow overloading of functions with same signature and different CUDA 1187 // target attributes. 1188 return NewTarget != OldTarget; 1189 } 1190 1191 // The signatures match; this is not an overload. 1192 return false; 1193 } 1194 1195 /// Checks availability of the function depending on the current 1196 /// function context. Inside an unavailable function, unavailability is ignored. 1197 /// 1198 /// \returns true if \arg FD is unavailable and current context is inside 1199 /// an available function, false otherwise. 1200 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) { 1201 if (!FD->isUnavailable()) 1202 return false; 1203 1204 // Walk up the context of the caller. 1205 Decl *C = cast<Decl>(CurContext); 1206 do { 1207 if (C->isUnavailable()) 1208 return false; 1209 } while ((C = cast_or_null<Decl>(C->getDeclContext()))); 1210 return true; 1211 } 1212 1213 /// Tries a user-defined conversion from From to ToType. 1214 /// 1215 /// Produces an implicit conversion sequence for when a standard conversion 1216 /// is not an option. See TryImplicitConversion for more information. 1217 static ImplicitConversionSequence 1218 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 1219 bool SuppressUserConversions, 1220 bool AllowExplicit, 1221 bool InOverloadResolution, 1222 bool CStyle, 1223 bool AllowObjCWritebackConversion, 1224 bool AllowObjCConversionOnExplicit) { 1225 ImplicitConversionSequence ICS; 1226 1227 if (SuppressUserConversions) { 1228 // We're not in the case above, so there is no conversion that 1229 // we can perform. 1230 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1231 return ICS; 1232 } 1233 1234 // Attempt user-defined conversion. 1235 OverloadCandidateSet Conversions(From->getExprLoc(), 1236 OverloadCandidateSet::CSK_Normal); 1237 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, 1238 Conversions, AllowExplicit, 1239 AllowObjCConversionOnExplicit)) { 1240 case OR_Success: 1241 case OR_Deleted: 1242 ICS.setUserDefined(); 1243 // C++ [over.ics.user]p4: 1244 // A conversion of an expression of class type to the same class 1245 // type is given Exact Match rank, and a conversion of an 1246 // expression of class type to a base class of that type is 1247 // given Conversion rank, in spite of the fact that a copy 1248 // constructor (i.e., a user-defined conversion function) is 1249 // called for those cases. 1250 if (CXXConstructorDecl *Constructor 1251 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 1252 QualType FromCanon 1253 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 1254 QualType ToCanon 1255 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 1256 if (Constructor->isCopyConstructor() && 1257 (FromCanon == ToCanon || 1258 S.IsDerivedFrom(From->getLocStart(), FromCanon, ToCanon))) { 1259 // Turn this into a "standard" conversion sequence, so that it 1260 // gets ranked with standard conversion sequences. 1261 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; 1262 ICS.setStandard(); 1263 ICS.Standard.setAsIdentityConversion(); 1264 ICS.Standard.setFromType(From->getType()); 1265 ICS.Standard.setAllToTypes(ToType); 1266 ICS.Standard.CopyConstructor = Constructor; 1267 ICS.Standard.FoundCopyConstructor = Found; 1268 if (ToCanon != FromCanon) 1269 ICS.Standard.Second = ICK_Derived_To_Base; 1270 } 1271 } 1272 break; 1273 1274 case OR_Ambiguous: 1275 ICS.setAmbiguous(); 1276 ICS.Ambiguous.setFromType(From->getType()); 1277 ICS.Ambiguous.setToType(ToType); 1278 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 1279 Cand != Conversions.end(); ++Cand) 1280 if (Cand->Viable) 1281 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 1282 break; 1283 1284 // Fall through. 1285 case OR_No_Viable_Function: 1286 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1287 break; 1288 } 1289 1290 return ICS; 1291 } 1292 1293 /// TryImplicitConversion - Attempt to perform an implicit conversion 1294 /// from the given expression (Expr) to the given type (ToType). This 1295 /// function returns an implicit conversion sequence that can be used 1296 /// to perform the initialization. Given 1297 /// 1298 /// void f(float f); 1299 /// void g(int i) { f(i); } 1300 /// 1301 /// this routine would produce an implicit conversion sequence to 1302 /// describe the initialization of f from i, which will be a standard 1303 /// conversion sequence containing an lvalue-to-rvalue conversion (C++ 1304 /// 4.1) followed by a floating-integral conversion (C++ 4.9). 1305 // 1306 /// Note that this routine only determines how the conversion can be 1307 /// performed; it does not actually perform the conversion. As such, 1308 /// it will not produce any diagnostics if no conversion is available, 1309 /// but will instead return an implicit conversion sequence of kind 1310 /// "BadConversion". 1311 /// 1312 /// If @p SuppressUserConversions, then user-defined conversions are 1313 /// not permitted. 1314 /// If @p AllowExplicit, then explicit user-defined conversions are 1315 /// permitted. 1316 /// 1317 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C 1318 /// writeback conversion, which allows __autoreleasing id* parameters to 1319 /// be initialized with __strong id* or __weak id* arguments. 1320 static ImplicitConversionSequence 1321 TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 1322 bool SuppressUserConversions, 1323 bool AllowExplicit, 1324 bool InOverloadResolution, 1325 bool CStyle, 1326 bool AllowObjCWritebackConversion, 1327 bool AllowObjCConversionOnExplicit) { 1328 ImplicitConversionSequence ICS; 1329 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 1330 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 1331 ICS.setStandard(); 1332 return ICS; 1333 } 1334 1335 if (!S.getLangOpts().CPlusPlus) { 1336 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1337 return ICS; 1338 } 1339 1340 // C++ [over.ics.user]p4: 1341 // A conversion of an expression of class type to the same class 1342 // type is given Exact Match rank, and a conversion of an 1343 // expression of class type to a base class of that type is 1344 // given Conversion rank, in spite of the fact that a copy/move 1345 // constructor (i.e., a user-defined conversion function) is 1346 // called for those cases. 1347 QualType FromType = From->getType(); 1348 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 1349 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 1350 S.IsDerivedFrom(From->getLocStart(), FromType, ToType))) { 1351 ICS.setStandard(); 1352 ICS.Standard.setAsIdentityConversion(); 1353 ICS.Standard.setFromType(FromType); 1354 ICS.Standard.setAllToTypes(ToType); 1355 1356 // We don't actually check at this point whether there is a valid 1357 // copy/move constructor, since overloading just assumes that it 1358 // exists. When we actually perform initialization, we'll find the 1359 // appropriate constructor to copy the returned object, if needed. 1360 ICS.Standard.CopyConstructor = nullptr; 1361 1362 // Determine whether this is considered a derived-to-base conversion. 1363 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 1364 ICS.Standard.Second = ICK_Derived_To_Base; 1365 1366 return ICS; 1367 } 1368 1369 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 1370 AllowExplicit, InOverloadResolution, CStyle, 1371 AllowObjCWritebackConversion, 1372 AllowObjCConversionOnExplicit); 1373 } 1374 1375 ImplicitConversionSequence 1376 Sema::TryImplicitConversion(Expr *From, QualType ToType, 1377 bool SuppressUserConversions, 1378 bool AllowExplicit, 1379 bool InOverloadResolution, 1380 bool CStyle, 1381 bool AllowObjCWritebackConversion) { 1382 return ::TryImplicitConversion(*this, From, ToType, 1383 SuppressUserConversions, AllowExplicit, 1384 InOverloadResolution, CStyle, 1385 AllowObjCWritebackConversion, 1386 /*AllowObjCConversionOnExplicit=*/false); 1387 } 1388 1389 /// PerformImplicitConversion - Perform an implicit conversion of the 1390 /// expression From to the type ToType. Returns the 1391 /// converted expression. Flavor is the kind of conversion we're 1392 /// performing, used in the error message. If @p AllowExplicit, 1393 /// explicit user-defined conversions are permitted. 1394 ExprResult 1395 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1396 AssignmentAction Action, bool AllowExplicit) { 1397 ImplicitConversionSequence ICS; 1398 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); 1399 } 1400 1401 ExprResult 1402 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1403 AssignmentAction Action, bool AllowExplicit, 1404 ImplicitConversionSequence& ICS) { 1405 if (checkPlaceholderForOverload(*this, From)) 1406 return ExprError(); 1407 1408 // Objective-C ARC: Determine whether we will allow the writeback conversion. 1409 bool AllowObjCWritebackConversion 1410 = getLangOpts().ObjCAutoRefCount && 1411 (Action == AA_Passing || Action == AA_Sending); 1412 if (getLangOpts().ObjC1) 1413 CheckObjCBridgeRelatedConversions(From->getLocStart(), 1414 ToType, From->getType(), From); 1415 ICS = ::TryImplicitConversion(*this, From, ToType, 1416 /*SuppressUserConversions=*/false, 1417 AllowExplicit, 1418 /*InOverloadResolution=*/false, 1419 /*CStyle=*/false, 1420 AllowObjCWritebackConversion, 1421 /*AllowObjCConversionOnExplicit=*/false); 1422 return PerformImplicitConversion(From, ToType, ICS, Action); 1423 } 1424 1425 /// Determine whether the conversion from FromType to ToType is a valid 1426 /// conversion that strips "noexcept" or "noreturn" off the nested function 1427 /// type. 1428 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, 1429 QualType &ResultTy) { 1430 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1431 return false; 1432 1433 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 1434 // or F(t noexcept) -> F(t) 1435 // where F adds one of the following at most once: 1436 // - a pointer 1437 // - a member pointer 1438 // - a block pointer 1439 // Changes here need matching changes in FindCompositePointerType. 1440 CanQualType CanTo = Context.getCanonicalType(ToType); 1441 CanQualType CanFrom = Context.getCanonicalType(FromType); 1442 Type::TypeClass TyClass = CanTo->getTypeClass(); 1443 if (TyClass != CanFrom->getTypeClass()) return false; 1444 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 1445 if (TyClass == Type::Pointer) { 1446 CanTo = CanTo.getAs<PointerType>()->getPointeeType(); 1447 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); 1448 } else if (TyClass == Type::BlockPointer) { 1449 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); 1450 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); 1451 } else if (TyClass == Type::MemberPointer) { 1452 auto ToMPT = CanTo.getAs<MemberPointerType>(); 1453 auto FromMPT = CanFrom.getAs<MemberPointerType>(); 1454 // A function pointer conversion cannot change the class of the function. 1455 if (ToMPT->getClass() != FromMPT->getClass()) 1456 return false; 1457 CanTo = ToMPT->getPointeeType(); 1458 CanFrom = FromMPT->getPointeeType(); 1459 } else { 1460 return false; 1461 } 1462 1463 TyClass = CanTo->getTypeClass(); 1464 if (TyClass != CanFrom->getTypeClass()) return false; 1465 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 1466 return false; 1467 } 1468 1469 const auto *FromFn = cast<FunctionType>(CanFrom); 1470 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); 1471 1472 const auto *ToFn = cast<FunctionType>(CanTo); 1473 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); 1474 1475 bool Changed = false; 1476 1477 // Drop 'noreturn' if not present in target type. 1478 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { 1479 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); 1480 Changed = true; 1481 } 1482 1483 // Drop 'noexcept' if not present in target type. 1484 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { 1485 const auto *ToFPT = cast<FunctionProtoType>(ToFn); 1486 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { 1487 FromFn = cast<FunctionType>( 1488 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), 1489 EST_None) 1490 .getTypePtr()); 1491 Changed = true; 1492 } 1493 1494 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid 1495 // only if the ExtParameterInfo lists of the two function prototypes can be 1496 // merged and the merged list is identical to ToFPT's ExtParameterInfo list. 1497 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 1498 bool CanUseToFPT, CanUseFromFPT; 1499 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, 1500 CanUseFromFPT, NewParamInfos) && 1501 CanUseToFPT && !CanUseFromFPT) { 1502 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); 1503 ExtInfo.ExtParameterInfos = 1504 NewParamInfos.empty() ? nullptr : NewParamInfos.data(); 1505 QualType QT = Context.getFunctionType(FromFPT->getReturnType(), 1506 FromFPT->getParamTypes(), ExtInfo); 1507 FromFn = QT->getAs<FunctionType>(); 1508 Changed = true; 1509 } 1510 } 1511 1512 if (!Changed) 1513 return false; 1514 1515 assert(QualType(FromFn, 0).isCanonical()); 1516 if (QualType(FromFn, 0) != CanTo) return false; 1517 1518 ResultTy = ToType; 1519 return true; 1520 } 1521 1522 /// Determine whether the conversion from FromType to ToType is a valid 1523 /// vector conversion. 1524 /// 1525 /// \param ICK Will be set to the vector conversion kind, if this is a vector 1526 /// conversion. 1527 static bool IsVectorConversion(Sema &S, QualType FromType, 1528 QualType ToType, ImplicitConversionKind &ICK) { 1529 // We need at least one of these types to be a vector type to have a vector 1530 // conversion. 1531 if (!ToType->isVectorType() && !FromType->isVectorType()) 1532 return false; 1533 1534 // Identical types require no conversions. 1535 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) 1536 return false; 1537 1538 // There are no conversions between extended vector types, only identity. 1539 if (ToType->isExtVectorType()) { 1540 // There are no conversions between extended vector types other than the 1541 // identity conversion. 1542 if (FromType->isExtVectorType()) 1543 return false; 1544 1545 // Vector splat from any arithmetic type to a vector. 1546 if (FromType->isArithmeticType()) { 1547 ICK = ICK_Vector_Splat; 1548 return true; 1549 } 1550 } 1551 1552 // We can perform the conversion between vector types in the following cases: 1553 // 1)vector types are equivalent AltiVec and GCC vector types 1554 // 2)lax vector conversions are permitted and the vector types are of the 1555 // same size 1556 if (ToType->isVectorType() && FromType->isVectorType()) { 1557 if (S.Context.areCompatibleVectorTypes(FromType, ToType) || 1558 S.isLaxVectorConversion(FromType, ToType)) { 1559 ICK = ICK_Vector_Conversion; 1560 return true; 1561 } 1562 } 1563 1564 return false; 1565 } 1566 1567 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 1568 bool InOverloadResolution, 1569 StandardConversionSequence &SCS, 1570 bool CStyle); 1571 1572 /// IsStandardConversion - Determines whether there is a standard 1573 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1574 /// expression From to the type ToType. Standard conversion sequences 1575 /// only consider non-class types; for conversions that involve class 1576 /// types, use TryImplicitConversion. If a conversion exists, SCS will 1577 /// contain the standard conversion sequence required to perform this 1578 /// conversion and this routine will return true. Otherwise, this 1579 /// routine will return false and the value of SCS is unspecified. 1580 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1581 bool InOverloadResolution, 1582 StandardConversionSequence &SCS, 1583 bool CStyle, 1584 bool AllowObjCWritebackConversion) { 1585 QualType FromType = From->getType(); 1586 1587 // Standard conversions (C++ [conv]) 1588 SCS.setAsIdentityConversion(); 1589 SCS.IncompatibleObjC = false; 1590 SCS.setFromType(FromType); 1591 SCS.CopyConstructor = nullptr; 1592 1593 // There are no standard conversions for class types in C++, so 1594 // abort early. When overloading in C, however, we do permit them. 1595 if (S.getLangOpts().CPlusPlus && 1596 (FromType->isRecordType() || ToType->isRecordType())) 1597 return false; 1598 1599 // The first conversion can be an lvalue-to-rvalue conversion, 1600 // array-to-pointer conversion, or function-to-pointer conversion 1601 // (C++ 4p1). 1602 1603 if (FromType == S.Context.OverloadTy) { 1604 DeclAccessPair AccessPair; 1605 if (FunctionDecl *Fn 1606 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1607 AccessPair)) { 1608 // We were able to resolve the address of the overloaded function, 1609 // so we can convert to the type of that function. 1610 FromType = Fn->getType(); 1611 SCS.setFromType(FromType); 1612 1613 // we can sometimes resolve &foo<int> regardless of ToType, so check 1614 // if the type matches (identity) or we are converting to bool 1615 if (!S.Context.hasSameUnqualifiedType( 1616 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1617 QualType resultTy; 1618 // if the function type matches except for [[noreturn]], it's ok 1619 if (!S.IsFunctionConversion(FromType, 1620 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1621 // otherwise, only a boolean conversion is standard 1622 if (!ToType->isBooleanType()) 1623 return false; 1624 } 1625 1626 // Check if the "from" expression is taking the address of an overloaded 1627 // function and recompute the FromType accordingly. Take advantage of the 1628 // fact that non-static member functions *must* have such an address-of 1629 // expression. 1630 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1631 if (Method && !Method->isStatic()) { 1632 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1633 "Non-unary operator on non-static member address"); 1634 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1635 == UO_AddrOf && 1636 "Non-address-of operator on non-static member address"); 1637 const Type *ClassType 1638 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1639 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1640 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1641 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1642 UO_AddrOf && 1643 "Non-address-of operator for overloaded function expression"); 1644 FromType = S.Context.getPointerType(FromType); 1645 } 1646 1647 // Check that we've computed the proper type after overload resolution. 1648 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't 1649 // be calling it from within an NDEBUG block. 1650 assert(S.Context.hasSameType( 1651 FromType, 1652 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1653 } else { 1654 return false; 1655 } 1656 } 1657 // Lvalue-to-rvalue conversion (C++11 4.1): 1658 // A glvalue (3.10) of a non-function, non-array type T can 1659 // be converted to a prvalue. 1660 bool argIsLValue = From->isGLValue(); 1661 if (argIsLValue && 1662 !FromType->isFunctionType() && !FromType->isArrayType() && 1663 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1664 SCS.First = ICK_Lvalue_To_Rvalue; 1665 1666 // C11 6.3.2.1p2: 1667 // ... if the lvalue has atomic type, the value has the non-atomic version 1668 // of the type of the lvalue ... 1669 if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) 1670 FromType = Atomic->getValueType(); 1671 1672 // If T is a non-class type, the type of the rvalue is the 1673 // cv-unqualified version of T. Otherwise, the type of the rvalue 1674 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1675 // just strip the qualifiers because they don't matter. 1676 FromType = FromType.getUnqualifiedType(); 1677 } else if (FromType->isArrayType()) { 1678 // Array-to-pointer conversion (C++ 4.2) 1679 SCS.First = ICK_Array_To_Pointer; 1680 1681 // An lvalue or rvalue of type "array of N T" or "array of unknown 1682 // bound of T" can be converted to an rvalue of type "pointer to 1683 // T" (C++ 4.2p1). 1684 FromType = S.Context.getArrayDecayedType(FromType); 1685 1686 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1687 // This conversion is deprecated in C++03 (D.4) 1688 SCS.DeprecatedStringLiteralToCharPtr = true; 1689 1690 // For the purpose of ranking in overload resolution 1691 // (13.3.3.1.1), this conversion is considered an 1692 // array-to-pointer conversion followed by a qualification 1693 // conversion (4.4). (C++ 4.2p2) 1694 SCS.Second = ICK_Identity; 1695 SCS.Third = ICK_Qualification; 1696 SCS.QualificationIncludesObjCLifetime = false; 1697 SCS.setAllToTypes(FromType); 1698 return true; 1699 } 1700 } else if (FromType->isFunctionType() && argIsLValue) { 1701 // Function-to-pointer conversion (C++ 4.3). 1702 SCS.First = ICK_Function_To_Pointer; 1703 1704 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) 1705 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) 1706 if (!S.checkAddressOfFunctionIsAvailable(FD)) 1707 return false; 1708 1709 // An lvalue of function type T can be converted to an rvalue of 1710 // type "pointer to T." The result is a pointer to the 1711 // function. (C++ 4.3p1). 1712 FromType = S.Context.getPointerType(FromType); 1713 } else { 1714 // We don't require any conversions for the first step. 1715 SCS.First = ICK_Identity; 1716 } 1717 SCS.setToType(0, FromType); 1718 1719 // The second conversion can be an integral promotion, floating 1720 // point promotion, integral conversion, floating point conversion, 1721 // floating-integral conversion, pointer conversion, 1722 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1723 // For overloading in C, this can also be a "compatible-type" 1724 // conversion. 1725 bool IncompatibleObjC = false; 1726 ImplicitConversionKind SecondICK = ICK_Identity; 1727 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1728 // The unqualified versions of the types are the same: there's no 1729 // conversion to do. 1730 SCS.Second = ICK_Identity; 1731 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1732 // Integral promotion (C++ 4.5). 1733 SCS.Second = ICK_Integral_Promotion; 1734 FromType = ToType.getUnqualifiedType(); 1735 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1736 // Floating point promotion (C++ 4.6). 1737 SCS.Second = ICK_Floating_Promotion; 1738 FromType = ToType.getUnqualifiedType(); 1739 } else if (S.IsComplexPromotion(FromType, ToType)) { 1740 // Complex promotion (Clang extension) 1741 SCS.Second = ICK_Complex_Promotion; 1742 FromType = ToType.getUnqualifiedType(); 1743 } else if (ToType->isBooleanType() && 1744 (FromType->isArithmeticType() || 1745 FromType->isAnyPointerType() || 1746 FromType->isBlockPointerType() || 1747 FromType->isMemberPointerType() || 1748 FromType->isNullPtrType())) { 1749 // Boolean conversions (C++ 4.12). 1750 SCS.Second = ICK_Boolean_Conversion; 1751 FromType = S.Context.BoolTy; 1752 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1753 ToType->isIntegralType(S.Context)) { 1754 // Integral conversions (C++ 4.7). 1755 SCS.Second = ICK_Integral_Conversion; 1756 FromType = ToType.getUnqualifiedType(); 1757 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { 1758 // Complex conversions (C99 6.3.1.6) 1759 SCS.Second = ICK_Complex_Conversion; 1760 FromType = ToType.getUnqualifiedType(); 1761 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1762 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1763 // Complex-real conversions (C99 6.3.1.7) 1764 SCS.Second = ICK_Complex_Real; 1765 FromType = ToType.getUnqualifiedType(); 1766 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1767 // FIXME: disable conversions between long double and __float128 if 1768 // their representation is different until there is back end support 1769 // We of course allow this conversion if long double is really double. 1770 if (&S.Context.getFloatTypeSemantics(FromType) != 1771 &S.Context.getFloatTypeSemantics(ToType)) { 1772 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty && 1773 ToType == S.Context.LongDoubleTy) || 1774 (FromType == S.Context.LongDoubleTy && 1775 ToType == S.Context.Float128Ty)); 1776 if (Float128AndLongDouble && 1777 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) == 1778 &llvm::APFloat::PPCDoubleDouble())) 1779 return false; 1780 } 1781 // Floating point conversions (C++ 4.8). 1782 SCS.Second = ICK_Floating_Conversion; 1783 FromType = ToType.getUnqualifiedType(); 1784 } else if ((FromType->isRealFloatingType() && 1785 ToType->isIntegralType(S.Context)) || 1786 (FromType->isIntegralOrUnscopedEnumerationType() && 1787 ToType->isRealFloatingType())) { 1788 // Floating-integral conversions (C++ 4.9). 1789 SCS.Second = ICK_Floating_Integral; 1790 FromType = ToType.getUnqualifiedType(); 1791 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1792 SCS.Second = ICK_Block_Pointer_Conversion; 1793 } else if (AllowObjCWritebackConversion && 1794 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 1795 SCS.Second = ICK_Writeback_Conversion; 1796 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1797 FromType, IncompatibleObjC)) { 1798 // Pointer conversions (C++ 4.10). 1799 SCS.Second = ICK_Pointer_Conversion; 1800 SCS.IncompatibleObjC = IncompatibleObjC; 1801 FromType = FromType.getUnqualifiedType(); 1802 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1803 InOverloadResolution, FromType)) { 1804 // Pointer to member conversions (4.11). 1805 SCS.Second = ICK_Pointer_Member; 1806 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) { 1807 SCS.Second = SecondICK; 1808 FromType = ToType.getUnqualifiedType(); 1809 } else if (!S.getLangOpts().CPlusPlus && 1810 S.Context.typesAreCompatible(ToType, FromType)) { 1811 // Compatible conversions (Clang extension for C function overloading) 1812 SCS.Second = ICK_Compatible_Conversion; 1813 FromType = ToType.getUnqualifiedType(); 1814 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 1815 InOverloadResolution, 1816 SCS, CStyle)) { 1817 SCS.Second = ICK_TransparentUnionConversion; 1818 FromType = ToType; 1819 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, 1820 CStyle)) { 1821 // tryAtomicConversion has updated the standard conversion sequence 1822 // appropriately. 1823 return true; 1824 } else if (ToType->isEventT() && 1825 From->isIntegerConstantExpr(S.getASTContext()) && 1826 From->EvaluateKnownConstInt(S.getASTContext()) == 0) { 1827 SCS.Second = ICK_Zero_Event_Conversion; 1828 FromType = ToType; 1829 } else if (ToType->isQueueT() && 1830 From->isIntegerConstantExpr(S.getASTContext()) && 1831 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { 1832 SCS.Second = ICK_Zero_Queue_Conversion; 1833 FromType = ToType; 1834 } else { 1835 // No second conversion required. 1836 SCS.Second = ICK_Identity; 1837 } 1838 SCS.setToType(1, FromType); 1839 1840 // The third conversion can be a function pointer conversion or a 1841 // qualification conversion (C++ [conv.fctptr], [conv.qual]). 1842 bool ObjCLifetimeConversion; 1843 if (S.IsFunctionConversion(FromType, ToType, FromType)) { 1844 // Function pointer conversions (removing 'noexcept') including removal of 1845 // 'noreturn' (Clang extension). 1846 SCS.Third = ICK_Function_Conversion; 1847 } else if (S.IsQualificationConversion(FromType, ToType, CStyle, 1848 ObjCLifetimeConversion)) { 1849 SCS.Third = ICK_Qualification; 1850 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 1851 FromType = ToType; 1852 } else { 1853 // No conversion required 1854 SCS.Third = ICK_Identity; 1855 } 1856 1857 // C++ [over.best.ics]p6: 1858 // [...] Any difference in top-level cv-qualification is 1859 // subsumed by the initialization itself and does not constitute 1860 // a conversion. [...] 1861 QualType CanonFrom = S.Context.getCanonicalType(FromType); 1862 QualType CanonTo = S.Context.getCanonicalType(ToType); 1863 if (CanonFrom.getLocalUnqualifiedType() 1864 == CanonTo.getLocalUnqualifiedType() && 1865 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { 1866 FromType = ToType; 1867 CanonFrom = CanonTo; 1868 } 1869 1870 SCS.setToType(2, FromType); 1871 1872 if (CanonFrom == CanonTo) 1873 return true; 1874 1875 // If we have not converted the argument type to the parameter type, 1876 // this is a bad conversion sequence, unless we're resolving an overload in C. 1877 if (S.getLangOpts().CPlusPlus || !InOverloadResolution) 1878 return false; 1879 1880 ExprResult ER = ExprResult{From}; 1881 Sema::AssignConvertType Conv = 1882 S.CheckSingleAssignmentConstraints(ToType, ER, 1883 /*Diagnose=*/false, 1884 /*DiagnoseCFAudited=*/false, 1885 /*ConvertRHS=*/false); 1886 ImplicitConversionKind SecondConv; 1887 switch (Conv) { 1888 case Sema::Compatible: 1889 SecondConv = ICK_C_Only_Conversion; 1890 break; 1891 // For our purposes, discarding qualifiers is just as bad as using an 1892 // incompatible pointer. Note that an IncompatiblePointer conversion can drop 1893 // qualifiers, as well. 1894 case Sema::CompatiblePointerDiscardsQualifiers: 1895 case Sema::IncompatiblePointer: 1896 case Sema::IncompatiblePointerSign: 1897 SecondConv = ICK_Incompatible_Pointer_Conversion; 1898 break; 1899 default: 1900 return false; 1901 } 1902 1903 // First can only be an lvalue conversion, so we pretend that this was the 1904 // second conversion. First should already be valid from earlier in the 1905 // function. 1906 SCS.Second = SecondConv; 1907 SCS.setToType(1, ToType); 1908 1909 // Third is Identity, because Second should rank us worse than any other 1910 // conversion. This could also be ICK_Qualification, but it's simpler to just 1911 // lump everything in with the second conversion, and we don't gain anything 1912 // from making this ICK_Qualification. 1913 SCS.Third = ICK_Identity; 1914 SCS.setToType(2, ToType); 1915 return true; 1916 } 1917 1918 static bool 1919 IsTransparentUnionStandardConversion(Sema &S, Expr* From, 1920 QualType &ToType, 1921 bool InOverloadResolution, 1922 StandardConversionSequence &SCS, 1923 bool CStyle) { 1924 1925 const RecordType *UT = ToType->getAsUnionType(); 1926 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 1927 return false; 1928 // The field to initialize within the transparent union. 1929 RecordDecl *UD = UT->getDecl(); 1930 // It's compatible if the expression matches any of the fields. 1931 for (const auto *it : UD->fields()) { 1932 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 1933 CStyle, /*ObjCWritebackConversion=*/false)) { 1934 ToType = it->getType(); 1935 return true; 1936 } 1937 } 1938 return false; 1939 } 1940 1941 /// IsIntegralPromotion - Determines whether the conversion from the 1942 /// expression From (whose potentially-adjusted type is FromType) to 1943 /// ToType is an integral promotion (C++ 4.5). If so, returns true and 1944 /// sets PromotedType to the promoted type. 1945 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1946 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1947 // All integers are built-in. 1948 if (!To) { 1949 return false; 1950 } 1951 1952 // An rvalue of type char, signed char, unsigned char, short int, or 1953 // unsigned short int can be converted to an rvalue of type int if 1954 // int can represent all the values of the source type; otherwise, 1955 // the source rvalue can be converted to an rvalue of type unsigned 1956 // int (C++ 4.5p1). 1957 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1958 !FromType->isEnumeralType()) { 1959 if (// We can promote any signed, promotable integer type to an int 1960 (FromType->isSignedIntegerType() || 1961 // We can promote any unsigned integer type whose size is 1962 // less than int to an int. 1963 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { 1964 return To->getKind() == BuiltinType::Int; 1965 } 1966 1967 return To->getKind() == BuiltinType::UInt; 1968 } 1969 1970 // C++11 [conv.prom]p3: 1971 // A prvalue of an unscoped enumeration type whose underlying type is not 1972 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 1973 // following types that can represent all the values of the enumeration 1974 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 1975 // unsigned int, long int, unsigned long int, long long int, or unsigned 1976 // long long int. If none of the types in that list can represent all the 1977 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 1978 // type can be converted to an rvalue a prvalue of the extended integer type 1979 // with lowest integer conversion rank (4.13) greater than the rank of long 1980 // long in which all the values of the enumeration can be represented. If 1981 // there are two such extended types, the signed one is chosen. 1982 // C++11 [conv.prom]p4: 1983 // A prvalue of an unscoped enumeration type whose underlying type is fixed 1984 // can be converted to a prvalue of its underlying type. Moreover, if 1985 // integral promotion can be applied to its underlying type, a prvalue of an 1986 // unscoped enumeration type whose underlying type is fixed can also be 1987 // converted to a prvalue of the promoted underlying type. 1988 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1989 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1990 // provided for a scoped enumeration. 1991 if (FromEnumType->getDecl()->isScoped()) 1992 return false; 1993 1994 // We can perform an integral promotion to the underlying type of the enum, 1995 // even if that's not the promoted type. Note that the check for promoting 1996 // the underlying type is based on the type alone, and does not consider 1997 // the bitfield-ness of the actual source expression. 1998 if (FromEnumType->getDecl()->isFixed()) { 1999 QualType Underlying = FromEnumType->getDecl()->getIntegerType(); 2000 return Context.hasSameUnqualifiedType(Underlying, ToType) || 2001 IsIntegralPromotion(nullptr, Underlying, ToType); 2002 } 2003 2004 // We have already pre-calculated the promotion type, so this is trivial. 2005 if (ToType->isIntegerType() && 2006 isCompleteType(From->getLocStart(), FromType)) 2007 return Context.hasSameUnqualifiedType( 2008 ToType, FromEnumType->getDecl()->getPromotionType()); 2009 } 2010 2011 // C++0x [conv.prom]p2: 2012 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 2013 // to an rvalue a prvalue of the first of the following types that can 2014 // represent all the values of its underlying type: int, unsigned int, 2015 // long int, unsigned long int, long long int, or unsigned long long int. 2016 // If none of the types in that list can represent all the values of its 2017 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 2018 // or wchar_t can be converted to an rvalue a prvalue of its underlying 2019 // type. 2020 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 2021 ToType->isIntegerType()) { 2022 // Determine whether the type we're converting from is signed or 2023 // unsigned. 2024 bool FromIsSigned = FromType->isSignedIntegerType(); 2025 uint64_t FromSize = Context.getTypeSize(FromType); 2026 2027 // The types we'll try to promote to, in the appropriate 2028 // order. Try each of these types. 2029 QualType PromoteTypes[6] = { 2030 Context.IntTy, Context.UnsignedIntTy, 2031 Context.LongTy, Context.UnsignedLongTy , 2032 Context.LongLongTy, Context.UnsignedLongLongTy 2033 }; 2034 for (int Idx = 0; Idx < 6; ++Idx) { 2035 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 2036 if (FromSize < ToSize || 2037 (FromSize == ToSize && 2038 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 2039 // We found the type that we can promote to. If this is the 2040 // type we wanted, we have a promotion. Otherwise, no 2041 // promotion. 2042 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 2043 } 2044 } 2045 } 2046 2047 // An rvalue for an integral bit-field (9.6) can be converted to an 2048 // rvalue of type int if int can represent all the values of the 2049 // bit-field; otherwise, it can be converted to unsigned int if 2050 // unsigned int can represent all the values of the bit-field. If 2051 // the bit-field is larger yet, no integral promotion applies to 2052 // it. If the bit-field has an enumerated type, it is treated as any 2053 // other value of that type for promotion purposes (C++ 4.5p3). 2054 // FIXME: We should delay checking of bit-fields until we actually perform the 2055 // conversion. 2056 if (From) { 2057 if (FieldDecl *MemberDecl = From->getSourceBitField()) { 2058 llvm::APSInt BitWidth; 2059 if (FromType->isIntegralType(Context) && 2060 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 2061 llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 2062 ToSize = Context.getTypeSize(ToType); 2063 2064 // Are we promoting to an int from a bitfield that fits in an int? 2065 if (BitWidth < ToSize || 2066 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 2067 return To->getKind() == BuiltinType::Int; 2068 } 2069 2070 // Are we promoting to an unsigned int from an unsigned bitfield 2071 // that fits into an unsigned int? 2072 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 2073 return To->getKind() == BuiltinType::UInt; 2074 } 2075 2076 return false; 2077 } 2078 } 2079 } 2080 2081 // An rvalue of type bool can be converted to an rvalue of type int, 2082 // with false becoming zero and true becoming one (C++ 4.5p4). 2083 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 2084 return true; 2085 } 2086 2087 return false; 2088 } 2089 2090 /// IsFloatingPointPromotion - Determines whether the conversion from 2091 /// FromType to ToType is a floating point promotion (C++ 4.6). If so, 2092 /// returns true and sets PromotedType to the promoted type. 2093 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 2094 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 2095 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 2096 /// An rvalue of type float can be converted to an rvalue of type 2097 /// double. (C++ 4.6p1). 2098 if (FromBuiltin->getKind() == BuiltinType::Float && 2099 ToBuiltin->getKind() == BuiltinType::Double) 2100 return true; 2101 2102 // C99 6.3.1.5p1: 2103 // When a float is promoted to double or long double, or a 2104 // double is promoted to long double [...]. 2105 if (!getLangOpts().CPlusPlus && 2106 (FromBuiltin->getKind() == BuiltinType::Float || 2107 FromBuiltin->getKind() == BuiltinType::Double) && 2108 (ToBuiltin->getKind() == BuiltinType::LongDouble || 2109 ToBuiltin->getKind() == BuiltinType::Float128)) 2110 return true; 2111 2112 // Half can be promoted to float. 2113 if (!getLangOpts().NativeHalfType && 2114 FromBuiltin->getKind() == BuiltinType::Half && 2115 ToBuiltin->getKind() == BuiltinType::Float) 2116 return true; 2117 } 2118 2119 return false; 2120 } 2121 2122 /// Determine if a conversion is a complex promotion. 2123 /// 2124 /// A complex promotion is defined as a complex -> complex conversion 2125 /// where the conversion between the underlying real types is a 2126 /// floating-point or integral promotion. 2127 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 2128 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 2129 if (!FromComplex) 2130 return false; 2131 2132 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 2133 if (!ToComplex) 2134 return false; 2135 2136 return IsFloatingPointPromotion(FromComplex->getElementType(), 2137 ToComplex->getElementType()) || 2138 IsIntegralPromotion(nullptr, FromComplex->getElementType(), 2139 ToComplex->getElementType()); 2140 } 2141 2142 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 2143 /// the pointer type FromPtr to a pointer to type ToPointee, with the 2144 /// same type qualifiers as FromPtr has on its pointee type. ToType, 2145 /// if non-empty, will be a pointer to ToType that may or may not have 2146 /// the right set of qualifiers on its pointee. 2147 /// 2148 static QualType 2149 BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 2150 QualType ToPointee, QualType ToType, 2151 ASTContext &Context, 2152 bool StripObjCLifetime = false) { 2153 assert((FromPtr->getTypeClass() == Type::Pointer || 2154 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 2155 "Invalid similarly-qualified pointer type"); 2156 2157 /// Conversions to 'id' subsume cv-qualifier conversions. 2158 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 2159 return ToType.getUnqualifiedType(); 2160 2161 QualType CanonFromPointee 2162 = Context.getCanonicalType(FromPtr->getPointeeType()); 2163 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 2164 Qualifiers Quals = CanonFromPointee.getQualifiers(); 2165 2166 if (StripObjCLifetime) 2167 Quals.removeObjCLifetime(); 2168 2169 // Exact qualifier match -> return the pointer type we're converting to. 2170 if (CanonToPointee.getLocalQualifiers() == Quals) { 2171 // ToType is exactly what we need. Return it. 2172 if (!ToType.isNull()) 2173 return ToType.getUnqualifiedType(); 2174 2175 // Build a pointer to ToPointee. It has the right qualifiers 2176 // already. 2177 if (isa<ObjCObjectPointerType>(ToType)) 2178 return Context.getObjCObjectPointerType(ToPointee); 2179 return Context.getPointerType(ToPointee); 2180 } 2181 2182 // Just build a canonical type that has the right qualifiers. 2183 QualType QualifiedCanonToPointee 2184 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 2185 2186 if (isa<ObjCObjectPointerType>(ToType)) 2187 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 2188 return Context.getPointerType(QualifiedCanonToPointee); 2189 } 2190 2191 static bool isNullPointerConstantForConversion(Expr *Expr, 2192 bool InOverloadResolution, 2193 ASTContext &Context) { 2194 // Handle value-dependent integral null pointer constants correctly. 2195 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 2196 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 2197 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 2198 return !InOverloadResolution; 2199 2200 return Expr->isNullPointerConstant(Context, 2201 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2202 : Expr::NPC_ValueDependentIsNull); 2203 } 2204 2205 /// IsPointerConversion - Determines whether the conversion of the 2206 /// expression From, which has the (possibly adjusted) type FromType, 2207 /// can be converted to the type ToType via a pointer conversion (C++ 2208 /// 4.10). If so, returns true and places the converted type (that 2209 /// might differ from ToType in its cv-qualifiers at some level) into 2210 /// ConvertedType. 2211 /// 2212 /// This routine also supports conversions to and from block pointers 2213 /// and conversions with Objective-C's 'id', 'id<protocols...>', and 2214 /// pointers to interfaces. FIXME: Once we've determined the 2215 /// appropriate overloading rules for Objective-C, we may want to 2216 /// split the Objective-C checks into a different routine; however, 2217 /// GCC seems to consider all of these conversions to be pointer 2218 /// conversions, so for now they live here. IncompatibleObjC will be 2219 /// set if the conversion is an allowed Objective-C conversion that 2220 /// should result in a warning. 2221 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 2222 bool InOverloadResolution, 2223 QualType& ConvertedType, 2224 bool &IncompatibleObjC) { 2225 IncompatibleObjC = false; 2226 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 2227 IncompatibleObjC)) 2228 return true; 2229 2230 // Conversion from a null pointer constant to any Objective-C pointer type. 2231 if (ToType->isObjCObjectPointerType() && 2232 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2233 ConvertedType = ToType; 2234 return true; 2235 } 2236 2237 // Blocks: Block pointers can be converted to void*. 2238 if (FromType->isBlockPointerType() && ToType->isPointerType() && 2239 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 2240 ConvertedType = ToType; 2241 return true; 2242 } 2243 // Blocks: A null pointer constant can be converted to a block 2244 // pointer type. 2245 if (ToType->isBlockPointerType() && 2246 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2247 ConvertedType = ToType; 2248 return true; 2249 } 2250 2251 // If the left-hand-side is nullptr_t, the right side can be a null 2252 // pointer constant. 2253 if (ToType->isNullPtrType() && 2254 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2255 ConvertedType = ToType; 2256 return true; 2257 } 2258 2259 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 2260 if (!ToTypePtr) 2261 return false; 2262 2263 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 2264 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2265 ConvertedType = ToType; 2266 return true; 2267 } 2268 2269 // Beyond this point, both types need to be pointers 2270 // , including objective-c pointers. 2271 QualType ToPointeeType = ToTypePtr->getPointeeType(); 2272 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 2273 !getLangOpts().ObjCAutoRefCount) { 2274 ConvertedType = BuildSimilarlyQualifiedPointerType( 2275 FromType->getAs<ObjCObjectPointerType>(), 2276 ToPointeeType, 2277 ToType, Context); 2278 return true; 2279 } 2280 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 2281 if (!FromTypePtr) 2282 return false; 2283 2284 QualType FromPointeeType = FromTypePtr->getPointeeType(); 2285 2286 // If the unqualified pointee types are the same, this can't be a 2287 // pointer conversion, so don't do all of the work below. 2288 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 2289 return false; 2290 2291 // An rvalue of type "pointer to cv T," where T is an object type, 2292 // can be converted to an rvalue of type "pointer to cv void" (C++ 2293 // 4.10p2). 2294 if (FromPointeeType->isIncompleteOrObjectType() && 2295 ToPointeeType->isVoidType()) { 2296 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2297 ToPointeeType, 2298 ToType, Context, 2299 /*StripObjCLifetime=*/true); 2300 return true; 2301 } 2302 2303 // MSVC allows implicit function to void* type conversion. 2304 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && 2305 ToPointeeType->isVoidType()) { 2306 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2307 ToPointeeType, 2308 ToType, Context); 2309 return true; 2310 } 2311 2312 // When we're overloading in C, we allow a special kind of pointer 2313 // conversion for compatible-but-not-identical pointee types. 2314 if (!getLangOpts().CPlusPlus && 2315 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 2316 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2317 ToPointeeType, 2318 ToType, Context); 2319 return true; 2320 } 2321 2322 // C++ [conv.ptr]p3: 2323 // 2324 // An rvalue of type "pointer to cv D," where D is a class type, 2325 // can be converted to an rvalue of type "pointer to cv B," where 2326 // B is a base class (clause 10) of D. If B is an inaccessible 2327 // (clause 11) or ambiguous (10.2) base class of D, a program that 2328 // necessitates this conversion is ill-formed. The result of the 2329 // conversion is a pointer to the base class sub-object of the 2330 // derived class object. The null pointer value is converted to 2331 // the null pointer value of the destination type. 2332 // 2333 // Note that we do not check for ambiguity or inaccessibility 2334 // here. That is handled by CheckPointerConversion. 2335 if (getLangOpts().CPlusPlus && 2336 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 2337 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 2338 IsDerivedFrom(From->getLocStart(), FromPointeeType, ToPointeeType)) { 2339 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2340 ToPointeeType, 2341 ToType, Context); 2342 return true; 2343 } 2344 2345 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 2346 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 2347 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2348 ToPointeeType, 2349 ToType, Context); 2350 return true; 2351 } 2352 2353 return false; 2354 } 2355 2356 /// Adopt the given qualifiers for the given type. 2357 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 2358 Qualifiers TQs = T.getQualifiers(); 2359 2360 // Check whether qualifiers already match. 2361 if (TQs == Qs) 2362 return T; 2363 2364 if (Qs.compatiblyIncludes(TQs)) 2365 return Context.getQualifiedType(T, Qs); 2366 2367 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 2368 } 2369 2370 /// isObjCPointerConversion - Determines whether this is an 2371 /// Objective-C pointer conversion. Subroutine of IsPointerConversion, 2372 /// with the same arguments and return values. 2373 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 2374 QualType& ConvertedType, 2375 bool &IncompatibleObjC) { 2376 if (!getLangOpts().ObjC1) 2377 return false; 2378 2379 // The set of qualifiers on the type we're converting from. 2380 Qualifiers FromQualifiers = FromType.getQualifiers(); 2381 2382 // First, we handle all conversions on ObjC object pointer types. 2383 const ObjCObjectPointerType* ToObjCPtr = 2384 ToType->getAs<ObjCObjectPointerType>(); 2385 const ObjCObjectPointerType *FromObjCPtr = 2386 FromType->getAs<ObjCObjectPointerType>(); 2387 2388 if (ToObjCPtr && FromObjCPtr) { 2389 // If the pointee types are the same (ignoring qualifications), 2390 // then this is not a pointer conversion. 2391 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 2392 FromObjCPtr->getPointeeType())) 2393 return false; 2394 2395 // Conversion between Objective-C pointers. 2396 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 2397 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 2398 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 2399 if (getLangOpts().CPlusPlus && LHS && RHS && 2400 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 2401 FromObjCPtr->getPointeeType())) 2402 return false; 2403 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2404 ToObjCPtr->getPointeeType(), 2405 ToType, Context); 2406 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2407 return true; 2408 } 2409 2410 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 2411 // Okay: this is some kind of implicit downcast of Objective-C 2412 // interfaces, which is permitted. However, we're going to 2413 // complain about it. 2414 IncompatibleObjC = true; 2415 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2416 ToObjCPtr->getPointeeType(), 2417 ToType, Context); 2418 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2419 return true; 2420 } 2421 } 2422 // Beyond this point, both types need to be C pointers or block pointers. 2423 QualType ToPointeeType; 2424 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 2425 ToPointeeType = ToCPtr->getPointeeType(); 2426 else if (const BlockPointerType *ToBlockPtr = 2427 ToType->getAs<BlockPointerType>()) { 2428 // Objective C++: We're able to convert from a pointer to any object 2429 // to a block pointer type. 2430 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 2431 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2432 return true; 2433 } 2434 ToPointeeType = ToBlockPtr->getPointeeType(); 2435 } 2436 else if (FromType->getAs<BlockPointerType>() && 2437 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 2438 // Objective C++: We're able to convert from a block pointer type to a 2439 // pointer to any object. 2440 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2441 return true; 2442 } 2443 else 2444 return false; 2445 2446 QualType FromPointeeType; 2447 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 2448 FromPointeeType = FromCPtr->getPointeeType(); 2449 else if (const BlockPointerType *FromBlockPtr = 2450 FromType->getAs<BlockPointerType>()) 2451 FromPointeeType = FromBlockPtr->getPointeeType(); 2452 else 2453 return false; 2454 2455 // If we have pointers to pointers, recursively check whether this 2456 // is an Objective-C conversion. 2457 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 2458 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2459 IncompatibleObjC)) { 2460 // We always complain about this conversion. 2461 IncompatibleObjC = true; 2462 ConvertedType = Context.getPointerType(ConvertedType); 2463 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2464 return true; 2465 } 2466 // Allow conversion of pointee being objective-c pointer to another one; 2467 // as in I* to id. 2468 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 2469 ToPointeeType->getAs<ObjCObjectPointerType>() && 2470 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2471 IncompatibleObjC)) { 2472 2473 ConvertedType = Context.getPointerType(ConvertedType); 2474 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2475 return true; 2476 } 2477 2478 // If we have pointers to functions or blocks, check whether the only 2479 // differences in the argument and result types are in Objective-C 2480 // pointer conversions. If so, we permit the conversion (but 2481 // complain about it). 2482 const FunctionProtoType *FromFunctionType 2483 = FromPointeeType->getAs<FunctionProtoType>(); 2484 const FunctionProtoType *ToFunctionType 2485 = ToPointeeType->getAs<FunctionProtoType>(); 2486 if (FromFunctionType && ToFunctionType) { 2487 // If the function types are exactly the same, this isn't an 2488 // Objective-C pointer conversion. 2489 if (Context.getCanonicalType(FromPointeeType) 2490 == Context.getCanonicalType(ToPointeeType)) 2491 return false; 2492 2493 // Perform the quick checks that will tell us whether these 2494 // function types are obviously different. 2495 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2496 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 2497 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 2498 return false; 2499 2500 bool HasObjCConversion = false; 2501 if (Context.getCanonicalType(FromFunctionType->getReturnType()) == 2502 Context.getCanonicalType(ToFunctionType->getReturnType())) { 2503 // Okay, the types match exactly. Nothing to do. 2504 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), 2505 ToFunctionType->getReturnType(), 2506 ConvertedType, IncompatibleObjC)) { 2507 // Okay, we have an Objective-C pointer conversion. 2508 HasObjCConversion = true; 2509 } else { 2510 // Function types are too different. Abort. 2511 return false; 2512 } 2513 2514 // Check argument types. 2515 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2516 ArgIdx != NumArgs; ++ArgIdx) { 2517 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2518 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2519 if (Context.getCanonicalType(FromArgType) 2520 == Context.getCanonicalType(ToArgType)) { 2521 // Okay, the types match exactly. Nothing to do. 2522 } else if (isObjCPointerConversion(FromArgType, ToArgType, 2523 ConvertedType, IncompatibleObjC)) { 2524 // Okay, we have an Objective-C pointer conversion. 2525 HasObjCConversion = true; 2526 } else { 2527 // Argument types are too different. Abort. 2528 return false; 2529 } 2530 } 2531 2532 if (HasObjCConversion) { 2533 // We had an Objective-C conversion. Allow this pointer 2534 // conversion, but complain about it. 2535 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2536 IncompatibleObjC = true; 2537 return true; 2538 } 2539 } 2540 2541 return false; 2542 } 2543 2544 /// Determine whether this is an Objective-C writeback conversion, 2545 /// used for parameter passing when performing automatic reference counting. 2546 /// 2547 /// \param FromType The type we're converting form. 2548 /// 2549 /// \param ToType The type we're converting to. 2550 /// 2551 /// \param ConvertedType The type that will be produced after applying 2552 /// this conversion. 2553 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 2554 QualType &ConvertedType) { 2555 if (!getLangOpts().ObjCAutoRefCount || 2556 Context.hasSameUnqualifiedType(FromType, ToType)) 2557 return false; 2558 2559 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 2560 QualType ToPointee; 2561 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 2562 ToPointee = ToPointer->getPointeeType(); 2563 else 2564 return false; 2565 2566 Qualifiers ToQuals = ToPointee.getQualifiers(); 2567 if (!ToPointee->isObjCLifetimeType() || 2568 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 2569 !ToQuals.withoutObjCLifetime().empty()) 2570 return false; 2571 2572 // Argument must be a pointer to __strong to __weak. 2573 QualType FromPointee; 2574 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 2575 FromPointee = FromPointer->getPointeeType(); 2576 else 2577 return false; 2578 2579 Qualifiers FromQuals = FromPointee.getQualifiers(); 2580 if (!FromPointee->isObjCLifetimeType() || 2581 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 2582 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 2583 return false; 2584 2585 // Make sure that we have compatible qualifiers. 2586 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 2587 if (!ToQuals.compatiblyIncludes(FromQuals)) 2588 return false; 2589 2590 // Remove qualifiers from the pointee type we're converting from; they 2591 // aren't used in the compatibility check belong, and we'll be adding back 2592 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 2593 FromPointee = FromPointee.getUnqualifiedType(); 2594 2595 // The unqualified form of the pointee types must be compatible. 2596 ToPointee = ToPointee.getUnqualifiedType(); 2597 bool IncompatibleObjC; 2598 if (Context.typesAreCompatible(FromPointee, ToPointee)) 2599 FromPointee = ToPointee; 2600 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 2601 IncompatibleObjC)) 2602 return false; 2603 2604 /// Construct the type we're converting to, which is a pointer to 2605 /// __autoreleasing pointee. 2606 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 2607 ConvertedType = Context.getPointerType(FromPointee); 2608 return true; 2609 } 2610 2611 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 2612 QualType& ConvertedType) { 2613 QualType ToPointeeType; 2614 if (const BlockPointerType *ToBlockPtr = 2615 ToType->getAs<BlockPointerType>()) 2616 ToPointeeType = ToBlockPtr->getPointeeType(); 2617 else 2618 return false; 2619 2620 QualType FromPointeeType; 2621 if (const BlockPointerType *FromBlockPtr = 2622 FromType->getAs<BlockPointerType>()) 2623 FromPointeeType = FromBlockPtr->getPointeeType(); 2624 else 2625 return false; 2626 // We have pointer to blocks, check whether the only 2627 // differences in the argument and result types are in Objective-C 2628 // pointer conversions. If so, we permit the conversion. 2629 2630 const FunctionProtoType *FromFunctionType 2631 = FromPointeeType->getAs<FunctionProtoType>(); 2632 const FunctionProtoType *ToFunctionType 2633 = ToPointeeType->getAs<FunctionProtoType>(); 2634 2635 if (!FromFunctionType || !ToFunctionType) 2636 return false; 2637 2638 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2639 return true; 2640 2641 // Perform the quick checks that will tell us whether these 2642 // function types are obviously different. 2643 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2644 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2645 return false; 2646 2647 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2648 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2649 if (FromEInfo != ToEInfo) 2650 return false; 2651 2652 bool IncompatibleObjC = false; 2653 if (Context.hasSameType(FromFunctionType->getReturnType(), 2654 ToFunctionType->getReturnType())) { 2655 // Okay, the types match exactly. Nothing to do. 2656 } else { 2657 QualType RHS = FromFunctionType->getReturnType(); 2658 QualType LHS = ToFunctionType->getReturnType(); 2659 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && 2660 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2661 LHS = LHS.getUnqualifiedType(); 2662 2663 if (Context.hasSameType(RHS,LHS)) { 2664 // OK exact match. 2665 } else if (isObjCPointerConversion(RHS, LHS, 2666 ConvertedType, IncompatibleObjC)) { 2667 if (IncompatibleObjC) 2668 return false; 2669 // Okay, we have an Objective-C pointer conversion. 2670 } 2671 else 2672 return false; 2673 } 2674 2675 // Check argument types. 2676 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2677 ArgIdx != NumArgs; ++ArgIdx) { 2678 IncompatibleObjC = false; 2679 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2680 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2681 if (Context.hasSameType(FromArgType, ToArgType)) { 2682 // Okay, the types match exactly. Nothing to do. 2683 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2684 ConvertedType, IncompatibleObjC)) { 2685 if (IncompatibleObjC) 2686 return false; 2687 // Okay, we have an Objective-C pointer conversion. 2688 } else 2689 // Argument types are too different. Abort. 2690 return false; 2691 } 2692 2693 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 2694 bool CanUseToFPT, CanUseFromFPT; 2695 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, 2696 CanUseToFPT, CanUseFromFPT, 2697 NewParamInfos)) 2698 return false; 2699 2700 ConvertedType = ToType; 2701 return true; 2702 } 2703 2704 enum { 2705 ft_default, 2706 ft_different_class, 2707 ft_parameter_arity, 2708 ft_parameter_mismatch, 2709 ft_return_type, 2710 ft_qualifer_mismatch, 2711 ft_noexcept 2712 }; 2713 2714 /// Attempts to get the FunctionProtoType from a Type. Handles 2715 /// MemberFunctionPointers properly. 2716 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { 2717 if (auto *FPT = FromType->getAs<FunctionProtoType>()) 2718 return FPT; 2719 2720 if (auto *MPT = FromType->getAs<MemberPointerType>()) 2721 return MPT->getPointeeType()->getAs<FunctionProtoType>(); 2722 2723 return nullptr; 2724 } 2725 2726 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing 2727 /// function types. Catches different number of parameter, mismatch in 2728 /// parameter types, and different return types. 2729 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, 2730 QualType FromType, QualType ToType) { 2731 // If either type is not valid, include no extra info. 2732 if (FromType.isNull() || ToType.isNull()) { 2733 PDiag << ft_default; 2734 return; 2735 } 2736 2737 // Get the function type from the pointers. 2738 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { 2739 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(), 2740 *ToMember = ToType->getAs<MemberPointerType>(); 2741 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { 2742 PDiag << ft_different_class << QualType(ToMember->getClass(), 0) 2743 << QualType(FromMember->getClass(), 0); 2744 return; 2745 } 2746 FromType = FromMember->getPointeeType(); 2747 ToType = ToMember->getPointeeType(); 2748 } 2749 2750 if (FromType->isPointerType()) 2751 FromType = FromType->getPointeeType(); 2752 if (ToType->isPointerType()) 2753 ToType = ToType->getPointeeType(); 2754 2755 // Remove references. 2756 FromType = FromType.getNonReferenceType(); 2757 ToType = ToType.getNonReferenceType(); 2758 2759 // Don't print extra info for non-specialized template functions. 2760 if (FromType->isInstantiationDependentType() && 2761 !FromType->getAs<TemplateSpecializationType>()) { 2762 PDiag << ft_default; 2763 return; 2764 } 2765 2766 // No extra info for same types. 2767 if (Context.hasSameType(FromType, ToType)) { 2768 PDiag << ft_default; 2769 return; 2770 } 2771 2772 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), 2773 *ToFunction = tryGetFunctionProtoType(ToType); 2774 2775 // Both types need to be function types. 2776 if (!FromFunction || !ToFunction) { 2777 PDiag << ft_default; 2778 return; 2779 } 2780 2781 if (FromFunction->getNumParams() != ToFunction->getNumParams()) { 2782 PDiag << ft_parameter_arity << ToFunction->getNumParams() 2783 << FromFunction->getNumParams(); 2784 return; 2785 } 2786 2787 // Handle different parameter types. 2788 unsigned ArgPos; 2789 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { 2790 PDiag << ft_parameter_mismatch << ArgPos + 1 2791 << ToFunction->getParamType(ArgPos) 2792 << FromFunction->getParamType(ArgPos); 2793 return; 2794 } 2795 2796 // Handle different return type. 2797 if (!Context.hasSameType(FromFunction->getReturnType(), 2798 ToFunction->getReturnType())) { 2799 PDiag << ft_return_type << ToFunction->getReturnType() 2800 << FromFunction->getReturnType(); 2801 return; 2802 } 2803 2804 unsigned FromQuals = FromFunction->getTypeQuals(), 2805 ToQuals = ToFunction->getTypeQuals(); 2806 if (FromQuals != ToQuals) { 2807 PDiag << ft_qualifer_mismatch << ToQuals << FromQuals; 2808 return; 2809 } 2810 2811 // Handle exception specification differences on canonical type (in C++17 2812 // onwards). 2813 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) 2814 ->isNothrow() != 2815 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) 2816 ->isNothrow()) { 2817 PDiag << ft_noexcept; 2818 return; 2819 } 2820 2821 // Unable to find a difference, so add no extra info. 2822 PDiag << ft_default; 2823 } 2824 2825 /// FunctionParamTypesAreEqual - This routine checks two function proto types 2826 /// for equality of their argument types. Caller has already checked that 2827 /// they have same number of arguments. If the parameters are different, 2828 /// ArgPos will have the parameter index of the first different parameter. 2829 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, 2830 const FunctionProtoType *NewType, 2831 unsigned *ArgPos) { 2832 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(), 2833 N = NewType->param_type_begin(), 2834 E = OldType->param_type_end(); 2835 O && (O != E); ++O, ++N) { 2836 if (!Context.hasSameType(O->getUnqualifiedType(), 2837 N->getUnqualifiedType())) { 2838 if (ArgPos) 2839 *ArgPos = O - OldType->param_type_begin(); 2840 return false; 2841 } 2842 } 2843 return true; 2844 } 2845 2846 /// CheckPointerConversion - Check the pointer conversion from the 2847 /// expression From to the type ToType. This routine checks for 2848 /// ambiguous or inaccessible derived-to-base pointer 2849 /// conversions for which IsPointerConversion has already returned 2850 /// true. It returns true and produces a diagnostic if there was an 2851 /// error, or returns false otherwise. 2852 bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 2853 CastKind &Kind, 2854 CXXCastPath& BasePath, 2855 bool IgnoreBaseAccess, 2856 bool Diagnose) { 2857 QualType FromType = From->getType(); 2858 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 2859 2860 Kind = CK_BitCast; 2861 2862 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && 2863 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == 2864 Expr::NPCK_ZeroExpression) { 2865 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) 2866 DiagRuntimeBehavior(From->getExprLoc(), From, 2867 PDiag(diag::warn_impcast_bool_to_null_pointer) 2868 << ToType << From->getSourceRange()); 2869 else if (!isUnevaluatedContext()) 2870 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) 2871 << ToType << From->getSourceRange(); 2872 } 2873 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 2874 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { 2875 QualType FromPointeeType = FromPtrType->getPointeeType(), 2876 ToPointeeType = ToPtrType->getPointeeType(); 2877 2878 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 2879 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 2880 // We must have a derived-to-base conversion. Check an 2881 // ambiguous or inaccessible conversion. 2882 unsigned InaccessibleID = 0; 2883 unsigned AmbigiousID = 0; 2884 if (Diagnose) { 2885 InaccessibleID = diag::err_upcast_to_inaccessible_base; 2886 AmbigiousID = diag::err_ambiguous_derived_to_base_conv; 2887 } 2888 if (CheckDerivedToBaseConversion( 2889 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID, 2890 From->getExprLoc(), From->getSourceRange(), DeclarationName(), 2891 &BasePath, IgnoreBaseAccess)) 2892 return true; 2893 2894 // The conversion was successful. 2895 Kind = CK_DerivedToBase; 2896 } 2897 2898 if (Diagnose && !IsCStyleOrFunctionalCast && 2899 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { 2900 assert(getLangOpts().MSVCCompat && 2901 "this should only be possible with MSVCCompat!"); 2902 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) 2903 << From->getSourceRange(); 2904 } 2905 } 2906 } else if (const ObjCObjectPointerType *ToPtrType = 2907 ToType->getAs<ObjCObjectPointerType>()) { 2908 if (const ObjCObjectPointerType *FromPtrType = 2909 FromType->getAs<ObjCObjectPointerType>()) { 2910 // Objective-C++ conversions are always okay. 2911 // FIXME: We should have a different class of conversions for the 2912 // Objective-C++ implicit conversions. 2913 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 2914 return false; 2915 } else if (FromType->isBlockPointerType()) { 2916 Kind = CK_BlockPointerToObjCPointerCast; 2917 } else { 2918 Kind = CK_CPointerToObjCPointerCast; 2919 } 2920 } else if (ToType->isBlockPointerType()) { 2921 if (!FromType->isBlockPointerType()) 2922 Kind = CK_AnyPointerToBlockPointerCast; 2923 } 2924 2925 // We shouldn't fall into this case unless it's valid for other 2926 // reasons. 2927 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 2928 Kind = CK_NullToPointer; 2929 2930 return false; 2931 } 2932 2933 /// IsMemberPointerConversion - Determines whether the conversion of the 2934 /// expression From, which has the (possibly adjusted) type FromType, can be 2935 /// converted to the type ToType via a member pointer conversion (C++ 4.11). 2936 /// If so, returns true and places the converted type (that might differ from 2937 /// ToType in its cv-qualifiers at some level) into ConvertedType. 2938 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 2939 QualType ToType, 2940 bool InOverloadResolution, 2941 QualType &ConvertedType) { 2942 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 2943 if (!ToTypePtr) 2944 return false; 2945 2946 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 2947 if (From->isNullPointerConstant(Context, 2948 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2949 : Expr::NPC_ValueDependentIsNull)) { 2950 ConvertedType = ToType; 2951 return true; 2952 } 2953 2954 // Otherwise, both types have to be member pointers. 2955 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 2956 if (!FromTypePtr) 2957 return false; 2958 2959 // A pointer to member of B can be converted to a pointer to member of D, 2960 // where D is derived from B (C++ 4.11p2). 2961 QualType FromClass(FromTypePtr->getClass(), 0); 2962 QualType ToClass(ToTypePtr->getClass(), 0); 2963 2964 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 2965 IsDerivedFrom(From->getLocStart(), ToClass, FromClass)) { 2966 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 2967 ToClass.getTypePtr()); 2968 return true; 2969 } 2970 2971 return false; 2972 } 2973 2974 /// CheckMemberPointerConversion - Check the member pointer conversion from the 2975 /// expression From to the type ToType. This routine checks for ambiguous or 2976 /// virtual or inaccessible base-to-derived member pointer conversions 2977 /// for which IsMemberPointerConversion has already returned true. It returns 2978 /// true and produces a diagnostic if there was an error, or returns false 2979 /// otherwise. 2980 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 2981 CastKind &Kind, 2982 CXXCastPath &BasePath, 2983 bool IgnoreBaseAccess) { 2984 QualType FromType = From->getType(); 2985 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 2986 if (!FromPtrType) { 2987 // This must be a null pointer to member pointer conversion 2988 assert(From->isNullPointerConstant(Context, 2989 Expr::NPC_ValueDependentIsNull) && 2990 "Expr must be null pointer constant!"); 2991 Kind = CK_NullToMemberPointer; 2992 return false; 2993 } 2994 2995 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 2996 assert(ToPtrType && "No member pointer cast has a target type " 2997 "that is not a member pointer."); 2998 2999 QualType FromClass = QualType(FromPtrType->getClass(), 0); 3000 QualType ToClass = QualType(ToPtrType->getClass(), 0); 3001 3002 // FIXME: What about dependent types? 3003 assert(FromClass->isRecordType() && "Pointer into non-class."); 3004 assert(ToClass->isRecordType() && "Pointer into non-class."); 3005 3006 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3007 /*DetectVirtual=*/true); 3008 bool DerivationOkay = 3009 IsDerivedFrom(From->getLocStart(), ToClass, FromClass, Paths); 3010 assert(DerivationOkay && 3011 "Should not have been called if derivation isn't OK."); 3012 (void)DerivationOkay; 3013 3014 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 3015 getUnqualifiedType())) { 3016 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 3017 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 3018 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 3019 return true; 3020 } 3021 3022 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 3023 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 3024 << FromClass << ToClass << QualType(VBase, 0) 3025 << From->getSourceRange(); 3026 return true; 3027 } 3028 3029 if (!IgnoreBaseAccess) 3030 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 3031 Paths.front(), 3032 diag::err_downcast_from_inaccessible_base); 3033 3034 // Must be a base to derived member conversion. 3035 BuildBasePathArray(Paths, BasePath); 3036 Kind = CK_BaseToDerivedMemberPointer; 3037 return false; 3038 } 3039 3040 /// Determine whether the lifetime conversion between the two given 3041 /// qualifiers sets is nontrivial. 3042 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, 3043 Qualifiers ToQuals) { 3044 // Converting anything to const __unsafe_unretained is trivial. 3045 if (ToQuals.hasConst() && 3046 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) 3047 return false; 3048 3049 return true; 3050 } 3051 3052 /// IsQualificationConversion - Determines whether the conversion from 3053 /// an rvalue of type FromType to ToType is a qualification conversion 3054 /// (C++ 4.4). 3055 /// 3056 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate 3057 /// when the qualification conversion involves a change in the Objective-C 3058 /// object lifetime. 3059 bool 3060 Sema::IsQualificationConversion(QualType FromType, QualType ToType, 3061 bool CStyle, bool &ObjCLifetimeConversion) { 3062 FromType = Context.getCanonicalType(FromType); 3063 ToType = Context.getCanonicalType(ToType); 3064 ObjCLifetimeConversion = false; 3065 3066 // If FromType and ToType are the same type, this is not a 3067 // qualification conversion. 3068 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 3069 return false; 3070 3071 // (C++ 4.4p4): 3072 // A conversion can add cv-qualifiers at levels other than the first 3073 // in multi-level pointers, subject to the following rules: [...] 3074 bool PreviousToQualsIncludeConst = true; 3075 bool UnwrappedAnyPointer = false; 3076 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 3077 // Within each iteration of the loop, we check the qualifiers to 3078 // determine if this still looks like a qualification 3079 // conversion. Then, if all is well, we unwrap one more level of 3080 // pointers or pointers-to-members and do it all again 3081 // until there are no more pointers or pointers-to-members left to 3082 // unwrap. 3083 UnwrappedAnyPointer = true; 3084 3085 Qualifiers FromQuals = FromType.getQualifiers(); 3086 Qualifiers ToQuals = ToType.getQualifiers(); 3087 3088 // Ignore __unaligned qualifier if this type is void. 3089 if (ToType.getUnqualifiedType()->isVoidType()) 3090 FromQuals.removeUnaligned(); 3091 3092 // Objective-C ARC: 3093 // Check Objective-C lifetime conversions. 3094 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() && 3095 UnwrappedAnyPointer) { 3096 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 3097 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) 3098 ObjCLifetimeConversion = true; 3099 FromQuals.removeObjCLifetime(); 3100 ToQuals.removeObjCLifetime(); 3101 } else { 3102 // Qualification conversions cannot cast between different 3103 // Objective-C lifetime qualifiers. 3104 return false; 3105 } 3106 } 3107 3108 // Allow addition/removal of GC attributes but not changing GC attributes. 3109 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 3110 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 3111 FromQuals.removeObjCGCAttr(); 3112 ToQuals.removeObjCGCAttr(); 3113 } 3114 3115 // -- for every j > 0, if const is in cv 1,j then const is in cv 3116 // 2,j, and similarly for volatile. 3117 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 3118 return false; 3119 3120 // -- if the cv 1,j and cv 2,j are different, then const is in 3121 // every cv for 0 < k < j. 3122 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() 3123 && !PreviousToQualsIncludeConst) 3124 return false; 3125 3126 // Keep track of whether all prior cv-qualifiers in the "to" type 3127 // include const. 3128 PreviousToQualsIncludeConst 3129 = PreviousToQualsIncludeConst && ToQuals.hasConst(); 3130 } 3131 3132 // We are left with FromType and ToType being the pointee types 3133 // after unwrapping the original FromType and ToType the same number 3134 // of types. If we unwrapped any pointers, and if FromType and 3135 // ToType have the same unqualified type (since we checked 3136 // qualifiers above), then this is a qualification conversion. 3137 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 3138 } 3139 3140 /// - Determine whether this is a conversion from a scalar type to an 3141 /// atomic type. 3142 /// 3143 /// If successful, updates \c SCS's second and third steps in the conversion 3144 /// sequence to finish the conversion. 3145 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 3146 bool InOverloadResolution, 3147 StandardConversionSequence &SCS, 3148 bool CStyle) { 3149 const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); 3150 if (!ToAtomic) 3151 return false; 3152 3153 StandardConversionSequence InnerSCS; 3154 if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 3155 InOverloadResolution, InnerSCS, 3156 CStyle, /*AllowObjCWritebackConversion=*/false)) 3157 return false; 3158 3159 SCS.Second = InnerSCS.Second; 3160 SCS.setToType(1, InnerSCS.getToType(1)); 3161 SCS.Third = InnerSCS.Third; 3162 SCS.QualificationIncludesObjCLifetime 3163 = InnerSCS.QualificationIncludesObjCLifetime; 3164 SCS.setToType(2, InnerSCS.getToType(2)); 3165 return true; 3166 } 3167 3168 static bool isFirstArgumentCompatibleWithType(ASTContext &Context, 3169 CXXConstructorDecl *Constructor, 3170 QualType Type) { 3171 const FunctionProtoType *CtorType = 3172 Constructor->getType()->getAs<FunctionProtoType>(); 3173 if (CtorType->getNumParams() > 0) { 3174 QualType FirstArg = CtorType->getParamType(0); 3175 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) 3176 return true; 3177 } 3178 return false; 3179 } 3180 3181 static OverloadingResult 3182 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, 3183 CXXRecordDecl *To, 3184 UserDefinedConversionSequence &User, 3185 OverloadCandidateSet &CandidateSet, 3186 bool AllowExplicit) { 3187 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3188 for (auto *D : S.LookupConstructors(To)) { 3189 auto Info = getConstructorInfo(D); 3190 if (!Info) 3191 continue; 3192 3193 bool Usable = !Info.Constructor->isInvalidDecl() && 3194 S.isInitListConstructor(Info.Constructor) && 3195 (AllowExplicit || !Info.Constructor->isExplicit()); 3196 if (Usable) { 3197 // If the first argument is (a reference to) the target type, 3198 // suppress conversions. 3199 bool SuppressUserConversions = isFirstArgumentCompatibleWithType( 3200 S.Context, Info.Constructor, ToType); 3201 if (Info.ConstructorTmpl) 3202 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 3203 /*ExplicitArgs*/ nullptr, From, 3204 CandidateSet, SuppressUserConversions); 3205 else 3206 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, 3207 CandidateSet, SuppressUserConversions); 3208 } 3209 } 3210 3211 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3212 3213 OverloadCandidateSet::iterator Best; 3214 switch (auto Result = 3215 CandidateSet.BestViableFunction(S, From->getLocStart(), 3216 Best)) { 3217 case OR_Deleted: 3218 case OR_Success: { 3219 // Record the standard conversion we used and the conversion function. 3220 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 3221 QualType ThisType = Constructor->getThisType(S.Context); 3222 // Initializer lists don't have conversions as such. 3223 User.Before.setAsIdentityConversion(); 3224 User.HadMultipleCandidates = HadMultipleCandidates; 3225 User.ConversionFunction = Constructor; 3226 User.FoundConversionFunction = Best->FoundDecl; 3227 User.After.setAsIdentityConversion(); 3228 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 3229 User.After.setAllToTypes(ToType); 3230 return Result; 3231 } 3232 3233 case OR_No_Viable_Function: 3234 return OR_No_Viable_Function; 3235 case OR_Ambiguous: 3236 return OR_Ambiguous; 3237 } 3238 3239 llvm_unreachable("Invalid OverloadResult!"); 3240 } 3241 3242 /// Determines whether there is a user-defined conversion sequence 3243 /// (C++ [over.ics.user]) that converts expression From to the type 3244 /// ToType. If such a conversion exists, User will contain the 3245 /// user-defined conversion sequence that performs such a conversion 3246 /// and this routine will return true. Otherwise, this routine returns 3247 /// false and User is unspecified. 3248 /// 3249 /// \param AllowExplicit true if the conversion should consider C++0x 3250 /// "explicit" conversion functions as well as non-explicit conversion 3251 /// functions (C++0x [class.conv.fct]p2). 3252 /// 3253 /// \param AllowObjCConversionOnExplicit true if the conversion should 3254 /// allow an extra Objective-C pointer conversion on uses of explicit 3255 /// constructors. Requires \c AllowExplicit to also be set. 3256 static OverloadingResult 3257 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 3258 UserDefinedConversionSequence &User, 3259 OverloadCandidateSet &CandidateSet, 3260 bool AllowExplicit, 3261 bool AllowObjCConversionOnExplicit) { 3262 assert(AllowExplicit || !AllowObjCConversionOnExplicit); 3263 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3264 3265 // Whether we will only visit constructors. 3266 bool ConstructorsOnly = false; 3267 3268 // If the type we are conversion to is a class type, enumerate its 3269 // constructors. 3270 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 3271 // C++ [over.match.ctor]p1: 3272 // When objects of class type are direct-initialized (8.5), or 3273 // copy-initialized from an expression of the same or a 3274 // derived class type (8.5), overload resolution selects the 3275 // constructor. [...] For copy-initialization, the candidate 3276 // functions are all the converting constructors (12.3.1) of 3277 // that class. The argument list is the expression-list within 3278 // the parentheses of the initializer. 3279 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 3280 (From->getType()->getAs<RecordType>() && 3281 S.IsDerivedFrom(From->getLocStart(), From->getType(), ToType))) 3282 ConstructorsOnly = true; 3283 3284 if (!S.isCompleteType(From->getExprLoc(), ToType)) { 3285 // We're not going to find any constructors. 3286 } else if (CXXRecordDecl *ToRecordDecl 3287 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 3288 3289 Expr **Args = &From; 3290 unsigned NumArgs = 1; 3291 bool ListInitializing = false; 3292 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { 3293 // But first, see if there is an init-list-constructor that will work. 3294 OverloadingResult Result = IsInitializerListConstructorConversion( 3295 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit); 3296 if (Result != OR_No_Viable_Function) 3297 return Result; 3298 // Never mind. 3299 CandidateSet.clear( 3300 OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3301 3302 // If we're list-initializing, we pass the individual elements as 3303 // arguments, not the entire list. 3304 Args = InitList->getInits(); 3305 NumArgs = InitList->getNumInits(); 3306 ListInitializing = true; 3307 } 3308 3309 for (auto *D : S.LookupConstructors(ToRecordDecl)) { 3310 auto Info = getConstructorInfo(D); 3311 if (!Info) 3312 continue; 3313 3314 bool Usable = !Info.Constructor->isInvalidDecl(); 3315 if (ListInitializing) 3316 Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit()); 3317 else 3318 Usable = Usable && 3319 Info.Constructor->isConvertingConstructor(AllowExplicit); 3320 if (Usable) { 3321 bool SuppressUserConversions = !ConstructorsOnly; 3322 if (SuppressUserConversions && ListInitializing) { 3323 SuppressUserConversions = false; 3324 if (NumArgs == 1) { 3325 // If the first argument is (a reference to) the target type, 3326 // suppress conversions. 3327 SuppressUserConversions = isFirstArgumentCompatibleWithType( 3328 S.Context, Info.Constructor, ToType); 3329 } 3330 } 3331 if (Info.ConstructorTmpl) 3332 S.AddTemplateOverloadCandidate( 3333 Info.ConstructorTmpl, Info.FoundDecl, 3334 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs), 3335 CandidateSet, SuppressUserConversions); 3336 else 3337 // Allow one user-defined conversion when user specifies a 3338 // From->ToType conversion via an static cast (c-style, etc). 3339 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 3340 llvm::makeArrayRef(Args, NumArgs), 3341 CandidateSet, SuppressUserConversions); 3342 } 3343 } 3344 } 3345 } 3346 3347 // Enumerate conversion functions, if we're allowed to. 3348 if (ConstructorsOnly || isa<InitListExpr>(From)) { 3349 } else if (!S.isCompleteType(From->getLocStart(), From->getType())) { 3350 // No conversion functions from incomplete types. 3351 } else if (const RecordType *FromRecordType 3352 = From->getType()->getAs<RecordType>()) { 3353 if (CXXRecordDecl *FromRecordDecl 3354 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 3355 // Add all of the conversion functions as candidates. 3356 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); 3357 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3358 DeclAccessPair FoundDecl = I.getPair(); 3359 NamedDecl *D = FoundDecl.getDecl(); 3360 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 3361 if (isa<UsingShadowDecl>(D)) 3362 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3363 3364 CXXConversionDecl *Conv; 3365 FunctionTemplateDecl *ConvTemplate; 3366 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 3367 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3368 else 3369 Conv = cast<CXXConversionDecl>(D); 3370 3371 if (AllowExplicit || !Conv->isExplicit()) { 3372 if (ConvTemplate) 3373 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 3374 ActingContext, From, ToType, 3375 CandidateSet, 3376 AllowObjCConversionOnExplicit); 3377 else 3378 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 3379 From, ToType, CandidateSet, 3380 AllowObjCConversionOnExplicit); 3381 } 3382 } 3383 } 3384 } 3385 3386 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3387 3388 OverloadCandidateSet::iterator Best; 3389 switch (auto Result = CandidateSet.BestViableFunction(S, From->getLocStart(), 3390 Best)) { 3391 case OR_Success: 3392 case OR_Deleted: 3393 // Record the standard conversion we used and the conversion function. 3394 if (CXXConstructorDecl *Constructor 3395 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 3396 // C++ [over.ics.user]p1: 3397 // If the user-defined conversion is specified by a 3398 // constructor (12.3.1), the initial standard conversion 3399 // sequence converts the source type to the type required by 3400 // the argument of the constructor. 3401 // 3402 QualType ThisType = Constructor->getThisType(S.Context); 3403 if (isa<InitListExpr>(From)) { 3404 // Initializer lists don't have conversions as such. 3405 User.Before.setAsIdentityConversion(); 3406 } else { 3407 if (Best->Conversions[0].isEllipsis()) 3408 User.EllipsisConversion = true; 3409 else { 3410 User.Before = Best->Conversions[0].Standard; 3411 User.EllipsisConversion = false; 3412 } 3413 } 3414 User.HadMultipleCandidates = HadMultipleCandidates; 3415 User.ConversionFunction = Constructor; 3416 User.FoundConversionFunction = Best->FoundDecl; 3417 User.After.setAsIdentityConversion(); 3418 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 3419 User.After.setAllToTypes(ToType); 3420 return Result; 3421 } 3422 if (CXXConversionDecl *Conversion 3423 = dyn_cast<CXXConversionDecl>(Best->Function)) { 3424 // C++ [over.ics.user]p1: 3425 // 3426 // [...] If the user-defined conversion is specified by a 3427 // conversion function (12.3.2), the initial standard 3428 // conversion sequence converts the source type to the 3429 // implicit object parameter of the conversion function. 3430 User.Before = Best->Conversions[0].Standard; 3431 User.HadMultipleCandidates = HadMultipleCandidates; 3432 User.ConversionFunction = Conversion; 3433 User.FoundConversionFunction = Best->FoundDecl; 3434 User.EllipsisConversion = false; 3435 3436 // C++ [over.ics.user]p2: 3437 // The second standard conversion sequence converts the 3438 // result of the user-defined conversion to the target type 3439 // for the sequence. Since an implicit conversion sequence 3440 // is an initialization, the special rules for 3441 // initialization by user-defined conversion apply when 3442 // selecting the best user-defined conversion for a 3443 // user-defined conversion sequence (see 13.3.3 and 3444 // 13.3.3.1). 3445 User.After = Best->FinalConversion; 3446 return Result; 3447 } 3448 llvm_unreachable("Not a constructor or conversion function?"); 3449 3450 case OR_No_Viable_Function: 3451 return OR_No_Viable_Function; 3452 3453 case OR_Ambiguous: 3454 return OR_Ambiguous; 3455 } 3456 3457 llvm_unreachable("Invalid OverloadResult!"); 3458 } 3459 3460 bool 3461 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 3462 ImplicitConversionSequence ICS; 3463 OverloadCandidateSet CandidateSet(From->getExprLoc(), 3464 OverloadCandidateSet::CSK_Normal); 3465 OverloadingResult OvResult = 3466 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 3467 CandidateSet, false, false); 3468 if (OvResult == OR_Ambiguous) 3469 Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition) 3470 << From->getType() << ToType << From->getSourceRange(); 3471 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) { 3472 if (!RequireCompleteType(From->getLocStart(), ToType, 3473 diag::err_typecheck_nonviable_condition_incomplete, 3474 From->getType(), From->getSourceRange())) 3475 Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition) 3476 << false << From->getType() << From->getSourceRange() << ToType; 3477 } else 3478 return false; 3479 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From); 3480 return true; 3481 } 3482 3483 /// Compare the user-defined conversion functions or constructors 3484 /// of two user-defined conversion sequences to determine whether any ordering 3485 /// is possible. 3486 static ImplicitConversionSequence::CompareKind 3487 compareConversionFunctions(Sema &S, FunctionDecl *Function1, 3488 FunctionDecl *Function2) { 3489 if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11) 3490 return ImplicitConversionSequence::Indistinguishable; 3491 3492 // Objective-C++: 3493 // If both conversion functions are implicitly-declared conversions from 3494 // a lambda closure type to a function pointer and a block pointer, 3495 // respectively, always prefer the conversion to a function pointer, 3496 // because the function pointer is more lightweight and is more likely 3497 // to keep code working. 3498 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); 3499 if (!Conv1) 3500 return ImplicitConversionSequence::Indistinguishable; 3501 3502 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2); 3503 if (!Conv2) 3504 return ImplicitConversionSequence::Indistinguishable; 3505 3506 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) { 3507 bool Block1 = Conv1->getConversionType()->isBlockPointerType(); 3508 bool Block2 = Conv2->getConversionType()->isBlockPointerType(); 3509 if (Block1 != Block2) 3510 return Block1 ? ImplicitConversionSequence::Worse 3511 : ImplicitConversionSequence::Better; 3512 } 3513 3514 return ImplicitConversionSequence::Indistinguishable; 3515 } 3516 3517 static bool hasDeprecatedStringLiteralToCharPtrConversion( 3518 const ImplicitConversionSequence &ICS) { 3519 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || 3520 (ICS.isUserDefined() && 3521 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); 3522 } 3523 3524 /// CompareImplicitConversionSequences - Compare two implicit 3525 /// conversion sequences to determine whether one is better than the 3526 /// other or if they are indistinguishable (C++ 13.3.3.2). 3527 static ImplicitConversionSequence::CompareKind 3528 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, 3529 const ImplicitConversionSequence& ICS1, 3530 const ImplicitConversionSequence& ICS2) 3531 { 3532 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 3533 // conversion sequences (as defined in 13.3.3.1) 3534 // -- a standard conversion sequence (13.3.3.1.1) is a better 3535 // conversion sequence than a user-defined conversion sequence or 3536 // an ellipsis conversion sequence, and 3537 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 3538 // conversion sequence than an ellipsis conversion sequence 3539 // (13.3.3.1.3). 3540 // 3541 // C++0x [over.best.ics]p10: 3542 // For the purpose of ranking implicit conversion sequences as 3543 // described in 13.3.3.2, the ambiguous conversion sequence is 3544 // treated as a user-defined sequence that is indistinguishable 3545 // from any other user-defined conversion sequence. 3546 3547 // String literal to 'char *' conversion has been deprecated in C++03. It has 3548 // been removed from C++11. We still accept this conversion, if it happens at 3549 // the best viable function. Otherwise, this conversion is considered worse 3550 // than ellipsis conversion. Consider this as an extension; this is not in the 3551 // standard. For example: 3552 // 3553 // int &f(...); // #1 3554 // void f(char*); // #2 3555 // void g() { int &r = f("foo"); } 3556 // 3557 // In C++03, we pick #2 as the best viable function. 3558 // In C++11, we pick #1 as the best viable function, because ellipsis 3559 // conversion is better than string-literal to char* conversion (since there 3560 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't 3561 // convert arguments, #2 would be the best viable function in C++11. 3562 // If the best viable function has this conversion, a warning will be issued 3563 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. 3564 3565 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 3566 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != 3567 hasDeprecatedStringLiteralToCharPtrConversion(ICS2)) 3568 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) 3569 ? ImplicitConversionSequence::Worse 3570 : ImplicitConversionSequence::Better; 3571 3572 if (ICS1.getKindRank() < ICS2.getKindRank()) 3573 return ImplicitConversionSequence::Better; 3574 if (ICS2.getKindRank() < ICS1.getKindRank()) 3575 return ImplicitConversionSequence::Worse; 3576 3577 // The following checks require both conversion sequences to be of 3578 // the same kind. 3579 if (ICS1.getKind() != ICS2.getKind()) 3580 return ImplicitConversionSequence::Indistinguishable; 3581 3582 ImplicitConversionSequence::CompareKind Result = 3583 ImplicitConversionSequence::Indistinguishable; 3584 3585 // Two implicit conversion sequences of the same form are 3586 // indistinguishable conversion sequences unless one of the 3587 // following rules apply: (C++ 13.3.3.2p3): 3588 3589 // List-initialization sequence L1 is a better conversion sequence than 3590 // list-initialization sequence L2 if: 3591 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, 3592 // if not that, 3593 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T", 3594 // and N1 is smaller than N2., 3595 // even if one of the other rules in this paragraph would otherwise apply. 3596 if (!ICS1.isBad()) { 3597 if (ICS1.isStdInitializerListElement() && 3598 !ICS2.isStdInitializerListElement()) 3599 return ImplicitConversionSequence::Better; 3600 if (!ICS1.isStdInitializerListElement() && 3601 ICS2.isStdInitializerListElement()) 3602 return ImplicitConversionSequence::Worse; 3603 } 3604 3605 if (ICS1.isStandard()) 3606 // Standard conversion sequence S1 is a better conversion sequence than 3607 // standard conversion sequence S2 if [...] 3608 Result = CompareStandardConversionSequences(S, Loc, 3609 ICS1.Standard, ICS2.Standard); 3610 else if (ICS1.isUserDefined()) { 3611 // User-defined conversion sequence U1 is a better conversion 3612 // sequence than another user-defined conversion sequence U2 if 3613 // they contain the same user-defined conversion function or 3614 // constructor and if the second standard conversion sequence of 3615 // U1 is better than the second standard conversion sequence of 3616 // U2 (C++ 13.3.3.2p3). 3617 if (ICS1.UserDefined.ConversionFunction == 3618 ICS2.UserDefined.ConversionFunction) 3619 Result = CompareStandardConversionSequences(S, Loc, 3620 ICS1.UserDefined.After, 3621 ICS2.UserDefined.After); 3622 else 3623 Result = compareConversionFunctions(S, 3624 ICS1.UserDefined.ConversionFunction, 3625 ICS2.UserDefined.ConversionFunction); 3626 } 3627 3628 return Result; 3629 } 3630 3631 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 3632 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 3633 Qualifiers Quals; 3634 T1 = Context.getUnqualifiedArrayType(T1, Quals); 3635 T2 = Context.getUnqualifiedArrayType(T2, Quals); 3636 } 3637 3638 return Context.hasSameUnqualifiedType(T1, T2); 3639 } 3640 3641 // Per 13.3.3.2p3, compare the given standard conversion sequences to 3642 // determine if one is a proper subset of the other. 3643 static ImplicitConversionSequence::CompareKind 3644 compareStandardConversionSubsets(ASTContext &Context, 3645 const StandardConversionSequence& SCS1, 3646 const StandardConversionSequence& SCS2) { 3647 ImplicitConversionSequence::CompareKind Result 3648 = ImplicitConversionSequence::Indistinguishable; 3649 3650 // the identity conversion sequence is considered to be a subsequence of 3651 // any non-identity conversion sequence 3652 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 3653 return ImplicitConversionSequence::Better; 3654 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 3655 return ImplicitConversionSequence::Worse; 3656 3657 if (SCS1.Second != SCS2.Second) { 3658 if (SCS1.Second == ICK_Identity) 3659 Result = ImplicitConversionSequence::Better; 3660 else if (SCS2.Second == ICK_Identity) 3661 Result = ImplicitConversionSequence::Worse; 3662 else 3663 return ImplicitConversionSequence::Indistinguishable; 3664 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 3665 return ImplicitConversionSequence::Indistinguishable; 3666 3667 if (SCS1.Third == SCS2.Third) { 3668 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 3669 : ImplicitConversionSequence::Indistinguishable; 3670 } 3671 3672 if (SCS1.Third == ICK_Identity) 3673 return Result == ImplicitConversionSequence::Worse 3674 ? ImplicitConversionSequence::Indistinguishable 3675 : ImplicitConversionSequence::Better; 3676 3677 if (SCS2.Third == ICK_Identity) 3678 return Result == ImplicitConversionSequence::Better 3679 ? ImplicitConversionSequence::Indistinguishable 3680 : ImplicitConversionSequence::Worse; 3681 3682 return ImplicitConversionSequence::Indistinguishable; 3683 } 3684 3685 /// Determine whether one of the given reference bindings is better 3686 /// than the other based on what kind of bindings they are. 3687 static bool 3688 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 3689 const StandardConversionSequence &SCS2) { 3690 // C++0x [over.ics.rank]p3b4: 3691 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 3692 // implicit object parameter of a non-static member function declared 3693 // without a ref-qualifier, and *either* S1 binds an rvalue reference 3694 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 3695 // lvalue reference to a function lvalue and S2 binds an rvalue 3696 // reference*. 3697 // 3698 // FIXME: Rvalue references. We're going rogue with the above edits, 3699 // because the semantics in the current C++0x working paper (N3225 at the 3700 // time of this writing) break the standard definition of std::forward 3701 // and std::reference_wrapper when dealing with references to functions. 3702 // Proposed wording changes submitted to CWG for consideration. 3703 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 3704 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 3705 return false; 3706 3707 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 3708 SCS2.IsLvalueReference) || 3709 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 3710 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); 3711 } 3712 3713 /// CompareStandardConversionSequences - Compare two standard 3714 /// conversion sequences to determine whether one is better than the 3715 /// other or if they are indistinguishable (C++ 13.3.3.2p3). 3716 static ImplicitConversionSequence::CompareKind 3717 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 3718 const StandardConversionSequence& SCS1, 3719 const StandardConversionSequence& SCS2) 3720 { 3721 // Standard conversion sequence S1 is a better conversion sequence 3722 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 3723 3724 // -- S1 is a proper subsequence of S2 (comparing the conversion 3725 // sequences in the canonical form defined by 13.3.3.1.1, 3726 // excluding any Lvalue Transformation; the identity conversion 3727 // sequence is considered to be a subsequence of any 3728 // non-identity conversion sequence) or, if not that, 3729 if (ImplicitConversionSequence::CompareKind CK 3730 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 3731 return CK; 3732 3733 // -- the rank of S1 is better than the rank of S2 (by the rules 3734 // defined below), or, if not that, 3735 ImplicitConversionRank Rank1 = SCS1.getRank(); 3736 ImplicitConversionRank Rank2 = SCS2.getRank(); 3737 if (Rank1 < Rank2) 3738 return ImplicitConversionSequence::Better; 3739 else if (Rank2 < Rank1) 3740 return ImplicitConversionSequence::Worse; 3741 3742 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 3743 // are indistinguishable unless one of the following rules 3744 // applies: 3745 3746 // A conversion that is not a conversion of a pointer, or 3747 // pointer to member, to bool is better than another conversion 3748 // that is such a conversion. 3749 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 3750 return SCS2.isPointerConversionToBool() 3751 ? ImplicitConversionSequence::Better 3752 : ImplicitConversionSequence::Worse; 3753 3754 // C++ [over.ics.rank]p4b2: 3755 // 3756 // If class B is derived directly or indirectly from class A, 3757 // conversion of B* to A* is better than conversion of B* to 3758 // void*, and conversion of A* to void* is better than conversion 3759 // of B* to void*. 3760 bool SCS1ConvertsToVoid 3761 = SCS1.isPointerConversionToVoidPointer(S.Context); 3762 bool SCS2ConvertsToVoid 3763 = SCS2.isPointerConversionToVoidPointer(S.Context); 3764 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 3765 // Exactly one of the conversion sequences is a conversion to 3766 // a void pointer; it's the worse conversion. 3767 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 3768 : ImplicitConversionSequence::Worse; 3769 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 3770 // Neither conversion sequence converts to a void pointer; compare 3771 // their derived-to-base conversions. 3772 if (ImplicitConversionSequence::CompareKind DerivedCK 3773 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) 3774 return DerivedCK; 3775 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 3776 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 3777 // Both conversion sequences are conversions to void 3778 // pointers. Compare the source types to determine if there's an 3779 // inheritance relationship in their sources. 3780 QualType FromType1 = SCS1.getFromType(); 3781 QualType FromType2 = SCS2.getFromType(); 3782 3783 // Adjust the types we're converting from via the array-to-pointer 3784 // conversion, if we need to. 3785 if (SCS1.First == ICK_Array_To_Pointer) 3786 FromType1 = S.Context.getArrayDecayedType(FromType1); 3787 if (SCS2.First == ICK_Array_To_Pointer) 3788 FromType2 = S.Context.getArrayDecayedType(FromType2); 3789 3790 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 3791 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 3792 3793 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 3794 return ImplicitConversionSequence::Better; 3795 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 3796 return ImplicitConversionSequence::Worse; 3797 3798 // Objective-C++: If one interface is more specific than the 3799 // other, it is the better one. 3800 const ObjCObjectPointerType* FromObjCPtr1 3801 = FromType1->getAs<ObjCObjectPointerType>(); 3802 const ObjCObjectPointerType* FromObjCPtr2 3803 = FromType2->getAs<ObjCObjectPointerType>(); 3804 if (FromObjCPtr1 && FromObjCPtr2) { 3805 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 3806 FromObjCPtr2); 3807 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 3808 FromObjCPtr1); 3809 if (AssignLeft != AssignRight) { 3810 return AssignLeft? ImplicitConversionSequence::Better 3811 : ImplicitConversionSequence::Worse; 3812 } 3813 } 3814 } 3815 3816 // Compare based on qualification conversions (C++ 13.3.3.2p3, 3817 // bullet 3). 3818 if (ImplicitConversionSequence::CompareKind QualCK 3819 = CompareQualificationConversions(S, SCS1, SCS2)) 3820 return QualCK; 3821 3822 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 3823 // Check for a better reference binding based on the kind of bindings. 3824 if (isBetterReferenceBindingKind(SCS1, SCS2)) 3825 return ImplicitConversionSequence::Better; 3826 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 3827 return ImplicitConversionSequence::Worse; 3828 3829 // C++ [over.ics.rank]p3b4: 3830 // -- S1 and S2 are reference bindings (8.5.3), and the types to 3831 // which the references refer are the same type except for 3832 // top-level cv-qualifiers, and the type to which the reference 3833 // initialized by S2 refers is more cv-qualified than the type 3834 // to which the reference initialized by S1 refers. 3835 QualType T1 = SCS1.getToType(2); 3836 QualType T2 = SCS2.getToType(2); 3837 T1 = S.Context.getCanonicalType(T1); 3838 T2 = S.Context.getCanonicalType(T2); 3839 Qualifiers T1Quals, T2Quals; 3840 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 3841 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 3842 if (UnqualT1 == UnqualT2) { 3843 // Objective-C++ ARC: If the references refer to objects with different 3844 // lifetimes, prefer bindings that don't change lifetime. 3845 if (SCS1.ObjCLifetimeConversionBinding != 3846 SCS2.ObjCLifetimeConversionBinding) { 3847 return SCS1.ObjCLifetimeConversionBinding 3848 ? ImplicitConversionSequence::Worse 3849 : ImplicitConversionSequence::Better; 3850 } 3851 3852 // If the type is an array type, promote the element qualifiers to the 3853 // type for comparison. 3854 if (isa<ArrayType>(T1) && T1Quals) 3855 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 3856 if (isa<ArrayType>(T2) && T2Quals) 3857 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 3858 if (T2.isMoreQualifiedThan(T1)) 3859 return ImplicitConversionSequence::Better; 3860 else if (T1.isMoreQualifiedThan(T2)) 3861 return ImplicitConversionSequence::Worse; 3862 } 3863 } 3864 3865 // In Microsoft mode, prefer an integral conversion to a 3866 // floating-to-integral conversion if the integral conversion 3867 // is between types of the same size. 3868 // For example: 3869 // void f(float); 3870 // void f(int); 3871 // int main { 3872 // long a; 3873 // f(a); 3874 // } 3875 // Here, MSVC will call f(int) instead of generating a compile error 3876 // as clang will do in standard mode. 3877 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion && 3878 SCS2.Second == ICK_Floating_Integral && 3879 S.Context.getTypeSize(SCS1.getFromType()) == 3880 S.Context.getTypeSize(SCS1.getToType(2))) 3881 return ImplicitConversionSequence::Better; 3882 3883 return ImplicitConversionSequence::Indistinguishable; 3884 } 3885 3886 /// CompareQualificationConversions - Compares two standard conversion 3887 /// sequences to determine whether they can be ranked based on their 3888 /// qualification conversions (C++ 13.3.3.2p3 bullet 3). 3889 static ImplicitConversionSequence::CompareKind 3890 CompareQualificationConversions(Sema &S, 3891 const StandardConversionSequence& SCS1, 3892 const StandardConversionSequence& SCS2) { 3893 // C++ 13.3.3.2p3: 3894 // -- S1 and S2 differ only in their qualification conversion and 3895 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 3896 // cv-qualification signature of type T1 is a proper subset of 3897 // the cv-qualification signature of type T2, and S1 is not the 3898 // deprecated string literal array-to-pointer conversion (4.2). 3899 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 3900 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 3901 return ImplicitConversionSequence::Indistinguishable; 3902 3903 // FIXME: the example in the standard doesn't use a qualification 3904 // conversion (!) 3905 QualType T1 = SCS1.getToType(2); 3906 QualType T2 = SCS2.getToType(2); 3907 T1 = S.Context.getCanonicalType(T1); 3908 T2 = S.Context.getCanonicalType(T2); 3909 Qualifiers T1Quals, T2Quals; 3910 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 3911 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 3912 3913 // If the types are the same, we won't learn anything by unwrapped 3914 // them. 3915 if (UnqualT1 == UnqualT2) 3916 return ImplicitConversionSequence::Indistinguishable; 3917 3918 // If the type is an array type, promote the element qualifiers to the type 3919 // for comparison. 3920 if (isa<ArrayType>(T1) && T1Quals) 3921 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 3922 if (isa<ArrayType>(T2) && T2Quals) 3923 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 3924 3925 ImplicitConversionSequence::CompareKind Result 3926 = ImplicitConversionSequence::Indistinguishable; 3927 3928 // Objective-C++ ARC: 3929 // Prefer qualification conversions not involving a change in lifetime 3930 // to qualification conversions that do not change lifetime. 3931 if (SCS1.QualificationIncludesObjCLifetime != 3932 SCS2.QualificationIncludesObjCLifetime) { 3933 Result = SCS1.QualificationIncludesObjCLifetime 3934 ? ImplicitConversionSequence::Worse 3935 : ImplicitConversionSequence::Better; 3936 } 3937 3938 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 3939 // Within each iteration of the loop, we check the qualifiers to 3940 // determine if this still looks like a qualification 3941 // conversion. Then, if all is well, we unwrap one more level of 3942 // pointers or pointers-to-members and do it all again 3943 // until there are no more pointers or pointers-to-members left 3944 // to unwrap. This essentially mimics what 3945 // IsQualificationConversion does, but here we're checking for a 3946 // strict subset of qualifiers. 3947 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 3948 // The qualifiers are the same, so this doesn't tell us anything 3949 // about how the sequences rank. 3950 ; 3951 else if (T2.isMoreQualifiedThan(T1)) { 3952 // T1 has fewer qualifiers, so it could be the better sequence. 3953 if (Result == ImplicitConversionSequence::Worse) 3954 // Neither has qualifiers that are a subset of the other's 3955 // qualifiers. 3956 return ImplicitConversionSequence::Indistinguishable; 3957 3958 Result = ImplicitConversionSequence::Better; 3959 } else if (T1.isMoreQualifiedThan(T2)) { 3960 // T2 has fewer qualifiers, so it could be the better sequence. 3961 if (Result == ImplicitConversionSequence::Better) 3962 // Neither has qualifiers that are a subset of the other's 3963 // qualifiers. 3964 return ImplicitConversionSequence::Indistinguishable; 3965 3966 Result = ImplicitConversionSequence::Worse; 3967 } else { 3968 // Qualifiers are disjoint. 3969 return ImplicitConversionSequence::Indistinguishable; 3970 } 3971 3972 // If the types after this point are equivalent, we're done. 3973 if (S.Context.hasSameUnqualifiedType(T1, T2)) 3974 break; 3975 } 3976 3977 // Check that the winning standard conversion sequence isn't using 3978 // the deprecated string literal array to pointer conversion. 3979 switch (Result) { 3980 case ImplicitConversionSequence::Better: 3981 if (SCS1.DeprecatedStringLiteralToCharPtr) 3982 Result = ImplicitConversionSequence::Indistinguishable; 3983 break; 3984 3985 case ImplicitConversionSequence::Indistinguishable: 3986 break; 3987 3988 case ImplicitConversionSequence::Worse: 3989 if (SCS2.DeprecatedStringLiteralToCharPtr) 3990 Result = ImplicitConversionSequence::Indistinguishable; 3991 break; 3992 } 3993 3994 return Result; 3995 } 3996 3997 /// CompareDerivedToBaseConversions - Compares two standard conversion 3998 /// sequences to determine whether they can be ranked based on their 3999 /// various kinds of derived-to-base conversions (C++ 4000 /// [over.ics.rank]p4b3). As part of these checks, we also look at 4001 /// conversions between Objective-C interface types. 4002 static ImplicitConversionSequence::CompareKind 4003 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 4004 const StandardConversionSequence& SCS1, 4005 const StandardConversionSequence& SCS2) { 4006 QualType FromType1 = SCS1.getFromType(); 4007 QualType ToType1 = SCS1.getToType(1); 4008 QualType FromType2 = SCS2.getFromType(); 4009 QualType ToType2 = SCS2.getToType(1); 4010 4011 // Adjust the types we're converting from via the array-to-pointer 4012 // conversion, if we need to. 4013 if (SCS1.First == ICK_Array_To_Pointer) 4014 FromType1 = S.Context.getArrayDecayedType(FromType1); 4015 if (SCS2.First == ICK_Array_To_Pointer) 4016 FromType2 = S.Context.getArrayDecayedType(FromType2); 4017 4018 // Canonicalize all of the types. 4019 FromType1 = S.Context.getCanonicalType(FromType1); 4020 ToType1 = S.Context.getCanonicalType(ToType1); 4021 FromType2 = S.Context.getCanonicalType(FromType2); 4022 ToType2 = S.Context.getCanonicalType(ToType2); 4023 4024 // C++ [over.ics.rank]p4b3: 4025 // 4026 // If class B is derived directly or indirectly from class A and 4027 // class C is derived directly or indirectly from B, 4028 // 4029 // Compare based on pointer conversions. 4030 if (SCS1.Second == ICK_Pointer_Conversion && 4031 SCS2.Second == ICK_Pointer_Conversion && 4032 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 4033 FromType1->isPointerType() && FromType2->isPointerType() && 4034 ToType1->isPointerType() && ToType2->isPointerType()) { 4035 QualType FromPointee1 4036 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4037 QualType ToPointee1 4038 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4039 QualType FromPointee2 4040 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4041 QualType ToPointee2 4042 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4043 4044 // -- conversion of C* to B* is better than conversion of C* to A*, 4045 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4046 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4047 return ImplicitConversionSequence::Better; 4048 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4049 return ImplicitConversionSequence::Worse; 4050 } 4051 4052 // -- conversion of B* to A* is better than conversion of C* to A*, 4053 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 4054 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4055 return ImplicitConversionSequence::Better; 4056 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4057 return ImplicitConversionSequence::Worse; 4058 } 4059 } else if (SCS1.Second == ICK_Pointer_Conversion && 4060 SCS2.Second == ICK_Pointer_Conversion) { 4061 const ObjCObjectPointerType *FromPtr1 4062 = FromType1->getAs<ObjCObjectPointerType>(); 4063 const ObjCObjectPointerType *FromPtr2 4064 = FromType2->getAs<ObjCObjectPointerType>(); 4065 const ObjCObjectPointerType *ToPtr1 4066 = ToType1->getAs<ObjCObjectPointerType>(); 4067 const ObjCObjectPointerType *ToPtr2 4068 = ToType2->getAs<ObjCObjectPointerType>(); 4069 4070 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 4071 // Apply the same conversion ranking rules for Objective-C pointer types 4072 // that we do for C++ pointers to class types. However, we employ the 4073 // Objective-C pseudo-subtyping relationship used for assignment of 4074 // Objective-C pointer types. 4075 bool FromAssignLeft 4076 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 4077 bool FromAssignRight 4078 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 4079 bool ToAssignLeft 4080 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 4081 bool ToAssignRight 4082 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 4083 4084 // A conversion to an a non-id object pointer type or qualified 'id' 4085 // type is better than a conversion to 'id'. 4086 if (ToPtr1->isObjCIdType() && 4087 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 4088 return ImplicitConversionSequence::Worse; 4089 if (ToPtr2->isObjCIdType() && 4090 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 4091 return ImplicitConversionSequence::Better; 4092 4093 // A conversion to a non-id object pointer type is better than a 4094 // conversion to a qualified 'id' type 4095 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 4096 return ImplicitConversionSequence::Worse; 4097 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 4098 return ImplicitConversionSequence::Better; 4099 4100 // A conversion to an a non-Class object pointer type or qualified 'Class' 4101 // type is better than a conversion to 'Class'. 4102 if (ToPtr1->isObjCClassType() && 4103 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 4104 return ImplicitConversionSequence::Worse; 4105 if (ToPtr2->isObjCClassType() && 4106 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 4107 return ImplicitConversionSequence::Better; 4108 4109 // A conversion to a non-Class object pointer type is better than a 4110 // conversion to a qualified 'Class' type. 4111 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 4112 return ImplicitConversionSequence::Worse; 4113 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 4114 return ImplicitConversionSequence::Better; 4115 4116 // -- "conversion of C* to B* is better than conversion of C* to A*," 4117 if (S.Context.hasSameType(FromType1, FromType2) && 4118 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 4119 (ToAssignLeft != ToAssignRight)) { 4120 if (FromPtr1->isSpecialized()) { 4121 // "conversion of B<A> * to B * is better than conversion of B * to 4122 // C *. 4123 bool IsFirstSame = 4124 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); 4125 bool IsSecondSame = 4126 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); 4127 if (IsFirstSame) { 4128 if (!IsSecondSame) 4129 return ImplicitConversionSequence::Better; 4130 } else if (IsSecondSame) 4131 return ImplicitConversionSequence::Worse; 4132 } 4133 return ToAssignLeft? ImplicitConversionSequence::Worse 4134 : ImplicitConversionSequence::Better; 4135 } 4136 4137 // -- "conversion of B* to A* is better than conversion of C* to A*," 4138 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 4139 (FromAssignLeft != FromAssignRight)) 4140 return FromAssignLeft? ImplicitConversionSequence::Better 4141 : ImplicitConversionSequence::Worse; 4142 } 4143 } 4144 4145 // Ranking of member-pointer types. 4146 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 4147 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 4148 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 4149 const MemberPointerType * FromMemPointer1 = 4150 FromType1->getAs<MemberPointerType>(); 4151 const MemberPointerType * ToMemPointer1 = 4152 ToType1->getAs<MemberPointerType>(); 4153 const MemberPointerType * FromMemPointer2 = 4154 FromType2->getAs<MemberPointerType>(); 4155 const MemberPointerType * ToMemPointer2 = 4156 ToType2->getAs<MemberPointerType>(); 4157 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 4158 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 4159 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 4160 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 4161 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 4162 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 4163 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 4164 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 4165 // conversion of A::* to B::* is better than conversion of A::* to C::*, 4166 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4167 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4168 return ImplicitConversionSequence::Worse; 4169 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4170 return ImplicitConversionSequence::Better; 4171 } 4172 // conversion of B::* to C::* is better than conversion of A::* to C::* 4173 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 4174 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4175 return ImplicitConversionSequence::Better; 4176 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4177 return ImplicitConversionSequence::Worse; 4178 } 4179 } 4180 4181 if (SCS1.Second == ICK_Derived_To_Base) { 4182 // -- conversion of C to B is better than conversion of C to A, 4183 // -- binding of an expression of type C to a reference of type 4184 // B& is better than binding an expression of type C to a 4185 // reference of type A&, 4186 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4187 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4188 if (S.IsDerivedFrom(Loc, ToType1, ToType2)) 4189 return ImplicitConversionSequence::Better; 4190 else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) 4191 return ImplicitConversionSequence::Worse; 4192 } 4193 4194 // -- conversion of B to A is better than conversion of C to A. 4195 // -- binding of an expression of type B to a reference of type 4196 // A& is better than binding an expression of type C to a 4197 // reference of type A&, 4198 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4199 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4200 if (S.IsDerivedFrom(Loc, FromType2, FromType1)) 4201 return ImplicitConversionSequence::Better; 4202 else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) 4203 return ImplicitConversionSequence::Worse; 4204 } 4205 } 4206 4207 return ImplicitConversionSequence::Indistinguishable; 4208 } 4209 4210 /// Determine whether the given type is valid, e.g., it is not an invalid 4211 /// C++ class. 4212 static bool isTypeValid(QualType T) { 4213 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) 4214 return !Record->isInvalidDecl(); 4215 4216 return true; 4217 } 4218 4219 /// CompareReferenceRelationship - Compare the two types T1 and T2 to 4220 /// determine whether they are reference-related, 4221 /// reference-compatible, reference-compatible with added 4222 /// qualification, or incompatible, for use in C++ initialization by 4223 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 4224 /// type, and the first type (T1) is the pointee type of the reference 4225 /// type being initialized. 4226 Sema::ReferenceCompareResult 4227 Sema::CompareReferenceRelationship(SourceLocation Loc, 4228 QualType OrigT1, QualType OrigT2, 4229 bool &DerivedToBase, 4230 bool &ObjCConversion, 4231 bool &ObjCLifetimeConversion) { 4232 assert(!OrigT1->isReferenceType() && 4233 "T1 must be the pointee type of the reference type"); 4234 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 4235 4236 QualType T1 = Context.getCanonicalType(OrigT1); 4237 QualType T2 = Context.getCanonicalType(OrigT2); 4238 Qualifiers T1Quals, T2Quals; 4239 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 4240 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 4241 4242 // C++ [dcl.init.ref]p4: 4243 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 4244 // reference-related to "cv2 T2" if T1 is the same type as T2, or 4245 // T1 is a base class of T2. 4246 DerivedToBase = false; 4247 ObjCConversion = false; 4248 ObjCLifetimeConversion = false; 4249 QualType ConvertedT2; 4250 if (UnqualT1 == UnqualT2) { 4251 // Nothing to do. 4252 } else if (isCompleteType(Loc, OrigT2) && 4253 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) && 4254 IsDerivedFrom(Loc, UnqualT2, UnqualT1)) 4255 DerivedToBase = true; 4256 else if (UnqualT1->isObjCObjectOrInterfaceType() && 4257 UnqualT2->isObjCObjectOrInterfaceType() && 4258 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 4259 ObjCConversion = true; 4260 else if (UnqualT2->isFunctionType() && 4261 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) 4262 // C++1z [dcl.init.ref]p4: 4263 // cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept 4264 // function" and T1 is "function" 4265 // 4266 // We extend this to also apply to 'noreturn', so allow any function 4267 // conversion between function types. 4268 return Ref_Compatible; 4269 else 4270 return Ref_Incompatible; 4271 4272 // At this point, we know that T1 and T2 are reference-related (at 4273 // least). 4274 4275 // If the type is an array type, promote the element qualifiers to the type 4276 // for comparison. 4277 if (isa<ArrayType>(T1) && T1Quals) 4278 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 4279 if (isa<ArrayType>(T2) && T2Quals) 4280 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 4281 4282 // C++ [dcl.init.ref]p4: 4283 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 4284 // reference-related to T2 and cv1 is the same cv-qualification 4285 // as, or greater cv-qualification than, cv2. For purposes of 4286 // overload resolution, cases for which cv1 is greater 4287 // cv-qualification than cv2 are identified as 4288 // reference-compatible with added qualification (see 13.3.3.2). 4289 // 4290 // Note that we also require equivalence of Objective-C GC and address-space 4291 // qualifiers when performing these computations, so that e.g., an int in 4292 // address space 1 is not reference-compatible with an int in address 4293 // space 2. 4294 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() && 4295 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) { 4296 if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals)) 4297 ObjCLifetimeConversion = true; 4298 4299 T1Quals.removeObjCLifetime(); 4300 T2Quals.removeObjCLifetime(); 4301 } 4302 4303 // MS compiler ignores __unaligned qualifier for references; do the same. 4304 T1Quals.removeUnaligned(); 4305 T2Quals.removeUnaligned(); 4306 4307 if (T1Quals.compatiblyIncludes(T2Quals)) 4308 return Ref_Compatible; 4309 else 4310 return Ref_Related; 4311 } 4312 4313 /// Look for a user-defined conversion to a value reference-compatible 4314 /// with DeclType. Return true if something definite is found. 4315 static bool 4316 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 4317 QualType DeclType, SourceLocation DeclLoc, 4318 Expr *Init, QualType T2, bool AllowRvalues, 4319 bool AllowExplicit) { 4320 assert(T2->isRecordType() && "Can only find conversions of record types."); 4321 CXXRecordDecl *T2RecordDecl 4322 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 4323 4324 OverloadCandidateSet CandidateSet( 4325 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4326 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4327 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4328 NamedDecl *D = *I; 4329 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4330 if (isa<UsingShadowDecl>(D)) 4331 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4332 4333 FunctionTemplateDecl *ConvTemplate 4334 = dyn_cast<FunctionTemplateDecl>(D); 4335 CXXConversionDecl *Conv; 4336 if (ConvTemplate) 4337 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4338 else 4339 Conv = cast<CXXConversionDecl>(D); 4340 4341 // If this is an explicit conversion, and we're not allowed to consider 4342 // explicit conversions, skip it. 4343 if (!AllowExplicit && Conv->isExplicit()) 4344 continue; 4345 4346 if (AllowRvalues) { 4347 bool DerivedToBase = false; 4348 bool ObjCConversion = false; 4349 bool ObjCLifetimeConversion = false; 4350 4351 // If we are initializing an rvalue reference, don't permit conversion 4352 // functions that return lvalues. 4353 if (!ConvTemplate && DeclType->isRValueReferenceType()) { 4354 const ReferenceType *RefType 4355 = Conv->getConversionType()->getAs<LValueReferenceType>(); 4356 if (RefType && !RefType->getPointeeType()->isFunctionType()) 4357 continue; 4358 } 4359 4360 if (!ConvTemplate && 4361 S.CompareReferenceRelationship( 4362 DeclLoc, 4363 Conv->getConversionType().getNonReferenceType() 4364 .getUnqualifiedType(), 4365 DeclType.getNonReferenceType().getUnqualifiedType(), 4366 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) == 4367 Sema::Ref_Incompatible) 4368 continue; 4369 } else { 4370 // If the conversion function doesn't return a reference type, 4371 // it can't be considered for this conversion. An rvalue reference 4372 // is only acceptable if its referencee is a function type. 4373 4374 const ReferenceType *RefType = 4375 Conv->getConversionType()->getAs<ReferenceType>(); 4376 if (!RefType || 4377 (!RefType->isLValueReferenceType() && 4378 !RefType->getPointeeType()->isFunctionType())) 4379 continue; 4380 } 4381 4382 if (ConvTemplate) 4383 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 4384 Init, DeclType, CandidateSet, 4385 /*AllowObjCConversionOnExplicit=*/false); 4386 else 4387 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 4388 DeclType, CandidateSet, 4389 /*AllowObjCConversionOnExplicit=*/false); 4390 } 4391 4392 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4393 4394 OverloadCandidateSet::iterator Best; 4395 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 4396 case OR_Success: 4397 // C++ [over.ics.ref]p1: 4398 // 4399 // [...] If the parameter binds directly to the result of 4400 // applying a conversion function to the argument 4401 // expression, the implicit conversion sequence is a 4402 // user-defined conversion sequence (13.3.3.1.2), with the 4403 // second standard conversion sequence either an identity 4404 // conversion or, if the conversion function returns an 4405 // entity of a type that is a derived class of the parameter 4406 // type, a derived-to-base Conversion. 4407 if (!Best->FinalConversion.DirectBinding) 4408 return false; 4409 4410 ICS.setUserDefined(); 4411 ICS.UserDefined.Before = Best->Conversions[0].Standard; 4412 ICS.UserDefined.After = Best->FinalConversion; 4413 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; 4414 ICS.UserDefined.ConversionFunction = Best->Function; 4415 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 4416 ICS.UserDefined.EllipsisConversion = false; 4417 assert(ICS.UserDefined.After.ReferenceBinding && 4418 ICS.UserDefined.After.DirectBinding && 4419 "Expected a direct reference binding!"); 4420 return true; 4421 4422 case OR_Ambiguous: 4423 ICS.setAmbiguous(); 4424 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4425 Cand != CandidateSet.end(); ++Cand) 4426 if (Cand->Viable) 4427 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 4428 return true; 4429 4430 case OR_No_Viable_Function: 4431 case OR_Deleted: 4432 // There was no suitable conversion, or we found a deleted 4433 // conversion; continue with other checks. 4434 return false; 4435 } 4436 4437 llvm_unreachable("Invalid OverloadResult!"); 4438 } 4439 4440 /// Compute an implicit conversion sequence for reference 4441 /// initialization. 4442 static ImplicitConversionSequence 4443 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, 4444 SourceLocation DeclLoc, 4445 bool SuppressUserConversions, 4446 bool AllowExplicit) { 4447 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 4448 4449 // Most paths end in a failed conversion. 4450 ImplicitConversionSequence ICS; 4451 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4452 4453 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 4454 QualType T2 = Init->getType(); 4455 4456 // If the initializer is the address of an overloaded function, try 4457 // to resolve the overloaded function. If all goes well, T2 is the 4458 // type of the resulting function. 4459 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4460 DeclAccessPair Found; 4461 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 4462 false, Found)) 4463 T2 = Fn->getType(); 4464 } 4465 4466 // Compute some basic properties of the types and the initializer. 4467 bool isRValRef = DeclType->isRValueReferenceType(); 4468 bool DerivedToBase = false; 4469 bool ObjCConversion = false; 4470 bool ObjCLifetimeConversion = false; 4471 Expr::Classification InitCategory = Init->Classify(S.Context); 4472 Sema::ReferenceCompareResult RefRelationship 4473 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 4474 ObjCConversion, ObjCLifetimeConversion); 4475 4476 4477 // C++0x [dcl.init.ref]p5: 4478 // A reference to type "cv1 T1" is initialized by an expression 4479 // of type "cv2 T2" as follows: 4480 4481 // -- If reference is an lvalue reference and the initializer expression 4482 if (!isRValRef) { 4483 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 4484 // reference-compatible with "cv2 T2," or 4485 // 4486 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 4487 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { 4488 // C++ [over.ics.ref]p1: 4489 // When a parameter of reference type binds directly (8.5.3) 4490 // to an argument expression, the implicit conversion sequence 4491 // is the identity conversion, unless the argument expression 4492 // has a type that is a derived class of the parameter type, 4493 // in which case the implicit conversion sequence is a 4494 // derived-to-base Conversion (13.3.3.1). 4495 ICS.setStandard(); 4496 ICS.Standard.First = ICK_Identity; 4497 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 4498 : ObjCConversion? ICK_Compatible_Conversion 4499 : ICK_Identity; 4500 ICS.Standard.Third = ICK_Identity; 4501 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 4502 ICS.Standard.setToType(0, T2); 4503 ICS.Standard.setToType(1, T1); 4504 ICS.Standard.setToType(2, T1); 4505 ICS.Standard.ReferenceBinding = true; 4506 ICS.Standard.DirectBinding = true; 4507 ICS.Standard.IsLvalueReference = !isRValRef; 4508 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4509 ICS.Standard.BindsToRvalue = false; 4510 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4511 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 4512 ICS.Standard.CopyConstructor = nullptr; 4513 ICS.Standard.DeprecatedStringLiteralToCharPtr = false; 4514 4515 // Nothing more to do: the inaccessibility/ambiguity check for 4516 // derived-to-base conversions is suppressed when we're 4517 // computing the implicit conversion sequence (C++ 4518 // [over.best.ics]p2). 4519 return ICS; 4520 } 4521 4522 // -- has a class type (i.e., T2 is a class type), where T1 is 4523 // not reference-related to T2, and can be implicitly 4524 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 4525 // is reference-compatible with "cv3 T3" 92) (this 4526 // conversion is selected by enumerating the applicable 4527 // conversion functions (13.3.1.6) and choosing the best 4528 // one through overload resolution (13.3)), 4529 if (!SuppressUserConversions && T2->isRecordType() && 4530 S.isCompleteType(DeclLoc, T2) && 4531 RefRelationship == Sema::Ref_Incompatible) { 4532 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4533 Init, T2, /*AllowRvalues=*/false, 4534 AllowExplicit)) 4535 return ICS; 4536 } 4537 } 4538 4539 // -- Otherwise, the reference shall be an lvalue reference to a 4540 // non-volatile const type (i.e., cv1 shall be const), or the reference 4541 // shall be an rvalue reference. 4542 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) 4543 return ICS; 4544 4545 // -- If the initializer expression 4546 // 4547 // -- is an xvalue, class prvalue, array prvalue or function 4548 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 4549 if (RefRelationship == Sema::Ref_Compatible && 4550 (InitCategory.isXValue() || 4551 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || 4552 (InitCategory.isLValue() && T2->isFunctionType()))) { 4553 ICS.setStandard(); 4554 ICS.Standard.First = ICK_Identity; 4555 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 4556 : ObjCConversion? ICK_Compatible_Conversion 4557 : ICK_Identity; 4558 ICS.Standard.Third = ICK_Identity; 4559 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 4560 ICS.Standard.setToType(0, T2); 4561 ICS.Standard.setToType(1, T1); 4562 ICS.Standard.setToType(2, T1); 4563 ICS.Standard.ReferenceBinding = true; 4564 // In C++0x, this is always a direct binding. In C++98/03, it's a direct 4565 // binding unless we're binding to a class prvalue. 4566 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 4567 // allow the use of rvalue references in C++98/03 for the benefit of 4568 // standard library implementors; therefore, we need the xvalue check here. 4569 ICS.Standard.DirectBinding = 4570 S.getLangOpts().CPlusPlus11 || 4571 !(InitCategory.isPRValue() || T2->isRecordType()); 4572 ICS.Standard.IsLvalueReference = !isRValRef; 4573 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4574 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 4575 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4576 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 4577 ICS.Standard.CopyConstructor = nullptr; 4578 ICS.Standard.DeprecatedStringLiteralToCharPtr = false; 4579 return ICS; 4580 } 4581 4582 // -- has a class type (i.e., T2 is a class type), where T1 is not 4583 // reference-related to T2, and can be implicitly converted to 4584 // an xvalue, class prvalue, or function lvalue of type 4585 // "cv3 T3", where "cv1 T1" is reference-compatible with 4586 // "cv3 T3", 4587 // 4588 // then the reference is bound to the value of the initializer 4589 // expression in the first case and to the result of the conversion 4590 // in the second case (or, in either case, to an appropriate base 4591 // class subobject). 4592 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4593 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && 4594 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4595 Init, T2, /*AllowRvalues=*/true, 4596 AllowExplicit)) { 4597 // In the second case, if the reference is an rvalue reference 4598 // and the second standard conversion sequence of the 4599 // user-defined conversion sequence includes an lvalue-to-rvalue 4600 // conversion, the program is ill-formed. 4601 if (ICS.isUserDefined() && isRValRef && 4602 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 4603 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4604 4605 return ICS; 4606 } 4607 4608 // A temporary of function type cannot be created; don't even try. 4609 if (T1->isFunctionType()) 4610 return ICS; 4611 4612 // -- Otherwise, a temporary of type "cv1 T1" is created and 4613 // initialized from the initializer expression using the 4614 // rules for a non-reference copy initialization (8.5). The 4615 // reference is then bound to the temporary. If T1 is 4616 // reference-related to T2, cv1 must be the same 4617 // cv-qualification as, or greater cv-qualification than, 4618 // cv2; otherwise, the program is ill-formed. 4619 if (RefRelationship == Sema::Ref_Related) { 4620 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 4621 // we would be reference-compatible or reference-compatible with 4622 // added qualification. But that wasn't the case, so the reference 4623 // initialization fails. 4624 // 4625 // Note that we only want to check address spaces and cvr-qualifiers here. 4626 // ObjC GC, lifetime and unaligned qualifiers aren't important. 4627 Qualifiers T1Quals = T1.getQualifiers(); 4628 Qualifiers T2Quals = T2.getQualifiers(); 4629 T1Quals.removeObjCGCAttr(); 4630 T1Quals.removeObjCLifetime(); 4631 T2Quals.removeObjCGCAttr(); 4632 T2Quals.removeObjCLifetime(); 4633 // MS compiler ignores __unaligned qualifier for references; do the same. 4634 T1Quals.removeUnaligned(); 4635 T2Quals.removeUnaligned(); 4636 if (!T1Quals.compatiblyIncludes(T2Quals)) 4637 return ICS; 4638 } 4639 4640 // If at least one of the types is a class type, the types are not 4641 // related, and we aren't allowed any user conversions, the 4642 // reference binding fails. This case is important for breaking 4643 // recursion, since TryImplicitConversion below will attempt to 4644 // create a temporary through the use of a copy constructor. 4645 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4646 (T1->isRecordType() || T2->isRecordType())) 4647 return ICS; 4648 4649 // If T1 is reference-related to T2 and the reference is an rvalue 4650 // reference, the initializer expression shall not be an lvalue. 4651 if (RefRelationship >= Sema::Ref_Related && 4652 isRValRef && Init->Classify(S.Context).isLValue()) 4653 return ICS; 4654 4655 // C++ [over.ics.ref]p2: 4656 // When a parameter of reference type is not bound directly to 4657 // an argument expression, the conversion sequence is the one 4658 // required to convert the argument expression to the 4659 // underlying type of the reference according to 4660 // 13.3.3.1. Conceptually, this conversion sequence corresponds 4661 // to copy-initializing a temporary of the underlying type with 4662 // the argument expression. Any difference in top-level 4663 // cv-qualification is subsumed by the initialization itself 4664 // and does not constitute a conversion. 4665 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 4666 /*AllowExplicit=*/false, 4667 /*InOverloadResolution=*/false, 4668 /*CStyle=*/false, 4669 /*AllowObjCWritebackConversion=*/false, 4670 /*AllowObjCConversionOnExplicit=*/false); 4671 4672 // Of course, that's still a reference binding. 4673 if (ICS.isStandard()) { 4674 ICS.Standard.ReferenceBinding = true; 4675 ICS.Standard.IsLvalueReference = !isRValRef; 4676 ICS.Standard.BindsToFunctionLvalue = false; 4677 ICS.Standard.BindsToRvalue = true; 4678 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4679 ICS.Standard.ObjCLifetimeConversionBinding = false; 4680 } else if (ICS.isUserDefined()) { 4681 const ReferenceType *LValRefType = 4682 ICS.UserDefined.ConversionFunction->getReturnType() 4683 ->getAs<LValueReferenceType>(); 4684 4685 // C++ [over.ics.ref]p3: 4686 // Except for an implicit object parameter, for which see 13.3.1, a 4687 // standard conversion sequence cannot be formed if it requires [...] 4688 // binding an rvalue reference to an lvalue other than a function 4689 // lvalue. 4690 // Note that the function case is not possible here. 4691 if (DeclType->isRValueReferenceType() && LValRefType) { 4692 // FIXME: This is the wrong BadConversionSequence. The problem is binding 4693 // an rvalue reference to a (non-function) lvalue, not binding an lvalue 4694 // reference to an rvalue! 4695 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); 4696 return ICS; 4697 } 4698 4699 ICS.UserDefined.After.ReferenceBinding = true; 4700 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 4701 ICS.UserDefined.After.BindsToFunctionLvalue = false; 4702 ICS.UserDefined.After.BindsToRvalue = !LValRefType; 4703 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4704 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 4705 } 4706 4707 return ICS; 4708 } 4709 4710 static ImplicitConversionSequence 4711 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4712 bool SuppressUserConversions, 4713 bool InOverloadResolution, 4714 bool AllowObjCWritebackConversion, 4715 bool AllowExplicit = false); 4716 4717 /// TryListConversion - Try to copy-initialize a value of type ToType from the 4718 /// initializer list From. 4719 static ImplicitConversionSequence 4720 TryListConversion(Sema &S, InitListExpr *From, QualType ToType, 4721 bool SuppressUserConversions, 4722 bool InOverloadResolution, 4723 bool AllowObjCWritebackConversion) { 4724 // C++11 [over.ics.list]p1: 4725 // When an argument is an initializer list, it is not an expression and 4726 // special rules apply for converting it to a parameter type. 4727 4728 ImplicitConversionSequence Result; 4729 Result.setBad(BadConversionSequence::no_conversion, From, ToType); 4730 4731 // We need a complete type for what follows. Incomplete types can never be 4732 // initialized from init lists. 4733 if (!S.isCompleteType(From->getLocStart(), ToType)) 4734 return Result; 4735 4736 // Per DR1467: 4737 // If the parameter type is a class X and the initializer list has a single 4738 // element of type cv U, where U is X or a class derived from X, the 4739 // implicit conversion sequence is the one required to convert the element 4740 // to the parameter type. 4741 // 4742 // Otherwise, if the parameter type is a character array [... ] 4743 // and the initializer list has a single element that is an 4744 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the 4745 // implicit conversion sequence is the identity conversion. 4746 if (From->getNumInits() == 1) { 4747 if (ToType->isRecordType()) { 4748 QualType InitType = From->getInit(0)->getType(); 4749 if (S.Context.hasSameUnqualifiedType(InitType, ToType) || 4750 S.IsDerivedFrom(From->getLocStart(), InitType, ToType)) 4751 return TryCopyInitialization(S, From->getInit(0), ToType, 4752 SuppressUserConversions, 4753 InOverloadResolution, 4754 AllowObjCWritebackConversion); 4755 } 4756 // FIXME: Check the other conditions here: array of character type, 4757 // initializer is a string literal. 4758 if (ToType->isArrayType()) { 4759 InitializedEntity Entity = 4760 InitializedEntity::InitializeParameter(S.Context, ToType, 4761 /*Consumed=*/false); 4762 if (S.CanPerformCopyInitialization(Entity, From)) { 4763 Result.setStandard(); 4764 Result.Standard.setAsIdentityConversion(); 4765 Result.Standard.setFromType(ToType); 4766 Result.Standard.setAllToTypes(ToType); 4767 return Result; 4768 } 4769 } 4770 } 4771 4772 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). 4773 // C++11 [over.ics.list]p2: 4774 // If the parameter type is std::initializer_list<X> or "array of X" and 4775 // all the elements can be implicitly converted to X, the implicit 4776 // conversion sequence is the worst conversion necessary to convert an 4777 // element of the list to X. 4778 // 4779 // C++14 [over.ics.list]p3: 4780 // Otherwise, if the parameter type is "array of N X", if the initializer 4781 // list has exactly N elements or if it has fewer than N elements and X is 4782 // default-constructible, and if all the elements of the initializer list 4783 // can be implicitly converted to X, the implicit conversion sequence is 4784 // the worst conversion necessary to convert an element of the list to X. 4785 // 4786 // FIXME: We're missing a lot of these checks. 4787 bool toStdInitializerList = false; 4788 QualType X; 4789 if (ToType->isArrayType()) 4790 X = S.Context.getAsArrayType(ToType)->getElementType(); 4791 else 4792 toStdInitializerList = S.isStdInitializerList(ToType, &X); 4793 if (!X.isNull()) { 4794 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { 4795 Expr *Init = From->getInit(i); 4796 ImplicitConversionSequence ICS = 4797 TryCopyInitialization(S, Init, X, SuppressUserConversions, 4798 InOverloadResolution, 4799 AllowObjCWritebackConversion); 4800 // If a single element isn't convertible, fail. 4801 if (ICS.isBad()) { 4802 Result = ICS; 4803 break; 4804 } 4805 // Otherwise, look for the worst conversion. 4806 if (Result.isBad() || 4807 CompareImplicitConversionSequences(S, From->getLocStart(), ICS, 4808 Result) == 4809 ImplicitConversionSequence::Worse) 4810 Result = ICS; 4811 } 4812 4813 // For an empty list, we won't have computed any conversion sequence. 4814 // Introduce the identity conversion sequence. 4815 if (From->getNumInits() == 0) { 4816 Result.setStandard(); 4817 Result.Standard.setAsIdentityConversion(); 4818 Result.Standard.setFromType(ToType); 4819 Result.Standard.setAllToTypes(ToType); 4820 } 4821 4822 Result.setStdInitializerListElement(toStdInitializerList); 4823 return Result; 4824 } 4825 4826 // C++14 [over.ics.list]p4: 4827 // C++11 [over.ics.list]p3: 4828 // Otherwise, if the parameter is a non-aggregate class X and overload 4829 // resolution chooses a single best constructor [...] the implicit 4830 // conversion sequence is a user-defined conversion sequence. If multiple 4831 // constructors are viable but none is better than the others, the 4832 // implicit conversion sequence is a user-defined conversion sequence. 4833 if (ToType->isRecordType() && !ToType->isAggregateType()) { 4834 // This function can deal with initializer lists. 4835 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 4836 /*AllowExplicit=*/false, 4837 InOverloadResolution, /*CStyle=*/false, 4838 AllowObjCWritebackConversion, 4839 /*AllowObjCConversionOnExplicit=*/false); 4840 } 4841 4842 // C++14 [over.ics.list]p5: 4843 // C++11 [over.ics.list]p4: 4844 // Otherwise, if the parameter has an aggregate type which can be 4845 // initialized from the initializer list [...] the implicit conversion 4846 // sequence is a user-defined conversion sequence. 4847 if (ToType->isAggregateType()) { 4848 // Type is an aggregate, argument is an init list. At this point it comes 4849 // down to checking whether the initialization works. 4850 // FIXME: Find out whether this parameter is consumed or not. 4851 // FIXME: Expose SemaInit's aggregate initialization code so that we don't 4852 // need to call into the initialization code here; overload resolution 4853 // should not be doing that. 4854 InitializedEntity Entity = 4855 InitializedEntity::InitializeParameter(S.Context, ToType, 4856 /*Consumed=*/false); 4857 if (S.CanPerformCopyInitialization(Entity, From)) { 4858 Result.setUserDefined(); 4859 Result.UserDefined.Before.setAsIdentityConversion(); 4860 // Initializer lists don't have a type. 4861 Result.UserDefined.Before.setFromType(QualType()); 4862 Result.UserDefined.Before.setAllToTypes(QualType()); 4863 4864 Result.UserDefined.After.setAsIdentityConversion(); 4865 Result.UserDefined.After.setFromType(ToType); 4866 Result.UserDefined.After.setAllToTypes(ToType); 4867 Result.UserDefined.ConversionFunction = nullptr; 4868 } 4869 return Result; 4870 } 4871 4872 // C++14 [over.ics.list]p6: 4873 // C++11 [over.ics.list]p5: 4874 // Otherwise, if the parameter is a reference, see 13.3.3.1.4. 4875 if (ToType->isReferenceType()) { 4876 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't 4877 // mention initializer lists in any way. So we go by what list- 4878 // initialization would do and try to extrapolate from that. 4879 4880 QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType(); 4881 4882 // If the initializer list has a single element that is reference-related 4883 // to the parameter type, we initialize the reference from that. 4884 if (From->getNumInits() == 1) { 4885 Expr *Init = From->getInit(0); 4886 4887 QualType T2 = Init->getType(); 4888 4889 // If the initializer is the address of an overloaded function, try 4890 // to resolve the overloaded function. If all goes well, T2 is the 4891 // type of the resulting function. 4892 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4893 DeclAccessPair Found; 4894 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( 4895 Init, ToType, false, Found)) 4896 T2 = Fn->getType(); 4897 } 4898 4899 // Compute some basic properties of the types and the initializer. 4900 bool dummy1 = false; 4901 bool dummy2 = false; 4902 bool dummy3 = false; 4903 Sema::ReferenceCompareResult RefRelationship 4904 = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1, 4905 dummy2, dummy3); 4906 4907 if (RefRelationship >= Sema::Ref_Related) { 4908 return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(), 4909 SuppressUserConversions, 4910 /*AllowExplicit=*/false); 4911 } 4912 } 4913 4914 // Otherwise, we bind the reference to a temporary created from the 4915 // initializer list. 4916 Result = TryListConversion(S, From, T1, SuppressUserConversions, 4917 InOverloadResolution, 4918 AllowObjCWritebackConversion); 4919 if (Result.isFailure()) 4920 return Result; 4921 assert(!Result.isEllipsis() && 4922 "Sub-initialization cannot result in ellipsis conversion."); 4923 4924 // Can we even bind to a temporary? 4925 if (ToType->isRValueReferenceType() || 4926 (T1.isConstQualified() && !T1.isVolatileQualified())) { 4927 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : 4928 Result.UserDefined.After; 4929 SCS.ReferenceBinding = true; 4930 SCS.IsLvalueReference = ToType->isLValueReferenceType(); 4931 SCS.BindsToRvalue = true; 4932 SCS.BindsToFunctionLvalue = false; 4933 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4934 SCS.ObjCLifetimeConversionBinding = false; 4935 } else 4936 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, 4937 From, ToType); 4938 return Result; 4939 } 4940 4941 // C++14 [over.ics.list]p7: 4942 // C++11 [over.ics.list]p6: 4943 // Otherwise, if the parameter type is not a class: 4944 if (!ToType->isRecordType()) { 4945 // - if the initializer list has one element that is not itself an 4946 // initializer list, the implicit conversion sequence is the one 4947 // required to convert the element to the parameter type. 4948 unsigned NumInits = From->getNumInits(); 4949 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) 4950 Result = TryCopyInitialization(S, From->getInit(0), ToType, 4951 SuppressUserConversions, 4952 InOverloadResolution, 4953 AllowObjCWritebackConversion); 4954 // - if the initializer list has no elements, the implicit conversion 4955 // sequence is the identity conversion. 4956 else if (NumInits == 0) { 4957 Result.setStandard(); 4958 Result.Standard.setAsIdentityConversion(); 4959 Result.Standard.setFromType(ToType); 4960 Result.Standard.setAllToTypes(ToType); 4961 } 4962 return Result; 4963 } 4964 4965 // C++14 [over.ics.list]p8: 4966 // C++11 [over.ics.list]p7: 4967 // In all cases other than those enumerated above, no conversion is possible 4968 return Result; 4969 } 4970 4971 /// TryCopyInitialization - Try to copy-initialize a value of type 4972 /// ToType from the expression From. Return the implicit conversion 4973 /// sequence required to pass this argument, which may be a bad 4974 /// conversion sequence (meaning that the argument cannot be passed to 4975 /// a parameter of this type). If @p SuppressUserConversions, then we 4976 /// do not permit any user-defined conversion sequences. 4977 static ImplicitConversionSequence 4978 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 4979 bool SuppressUserConversions, 4980 bool InOverloadResolution, 4981 bool AllowObjCWritebackConversion, 4982 bool AllowExplicit) { 4983 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) 4984 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, 4985 InOverloadResolution,AllowObjCWritebackConversion); 4986 4987 if (ToType->isReferenceType()) 4988 return TryReferenceInit(S, From, ToType, 4989 /*FIXME:*/From->getLocStart(), 4990 SuppressUserConversions, 4991 AllowExplicit); 4992 4993 return TryImplicitConversion(S, From, ToType, 4994 SuppressUserConversions, 4995 /*AllowExplicit=*/false, 4996 InOverloadResolution, 4997 /*CStyle=*/false, 4998 AllowObjCWritebackConversion, 4999 /*AllowObjCConversionOnExplicit=*/false); 5000 } 5001 5002 static bool TryCopyInitialization(const CanQualType FromQTy, 5003 const CanQualType ToQTy, 5004 Sema &S, 5005 SourceLocation Loc, 5006 ExprValueKind FromVK) { 5007 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 5008 ImplicitConversionSequence ICS = 5009 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 5010 5011 return !ICS.isBad(); 5012 } 5013 5014 /// TryObjectArgumentInitialization - Try to initialize the object 5015 /// parameter of the given member function (@c Method) from the 5016 /// expression @p From. 5017 static ImplicitConversionSequence 5018 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, 5019 Expr::Classification FromClassification, 5020 CXXMethodDecl *Method, 5021 CXXRecordDecl *ActingContext) { 5022 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 5023 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 5024 // const volatile object. 5025 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 5026 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 5027 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 5028 5029 // Set up the conversion sequence as a "bad" conversion, to allow us 5030 // to exit early. 5031 ImplicitConversionSequence ICS; 5032 5033 // We need to have an object of class type. 5034 if (const PointerType *PT = FromType->getAs<PointerType>()) { 5035 FromType = PT->getPointeeType(); 5036 5037 // When we had a pointer, it's implicitly dereferenced, so we 5038 // better have an lvalue. 5039 assert(FromClassification.isLValue()); 5040 } 5041 5042 assert(FromType->isRecordType()); 5043 5044 // C++0x [over.match.funcs]p4: 5045 // For non-static member functions, the type of the implicit object 5046 // parameter is 5047 // 5048 // - "lvalue reference to cv X" for functions declared without a 5049 // ref-qualifier or with the & ref-qualifier 5050 // - "rvalue reference to cv X" for functions declared with the && 5051 // ref-qualifier 5052 // 5053 // where X is the class of which the function is a member and cv is the 5054 // cv-qualification on the member function declaration. 5055 // 5056 // However, when finding an implicit conversion sequence for the argument, we 5057 // are not allowed to perform user-defined conversions 5058 // (C++ [over.match.funcs]p5). We perform a simplified version of 5059 // reference binding here, that allows class rvalues to bind to 5060 // non-constant references. 5061 5062 // First check the qualifiers. 5063 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 5064 if (ImplicitParamType.getCVRQualifiers() 5065 != FromTypeCanon.getLocalCVRQualifiers() && 5066 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 5067 ICS.setBad(BadConversionSequence::bad_qualifiers, 5068 FromType, ImplicitParamType); 5069 return ICS; 5070 } 5071 5072 // Check that we have either the same type or a derived type. It 5073 // affects the conversion rank. 5074 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 5075 ImplicitConversionKind SecondKind; 5076 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 5077 SecondKind = ICK_Identity; 5078 } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) 5079 SecondKind = ICK_Derived_To_Base; 5080 else { 5081 ICS.setBad(BadConversionSequence::unrelated_class, 5082 FromType, ImplicitParamType); 5083 return ICS; 5084 } 5085 5086 // Check the ref-qualifier. 5087 switch (Method->getRefQualifier()) { 5088 case RQ_None: 5089 // Do nothing; we don't care about lvalueness or rvalueness. 5090 break; 5091 5092 case RQ_LValue: 5093 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { 5094 // non-const lvalue reference cannot bind to an rvalue 5095 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 5096 ImplicitParamType); 5097 return ICS; 5098 } 5099 break; 5100 5101 case RQ_RValue: 5102 if (!FromClassification.isRValue()) { 5103 // rvalue reference cannot bind to an lvalue 5104 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 5105 ImplicitParamType); 5106 return ICS; 5107 } 5108 break; 5109 } 5110 5111 // Success. Mark this as a reference binding. 5112 ICS.setStandard(); 5113 ICS.Standard.setAsIdentityConversion(); 5114 ICS.Standard.Second = SecondKind; 5115 ICS.Standard.setFromType(FromType); 5116 ICS.Standard.setAllToTypes(ImplicitParamType); 5117 ICS.Standard.ReferenceBinding = true; 5118 ICS.Standard.DirectBinding = true; 5119 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 5120 ICS.Standard.BindsToFunctionLvalue = false; 5121 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 5122 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 5123 = (Method->getRefQualifier() == RQ_None); 5124 return ICS; 5125 } 5126 5127 /// PerformObjectArgumentInitialization - Perform initialization of 5128 /// the implicit object parameter for the given Method with the given 5129 /// expression. 5130 ExprResult 5131 Sema::PerformObjectArgumentInitialization(Expr *From, 5132 NestedNameSpecifier *Qualifier, 5133 NamedDecl *FoundDecl, 5134 CXXMethodDecl *Method) { 5135 QualType FromRecordType, DestType; 5136 QualType ImplicitParamRecordType = 5137 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 5138 5139 Expr::Classification FromClassification; 5140 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 5141 FromRecordType = PT->getPointeeType(); 5142 DestType = Method->getThisType(Context); 5143 FromClassification = Expr::Classification::makeSimpleLValue(); 5144 } else { 5145 FromRecordType = From->getType(); 5146 DestType = ImplicitParamRecordType; 5147 FromClassification = From->Classify(Context); 5148 } 5149 5150 // Note that we always use the true parent context when performing 5151 // the actual argument initialization. 5152 ImplicitConversionSequence ICS = TryObjectArgumentInitialization( 5153 *this, From->getLocStart(), From->getType(), FromClassification, Method, 5154 Method->getParent()); 5155 if (ICS.isBad()) { 5156 switch (ICS.Bad.Kind) { 5157 case BadConversionSequence::bad_qualifiers: { 5158 Qualifiers FromQs = FromRecordType.getQualifiers(); 5159 Qualifiers ToQs = DestType.getQualifiers(); 5160 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5161 if (CVR) { 5162 Diag(From->getLocStart(), 5163 diag::err_member_function_call_bad_cvr) 5164 << Method->getDeclName() << FromRecordType << (CVR - 1) 5165 << From->getSourceRange(); 5166 Diag(Method->getLocation(), diag::note_previous_decl) 5167 << Method->getDeclName(); 5168 return ExprError(); 5169 } 5170 break; 5171 } 5172 5173 case BadConversionSequence::lvalue_ref_to_rvalue: 5174 case BadConversionSequence::rvalue_ref_to_lvalue: { 5175 bool IsRValueQualified = 5176 Method->getRefQualifier() == RefQualifierKind::RQ_RValue; 5177 Diag(From->getLocStart(), diag::err_member_function_call_bad_ref) 5178 << Method->getDeclName() << FromClassification.isRValue() 5179 << IsRValueQualified; 5180 Diag(Method->getLocation(), diag::note_previous_decl) 5181 << Method->getDeclName(); 5182 return ExprError(); 5183 } 5184 5185 case BadConversionSequence::no_conversion: 5186 case BadConversionSequence::unrelated_class: 5187 break; 5188 } 5189 5190 return Diag(From->getLocStart(), 5191 diag::err_member_function_call_bad_type) 5192 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 5193 } 5194 5195 if (ICS.Standard.Second == ICK_Derived_To_Base) { 5196 ExprResult FromRes = 5197 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 5198 if (FromRes.isInvalid()) 5199 return ExprError(); 5200 From = FromRes.get(); 5201 } 5202 5203 if (!Context.hasSameType(From->getType(), DestType)) 5204 From = ImpCastExprToType(From, DestType, CK_NoOp, 5205 From->getValueKind()).get(); 5206 return From; 5207 } 5208 5209 /// TryContextuallyConvertToBool - Attempt to contextually convert the 5210 /// expression From to bool (C++0x [conv]p3). 5211 static ImplicitConversionSequence 5212 TryContextuallyConvertToBool(Sema &S, Expr *From) { 5213 return TryImplicitConversion(S, From, S.Context.BoolTy, 5214 /*SuppressUserConversions=*/false, 5215 /*AllowExplicit=*/true, 5216 /*InOverloadResolution=*/false, 5217 /*CStyle=*/false, 5218 /*AllowObjCWritebackConversion=*/false, 5219 /*AllowObjCConversionOnExplicit=*/false); 5220 } 5221 5222 /// PerformContextuallyConvertToBool - Perform a contextual conversion 5223 /// of the expression From to bool (C++0x [conv]p3). 5224 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 5225 if (checkPlaceholderForOverload(*this, From)) 5226 return ExprError(); 5227 5228 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 5229 if (!ICS.isBad()) 5230 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 5231 5232 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 5233 return Diag(From->getLocStart(), 5234 diag::err_typecheck_bool_condition) 5235 << From->getType() << From->getSourceRange(); 5236 return ExprError(); 5237 } 5238 5239 /// Check that the specified conversion is permitted in a converted constant 5240 /// expression, according to C++11 [expr.const]p3. Return true if the conversion 5241 /// is acceptable. 5242 static bool CheckConvertedConstantConversions(Sema &S, 5243 StandardConversionSequence &SCS) { 5244 // Since we know that the target type is an integral or unscoped enumeration 5245 // type, most conversion kinds are impossible. All possible First and Third 5246 // conversions are fine. 5247 switch (SCS.Second) { 5248 case ICK_Identity: 5249 case ICK_Function_Conversion: 5250 case ICK_Integral_Promotion: 5251 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. 5252 case ICK_Zero_Queue_Conversion: 5253 return true; 5254 5255 case ICK_Boolean_Conversion: 5256 // Conversion from an integral or unscoped enumeration type to bool is 5257 // classified as ICK_Boolean_Conversion, but it's also arguably an integral 5258 // conversion, so we allow it in a converted constant expression. 5259 // 5260 // FIXME: Per core issue 1407, we should not allow this, but that breaks 5261 // a lot of popular code. We should at least add a warning for this 5262 // (non-conforming) extension. 5263 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && 5264 SCS.getToType(2)->isBooleanType(); 5265 5266 case ICK_Pointer_Conversion: 5267 case ICK_Pointer_Member: 5268 // C++1z: null pointer conversions and null member pointer conversions are 5269 // only permitted if the source type is std::nullptr_t. 5270 return SCS.getFromType()->isNullPtrType(); 5271 5272 case ICK_Floating_Promotion: 5273 case ICK_Complex_Promotion: 5274 case ICK_Floating_Conversion: 5275 case ICK_Complex_Conversion: 5276 case ICK_Floating_Integral: 5277 case ICK_Compatible_Conversion: 5278 case ICK_Derived_To_Base: 5279 case ICK_Vector_Conversion: 5280 case ICK_Vector_Splat: 5281 case ICK_Complex_Real: 5282 case ICK_Block_Pointer_Conversion: 5283 case ICK_TransparentUnionConversion: 5284 case ICK_Writeback_Conversion: 5285 case ICK_Zero_Event_Conversion: 5286 case ICK_C_Only_Conversion: 5287 case ICK_Incompatible_Pointer_Conversion: 5288 return false; 5289 5290 case ICK_Lvalue_To_Rvalue: 5291 case ICK_Array_To_Pointer: 5292 case ICK_Function_To_Pointer: 5293 llvm_unreachable("found a first conversion kind in Second"); 5294 5295 case ICK_Qualification: 5296 llvm_unreachable("found a third conversion kind in Second"); 5297 5298 case ICK_Num_Conversion_Kinds: 5299 break; 5300 } 5301 5302 llvm_unreachable("unknown conversion kind"); 5303 } 5304 5305 /// CheckConvertedConstantExpression - Check that the expression From is a 5306 /// converted constant expression of type T, perform the conversion and produce 5307 /// the converted expression, per C++11 [expr.const]p3. 5308 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, 5309 QualType T, APValue &Value, 5310 Sema::CCEKind CCE, 5311 bool RequireInt) { 5312 assert(S.getLangOpts().CPlusPlus11 && 5313 "converted constant expression outside C++11"); 5314 5315 if (checkPlaceholderForOverload(S, From)) 5316 return ExprError(); 5317 5318 // C++1z [expr.const]p3: 5319 // A converted constant expression of type T is an expression, 5320 // implicitly converted to type T, where the converted 5321 // expression is a constant expression and the implicit conversion 5322 // sequence contains only [... list of conversions ...]. 5323 // C++1z [stmt.if]p2: 5324 // If the if statement is of the form if constexpr, the value of the 5325 // condition shall be a contextually converted constant expression of type 5326 // bool. 5327 ImplicitConversionSequence ICS = 5328 CCE == Sema::CCEK_ConstexprIf 5329 ? TryContextuallyConvertToBool(S, From) 5330 : TryCopyInitialization(S, From, T, 5331 /*SuppressUserConversions=*/false, 5332 /*InOverloadResolution=*/false, 5333 /*AllowObjcWritebackConversion=*/false, 5334 /*AllowExplicit=*/false); 5335 StandardConversionSequence *SCS = nullptr; 5336 switch (ICS.getKind()) { 5337 case ImplicitConversionSequence::StandardConversion: 5338 SCS = &ICS.Standard; 5339 break; 5340 case ImplicitConversionSequence::UserDefinedConversion: 5341 // We are converting to a non-class type, so the Before sequence 5342 // must be trivial. 5343 SCS = &ICS.UserDefined.After; 5344 break; 5345 case ImplicitConversionSequence::AmbiguousConversion: 5346 case ImplicitConversionSequence::BadConversion: 5347 if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) 5348 return S.Diag(From->getLocStart(), 5349 diag::err_typecheck_converted_constant_expression) 5350 << From->getType() << From->getSourceRange() << T; 5351 return ExprError(); 5352 5353 case ImplicitConversionSequence::EllipsisConversion: 5354 llvm_unreachable("ellipsis conversion in converted constant expression"); 5355 } 5356 5357 // Check that we would only use permitted conversions. 5358 if (!CheckConvertedConstantConversions(S, *SCS)) { 5359 return S.Diag(From->getLocStart(), 5360 diag::err_typecheck_converted_constant_expression_disallowed) 5361 << From->getType() << From->getSourceRange() << T; 5362 } 5363 // [...] and where the reference binding (if any) binds directly. 5364 if (SCS->ReferenceBinding && !SCS->DirectBinding) { 5365 return S.Diag(From->getLocStart(), 5366 diag::err_typecheck_converted_constant_expression_indirect) 5367 << From->getType() << From->getSourceRange() << T; 5368 } 5369 5370 ExprResult Result = 5371 S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); 5372 if (Result.isInvalid()) 5373 return Result; 5374 5375 // Check for a narrowing implicit conversion. 5376 APValue PreNarrowingValue; 5377 QualType PreNarrowingType; 5378 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, 5379 PreNarrowingType)) { 5380 case NK_Dependent_Narrowing: 5381 // Implicit conversion to a narrower type, but the expression is 5382 // value-dependent so we can't tell whether it's actually narrowing. 5383 case NK_Variable_Narrowing: 5384 // Implicit conversion to a narrower type, and the value is not a constant 5385 // expression. We'll diagnose this in a moment. 5386 case NK_Not_Narrowing: 5387 break; 5388 5389 case NK_Constant_Narrowing: 5390 S.Diag(From->getLocStart(), diag::ext_cce_narrowing) 5391 << CCE << /*Constant*/1 5392 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; 5393 break; 5394 5395 case NK_Type_Narrowing: 5396 S.Diag(From->getLocStart(), diag::ext_cce_narrowing) 5397 << CCE << /*Constant*/0 << From->getType() << T; 5398 break; 5399 } 5400 5401 if (Result.get()->isValueDependent()) { 5402 Value = APValue(); 5403 return Result; 5404 } 5405 5406 // Check the expression is a constant expression. 5407 SmallVector<PartialDiagnosticAt, 8> Notes; 5408 Expr::EvalResult Eval; 5409 Eval.Diag = &Notes; 5410 Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg 5411 ? Expr::EvaluateForMangling 5412 : Expr::EvaluateForCodeGen; 5413 5414 if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) || 5415 (RequireInt && !Eval.Val.isInt())) { 5416 // The expression can't be folded, so we can't keep it at this position in 5417 // the AST. 5418 Result = ExprError(); 5419 } else { 5420 Value = Eval.Val; 5421 5422 if (Notes.empty()) { 5423 // It's a constant expression. 5424 return Result; 5425 } 5426 } 5427 5428 // It's not a constant expression. Produce an appropriate diagnostic. 5429 if (Notes.size() == 1 && 5430 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) 5431 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; 5432 else { 5433 S.Diag(From->getLocStart(), diag::err_expr_not_cce) 5434 << CCE << From->getSourceRange(); 5435 for (unsigned I = 0; I < Notes.size(); ++I) 5436 S.Diag(Notes[I].first, Notes[I].second); 5437 } 5438 return ExprError(); 5439 } 5440 5441 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5442 APValue &Value, CCEKind CCE) { 5443 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false); 5444 } 5445 5446 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5447 llvm::APSInt &Value, 5448 CCEKind CCE) { 5449 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); 5450 5451 APValue V; 5452 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true); 5453 if (!R.isInvalid() && !R.get()->isValueDependent()) 5454 Value = V.getInt(); 5455 return R; 5456 } 5457 5458 5459 /// dropPointerConversions - If the given standard conversion sequence 5460 /// involves any pointer conversions, remove them. This may change 5461 /// the result type of the conversion sequence. 5462 static void dropPointerConversion(StandardConversionSequence &SCS) { 5463 if (SCS.Second == ICK_Pointer_Conversion) { 5464 SCS.Second = ICK_Identity; 5465 SCS.Third = ICK_Identity; 5466 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 5467 } 5468 } 5469 5470 /// TryContextuallyConvertToObjCPointer - Attempt to contextually 5471 /// convert the expression From to an Objective-C pointer type. 5472 static ImplicitConversionSequence 5473 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 5474 // Do an implicit conversion to 'id'. 5475 QualType Ty = S.Context.getObjCIdType(); 5476 ImplicitConversionSequence ICS 5477 = TryImplicitConversion(S, From, Ty, 5478 // FIXME: Are these flags correct? 5479 /*SuppressUserConversions=*/false, 5480 /*AllowExplicit=*/true, 5481 /*InOverloadResolution=*/false, 5482 /*CStyle=*/false, 5483 /*AllowObjCWritebackConversion=*/false, 5484 /*AllowObjCConversionOnExplicit=*/true); 5485 5486 // Strip off any final conversions to 'id'. 5487 switch (ICS.getKind()) { 5488 case ImplicitConversionSequence::BadConversion: 5489 case ImplicitConversionSequence::AmbiguousConversion: 5490 case ImplicitConversionSequence::EllipsisConversion: 5491 break; 5492 5493 case ImplicitConversionSequence::UserDefinedConversion: 5494 dropPointerConversion(ICS.UserDefined.After); 5495 break; 5496 5497 case ImplicitConversionSequence::StandardConversion: 5498 dropPointerConversion(ICS.Standard); 5499 break; 5500 } 5501 5502 return ICS; 5503 } 5504 5505 /// PerformContextuallyConvertToObjCPointer - Perform a contextual 5506 /// conversion of the expression From to an Objective-C pointer type. 5507 /// Returns a valid but null ExprResult if no conversion sequence exists. 5508 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 5509 if (checkPlaceholderForOverload(*this, From)) 5510 return ExprError(); 5511 5512 QualType Ty = Context.getObjCIdType(); 5513 ImplicitConversionSequence ICS = 5514 TryContextuallyConvertToObjCPointer(*this, From); 5515 if (!ICS.isBad()) 5516 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 5517 return ExprResult(); 5518 } 5519 5520 /// Determine whether the provided type is an integral type, or an enumeration 5521 /// type of a permitted flavor. 5522 bool Sema::ICEConvertDiagnoser::match(QualType T) { 5523 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() 5524 : T->isIntegralOrUnscopedEnumerationType(); 5525 } 5526 5527 static ExprResult 5528 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, 5529 Sema::ContextualImplicitConverter &Converter, 5530 QualType T, UnresolvedSetImpl &ViableConversions) { 5531 5532 if (Converter.Suppress) 5533 return ExprError(); 5534 5535 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); 5536 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5537 CXXConversionDecl *Conv = 5538 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 5539 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 5540 Converter.noteAmbiguous(SemaRef, Conv, ConvTy); 5541 } 5542 return From; 5543 } 5544 5545 static bool 5546 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 5547 Sema::ContextualImplicitConverter &Converter, 5548 QualType T, bool HadMultipleCandidates, 5549 UnresolvedSetImpl &ExplicitConversions) { 5550 if (ExplicitConversions.size() == 1 && !Converter.Suppress) { 5551 DeclAccessPair Found = ExplicitConversions[0]; 5552 CXXConversionDecl *Conversion = 5553 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5554 5555 // The user probably meant to invoke the given explicit 5556 // conversion; use it. 5557 QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); 5558 std::string TypeStr; 5559 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); 5560 5561 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) 5562 << FixItHint::CreateInsertion(From->getLocStart(), 5563 "static_cast<" + TypeStr + ">(") 5564 << FixItHint::CreateInsertion( 5565 SemaRef.getLocForEndOfToken(From->getLocEnd()), ")"); 5566 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); 5567 5568 // If we aren't in a SFINAE context, build a call to the 5569 // explicit conversion function. 5570 if (SemaRef.isSFINAEContext()) 5571 return true; 5572 5573 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 5574 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 5575 HadMultipleCandidates); 5576 if (Result.isInvalid()) 5577 return true; 5578 // Record usage of conversion in an implicit cast. 5579 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 5580 CK_UserDefinedConversion, Result.get(), 5581 nullptr, Result.get()->getValueKind()); 5582 } 5583 return false; 5584 } 5585 5586 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 5587 Sema::ContextualImplicitConverter &Converter, 5588 QualType T, bool HadMultipleCandidates, 5589 DeclAccessPair &Found) { 5590 CXXConversionDecl *Conversion = 5591 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5592 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 5593 5594 QualType ToType = Conversion->getConversionType().getNonReferenceType(); 5595 if (!Converter.SuppressConversion) { 5596 if (SemaRef.isSFINAEContext()) 5597 return true; 5598 5599 Converter.diagnoseConversion(SemaRef, Loc, T, ToType) 5600 << From->getSourceRange(); 5601 } 5602 5603 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 5604 HadMultipleCandidates); 5605 if (Result.isInvalid()) 5606 return true; 5607 // Record usage of conversion in an implicit cast. 5608 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 5609 CK_UserDefinedConversion, Result.get(), 5610 nullptr, Result.get()->getValueKind()); 5611 return false; 5612 } 5613 5614 static ExprResult finishContextualImplicitConversion( 5615 Sema &SemaRef, SourceLocation Loc, Expr *From, 5616 Sema::ContextualImplicitConverter &Converter) { 5617 if (!Converter.match(From->getType()) && !Converter.Suppress) 5618 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) 5619 << From->getSourceRange(); 5620 5621 return SemaRef.DefaultLvalueConversion(From); 5622 } 5623 5624 static void 5625 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, 5626 UnresolvedSetImpl &ViableConversions, 5627 OverloadCandidateSet &CandidateSet) { 5628 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5629 DeclAccessPair FoundDecl = ViableConversions[I]; 5630 NamedDecl *D = FoundDecl.getDecl(); 5631 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 5632 if (isa<UsingShadowDecl>(D)) 5633 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5634 5635 CXXConversionDecl *Conv; 5636 FunctionTemplateDecl *ConvTemplate; 5637 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 5638 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5639 else 5640 Conv = cast<CXXConversionDecl>(D); 5641 5642 if (ConvTemplate) 5643 SemaRef.AddTemplateConversionCandidate( 5644 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, 5645 /*AllowObjCConversionOnExplicit=*/false); 5646 else 5647 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, 5648 ToType, CandidateSet, 5649 /*AllowObjCConversionOnExplicit=*/false); 5650 } 5651 } 5652 5653 /// Attempt to convert the given expression to a type which is accepted 5654 /// by the given converter. 5655 /// 5656 /// This routine will attempt to convert an expression of class type to a 5657 /// type accepted by the specified converter. In C++11 and before, the class 5658 /// must have a single non-explicit conversion function converting to a matching 5659 /// type. In C++1y, there can be multiple such conversion functions, but only 5660 /// one target type. 5661 /// 5662 /// \param Loc The source location of the construct that requires the 5663 /// conversion. 5664 /// 5665 /// \param From The expression we're converting from. 5666 /// 5667 /// \param Converter Used to control and diagnose the conversion process. 5668 /// 5669 /// \returns The expression, converted to an integral or enumeration type if 5670 /// successful. 5671 ExprResult Sema::PerformContextualImplicitConversion( 5672 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { 5673 // We can't perform any more checking for type-dependent expressions. 5674 if (From->isTypeDependent()) 5675 return From; 5676 5677 // Process placeholders immediately. 5678 if (From->hasPlaceholderType()) { 5679 ExprResult result = CheckPlaceholderExpr(From); 5680 if (result.isInvalid()) 5681 return result; 5682 From = result.get(); 5683 } 5684 5685 // If the expression already has a matching type, we're golden. 5686 QualType T = From->getType(); 5687 if (Converter.match(T)) 5688 return DefaultLvalueConversion(From); 5689 5690 // FIXME: Check for missing '()' if T is a function type? 5691 5692 // We can only perform contextual implicit conversions on objects of class 5693 // type. 5694 const RecordType *RecordTy = T->getAs<RecordType>(); 5695 if (!RecordTy || !getLangOpts().CPlusPlus) { 5696 if (!Converter.Suppress) 5697 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); 5698 return From; 5699 } 5700 5701 // We must have a complete class type. 5702 struct TypeDiagnoserPartialDiag : TypeDiagnoser { 5703 ContextualImplicitConverter &Converter; 5704 Expr *From; 5705 5706 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) 5707 : Converter(Converter), From(From) {} 5708 5709 void diagnose(Sema &S, SourceLocation Loc, QualType T) override { 5710 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); 5711 } 5712 } IncompleteDiagnoser(Converter, From); 5713 5714 if (Converter.Suppress ? !isCompleteType(Loc, T) 5715 : RequireCompleteType(Loc, T, IncompleteDiagnoser)) 5716 return From; 5717 5718 // Look for a conversion to an integral or enumeration type. 5719 UnresolvedSet<4> 5720 ViableConversions; // These are *potentially* viable in C++1y. 5721 UnresolvedSet<4> ExplicitConversions; 5722 const auto &Conversions = 5723 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 5724 5725 bool HadMultipleCandidates = 5726 (std::distance(Conversions.begin(), Conversions.end()) > 1); 5727 5728 // To check that there is only one target type, in C++1y: 5729 QualType ToType; 5730 bool HasUniqueTargetType = true; 5731 5732 // Collect explicit or viable (potentially in C++1y) conversions. 5733 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5734 NamedDecl *D = (*I)->getUnderlyingDecl(); 5735 CXXConversionDecl *Conversion; 5736 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5737 if (ConvTemplate) { 5738 if (getLangOpts().CPlusPlus14) 5739 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5740 else 5741 continue; // C++11 does not consider conversion operator templates(?). 5742 } else 5743 Conversion = cast<CXXConversionDecl>(D); 5744 5745 assert((!ConvTemplate || getLangOpts().CPlusPlus14) && 5746 "Conversion operator templates are considered potentially " 5747 "viable in C++1y"); 5748 5749 QualType CurToType = Conversion->getConversionType().getNonReferenceType(); 5750 if (Converter.match(CurToType) || ConvTemplate) { 5751 5752 if (Conversion->isExplicit()) { 5753 // FIXME: For C++1y, do we need this restriction? 5754 // cf. diagnoseNoViableConversion() 5755 if (!ConvTemplate) 5756 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 5757 } else { 5758 if (!ConvTemplate && getLangOpts().CPlusPlus14) { 5759 if (ToType.isNull()) 5760 ToType = CurToType.getUnqualifiedType(); 5761 else if (HasUniqueTargetType && 5762 (CurToType.getUnqualifiedType() != ToType)) 5763 HasUniqueTargetType = false; 5764 } 5765 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 5766 } 5767 } 5768 } 5769 5770 if (getLangOpts().CPlusPlus14) { 5771 // C++1y [conv]p6: 5772 // ... An expression e of class type E appearing in such a context 5773 // is said to be contextually implicitly converted to a specified 5774 // type T and is well-formed if and only if e can be implicitly 5775 // converted to a type T that is determined as follows: E is searched 5776 // for conversion functions whose return type is cv T or reference to 5777 // cv T such that T is allowed by the context. There shall be 5778 // exactly one such T. 5779 5780 // If no unique T is found: 5781 if (ToType.isNull()) { 5782 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 5783 HadMultipleCandidates, 5784 ExplicitConversions)) 5785 return ExprError(); 5786 return finishContextualImplicitConversion(*this, Loc, From, Converter); 5787 } 5788 5789 // If more than one unique Ts are found: 5790 if (!HasUniqueTargetType) 5791 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 5792 ViableConversions); 5793 5794 // If one unique T is found: 5795 // First, build a candidate set from the previously recorded 5796 // potentially viable conversions. 5797 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5798 collectViableConversionCandidates(*this, From, ToType, ViableConversions, 5799 CandidateSet); 5800 5801 // Then, perform overload resolution over the candidate set. 5802 OverloadCandidateSet::iterator Best; 5803 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) { 5804 case OR_Success: { 5805 // Apply this conversion. 5806 DeclAccessPair Found = 5807 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess()); 5808 if (recordConversion(*this, Loc, From, Converter, T, 5809 HadMultipleCandidates, Found)) 5810 return ExprError(); 5811 break; 5812 } 5813 case OR_Ambiguous: 5814 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 5815 ViableConversions); 5816 case OR_No_Viable_Function: 5817 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 5818 HadMultipleCandidates, 5819 ExplicitConversions)) 5820 return ExprError(); 5821 LLVM_FALLTHROUGH; 5822 case OR_Deleted: 5823 // We'll complain below about a non-integral condition type. 5824 break; 5825 } 5826 } else { 5827 switch (ViableConversions.size()) { 5828 case 0: { 5829 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 5830 HadMultipleCandidates, 5831 ExplicitConversions)) 5832 return ExprError(); 5833 5834 // We'll complain below about a non-integral condition type. 5835 break; 5836 } 5837 case 1: { 5838 // Apply this conversion. 5839 DeclAccessPair Found = ViableConversions[0]; 5840 if (recordConversion(*this, Loc, From, Converter, T, 5841 HadMultipleCandidates, Found)) 5842 return ExprError(); 5843 break; 5844 } 5845 default: 5846 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 5847 ViableConversions); 5848 } 5849 } 5850 5851 return finishContextualImplicitConversion(*this, Loc, From, Converter); 5852 } 5853 5854 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is 5855 /// an acceptable non-member overloaded operator for a call whose 5856 /// arguments have types T1 (and, if non-empty, T2). This routine 5857 /// implements the check in C++ [over.match.oper]p3b2 concerning 5858 /// enumeration types. 5859 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, 5860 FunctionDecl *Fn, 5861 ArrayRef<Expr *> Args) { 5862 QualType T1 = Args[0]->getType(); 5863 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); 5864 5865 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) 5866 return true; 5867 5868 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) 5869 return true; 5870 5871 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>(); 5872 if (Proto->getNumParams() < 1) 5873 return false; 5874 5875 if (T1->isEnumeralType()) { 5876 QualType ArgType = Proto->getParamType(0).getNonReferenceType(); 5877 if (Context.hasSameUnqualifiedType(T1, ArgType)) 5878 return true; 5879 } 5880 5881 if (Proto->getNumParams() < 2) 5882 return false; 5883 5884 if (!T2.isNull() && T2->isEnumeralType()) { 5885 QualType ArgType = Proto->getParamType(1).getNonReferenceType(); 5886 if (Context.hasSameUnqualifiedType(T2, ArgType)) 5887 return true; 5888 } 5889 5890 return false; 5891 } 5892 5893 /// AddOverloadCandidate - Adds the given function to the set of 5894 /// candidate functions, using the given function call arguments. If 5895 /// @p SuppressUserConversions, then don't allow user-defined 5896 /// conversions via constructors or conversion operators. 5897 /// 5898 /// \param PartialOverloading true if we are performing "partial" overloading 5899 /// based on an incomplete set of function arguments. This feature is used by 5900 /// code completion. 5901 void 5902 Sema::AddOverloadCandidate(FunctionDecl *Function, 5903 DeclAccessPair FoundDecl, 5904 ArrayRef<Expr *> Args, 5905 OverloadCandidateSet &CandidateSet, 5906 bool SuppressUserConversions, 5907 bool PartialOverloading, 5908 bool AllowExplicit, 5909 ConversionSequenceList EarlyConversions) { 5910 const FunctionProtoType *Proto 5911 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 5912 assert(Proto && "Functions without a prototype cannot be overloaded"); 5913 assert(!Function->getDescribedFunctionTemplate() && 5914 "Use AddTemplateOverloadCandidate for function templates"); 5915 5916 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 5917 if (!isa<CXXConstructorDecl>(Method)) { 5918 // If we get here, it's because we're calling a member function 5919 // that is named without a member access expression (e.g., 5920 // "this->f") that was either written explicitly or created 5921 // implicitly. This can happen with a qualified call to a member 5922 // function, e.g., X::f(). We use an empty type for the implied 5923 // object argument (C++ [over.call.func]p3), and the acting context 5924 // is irrelevant. 5925 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(), 5926 Expr::Classification::makeSimpleLValue(), Args, 5927 CandidateSet, SuppressUserConversions, 5928 PartialOverloading, EarlyConversions); 5929 return; 5930 } 5931 // We treat a constructor like a non-member function, since its object 5932 // argument doesn't participate in overload resolution. 5933 } 5934 5935 if (!CandidateSet.isNewCandidate(Function)) 5936 return; 5937 5938 // C++ [over.match.oper]p3: 5939 // if no operand has a class type, only those non-member functions in the 5940 // lookup set that have a first parameter of type T1 or "reference to 5941 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there 5942 // is a right operand) a second parameter of type T2 or "reference to 5943 // (possibly cv-qualified) T2", when T2 is an enumeration type, are 5944 // candidate functions. 5945 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && 5946 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args)) 5947 return; 5948 5949 // C++11 [class.copy]p11: [DR1402] 5950 // A defaulted move constructor that is defined as deleted is ignored by 5951 // overload resolution. 5952 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function); 5953 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && 5954 Constructor->isMoveConstructor()) 5955 return; 5956 5957 // Overload resolution is always an unevaluated context. 5958 EnterExpressionEvaluationContext Unevaluated( 5959 *this, Sema::ExpressionEvaluationContext::Unevaluated); 5960 5961 // Add this candidate 5962 OverloadCandidate &Candidate = 5963 CandidateSet.addCandidate(Args.size(), EarlyConversions); 5964 Candidate.FoundDecl = FoundDecl; 5965 Candidate.Function = Function; 5966 Candidate.Viable = true; 5967 Candidate.IsSurrogate = false; 5968 Candidate.IgnoreObjectArgument = false; 5969 Candidate.ExplicitCallArguments = Args.size(); 5970 5971 if (Function->isMultiVersion() && 5972 !Function->getAttr<TargetAttr>()->isDefaultVersion()) { 5973 Candidate.Viable = false; 5974 Candidate.FailureKind = ovl_non_default_multiversion_function; 5975 return; 5976 } 5977 5978 if (Constructor) { 5979 // C++ [class.copy]p3: 5980 // A member function template is never instantiated to perform the copy 5981 // of a class object to an object of its class type. 5982 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 5983 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() && 5984 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 5985 IsDerivedFrom(Args[0]->getLocStart(), Args[0]->getType(), 5986 ClassType))) { 5987 Candidate.Viable = false; 5988 Candidate.FailureKind = ovl_fail_illegal_constructor; 5989 return; 5990 } 5991 5992 // C++ [over.match.funcs]p8: (proposed DR resolution) 5993 // A constructor inherited from class type C that has a first parameter 5994 // of type "reference to P" (including such a constructor instantiated 5995 // from a template) is excluded from the set of candidate functions when 5996 // constructing an object of type cv D if the argument list has exactly 5997 // one argument and D is reference-related to P and P is reference-related 5998 // to C. 5999 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl()); 6000 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 && 6001 Constructor->getParamDecl(0)->getType()->isReferenceType()) { 6002 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType(); 6003 QualType C = Context.getRecordType(Constructor->getParent()); 6004 QualType D = Context.getRecordType(Shadow->getParent()); 6005 SourceLocation Loc = Args.front()->getExprLoc(); 6006 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) && 6007 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) { 6008 Candidate.Viable = false; 6009 Candidate.FailureKind = ovl_fail_inhctor_slice; 6010 return; 6011 } 6012 } 6013 } 6014 6015 unsigned NumParams = Proto->getNumParams(); 6016 6017 // (C++ 13.3.2p2): A candidate function having fewer than m 6018 // parameters is viable only if it has an ellipsis in its parameter 6019 // list (8.3.5). 6020 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 6021 !Proto->isVariadic()) { 6022 Candidate.Viable = false; 6023 Candidate.FailureKind = ovl_fail_too_many_arguments; 6024 return; 6025 } 6026 6027 // (C++ 13.3.2p2): A candidate function having more than m parameters 6028 // is viable only if the (m+1)st parameter has a default argument 6029 // (8.3.6). For the purposes of overload resolution, the 6030 // parameter list is truncated on the right, so that there are 6031 // exactly m parameters. 6032 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 6033 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 6034 // Not enough arguments. 6035 Candidate.Viable = false; 6036 Candidate.FailureKind = ovl_fail_too_few_arguments; 6037 return; 6038 } 6039 6040 // (CUDA B.1): Check for invalid calls between targets. 6041 if (getLangOpts().CUDA) 6042 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 6043 // Skip the check for callers that are implicit members, because in this 6044 // case we may not yet know what the member's target is; the target is 6045 // inferred for the member automatically, based on the bases and fields of 6046 // the class. 6047 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) { 6048 Candidate.Viable = false; 6049 Candidate.FailureKind = ovl_fail_bad_target; 6050 return; 6051 } 6052 6053 // Determine the implicit conversion sequences for each of the 6054 // arguments. 6055 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 6056 if (Candidate.Conversions[ArgIdx].isInitialized()) { 6057 // We already formed a conversion sequence for this parameter during 6058 // template argument deduction. 6059 } else if (ArgIdx < NumParams) { 6060 // (C++ 13.3.2p3): for F to be a viable function, there shall 6061 // exist for each argument an implicit conversion sequence 6062 // (13.3.3.1) that converts that argument to the corresponding 6063 // parameter of F. 6064 QualType ParamType = Proto->getParamType(ArgIdx); 6065 Candidate.Conversions[ArgIdx] 6066 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 6067 SuppressUserConversions, 6068 /*InOverloadResolution=*/true, 6069 /*AllowObjCWritebackConversion=*/ 6070 getLangOpts().ObjCAutoRefCount, 6071 AllowExplicit); 6072 if (Candidate.Conversions[ArgIdx].isBad()) { 6073 Candidate.Viable = false; 6074 Candidate.FailureKind = ovl_fail_bad_conversion; 6075 return; 6076 } 6077 } else { 6078 // (C++ 13.3.2p2): For the purposes of overload resolution, any 6079 // argument for which there is no corresponding parameter is 6080 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 6081 Candidate.Conversions[ArgIdx].setEllipsis(); 6082 } 6083 } 6084 6085 if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) { 6086 Candidate.Viable = false; 6087 Candidate.FailureKind = ovl_fail_enable_if; 6088 Candidate.DeductionFailure.Data = FailedAttr; 6089 return; 6090 } 6091 6092 if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) { 6093 Candidate.Viable = false; 6094 Candidate.FailureKind = ovl_fail_ext_disabled; 6095 return; 6096 } 6097 } 6098 6099 ObjCMethodDecl * 6100 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, 6101 SmallVectorImpl<ObjCMethodDecl *> &Methods) { 6102 if (Methods.size() <= 1) 6103 return nullptr; 6104 6105 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6106 bool Match = true; 6107 ObjCMethodDecl *Method = Methods[b]; 6108 unsigned NumNamedArgs = Sel.getNumArgs(); 6109 // Method might have more arguments than selector indicates. This is due 6110 // to addition of c-style arguments in method. 6111 if (Method->param_size() > NumNamedArgs) 6112 NumNamedArgs = Method->param_size(); 6113 if (Args.size() < NumNamedArgs) 6114 continue; 6115 6116 for (unsigned i = 0; i < NumNamedArgs; i++) { 6117 // We can't do any type-checking on a type-dependent argument. 6118 if (Args[i]->isTypeDependent()) { 6119 Match = false; 6120 break; 6121 } 6122 6123 ParmVarDecl *param = Method->parameters()[i]; 6124 Expr *argExpr = Args[i]; 6125 assert(argExpr && "SelectBestMethod(): missing expression"); 6126 6127 // Strip the unbridged-cast placeholder expression off unless it's 6128 // a consumed argument. 6129 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 6130 !param->hasAttr<CFConsumedAttr>()) 6131 argExpr = stripARCUnbridgedCast(argExpr); 6132 6133 // If the parameter is __unknown_anytype, move on to the next method. 6134 if (param->getType() == Context.UnknownAnyTy) { 6135 Match = false; 6136 break; 6137 } 6138 6139 ImplicitConversionSequence ConversionState 6140 = TryCopyInitialization(*this, argExpr, param->getType(), 6141 /*SuppressUserConversions*/false, 6142 /*InOverloadResolution=*/true, 6143 /*AllowObjCWritebackConversion=*/ 6144 getLangOpts().ObjCAutoRefCount, 6145 /*AllowExplicit*/false); 6146 // This function looks for a reasonably-exact match, so we consider 6147 // incompatible pointer conversions to be a failure here. 6148 if (ConversionState.isBad() || 6149 (ConversionState.isStandard() && 6150 ConversionState.Standard.Second == 6151 ICK_Incompatible_Pointer_Conversion)) { 6152 Match = false; 6153 break; 6154 } 6155 } 6156 // Promote additional arguments to variadic methods. 6157 if (Match && Method->isVariadic()) { 6158 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 6159 if (Args[i]->isTypeDependent()) { 6160 Match = false; 6161 break; 6162 } 6163 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 6164 nullptr); 6165 if (Arg.isInvalid()) { 6166 Match = false; 6167 break; 6168 } 6169 } 6170 } else { 6171 // Check for extra arguments to non-variadic methods. 6172 if (Args.size() != NumNamedArgs) 6173 Match = false; 6174 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { 6175 // Special case when selectors have no argument. In this case, select 6176 // one with the most general result type of 'id'. 6177 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6178 QualType ReturnT = Methods[b]->getReturnType(); 6179 if (ReturnT->isObjCIdType()) 6180 return Methods[b]; 6181 } 6182 } 6183 } 6184 6185 if (Match) 6186 return Method; 6187 } 6188 return nullptr; 6189 } 6190 6191 // specific_attr_iterator iterates over enable_if attributes in reverse, and 6192 // enable_if is order-sensitive. As a result, we need to reverse things 6193 // sometimes. Size of 4 elements is arbitrary. 6194 static SmallVector<EnableIfAttr *, 4> 6195 getOrderedEnableIfAttrs(const FunctionDecl *Function) { 6196 SmallVector<EnableIfAttr *, 4> Result; 6197 if (!Function->hasAttrs()) 6198 return Result; 6199 6200 const auto &FuncAttrs = Function->getAttrs(); 6201 for (Attr *Attr : FuncAttrs) 6202 if (auto *EnableIf = dyn_cast<EnableIfAttr>(Attr)) 6203 Result.push_back(EnableIf); 6204 6205 std::reverse(Result.begin(), Result.end()); 6206 return Result; 6207 } 6208 6209 static bool 6210 convertArgsForAvailabilityChecks(Sema &S, FunctionDecl *Function, Expr *ThisArg, 6211 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, 6212 bool MissingImplicitThis, Expr *&ConvertedThis, 6213 SmallVectorImpl<Expr *> &ConvertedArgs) { 6214 if (ThisArg) { 6215 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function); 6216 assert(!isa<CXXConstructorDecl>(Method) && 6217 "Shouldn't have `this` for ctors!"); 6218 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!"); 6219 ExprResult R = S.PerformObjectArgumentInitialization( 6220 ThisArg, /*Qualifier=*/nullptr, Method, Method); 6221 if (R.isInvalid()) 6222 return false; 6223 ConvertedThis = R.get(); 6224 } else { 6225 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) { 6226 (void)MD; 6227 assert((MissingImplicitThis || MD->isStatic() || 6228 isa<CXXConstructorDecl>(MD)) && 6229 "Expected `this` for non-ctor instance methods"); 6230 } 6231 ConvertedThis = nullptr; 6232 } 6233 6234 // Ignore any variadic arguments. Converting them is pointless, since the 6235 // user can't refer to them in the function condition. 6236 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size()); 6237 6238 // Convert the arguments. 6239 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) { 6240 ExprResult R; 6241 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 6242 S.Context, Function->getParamDecl(I)), 6243 SourceLocation(), Args[I]); 6244 6245 if (R.isInvalid()) 6246 return false; 6247 6248 ConvertedArgs.push_back(R.get()); 6249 } 6250 6251 if (Trap.hasErrorOccurred()) 6252 return false; 6253 6254 // Push default arguments if needed. 6255 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) { 6256 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) { 6257 ParmVarDecl *P = Function->getParamDecl(i); 6258 Expr *DefArg = P->hasUninstantiatedDefaultArg() 6259 ? P->getUninstantiatedDefaultArg() 6260 : P->getDefaultArg(); 6261 // This can only happen in code completion, i.e. when PartialOverloading 6262 // is true. 6263 if (!DefArg) 6264 return false; 6265 ExprResult R = 6266 S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 6267 S.Context, Function->getParamDecl(i)), 6268 SourceLocation(), DefArg); 6269 if (R.isInvalid()) 6270 return false; 6271 ConvertedArgs.push_back(R.get()); 6272 } 6273 6274 if (Trap.hasErrorOccurred()) 6275 return false; 6276 } 6277 return true; 6278 } 6279 6280 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args, 6281 bool MissingImplicitThis) { 6282 SmallVector<EnableIfAttr *, 4> EnableIfAttrs = 6283 getOrderedEnableIfAttrs(Function); 6284 if (EnableIfAttrs.empty()) 6285 return nullptr; 6286 6287 SFINAETrap Trap(*this); 6288 SmallVector<Expr *, 16> ConvertedArgs; 6289 // FIXME: We should look into making enable_if late-parsed. 6290 Expr *DiscardedThis; 6291 if (!convertArgsForAvailabilityChecks( 6292 *this, Function, /*ThisArg=*/nullptr, Args, Trap, 6293 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs)) 6294 return EnableIfAttrs[0]; 6295 6296 for (auto *EIA : EnableIfAttrs) { 6297 APValue Result; 6298 // FIXME: This doesn't consider value-dependent cases, because doing so is 6299 // very difficult. Ideally, we should handle them more gracefully. 6300 if (!EIA->getCond()->EvaluateWithSubstitution( 6301 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) 6302 return EIA; 6303 6304 if (!Result.isInt() || !Result.getInt().getBoolValue()) 6305 return EIA; 6306 } 6307 return nullptr; 6308 } 6309 6310 template <typename CheckFn> 6311 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND, 6312 bool ArgDependent, SourceLocation Loc, 6313 CheckFn &&IsSuccessful) { 6314 SmallVector<const DiagnoseIfAttr *, 8> Attrs; 6315 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) { 6316 if (ArgDependent == DIA->getArgDependent()) 6317 Attrs.push_back(DIA); 6318 } 6319 6320 // Common case: No diagnose_if attributes, so we can quit early. 6321 if (Attrs.empty()) 6322 return false; 6323 6324 auto WarningBegin = std::stable_partition( 6325 Attrs.begin(), Attrs.end(), 6326 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); }); 6327 6328 // Note that diagnose_if attributes are late-parsed, so they appear in the 6329 // correct order (unlike enable_if attributes). 6330 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin), 6331 IsSuccessful); 6332 if (ErrAttr != WarningBegin) { 6333 const DiagnoseIfAttr *DIA = *ErrAttr; 6334 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage(); 6335 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6336 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6337 return true; 6338 } 6339 6340 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end())) 6341 if (IsSuccessful(DIA)) { 6342 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage(); 6343 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6344 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6345 } 6346 6347 return false; 6348 } 6349 6350 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, 6351 const Expr *ThisArg, 6352 ArrayRef<const Expr *> Args, 6353 SourceLocation Loc) { 6354 return diagnoseDiagnoseIfAttrsWith( 6355 *this, Function, /*ArgDependent=*/true, Loc, 6356 [&](const DiagnoseIfAttr *DIA) { 6357 APValue Result; 6358 // It's sane to use the same Args for any redecl of this function, since 6359 // EvaluateWithSubstitution only cares about the position of each 6360 // argument in the arg list, not the ParmVarDecl* it maps to. 6361 if (!DIA->getCond()->EvaluateWithSubstitution( 6362 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg)) 6363 return false; 6364 return Result.isInt() && Result.getInt().getBoolValue(); 6365 }); 6366 } 6367 6368 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, 6369 SourceLocation Loc) { 6370 return diagnoseDiagnoseIfAttrsWith( 6371 *this, ND, /*ArgDependent=*/false, Loc, 6372 [&](const DiagnoseIfAttr *DIA) { 6373 bool Result; 6374 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) && 6375 Result; 6376 }); 6377 } 6378 6379 /// Add all of the function declarations in the given function set to 6380 /// the overload candidate set. 6381 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 6382 ArrayRef<Expr *> Args, 6383 OverloadCandidateSet& CandidateSet, 6384 TemplateArgumentListInfo *ExplicitTemplateArgs, 6385 bool SuppressUserConversions, 6386 bool PartialOverloading, 6387 bool FirstArgumentIsBase) { 6388 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 6389 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 6390 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 6391 ArrayRef<Expr *> FunctionArgs = Args; 6392 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) { 6393 QualType ObjectType; 6394 Expr::Classification ObjectClassification; 6395 if (Args.size() > 0) { 6396 if (Expr *E = Args[0]) { 6397 // Use the explicit base to restrict the lookup: 6398 ObjectType = E->getType(); 6399 ObjectClassification = E->Classify(Context); 6400 } // .. else there is an implit base. 6401 FunctionArgs = Args.slice(1); 6402 } 6403 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 6404 cast<CXXMethodDecl>(FD)->getParent(), ObjectType, 6405 ObjectClassification, FunctionArgs, CandidateSet, 6406 SuppressUserConversions, PartialOverloading); 6407 } else { 6408 // Slice the first argument (which is the base) when we access 6409 // static method as non-static 6410 if (Args.size() > 0 && (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) && 6411 !isa<CXXConstructorDecl>(FD)))) { 6412 assert(cast<CXXMethodDecl>(FD)->isStatic()); 6413 FunctionArgs = Args.slice(1); 6414 } 6415 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet, 6416 SuppressUserConversions, PartialOverloading); 6417 } 6418 } else { 6419 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 6420 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 6421 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) { 6422 QualType ObjectType; 6423 Expr::Classification ObjectClassification; 6424 if (Expr *E = Args[0]) { 6425 // Use the explicit base to restrict the lookup: 6426 ObjectType = E->getType(); 6427 ObjectClassification = E->Classify(Context); 6428 } // .. else there is an implit base. 6429 AddMethodTemplateCandidate( 6430 FunTmpl, F.getPair(), 6431 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 6432 ExplicitTemplateArgs, ObjectType, ObjectClassification, 6433 Args.slice(1), CandidateSet, SuppressUserConversions, 6434 PartialOverloading); 6435 } else { 6436 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 6437 ExplicitTemplateArgs, Args, 6438 CandidateSet, SuppressUserConversions, 6439 PartialOverloading); 6440 } 6441 } 6442 } 6443 } 6444 6445 /// AddMethodCandidate - Adds a named decl (which is some kind of 6446 /// method) as a method candidate to the given overload set. 6447 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 6448 QualType ObjectType, 6449 Expr::Classification ObjectClassification, 6450 ArrayRef<Expr *> Args, 6451 OverloadCandidateSet& CandidateSet, 6452 bool SuppressUserConversions) { 6453 NamedDecl *Decl = FoundDecl.getDecl(); 6454 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 6455 6456 if (isa<UsingShadowDecl>(Decl)) 6457 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 6458 6459 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 6460 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 6461 "Expected a member function template"); 6462 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 6463 /*ExplicitArgs*/ nullptr, ObjectType, 6464 ObjectClassification, Args, CandidateSet, 6465 SuppressUserConversions); 6466 } else { 6467 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 6468 ObjectType, ObjectClassification, Args, CandidateSet, 6469 SuppressUserConversions); 6470 } 6471 } 6472 6473 /// AddMethodCandidate - Adds the given C++ member function to the set 6474 /// of candidate functions, using the given function call arguments 6475 /// and the object argument (@c Object). For example, in a call 6476 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 6477 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 6478 /// allow user-defined conversions via constructors or conversion 6479 /// operators. 6480 void 6481 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 6482 CXXRecordDecl *ActingContext, QualType ObjectType, 6483 Expr::Classification ObjectClassification, 6484 ArrayRef<Expr *> Args, 6485 OverloadCandidateSet &CandidateSet, 6486 bool SuppressUserConversions, 6487 bool PartialOverloading, 6488 ConversionSequenceList EarlyConversions) { 6489 const FunctionProtoType *Proto 6490 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 6491 assert(Proto && "Methods without a prototype cannot be overloaded"); 6492 assert(!isa<CXXConstructorDecl>(Method) && 6493 "Use AddOverloadCandidate for constructors"); 6494 6495 if (!CandidateSet.isNewCandidate(Method)) 6496 return; 6497 6498 // C++11 [class.copy]p23: [DR1402] 6499 // A defaulted move assignment operator that is defined as deleted is 6500 // ignored by overload resolution. 6501 if (Method->isDefaulted() && Method->isDeleted() && 6502 Method->isMoveAssignmentOperator()) 6503 return; 6504 6505 // Overload resolution is always an unevaluated context. 6506 EnterExpressionEvaluationContext Unevaluated( 6507 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6508 6509 // Add this candidate 6510 OverloadCandidate &Candidate = 6511 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions); 6512 Candidate.FoundDecl = FoundDecl; 6513 Candidate.Function = Method; 6514 Candidate.IsSurrogate = false; 6515 Candidate.IgnoreObjectArgument = false; 6516 Candidate.ExplicitCallArguments = Args.size(); 6517 6518 unsigned NumParams = Proto->getNumParams(); 6519 6520 // (C++ 13.3.2p2): A candidate function having fewer than m 6521 // parameters is viable only if it has an ellipsis in its parameter 6522 // list (8.3.5). 6523 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 6524 !Proto->isVariadic()) { 6525 Candidate.Viable = false; 6526 Candidate.FailureKind = ovl_fail_too_many_arguments; 6527 return; 6528 } 6529 6530 // (C++ 13.3.2p2): A candidate function having more than m parameters 6531 // is viable only if the (m+1)st parameter has a default argument 6532 // (8.3.6). For the purposes of overload resolution, the 6533 // parameter list is truncated on the right, so that there are 6534 // exactly m parameters. 6535 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 6536 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 6537 // Not enough arguments. 6538 Candidate.Viable = false; 6539 Candidate.FailureKind = ovl_fail_too_few_arguments; 6540 return; 6541 } 6542 6543 Candidate.Viable = true; 6544 6545 if (Method->isStatic() || ObjectType.isNull()) 6546 // The implicit object argument is ignored. 6547 Candidate.IgnoreObjectArgument = true; 6548 else { 6549 // Determine the implicit conversion sequence for the object 6550 // parameter. 6551 Candidate.Conversions[0] = TryObjectArgumentInitialization( 6552 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 6553 Method, ActingContext); 6554 if (Candidate.Conversions[0].isBad()) { 6555 Candidate.Viable = false; 6556 Candidate.FailureKind = ovl_fail_bad_conversion; 6557 return; 6558 } 6559 } 6560 6561 // (CUDA B.1): Check for invalid calls between targets. 6562 if (getLangOpts().CUDA) 6563 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 6564 if (!IsAllowedCUDACall(Caller, Method)) { 6565 Candidate.Viable = false; 6566 Candidate.FailureKind = ovl_fail_bad_target; 6567 return; 6568 } 6569 6570 // Determine the implicit conversion sequences for each of the 6571 // arguments. 6572 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 6573 if (Candidate.Conversions[ArgIdx + 1].isInitialized()) { 6574 // We already formed a conversion sequence for this parameter during 6575 // template argument deduction. 6576 } else if (ArgIdx < NumParams) { 6577 // (C++ 13.3.2p3): for F to be a viable function, there shall 6578 // exist for each argument an implicit conversion sequence 6579 // (13.3.3.1) that converts that argument to the corresponding 6580 // parameter of F. 6581 QualType ParamType = Proto->getParamType(ArgIdx); 6582 Candidate.Conversions[ArgIdx + 1] 6583 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 6584 SuppressUserConversions, 6585 /*InOverloadResolution=*/true, 6586 /*AllowObjCWritebackConversion=*/ 6587 getLangOpts().ObjCAutoRefCount); 6588 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 6589 Candidate.Viable = false; 6590 Candidate.FailureKind = ovl_fail_bad_conversion; 6591 return; 6592 } 6593 } else { 6594 // (C++ 13.3.2p2): For the purposes of overload resolution, any 6595 // argument for which there is no corresponding parameter is 6596 // considered to "match the ellipsis" (C+ 13.3.3.1.3). 6597 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 6598 } 6599 } 6600 6601 if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) { 6602 Candidate.Viable = false; 6603 Candidate.FailureKind = ovl_fail_enable_if; 6604 Candidate.DeductionFailure.Data = FailedAttr; 6605 return; 6606 } 6607 6608 if (Method->isMultiVersion() && 6609 !Method->getAttr<TargetAttr>()->isDefaultVersion()) { 6610 Candidate.Viable = false; 6611 Candidate.FailureKind = ovl_non_default_multiversion_function; 6612 } 6613 } 6614 6615 /// Add a C++ member function template as a candidate to the candidate 6616 /// set, using template argument deduction to produce an appropriate member 6617 /// function template specialization. 6618 void 6619 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 6620 DeclAccessPair FoundDecl, 6621 CXXRecordDecl *ActingContext, 6622 TemplateArgumentListInfo *ExplicitTemplateArgs, 6623 QualType ObjectType, 6624 Expr::Classification ObjectClassification, 6625 ArrayRef<Expr *> Args, 6626 OverloadCandidateSet& CandidateSet, 6627 bool SuppressUserConversions, 6628 bool PartialOverloading) { 6629 if (!CandidateSet.isNewCandidate(MethodTmpl)) 6630 return; 6631 6632 // C++ [over.match.funcs]p7: 6633 // In each case where a candidate is a function template, candidate 6634 // function template specializations are generated using template argument 6635 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 6636 // candidate functions in the usual way.113) A given name can refer to one 6637 // or more function templates and also to a set of overloaded non-template 6638 // functions. In such a case, the candidate functions generated from each 6639 // function template are combined with the set of non-template candidate 6640 // functions. 6641 TemplateDeductionInfo Info(CandidateSet.getLocation()); 6642 FunctionDecl *Specialization = nullptr; 6643 ConversionSequenceList Conversions; 6644 if (TemplateDeductionResult Result = DeduceTemplateArguments( 6645 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info, 6646 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 6647 return CheckNonDependentConversions( 6648 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions, 6649 SuppressUserConversions, ActingContext, ObjectType, 6650 ObjectClassification); 6651 })) { 6652 OverloadCandidate &Candidate = 6653 CandidateSet.addCandidate(Conversions.size(), Conversions); 6654 Candidate.FoundDecl = FoundDecl; 6655 Candidate.Function = MethodTmpl->getTemplatedDecl(); 6656 Candidate.Viable = false; 6657 Candidate.IsSurrogate = false; 6658 Candidate.IgnoreObjectArgument = 6659 cast<CXXMethodDecl>(Candidate.Function)->isStatic() || 6660 ObjectType.isNull(); 6661 Candidate.ExplicitCallArguments = Args.size(); 6662 if (Result == TDK_NonDependentConversionFailure) 6663 Candidate.FailureKind = ovl_fail_bad_conversion; 6664 else { 6665 Candidate.FailureKind = ovl_fail_bad_deduction; 6666 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 6667 Info); 6668 } 6669 return; 6670 } 6671 6672 // Add the function template specialization produced by template argument 6673 // deduction as a candidate. 6674 assert(Specialization && "Missing member function template specialization?"); 6675 assert(isa<CXXMethodDecl>(Specialization) && 6676 "Specialization is not a member function?"); 6677 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 6678 ActingContext, ObjectType, ObjectClassification, Args, 6679 CandidateSet, SuppressUserConversions, PartialOverloading, 6680 Conversions); 6681 } 6682 6683 /// Add a C++ function template specialization as a candidate 6684 /// in the candidate set, using template argument deduction to produce 6685 /// an appropriate function template specialization. 6686 void 6687 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 6688 DeclAccessPair FoundDecl, 6689 TemplateArgumentListInfo *ExplicitTemplateArgs, 6690 ArrayRef<Expr *> Args, 6691 OverloadCandidateSet& CandidateSet, 6692 bool SuppressUserConversions, 6693 bool PartialOverloading) { 6694 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 6695 return; 6696 6697 // C++ [over.match.funcs]p7: 6698 // In each case where a candidate is a function template, candidate 6699 // function template specializations are generated using template argument 6700 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 6701 // candidate functions in the usual way.113) A given name can refer to one 6702 // or more function templates and also to a set of overloaded non-template 6703 // functions. In such a case, the candidate functions generated from each 6704 // function template are combined with the set of non-template candidate 6705 // functions. 6706 TemplateDeductionInfo Info(CandidateSet.getLocation()); 6707 FunctionDecl *Specialization = nullptr; 6708 ConversionSequenceList Conversions; 6709 if (TemplateDeductionResult Result = DeduceTemplateArguments( 6710 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info, 6711 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 6712 return CheckNonDependentConversions(FunctionTemplate, ParamTypes, 6713 Args, CandidateSet, Conversions, 6714 SuppressUserConversions); 6715 })) { 6716 OverloadCandidate &Candidate = 6717 CandidateSet.addCandidate(Conversions.size(), Conversions); 6718 Candidate.FoundDecl = FoundDecl; 6719 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 6720 Candidate.Viable = false; 6721 Candidate.IsSurrogate = false; 6722 // Ignore the object argument if there is one, since we don't have an object 6723 // type. 6724 Candidate.IgnoreObjectArgument = 6725 isa<CXXMethodDecl>(Candidate.Function) && 6726 !isa<CXXConstructorDecl>(Candidate.Function); 6727 Candidate.ExplicitCallArguments = Args.size(); 6728 if (Result == TDK_NonDependentConversionFailure) 6729 Candidate.FailureKind = ovl_fail_bad_conversion; 6730 else { 6731 Candidate.FailureKind = ovl_fail_bad_deduction; 6732 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 6733 Info); 6734 } 6735 return; 6736 } 6737 6738 // Add the function template specialization produced by template argument 6739 // deduction as a candidate. 6740 assert(Specialization && "Missing function template specialization?"); 6741 AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet, 6742 SuppressUserConversions, PartialOverloading, 6743 /*AllowExplicit*/false, Conversions); 6744 } 6745 6746 /// Check that implicit conversion sequences can be formed for each argument 6747 /// whose corresponding parameter has a non-dependent type, per DR1391's 6748 /// [temp.deduct.call]p10. 6749 bool Sema::CheckNonDependentConversions( 6750 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes, 6751 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet, 6752 ConversionSequenceList &Conversions, bool SuppressUserConversions, 6753 CXXRecordDecl *ActingContext, QualType ObjectType, 6754 Expr::Classification ObjectClassification) { 6755 // FIXME: The cases in which we allow explicit conversions for constructor 6756 // arguments never consider calling a constructor template. It's not clear 6757 // that is correct. 6758 const bool AllowExplicit = false; 6759 6760 auto *FD = FunctionTemplate->getTemplatedDecl(); 6761 auto *Method = dyn_cast<CXXMethodDecl>(FD); 6762 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method); 6763 unsigned ThisConversions = HasThisConversion ? 1 : 0; 6764 6765 Conversions = 6766 CandidateSet.allocateConversionSequences(ThisConversions + Args.size()); 6767 6768 // Overload resolution is always an unevaluated context. 6769 EnterExpressionEvaluationContext Unevaluated( 6770 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6771 6772 // For a method call, check the 'this' conversion here too. DR1391 doesn't 6773 // require that, but this check should never result in a hard error, and 6774 // overload resolution is permitted to sidestep instantiations. 6775 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() && 6776 !ObjectType.isNull()) { 6777 Conversions[0] = TryObjectArgumentInitialization( 6778 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 6779 Method, ActingContext); 6780 if (Conversions[0].isBad()) 6781 return true; 6782 } 6783 6784 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N; 6785 ++I) { 6786 QualType ParamType = ParamTypes[I]; 6787 if (!ParamType->isDependentType()) { 6788 Conversions[ThisConversions + I] 6789 = TryCopyInitialization(*this, Args[I], ParamType, 6790 SuppressUserConversions, 6791 /*InOverloadResolution=*/true, 6792 /*AllowObjCWritebackConversion=*/ 6793 getLangOpts().ObjCAutoRefCount, 6794 AllowExplicit); 6795 if (Conversions[ThisConversions + I].isBad()) 6796 return true; 6797 } 6798 } 6799 6800 return false; 6801 } 6802 6803 /// Determine whether this is an allowable conversion from the result 6804 /// of an explicit conversion operator to the expected type, per C++ 6805 /// [over.match.conv]p1 and [over.match.ref]p1. 6806 /// 6807 /// \param ConvType The return type of the conversion function. 6808 /// 6809 /// \param ToType The type we are converting to. 6810 /// 6811 /// \param AllowObjCPointerConversion Allow a conversion from one 6812 /// Objective-C pointer to another. 6813 /// 6814 /// \returns true if the conversion is allowable, false otherwise. 6815 static bool isAllowableExplicitConversion(Sema &S, 6816 QualType ConvType, QualType ToType, 6817 bool AllowObjCPointerConversion) { 6818 QualType ToNonRefType = ToType.getNonReferenceType(); 6819 6820 // Easy case: the types are the same. 6821 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType)) 6822 return true; 6823 6824 // Allow qualification conversions. 6825 bool ObjCLifetimeConversion; 6826 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false, 6827 ObjCLifetimeConversion)) 6828 return true; 6829 6830 // If we're not allowed to consider Objective-C pointer conversions, 6831 // we're done. 6832 if (!AllowObjCPointerConversion) 6833 return false; 6834 6835 // Is this an Objective-C pointer conversion? 6836 bool IncompatibleObjC = false; 6837 QualType ConvertedType; 6838 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType, 6839 IncompatibleObjC); 6840 } 6841 6842 /// AddConversionCandidate - Add a C++ conversion function as a 6843 /// candidate in the candidate set (C++ [over.match.conv], 6844 /// C++ [over.match.copy]). From is the expression we're converting from, 6845 /// and ToType is the type that we're eventually trying to convert to 6846 /// (which may or may not be the same type as the type that the 6847 /// conversion function produces). 6848 void 6849 Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 6850 DeclAccessPair FoundDecl, 6851 CXXRecordDecl *ActingContext, 6852 Expr *From, QualType ToType, 6853 OverloadCandidateSet& CandidateSet, 6854 bool AllowObjCConversionOnExplicit, 6855 bool AllowResultConversion) { 6856 assert(!Conversion->getDescribedFunctionTemplate() && 6857 "Conversion function templates use AddTemplateConversionCandidate"); 6858 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 6859 if (!CandidateSet.isNewCandidate(Conversion)) 6860 return; 6861 6862 // If the conversion function has an undeduced return type, trigger its 6863 // deduction now. 6864 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { 6865 if (DeduceReturnType(Conversion, From->getExprLoc())) 6866 return; 6867 ConvType = Conversion->getConversionType().getNonReferenceType(); 6868 } 6869 6870 // If we don't allow any conversion of the result type, ignore conversion 6871 // functions that don't convert to exactly (possibly cv-qualified) T. 6872 if (!AllowResultConversion && 6873 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType)) 6874 return; 6875 6876 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion 6877 // operator is only a candidate if its return type is the target type or 6878 // can be converted to the target type with a qualification conversion. 6879 if (Conversion->isExplicit() && 6880 !isAllowableExplicitConversion(*this, ConvType, ToType, 6881 AllowObjCConversionOnExplicit)) 6882 return; 6883 6884 // Overload resolution is always an unevaluated context. 6885 EnterExpressionEvaluationContext Unevaluated( 6886 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6887 6888 // Add this candidate 6889 OverloadCandidate &Candidate = CandidateSet.addCandidate(1); 6890 Candidate.FoundDecl = FoundDecl; 6891 Candidate.Function = Conversion; 6892 Candidate.IsSurrogate = false; 6893 Candidate.IgnoreObjectArgument = false; 6894 Candidate.FinalConversion.setAsIdentityConversion(); 6895 Candidate.FinalConversion.setFromType(ConvType); 6896 Candidate.FinalConversion.setAllToTypes(ToType); 6897 Candidate.Viable = true; 6898 Candidate.ExplicitCallArguments = 1; 6899 6900 // C++ [over.match.funcs]p4: 6901 // For conversion functions, the function is considered to be a member of 6902 // the class of the implicit implied object argument for the purpose of 6903 // defining the type of the implicit object parameter. 6904 // 6905 // Determine the implicit conversion sequence for the implicit 6906 // object parameter. 6907 QualType ImplicitParamType = From->getType(); 6908 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 6909 ImplicitParamType = FromPtrType->getPointeeType(); 6910 CXXRecordDecl *ConversionContext 6911 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 6912 6913 Candidate.Conversions[0] = TryObjectArgumentInitialization( 6914 *this, CandidateSet.getLocation(), From->getType(), 6915 From->Classify(Context), Conversion, ConversionContext); 6916 6917 if (Candidate.Conversions[0].isBad()) { 6918 Candidate.Viable = false; 6919 Candidate.FailureKind = ovl_fail_bad_conversion; 6920 return; 6921 } 6922 6923 // We won't go through a user-defined type conversion function to convert a 6924 // derived to base as such conversions are given Conversion Rank. They only 6925 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 6926 QualType FromCanon 6927 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 6928 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 6929 if (FromCanon == ToCanon || 6930 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) { 6931 Candidate.Viable = false; 6932 Candidate.FailureKind = ovl_fail_trivial_conversion; 6933 return; 6934 } 6935 6936 // To determine what the conversion from the result of calling the 6937 // conversion function to the type we're eventually trying to 6938 // convert to (ToType), we need to synthesize a call to the 6939 // conversion function and attempt copy initialization from it. This 6940 // makes sure that we get the right semantics with respect to 6941 // lvalues/rvalues and the type. Fortunately, we can allocate this 6942 // call on the stack and we don't need its arguments to be 6943 // well-formed. 6944 DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(), 6945 VK_LValue, From->getLocStart()); 6946 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 6947 Context.getPointerType(Conversion->getType()), 6948 CK_FunctionToPointerDecay, 6949 &ConversionRef, VK_RValue); 6950 6951 QualType ConversionType = Conversion->getConversionType(); 6952 if (!isCompleteType(From->getLocStart(), ConversionType)) { 6953 Candidate.Viable = false; 6954 Candidate.FailureKind = ovl_fail_bad_final_conversion; 6955 return; 6956 } 6957 6958 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 6959 6960 // Note that it is safe to allocate CallExpr on the stack here because 6961 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 6962 // allocator). 6963 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 6964 CallExpr Call(Context, &ConversionFn, None, CallResultType, VK, 6965 From->getLocStart()); 6966 ImplicitConversionSequence ICS = 6967 TryCopyInitialization(*this, &Call, ToType, 6968 /*SuppressUserConversions=*/true, 6969 /*InOverloadResolution=*/false, 6970 /*AllowObjCWritebackConversion=*/false); 6971 6972 switch (ICS.getKind()) { 6973 case ImplicitConversionSequence::StandardConversion: 6974 Candidate.FinalConversion = ICS.Standard; 6975 6976 // C++ [over.ics.user]p3: 6977 // If the user-defined conversion is specified by a specialization of a 6978 // conversion function template, the second standard conversion sequence 6979 // shall have exact match rank. 6980 if (Conversion->getPrimaryTemplate() && 6981 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 6982 Candidate.Viable = false; 6983 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 6984 return; 6985 } 6986 6987 // C++0x [dcl.init.ref]p5: 6988 // In the second case, if the reference is an rvalue reference and 6989 // the second standard conversion sequence of the user-defined 6990 // conversion sequence includes an lvalue-to-rvalue conversion, the 6991 // program is ill-formed. 6992 if (ToType->isRValueReferenceType() && 6993 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 6994 Candidate.Viable = false; 6995 Candidate.FailureKind = ovl_fail_bad_final_conversion; 6996 return; 6997 } 6998 break; 6999 7000 case ImplicitConversionSequence::BadConversion: 7001 Candidate.Viable = false; 7002 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7003 return; 7004 7005 default: 7006 llvm_unreachable( 7007 "Can only end up with a standard conversion sequence or failure"); 7008 } 7009 7010 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) { 7011 Candidate.Viable = false; 7012 Candidate.FailureKind = ovl_fail_enable_if; 7013 Candidate.DeductionFailure.Data = FailedAttr; 7014 return; 7015 } 7016 7017 if (Conversion->isMultiVersion() && 7018 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) { 7019 Candidate.Viable = false; 7020 Candidate.FailureKind = ovl_non_default_multiversion_function; 7021 } 7022 } 7023 7024 /// Adds a conversion function template specialization 7025 /// candidate to the overload set, using template argument deduction 7026 /// to deduce the template arguments of the conversion function 7027 /// template from the type that we are converting to (C++ 7028 /// [temp.deduct.conv]). 7029 void 7030 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 7031 DeclAccessPair FoundDecl, 7032 CXXRecordDecl *ActingDC, 7033 Expr *From, QualType ToType, 7034 OverloadCandidateSet &CandidateSet, 7035 bool AllowObjCConversionOnExplicit, 7036 bool AllowResultConversion) { 7037 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 7038 "Only conversion function templates permitted here"); 7039 7040 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 7041 return; 7042 7043 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7044 CXXConversionDecl *Specialization = nullptr; 7045 if (TemplateDeductionResult Result 7046 = DeduceTemplateArguments(FunctionTemplate, ToType, 7047 Specialization, Info)) { 7048 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7049 Candidate.FoundDecl = FoundDecl; 7050 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7051 Candidate.Viable = false; 7052 Candidate.FailureKind = ovl_fail_bad_deduction; 7053 Candidate.IsSurrogate = false; 7054 Candidate.IgnoreObjectArgument = false; 7055 Candidate.ExplicitCallArguments = 1; 7056 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7057 Info); 7058 return; 7059 } 7060 7061 // Add the conversion function template specialization produced by 7062 // template argument deduction as a candidate. 7063 assert(Specialization && "Missing function template specialization?"); 7064 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 7065 CandidateSet, AllowObjCConversionOnExplicit, 7066 AllowResultConversion); 7067 } 7068 7069 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that 7070 /// converts the given @c Object to a function pointer via the 7071 /// conversion function @c Conversion, and then attempts to call it 7072 /// with the given arguments (C++ [over.call.object]p2-4). Proto is 7073 /// the type of function that we'll eventually be calling. 7074 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 7075 DeclAccessPair FoundDecl, 7076 CXXRecordDecl *ActingContext, 7077 const FunctionProtoType *Proto, 7078 Expr *Object, 7079 ArrayRef<Expr *> Args, 7080 OverloadCandidateSet& CandidateSet) { 7081 if (!CandidateSet.isNewCandidate(Conversion)) 7082 return; 7083 7084 // Overload resolution is always an unevaluated context. 7085 EnterExpressionEvaluationContext Unevaluated( 7086 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7087 7088 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); 7089 Candidate.FoundDecl = FoundDecl; 7090 Candidate.Function = nullptr; 7091 Candidate.Surrogate = Conversion; 7092 Candidate.Viable = true; 7093 Candidate.IsSurrogate = true; 7094 Candidate.IgnoreObjectArgument = false; 7095 Candidate.ExplicitCallArguments = Args.size(); 7096 7097 // Determine the implicit conversion sequence for the implicit 7098 // object parameter. 7099 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization( 7100 *this, CandidateSet.getLocation(), Object->getType(), 7101 Object->Classify(Context), Conversion, ActingContext); 7102 if (ObjectInit.isBad()) { 7103 Candidate.Viable = false; 7104 Candidate.FailureKind = ovl_fail_bad_conversion; 7105 Candidate.Conversions[0] = ObjectInit; 7106 return; 7107 } 7108 7109 // The first conversion is actually a user-defined conversion whose 7110 // first conversion is ObjectInit's standard conversion (which is 7111 // effectively a reference binding). Record it as such. 7112 Candidate.Conversions[0].setUserDefined(); 7113 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 7114 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 7115 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; 7116 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 7117 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; 7118 Candidate.Conversions[0].UserDefined.After 7119 = Candidate.Conversions[0].UserDefined.Before; 7120 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 7121 7122 // Find the 7123 unsigned NumParams = Proto->getNumParams(); 7124 7125 // (C++ 13.3.2p2): A candidate function having fewer than m 7126 // parameters is viable only if it has an ellipsis in its parameter 7127 // list (8.3.5). 7128 if (Args.size() > NumParams && !Proto->isVariadic()) { 7129 Candidate.Viable = false; 7130 Candidate.FailureKind = ovl_fail_too_many_arguments; 7131 return; 7132 } 7133 7134 // Function types don't have any default arguments, so just check if 7135 // we have enough arguments. 7136 if (Args.size() < NumParams) { 7137 // Not enough arguments. 7138 Candidate.Viable = false; 7139 Candidate.FailureKind = ovl_fail_too_few_arguments; 7140 return; 7141 } 7142 7143 // Determine the implicit conversion sequences for each of the 7144 // arguments. 7145 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7146 if (ArgIdx < NumParams) { 7147 // (C++ 13.3.2p3): for F to be a viable function, there shall 7148 // exist for each argument an implicit conversion sequence 7149 // (13.3.3.1) that converts that argument to the corresponding 7150 // parameter of F. 7151 QualType ParamType = Proto->getParamType(ArgIdx); 7152 Candidate.Conversions[ArgIdx + 1] 7153 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 7154 /*SuppressUserConversions=*/false, 7155 /*InOverloadResolution=*/false, 7156 /*AllowObjCWritebackConversion=*/ 7157 getLangOpts().ObjCAutoRefCount); 7158 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 7159 Candidate.Viable = false; 7160 Candidate.FailureKind = ovl_fail_bad_conversion; 7161 return; 7162 } 7163 } else { 7164 // (C++ 13.3.2p2): For the purposes of overload resolution, any 7165 // argument for which there is no corresponding parameter is 7166 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 7167 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 7168 } 7169 } 7170 7171 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) { 7172 Candidate.Viable = false; 7173 Candidate.FailureKind = ovl_fail_enable_if; 7174 Candidate.DeductionFailure.Data = FailedAttr; 7175 return; 7176 } 7177 } 7178 7179 /// Add overload candidates for overloaded operators that are 7180 /// member functions. 7181 /// 7182 /// Add the overloaded operator candidates that are member functions 7183 /// for the operator Op that was used in an operator expression such 7184 /// as "x Op y". , Args/NumArgs provides the operator arguments, and 7185 /// CandidateSet will store the added overload candidates. (C++ 7186 /// [over.match.oper]). 7187 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 7188 SourceLocation OpLoc, 7189 ArrayRef<Expr *> Args, 7190 OverloadCandidateSet& CandidateSet, 7191 SourceRange OpRange) { 7192 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7193 7194 // C++ [over.match.oper]p3: 7195 // For a unary operator @ with an operand of a type whose 7196 // cv-unqualified version is T1, and for a binary operator @ with 7197 // a left operand of a type whose cv-unqualified version is T1 and 7198 // a right operand of a type whose cv-unqualified version is T2, 7199 // three sets of candidate functions, designated member 7200 // candidates, non-member candidates and built-in candidates, are 7201 // constructed as follows: 7202 QualType T1 = Args[0]->getType(); 7203 7204 // -- If T1 is a complete class type or a class currently being 7205 // defined, the set of member candidates is the result of the 7206 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, 7207 // the set of member candidates is empty. 7208 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 7209 // Complete the type if it can be completed. 7210 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined()) 7211 return; 7212 // If the type is neither complete nor being defined, bail out now. 7213 if (!T1Rec->getDecl()->getDefinition()) 7214 return; 7215 7216 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 7217 LookupQualifiedName(Operators, T1Rec->getDecl()); 7218 Operators.suppressDiagnostics(); 7219 7220 for (LookupResult::iterator Oper = Operators.begin(), 7221 OperEnd = Operators.end(); 7222 Oper != OperEnd; 7223 ++Oper) 7224 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 7225 Args[0]->Classify(Context), Args.slice(1), 7226 CandidateSet, /*SuppressUserConversions=*/false); 7227 } 7228 } 7229 7230 /// AddBuiltinCandidate - Add a candidate for a built-in 7231 /// operator. ResultTy and ParamTys are the result and parameter types 7232 /// of the built-in candidate, respectively. Args and NumArgs are the 7233 /// arguments being passed to the candidate. IsAssignmentOperator 7234 /// should be true when this built-in candidate is an assignment 7235 /// operator. NumContextualBoolArguments is the number of arguments 7236 /// (at the beginning of the argument list) that will be contextually 7237 /// converted to bool. 7238 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args, 7239 OverloadCandidateSet& CandidateSet, 7240 bool IsAssignmentOperator, 7241 unsigned NumContextualBoolArguments) { 7242 // Overload resolution is always an unevaluated context. 7243 EnterExpressionEvaluationContext Unevaluated( 7244 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7245 7246 // Add this candidate 7247 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); 7248 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none); 7249 Candidate.Function = nullptr; 7250 Candidate.IsSurrogate = false; 7251 Candidate.IgnoreObjectArgument = false; 7252 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes); 7253 7254 // Determine the implicit conversion sequences for each of the 7255 // arguments. 7256 Candidate.Viable = true; 7257 Candidate.ExplicitCallArguments = Args.size(); 7258 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7259 // C++ [over.match.oper]p4: 7260 // For the built-in assignment operators, conversions of the 7261 // left operand are restricted as follows: 7262 // -- no temporaries are introduced to hold the left operand, and 7263 // -- no user-defined conversions are applied to the left 7264 // operand to achieve a type match with the left-most 7265 // parameter of a built-in candidate. 7266 // 7267 // We block these conversions by turning off user-defined 7268 // conversions, since that is the only way that initialization of 7269 // a reference to a non-class type can occur from something that 7270 // is not of the same type. 7271 if (ArgIdx < NumContextualBoolArguments) { 7272 assert(ParamTys[ArgIdx] == Context.BoolTy && 7273 "Contextual conversion to bool requires bool type"); 7274 Candidate.Conversions[ArgIdx] 7275 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 7276 } else { 7277 Candidate.Conversions[ArgIdx] 7278 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 7279 ArgIdx == 0 && IsAssignmentOperator, 7280 /*InOverloadResolution=*/false, 7281 /*AllowObjCWritebackConversion=*/ 7282 getLangOpts().ObjCAutoRefCount); 7283 } 7284 if (Candidate.Conversions[ArgIdx].isBad()) { 7285 Candidate.Viable = false; 7286 Candidate.FailureKind = ovl_fail_bad_conversion; 7287 break; 7288 } 7289 } 7290 } 7291 7292 namespace { 7293 7294 /// BuiltinCandidateTypeSet - A set of types that will be used for the 7295 /// candidate operator functions for built-in operators (C++ 7296 /// [over.built]). The types are separated into pointer types and 7297 /// enumeration types. 7298 class BuiltinCandidateTypeSet { 7299 /// TypeSet - A set of types. 7300 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>, 7301 llvm::SmallPtrSet<QualType, 8>> TypeSet; 7302 7303 /// PointerTypes - The set of pointer types that will be used in the 7304 /// built-in candidates. 7305 TypeSet PointerTypes; 7306 7307 /// MemberPointerTypes - The set of member pointer types that will be 7308 /// used in the built-in candidates. 7309 TypeSet MemberPointerTypes; 7310 7311 /// EnumerationTypes - The set of enumeration types that will be 7312 /// used in the built-in candidates. 7313 TypeSet EnumerationTypes; 7314 7315 /// The set of vector types that will be used in the built-in 7316 /// candidates. 7317 TypeSet VectorTypes; 7318 7319 /// A flag indicating non-record types are viable candidates 7320 bool HasNonRecordTypes; 7321 7322 /// A flag indicating whether either arithmetic or enumeration types 7323 /// were present in the candidate set. 7324 bool HasArithmeticOrEnumeralTypes; 7325 7326 /// A flag indicating whether the nullptr type was present in the 7327 /// candidate set. 7328 bool HasNullPtrType; 7329 7330 /// Sema - The semantic analysis instance where we are building the 7331 /// candidate type set. 7332 Sema &SemaRef; 7333 7334 /// Context - The AST context in which we will build the type sets. 7335 ASTContext &Context; 7336 7337 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 7338 const Qualifiers &VisibleQuals); 7339 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 7340 7341 public: 7342 /// iterator - Iterates through the types that are part of the set. 7343 typedef TypeSet::iterator iterator; 7344 7345 BuiltinCandidateTypeSet(Sema &SemaRef) 7346 : HasNonRecordTypes(false), 7347 HasArithmeticOrEnumeralTypes(false), 7348 HasNullPtrType(false), 7349 SemaRef(SemaRef), 7350 Context(SemaRef.Context) { } 7351 7352 void AddTypesConvertedFrom(QualType Ty, 7353 SourceLocation Loc, 7354 bool AllowUserConversions, 7355 bool AllowExplicitConversions, 7356 const Qualifiers &VisibleTypeConversionsQuals); 7357 7358 /// pointer_begin - First pointer type found; 7359 iterator pointer_begin() { return PointerTypes.begin(); } 7360 7361 /// pointer_end - Past the last pointer type found; 7362 iterator pointer_end() { return PointerTypes.end(); } 7363 7364 /// member_pointer_begin - First member pointer type found; 7365 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 7366 7367 /// member_pointer_end - Past the last member pointer type found; 7368 iterator member_pointer_end() { return MemberPointerTypes.end(); } 7369 7370 /// enumeration_begin - First enumeration type found; 7371 iterator enumeration_begin() { return EnumerationTypes.begin(); } 7372 7373 /// enumeration_end - Past the last enumeration type found; 7374 iterator enumeration_end() { return EnumerationTypes.end(); } 7375 7376 iterator vector_begin() { return VectorTypes.begin(); } 7377 iterator vector_end() { return VectorTypes.end(); } 7378 7379 bool hasNonRecordTypes() { return HasNonRecordTypes; } 7380 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 7381 bool hasNullPtrType() const { return HasNullPtrType; } 7382 }; 7383 7384 } // end anonymous namespace 7385 7386 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 7387 /// the set of pointer types along with any more-qualified variants of 7388 /// that type. For example, if @p Ty is "int const *", this routine 7389 /// will add "int const *", "int const volatile *", "int const 7390 /// restrict *", and "int const volatile restrict *" to the set of 7391 /// pointer types. Returns true if the add of @p Ty itself succeeded, 7392 /// false otherwise. 7393 /// 7394 /// FIXME: what to do about extended qualifiers? 7395 bool 7396 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 7397 const Qualifiers &VisibleQuals) { 7398 7399 // Insert this type. 7400 if (!PointerTypes.insert(Ty)) 7401 return false; 7402 7403 QualType PointeeTy; 7404 const PointerType *PointerTy = Ty->getAs<PointerType>(); 7405 bool buildObjCPtr = false; 7406 if (!PointerTy) { 7407 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); 7408 PointeeTy = PTy->getPointeeType(); 7409 buildObjCPtr = true; 7410 } else { 7411 PointeeTy = PointerTy->getPointeeType(); 7412 } 7413 7414 // Don't add qualified variants of arrays. For one, they're not allowed 7415 // (the qualifier would sink to the element type), and for another, the 7416 // only overload situation where it matters is subscript or pointer +- int, 7417 // and those shouldn't have qualifier variants anyway. 7418 if (PointeeTy->isArrayType()) 7419 return true; 7420 7421 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 7422 bool hasVolatile = VisibleQuals.hasVolatile(); 7423 bool hasRestrict = VisibleQuals.hasRestrict(); 7424 7425 // Iterate through all strict supersets of BaseCVR. 7426 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 7427 if ((CVR | BaseCVR) != CVR) continue; 7428 // Skip over volatile if no volatile found anywhere in the types. 7429 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 7430 7431 // Skip over restrict if no restrict found anywhere in the types, or if 7432 // the type cannot be restrict-qualified. 7433 if ((CVR & Qualifiers::Restrict) && 7434 (!hasRestrict || 7435 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) 7436 continue; 7437 7438 // Build qualified pointee type. 7439 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 7440 7441 // Build qualified pointer type. 7442 QualType QPointerTy; 7443 if (!buildObjCPtr) 7444 QPointerTy = Context.getPointerType(QPointeeTy); 7445 else 7446 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); 7447 7448 // Insert qualified pointer type. 7449 PointerTypes.insert(QPointerTy); 7450 } 7451 7452 return true; 7453 } 7454 7455 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 7456 /// to the set of pointer types along with any more-qualified variants of 7457 /// that type. For example, if @p Ty is "int const *", this routine 7458 /// will add "int const *", "int const volatile *", "int const 7459 /// restrict *", and "int const volatile restrict *" to the set of 7460 /// pointer types. Returns true if the add of @p Ty itself succeeded, 7461 /// false otherwise. 7462 /// 7463 /// FIXME: what to do about extended qualifiers? 7464 bool 7465 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 7466 QualType Ty) { 7467 // Insert this type. 7468 if (!MemberPointerTypes.insert(Ty)) 7469 return false; 7470 7471 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 7472 assert(PointerTy && "type was not a member pointer type!"); 7473 7474 QualType PointeeTy = PointerTy->getPointeeType(); 7475 // Don't add qualified variants of arrays. For one, they're not allowed 7476 // (the qualifier would sink to the element type), and for another, the 7477 // only overload situation where it matters is subscript or pointer +- int, 7478 // and those shouldn't have qualifier variants anyway. 7479 if (PointeeTy->isArrayType()) 7480 return true; 7481 const Type *ClassTy = PointerTy->getClass(); 7482 7483 // Iterate through all strict supersets of the pointee type's CVR 7484 // qualifiers. 7485 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 7486 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 7487 if ((CVR | BaseCVR) != CVR) continue; 7488 7489 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 7490 MemberPointerTypes.insert( 7491 Context.getMemberPointerType(QPointeeTy, ClassTy)); 7492 } 7493 7494 return true; 7495 } 7496 7497 /// AddTypesConvertedFrom - Add each of the types to which the type @p 7498 /// Ty can be implicit converted to the given set of @p Types. We're 7499 /// primarily interested in pointer types and enumeration types. We also 7500 /// take member pointer types, for the conditional operator. 7501 /// AllowUserConversions is true if we should look at the conversion 7502 /// functions of a class type, and AllowExplicitConversions if we 7503 /// should also include the explicit conversion functions of a class 7504 /// type. 7505 void 7506 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 7507 SourceLocation Loc, 7508 bool AllowUserConversions, 7509 bool AllowExplicitConversions, 7510 const Qualifiers &VisibleQuals) { 7511 // Only deal with canonical types. 7512 Ty = Context.getCanonicalType(Ty); 7513 7514 // Look through reference types; they aren't part of the type of an 7515 // expression for the purposes of conversions. 7516 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 7517 Ty = RefTy->getPointeeType(); 7518 7519 // If we're dealing with an array type, decay to the pointer. 7520 if (Ty->isArrayType()) 7521 Ty = SemaRef.Context.getArrayDecayedType(Ty); 7522 7523 // Otherwise, we don't care about qualifiers on the type. 7524 Ty = Ty.getLocalUnqualifiedType(); 7525 7526 // Flag if we ever add a non-record type. 7527 const RecordType *TyRec = Ty->getAs<RecordType>(); 7528 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 7529 7530 // Flag if we encounter an arithmetic type. 7531 HasArithmeticOrEnumeralTypes = 7532 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 7533 7534 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 7535 PointerTypes.insert(Ty); 7536 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 7537 // Insert our type, and its more-qualified variants, into the set 7538 // of types. 7539 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 7540 return; 7541 } else if (Ty->isMemberPointerType()) { 7542 // Member pointers are far easier, since the pointee can't be converted. 7543 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 7544 return; 7545 } else if (Ty->isEnumeralType()) { 7546 HasArithmeticOrEnumeralTypes = true; 7547 EnumerationTypes.insert(Ty); 7548 } else if (Ty->isVectorType()) { 7549 // We treat vector types as arithmetic types in many contexts as an 7550 // extension. 7551 HasArithmeticOrEnumeralTypes = true; 7552 VectorTypes.insert(Ty); 7553 } else if (Ty->isNullPtrType()) { 7554 HasNullPtrType = true; 7555 } else if (AllowUserConversions && TyRec) { 7556 // No conversion functions in incomplete types. 7557 if (!SemaRef.isCompleteType(Loc, Ty)) 7558 return; 7559 7560 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 7561 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 7562 if (isa<UsingShadowDecl>(D)) 7563 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 7564 7565 // Skip conversion function templates; they don't tell us anything 7566 // about which builtin types we can convert to. 7567 if (isa<FunctionTemplateDecl>(D)) 7568 continue; 7569 7570 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 7571 if (AllowExplicitConversions || !Conv->isExplicit()) { 7572 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 7573 VisibleQuals); 7574 } 7575 } 7576 } 7577 } 7578 7579 /// Helper function for AddBuiltinOperatorCandidates() that adds 7580 /// the volatile- and non-volatile-qualified assignment operators for the 7581 /// given type to the candidate set. 7582 static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 7583 QualType T, 7584 ArrayRef<Expr *> Args, 7585 OverloadCandidateSet &CandidateSet) { 7586 QualType ParamTypes[2]; 7587 7588 // T& operator=(T&, T) 7589 ParamTypes[0] = S.Context.getLValueReferenceType(T); 7590 ParamTypes[1] = T; 7591 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 7592 /*IsAssignmentOperator=*/true); 7593 7594 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 7595 // volatile T& operator=(volatile T&, T) 7596 ParamTypes[0] 7597 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 7598 ParamTypes[1] = T; 7599 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 7600 /*IsAssignmentOperator=*/true); 7601 } 7602 } 7603 7604 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 7605 /// if any, found in visible type conversion functions found in ArgExpr's type. 7606 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 7607 Qualifiers VRQuals; 7608 const RecordType *TyRec; 7609 if (const MemberPointerType *RHSMPType = 7610 ArgExpr->getType()->getAs<MemberPointerType>()) 7611 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 7612 else 7613 TyRec = ArgExpr->getType()->getAs<RecordType>(); 7614 if (!TyRec) { 7615 // Just to be safe, assume the worst case. 7616 VRQuals.addVolatile(); 7617 VRQuals.addRestrict(); 7618 return VRQuals; 7619 } 7620 7621 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 7622 if (!ClassDecl->hasDefinition()) 7623 return VRQuals; 7624 7625 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 7626 if (isa<UsingShadowDecl>(D)) 7627 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 7628 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 7629 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 7630 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 7631 CanTy = ResTypeRef->getPointeeType(); 7632 // Need to go down the pointer/mempointer chain and add qualifiers 7633 // as see them. 7634 bool done = false; 7635 while (!done) { 7636 if (CanTy.isRestrictQualified()) 7637 VRQuals.addRestrict(); 7638 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 7639 CanTy = ResTypePtr->getPointeeType(); 7640 else if (const MemberPointerType *ResTypeMPtr = 7641 CanTy->getAs<MemberPointerType>()) 7642 CanTy = ResTypeMPtr->getPointeeType(); 7643 else 7644 done = true; 7645 if (CanTy.isVolatileQualified()) 7646 VRQuals.addVolatile(); 7647 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 7648 return VRQuals; 7649 } 7650 } 7651 } 7652 return VRQuals; 7653 } 7654 7655 namespace { 7656 7657 /// Helper class to manage the addition of builtin operator overload 7658 /// candidates. It provides shared state and utility methods used throughout 7659 /// the process, as well as a helper method to add each group of builtin 7660 /// operator overloads from the standard to a candidate set. 7661 class BuiltinOperatorOverloadBuilder { 7662 // Common instance state available to all overload candidate addition methods. 7663 Sema &S; 7664 ArrayRef<Expr *> Args; 7665 Qualifiers VisibleTypeConversionsQuals; 7666 bool HasArithmeticOrEnumeralCandidateType; 7667 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 7668 OverloadCandidateSet &CandidateSet; 7669 7670 static constexpr int ArithmeticTypesCap = 24; 7671 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes; 7672 7673 // Define some indices used to iterate over the arithemetic types in 7674 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic 7675 // types are that preserved by promotion (C++ [over.built]p2). 7676 unsigned FirstIntegralType, 7677 LastIntegralType; 7678 unsigned FirstPromotedIntegralType, 7679 LastPromotedIntegralType; 7680 unsigned FirstPromotedArithmeticType, 7681 LastPromotedArithmeticType; 7682 unsigned NumArithmeticTypes; 7683 7684 void InitArithmeticTypes() { 7685 // Start of promoted types. 7686 FirstPromotedArithmeticType = 0; 7687 ArithmeticTypes.push_back(S.Context.FloatTy); 7688 ArithmeticTypes.push_back(S.Context.DoubleTy); 7689 ArithmeticTypes.push_back(S.Context.LongDoubleTy); 7690 if (S.Context.getTargetInfo().hasFloat128Type()) 7691 ArithmeticTypes.push_back(S.Context.Float128Ty); 7692 7693 // Start of integral types. 7694 FirstIntegralType = ArithmeticTypes.size(); 7695 FirstPromotedIntegralType = ArithmeticTypes.size(); 7696 ArithmeticTypes.push_back(S.Context.IntTy); 7697 ArithmeticTypes.push_back(S.Context.LongTy); 7698 ArithmeticTypes.push_back(S.Context.LongLongTy); 7699 if (S.Context.getTargetInfo().hasInt128Type()) 7700 ArithmeticTypes.push_back(S.Context.Int128Ty); 7701 ArithmeticTypes.push_back(S.Context.UnsignedIntTy); 7702 ArithmeticTypes.push_back(S.Context.UnsignedLongTy); 7703 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy); 7704 if (S.Context.getTargetInfo().hasInt128Type()) 7705 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty); 7706 LastPromotedIntegralType = ArithmeticTypes.size(); 7707 LastPromotedArithmeticType = ArithmeticTypes.size(); 7708 // End of promoted types. 7709 7710 ArithmeticTypes.push_back(S.Context.BoolTy); 7711 ArithmeticTypes.push_back(S.Context.CharTy); 7712 ArithmeticTypes.push_back(S.Context.WCharTy); 7713 if (S.Context.getLangOpts().Char8) 7714 ArithmeticTypes.push_back(S.Context.Char8Ty); 7715 ArithmeticTypes.push_back(S.Context.Char16Ty); 7716 ArithmeticTypes.push_back(S.Context.Char32Ty); 7717 ArithmeticTypes.push_back(S.Context.SignedCharTy); 7718 ArithmeticTypes.push_back(S.Context.ShortTy); 7719 ArithmeticTypes.push_back(S.Context.UnsignedCharTy); 7720 ArithmeticTypes.push_back(S.Context.UnsignedShortTy); 7721 LastIntegralType = ArithmeticTypes.size(); 7722 NumArithmeticTypes = ArithmeticTypes.size(); 7723 // End of integral types. 7724 // FIXME: What about complex? What about half? 7725 7726 assert(ArithmeticTypes.size() <= ArithmeticTypesCap && 7727 "Enough inline storage for all arithmetic types."); 7728 } 7729 7730 /// Helper method to factor out the common pattern of adding overloads 7731 /// for '++' and '--' builtin operators. 7732 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 7733 bool HasVolatile, 7734 bool HasRestrict) { 7735 QualType ParamTypes[2] = { 7736 S.Context.getLValueReferenceType(CandidateTy), 7737 S.Context.IntTy 7738 }; 7739 7740 // Non-volatile version. 7741 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 7742 7743 // Use a heuristic to reduce number of builtin candidates in the set: 7744 // add volatile version only if there are conversions to a volatile type. 7745 if (HasVolatile) { 7746 ParamTypes[0] = 7747 S.Context.getLValueReferenceType( 7748 S.Context.getVolatileType(CandidateTy)); 7749 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 7750 } 7751 7752 // Add restrict version only if there are conversions to a restrict type 7753 // and our candidate type is a non-restrict-qualified pointer. 7754 if (HasRestrict && CandidateTy->isAnyPointerType() && 7755 !CandidateTy.isRestrictQualified()) { 7756 ParamTypes[0] 7757 = S.Context.getLValueReferenceType( 7758 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); 7759 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 7760 7761 if (HasVolatile) { 7762 ParamTypes[0] 7763 = S.Context.getLValueReferenceType( 7764 S.Context.getCVRQualifiedType(CandidateTy, 7765 (Qualifiers::Volatile | 7766 Qualifiers::Restrict))); 7767 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 7768 } 7769 } 7770 7771 } 7772 7773 public: 7774 BuiltinOperatorOverloadBuilder( 7775 Sema &S, ArrayRef<Expr *> Args, 7776 Qualifiers VisibleTypeConversionsQuals, 7777 bool HasArithmeticOrEnumeralCandidateType, 7778 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 7779 OverloadCandidateSet &CandidateSet) 7780 : S(S), Args(Args), 7781 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 7782 HasArithmeticOrEnumeralCandidateType( 7783 HasArithmeticOrEnumeralCandidateType), 7784 CandidateTypes(CandidateTypes), 7785 CandidateSet(CandidateSet) { 7786 7787 InitArithmeticTypes(); 7788 } 7789 7790 // Increment is deprecated for bool since C++17. 7791 // 7792 // C++ [over.built]p3: 7793 // 7794 // For every pair (T, VQ), where T is an arithmetic type other 7795 // than bool, and VQ is either volatile or empty, there exist 7796 // candidate operator functions of the form 7797 // 7798 // VQ T& operator++(VQ T&); 7799 // T operator++(VQ T&, int); 7800 // 7801 // C++ [over.built]p4: 7802 // 7803 // For every pair (T, VQ), where T is an arithmetic type other 7804 // than bool, and VQ is either volatile or empty, there exist 7805 // candidate operator functions of the form 7806 // 7807 // VQ T& operator--(VQ T&); 7808 // T operator--(VQ T&, int); 7809 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 7810 if (!HasArithmeticOrEnumeralCandidateType) 7811 return; 7812 7813 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) { 7814 const auto TypeOfT = ArithmeticTypes[Arith]; 7815 if (TypeOfT == S.Context.BoolTy) { 7816 if (Op == OO_MinusMinus) 7817 continue; 7818 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17) 7819 continue; 7820 } 7821 addPlusPlusMinusMinusStyleOverloads( 7822 TypeOfT, 7823 VisibleTypeConversionsQuals.hasVolatile(), 7824 VisibleTypeConversionsQuals.hasRestrict()); 7825 } 7826 } 7827 7828 // C++ [over.built]p5: 7829 // 7830 // For every pair (T, VQ), where T is a cv-qualified or 7831 // cv-unqualified object type, and VQ is either volatile or 7832 // empty, there exist candidate operator functions of the form 7833 // 7834 // T*VQ& operator++(T*VQ&); 7835 // T*VQ& operator--(T*VQ&); 7836 // T* operator++(T*VQ&, int); 7837 // T* operator--(T*VQ&, int); 7838 void addPlusPlusMinusMinusPointerOverloads() { 7839 for (BuiltinCandidateTypeSet::iterator 7840 Ptr = CandidateTypes[0].pointer_begin(), 7841 PtrEnd = CandidateTypes[0].pointer_end(); 7842 Ptr != PtrEnd; ++Ptr) { 7843 // Skip pointer types that aren't pointers to object types. 7844 if (!(*Ptr)->getPointeeType()->isObjectType()) 7845 continue; 7846 7847 addPlusPlusMinusMinusStyleOverloads(*Ptr, 7848 (!(*Ptr).isVolatileQualified() && 7849 VisibleTypeConversionsQuals.hasVolatile()), 7850 (!(*Ptr).isRestrictQualified() && 7851 VisibleTypeConversionsQuals.hasRestrict())); 7852 } 7853 } 7854 7855 // C++ [over.built]p6: 7856 // For every cv-qualified or cv-unqualified object type T, there 7857 // exist candidate operator functions of the form 7858 // 7859 // T& operator*(T*); 7860 // 7861 // C++ [over.built]p7: 7862 // For every function type T that does not have cv-qualifiers or a 7863 // ref-qualifier, there exist candidate operator functions of the form 7864 // T& operator*(T*); 7865 void addUnaryStarPointerOverloads() { 7866 for (BuiltinCandidateTypeSet::iterator 7867 Ptr = CandidateTypes[0].pointer_begin(), 7868 PtrEnd = CandidateTypes[0].pointer_end(); 7869 Ptr != PtrEnd; ++Ptr) { 7870 QualType ParamTy = *Ptr; 7871 QualType PointeeTy = ParamTy->getPointeeType(); 7872 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 7873 continue; 7874 7875 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 7876 if (Proto->getTypeQuals() || Proto->getRefQualifier()) 7877 continue; 7878 7879 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 7880 } 7881 } 7882 7883 // C++ [over.built]p9: 7884 // For every promoted arithmetic type T, there exist candidate 7885 // operator functions of the form 7886 // 7887 // T operator+(T); 7888 // T operator-(T); 7889 void addUnaryPlusOrMinusArithmeticOverloads() { 7890 if (!HasArithmeticOrEnumeralCandidateType) 7891 return; 7892 7893 for (unsigned Arith = FirstPromotedArithmeticType; 7894 Arith < LastPromotedArithmeticType; ++Arith) { 7895 QualType ArithTy = ArithmeticTypes[Arith]; 7896 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet); 7897 } 7898 7899 // Extension: We also add these operators for vector types. 7900 for (BuiltinCandidateTypeSet::iterator 7901 Vec = CandidateTypes[0].vector_begin(), 7902 VecEnd = CandidateTypes[0].vector_end(); 7903 Vec != VecEnd; ++Vec) { 7904 QualType VecTy = *Vec; 7905 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 7906 } 7907 } 7908 7909 // C++ [over.built]p8: 7910 // For every type T, there exist candidate operator functions of 7911 // the form 7912 // 7913 // T* operator+(T*); 7914 void addUnaryPlusPointerOverloads() { 7915 for (BuiltinCandidateTypeSet::iterator 7916 Ptr = CandidateTypes[0].pointer_begin(), 7917 PtrEnd = CandidateTypes[0].pointer_end(); 7918 Ptr != PtrEnd; ++Ptr) { 7919 QualType ParamTy = *Ptr; 7920 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 7921 } 7922 } 7923 7924 // C++ [over.built]p10: 7925 // For every promoted integral type T, there exist candidate 7926 // operator functions of the form 7927 // 7928 // T operator~(T); 7929 void addUnaryTildePromotedIntegralOverloads() { 7930 if (!HasArithmeticOrEnumeralCandidateType) 7931 return; 7932 7933 for (unsigned Int = FirstPromotedIntegralType; 7934 Int < LastPromotedIntegralType; ++Int) { 7935 QualType IntTy = ArithmeticTypes[Int]; 7936 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet); 7937 } 7938 7939 // Extension: We also add this operator for vector types. 7940 for (BuiltinCandidateTypeSet::iterator 7941 Vec = CandidateTypes[0].vector_begin(), 7942 VecEnd = CandidateTypes[0].vector_end(); 7943 Vec != VecEnd; ++Vec) { 7944 QualType VecTy = *Vec; 7945 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 7946 } 7947 } 7948 7949 // C++ [over.match.oper]p16: 7950 // For every pointer to member type T or type std::nullptr_t, there 7951 // exist candidate operator functions of the form 7952 // 7953 // bool operator==(T,T); 7954 // bool operator!=(T,T); 7955 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() { 7956 /// Set of (canonical) types that we've already handled. 7957 llvm::SmallPtrSet<QualType, 8> AddedTypes; 7958 7959 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7960 for (BuiltinCandidateTypeSet::iterator 7961 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 7962 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 7963 MemPtr != MemPtrEnd; 7964 ++MemPtr) { 7965 // Don't add the same builtin candidate twice. 7966 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second) 7967 continue; 7968 7969 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 7970 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 7971 } 7972 7973 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 7974 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 7975 if (AddedTypes.insert(NullPtrTy).second) { 7976 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 7977 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 7978 } 7979 } 7980 } 7981 } 7982 7983 // C++ [over.built]p15: 7984 // 7985 // For every T, where T is an enumeration type or a pointer type, 7986 // there exist candidate operator functions of the form 7987 // 7988 // bool operator<(T, T); 7989 // bool operator>(T, T); 7990 // bool operator<=(T, T); 7991 // bool operator>=(T, T); 7992 // bool operator==(T, T); 7993 // bool operator!=(T, T); 7994 // R operator<=>(T, T) 7995 void addGenericBinaryPointerOrEnumeralOverloads() { 7996 // C++ [over.match.oper]p3: 7997 // [...]the built-in candidates include all of the candidate operator 7998 // functions defined in 13.6 that, compared to the given operator, [...] 7999 // do not have the same parameter-type-list as any non-template non-member 8000 // candidate. 8001 // 8002 // Note that in practice, this only affects enumeration types because there 8003 // aren't any built-in candidates of record type, and a user-defined operator 8004 // must have an operand of record or enumeration type. Also, the only other 8005 // overloaded operator with enumeration arguments, operator=, 8006 // cannot be overloaded for enumeration types, so this is the only place 8007 // where we must suppress candidates like this. 8008 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 8009 UserDefinedBinaryOperators; 8010 8011 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8012 if (CandidateTypes[ArgIdx].enumeration_begin() != 8013 CandidateTypes[ArgIdx].enumeration_end()) { 8014 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 8015 CEnd = CandidateSet.end(); 8016 C != CEnd; ++C) { 8017 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 8018 continue; 8019 8020 if (C->Function->isFunctionTemplateSpecialization()) 8021 continue; 8022 8023 QualType FirstParamType = 8024 C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 8025 QualType SecondParamType = 8026 C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 8027 8028 // Skip if either parameter isn't of enumeral type. 8029 if (!FirstParamType->isEnumeralType() || 8030 !SecondParamType->isEnumeralType()) 8031 continue; 8032 8033 // Add this operator to the set of known user-defined operators. 8034 UserDefinedBinaryOperators.insert( 8035 std::make_pair(S.Context.getCanonicalType(FirstParamType), 8036 S.Context.getCanonicalType(SecondParamType))); 8037 } 8038 } 8039 } 8040 8041 /// Set of (canonical) types that we've already handled. 8042 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8043 8044 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8045 for (BuiltinCandidateTypeSet::iterator 8046 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 8047 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 8048 Ptr != PtrEnd; ++Ptr) { 8049 // Don't add the same builtin candidate twice. 8050 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second) 8051 continue; 8052 8053 QualType ParamTypes[2] = { *Ptr, *Ptr }; 8054 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8055 } 8056 for (BuiltinCandidateTypeSet::iterator 8057 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 8058 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 8059 Enum != EnumEnd; ++Enum) { 8060 CanQualType CanonType = S.Context.getCanonicalType(*Enum); 8061 8062 // Don't add the same builtin candidate twice, or if a user defined 8063 // candidate exists. 8064 if (!AddedTypes.insert(CanonType).second || 8065 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 8066 CanonType))) 8067 continue; 8068 QualType ParamTypes[2] = { *Enum, *Enum }; 8069 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8070 } 8071 } 8072 } 8073 8074 // C++ [over.built]p13: 8075 // 8076 // For every cv-qualified or cv-unqualified object type T 8077 // there exist candidate operator functions of the form 8078 // 8079 // T* operator+(T*, ptrdiff_t); 8080 // T& operator[](T*, ptrdiff_t); [BELOW] 8081 // T* operator-(T*, ptrdiff_t); 8082 // T* operator+(ptrdiff_t, T*); 8083 // T& operator[](ptrdiff_t, T*); [BELOW] 8084 // 8085 // C++ [over.built]p14: 8086 // 8087 // For every T, where T is a pointer to object type, there 8088 // exist candidate operator functions of the form 8089 // 8090 // ptrdiff_t operator-(T, T); 8091 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 8092 /// Set of (canonical) types that we've already handled. 8093 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8094 8095 for (int Arg = 0; Arg < 2; ++Arg) { 8096 QualType AsymmetricParamTypes[2] = { 8097 S.Context.getPointerDiffType(), 8098 S.Context.getPointerDiffType(), 8099 }; 8100 for (BuiltinCandidateTypeSet::iterator 8101 Ptr = CandidateTypes[Arg].pointer_begin(), 8102 PtrEnd = CandidateTypes[Arg].pointer_end(); 8103 Ptr != PtrEnd; ++Ptr) { 8104 QualType PointeeTy = (*Ptr)->getPointeeType(); 8105 if (!PointeeTy->isObjectType()) 8106 continue; 8107 8108 AsymmetricParamTypes[Arg] = *Ptr; 8109 if (Arg == 0 || Op == OO_Plus) { 8110 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 8111 // T* operator+(ptrdiff_t, T*); 8112 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet); 8113 } 8114 if (Op == OO_Minus) { 8115 // ptrdiff_t operator-(T, T); 8116 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second) 8117 continue; 8118 8119 QualType ParamTypes[2] = { *Ptr, *Ptr }; 8120 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8121 } 8122 } 8123 } 8124 } 8125 8126 // C++ [over.built]p12: 8127 // 8128 // For every pair of promoted arithmetic types L and R, there 8129 // exist candidate operator functions of the form 8130 // 8131 // LR operator*(L, R); 8132 // LR operator/(L, R); 8133 // LR operator+(L, R); 8134 // LR operator-(L, R); 8135 // bool operator<(L, R); 8136 // bool operator>(L, R); 8137 // bool operator<=(L, R); 8138 // bool operator>=(L, R); 8139 // bool operator==(L, R); 8140 // bool operator!=(L, R); 8141 // 8142 // where LR is the result of the usual arithmetic conversions 8143 // between types L and R. 8144 // 8145 // C++ [over.built]p24: 8146 // 8147 // For every pair of promoted arithmetic types L and R, there exist 8148 // candidate operator functions of the form 8149 // 8150 // LR operator?(bool, L, R); 8151 // 8152 // where LR is the result of the usual arithmetic conversions 8153 // between types L and R. 8154 // Our candidates ignore the first parameter. 8155 void addGenericBinaryArithmeticOverloads() { 8156 if (!HasArithmeticOrEnumeralCandidateType) 8157 return; 8158 8159 for (unsigned Left = FirstPromotedArithmeticType; 8160 Left < LastPromotedArithmeticType; ++Left) { 8161 for (unsigned Right = FirstPromotedArithmeticType; 8162 Right < LastPromotedArithmeticType; ++Right) { 8163 QualType LandR[2] = { ArithmeticTypes[Left], 8164 ArithmeticTypes[Right] }; 8165 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8166 } 8167 } 8168 8169 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 8170 // conditional operator for vector types. 8171 for (BuiltinCandidateTypeSet::iterator 8172 Vec1 = CandidateTypes[0].vector_begin(), 8173 Vec1End = CandidateTypes[0].vector_end(); 8174 Vec1 != Vec1End; ++Vec1) { 8175 for (BuiltinCandidateTypeSet::iterator 8176 Vec2 = CandidateTypes[1].vector_begin(), 8177 Vec2End = CandidateTypes[1].vector_end(); 8178 Vec2 != Vec2End; ++Vec2) { 8179 QualType LandR[2] = { *Vec1, *Vec2 }; 8180 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8181 } 8182 } 8183 } 8184 8185 // C++2a [over.built]p14: 8186 // 8187 // For every integral type T there exists a candidate operator function 8188 // of the form 8189 // 8190 // std::strong_ordering operator<=>(T, T) 8191 // 8192 // C++2a [over.built]p15: 8193 // 8194 // For every pair of floating-point types L and R, there exists a candidate 8195 // operator function of the form 8196 // 8197 // std::partial_ordering operator<=>(L, R); 8198 // 8199 // FIXME: The current specification for integral types doesn't play nice with 8200 // the direction of p0946r0, which allows mixed integral and unscoped-enum 8201 // comparisons. Under the current spec this can lead to ambiguity during 8202 // overload resolution. For example: 8203 // 8204 // enum A : int {a}; 8205 // auto x = (a <=> (long)42); 8206 // 8207 // error: call is ambiguous for arguments 'A' and 'long'. 8208 // note: candidate operator<=>(int, int) 8209 // note: candidate operator<=>(long, long) 8210 // 8211 // To avoid this error, this function deviates from the specification and adds 8212 // the mixed overloads `operator<=>(L, R)` where L and R are promoted 8213 // arithmetic types (the same as the generic relational overloads). 8214 // 8215 // For now this function acts as a placeholder. 8216 void addThreeWayArithmeticOverloads() { 8217 addGenericBinaryArithmeticOverloads(); 8218 } 8219 8220 // C++ [over.built]p17: 8221 // 8222 // For every pair of promoted integral types L and R, there 8223 // exist candidate operator functions of the form 8224 // 8225 // LR operator%(L, R); 8226 // LR operator&(L, R); 8227 // LR operator^(L, R); 8228 // LR operator|(L, R); 8229 // L operator<<(L, R); 8230 // L operator>>(L, R); 8231 // 8232 // where LR is the result of the usual arithmetic conversions 8233 // between types L and R. 8234 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { 8235 if (!HasArithmeticOrEnumeralCandidateType) 8236 return; 8237 8238 for (unsigned Left = FirstPromotedIntegralType; 8239 Left < LastPromotedIntegralType; ++Left) { 8240 for (unsigned Right = FirstPromotedIntegralType; 8241 Right < LastPromotedIntegralType; ++Right) { 8242 QualType LandR[2] = { ArithmeticTypes[Left], 8243 ArithmeticTypes[Right] }; 8244 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8245 } 8246 } 8247 } 8248 8249 // C++ [over.built]p20: 8250 // 8251 // For every pair (T, VQ), where T is an enumeration or 8252 // pointer to member type and VQ is either volatile or 8253 // empty, there exist candidate operator functions of the form 8254 // 8255 // VQ T& operator=(VQ T&, T); 8256 void addAssignmentMemberPointerOrEnumeralOverloads() { 8257 /// Set of (canonical) types that we've already handled. 8258 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8259 8260 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 8261 for (BuiltinCandidateTypeSet::iterator 8262 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 8263 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 8264 Enum != EnumEnd; ++Enum) { 8265 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second) 8266 continue; 8267 8268 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet); 8269 } 8270 8271 for (BuiltinCandidateTypeSet::iterator 8272 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 8273 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 8274 MemPtr != MemPtrEnd; ++MemPtr) { 8275 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second) 8276 continue; 8277 8278 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet); 8279 } 8280 } 8281 } 8282 8283 // C++ [over.built]p19: 8284 // 8285 // For every pair (T, VQ), where T is any type and VQ is either 8286 // volatile or empty, there exist candidate operator functions 8287 // of the form 8288 // 8289 // T*VQ& operator=(T*VQ&, T*); 8290 // 8291 // C++ [over.built]p21: 8292 // 8293 // For every pair (T, VQ), where T is a cv-qualified or 8294 // cv-unqualified object type and VQ is either volatile or 8295 // empty, there exist candidate operator functions of the form 8296 // 8297 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 8298 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 8299 void addAssignmentPointerOverloads(bool isEqualOp) { 8300 /// Set of (canonical) types that we've already handled. 8301 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8302 8303 for (BuiltinCandidateTypeSet::iterator 8304 Ptr = CandidateTypes[0].pointer_begin(), 8305 PtrEnd = CandidateTypes[0].pointer_end(); 8306 Ptr != PtrEnd; ++Ptr) { 8307 // If this is operator=, keep track of the builtin candidates we added. 8308 if (isEqualOp) 8309 AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); 8310 else if (!(*Ptr)->getPointeeType()->isObjectType()) 8311 continue; 8312 8313 // non-volatile version 8314 QualType ParamTypes[2] = { 8315 S.Context.getLValueReferenceType(*Ptr), 8316 isEqualOp ? *Ptr : S.Context.getPointerDiffType(), 8317 }; 8318 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8319 /*IsAssigmentOperator=*/ isEqualOp); 8320 8321 bool NeedVolatile = !(*Ptr).isVolatileQualified() && 8322 VisibleTypeConversionsQuals.hasVolatile(); 8323 if (NeedVolatile) { 8324 // volatile version 8325 ParamTypes[0] = 8326 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 8327 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8328 /*IsAssigmentOperator=*/isEqualOp); 8329 } 8330 8331 if (!(*Ptr).isRestrictQualified() && 8332 VisibleTypeConversionsQuals.hasRestrict()) { 8333 // restrict version 8334 ParamTypes[0] 8335 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr)); 8336 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8337 /*IsAssigmentOperator=*/isEqualOp); 8338 8339 if (NeedVolatile) { 8340 // volatile restrict version 8341 ParamTypes[0] 8342 = S.Context.getLValueReferenceType( 8343 S.Context.getCVRQualifiedType(*Ptr, 8344 (Qualifiers::Volatile | 8345 Qualifiers::Restrict))); 8346 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8347 /*IsAssigmentOperator=*/isEqualOp); 8348 } 8349 } 8350 } 8351 8352 if (isEqualOp) { 8353 for (BuiltinCandidateTypeSet::iterator 8354 Ptr = CandidateTypes[1].pointer_begin(), 8355 PtrEnd = CandidateTypes[1].pointer_end(); 8356 Ptr != PtrEnd; ++Ptr) { 8357 // Make sure we don't add the same candidate twice. 8358 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second) 8359 continue; 8360 8361 QualType ParamTypes[2] = { 8362 S.Context.getLValueReferenceType(*Ptr), 8363 *Ptr, 8364 }; 8365 8366 // non-volatile version 8367 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8368 /*IsAssigmentOperator=*/true); 8369 8370 bool NeedVolatile = !(*Ptr).isVolatileQualified() && 8371 VisibleTypeConversionsQuals.hasVolatile(); 8372 if (NeedVolatile) { 8373 // volatile version 8374 ParamTypes[0] = 8375 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 8376 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8377 /*IsAssigmentOperator=*/true); 8378 } 8379 8380 if (!(*Ptr).isRestrictQualified() && 8381 VisibleTypeConversionsQuals.hasRestrict()) { 8382 // restrict version 8383 ParamTypes[0] 8384 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr)); 8385 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8386 /*IsAssigmentOperator=*/true); 8387 8388 if (NeedVolatile) { 8389 // volatile restrict version 8390 ParamTypes[0] 8391 = S.Context.getLValueReferenceType( 8392 S.Context.getCVRQualifiedType(*Ptr, 8393 (Qualifiers::Volatile | 8394 Qualifiers::Restrict))); 8395 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8396 /*IsAssigmentOperator=*/true); 8397 } 8398 } 8399 } 8400 } 8401 } 8402 8403 // C++ [over.built]p18: 8404 // 8405 // For every triple (L, VQ, R), where L is an arithmetic type, 8406 // VQ is either volatile or empty, and R is a promoted 8407 // arithmetic type, there exist candidate operator functions of 8408 // the form 8409 // 8410 // VQ L& operator=(VQ L&, R); 8411 // VQ L& operator*=(VQ L&, R); 8412 // VQ L& operator/=(VQ L&, R); 8413 // VQ L& operator+=(VQ L&, R); 8414 // VQ L& operator-=(VQ L&, R); 8415 void addAssignmentArithmeticOverloads(bool isEqualOp) { 8416 if (!HasArithmeticOrEnumeralCandidateType) 8417 return; 8418 8419 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 8420 for (unsigned Right = FirstPromotedArithmeticType; 8421 Right < LastPromotedArithmeticType; ++Right) { 8422 QualType ParamTypes[2]; 8423 ParamTypes[1] = ArithmeticTypes[Right]; 8424 8425 // Add this built-in operator as a candidate (VQ is empty). 8426 ParamTypes[0] = 8427 S.Context.getLValueReferenceType(ArithmeticTypes[Left]); 8428 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8429 /*IsAssigmentOperator=*/isEqualOp); 8430 8431 // Add this built-in operator as a candidate (VQ is 'volatile'). 8432 if (VisibleTypeConversionsQuals.hasVolatile()) { 8433 ParamTypes[0] = 8434 S.Context.getVolatileType(ArithmeticTypes[Left]); 8435 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8436 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8437 /*IsAssigmentOperator=*/isEqualOp); 8438 } 8439 } 8440 } 8441 8442 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 8443 for (BuiltinCandidateTypeSet::iterator 8444 Vec1 = CandidateTypes[0].vector_begin(), 8445 Vec1End = CandidateTypes[0].vector_end(); 8446 Vec1 != Vec1End; ++Vec1) { 8447 for (BuiltinCandidateTypeSet::iterator 8448 Vec2 = CandidateTypes[1].vector_begin(), 8449 Vec2End = CandidateTypes[1].vector_end(); 8450 Vec2 != Vec2End; ++Vec2) { 8451 QualType ParamTypes[2]; 8452 ParamTypes[1] = *Vec2; 8453 // Add this built-in operator as a candidate (VQ is empty). 8454 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); 8455 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8456 /*IsAssigmentOperator=*/isEqualOp); 8457 8458 // Add this built-in operator as a candidate (VQ is 'volatile'). 8459 if (VisibleTypeConversionsQuals.hasVolatile()) { 8460 ParamTypes[0] = S.Context.getVolatileType(*Vec1); 8461 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8462 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8463 /*IsAssigmentOperator=*/isEqualOp); 8464 } 8465 } 8466 } 8467 } 8468 8469 // C++ [over.built]p22: 8470 // 8471 // For every triple (L, VQ, R), where L is an integral type, VQ 8472 // is either volatile or empty, and R is a promoted integral 8473 // type, there exist candidate operator functions of the form 8474 // 8475 // VQ L& operator%=(VQ L&, R); 8476 // VQ L& operator<<=(VQ L&, R); 8477 // VQ L& operator>>=(VQ L&, R); 8478 // VQ L& operator&=(VQ L&, R); 8479 // VQ L& operator^=(VQ L&, R); 8480 // VQ L& operator|=(VQ L&, R); 8481 void addAssignmentIntegralOverloads() { 8482 if (!HasArithmeticOrEnumeralCandidateType) 8483 return; 8484 8485 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 8486 for (unsigned Right = FirstPromotedIntegralType; 8487 Right < LastPromotedIntegralType; ++Right) { 8488 QualType ParamTypes[2]; 8489 ParamTypes[1] = ArithmeticTypes[Right]; 8490 8491 // Add this built-in operator as a candidate (VQ is empty). 8492 ParamTypes[0] = 8493 S.Context.getLValueReferenceType(ArithmeticTypes[Left]); 8494 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8495 if (VisibleTypeConversionsQuals.hasVolatile()) { 8496 // Add this built-in operator as a candidate (VQ is 'volatile'). 8497 ParamTypes[0] = ArithmeticTypes[Left]; 8498 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 8499 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8500 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8501 } 8502 } 8503 } 8504 } 8505 8506 // C++ [over.operator]p23: 8507 // 8508 // There also exist candidate operator functions of the form 8509 // 8510 // bool operator!(bool); 8511 // bool operator&&(bool, bool); 8512 // bool operator||(bool, bool); 8513 void addExclaimOverload() { 8514 QualType ParamTy = S.Context.BoolTy; 8515 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet, 8516 /*IsAssignmentOperator=*/false, 8517 /*NumContextualBoolArguments=*/1); 8518 } 8519 void addAmpAmpOrPipePipeOverload() { 8520 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 8521 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8522 /*IsAssignmentOperator=*/false, 8523 /*NumContextualBoolArguments=*/2); 8524 } 8525 8526 // C++ [over.built]p13: 8527 // 8528 // For every cv-qualified or cv-unqualified object type T there 8529 // exist candidate operator functions of the form 8530 // 8531 // T* operator+(T*, ptrdiff_t); [ABOVE] 8532 // T& operator[](T*, ptrdiff_t); 8533 // T* operator-(T*, ptrdiff_t); [ABOVE] 8534 // T* operator+(ptrdiff_t, T*); [ABOVE] 8535 // T& operator[](ptrdiff_t, T*); 8536 void addSubscriptOverloads() { 8537 for (BuiltinCandidateTypeSet::iterator 8538 Ptr = CandidateTypes[0].pointer_begin(), 8539 PtrEnd = CandidateTypes[0].pointer_end(); 8540 Ptr != PtrEnd; ++Ptr) { 8541 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; 8542 QualType PointeeType = (*Ptr)->getPointeeType(); 8543 if (!PointeeType->isObjectType()) 8544 continue; 8545 8546 // T& operator[](T*, ptrdiff_t) 8547 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8548 } 8549 8550 for (BuiltinCandidateTypeSet::iterator 8551 Ptr = CandidateTypes[1].pointer_begin(), 8552 PtrEnd = CandidateTypes[1].pointer_end(); 8553 Ptr != PtrEnd; ++Ptr) { 8554 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; 8555 QualType PointeeType = (*Ptr)->getPointeeType(); 8556 if (!PointeeType->isObjectType()) 8557 continue; 8558 8559 // T& operator[](ptrdiff_t, T*) 8560 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8561 } 8562 } 8563 8564 // C++ [over.built]p11: 8565 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 8566 // C1 is the same type as C2 or is a derived class of C2, T is an object 8567 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 8568 // there exist candidate operator functions of the form 8569 // 8570 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 8571 // 8572 // where CV12 is the union of CV1 and CV2. 8573 void addArrowStarOverloads() { 8574 for (BuiltinCandidateTypeSet::iterator 8575 Ptr = CandidateTypes[0].pointer_begin(), 8576 PtrEnd = CandidateTypes[0].pointer_end(); 8577 Ptr != PtrEnd; ++Ptr) { 8578 QualType C1Ty = (*Ptr); 8579 QualType C1; 8580 QualifierCollector Q1; 8581 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 8582 if (!isa<RecordType>(C1)) 8583 continue; 8584 // heuristic to reduce number of builtin candidates in the set. 8585 // Add volatile/restrict version only if there are conversions to a 8586 // volatile/restrict type. 8587 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 8588 continue; 8589 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 8590 continue; 8591 for (BuiltinCandidateTypeSet::iterator 8592 MemPtr = CandidateTypes[1].member_pointer_begin(), 8593 MemPtrEnd = CandidateTypes[1].member_pointer_end(); 8594 MemPtr != MemPtrEnd; ++MemPtr) { 8595 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 8596 QualType C2 = QualType(mptr->getClass(), 0); 8597 C2 = C2.getUnqualifiedType(); 8598 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2)) 8599 break; 8600 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 8601 // build CV12 T& 8602 QualType T = mptr->getPointeeType(); 8603 if (!VisibleTypeConversionsQuals.hasVolatile() && 8604 T.isVolatileQualified()) 8605 continue; 8606 if (!VisibleTypeConversionsQuals.hasRestrict() && 8607 T.isRestrictQualified()) 8608 continue; 8609 T = Q1.apply(S.Context, T); 8610 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8611 } 8612 } 8613 } 8614 8615 // Note that we don't consider the first argument, since it has been 8616 // contextually converted to bool long ago. The candidates below are 8617 // therefore added as binary. 8618 // 8619 // C++ [over.built]p25: 8620 // For every type T, where T is a pointer, pointer-to-member, or scoped 8621 // enumeration type, there exist candidate operator functions of the form 8622 // 8623 // T operator?(bool, T, T); 8624 // 8625 void addConditionalOperatorOverloads() { 8626 /// Set of (canonical) types that we've already handled. 8627 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8628 8629 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 8630 for (BuiltinCandidateTypeSet::iterator 8631 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 8632 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 8633 Ptr != PtrEnd; ++Ptr) { 8634 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second) 8635 continue; 8636 8637 QualType ParamTypes[2] = { *Ptr, *Ptr }; 8638 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8639 } 8640 8641 for (BuiltinCandidateTypeSet::iterator 8642 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 8643 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 8644 MemPtr != MemPtrEnd; ++MemPtr) { 8645 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second) 8646 continue; 8647 8648 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 8649 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8650 } 8651 8652 if (S.getLangOpts().CPlusPlus11) { 8653 for (BuiltinCandidateTypeSet::iterator 8654 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 8655 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 8656 Enum != EnumEnd; ++Enum) { 8657 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 8658 continue; 8659 8660 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second) 8661 continue; 8662 8663 QualType ParamTypes[2] = { *Enum, *Enum }; 8664 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8665 } 8666 } 8667 } 8668 } 8669 }; 8670 8671 } // end anonymous namespace 8672 8673 /// AddBuiltinOperatorCandidates - Add the appropriate built-in 8674 /// operator overloads to the candidate set (C++ [over.built]), based 8675 /// on the operator @p Op and the arguments given. For example, if the 8676 /// operator is a binary '+', this routine might add "int 8677 /// operator+(int, int)" to cover integer addition. 8678 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 8679 SourceLocation OpLoc, 8680 ArrayRef<Expr *> Args, 8681 OverloadCandidateSet &CandidateSet) { 8682 // Find all of the types that the arguments can convert to, but only 8683 // if the operator we're looking at has built-in operator candidates 8684 // that make use of these types. Also record whether we encounter non-record 8685 // candidate types or either arithmetic or enumeral candidate types. 8686 Qualifiers VisibleTypeConversionsQuals; 8687 VisibleTypeConversionsQuals.addConst(); 8688 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) 8689 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 8690 8691 bool HasNonRecordCandidateType = false; 8692 bool HasArithmeticOrEnumeralCandidateType = false; 8693 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 8694 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8695 CandidateTypes.emplace_back(*this); 8696 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 8697 OpLoc, 8698 true, 8699 (Op == OO_Exclaim || 8700 Op == OO_AmpAmp || 8701 Op == OO_PipePipe), 8702 VisibleTypeConversionsQuals); 8703 HasNonRecordCandidateType = HasNonRecordCandidateType || 8704 CandidateTypes[ArgIdx].hasNonRecordTypes(); 8705 HasArithmeticOrEnumeralCandidateType = 8706 HasArithmeticOrEnumeralCandidateType || 8707 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 8708 } 8709 8710 // Exit early when no non-record types have been added to the candidate set 8711 // for any of the arguments to the operator. 8712 // 8713 // We can't exit early for !, ||, or &&, since there we have always have 8714 // 'bool' overloads. 8715 if (!HasNonRecordCandidateType && 8716 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) 8717 return; 8718 8719 // Setup an object to manage the common state for building overloads. 8720 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, 8721 VisibleTypeConversionsQuals, 8722 HasArithmeticOrEnumeralCandidateType, 8723 CandidateTypes, CandidateSet); 8724 8725 // Dispatch over the operation to add in only those overloads which apply. 8726 switch (Op) { 8727 case OO_None: 8728 case NUM_OVERLOADED_OPERATORS: 8729 llvm_unreachable("Expected an overloaded operator"); 8730 8731 case OO_New: 8732 case OO_Delete: 8733 case OO_Array_New: 8734 case OO_Array_Delete: 8735 case OO_Call: 8736 llvm_unreachable( 8737 "Special operators don't use AddBuiltinOperatorCandidates"); 8738 8739 case OO_Comma: 8740 case OO_Arrow: 8741 case OO_Coawait: 8742 // C++ [over.match.oper]p3: 8743 // -- For the operator ',', the unary operator '&', the 8744 // operator '->', or the operator 'co_await', the 8745 // built-in candidates set is empty. 8746 break; 8747 8748 case OO_Plus: // '+' is either unary or binary 8749 if (Args.size() == 1) 8750 OpBuilder.addUnaryPlusPointerOverloads(); 8751 LLVM_FALLTHROUGH; 8752 8753 case OO_Minus: // '-' is either unary or binary 8754 if (Args.size() == 1) { 8755 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 8756 } else { 8757 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 8758 OpBuilder.addGenericBinaryArithmeticOverloads(); 8759 } 8760 break; 8761 8762 case OO_Star: // '*' is either unary or binary 8763 if (Args.size() == 1) 8764 OpBuilder.addUnaryStarPointerOverloads(); 8765 else 8766 OpBuilder.addGenericBinaryArithmeticOverloads(); 8767 break; 8768 8769 case OO_Slash: 8770 OpBuilder.addGenericBinaryArithmeticOverloads(); 8771 break; 8772 8773 case OO_PlusPlus: 8774 case OO_MinusMinus: 8775 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 8776 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 8777 break; 8778 8779 case OO_EqualEqual: 8780 case OO_ExclaimEqual: 8781 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads(); 8782 LLVM_FALLTHROUGH; 8783 8784 case OO_Less: 8785 case OO_Greater: 8786 case OO_LessEqual: 8787 case OO_GreaterEqual: 8788 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(); 8789 OpBuilder.addGenericBinaryArithmeticOverloads(); 8790 break; 8791 8792 case OO_Spaceship: 8793 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(); 8794 OpBuilder.addThreeWayArithmeticOverloads(); 8795 break; 8796 8797 case OO_Percent: 8798 case OO_Caret: 8799 case OO_Pipe: 8800 case OO_LessLess: 8801 case OO_GreaterGreater: 8802 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 8803 break; 8804 8805 case OO_Amp: // '&' is either unary or binary 8806 if (Args.size() == 1) 8807 // C++ [over.match.oper]p3: 8808 // -- For the operator ',', the unary operator '&', or the 8809 // operator '->', the built-in candidates set is empty. 8810 break; 8811 8812 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 8813 break; 8814 8815 case OO_Tilde: 8816 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 8817 break; 8818 8819 case OO_Equal: 8820 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 8821 LLVM_FALLTHROUGH; 8822 8823 case OO_PlusEqual: 8824 case OO_MinusEqual: 8825 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 8826 LLVM_FALLTHROUGH; 8827 8828 case OO_StarEqual: 8829 case OO_SlashEqual: 8830 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 8831 break; 8832 8833 case OO_PercentEqual: 8834 case OO_LessLessEqual: 8835 case OO_GreaterGreaterEqual: 8836 case OO_AmpEqual: 8837 case OO_CaretEqual: 8838 case OO_PipeEqual: 8839 OpBuilder.addAssignmentIntegralOverloads(); 8840 break; 8841 8842 case OO_Exclaim: 8843 OpBuilder.addExclaimOverload(); 8844 break; 8845 8846 case OO_AmpAmp: 8847 case OO_PipePipe: 8848 OpBuilder.addAmpAmpOrPipePipeOverload(); 8849 break; 8850 8851 case OO_Subscript: 8852 OpBuilder.addSubscriptOverloads(); 8853 break; 8854 8855 case OO_ArrowStar: 8856 OpBuilder.addArrowStarOverloads(); 8857 break; 8858 8859 case OO_Conditional: 8860 OpBuilder.addConditionalOperatorOverloads(); 8861 OpBuilder.addGenericBinaryArithmeticOverloads(); 8862 break; 8863 } 8864 } 8865 8866 /// Add function candidates found via argument-dependent lookup 8867 /// to the set of overloading candidates. 8868 /// 8869 /// This routine performs argument-dependent name lookup based on the 8870 /// given function name (which may also be an operator name) and adds 8871 /// all of the overload candidates found by ADL to the overload 8872 /// candidate set (C++ [basic.lookup.argdep]). 8873 void 8874 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 8875 SourceLocation Loc, 8876 ArrayRef<Expr *> Args, 8877 TemplateArgumentListInfo *ExplicitTemplateArgs, 8878 OverloadCandidateSet& CandidateSet, 8879 bool PartialOverloading) { 8880 ADLResult Fns; 8881 8882 // FIXME: This approach for uniquing ADL results (and removing 8883 // redundant candidates from the set) relies on pointer-equality, 8884 // which means we need to key off the canonical decl. However, 8885 // always going back to the canonical decl might not get us the 8886 // right set of default arguments. What default arguments are 8887 // we supposed to consider on ADL candidates, anyway? 8888 8889 // FIXME: Pass in the explicit template arguments? 8890 ArgumentDependentLookup(Name, Loc, Args, Fns); 8891 8892 // Erase all of the candidates we already knew about. 8893 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 8894 CandEnd = CandidateSet.end(); 8895 Cand != CandEnd; ++Cand) 8896 if (Cand->Function) { 8897 Fns.erase(Cand->Function); 8898 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 8899 Fns.erase(FunTmpl); 8900 } 8901 8902 // For each of the ADL candidates we found, add it to the overload 8903 // set. 8904 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 8905 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 8906 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 8907 if (ExplicitTemplateArgs) 8908 continue; 8909 8910 AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false, 8911 PartialOverloading); 8912 } else 8913 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 8914 FoundDecl, ExplicitTemplateArgs, 8915 Args, CandidateSet, PartialOverloading); 8916 } 8917 } 8918 8919 namespace { 8920 enum class Comparison { Equal, Better, Worse }; 8921 } 8922 8923 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of 8924 /// overload resolution. 8925 /// 8926 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff 8927 /// Cand1's first N enable_if attributes have precisely the same conditions as 8928 /// Cand2's first N enable_if attributes (where N = the number of enable_if 8929 /// attributes on Cand2), and Cand1 has more than N enable_if attributes. 8930 /// 8931 /// Note that you can have a pair of candidates such that Cand1's enable_if 8932 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are 8933 /// worse than Cand1's. 8934 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1, 8935 const FunctionDecl *Cand2) { 8936 // Common case: One (or both) decls don't have enable_if attrs. 8937 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>(); 8938 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>(); 8939 if (!Cand1Attr || !Cand2Attr) { 8940 if (Cand1Attr == Cand2Attr) 8941 return Comparison::Equal; 8942 return Cand1Attr ? Comparison::Better : Comparison::Worse; 8943 } 8944 8945 // FIXME: The next several lines are just 8946 // specific_attr_iterator<EnableIfAttr> but going in declaration order, 8947 // instead of reverse order which is how they're stored in the AST. 8948 auto Cand1Attrs = getOrderedEnableIfAttrs(Cand1); 8949 auto Cand2Attrs = getOrderedEnableIfAttrs(Cand2); 8950 8951 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1 8952 // has fewer enable_if attributes than Cand2. 8953 if (Cand1Attrs.size() < Cand2Attrs.size()) 8954 return Comparison::Worse; 8955 8956 auto Cand1I = Cand1Attrs.begin(); 8957 llvm::FoldingSetNodeID Cand1ID, Cand2ID; 8958 for (auto &Cand2A : Cand2Attrs) { 8959 Cand1ID.clear(); 8960 Cand2ID.clear(); 8961 8962 auto &Cand1A = *Cand1I++; 8963 Cand1A->getCond()->Profile(Cand1ID, S.getASTContext(), true); 8964 Cand2A->getCond()->Profile(Cand2ID, S.getASTContext(), true); 8965 if (Cand1ID != Cand2ID) 8966 return Comparison::Worse; 8967 } 8968 8969 return Cand1I == Cand1Attrs.end() ? Comparison::Equal : Comparison::Better; 8970 } 8971 8972 /// isBetterOverloadCandidate - Determines whether the first overload 8973 /// candidate is a better candidate than the second (C++ 13.3.3p1). 8974 bool clang::isBetterOverloadCandidate( 8975 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2, 8976 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) { 8977 // Define viable functions to be better candidates than non-viable 8978 // functions. 8979 if (!Cand2.Viable) 8980 return Cand1.Viable; 8981 else if (!Cand1.Viable) 8982 return false; 8983 8984 // C++ [over.match.best]p1: 8985 // 8986 // -- if F is a static member function, ICS1(F) is defined such 8987 // that ICS1(F) is neither better nor worse than ICS1(G) for 8988 // any function G, and, symmetrically, ICS1(G) is neither 8989 // better nor worse than ICS1(F). 8990 unsigned StartArg = 0; 8991 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 8992 StartArg = 1; 8993 8994 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) { 8995 // We don't allow incompatible pointer conversions in C++. 8996 if (!S.getLangOpts().CPlusPlus) 8997 return ICS.isStandard() && 8998 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion; 8999 9000 // The only ill-formed conversion we allow in C++ is the string literal to 9001 // char* conversion, which is only considered ill-formed after C++11. 9002 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 9003 hasDeprecatedStringLiteralToCharPtrConversion(ICS); 9004 }; 9005 9006 // Define functions that don't require ill-formed conversions for a given 9007 // argument to be better candidates than functions that do. 9008 unsigned NumArgs = Cand1.Conversions.size(); 9009 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 9010 bool HasBetterConversion = false; 9011 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9012 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]); 9013 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]); 9014 if (Cand1Bad != Cand2Bad) { 9015 if (Cand1Bad) 9016 return false; 9017 HasBetterConversion = true; 9018 } 9019 } 9020 9021 if (HasBetterConversion) 9022 return true; 9023 9024 // C++ [over.match.best]p1: 9025 // A viable function F1 is defined to be a better function than another 9026 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 9027 // conversion sequence than ICSi(F2), and then... 9028 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9029 switch (CompareImplicitConversionSequences(S, Loc, 9030 Cand1.Conversions[ArgIdx], 9031 Cand2.Conversions[ArgIdx])) { 9032 case ImplicitConversionSequence::Better: 9033 // Cand1 has a better conversion sequence. 9034 HasBetterConversion = true; 9035 break; 9036 9037 case ImplicitConversionSequence::Worse: 9038 // Cand1 can't be better than Cand2. 9039 return false; 9040 9041 case ImplicitConversionSequence::Indistinguishable: 9042 // Do nothing. 9043 break; 9044 } 9045 } 9046 9047 // -- for some argument j, ICSj(F1) is a better conversion sequence than 9048 // ICSj(F2), or, if not that, 9049 if (HasBetterConversion) 9050 return true; 9051 9052 // -- the context is an initialization by user-defined conversion 9053 // (see 8.5, 13.3.1.5) and the standard conversion sequence 9054 // from the return type of F1 to the destination type (i.e., 9055 // the type of the entity being initialized) is a better 9056 // conversion sequence than the standard conversion sequence 9057 // from the return type of F2 to the destination type. 9058 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion && 9059 Cand1.Function && Cand2.Function && 9060 isa<CXXConversionDecl>(Cand1.Function) && 9061 isa<CXXConversionDecl>(Cand2.Function)) { 9062 // First check whether we prefer one of the conversion functions over the 9063 // other. This only distinguishes the results in non-standard, extension 9064 // cases such as the conversion from a lambda closure type to a function 9065 // pointer or block. 9066 ImplicitConversionSequence::CompareKind Result = 9067 compareConversionFunctions(S, Cand1.Function, Cand2.Function); 9068 if (Result == ImplicitConversionSequence::Indistinguishable) 9069 Result = CompareStandardConversionSequences(S, Loc, 9070 Cand1.FinalConversion, 9071 Cand2.FinalConversion); 9072 9073 if (Result != ImplicitConversionSequence::Indistinguishable) 9074 return Result == ImplicitConversionSequence::Better; 9075 9076 // FIXME: Compare kind of reference binding if conversion functions 9077 // convert to a reference type used in direct reference binding, per 9078 // C++14 [over.match.best]p1 section 2 bullet 3. 9079 } 9080 9081 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording, 9082 // as combined with the resolution to CWG issue 243. 9083 // 9084 // When the context is initialization by constructor ([over.match.ctor] or 9085 // either phase of [over.match.list]), a constructor is preferred over 9086 // a conversion function. 9087 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 && 9088 Cand1.Function && Cand2.Function && 9089 isa<CXXConstructorDecl>(Cand1.Function) != 9090 isa<CXXConstructorDecl>(Cand2.Function)) 9091 return isa<CXXConstructorDecl>(Cand1.Function); 9092 9093 // -- F1 is a non-template function and F2 is a function template 9094 // specialization, or, if not that, 9095 bool Cand1IsSpecialization = Cand1.Function && 9096 Cand1.Function->getPrimaryTemplate(); 9097 bool Cand2IsSpecialization = Cand2.Function && 9098 Cand2.Function->getPrimaryTemplate(); 9099 if (Cand1IsSpecialization != Cand2IsSpecialization) 9100 return Cand2IsSpecialization; 9101 9102 // -- F1 and F2 are function template specializations, and the function 9103 // template for F1 is more specialized than the template for F2 9104 // according to the partial ordering rules described in 14.5.5.2, or, 9105 // if not that, 9106 if (Cand1IsSpecialization && Cand2IsSpecialization) { 9107 if (FunctionTemplateDecl *BetterTemplate 9108 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 9109 Cand2.Function->getPrimaryTemplate(), 9110 Loc, 9111 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 9112 : TPOC_Call, 9113 Cand1.ExplicitCallArguments, 9114 Cand2.ExplicitCallArguments)) 9115 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 9116 } 9117 9118 // FIXME: Work around a defect in the C++17 inheriting constructor wording. 9119 // A derived-class constructor beats an (inherited) base class constructor. 9120 bool Cand1IsInherited = 9121 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl()); 9122 bool Cand2IsInherited = 9123 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl()); 9124 if (Cand1IsInherited != Cand2IsInherited) 9125 return Cand2IsInherited; 9126 else if (Cand1IsInherited) { 9127 assert(Cand2IsInherited); 9128 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext()); 9129 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext()); 9130 if (Cand1Class->isDerivedFrom(Cand2Class)) 9131 return true; 9132 if (Cand2Class->isDerivedFrom(Cand1Class)) 9133 return false; 9134 // Inherited from sibling base classes: still ambiguous. 9135 } 9136 9137 // Check C++17 tie-breakers for deduction guides. 9138 { 9139 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function); 9140 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function); 9141 if (Guide1 && Guide2) { 9142 // -- F1 is generated from a deduction-guide and F2 is not 9143 if (Guide1->isImplicit() != Guide2->isImplicit()) 9144 return Guide2->isImplicit(); 9145 9146 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not 9147 if (Guide1->isCopyDeductionCandidate()) 9148 return true; 9149 } 9150 } 9151 9152 // Check for enable_if value-based overload resolution. 9153 if (Cand1.Function && Cand2.Function) { 9154 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function); 9155 if (Cmp != Comparison::Equal) 9156 return Cmp == Comparison::Better; 9157 } 9158 9159 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) { 9160 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); 9161 return S.IdentifyCUDAPreference(Caller, Cand1.Function) > 9162 S.IdentifyCUDAPreference(Caller, Cand2.Function); 9163 } 9164 9165 bool HasPS1 = Cand1.Function != nullptr && 9166 functionHasPassObjectSizeParams(Cand1.Function); 9167 bool HasPS2 = Cand2.Function != nullptr && 9168 functionHasPassObjectSizeParams(Cand2.Function); 9169 return HasPS1 != HasPS2 && HasPS1; 9170 } 9171 9172 /// Determine whether two declarations are "equivalent" for the purposes of 9173 /// name lookup and overload resolution. This applies when the same internal/no 9174 /// linkage entity is defined by two modules (probably by textually including 9175 /// the same header). In such a case, we don't consider the declarations to 9176 /// declare the same entity, but we also don't want lookups with both 9177 /// declarations visible to be ambiguous in some cases (this happens when using 9178 /// a modularized libstdc++). 9179 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A, 9180 const NamedDecl *B) { 9181 auto *VA = dyn_cast_or_null<ValueDecl>(A); 9182 auto *VB = dyn_cast_or_null<ValueDecl>(B); 9183 if (!VA || !VB) 9184 return false; 9185 9186 // The declarations must be declaring the same name as an internal linkage 9187 // entity in different modules. 9188 if (!VA->getDeclContext()->getRedeclContext()->Equals( 9189 VB->getDeclContext()->getRedeclContext()) || 9190 getOwningModule(const_cast<ValueDecl *>(VA)) == 9191 getOwningModule(const_cast<ValueDecl *>(VB)) || 9192 VA->isExternallyVisible() || VB->isExternallyVisible()) 9193 return false; 9194 9195 // Check that the declarations appear to be equivalent. 9196 // 9197 // FIXME: Checking the type isn't really enough to resolve the ambiguity. 9198 // For constants and functions, we should check the initializer or body is 9199 // the same. For non-constant variables, we shouldn't allow it at all. 9200 if (Context.hasSameType(VA->getType(), VB->getType())) 9201 return true; 9202 9203 // Enum constants within unnamed enumerations will have different types, but 9204 // may still be similar enough to be interchangeable for our purposes. 9205 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) { 9206 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) { 9207 // Only handle anonymous enums. If the enumerations were named and 9208 // equivalent, they would have been merged to the same type. 9209 auto *EnumA = cast<EnumDecl>(EA->getDeclContext()); 9210 auto *EnumB = cast<EnumDecl>(EB->getDeclContext()); 9211 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() || 9212 !Context.hasSameType(EnumA->getIntegerType(), 9213 EnumB->getIntegerType())) 9214 return false; 9215 // Allow this only if the value is the same for both enumerators. 9216 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal()); 9217 } 9218 } 9219 9220 // Nothing else is sufficiently similar. 9221 return false; 9222 } 9223 9224 void Sema::diagnoseEquivalentInternalLinkageDeclarations( 9225 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) { 9226 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D; 9227 9228 Module *M = getOwningModule(const_cast<NamedDecl*>(D)); 9229 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl) 9230 << !M << (M ? M->getFullModuleName() : ""); 9231 9232 for (auto *E : Equiv) { 9233 Module *M = getOwningModule(const_cast<NamedDecl*>(E)); 9234 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl) 9235 << !M << (M ? M->getFullModuleName() : ""); 9236 } 9237 } 9238 9239 /// Computes the best viable function (C++ 13.3.3) 9240 /// within an overload candidate set. 9241 /// 9242 /// \param Loc The location of the function name (or operator symbol) for 9243 /// which overload resolution occurs. 9244 /// 9245 /// \param Best If overload resolution was successful or found a deleted 9246 /// function, \p Best points to the candidate function found. 9247 /// 9248 /// \returns The result of overload resolution. 9249 OverloadingResult 9250 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 9251 iterator &Best) { 9252 llvm::SmallVector<OverloadCandidate *, 16> Candidates; 9253 std::transform(begin(), end(), std::back_inserter(Candidates), 9254 [](OverloadCandidate &Cand) { return &Cand; }); 9255 9256 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but 9257 // are accepted by both clang and NVCC. However, during a particular 9258 // compilation mode only one call variant is viable. We need to 9259 // exclude non-viable overload candidates from consideration based 9260 // only on their host/device attributes. Specifically, if one 9261 // candidate call is WrongSide and the other is SameSide, we ignore 9262 // the WrongSide candidate. 9263 if (S.getLangOpts().CUDA) { 9264 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); 9265 bool ContainsSameSideCandidate = 9266 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) { 9267 return Cand->Function && 9268 S.IdentifyCUDAPreference(Caller, Cand->Function) == 9269 Sema::CFP_SameSide; 9270 }); 9271 if (ContainsSameSideCandidate) { 9272 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) { 9273 return Cand->Function && 9274 S.IdentifyCUDAPreference(Caller, Cand->Function) == 9275 Sema::CFP_WrongSide; 9276 }; 9277 llvm::erase_if(Candidates, IsWrongSideCandidate); 9278 } 9279 } 9280 9281 // Find the best viable function. 9282 Best = end(); 9283 for (auto *Cand : Candidates) 9284 if (Cand->Viable) 9285 if (Best == end() || 9286 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind)) 9287 Best = Cand; 9288 9289 // If we didn't find any viable functions, abort. 9290 if (Best == end()) 9291 return OR_No_Viable_Function; 9292 9293 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands; 9294 9295 // Make sure that this function is better than every other viable 9296 // function. If not, we have an ambiguity. 9297 for (auto *Cand : Candidates) { 9298 if (Cand->Viable && Cand != Best && 9299 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, Kind)) { 9300 if (S.isEquivalentInternalLinkageDeclaration(Best->Function, 9301 Cand->Function)) { 9302 EquivalentCands.push_back(Cand->Function); 9303 continue; 9304 } 9305 9306 Best = end(); 9307 return OR_Ambiguous; 9308 } 9309 } 9310 9311 // Best is the best viable function. 9312 if (Best->Function && 9313 (Best->Function->isDeleted() || 9314 S.isFunctionConsideredUnavailable(Best->Function))) 9315 return OR_Deleted; 9316 9317 if (!EquivalentCands.empty()) 9318 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function, 9319 EquivalentCands); 9320 9321 return OR_Success; 9322 } 9323 9324 namespace { 9325 9326 enum OverloadCandidateKind { 9327 oc_function, 9328 oc_method, 9329 oc_constructor, 9330 oc_function_template, 9331 oc_method_template, 9332 oc_constructor_template, 9333 oc_implicit_default_constructor, 9334 oc_implicit_copy_constructor, 9335 oc_implicit_move_constructor, 9336 oc_implicit_copy_assignment, 9337 oc_implicit_move_assignment, 9338 oc_inherited_constructor, 9339 oc_inherited_constructor_template 9340 }; 9341 9342 static OverloadCandidateKind 9343 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn, 9344 std::string &Description) { 9345 bool isTemplate = false; 9346 9347 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 9348 isTemplate = true; 9349 Description = S.getTemplateArgumentBindingsText( 9350 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 9351 } 9352 9353 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 9354 if (!Ctor->isImplicit()) { 9355 if (isa<ConstructorUsingShadowDecl>(Found)) 9356 return isTemplate ? oc_inherited_constructor_template 9357 : oc_inherited_constructor; 9358 else 9359 return isTemplate ? oc_constructor_template : oc_constructor; 9360 } 9361 9362 if (Ctor->isDefaultConstructor()) 9363 return oc_implicit_default_constructor; 9364 9365 if (Ctor->isMoveConstructor()) 9366 return oc_implicit_move_constructor; 9367 9368 assert(Ctor->isCopyConstructor() && 9369 "unexpected sort of implicit constructor"); 9370 return oc_implicit_copy_constructor; 9371 } 9372 9373 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 9374 // This actually gets spelled 'candidate function' for now, but 9375 // it doesn't hurt to split it out. 9376 if (!Meth->isImplicit()) 9377 return isTemplate ? oc_method_template : oc_method; 9378 9379 if (Meth->isMoveAssignmentOperator()) 9380 return oc_implicit_move_assignment; 9381 9382 if (Meth->isCopyAssignmentOperator()) 9383 return oc_implicit_copy_assignment; 9384 9385 assert(isa<CXXConversionDecl>(Meth) && "expected conversion"); 9386 return oc_method; 9387 } 9388 9389 return isTemplate ? oc_function_template : oc_function; 9390 } 9391 9392 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) { 9393 // FIXME: It'd be nice to only emit a note once per using-decl per overload 9394 // set. 9395 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) 9396 S.Diag(FoundDecl->getLocation(), 9397 diag::note_ovl_candidate_inherited_constructor) 9398 << Shadow->getNominatedBaseClass(); 9399 } 9400 9401 } // end anonymous namespace 9402 9403 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx, 9404 const FunctionDecl *FD) { 9405 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) { 9406 bool AlwaysTrue; 9407 if (!EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx)) 9408 return false; 9409 if (!AlwaysTrue) 9410 return false; 9411 } 9412 return true; 9413 } 9414 9415 /// Returns true if we can take the address of the function. 9416 /// 9417 /// \param Complain - If true, we'll emit a diagnostic 9418 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are 9419 /// we in overload resolution? 9420 /// \param Loc - The location of the statement we're complaining about. Ignored 9421 /// if we're not complaining, or if we're in overload resolution. 9422 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD, 9423 bool Complain, 9424 bool InOverloadResolution, 9425 SourceLocation Loc) { 9426 if (!isFunctionAlwaysEnabled(S.Context, FD)) { 9427 if (Complain) { 9428 if (InOverloadResolution) 9429 S.Diag(FD->getLocStart(), 9430 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr); 9431 else 9432 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD; 9433 } 9434 return false; 9435 } 9436 9437 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) { 9438 return P->hasAttr<PassObjectSizeAttr>(); 9439 }); 9440 if (I == FD->param_end()) 9441 return true; 9442 9443 if (Complain) { 9444 // Add one to ParamNo because it's user-facing 9445 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1; 9446 if (InOverloadResolution) 9447 S.Diag(FD->getLocation(), 9448 diag::note_ovl_candidate_has_pass_object_size_params) 9449 << ParamNo; 9450 else 9451 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params) 9452 << FD << ParamNo; 9453 } 9454 return false; 9455 } 9456 9457 static bool checkAddressOfCandidateIsAvailable(Sema &S, 9458 const FunctionDecl *FD) { 9459 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true, 9460 /*InOverloadResolution=*/true, 9461 /*Loc=*/SourceLocation()); 9462 } 9463 9464 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, 9465 bool Complain, 9466 SourceLocation Loc) { 9467 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain, 9468 /*InOverloadResolution=*/false, 9469 Loc); 9470 } 9471 9472 // Notes the location of an overload candidate. 9473 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn, 9474 QualType DestType, bool TakingAddress) { 9475 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn)) 9476 return; 9477 if (Fn->isMultiVersion() && !Fn->getAttr<TargetAttr>()->isDefaultVersion()) 9478 return; 9479 9480 std::string FnDesc; 9481 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Found, Fn, FnDesc); 9482 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) 9483 << (unsigned) K << Fn << FnDesc; 9484 9485 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); 9486 Diag(Fn->getLocation(), PD); 9487 MaybeEmitInheritedConstructorNote(*this, Found); 9488 } 9489 9490 // Notes the location of all overload candidates designated through 9491 // OverloadedExpr 9492 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType, 9493 bool TakingAddress) { 9494 assert(OverloadedExpr->getType() == Context.OverloadTy); 9495 9496 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 9497 OverloadExpr *OvlExpr = Ovl.Expression; 9498 9499 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 9500 IEnd = OvlExpr->decls_end(); 9501 I != IEnd; ++I) { 9502 if (FunctionTemplateDecl *FunTmpl = 9503 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 9504 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), DestType, 9505 TakingAddress); 9506 } else if (FunctionDecl *Fun 9507 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 9508 NoteOverloadCandidate(*I, Fun, DestType, TakingAddress); 9509 } 9510 } 9511 } 9512 9513 /// Diagnoses an ambiguous conversion. The partial diagnostic is the 9514 /// "lead" diagnostic; it will be given two arguments, the source and 9515 /// target types of the conversion. 9516 void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 9517 Sema &S, 9518 SourceLocation CaretLoc, 9519 const PartialDiagnostic &PDiag) const { 9520 S.Diag(CaretLoc, PDiag) 9521 << Ambiguous.getFromType() << Ambiguous.getToType(); 9522 // FIXME: The note limiting machinery is borrowed from 9523 // OverloadCandidateSet::NoteCandidates; there's an opportunity for 9524 // refactoring here. 9525 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 9526 unsigned CandsShown = 0; 9527 AmbiguousConversionSequence::const_iterator I, E; 9528 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 9529 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) 9530 break; 9531 ++CandsShown; 9532 S.NoteOverloadCandidate(I->first, I->second); 9533 } 9534 if (I != E) 9535 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); 9536 } 9537 9538 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, 9539 unsigned I, bool TakingCandidateAddress) { 9540 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 9541 assert(Conv.isBad()); 9542 assert(Cand->Function && "for now, candidate must be a function"); 9543 FunctionDecl *Fn = Cand->Function; 9544 9545 // There's a conversion slot for the object argument if this is a 9546 // non-constructor method. Note that 'I' corresponds the 9547 // conversion-slot index. 9548 bool isObjectArgument = false; 9549 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 9550 if (I == 0) 9551 isObjectArgument = true; 9552 else 9553 I--; 9554 } 9555 9556 std::string FnDesc; 9557 OverloadCandidateKind FnKind = 9558 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc); 9559 9560 Expr *FromExpr = Conv.Bad.FromExpr; 9561 QualType FromTy = Conv.Bad.getFromType(); 9562 QualType ToTy = Conv.Bad.getToType(); 9563 9564 if (FromTy == S.Context.OverloadTy) { 9565 assert(FromExpr && "overload set argument came from implicit argument?"); 9566 Expr *E = FromExpr->IgnoreParens(); 9567 if (isa<UnaryOperator>(E)) 9568 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 9569 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 9570 9571 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 9572 << (unsigned) FnKind << FnDesc 9573 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9574 << ToTy << Name << I+1; 9575 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9576 return; 9577 } 9578 9579 // Do some hand-waving analysis to see if the non-viability is due 9580 // to a qualifier mismatch. 9581 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 9582 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 9583 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 9584 CToTy = RT->getPointeeType(); 9585 else { 9586 // TODO: detect and diagnose the full richness of const mismatches. 9587 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 9588 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) { 9589 CFromTy = FromPT->getPointeeType(); 9590 CToTy = ToPT->getPointeeType(); 9591 } 9592 } 9593 9594 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 9595 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 9596 Qualifiers FromQs = CFromTy.getQualifiers(); 9597 Qualifiers ToQs = CToTy.getQualifiers(); 9598 9599 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 9600 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 9601 << (unsigned) FnKind << FnDesc 9602 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9603 << FromTy 9604 << FromQs.getAddressSpaceAttributePrintValue() 9605 << ToQs.getAddressSpaceAttributePrintValue() 9606 << (unsigned) isObjectArgument << I+1; 9607 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9608 return; 9609 } 9610 9611 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 9612 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 9613 << (unsigned) FnKind << FnDesc 9614 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9615 << FromTy 9616 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 9617 << (unsigned) isObjectArgument << I+1; 9618 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9619 return; 9620 } 9621 9622 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 9623 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 9624 << (unsigned) FnKind << FnDesc 9625 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9626 << FromTy 9627 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 9628 << (unsigned) isObjectArgument << I+1; 9629 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9630 return; 9631 } 9632 9633 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) { 9634 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned) 9635 << (unsigned) FnKind << FnDesc 9636 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9637 << FromTy << FromQs.hasUnaligned() << I+1; 9638 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9639 return; 9640 } 9641 9642 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 9643 assert(CVR && "unexpected qualifiers mismatch"); 9644 9645 if (isObjectArgument) { 9646 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 9647 << (unsigned) FnKind << FnDesc 9648 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9649 << FromTy << (CVR - 1); 9650 } else { 9651 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 9652 << (unsigned) FnKind << FnDesc 9653 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9654 << FromTy << (CVR - 1) << I+1; 9655 } 9656 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9657 return; 9658 } 9659 9660 // Special diagnostic for failure to convert an initializer list, since 9661 // telling the user that it has type void is not useful. 9662 if (FromExpr && isa<InitListExpr>(FromExpr)) { 9663 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) 9664 << (unsigned) FnKind << FnDesc 9665 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9666 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 9667 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9668 return; 9669 } 9670 9671 // Diagnose references or pointers to incomplete types differently, 9672 // since it's far from impossible that the incompleteness triggered 9673 // the failure. 9674 QualType TempFromTy = FromTy.getNonReferenceType(); 9675 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 9676 TempFromTy = PTy->getPointeeType(); 9677 if (TempFromTy->isIncompleteType()) { 9678 // Emit the generic diagnostic and, optionally, add the hints to it. 9679 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 9680 << (unsigned) FnKind << FnDesc 9681 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9682 << FromTy << ToTy << (unsigned) isObjectArgument << I+1 9683 << (unsigned) (Cand->Fix.Kind); 9684 9685 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9686 return; 9687 } 9688 9689 // Diagnose base -> derived pointer conversions. 9690 unsigned BaseToDerivedConversion = 0; 9691 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 9692 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 9693 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 9694 FromPtrTy->getPointeeType()) && 9695 !FromPtrTy->getPointeeType()->isIncompleteType() && 9696 !ToPtrTy->getPointeeType()->isIncompleteType() && 9697 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(), 9698 FromPtrTy->getPointeeType())) 9699 BaseToDerivedConversion = 1; 9700 } 9701 } else if (const ObjCObjectPointerType *FromPtrTy 9702 = FromTy->getAs<ObjCObjectPointerType>()) { 9703 if (const ObjCObjectPointerType *ToPtrTy 9704 = ToTy->getAs<ObjCObjectPointerType>()) 9705 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 9706 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 9707 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 9708 FromPtrTy->getPointeeType()) && 9709 FromIface->isSuperClassOf(ToIface)) 9710 BaseToDerivedConversion = 2; 9711 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 9712 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 9713 !FromTy->isIncompleteType() && 9714 !ToRefTy->getPointeeType()->isIncompleteType() && 9715 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) { 9716 BaseToDerivedConversion = 3; 9717 } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() && 9718 ToTy.getNonReferenceType().getCanonicalType() == 9719 FromTy.getNonReferenceType().getCanonicalType()) { 9720 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue) 9721 << (unsigned) FnKind << FnDesc 9722 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9723 << (unsigned) isObjectArgument << I + 1; 9724 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9725 return; 9726 } 9727 } 9728 9729 if (BaseToDerivedConversion) { 9730 S.Diag(Fn->getLocation(), 9731 diag::note_ovl_candidate_bad_base_to_derived_conv) 9732 << (unsigned) FnKind << FnDesc 9733 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9734 << (BaseToDerivedConversion - 1) 9735 << FromTy << ToTy << I+1; 9736 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9737 return; 9738 } 9739 9740 if (isa<ObjCObjectPointerType>(CFromTy) && 9741 isa<PointerType>(CToTy)) { 9742 Qualifiers FromQs = CFromTy.getQualifiers(); 9743 Qualifiers ToQs = CToTy.getQualifiers(); 9744 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 9745 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) 9746 << (unsigned) FnKind << FnDesc 9747 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9748 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 9749 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9750 return; 9751 } 9752 } 9753 9754 if (TakingCandidateAddress && 9755 !checkAddressOfCandidateIsAvailable(S, Cand->Function)) 9756 return; 9757 9758 // Emit the generic diagnostic and, optionally, add the hints to it. 9759 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 9760 FDiag << (unsigned) FnKind << FnDesc 9761 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 9762 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1 9763 << (unsigned) (Cand->Fix.Kind); 9764 9765 // If we can fix the conversion, suggest the FixIts. 9766 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), 9767 HE = Cand->Fix.Hints.end(); HI != HE; ++HI) 9768 FDiag << *HI; 9769 S.Diag(Fn->getLocation(), FDiag); 9770 9771 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 9772 } 9773 9774 /// Additional arity mismatch diagnosis specific to a function overload 9775 /// candidates. This is not covered by the more general DiagnoseArityMismatch() 9776 /// over a candidate in any candidate set. 9777 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, 9778 unsigned NumArgs) { 9779 FunctionDecl *Fn = Cand->Function; 9780 unsigned MinParams = Fn->getMinRequiredArguments(); 9781 9782 // With invalid overloaded operators, it's possible that we think we 9783 // have an arity mismatch when in fact it looks like we have the 9784 // right number of arguments, because only overloaded operators have 9785 // the weird behavior of overloading member and non-member functions. 9786 // Just don't report anything. 9787 if (Fn->isInvalidDecl() && 9788 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 9789 return true; 9790 9791 if (NumArgs < MinParams) { 9792 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 9793 (Cand->FailureKind == ovl_fail_bad_deduction && 9794 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 9795 } else { 9796 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 9797 (Cand->FailureKind == ovl_fail_bad_deduction && 9798 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 9799 } 9800 9801 return false; 9802 } 9803 9804 /// General arity mismatch diagnosis over a candidate in a candidate set. 9805 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D, 9806 unsigned NumFormalArgs) { 9807 assert(isa<FunctionDecl>(D) && 9808 "The templated declaration should at least be a function" 9809 " when diagnosing bad template argument deduction due to too many" 9810 " or too few arguments"); 9811 9812 FunctionDecl *Fn = cast<FunctionDecl>(D); 9813 9814 // TODO: treat calls to a missing default constructor as a special case 9815 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 9816 unsigned MinParams = Fn->getMinRequiredArguments(); 9817 9818 // at least / at most / exactly 9819 unsigned mode, modeCount; 9820 if (NumFormalArgs < MinParams) { 9821 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() || 9822 FnTy->isTemplateVariadic()) 9823 mode = 0; // "at least" 9824 else 9825 mode = 2; // "exactly" 9826 modeCount = MinParams; 9827 } else { 9828 if (MinParams != FnTy->getNumParams()) 9829 mode = 1; // "at most" 9830 else 9831 mode = 2; // "exactly" 9832 modeCount = FnTy->getNumParams(); 9833 } 9834 9835 std::string Description; 9836 OverloadCandidateKind FnKind = 9837 ClassifyOverloadCandidate(S, Found, Fn, Description); 9838 9839 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName()) 9840 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) 9841 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr) 9842 << mode << Fn->getParamDecl(0) << NumFormalArgs; 9843 else 9844 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 9845 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr) 9846 << mode << modeCount << NumFormalArgs; 9847 MaybeEmitInheritedConstructorNote(S, Found); 9848 } 9849 9850 /// Arity mismatch diagnosis specific to a function overload candidate. 9851 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 9852 unsigned NumFormalArgs) { 9853 if (!CheckArityMismatch(S, Cand, NumFormalArgs)) 9854 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs); 9855 } 9856 9857 static TemplateDecl *getDescribedTemplate(Decl *Templated) { 9858 if (TemplateDecl *TD = Templated->getDescribedTemplate()) 9859 return TD; 9860 llvm_unreachable("Unsupported: Getting the described template declaration" 9861 " for bad deduction diagnosis"); 9862 } 9863 9864 /// Diagnose a failed template-argument deduction. 9865 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated, 9866 DeductionFailureInfo &DeductionFailure, 9867 unsigned NumArgs, 9868 bool TakingCandidateAddress) { 9869 TemplateParameter Param = DeductionFailure.getTemplateParameter(); 9870 NamedDecl *ParamD; 9871 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 9872 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 9873 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 9874 switch (DeductionFailure.Result) { 9875 case Sema::TDK_Success: 9876 llvm_unreachable("TDK_success while diagnosing bad deduction"); 9877 9878 case Sema::TDK_Incomplete: { 9879 assert(ParamD && "no parameter found for incomplete deduction result"); 9880 S.Diag(Templated->getLocation(), 9881 diag::note_ovl_candidate_incomplete_deduction) 9882 << ParamD->getDeclName(); 9883 MaybeEmitInheritedConstructorNote(S, Found); 9884 return; 9885 } 9886 9887 case Sema::TDK_Underqualified: { 9888 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 9889 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 9890 9891 QualType Param = DeductionFailure.getFirstArg()->getAsType(); 9892 9893 // Param will have been canonicalized, but it should just be a 9894 // qualified version of ParamD, so move the qualifiers to that. 9895 QualifierCollector Qs; 9896 Qs.strip(Param); 9897 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 9898 assert(S.Context.hasSameType(Param, NonCanonParam)); 9899 9900 // Arg has also been canonicalized, but there's nothing we can do 9901 // about that. It also doesn't matter as much, because it won't 9902 // have any template parameters in it (because deduction isn't 9903 // done on dependent types). 9904 QualType Arg = DeductionFailure.getSecondArg()->getAsType(); 9905 9906 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified) 9907 << ParamD->getDeclName() << Arg << NonCanonParam; 9908 MaybeEmitInheritedConstructorNote(S, Found); 9909 return; 9910 } 9911 9912 case Sema::TDK_Inconsistent: { 9913 assert(ParamD && "no parameter found for inconsistent deduction result"); 9914 int which = 0; 9915 if (isa<TemplateTypeParmDecl>(ParamD)) 9916 which = 0; 9917 else if (isa<NonTypeTemplateParmDecl>(ParamD)) { 9918 // Deduction might have failed because we deduced arguments of two 9919 // different types for a non-type template parameter. 9920 // FIXME: Use a different TDK value for this. 9921 QualType T1 = 9922 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType(); 9923 QualType T2 = 9924 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType(); 9925 if (!S.Context.hasSameType(T1, T2)) { 9926 S.Diag(Templated->getLocation(), 9927 diag::note_ovl_candidate_inconsistent_deduction_types) 9928 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1 9929 << *DeductionFailure.getSecondArg() << T2; 9930 MaybeEmitInheritedConstructorNote(S, Found); 9931 return; 9932 } 9933 9934 which = 1; 9935 } else { 9936 which = 2; 9937 } 9938 9939 S.Diag(Templated->getLocation(), 9940 diag::note_ovl_candidate_inconsistent_deduction) 9941 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() 9942 << *DeductionFailure.getSecondArg(); 9943 MaybeEmitInheritedConstructorNote(S, Found); 9944 return; 9945 } 9946 9947 case Sema::TDK_InvalidExplicitArguments: 9948 assert(ParamD && "no parameter found for invalid explicit arguments"); 9949 if (ParamD->getDeclName()) 9950 S.Diag(Templated->getLocation(), 9951 diag::note_ovl_candidate_explicit_arg_mismatch_named) 9952 << ParamD->getDeclName(); 9953 else { 9954 int index = 0; 9955 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 9956 index = TTP->getIndex(); 9957 else if (NonTypeTemplateParmDecl *NTTP 9958 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 9959 index = NTTP->getIndex(); 9960 else 9961 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 9962 S.Diag(Templated->getLocation(), 9963 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 9964 << (index + 1); 9965 } 9966 MaybeEmitInheritedConstructorNote(S, Found); 9967 return; 9968 9969 case Sema::TDK_TooManyArguments: 9970 case Sema::TDK_TooFewArguments: 9971 DiagnoseArityMismatch(S, Found, Templated, NumArgs); 9972 return; 9973 9974 case Sema::TDK_InstantiationDepth: 9975 S.Diag(Templated->getLocation(), 9976 diag::note_ovl_candidate_instantiation_depth); 9977 MaybeEmitInheritedConstructorNote(S, Found); 9978 return; 9979 9980 case Sema::TDK_SubstitutionFailure: { 9981 // Format the template argument list into the argument string. 9982 SmallString<128> TemplateArgString; 9983 if (TemplateArgumentList *Args = 9984 DeductionFailure.getTemplateArgumentList()) { 9985 TemplateArgString = " "; 9986 TemplateArgString += S.getTemplateArgumentBindingsText( 9987 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 9988 } 9989 9990 // If this candidate was disabled by enable_if, say so. 9991 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); 9992 if (PDiag && PDiag->second.getDiagID() == 9993 diag::err_typename_nested_not_found_enable_if) { 9994 // FIXME: Use the source range of the condition, and the fully-qualified 9995 // name of the enable_if template. These are both present in PDiag. 9996 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) 9997 << "'enable_if'" << TemplateArgString; 9998 return; 9999 } 10000 10001 // We found a specific requirement that disabled the enable_if. 10002 if (PDiag && PDiag->second.getDiagID() == 10003 diag::err_typename_nested_not_found_requirement) { 10004 S.Diag(Templated->getLocation(), 10005 diag::note_ovl_candidate_disabled_by_requirement) 10006 << PDiag->second.getStringArg(0) << TemplateArgString; 10007 return; 10008 } 10009 10010 // Format the SFINAE diagnostic into the argument string. 10011 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s 10012 // formatted message in another diagnostic. 10013 SmallString<128> SFINAEArgString; 10014 SourceRange R; 10015 if (PDiag) { 10016 SFINAEArgString = ": "; 10017 R = SourceRange(PDiag->first, PDiag->first); 10018 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); 10019 } 10020 10021 S.Diag(Templated->getLocation(), 10022 diag::note_ovl_candidate_substitution_failure) 10023 << TemplateArgString << SFINAEArgString << R; 10024 MaybeEmitInheritedConstructorNote(S, Found); 10025 return; 10026 } 10027 10028 case Sema::TDK_DeducedMismatch: 10029 case Sema::TDK_DeducedMismatchNested: { 10030 // Format the template argument list into the argument string. 10031 SmallString<128> TemplateArgString; 10032 if (TemplateArgumentList *Args = 10033 DeductionFailure.getTemplateArgumentList()) { 10034 TemplateArgString = " "; 10035 TemplateArgString += S.getTemplateArgumentBindingsText( 10036 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10037 } 10038 10039 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch) 10040 << (*DeductionFailure.getCallArgIndex() + 1) 10041 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg() 10042 << TemplateArgString 10043 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested); 10044 break; 10045 } 10046 10047 case Sema::TDK_NonDeducedMismatch: { 10048 // FIXME: Provide a source location to indicate what we couldn't match. 10049 TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); 10050 TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); 10051 if (FirstTA.getKind() == TemplateArgument::Template && 10052 SecondTA.getKind() == TemplateArgument::Template) { 10053 TemplateName FirstTN = FirstTA.getAsTemplate(); 10054 TemplateName SecondTN = SecondTA.getAsTemplate(); 10055 if (FirstTN.getKind() == TemplateName::Template && 10056 SecondTN.getKind() == TemplateName::Template) { 10057 if (FirstTN.getAsTemplateDecl()->getName() == 10058 SecondTN.getAsTemplateDecl()->getName()) { 10059 // FIXME: This fixes a bad diagnostic where both templates are named 10060 // the same. This particular case is a bit difficult since: 10061 // 1) It is passed as a string to the diagnostic printer. 10062 // 2) The diagnostic printer only attempts to find a better 10063 // name for types, not decls. 10064 // Ideally, this should folded into the diagnostic printer. 10065 S.Diag(Templated->getLocation(), 10066 diag::note_ovl_candidate_non_deduced_mismatch_qualified) 10067 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); 10068 return; 10069 } 10070 } 10071 } 10072 10073 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) && 10074 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated))) 10075 return; 10076 10077 // FIXME: For generic lambda parameters, check if the function is a lambda 10078 // call operator, and if so, emit a prettier and more informative 10079 // diagnostic that mentions 'auto' and lambda in addition to 10080 // (or instead of?) the canonical template type parameters. 10081 S.Diag(Templated->getLocation(), 10082 diag::note_ovl_candidate_non_deduced_mismatch) 10083 << FirstTA << SecondTA; 10084 return; 10085 } 10086 // TODO: diagnose these individually, then kill off 10087 // note_ovl_candidate_bad_deduction, which is uselessly vague. 10088 case Sema::TDK_MiscellaneousDeductionFailure: 10089 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction); 10090 MaybeEmitInheritedConstructorNote(S, Found); 10091 return; 10092 case Sema::TDK_CUDATargetMismatch: 10093 S.Diag(Templated->getLocation(), 10094 diag::note_cuda_ovl_candidate_target_mismatch); 10095 return; 10096 } 10097 } 10098 10099 /// Diagnose a failed template-argument deduction, for function calls. 10100 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 10101 unsigned NumArgs, 10102 bool TakingCandidateAddress) { 10103 unsigned TDK = Cand->DeductionFailure.Result; 10104 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) { 10105 if (CheckArityMismatch(S, Cand, NumArgs)) 10106 return; 10107 } 10108 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern 10109 Cand->DeductionFailure, NumArgs, TakingCandidateAddress); 10110 } 10111 10112 /// CUDA: diagnose an invalid call across targets. 10113 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { 10114 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); 10115 FunctionDecl *Callee = Cand->Function; 10116 10117 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), 10118 CalleeTarget = S.IdentifyCUDATarget(Callee); 10119 10120 std::string FnDesc; 10121 OverloadCandidateKind FnKind = 10122 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, FnDesc); 10123 10124 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) 10125 << (unsigned)FnKind << CalleeTarget << CallerTarget; 10126 10127 // This could be an implicit constructor for which we could not infer the 10128 // target due to a collsion. Diagnose that case. 10129 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee); 10130 if (Meth != nullptr && Meth->isImplicit()) { 10131 CXXRecordDecl *ParentClass = Meth->getParent(); 10132 Sema::CXXSpecialMember CSM; 10133 10134 switch (FnKind) { 10135 default: 10136 return; 10137 case oc_implicit_default_constructor: 10138 CSM = Sema::CXXDefaultConstructor; 10139 break; 10140 case oc_implicit_copy_constructor: 10141 CSM = Sema::CXXCopyConstructor; 10142 break; 10143 case oc_implicit_move_constructor: 10144 CSM = Sema::CXXMoveConstructor; 10145 break; 10146 case oc_implicit_copy_assignment: 10147 CSM = Sema::CXXCopyAssignment; 10148 break; 10149 case oc_implicit_move_assignment: 10150 CSM = Sema::CXXMoveAssignment; 10151 break; 10152 }; 10153 10154 bool ConstRHS = false; 10155 if (Meth->getNumParams()) { 10156 if (const ReferenceType *RT = 10157 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) { 10158 ConstRHS = RT->getPointeeType().isConstQualified(); 10159 } 10160 } 10161 10162 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth, 10163 /* ConstRHS */ ConstRHS, 10164 /* Diagnose */ true); 10165 } 10166 } 10167 10168 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { 10169 FunctionDecl *Callee = Cand->Function; 10170 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data); 10171 10172 S.Diag(Callee->getLocation(), 10173 diag::note_ovl_candidate_disabled_by_function_cond_attr) 10174 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 10175 } 10176 10177 static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) { 10178 FunctionDecl *Callee = Cand->Function; 10179 10180 S.Diag(Callee->getLocation(), 10181 diag::note_ovl_candidate_disabled_by_extension); 10182 } 10183 10184 /// Generates a 'note' diagnostic for an overload candidate. We've 10185 /// already generated a primary error at the call site. 10186 /// 10187 /// It really does need to be a single diagnostic with its caret 10188 /// pointed at the candidate declaration. Yes, this creates some 10189 /// major challenges of technical writing. Yes, this makes pointing 10190 /// out problems with specific arguments quite awkward. It's still 10191 /// better than generating twenty screens of text for every failed 10192 /// overload. 10193 /// 10194 /// It would be great to be able to express per-candidate problems 10195 /// more richly for those diagnostic clients that cared, but we'd 10196 /// still have to be just as careful with the default diagnostics. 10197 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 10198 unsigned NumArgs, 10199 bool TakingCandidateAddress) { 10200 FunctionDecl *Fn = Cand->Function; 10201 10202 // Note deleted candidates, but only if they're viable. 10203 if (Cand->Viable) { 10204 if (Fn->isDeleted() || S.isFunctionConsideredUnavailable(Fn)) { 10205 std::string FnDesc; 10206 OverloadCandidateKind FnKind = 10207 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc); 10208 10209 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 10210 << FnKind << FnDesc 10211 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); 10212 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10213 return; 10214 } 10215 10216 // We don't really have anything else to say about viable candidates. 10217 S.NoteOverloadCandidate(Cand->FoundDecl, Fn); 10218 return; 10219 } 10220 10221 switch (Cand->FailureKind) { 10222 case ovl_fail_too_many_arguments: 10223 case ovl_fail_too_few_arguments: 10224 return DiagnoseArityMismatch(S, Cand, NumArgs); 10225 10226 case ovl_fail_bad_deduction: 10227 return DiagnoseBadDeduction(S, Cand, NumArgs, 10228 TakingCandidateAddress); 10229 10230 case ovl_fail_illegal_constructor: { 10231 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor) 10232 << (Fn->getPrimaryTemplate() ? 1 : 0); 10233 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10234 return; 10235 } 10236 10237 case ovl_fail_trivial_conversion: 10238 case ovl_fail_bad_final_conversion: 10239 case ovl_fail_final_conversion_not_exact: 10240 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn); 10241 10242 case ovl_fail_bad_conversion: { 10243 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 10244 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 10245 if (Cand->Conversions[I].isBad()) 10246 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress); 10247 10248 // FIXME: this currently happens when we're called from SemaInit 10249 // when user-conversion overload fails. Figure out how to handle 10250 // those conditions and diagnose them well. 10251 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn); 10252 } 10253 10254 case ovl_fail_bad_target: 10255 return DiagnoseBadTarget(S, Cand); 10256 10257 case ovl_fail_enable_if: 10258 return DiagnoseFailedEnableIfAttr(S, Cand); 10259 10260 case ovl_fail_ext_disabled: 10261 return DiagnoseOpenCLExtensionDisabled(S, Cand); 10262 10263 case ovl_fail_inhctor_slice: 10264 // It's generally not interesting to note copy/move constructors here. 10265 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor()) 10266 return; 10267 S.Diag(Fn->getLocation(), 10268 diag::note_ovl_candidate_inherited_constructor_slice) 10269 << (Fn->getPrimaryTemplate() ? 1 : 0) 10270 << Fn->getParamDecl(0)->getType()->isRValueReferenceType(); 10271 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10272 return; 10273 10274 case ovl_fail_addr_not_available: { 10275 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function); 10276 (void)Available; 10277 assert(!Available); 10278 break; 10279 } 10280 case ovl_non_default_multiversion_function: 10281 // Do nothing, these should simply be ignored. 10282 break; 10283 } 10284 } 10285 10286 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 10287 // Desugar the type of the surrogate down to a function type, 10288 // retaining as many typedefs as possible while still showing 10289 // the function type (and, therefore, its parameter types). 10290 QualType FnType = Cand->Surrogate->getConversionType(); 10291 bool isLValueReference = false; 10292 bool isRValueReference = false; 10293 bool isPointer = false; 10294 if (const LValueReferenceType *FnTypeRef = 10295 FnType->getAs<LValueReferenceType>()) { 10296 FnType = FnTypeRef->getPointeeType(); 10297 isLValueReference = true; 10298 } else if (const RValueReferenceType *FnTypeRef = 10299 FnType->getAs<RValueReferenceType>()) { 10300 FnType = FnTypeRef->getPointeeType(); 10301 isRValueReference = true; 10302 } 10303 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 10304 FnType = FnTypePtr->getPointeeType(); 10305 isPointer = true; 10306 } 10307 // Desugar down to a function type. 10308 FnType = QualType(FnType->getAs<FunctionType>(), 0); 10309 // Reconstruct the pointer/reference as appropriate. 10310 if (isPointer) FnType = S.Context.getPointerType(FnType); 10311 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 10312 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 10313 10314 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 10315 << FnType; 10316 } 10317 10318 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, 10319 SourceLocation OpLoc, 10320 OverloadCandidate *Cand) { 10321 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 10322 std::string TypeStr("operator"); 10323 TypeStr += Opc; 10324 TypeStr += "("; 10325 TypeStr += Cand->BuiltinParamTypes[0].getAsString(); 10326 if (Cand->Conversions.size() == 1) { 10327 TypeStr += ")"; 10328 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 10329 } else { 10330 TypeStr += ", "; 10331 TypeStr += Cand->BuiltinParamTypes[1].getAsString(); 10332 TypeStr += ")"; 10333 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 10334 } 10335 } 10336 10337 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 10338 OverloadCandidate *Cand) { 10339 for (const ImplicitConversionSequence &ICS : Cand->Conversions) { 10340 if (ICS.isBad()) break; // all meaningless after first invalid 10341 if (!ICS.isAmbiguous()) continue; 10342 10343 ICS.DiagnoseAmbiguousConversion( 10344 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion)); 10345 } 10346 } 10347 10348 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 10349 if (Cand->Function) 10350 return Cand->Function->getLocation(); 10351 if (Cand->IsSurrogate) 10352 return Cand->Surrogate->getLocation(); 10353 return SourceLocation(); 10354 } 10355 10356 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { 10357 switch ((Sema::TemplateDeductionResult)DFI.Result) { 10358 case Sema::TDK_Success: 10359 case Sema::TDK_NonDependentConversionFailure: 10360 llvm_unreachable("non-deduction failure while diagnosing bad deduction"); 10361 10362 case Sema::TDK_Invalid: 10363 case Sema::TDK_Incomplete: 10364 return 1; 10365 10366 case Sema::TDK_Underqualified: 10367 case Sema::TDK_Inconsistent: 10368 return 2; 10369 10370 case Sema::TDK_SubstitutionFailure: 10371 case Sema::TDK_DeducedMismatch: 10372 case Sema::TDK_DeducedMismatchNested: 10373 case Sema::TDK_NonDeducedMismatch: 10374 case Sema::TDK_MiscellaneousDeductionFailure: 10375 case Sema::TDK_CUDATargetMismatch: 10376 return 3; 10377 10378 case Sema::TDK_InstantiationDepth: 10379 return 4; 10380 10381 case Sema::TDK_InvalidExplicitArguments: 10382 return 5; 10383 10384 case Sema::TDK_TooManyArguments: 10385 case Sema::TDK_TooFewArguments: 10386 return 6; 10387 } 10388 llvm_unreachable("Unhandled deduction result"); 10389 } 10390 10391 namespace { 10392 struct CompareOverloadCandidatesForDisplay { 10393 Sema &S; 10394 SourceLocation Loc; 10395 size_t NumArgs; 10396 OverloadCandidateSet::CandidateSetKind CSK; 10397 10398 CompareOverloadCandidatesForDisplay( 10399 Sema &S, SourceLocation Loc, size_t NArgs, 10400 OverloadCandidateSet::CandidateSetKind CSK) 10401 : S(S), NumArgs(NArgs), CSK(CSK) {} 10402 10403 bool operator()(const OverloadCandidate *L, 10404 const OverloadCandidate *R) { 10405 // Fast-path this check. 10406 if (L == R) return false; 10407 10408 // Order first by viability. 10409 if (L->Viable) { 10410 if (!R->Viable) return true; 10411 10412 // TODO: introduce a tri-valued comparison for overload 10413 // candidates. Would be more worthwhile if we had a sort 10414 // that could exploit it. 10415 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK)) 10416 return true; 10417 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK)) 10418 return false; 10419 } else if (R->Viable) 10420 return false; 10421 10422 assert(L->Viable == R->Viable); 10423 10424 // Criteria by which we can sort non-viable candidates: 10425 if (!L->Viable) { 10426 // 1. Arity mismatches come after other candidates. 10427 if (L->FailureKind == ovl_fail_too_many_arguments || 10428 L->FailureKind == ovl_fail_too_few_arguments) { 10429 if (R->FailureKind == ovl_fail_too_many_arguments || 10430 R->FailureKind == ovl_fail_too_few_arguments) { 10431 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs); 10432 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs); 10433 if (LDist == RDist) { 10434 if (L->FailureKind == R->FailureKind) 10435 // Sort non-surrogates before surrogates. 10436 return !L->IsSurrogate && R->IsSurrogate; 10437 // Sort candidates requiring fewer parameters than there were 10438 // arguments given after candidates requiring more parameters 10439 // than there were arguments given. 10440 return L->FailureKind == ovl_fail_too_many_arguments; 10441 } 10442 return LDist < RDist; 10443 } 10444 return false; 10445 } 10446 if (R->FailureKind == ovl_fail_too_many_arguments || 10447 R->FailureKind == ovl_fail_too_few_arguments) 10448 return true; 10449 10450 // 2. Bad conversions come first and are ordered by the number 10451 // of bad conversions and quality of good conversions. 10452 if (L->FailureKind == ovl_fail_bad_conversion) { 10453 if (R->FailureKind != ovl_fail_bad_conversion) 10454 return true; 10455 10456 // The conversion that can be fixed with a smaller number of changes, 10457 // comes first. 10458 unsigned numLFixes = L->Fix.NumConversionsFixed; 10459 unsigned numRFixes = R->Fix.NumConversionsFixed; 10460 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 10461 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 10462 if (numLFixes != numRFixes) { 10463 return numLFixes < numRFixes; 10464 } 10465 10466 // If there's any ordering between the defined conversions... 10467 // FIXME: this might not be transitive. 10468 assert(L->Conversions.size() == R->Conversions.size()); 10469 10470 int leftBetter = 0; 10471 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 10472 for (unsigned E = L->Conversions.size(); I != E; ++I) { 10473 switch (CompareImplicitConversionSequences(S, Loc, 10474 L->Conversions[I], 10475 R->Conversions[I])) { 10476 case ImplicitConversionSequence::Better: 10477 leftBetter++; 10478 break; 10479 10480 case ImplicitConversionSequence::Worse: 10481 leftBetter--; 10482 break; 10483 10484 case ImplicitConversionSequence::Indistinguishable: 10485 break; 10486 } 10487 } 10488 if (leftBetter > 0) return true; 10489 if (leftBetter < 0) return false; 10490 10491 } else if (R->FailureKind == ovl_fail_bad_conversion) 10492 return false; 10493 10494 if (L->FailureKind == ovl_fail_bad_deduction) { 10495 if (R->FailureKind != ovl_fail_bad_deduction) 10496 return true; 10497 10498 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 10499 return RankDeductionFailure(L->DeductionFailure) 10500 < RankDeductionFailure(R->DeductionFailure); 10501 } else if (R->FailureKind == ovl_fail_bad_deduction) 10502 return false; 10503 10504 // TODO: others? 10505 } 10506 10507 // Sort everything else by location. 10508 SourceLocation LLoc = GetLocationForCandidate(L); 10509 SourceLocation RLoc = GetLocationForCandidate(R); 10510 10511 // Put candidates without locations (e.g. builtins) at the end. 10512 if (LLoc.isInvalid()) return false; 10513 if (RLoc.isInvalid()) return true; 10514 10515 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 10516 } 10517 }; 10518 } 10519 10520 /// CompleteNonViableCandidate - Normally, overload resolution only 10521 /// computes up to the first bad conversion. Produces the FixIt set if 10522 /// possible. 10523 static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 10524 ArrayRef<Expr *> Args) { 10525 assert(!Cand->Viable); 10526 10527 // Don't do anything on failures other than bad conversion. 10528 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 10529 10530 // We only want the FixIts if all the arguments can be corrected. 10531 bool Unfixable = false; 10532 // Use a implicit copy initialization to check conversion fixes. 10533 Cand->Fix.setConversionChecker(TryCopyInitialization); 10534 10535 // Attempt to fix the bad conversion. 10536 unsigned ConvCount = Cand->Conversions.size(); 10537 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/; 10538 ++ConvIdx) { 10539 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 10540 if (Cand->Conversions[ConvIdx].isInitialized() && 10541 Cand->Conversions[ConvIdx].isBad()) { 10542 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 10543 break; 10544 } 10545 } 10546 10547 // FIXME: this should probably be preserved from the overload 10548 // operation somehow. 10549 bool SuppressUserConversions = false; 10550 10551 unsigned ConvIdx = 0; 10552 ArrayRef<QualType> ParamTypes; 10553 10554 if (Cand->IsSurrogate) { 10555 QualType ConvType 10556 = Cand->Surrogate->getConversionType().getNonReferenceType(); 10557 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 10558 ConvType = ConvPtrType->getPointeeType(); 10559 ParamTypes = ConvType->getAs<FunctionProtoType>()->getParamTypes(); 10560 // Conversion 0 is 'this', which doesn't have a corresponding argument. 10561 ConvIdx = 1; 10562 } else if (Cand->Function) { 10563 ParamTypes = 10564 Cand->Function->getType()->getAs<FunctionProtoType>()->getParamTypes(); 10565 if (isa<CXXMethodDecl>(Cand->Function) && 10566 !isa<CXXConstructorDecl>(Cand->Function)) { 10567 // Conversion 0 is 'this', which doesn't have a corresponding argument. 10568 ConvIdx = 1; 10569 } 10570 } else { 10571 // Builtin operator. 10572 assert(ConvCount <= 3); 10573 ParamTypes = Cand->BuiltinParamTypes; 10574 } 10575 10576 // Fill in the rest of the conversions. 10577 for (unsigned ArgIdx = 0; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 10578 if (Cand->Conversions[ConvIdx].isInitialized()) { 10579 // We've already checked this conversion. 10580 } else if (ArgIdx < ParamTypes.size()) { 10581 if (ParamTypes[ArgIdx]->isDependentType()) 10582 Cand->Conversions[ConvIdx].setAsIdentityConversion( 10583 Args[ArgIdx]->getType()); 10584 else { 10585 Cand->Conversions[ConvIdx] = 10586 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ArgIdx], 10587 SuppressUserConversions, 10588 /*InOverloadResolution=*/true, 10589 /*AllowObjCWritebackConversion=*/ 10590 S.getLangOpts().ObjCAutoRefCount); 10591 // Store the FixIt in the candidate if it exists. 10592 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 10593 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 10594 } 10595 } else 10596 Cand->Conversions[ConvIdx].setEllipsis(); 10597 } 10598 } 10599 10600 /// When overload resolution fails, prints diagnostic messages containing the 10601 /// candidates in the candidate set. 10602 void OverloadCandidateSet::NoteCandidates( 10603 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, 10604 StringRef Opc, SourceLocation OpLoc, 10605 llvm::function_ref<bool(OverloadCandidate &)> Filter) { 10606 // Sort the candidates by viability and position. Sorting directly would 10607 // be prohibitive, so we make a set of pointers and sort those. 10608 SmallVector<OverloadCandidate*, 32> Cands; 10609 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 10610 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 10611 if (!Filter(*Cand)) 10612 continue; 10613 if (Cand->Viable) 10614 Cands.push_back(Cand); 10615 else if (OCD == OCD_AllCandidates) { 10616 CompleteNonViableCandidate(S, Cand, Args); 10617 if (Cand->Function || Cand->IsSurrogate) 10618 Cands.push_back(Cand); 10619 // Otherwise, this a non-viable builtin candidate. We do not, in general, 10620 // want to list every possible builtin candidate. 10621 } 10622 } 10623 10624 std::stable_sort(Cands.begin(), Cands.end(), 10625 CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind)); 10626 10627 bool ReportedAmbiguousConversions = false; 10628 10629 SmallVectorImpl<OverloadCandidate*>::iterator I, E; 10630 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 10631 unsigned CandsShown = 0; 10632 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 10633 OverloadCandidate *Cand = *I; 10634 10635 // Set an arbitrary limit on the number of candidate functions we'll spam 10636 // the user with. FIXME: This limit should depend on details of the 10637 // candidate list. 10638 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) { 10639 break; 10640 } 10641 ++CandsShown; 10642 10643 if (Cand->Function) 10644 NoteFunctionCandidate(S, Cand, Args.size(), 10645 /*TakingCandidateAddress=*/false); 10646 else if (Cand->IsSurrogate) 10647 NoteSurrogateCandidate(S, Cand); 10648 else { 10649 assert(Cand->Viable && 10650 "Non-viable built-in candidates are not added to Cands."); 10651 // Generally we only see ambiguities including viable builtin 10652 // operators if overload resolution got screwed up by an 10653 // ambiguous user-defined conversion. 10654 // 10655 // FIXME: It's quite possible for different conversions to see 10656 // different ambiguities, though. 10657 if (!ReportedAmbiguousConversions) { 10658 NoteAmbiguousUserConversions(S, OpLoc, Cand); 10659 ReportedAmbiguousConversions = true; 10660 } 10661 10662 // If this is a viable builtin, print it. 10663 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 10664 } 10665 } 10666 10667 if (I != E) 10668 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 10669 } 10670 10671 static SourceLocation 10672 GetLocationForCandidate(const TemplateSpecCandidate *Cand) { 10673 return Cand->Specialization ? Cand->Specialization->getLocation() 10674 : SourceLocation(); 10675 } 10676 10677 namespace { 10678 struct CompareTemplateSpecCandidatesForDisplay { 10679 Sema &S; 10680 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} 10681 10682 bool operator()(const TemplateSpecCandidate *L, 10683 const TemplateSpecCandidate *R) { 10684 // Fast-path this check. 10685 if (L == R) 10686 return false; 10687 10688 // Assuming that both candidates are not matches... 10689 10690 // Sort by the ranking of deduction failures. 10691 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 10692 return RankDeductionFailure(L->DeductionFailure) < 10693 RankDeductionFailure(R->DeductionFailure); 10694 10695 // Sort everything else by location. 10696 SourceLocation LLoc = GetLocationForCandidate(L); 10697 SourceLocation RLoc = GetLocationForCandidate(R); 10698 10699 // Put candidates without locations (e.g. builtins) at the end. 10700 if (LLoc.isInvalid()) 10701 return false; 10702 if (RLoc.isInvalid()) 10703 return true; 10704 10705 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 10706 } 10707 }; 10708 } 10709 10710 /// Diagnose a template argument deduction failure. 10711 /// We are treating these failures as overload failures due to bad 10712 /// deductions. 10713 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S, 10714 bool ForTakingAddress) { 10715 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern 10716 DeductionFailure, /*NumArgs=*/0, ForTakingAddress); 10717 } 10718 10719 void TemplateSpecCandidateSet::destroyCandidates() { 10720 for (iterator i = begin(), e = end(); i != e; ++i) { 10721 i->DeductionFailure.Destroy(); 10722 } 10723 } 10724 10725 void TemplateSpecCandidateSet::clear() { 10726 destroyCandidates(); 10727 Candidates.clear(); 10728 } 10729 10730 /// NoteCandidates - When no template specialization match is found, prints 10731 /// diagnostic messages containing the non-matching specializations that form 10732 /// the candidate set. 10733 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with 10734 /// OCD == OCD_AllCandidates and Cand->Viable == false. 10735 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { 10736 // Sort the candidates by position (assuming no candidate is a match). 10737 // Sorting directly would be prohibitive, so we make a set of pointers 10738 // and sort those. 10739 SmallVector<TemplateSpecCandidate *, 32> Cands; 10740 Cands.reserve(size()); 10741 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 10742 if (Cand->Specialization) 10743 Cands.push_back(Cand); 10744 // Otherwise, this is a non-matching builtin candidate. We do not, 10745 // in general, want to list every possible builtin candidate. 10746 } 10747 10748 llvm::sort(Cands.begin(), Cands.end(), 10749 CompareTemplateSpecCandidatesForDisplay(S)); 10750 10751 // FIXME: Perhaps rename OverloadsShown and getShowOverloads() 10752 // for generalization purposes (?). 10753 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 10754 10755 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E; 10756 unsigned CandsShown = 0; 10757 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 10758 TemplateSpecCandidate *Cand = *I; 10759 10760 // Set an arbitrary limit on the number of candidates we'll spam 10761 // the user with. FIXME: This limit should depend on details of the 10762 // candidate list. 10763 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) 10764 break; 10765 ++CandsShown; 10766 10767 assert(Cand->Specialization && 10768 "Non-matching built-in candidates are not added to Cands."); 10769 Cand->NoteDeductionFailure(S, ForTakingAddress); 10770 } 10771 10772 if (I != E) 10773 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I); 10774 } 10775 10776 // [PossiblyAFunctionType] --> [Return] 10777 // NonFunctionType --> NonFunctionType 10778 // R (A) --> R(A) 10779 // R (*)(A) --> R (A) 10780 // R (&)(A) --> R (A) 10781 // R (S::*)(A) --> R (A) 10782 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 10783 QualType Ret = PossiblyAFunctionType; 10784 if (const PointerType *ToTypePtr = 10785 PossiblyAFunctionType->getAs<PointerType>()) 10786 Ret = ToTypePtr->getPointeeType(); 10787 else if (const ReferenceType *ToTypeRef = 10788 PossiblyAFunctionType->getAs<ReferenceType>()) 10789 Ret = ToTypeRef->getPointeeType(); 10790 else if (const MemberPointerType *MemTypePtr = 10791 PossiblyAFunctionType->getAs<MemberPointerType>()) 10792 Ret = MemTypePtr->getPointeeType(); 10793 Ret = 10794 Context.getCanonicalType(Ret).getUnqualifiedType(); 10795 return Ret; 10796 } 10797 10798 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc, 10799 bool Complain = true) { 10800 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && 10801 S.DeduceReturnType(FD, Loc, Complain)) 10802 return true; 10803 10804 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 10805 if (S.getLangOpts().CPlusPlus17 && 10806 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 10807 !S.ResolveExceptionSpec(Loc, FPT)) 10808 return true; 10809 10810 return false; 10811 } 10812 10813 namespace { 10814 // A helper class to help with address of function resolution 10815 // - allows us to avoid passing around all those ugly parameters 10816 class AddressOfFunctionResolver { 10817 Sema& S; 10818 Expr* SourceExpr; 10819 const QualType& TargetType; 10820 QualType TargetFunctionType; // Extracted function type from target type 10821 10822 bool Complain; 10823 //DeclAccessPair& ResultFunctionAccessPair; 10824 ASTContext& Context; 10825 10826 bool TargetTypeIsNonStaticMemberFunction; 10827 bool FoundNonTemplateFunction; 10828 bool StaticMemberFunctionFromBoundPointer; 10829 bool HasComplained; 10830 10831 OverloadExpr::FindResult OvlExprInfo; 10832 OverloadExpr *OvlExpr; 10833 TemplateArgumentListInfo OvlExplicitTemplateArgs; 10834 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 10835 TemplateSpecCandidateSet FailedCandidates; 10836 10837 public: 10838 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, 10839 const QualType &TargetType, bool Complain) 10840 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 10841 Complain(Complain), Context(S.getASTContext()), 10842 TargetTypeIsNonStaticMemberFunction( 10843 !!TargetType->getAs<MemberPointerType>()), 10844 FoundNonTemplateFunction(false), 10845 StaticMemberFunctionFromBoundPointer(false), 10846 HasComplained(false), 10847 OvlExprInfo(OverloadExpr::find(SourceExpr)), 10848 OvlExpr(OvlExprInfo.Expression), 10849 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) { 10850 ExtractUnqualifiedFunctionTypeFromTargetType(); 10851 10852 if (TargetFunctionType->isFunctionType()) { 10853 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) 10854 if (!UME->isImplicitAccess() && 10855 !S.ResolveSingleFunctionTemplateSpecialization(UME)) 10856 StaticMemberFunctionFromBoundPointer = true; 10857 } else if (OvlExpr->hasExplicitTemplateArgs()) { 10858 DeclAccessPair dap; 10859 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( 10860 OvlExpr, false, &dap)) { 10861 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 10862 if (!Method->isStatic()) { 10863 // If the target type is a non-function type and the function found 10864 // is a non-static member function, pretend as if that was the 10865 // target, it's the only possible type to end up with. 10866 TargetTypeIsNonStaticMemberFunction = true; 10867 10868 // And skip adding the function if its not in the proper form. 10869 // We'll diagnose this due to an empty set of functions. 10870 if (!OvlExprInfo.HasFormOfMemberPointer) 10871 return; 10872 } 10873 10874 Matches.push_back(std::make_pair(dap, Fn)); 10875 } 10876 return; 10877 } 10878 10879 if (OvlExpr->hasExplicitTemplateArgs()) 10880 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs); 10881 10882 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 10883 // C++ [over.over]p4: 10884 // If more than one function is selected, [...] 10885 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) { 10886 if (FoundNonTemplateFunction) 10887 EliminateAllTemplateMatches(); 10888 else 10889 EliminateAllExceptMostSpecializedTemplate(); 10890 } 10891 } 10892 10893 if (S.getLangOpts().CUDA && Matches.size() > 1) 10894 EliminateSuboptimalCudaMatches(); 10895 } 10896 10897 bool hasComplained() const { return HasComplained; } 10898 10899 private: 10900 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) { 10901 QualType Discard; 10902 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) || 10903 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard); 10904 } 10905 10906 /// \return true if A is considered a better overload candidate for the 10907 /// desired type than B. 10908 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) { 10909 // If A doesn't have exactly the correct type, we don't want to classify it 10910 // as "better" than anything else. This way, the user is required to 10911 // disambiguate for us if there are multiple candidates and no exact match. 10912 return candidateHasExactlyCorrectType(A) && 10913 (!candidateHasExactlyCorrectType(B) || 10914 compareEnableIfAttrs(S, A, B) == Comparison::Better); 10915 } 10916 10917 /// \return true if we were able to eliminate all but one overload candidate, 10918 /// false otherwise. 10919 bool eliminiateSuboptimalOverloadCandidates() { 10920 // Same algorithm as overload resolution -- one pass to pick the "best", 10921 // another pass to be sure that nothing is better than the best. 10922 auto Best = Matches.begin(); 10923 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I) 10924 if (isBetterCandidate(I->second, Best->second)) 10925 Best = I; 10926 10927 const FunctionDecl *BestFn = Best->second; 10928 auto IsBestOrInferiorToBest = [this, BestFn]( 10929 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) { 10930 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second); 10931 }; 10932 10933 // Note: We explicitly leave Matches unmodified if there isn't a clear best 10934 // option, so we can potentially give the user a better error 10935 if (!std::all_of(Matches.begin(), Matches.end(), IsBestOrInferiorToBest)) 10936 return false; 10937 Matches[0] = *Best; 10938 Matches.resize(1); 10939 return true; 10940 } 10941 10942 bool isTargetTypeAFunction() const { 10943 return TargetFunctionType->isFunctionType(); 10944 } 10945 10946 // [ToType] [Return] 10947 10948 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 10949 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 10950 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 10951 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 10952 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 10953 } 10954 10955 // return true if any matching specializations were found 10956 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 10957 const DeclAccessPair& CurAccessFunPair) { 10958 if (CXXMethodDecl *Method 10959 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 10960 // Skip non-static function templates when converting to pointer, and 10961 // static when converting to member pointer. 10962 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 10963 return false; 10964 } 10965 else if (TargetTypeIsNonStaticMemberFunction) 10966 return false; 10967 10968 // C++ [over.over]p2: 10969 // If the name is a function template, template argument deduction is 10970 // done (14.8.2.2), and if the argument deduction succeeds, the 10971 // resulting template argument list is used to generate a single 10972 // function template specialization, which is added to the set of 10973 // overloaded functions considered. 10974 FunctionDecl *Specialization = nullptr; 10975 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 10976 if (Sema::TemplateDeductionResult Result 10977 = S.DeduceTemplateArguments(FunctionTemplate, 10978 &OvlExplicitTemplateArgs, 10979 TargetFunctionType, Specialization, 10980 Info, /*IsAddressOfFunction*/true)) { 10981 // Make a note of the failed deduction for diagnostics. 10982 FailedCandidates.addCandidate() 10983 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(), 10984 MakeDeductionFailureInfo(Context, Result, Info)); 10985 return false; 10986 } 10987 10988 // Template argument deduction ensures that we have an exact match or 10989 // compatible pointer-to-function arguments that would be adjusted by ICS. 10990 // This function template specicalization works. 10991 assert(S.isSameOrCompatibleFunctionType( 10992 Context.getCanonicalType(Specialization->getType()), 10993 Context.getCanonicalType(TargetFunctionType))); 10994 10995 if (!S.checkAddressOfFunctionIsAvailable(Specialization)) 10996 return false; 10997 10998 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 10999 return true; 11000 } 11001 11002 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 11003 const DeclAccessPair& CurAccessFunPair) { 11004 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 11005 // Skip non-static functions when converting to pointer, and static 11006 // when converting to member pointer. 11007 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 11008 return false; 11009 } 11010 else if (TargetTypeIsNonStaticMemberFunction) 11011 return false; 11012 11013 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 11014 if (S.getLangOpts().CUDA) 11015 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 11016 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl)) 11017 return false; 11018 if (FunDecl->isMultiVersion()) { 11019 const auto *TA = FunDecl->getAttr<TargetAttr>(); 11020 assert(TA && "Multiversioned functions require a target attribute"); 11021 if (!TA->isDefaultVersion()) 11022 return false; 11023 } 11024 11025 // If any candidate has a placeholder return type, trigger its deduction 11026 // now. 11027 if (completeFunctionType(S, FunDecl, SourceExpr->getLocStart(), 11028 Complain)) { 11029 HasComplained |= Complain; 11030 return false; 11031 } 11032 11033 if (!S.checkAddressOfFunctionIsAvailable(FunDecl)) 11034 return false; 11035 11036 // If we're in C, we need to support types that aren't exactly identical. 11037 if (!S.getLangOpts().CPlusPlus || 11038 candidateHasExactlyCorrectType(FunDecl)) { 11039 Matches.push_back(std::make_pair( 11040 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 11041 FoundNonTemplateFunction = true; 11042 return true; 11043 } 11044 } 11045 11046 return false; 11047 } 11048 11049 bool FindAllFunctionsThatMatchTargetTypeExactly() { 11050 bool Ret = false; 11051 11052 // If the overload expression doesn't have the form of a pointer to 11053 // member, don't try to convert it to a pointer-to-member type. 11054 if (IsInvalidFormOfPointerToMemberFunction()) 11055 return false; 11056 11057 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 11058 E = OvlExpr->decls_end(); 11059 I != E; ++I) { 11060 // Look through any using declarations to find the underlying function. 11061 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 11062 11063 // C++ [over.over]p3: 11064 // Non-member functions and static member functions match 11065 // targets of type "pointer-to-function" or "reference-to-function." 11066 // Nonstatic member functions match targets of 11067 // type "pointer-to-member-function." 11068 // Note that according to DR 247, the containing class does not matter. 11069 if (FunctionTemplateDecl *FunctionTemplate 11070 = dyn_cast<FunctionTemplateDecl>(Fn)) { 11071 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 11072 Ret = true; 11073 } 11074 // If we have explicit template arguments supplied, skip non-templates. 11075 else if (!OvlExpr->hasExplicitTemplateArgs() && 11076 AddMatchingNonTemplateFunction(Fn, I.getPair())) 11077 Ret = true; 11078 } 11079 assert(Ret || Matches.empty()); 11080 return Ret; 11081 } 11082 11083 void EliminateAllExceptMostSpecializedTemplate() { 11084 // [...] and any given function template specialization F1 is 11085 // eliminated if the set contains a second function template 11086 // specialization whose function template is more specialized 11087 // than the function template of F1 according to the partial 11088 // ordering rules of 14.5.5.2. 11089 11090 // The algorithm specified above is quadratic. We instead use a 11091 // two-pass algorithm (similar to the one used to identify the 11092 // best viable function in an overload set) that identifies the 11093 // best function template (if it exists). 11094 11095 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 11096 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 11097 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 11098 11099 // TODO: It looks like FailedCandidates does not serve much purpose 11100 // here, since the no_viable diagnostic has index 0. 11101 UnresolvedSetIterator Result = S.getMostSpecialized( 11102 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, 11103 SourceExpr->getLocStart(), S.PDiag(), 11104 S.PDiag(diag::err_addr_ovl_ambiguous) 11105 << Matches[0].second->getDeclName(), 11106 S.PDiag(diag::note_ovl_candidate) 11107 << (unsigned)oc_function_template, 11108 Complain, TargetFunctionType); 11109 11110 if (Result != MatchesCopy.end()) { 11111 // Make it the first and only element 11112 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 11113 Matches[0].second = cast<FunctionDecl>(*Result); 11114 Matches.resize(1); 11115 } else 11116 HasComplained |= Complain; 11117 } 11118 11119 void EliminateAllTemplateMatches() { 11120 // [...] any function template specializations in the set are 11121 // eliminated if the set also contains a non-template function, [...] 11122 for (unsigned I = 0, N = Matches.size(); I != N; ) { 11123 if (Matches[I].second->getPrimaryTemplate() == nullptr) 11124 ++I; 11125 else { 11126 Matches[I] = Matches[--N]; 11127 Matches.resize(N); 11128 } 11129 } 11130 } 11131 11132 void EliminateSuboptimalCudaMatches() { 11133 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches); 11134 } 11135 11136 public: 11137 void ComplainNoMatchesFound() const { 11138 assert(Matches.empty()); 11139 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable) 11140 << OvlExpr->getName() << TargetFunctionType 11141 << OvlExpr->getSourceRange(); 11142 if (FailedCandidates.empty()) 11143 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 11144 /*TakingAddress=*/true); 11145 else { 11146 // We have some deduction failure messages. Use them to diagnose 11147 // the function templates, and diagnose the non-template candidates 11148 // normally. 11149 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 11150 IEnd = OvlExpr->decls_end(); 11151 I != IEnd; ++I) 11152 if (FunctionDecl *Fun = 11153 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 11154 if (!functionHasPassObjectSizeParams(Fun)) 11155 S.NoteOverloadCandidate(*I, Fun, TargetFunctionType, 11156 /*TakingAddress=*/true); 11157 FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart()); 11158 } 11159 } 11160 11161 bool IsInvalidFormOfPointerToMemberFunction() const { 11162 return TargetTypeIsNonStaticMemberFunction && 11163 !OvlExprInfo.HasFormOfMemberPointer; 11164 } 11165 11166 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 11167 // TODO: Should we condition this on whether any functions might 11168 // have matched, or is it more appropriate to do that in callers? 11169 // TODO: a fixit wouldn't hurt. 11170 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 11171 << TargetType << OvlExpr->getSourceRange(); 11172 } 11173 11174 bool IsStaticMemberFunctionFromBoundPointer() const { 11175 return StaticMemberFunctionFromBoundPointer; 11176 } 11177 11178 void ComplainIsStaticMemberFunctionFromBoundPointer() const { 11179 S.Diag(OvlExpr->getLocStart(), 11180 diag::err_invalid_form_pointer_member_function) 11181 << OvlExpr->getSourceRange(); 11182 } 11183 11184 void ComplainOfInvalidConversion() const { 11185 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 11186 << OvlExpr->getName() << TargetType; 11187 } 11188 11189 void ComplainMultipleMatchesFound() const { 11190 assert(Matches.size() > 1); 11191 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous) 11192 << OvlExpr->getName() 11193 << OvlExpr->getSourceRange(); 11194 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 11195 /*TakingAddress=*/true); 11196 } 11197 11198 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } 11199 11200 int getNumMatches() const { return Matches.size(); } 11201 11202 FunctionDecl* getMatchingFunctionDecl() const { 11203 if (Matches.size() != 1) return nullptr; 11204 return Matches[0].second; 11205 } 11206 11207 const DeclAccessPair* getMatchingFunctionAccessPair() const { 11208 if (Matches.size() != 1) return nullptr; 11209 return &Matches[0].first; 11210 } 11211 }; 11212 } 11213 11214 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of 11215 /// an overloaded function (C++ [over.over]), where @p From is an 11216 /// expression with overloaded function type and @p ToType is the type 11217 /// we're trying to resolve to. For example: 11218 /// 11219 /// @code 11220 /// int f(double); 11221 /// int f(int); 11222 /// 11223 /// int (*pfd)(double) = f; // selects f(double) 11224 /// @endcode 11225 /// 11226 /// This routine returns the resulting FunctionDecl if it could be 11227 /// resolved, and NULL otherwise. When @p Complain is true, this 11228 /// routine will emit diagnostics if there is an error. 11229 FunctionDecl * 11230 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, 11231 QualType TargetType, 11232 bool Complain, 11233 DeclAccessPair &FoundResult, 11234 bool *pHadMultipleCandidates) { 11235 assert(AddressOfExpr->getType() == Context.OverloadTy); 11236 11237 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, 11238 Complain); 11239 int NumMatches = Resolver.getNumMatches(); 11240 FunctionDecl *Fn = nullptr; 11241 bool ShouldComplain = Complain && !Resolver.hasComplained(); 11242 if (NumMatches == 0 && ShouldComplain) { 11243 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 11244 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 11245 else 11246 Resolver.ComplainNoMatchesFound(); 11247 } 11248 else if (NumMatches > 1 && ShouldComplain) 11249 Resolver.ComplainMultipleMatchesFound(); 11250 else if (NumMatches == 1) { 11251 Fn = Resolver.getMatchingFunctionDecl(); 11252 assert(Fn); 11253 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) 11254 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT); 11255 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 11256 if (Complain) { 11257 if (Resolver.IsStaticMemberFunctionFromBoundPointer()) 11258 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); 11259 else 11260 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 11261 } 11262 } 11263 11264 if (pHadMultipleCandidates) 11265 *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); 11266 return Fn; 11267 } 11268 11269 /// Given an expression that refers to an overloaded function, try to 11270 /// resolve that function to a single function that can have its address taken. 11271 /// This will modify `Pair` iff it returns non-null. 11272 /// 11273 /// This routine can only realistically succeed if all but one candidates in the 11274 /// overload set for SrcExpr cannot have their addresses taken. 11275 FunctionDecl * 11276 Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E, 11277 DeclAccessPair &Pair) { 11278 OverloadExpr::FindResult R = OverloadExpr::find(E); 11279 OverloadExpr *Ovl = R.Expression; 11280 FunctionDecl *Result = nullptr; 11281 DeclAccessPair DAP; 11282 // Don't use the AddressOfResolver because we're specifically looking for 11283 // cases where we have one overload candidate that lacks 11284 // enable_if/pass_object_size/... 11285 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { 11286 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl()); 11287 if (!FD) 11288 return nullptr; 11289 11290 if (!checkAddressOfFunctionIsAvailable(FD)) 11291 continue; 11292 11293 // We have more than one result; quit. 11294 if (Result) 11295 return nullptr; 11296 DAP = I.getPair(); 11297 Result = FD; 11298 } 11299 11300 if (Result) 11301 Pair = DAP; 11302 return Result; 11303 } 11304 11305 /// Given an overloaded function, tries to turn it into a non-overloaded 11306 /// function reference using resolveAddressOfOnlyViableOverloadCandidate. This 11307 /// will perform access checks, diagnose the use of the resultant decl, and, if 11308 /// requested, potentially perform a function-to-pointer decay. 11309 /// 11310 /// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails. 11311 /// Otherwise, returns true. This may emit diagnostics and return true. 11312 bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate( 11313 ExprResult &SrcExpr, bool DoFunctionPointerConverion) { 11314 Expr *E = SrcExpr.get(); 11315 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload"); 11316 11317 DeclAccessPair DAP; 11318 FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP); 11319 if (!Found) 11320 return false; 11321 11322 // Emitting multiple diagnostics for a function that is both inaccessible and 11323 // unavailable is consistent with our behavior elsewhere. So, always check 11324 // for both. 11325 DiagnoseUseOfDecl(Found, E->getExprLoc()); 11326 CheckAddressOfMemberAccess(E, DAP); 11327 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found); 11328 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType()) 11329 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false); 11330 else 11331 SrcExpr = Fixed; 11332 return true; 11333 } 11334 11335 /// Given an expression that refers to an overloaded function, try to 11336 /// resolve that overloaded function expression down to a single function. 11337 /// 11338 /// This routine can only resolve template-ids that refer to a single function 11339 /// template, where that template-id refers to a single template whose template 11340 /// arguments are either provided by the template-id or have defaults, 11341 /// as described in C++0x [temp.arg.explicit]p3. 11342 /// 11343 /// If no template-ids are found, no diagnostics are emitted and NULL is 11344 /// returned. 11345 FunctionDecl * 11346 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 11347 bool Complain, 11348 DeclAccessPair *FoundResult) { 11349 // C++ [over.over]p1: 11350 // [...] [Note: any redundant set of parentheses surrounding the 11351 // overloaded function name is ignored (5.1). ] 11352 // C++ [over.over]p1: 11353 // [...] The overloaded function name can be preceded by the & 11354 // operator. 11355 11356 // If we didn't actually find any template-ids, we're done. 11357 if (!ovl->hasExplicitTemplateArgs()) 11358 return nullptr; 11359 11360 TemplateArgumentListInfo ExplicitTemplateArgs; 11361 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 11362 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc()); 11363 11364 // Look through all of the overloaded functions, searching for one 11365 // whose type matches exactly. 11366 FunctionDecl *Matched = nullptr; 11367 for (UnresolvedSetIterator I = ovl->decls_begin(), 11368 E = ovl->decls_end(); I != E; ++I) { 11369 // C++0x [temp.arg.explicit]p3: 11370 // [...] In contexts where deduction is done and fails, or in contexts 11371 // where deduction is not done, if a template argument list is 11372 // specified and it, along with any default template arguments, 11373 // identifies a single function template specialization, then the 11374 // template-id is an lvalue for the function template specialization. 11375 FunctionTemplateDecl *FunctionTemplate 11376 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 11377 11378 // C++ [over.over]p2: 11379 // If the name is a function template, template argument deduction is 11380 // done (14.8.2.2), and if the argument deduction succeeds, the 11381 // resulting template argument list is used to generate a single 11382 // function template specialization, which is added to the set of 11383 // overloaded functions considered. 11384 FunctionDecl *Specialization = nullptr; 11385 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 11386 if (TemplateDeductionResult Result 11387 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 11388 Specialization, Info, 11389 /*IsAddressOfFunction*/true)) { 11390 // Make a note of the failed deduction for diagnostics. 11391 // TODO: Actually use the failed-deduction info? 11392 FailedCandidates.addCandidate() 11393 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(), 11394 MakeDeductionFailureInfo(Context, Result, Info)); 11395 continue; 11396 } 11397 11398 assert(Specialization && "no specialization and no error?"); 11399 11400 // Multiple matches; we can't resolve to a single declaration. 11401 if (Matched) { 11402 if (Complain) { 11403 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 11404 << ovl->getName(); 11405 NoteAllOverloadCandidates(ovl); 11406 } 11407 return nullptr; 11408 } 11409 11410 Matched = Specialization; 11411 if (FoundResult) *FoundResult = I.getPair(); 11412 } 11413 11414 if (Matched && 11415 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain)) 11416 return nullptr; 11417 11418 return Matched; 11419 } 11420 11421 // Resolve and fix an overloaded expression that can be resolved 11422 // because it identifies a single function template specialization. 11423 // 11424 // Last three arguments should only be supplied if Complain = true 11425 // 11426 // Return true if it was logically possible to so resolve the 11427 // expression, regardless of whether or not it succeeded. Always 11428 // returns true if 'complain' is set. 11429 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 11430 ExprResult &SrcExpr, bool doFunctionPointerConverion, 11431 bool complain, SourceRange OpRangeForComplaining, 11432 QualType DestTypeForComplaining, 11433 unsigned DiagIDForComplaining) { 11434 assert(SrcExpr.get()->getType() == Context.OverloadTy); 11435 11436 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); 11437 11438 DeclAccessPair found; 11439 ExprResult SingleFunctionExpression; 11440 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 11441 ovl.Expression, /*complain*/ false, &found)) { 11442 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) { 11443 SrcExpr = ExprError(); 11444 return true; 11445 } 11446 11447 // It is only correct to resolve to an instance method if we're 11448 // resolving a form that's permitted to be a pointer to member. 11449 // Otherwise we'll end up making a bound member expression, which 11450 // is illegal in all the contexts we resolve like this. 11451 if (!ovl.HasFormOfMemberPointer && 11452 isa<CXXMethodDecl>(fn) && 11453 cast<CXXMethodDecl>(fn)->isInstance()) { 11454 if (!complain) return false; 11455 11456 Diag(ovl.Expression->getExprLoc(), 11457 diag::err_bound_member_function) 11458 << 0 << ovl.Expression->getSourceRange(); 11459 11460 // TODO: I believe we only end up here if there's a mix of 11461 // static and non-static candidates (otherwise the expression 11462 // would have 'bound member' type, not 'overload' type). 11463 // Ideally we would note which candidate was chosen and why 11464 // the static candidates were rejected. 11465 SrcExpr = ExprError(); 11466 return true; 11467 } 11468 11469 // Fix the expression to refer to 'fn'. 11470 SingleFunctionExpression = 11471 FixOverloadedFunctionReference(SrcExpr.get(), found, fn); 11472 11473 // If desired, do function-to-pointer decay. 11474 if (doFunctionPointerConverion) { 11475 SingleFunctionExpression = 11476 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get()); 11477 if (SingleFunctionExpression.isInvalid()) { 11478 SrcExpr = ExprError(); 11479 return true; 11480 } 11481 } 11482 } 11483 11484 if (!SingleFunctionExpression.isUsable()) { 11485 if (complain) { 11486 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 11487 << ovl.Expression->getName() 11488 << DestTypeForComplaining 11489 << OpRangeForComplaining 11490 << ovl.Expression->getQualifierLoc().getSourceRange(); 11491 NoteAllOverloadCandidates(SrcExpr.get()); 11492 11493 SrcExpr = ExprError(); 11494 return true; 11495 } 11496 11497 return false; 11498 } 11499 11500 SrcExpr = SingleFunctionExpression; 11501 return true; 11502 } 11503 11504 /// Add a single candidate to the overload set. 11505 static void AddOverloadedCallCandidate(Sema &S, 11506 DeclAccessPair FoundDecl, 11507 TemplateArgumentListInfo *ExplicitTemplateArgs, 11508 ArrayRef<Expr *> Args, 11509 OverloadCandidateSet &CandidateSet, 11510 bool PartialOverloading, 11511 bool KnownValid) { 11512 NamedDecl *Callee = FoundDecl.getDecl(); 11513 if (isa<UsingShadowDecl>(Callee)) 11514 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 11515 11516 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 11517 if (ExplicitTemplateArgs) { 11518 assert(!KnownValid && "Explicit template arguments?"); 11519 return; 11520 } 11521 // Prevent ill-formed function decls to be added as overload candidates. 11522 if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>())) 11523 return; 11524 11525 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, 11526 /*SuppressUsedConversions=*/false, 11527 PartialOverloading); 11528 return; 11529 } 11530 11531 if (FunctionTemplateDecl *FuncTemplate 11532 = dyn_cast<FunctionTemplateDecl>(Callee)) { 11533 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 11534 ExplicitTemplateArgs, Args, CandidateSet, 11535 /*SuppressUsedConversions=*/false, 11536 PartialOverloading); 11537 return; 11538 } 11539 11540 assert(!KnownValid && "unhandled case in overloaded call candidate"); 11541 } 11542 11543 /// Add the overload candidates named by callee and/or found by argument 11544 /// dependent lookup to the given overload set. 11545 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 11546 ArrayRef<Expr *> Args, 11547 OverloadCandidateSet &CandidateSet, 11548 bool PartialOverloading) { 11549 11550 #ifndef NDEBUG 11551 // Verify that ArgumentDependentLookup is consistent with the rules 11552 // in C++0x [basic.lookup.argdep]p3: 11553 // 11554 // Let X be the lookup set produced by unqualified lookup (3.4.1) 11555 // and let Y be the lookup set produced by argument dependent 11556 // lookup (defined as follows). If X contains 11557 // 11558 // -- a declaration of a class member, or 11559 // 11560 // -- a block-scope function declaration that is not a 11561 // using-declaration, or 11562 // 11563 // -- a declaration that is neither a function or a function 11564 // template 11565 // 11566 // then Y is empty. 11567 11568 if (ULE->requiresADL()) { 11569 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 11570 E = ULE->decls_end(); I != E; ++I) { 11571 assert(!(*I)->getDeclContext()->isRecord()); 11572 assert(isa<UsingShadowDecl>(*I) || 11573 !(*I)->getDeclContext()->isFunctionOrMethod()); 11574 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 11575 } 11576 } 11577 #endif 11578 11579 // It would be nice to avoid this copy. 11580 TemplateArgumentListInfo TABuffer; 11581 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 11582 if (ULE->hasExplicitTemplateArgs()) { 11583 ULE->copyTemplateArgumentsInto(TABuffer); 11584 ExplicitTemplateArgs = &TABuffer; 11585 } 11586 11587 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 11588 E = ULE->decls_end(); I != E; ++I) 11589 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 11590 CandidateSet, PartialOverloading, 11591 /*KnownValid*/ true); 11592 11593 if (ULE->requiresADL()) 11594 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(), 11595 Args, ExplicitTemplateArgs, 11596 CandidateSet, PartialOverloading); 11597 } 11598 11599 /// Determine whether a declaration with the specified name could be moved into 11600 /// a different namespace. 11601 static bool canBeDeclaredInNamespace(const DeclarationName &Name) { 11602 switch (Name.getCXXOverloadedOperator()) { 11603 case OO_New: case OO_Array_New: 11604 case OO_Delete: case OO_Array_Delete: 11605 return false; 11606 11607 default: 11608 return true; 11609 } 11610 } 11611 11612 /// Attempt to recover from an ill-formed use of a non-dependent name in a 11613 /// template, where the non-dependent name was declared after the template 11614 /// was defined. This is common in code written for a compilers which do not 11615 /// correctly implement two-stage name lookup. 11616 /// 11617 /// Returns true if a viable candidate was found and a diagnostic was issued. 11618 static bool 11619 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc, 11620 const CXXScopeSpec &SS, LookupResult &R, 11621 OverloadCandidateSet::CandidateSetKind CSK, 11622 TemplateArgumentListInfo *ExplicitTemplateArgs, 11623 ArrayRef<Expr *> Args, 11624 bool *DoDiagnoseEmptyLookup = nullptr) { 11625 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty()) 11626 return false; 11627 11628 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 11629 if (DC->isTransparentContext()) 11630 continue; 11631 11632 SemaRef.LookupQualifiedName(R, DC); 11633 11634 if (!R.empty()) { 11635 R.suppressDiagnostics(); 11636 11637 if (isa<CXXRecordDecl>(DC)) { 11638 // Don't diagnose names we find in classes; we get much better 11639 // diagnostics for these from DiagnoseEmptyLookup. 11640 R.clear(); 11641 if (DoDiagnoseEmptyLookup) 11642 *DoDiagnoseEmptyLookup = true; 11643 return false; 11644 } 11645 11646 OverloadCandidateSet Candidates(FnLoc, CSK); 11647 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 11648 AddOverloadedCallCandidate(SemaRef, I.getPair(), 11649 ExplicitTemplateArgs, Args, 11650 Candidates, false, /*KnownValid*/ false); 11651 11652 OverloadCandidateSet::iterator Best; 11653 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) { 11654 // No viable functions. Don't bother the user with notes for functions 11655 // which don't work and shouldn't be found anyway. 11656 R.clear(); 11657 return false; 11658 } 11659 11660 // Find the namespaces where ADL would have looked, and suggest 11661 // declaring the function there instead. 11662 Sema::AssociatedNamespaceSet AssociatedNamespaces; 11663 Sema::AssociatedClassSet AssociatedClasses; 11664 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, 11665 AssociatedNamespaces, 11666 AssociatedClasses); 11667 Sema::AssociatedNamespaceSet SuggestedNamespaces; 11668 if (canBeDeclaredInNamespace(R.getLookupName())) { 11669 DeclContext *Std = SemaRef.getStdNamespace(); 11670 for (Sema::AssociatedNamespaceSet::iterator 11671 it = AssociatedNamespaces.begin(), 11672 end = AssociatedNamespaces.end(); it != end; ++it) { 11673 // Never suggest declaring a function within namespace 'std'. 11674 if (Std && Std->Encloses(*it)) 11675 continue; 11676 11677 // Never suggest declaring a function within a namespace with a 11678 // reserved name, like __gnu_cxx. 11679 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it); 11680 if (NS && 11681 NS->getQualifiedNameAsString().find("__") != std::string::npos) 11682 continue; 11683 11684 SuggestedNamespaces.insert(*it); 11685 } 11686 } 11687 11688 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 11689 << R.getLookupName(); 11690 if (SuggestedNamespaces.empty()) { 11691 SemaRef.Diag(Best->Function->getLocation(), 11692 diag::note_not_found_by_two_phase_lookup) 11693 << R.getLookupName() << 0; 11694 } else if (SuggestedNamespaces.size() == 1) { 11695 SemaRef.Diag(Best->Function->getLocation(), 11696 diag::note_not_found_by_two_phase_lookup) 11697 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 11698 } else { 11699 // FIXME: It would be useful to list the associated namespaces here, 11700 // but the diagnostics infrastructure doesn't provide a way to produce 11701 // a localized representation of a list of items. 11702 SemaRef.Diag(Best->Function->getLocation(), 11703 diag::note_not_found_by_two_phase_lookup) 11704 << R.getLookupName() << 2; 11705 } 11706 11707 // Try to recover by calling this function. 11708 return true; 11709 } 11710 11711 R.clear(); 11712 } 11713 11714 return false; 11715 } 11716 11717 /// Attempt to recover from ill-formed use of a non-dependent operator in a 11718 /// template, where the non-dependent operator was declared after the template 11719 /// was defined. 11720 /// 11721 /// Returns true if a viable candidate was found and a diagnostic was issued. 11722 static bool 11723 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 11724 SourceLocation OpLoc, 11725 ArrayRef<Expr *> Args) { 11726 DeclarationName OpName = 11727 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 11728 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 11729 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 11730 OverloadCandidateSet::CSK_Operator, 11731 /*ExplicitTemplateArgs=*/nullptr, Args); 11732 } 11733 11734 namespace { 11735 class BuildRecoveryCallExprRAII { 11736 Sema &SemaRef; 11737 public: 11738 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) { 11739 assert(SemaRef.IsBuildingRecoveryCallExpr == false); 11740 SemaRef.IsBuildingRecoveryCallExpr = true; 11741 } 11742 11743 ~BuildRecoveryCallExprRAII() { 11744 SemaRef.IsBuildingRecoveryCallExpr = false; 11745 } 11746 }; 11747 11748 } 11749 11750 static std::unique_ptr<CorrectionCandidateCallback> 11751 MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs, 11752 bool HasTemplateArgs, bool AllowTypoCorrection) { 11753 if (!AllowTypoCorrection) 11754 return llvm::make_unique<NoTypoCorrectionCCC>(); 11755 return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs, 11756 HasTemplateArgs, ME); 11757 } 11758 11759 /// Attempts to recover from a call where no functions were found. 11760 /// 11761 /// Returns true if new candidates were found. 11762 static ExprResult 11763 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 11764 UnresolvedLookupExpr *ULE, 11765 SourceLocation LParenLoc, 11766 MutableArrayRef<Expr *> Args, 11767 SourceLocation RParenLoc, 11768 bool EmptyLookup, bool AllowTypoCorrection) { 11769 // Do not try to recover if it is already building a recovery call. 11770 // This stops infinite loops for template instantiations like 11771 // 11772 // template <typename T> auto foo(T t) -> decltype(foo(t)) {} 11773 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} 11774 // 11775 if (SemaRef.IsBuildingRecoveryCallExpr) 11776 return ExprError(); 11777 BuildRecoveryCallExprRAII RCE(SemaRef); 11778 11779 CXXScopeSpec SS; 11780 SS.Adopt(ULE->getQualifierLoc()); 11781 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); 11782 11783 TemplateArgumentListInfo TABuffer; 11784 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 11785 if (ULE->hasExplicitTemplateArgs()) { 11786 ULE->copyTemplateArgumentsInto(TABuffer); 11787 ExplicitTemplateArgs = &TABuffer; 11788 } 11789 11790 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 11791 Sema::LookupOrdinaryName); 11792 bool DoDiagnoseEmptyLookup = EmptyLookup; 11793 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 11794 OverloadCandidateSet::CSK_Normal, 11795 ExplicitTemplateArgs, Args, 11796 &DoDiagnoseEmptyLookup) && 11797 (!DoDiagnoseEmptyLookup || SemaRef.DiagnoseEmptyLookup( 11798 S, SS, R, 11799 MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(), 11800 ExplicitTemplateArgs != nullptr, AllowTypoCorrection), 11801 ExplicitTemplateArgs, Args))) 11802 return ExprError(); 11803 11804 assert(!R.empty() && "lookup results empty despite recovery"); 11805 11806 // If recovery created an ambiguity, just bail out. 11807 if (R.isAmbiguous()) { 11808 R.suppressDiagnostics(); 11809 return ExprError(); 11810 } 11811 11812 // Build an implicit member call if appropriate. Just drop the 11813 // casts and such from the call, we don't really care. 11814 ExprResult NewFn = ExprError(); 11815 if ((*R.begin())->isCXXClassMember()) 11816 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, 11817 ExplicitTemplateArgs, S); 11818 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) 11819 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, 11820 ExplicitTemplateArgs); 11821 else 11822 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 11823 11824 if (NewFn.isInvalid()) 11825 return ExprError(); 11826 11827 // This shouldn't cause an infinite loop because we're giving it 11828 // an expression with viable lookup results, which should never 11829 // end up here. 11830 return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc, 11831 MultiExprArg(Args.data(), Args.size()), 11832 RParenLoc); 11833 } 11834 11835 /// Constructs and populates an OverloadedCandidateSet from 11836 /// the given function. 11837 /// \returns true when an the ExprResult output parameter has been set. 11838 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, 11839 UnresolvedLookupExpr *ULE, 11840 MultiExprArg Args, 11841 SourceLocation RParenLoc, 11842 OverloadCandidateSet *CandidateSet, 11843 ExprResult *Result) { 11844 #ifndef NDEBUG 11845 if (ULE->requiresADL()) { 11846 // To do ADL, we must have found an unqualified name. 11847 assert(!ULE->getQualifier() && "qualified name with ADL"); 11848 11849 // We don't perform ADL for implicit declarations of builtins. 11850 // Verify that this was correctly set up. 11851 FunctionDecl *F; 11852 if (ULE->decls_begin() + 1 == ULE->decls_end() && 11853 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 11854 F->getBuiltinID() && F->isImplicit()) 11855 llvm_unreachable("performing ADL for builtin"); 11856 11857 // We don't perform ADL in C. 11858 assert(getLangOpts().CPlusPlus && "ADL enabled in C"); 11859 } 11860 #endif 11861 11862 UnbridgedCastsSet UnbridgedCasts; 11863 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { 11864 *Result = ExprError(); 11865 return true; 11866 } 11867 11868 // Add the functions denoted by the callee to the set of candidate 11869 // functions, including those from argument-dependent lookup. 11870 AddOverloadedCallCandidates(ULE, Args, *CandidateSet); 11871 11872 if (getLangOpts().MSVCCompat && 11873 CurContext->isDependentContext() && !isSFINAEContext() && 11874 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { 11875 11876 OverloadCandidateSet::iterator Best; 11877 if (CandidateSet->empty() || 11878 CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best) == 11879 OR_No_Viable_Function) { 11880 // In Microsoft mode, if we are inside a template class member function then 11881 // create a type dependent CallExpr. The goal is to postpone name lookup 11882 // to instantiation time to be able to search into type dependent base 11883 // classes. 11884 CallExpr *CE = new (Context) CallExpr( 11885 Context, Fn, Args, Context.DependentTy, VK_RValue, RParenLoc); 11886 CE->setTypeDependent(true); 11887 CE->setValueDependent(true); 11888 CE->setInstantiationDependent(true); 11889 *Result = CE; 11890 return true; 11891 } 11892 } 11893 11894 if (CandidateSet->empty()) 11895 return false; 11896 11897 UnbridgedCasts.restore(); 11898 return false; 11899 } 11900 11901 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns 11902 /// the completed call expression. If overload resolution fails, emits 11903 /// diagnostics and returns ExprError() 11904 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 11905 UnresolvedLookupExpr *ULE, 11906 SourceLocation LParenLoc, 11907 MultiExprArg Args, 11908 SourceLocation RParenLoc, 11909 Expr *ExecConfig, 11910 OverloadCandidateSet *CandidateSet, 11911 OverloadCandidateSet::iterator *Best, 11912 OverloadingResult OverloadResult, 11913 bool AllowTypoCorrection) { 11914 if (CandidateSet->empty()) 11915 return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args, 11916 RParenLoc, /*EmptyLookup=*/true, 11917 AllowTypoCorrection); 11918 11919 switch (OverloadResult) { 11920 case OR_Success: { 11921 FunctionDecl *FDecl = (*Best)->Function; 11922 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); 11923 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc())) 11924 return ExprError(); 11925 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 11926 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 11927 ExecConfig); 11928 } 11929 11930 case OR_No_Viable_Function: { 11931 // Try to recover by looking for viable functions which the user might 11932 // have meant to call. 11933 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, 11934 Args, RParenLoc, 11935 /*EmptyLookup=*/false, 11936 AllowTypoCorrection); 11937 if (!Recovery.isInvalid()) 11938 return Recovery; 11939 11940 // If the user passes in a function that we can't take the address of, we 11941 // generally end up emitting really bad error messages. Here, we attempt to 11942 // emit better ones. 11943 for (const Expr *Arg : Args) { 11944 if (!Arg->getType()->isFunctionType()) 11945 continue; 11946 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) { 11947 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 11948 if (FD && 11949 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 11950 Arg->getExprLoc())) 11951 return ExprError(); 11952 } 11953 } 11954 11955 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_no_viable_function_in_call) 11956 << ULE->getName() << Fn->getSourceRange(); 11957 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args); 11958 break; 11959 } 11960 11961 case OR_Ambiguous: 11962 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call) 11963 << ULE->getName() << Fn->getSourceRange(); 11964 CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args); 11965 break; 11966 11967 case OR_Deleted: { 11968 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call) 11969 << (*Best)->Function->isDeleted() 11970 << ULE->getName() 11971 << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function) 11972 << Fn->getSourceRange(); 11973 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args); 11974 11975 // We emitted an error for the unavailable/deleted function call but keep 11976 // the call in the AST. 11977 FunctionDecl *FDecl = (*Best)->Function; 11978 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 11979 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 11980 ExecConfig); 11981 } 11982 } 11983 11984 // Overload resolution failed. 11985 return ExprError(); 11986 } 11987 11988 static void markUnaddressableCandidatesUnviable(Sema &S, 11989 OverloadCandidateSet &CS) { 11990 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) { 11991 if (I->Viable && 11992 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) { 11993 I->Viable = false; 11994 I->FailureKind = ovl_fail_addr_not_available; 11995 } 11996 } 11997 } 11998 11999 /// BuildOverloadedCallExpr - Given the call expression that calls Fn 12000 /// (which eventually refers to the declaration Func) and the call 12001 /// arguments Args/NumArgs, attempt to resolve the function call down 12002 /// to a specific function. If overload resolution succeeds, returns 12003 /// the call expression produced by overload resolution. 12004 /// Otherwise, emits diagnostics and returns ExprError. 12005 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, 12006 UnresolvedLookupExpr *ULE, 12007 SourceLocation LParenLoc, 12008 MultiExprArg Args, 12009 SourceLocation RParenLoc, 12010 Expr *ExecConfig, 12011 bool AllowTypoCorrection, 12012 bool CalleesAddressIsTaken) { 12013 OverloadCandidateSet CandidateSet(Fn->getExprLoc(), 12014 OverloadCandidateSet::CSK_Normal); 12015 ExprResult result; 12016 12017 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet, 12018 &result)) 12019 return result; 12020 12021 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that 12022 // functions that aren't addressible are considered unviable. 12023 if (CalleesAddressIsTaken) 12024 markUnaddressableCandidatesUnviable(*this, CandidateSet); 12025 12026 OverloadCandidateSet::iterator Best; 12027 OverloadingResult OverloadResult = 12028 CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best); 12029 12030 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, 12031 RParenLoc, ExecConfig, &CandidateSet, 12032 &Best, OverloadResult, 12033 AllowTypoCorrection); 12034 } 12035 12036 static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 12037 return Functions.size() > 1 || 12038 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 12039 } 12040 12041 /// Create a unary operation that may resolve to an overloaded 12042 /// operator. 12043 /// 12044 /// \param OpLoc The location of the operator itself (e.g., '*'). 12045 /// 12046 /// \param Opc The UnaryOperatorKind that describes this operator. 12047 /// 12048 /// \param Fns The set of non-member functions that will be 12049 /// considered by overload resolution. The caller needs to build this 12050 /// set based on the context using, e.g., 12051 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 12052 /// set should not contain any member functions; those will be added 12053 /// by CreateOverloadedUnaryOp(). 12054 /// 12055 /// \param Input The input argument. 12056 ExprResult 12057 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, 12058 const UnresolvedSetImpl &Fns, 12059 Expr *Input, bool PerformADL) { 12060 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 12061 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 12062 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 12063 // TODO: provide better source location info. 12064 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 12065 12066 if (checkPlaceholderForOverload(*this, Input)) 12067 return ExprError(); 12068 12069 Expr *Args[2] = { Input, nullptr }; 12070 unsigned NumArgs = 1; 12071 12072 // For post-increment and post-decrement, add the implicit '0' as 12073 // the second argument, so that we know this is a post-increment or 12074 // post-decrement. 12075 if (Opc == UO_PostInc || Opc == UO_PostDec) { 12076 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 12077 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 12078 SourceLocation()); 12079 NumArgs = 2; 12080 } 12081 12082 ArrayRef<Expr *> ArgsArray(Args, NumArgs); 12083 12084 if (Input->isTypeDependent()) { 12085 if (Fns.empty()) 12086 return new (Context) UnaryOperator(Input, Opc, Context.DependentTy, 12087 VK_RValue, OK_Ordinary, OpLoc, false); 12088 12089 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 12090 UnresolvedLookupExpr *Fn 12091 = UnresolvedLookupExpr::Create(Context, NamingClass, 12092 NestedNameSpecifierLoc(), OpNameInfo, 12093 /*ADL*/ true, IsOverloaded(Fns), 12094 Fns.begin(), Fns.end()); 12095 return new (Context) 12096 CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy, 12097 VK_RValue, OpLoc, FPOptions()); 12098 } 12099 12100 // Build an empty overload set. 12101 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); 12102 12103 // Add the candidates from the given function set. 12104 AddFunctionCandidates(Fns, ArgsArray, CandidateSet); 12105 12106 // Add operator candidates that are member functions. 12107 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 12108 12109 // Add candidates from ADL. 12110 if (PerformADL) { 12111 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray, 12112 /*ExplicitTemplateArgs*/nullptr, 12113 CandidateSet); 12114 } 12115 12116 // Add builtin operator candidates. 12117 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 12118 12119 bool HadMultipleCandidates = (CandidateSet.size() > 1); 12120 12121 // Perform overload resolution. 12122 OverloadCandidateSet::iterator Best; 12123 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 12124 case OR_Success: { 12125 // We found a built-in operator or an overloaded operator. 12126 FunctionDecl *FnDecl = Best->Function; 12127 12128 if (FnDecl) { 12129 Expr *Base = nullptr; 12130 // We matched an overloaded operator. Build a call to that 12131 // operator. 12132 12133 // Convert the arguments. 12134 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 12135 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl); 12136 12137 ExprResult InputRes = 12138 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr, 12139 Best->FoundDecl, Method); 12140 if (InputRes.isInvalid()) 12141 return ExprError(); 12142 Base = Input = InputRes.get(); 12143 } else { 12144 // Convert the arguments. 12145 ExprResult InputInit 12146 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 12147 Context, 12148 FnDecl->getParamDecl(0)), 12149 SourceLocation(), 12150 Input); 12151 if (InputInit.isInvalid()) 12152 return ExprError(); 12153 Input = InputInit.get(); 12154 } 12155 12156 // Build the actual expression node. 12157 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, 12158 Base, HadMultipleCandidates, 12159 OpLoc); 12160 if (FnExpr.isInvalid()) 12161 return ExprError(); 12162 12163 // Determine the result type. 12164 QualType ResultTy = FnDecl->getReturnType(); 12165 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 12166 ResultTy = ResultTy.getNonLValueExprType(Context); 12167 12168 Args[0] = Input; 12169 CallExpr *TheCall = 12170 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray, 12171 ResultTy, VK, OpLoc, FPOptions()); 12172 12173 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) 12174 return ExprError(); 12175 12176 if (CheckFunctionCall(FnDecl, TheCall, 12177 FnDecl->getType()->castAs<FunctionProtoType>())) 12178 return ExprError(); 12179 12180 return MaybeBindToTemporary(TheCall); 12181 } else { 12182 // We matched a built-in operator. Convert the arguments, then 12183 // break out so that we will build the appropriate built-in 12184 // operator node. 12185 ExprResult InputRes = PerformImplicitConversion( 12186 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing); 12187 if (InputRes.isInvalid()) 12188 return ExprError(); 12189 Input = InputRes.get(); 12190 break; 12191 } 12192 } 12193 12194 case OR_No_Viable_Function: 12195 // This is an erroneous use of an operator which can be overloaded by 12196 // a non-member function. Check for non-member operators which were 12197 // defined too late to be candidates. 12198 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray)) 12199 // FIXME: Recover by calling the found function. 12200 return ExprError(); 12201 12202 // No viable function; fall through to handling this as a 12203 // built-in operator, which will produce an error message for us. 12204 break; 12205 12206 case OR_Ambiguous: 12207 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 12208 << UnaryOperator::getOpcodeStr(Opc) 12209 << Input->getType() 12210 << Input->getSourceRange(); 12211 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray, 12212 UnaryOperator::getOpcodeStr(Opc), OpLoc); 12213 return ExprError(); 12214 12215 case OR_Deleted: 12216 Diag(OpLoc, diag::err_ovl_deleted_oper) 12217 << Best->Function->isDeleted() 12218 << UnaryOperator::getOpcodeStr(Opc) 12219 << getDeletedOrUnavailableSuffix(Best->Function) 12220 << Input->getSourceRange(); 12221 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray, 12222 UnaryOperator::getOpcodeStr(Opc), OpLoc); 12223 return ExprError(); 12224 } 12225 12226 // Either we found no viable overloaded operator or we matched a 12227 // built-in operator. In either case, fall through to trying to 12228 // build a built-in operation. 12229 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 12230 } 12231 12232 /// Create a binary operation that may resolve to an overloaded 12233 /// operator. 12234 /// 12235 /// \param OpLoc The location of the operator itself (e.g., '+'). 12236 /// 12237 /// \param Opc The BinaryOperatorKind that describes this operator. 12238 /// 12239 /// \param Fns The set of non-member functions that will be 12240 /// considered by overload resolution. The caller needs to build this 12241 /// set based on the context using, e.g., 12242 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 12243 /// set should not contain any member functions; those will be added 12244 /// by CreateOverloadedBinOp(). 12245 /// 12246 /// \param LHS Left-hand argument. 12247 /// \param RHS Right-hand argument. 12248 ExprResult 12249 Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 12250 BinaryOperatorKind Opc, 12251 const UnresolvedSetImpl &Fns, 12252 Expr *LHS, Expr *RHS, bool PerformADL) { 12253 Expr *Args[2] = { LHS, RHS }; 12254 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple 12255 12256 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 12257 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 12258 12259 // If either side is type-dependent, create an appropriate dependent 12260 // expression. 12261 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 12262 if (Fns.empty()) { 12263 // If there are no functions to store, just build a dependent 12264 // BinaryOperator or CompoundAssignment. 12265 if (Opc <= BO_Assign || Opc > BO_OrAssign) 12266 return new (Context) BinaryOperator( 12267 Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary, 12268 OpLoc, FPFeatures); 12269 12270 return new (Context) CompoundAssignOperator( 12271 Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary, 12272 Context.DependentTy, Context.DependentTy, OpLoc, 12273 FPFeatures); 12274 } 12275 12276 // FIXME: save results of ADL from here? 12277 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 12278 // TODO: provide better source location info in DNLoc component. 12279 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 12280 UnresolvedLookupExpr *Fn 12281 = UnresolvedLookupExpr::Create(Context, NamingClass, 12282 NestedNameSpecifierLoc(), OpNameInfo, 12283 /*ADL*/PerformADL, IsOverloaded(Fns), 12284 Fns.begin(), Fns.end()); 12285 return new (Context) 12286 CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy, 12287 VK_RValue, OpLoc, FPFeatures); 12288 } 12289 12290 // Always do placeholder-like conversions on the RHS. 12291 if (checkPlaceholderForOverload(*this, Args[1])) 12292 return ExprError(); 12293 12294 // Do placeholder-like conversion on the LHS; note that we should 12295 // not get here with a PseudoObject LHS. 12296 assert(Args[0]->getObjectKind() != OK_ObjCProperty); 12297 if (checkPlaceholderForOverload(*this, Args[0])) 12298 return ExprError(); 12299 12300 // If this is the assignment operator, we only perform overload resolution 12301 // if the left-hand side is a class or enumeration type. This is actually 12302 // a hack. The standard requires that we do overload resolution between the 12303 // various built-in candidates, but as DR507 points out, this can lead to 12304 // problems. So we do it this way, which pretty much follows what GCC does. 12305 // Note that we go the traditional code path for compound assignment forms. 12306 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 12307 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 12308 12309 // If this is the .* operator, which is not overloadable, just 12310 // create a built-in binary operator. 12311 if (Opc == BO_PtrMemD) 12312 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 12313 12314 // Build an empty overload set. 12315 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); 12316 12317 // Add the candidates from the given function set. 12318 AddFunctionCandidates(Fns, Args, CandidateSet); 12319 12320 // Add operator candidates that are member functions. 12321 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); 12322 12323 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not 12324 // performed for an assignment operator (nor for operator[] nor operator->, 12325 // which don't get here). 12326 if (Opc != BO_Assign && PerformADL) 12327 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args, 12328 /*ExplicitTemplateArgs*/ nullptr, 12329 CandidateSet); 12330 12331 // Add builtin operator candidates. 12332 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); 12333 12334 bool HadMultipleCandidates = (CandidateSet.size() > 1); 12335 12336 // Perform overload resolution. 12337 OverloadCandidateSet::iterator Best; 12338 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 12339 case OR_Success: { 12340 // We found a built-in operator or an overloaded operator. 12341 FunctionDecl *FnDecl = Best->Function; 12342 12343 if (FnDecl) { 12344 Expr *Base = nullptr; 12345 // We matched an overloaded operator. Build a call to that 12346 // operator. 12347 12348 // Convert the arguments. 12349 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 12350 // Best->Access is only meaningful for class members. 12351 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 12352 12353 ExprResult Arg1 = 12354 PerformCopyInitialization( 12355 InitializedEntity::InitializeParameter(Context, 12356 FnDecl->getParamDecl(0)), 12357 SourceLocation(), Args[1]); 12358 if (Arg1.isInvalid()) 12359 return ExprError(); 12360 12361 ExprResult Arg0 = 12362 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, 12363 Best->FoundDecl, Method); 12364 if (Arg0.isInvalid()) 12365 return ExprError(); 12366 Base = Args[0] = Arg0.getAs<Expr>(); 12367 Args[1] = RHS = Arg1.getAs<Expr>(); 12368 } else { 12369 // Convert the arguments. 12370 ExprResult Arg0 = PerformCopyInitialization( 12371 InitializedEntity::InitializeParameter(Context, 12372 FnDecl->getParamDecl(0)), 12373 SourceLocation(), Args[0]); 12374 if (Arg0.isInvalid()) 12375 return ExprError(); 12376 12377 ExprResult Arg1 = 12378 PerformCopyInitialization( 12379 InitializedEntity::InitializeParameter(Context, 12380 FnDecl->getParamDecl(1)), 12381 SourceLocation(), Args[1]); 12382 if (Arg1.isInvalid()) 12383 return ExprError(); 12384 Args[0] = LHS = Arg0.getAs<Expr>(); 12385 Args[1] = RHS = Arg1.getAs<Expr>(); 12386 } 12387 12388 // Build the actual expression node. 12389 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 12390 Best->FoundDecl, Base, 12391 HadMultipleCandidates, OpLoc); 12392 if (FnExpr.isInvalid()) 12393 return ExprError(); 12394 12395 // Determine the result type. 12396 QualType ResultTy = FnDecl->getReturnType(); 12397 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 12398 ResultTy = ResultTy.getNonLValueExprType(Context); 12399 12400 CXXOperatorCallExpr *TheCall = 12401 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), 12402 Args, ResultTy, VK, OpLoc, 12403 FPFeatures); 12404 12405 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, 12406 FnDecl)) 12407 return ExprError(); 12408 12409 ArrayRef<const Expr *> ArgsArray(Args, 2); 12410 const Expr *ImplicitThis = nullptr; 12411 // Cut off the implicit 'this'. 12412 if (isa<CXXMethodDecl>(FnDecl)) { 12413 ImplicitThis = ArgsArray[0]; 12414 ArgsArray = ArgsArray.slice(1); 12415 } 12416 12417 // Check for a self move. 12418 if (Op == OO_Equal) 12419 DiagnoseSelfMove(Args[0], Args[1], OpLoc); 12420 12421 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray, 12422 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(), 12423 VariadicDoesNotApply); 12424 12425 return MaybeBindToTemporary(TheCall); 12426 } else { 12427 // We matched a built-in operator. Convert the arguments, then 12428 // break out so that we will build the appropriate built-in 12429 // operator node. 12430 ExprResult ArgsRes0 = 12431 PerformImplicitConversion(Args[0], Best->BuiltinParamTypes[0], 12432 Best->Conversions[0], AA_Passing); 12433 if (ArgsRes0.isInvalid()) 12434 return ExprError(); 12435 Args[0] = ArgsRes0.get(); 12436 12437 ExprResult ArgsRes1 = 12438 PerformImplicitConversion(Args[1], Best->BuiltinParamTypes[1], 12439 Best->Conversions[1], AA_Passing); 12440 if (ArgsRes1.isInvalid()) 12441 return ExprError(); 12442 Args[1] = ArgsRes1.get(); 12443 break; 12444 } 12445 } 12446 12447 case OR_No_Viable_Function: { 12448 // C++ [over.match.oper]p9: 12449 // If the operator is the operator , [...] and there are no 12450 // viable functions, then the operator is assumed to be the 12451 // built-in operator and interpreted according to clause 5. 12452 if (Opc == BO_Comma) 12453 break; 12454 12455 // For class as left operand for assignment or compound assignment 12456 // operator do not fall through to handling in built-in, but report that 12457 // no overloaded assignment operator found 12458 ExprResult Result = ExprError(); 12459 if (Args[0]->getType()->isRecordType() && 12460 Opc >= BO_Assign && Opc <= BO_OrAssign) { 12461 Diag(OpLoc, diag::err_ovl_no_viable_oper) 12462 << BinaryOperator::getOpcodeStr(Opc) 12463 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 12464 if (Args[0]->getType()->isIncompleteType()) { 12465 Diag(OpLoc, diag::note_assign_lhs_incomplete) 12466 << Args[0]->getType() 12467 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 12468 } 12469 } else { 12470 // This is an erroneous use of an operator which can be overloaded by 12471 // a non-member function. Check for non-member operators which were 12472 // defined too late to be candidates. 12473 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) 12474 // FIXME: Recover by calling the found function. 12475 return ExprError(); 12476 12477 // No viable function; try to create a built-in operation, which will 12478 // produce an error. Then, show the non-viable candidates. 12479 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 12480 } 12481 assert(Result.isInvalid() && 12482 "C++ binary operator overloading is missing candidates!"); 12483 if (Result.isInvalid()) 12484 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 12485 BinaryOperator::getOpcodeStr(Opc), OpLoc); 12486 return Result; 12487 } 12488 12489 case OR_Ambiguous: 12490 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) 12491 << BinaryOperator::getOpcodeStr(Opc) 12492 << Args[0]->getType() << Args[1]->getType() 12493 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 12494 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 12495 BinaryOperator::getOpcodeStr(Opc), OpLoc); 12496 return ExprError(); 12497 12498 case OR_Deleted: 12499 if (isImplicitlyDeleted(Best->Function)) { 12500 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 12501 Diag(OpLoc, diag::err_ovl_deleted_special_oper) 12502 << Context.getRecordType(Method->getParent()) 12503 << getSpecialMember(Method); 12504 12505 // The user probably meant to call this special member. Just 12506 // explain why it's deleted. 12507 NoteDeletedFunction(Method); 12508 return ExprError(); 12509 } else { 12510 Diag(OpLoc, diag::err_ovl_deleted_oper) 12511 << Best->Function->isDeleted() 12512 << BinaryOperator::getOpcodeStr(Opc) 12513 << getDeletedOrUnavailableSuffix(Best->Function) 12514 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 12515 } 12516 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 12517 BinaryOperator::getOpcodeStr(Opc), OpLoc); 12518 return ExprError(); 12519 } 12520 12521 // We matched a built-in operator; build it. 12522 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 12523 } 12524 12525 ExprResult 12526 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 12527 SourceLocation RLoc, 12528 Expr *Base, Expr *Idx) { 12529 Expr *Args[2] = { Base, Idx }; 12530 DeclarationName OpName = 12531 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 12532 12533 // If either side is type-dependent, create an appropriate dependent 12534 // expression. 12535 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 12536 12537 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 12538 // CHECKME: no 'operator' keyword? 12539 DeclarationNameInfo OpNameInfo(OpName, LLoc); 12540 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 12541 UnresolvedLookupExpr *Fn 12542 = UnresolvedLookupExpr::Create(Context, NamingClass, 12543 NestedNameSpecifierLoc(), OpNameInfo, 12544 /*ADL*/ true, /*Overloaded*/ false, 12545 UnresolvedSetIterator(), 12546 UnresolvedSetIterator()); 12547 // Can't add any actual overloads yet 12548 12549 return new (Context) 12550 CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args, 12551 Context.DependentTy, VK_RValue, RLoc, FPOptions()); 12552 } 12553 12554 // Handle placeholders on both operands. 12555 if (checkPlaceholderForOverload(*this, Args[0])) 12556 return ExprError(); 12557 if (checkPlaceholderForOverload(*this, Args[1])) 12558 return ExprError(); 12559 12560 // Build an empty overload set. 12561 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); 12562 12563 // Subscript can only be overloaded as a member function. 12564 12565 // Add operator candidates that are member functions. 12566 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 12567 12568 // Add builtin operator candidates. 12569 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 12570 12571 bool HadMultipleCandidates = (CandidateSet.size() > 1); 12572 12573 // Perform overload resolution. 12574 OverloadCandidateSet::iterator Best; 12575 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 12576 case OR_Success: { 12577 // We found a built-in operator or an overloaded operator. 12578 FunctionDecl *FnDecl = Best->Function; 12579 12580 if (FnDecl) { 12581 // We matched an overloaded operator. Build a call to that 12582 // operator. 12583 12584 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 12585 12586 // Convert the arguments. 12587 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 12588 ExprResult Arg0 = 12589 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, 12590 Best->FoundDecl, Method); 12591 if (Arg0.isInvalid()) 12592 return ExprError(); 12593 Args[0] = Arg0.get(); 12594 12595 // Convert the arguments. 12596 ExprResult InputInit 12597 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 12598 Context, 12599 FnDecl->getParamDecl(0)), 12600 SourceLocation(), 12601 Args[1]); 12602 if (InputInit.isInvalid()) 12603 return ExprError(); 12604 12605 Args[1] = InputInit.getAs<Expr>(); 12606 12607 // Build the actual expression node. 12608 DeclarationNameInfo OpLocInfo(OpName, LLoc); 12609 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 12610 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 12611 Best->FoundDecl, 12612 Base, 12613 HadMultipleCandidates, 12614 OpLocInfo.getLoc(), 12615 OpLocInfo.getInfo()); 12616 if (FnExpr.isInvalid()) 12617 return ExprError(); 12618 12619 // Determine the result type 12620 QualType ResultTy = FnDecl->getReturnType(); 12621 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 12622 ResultTy = ResultTy.getNonLValueExprType(Context); 12623 12624 CXXOperatorCallExpr *TheCall = 12625 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 12626 FnExpr.get(), Args, 12627 ResultTy, VK, RLoc, 12628 FPOptions()); 12629 12630 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl)) 12631 return ExprError(); 12632 12633 if (CheckFunctionCall(Method, TheCall, 12634 Method->getType()->castAs<FunctionProtoType>())) 12635 return ExprError(); 12636 12637 return MaybeBindToTemporary(TheCall); 12638 } else { 12639 // We matched a built-in operator. Convert the arguments, then 12640 // break out so that we will build the appropriate built-in 12641 // operator node. 12642 ExprResult ArgsRes0 = 12643 PerformImplicitConversion(Args[0], Best->BuiltinParamTypes[0], 12644 Best->Conversions[0], AA_Passing); 12645 if (ArgsRes0.isInvalid()) 12646 return ExprError(); 12647 Args[0] = ArgsRes0.get(); 12648 12649 ExprResult ArgsRes1 = 12650 PerformImplicitConversion(Args[1], Best->BuiltinParamTypes[1], 12651 Best->Conversions[1], AA_Passing); 12652 if (ArgsRes1.isInvalid()) 12653 return ExprError(); 12654 Args[1] = ArgsRes1.get(); 12655 12656 break; 12657 } 12658 } 12659 12660 case OR_No_Viable_Function: { 12661 if (CandidateSet.empty()) 12662 Diag(LLoc, diag::err_ovl_no_oper) 12663 << Args[0]->getType() << /*subscript*/ 0 12664 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 12665 else 12666 Diag(LLoc, diag::err_ovl_no_viable_subscript) 12667 << Args[0]->getType() 12668 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 12669 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 12670 "[]", LLoc); 12671 return ExprError(); 12672 } 12673 12674 case OR_Ambiguous: 12675 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) 12676 << "[]" 12677 << Args[0]->getType() << Args[1]->getType() 12678 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 12679 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 12680 "[]", LLoc); 12681 return ExprError(); 12682 12683 case OR_Deleted: 12684 Diag(LLoc, diag::err_ovl_deleted_oper) 12685 << Best->Function->isDeleted() << "[]" 12686 << getDeletedOrUnavailableSuffix(Best->Function) 12687 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 12688 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 12689 "[]", LLoc); 12690 return ExprError(); 12691 } 12692 12693 // We matched a built-in operator; build it. 12694 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 12695 } 12696 12697 /// BuildCallToMemberFunction - Build a call to a member 12698 /// function. MemExpr is the expression that refers to the member 12699 /// function (and includes the object parameter), Args/NumArgs are the 12700 /// arguments to the function call (not including the object 12701 /// parameter). The caller needs to validate that the member 12702 /// expression refers to a non-static member function or an overloaded 12703 /// member function. 12704 ExprResult 12705 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 12706 SourceLocation LParenLoc, 12707 MultiExprArg Args, 12708 SourceLocation RParenLoc) { 12709 assert(MemExprE->getType() == Context.BoundMemberTy || 12710 MemExprE->getType() == Context.OverloadTy); 12711 12712 // Dig out the member expression. This holds both the object 12713 // argument and the member function we're referring to. 12714 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 12715 12716 // Determine whether this is a call to a pointer-to-member function. 12717 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 12718 assert(op->getType() == Context.BoundMemberTy); 12719 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 12720 12721 QualType fnType = 12722 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 12723 12724 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 12725 QualType resultType = proto->getCallResultType(Context); 12726 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType()); 12727 12728 // Check that the object type isn't more qualified than the 12729 // member function we're calling. 12730 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals()); 12731 12732 QualType objectType = op->getLHS()->getType(); 12733 if (op->getOpcode() == BO_PtrMemI) 12734 objectType = objectType->castAs<PointerType>()->getPointeeType(); 12735 Qualifiers objectQuals = objectType.getQualifiers(); 12736 12737 Qualifiers difference = objectQuals - funcQuals; 12738 difference.removeObjCGCAttr(); 12739 difference.removeAddressSpace(); 12740 if (difference) { 12741 std::string qualsString = difference.getAsString(); 12742 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 12743 << fnType.getUnqualifiedType() 12744 << qualsString 12745 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 12746 } 12747 12748 CXXMemberCallExpr *call 12749 = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, 12750 resultType, valueKind, RParenLoc); 12751 12752 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(), 12753 call, nullptr)) 12754 return ExprError(); 12755 12756 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc)) 12757 return ExprError(); 12758 12759 if (CheckOtherCall(call, proto)) 12760 return ExprError(); 12761 12762 return MaybeBindToTemporary(call); 12763 } 12764 12765 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr)) 12766 return new (Context) 12767 CallExpr(Context, MemExprE, Args, Context.VoidTy, VK_RValue, RParenLoc); 12768 12769 UnbridgedCastsSet UnbridgedCasts; 12770 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 12771 return ExprError(); 12772 12773 MemberExpr *MemExpr; 12774 CXXMethodDecl *Method = nullptr; 12775 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public); 12776 NestedNameSpecifier *Qualifier = nullptr; 12777 if (isa<MemberExpr>(NakedMemExpr)) { 12778 MemExpr = cast<MemberExpr>(NakedMemExpr); 12779 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 12780 FoundDecl = MemExpr->getFoundDecl(); 12781 Qualifier = MemExpr->getQualifier(); 12782 UnbridgedCasts.restore(); 12783 } else { 12784 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 12785 Qualifier = UnresExpr->getQualifier(); 12786 12787 QualType ObjectType = UnresExpr->getBaseType(); 12788 Expr::Classification ObjectClassification 12789 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 12790 : UnresExpr->getBase()->Classify(Context); 12791 12792 // Add overload candidates 12793 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), 12794 OverloadCandidateSet::CSK_Normal); 12795 12796 // FIXME: avoid copy. 12797 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 12798 if (UnresExpr->hasExplicitTemplateArgs()) { 12799 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 12800 TemplateArgs = &TemplateArgsBuffer; 12801 } 12802 12803 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 12804 E = UnresExpr->decls_end(); I != E; ++I) { 12805 12806 NamedDecl *Func = *I; 12807 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 12808 if (isa<UsingShadowDecl>(Func)) 12809 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 12810 12811 12812 // Microsoft supports direct constructor calls. 12813 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { 12814 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), 12815 Args, CandidateSet); 12816 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 12817 // If explicit template arguments were provided, we can't call a 12818 // non-template member function. 12819 if (TemplateArgs) 12820 continue; 12821 12822 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 12823 ObjectClassification, Args, CandidateSet, 12824 /*SuppressUserConversions=*/false); 12825 } else { 12826 AddMethodTemplateCandidate( 12827 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC, 12828 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet, 12829 /*SuppressUsedConversions=*/false); 12830 } 12831 } 12832 12833 DeclarationName DeclName = UnresExpr->getMemberName(); 12834 12835 UnbridgedCasts.restore(); 12836 12837 OverloadCandidateSet::iterator Best; 12838 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 12839 Best)) { 12840 case OR_Success: 12841 Method = cast<CXXMethodDecl>(Best->Function); 12842 FoundDecl = Best->FoundDecl; 12843 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 12844 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc())) 12845 return ExprError(); 12846 // If FoundDecl is different from Method (such as if one is a template 12847 // and the other a specialization), make sure DiagnoseUseOfDecl is 12848 // called on both. 12849 // FIXME: This would be more comprehensively addressed by modifying 12850 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 12851 // being used. 12852 if (Method != FoundDecl.getDecl() && 12853 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc())) 12854 return ExprError(); 12855 break; 12856 12857 case OR_No_Viable_Function: 12858 Diag(UnresExpr->getMemberLoc(), 12859 diag::err_ovl_no_viable_member_function_in_call) 12860 << DeclName << MemExprE->getSourceRange(); 12861 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); 12862 // FIXME: Leaking incoming expressions! 12863 return ExprError(); 12864 12865 case OR_Ambiguous: 12866 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 12867 << DeclName << MemExprE->getSourceRange(); 12868 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); 12869 // FIXME: Leaking incoming expressions! 12870 return ExprError(); 12871 12872 case OR_Deleted: 12873 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 12874 << Best->Function->isDeleted() 12875 << DeclName 12876 << getDeletedOrUnavailableSuffix(Best->Function) 12877 << MemExprE->getSourceRange(); 12878 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); 12879 // FIXME: Leaking incoming expressions! 12880 return ExprError(); 12881 } 12882 12883 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 12884 12885 // If overload resolution picked a static member, build a 12886 // non-member call based on that function. 12887 if (Method->isStatic()) { 12888 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, 12889 RParenLoc); 12890 } 12891 12892 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 12893 } 12894 12895 QualType ResultType = Method->getReturnType(); 12896 ExprValueKind VK = Expr::getValueKindForType(ResultType); 12897 ResultType = ResultType.getNonLValueExprType(Context); 12898 12899 assert(Method && "Member call to something that isn't a method?"); 12900 CXXMemberCallExpr *TheCall = 12901 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, 12902 ResultType, VK, RParenLoc); 12903 12904 // Check for a valid return type. 12905 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(), 12906 TheCall, Method)) 12907 return ExprError(); 12908 12909 // Convert the object argument (for a non-static member function call). 12910 // We only need to do this if there was actually an overload; otherwise 12911 // it was done at lookup. 12912 if (!Method->isStatic()) { 12913 ExprResult ObjectArg = 12914 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 12915 FoundDecl, Method); 12916 if (ObjectArg.isInvalid()) 12917 return ExprError(); 12918 MemExpr->setBase(ObjectArg.get()); 12919 } 12920 12921 // Convert the rest of the arguments 12922 const FunctionProtoType *Proto = 12923 Method->getType()->getAs<FunctionProtoType>(); 12924 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, 12925 RParenLoc)) 12926 return ExprError(); 12927 12928 DiagnoseSentinelCalls(Method, LParenLoc, Args); 12929 12930 if (CheckFunctionCall(Method, TheCall, Proto)) 12931 return ExprError(); 12932 12933 // In the case the method to call was not selected by the overloading 12934 // resolution process, we still need to handle the enable_if attribute. Do 12935 // that here, so it will not hide previous -- and more relevant -- errors. 12936 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) { 12937 if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) { 12938 Diag(MemE->getMemberLoc(), 12939 diag::err_ovl_no_viable_member_function_in_call) 12940 << Method << Method->getSourceRange(); 12941 Diag(Method->getLocation(), 12942 diag::note_ovl_candidate_disabled_by_function_cond_attr) 12943 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 12944 return ExprError(); 12945 } 12946 } 12947 12948 if ((isa<CXXConstructorDecl>(CurContext) || 12949 isa<CXXDestructorDecl>(CurContext)) && 12950 TheCall->getMethodDecl()->isPure()) { 12951 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 12952 12953 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) && 12954 MemExpr->performsVirtualDispatch(getLangOpts())) { 12955 Diag(MemExpr->getLocStart(), 12956 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 12957 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 12958 << MD->getParent()->getDeclName(); 12959 12960 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName(); 12961 if (getLangOpts().AppleKext) 12962 Diag(MemExpr->getLocStart(), 12963 diag::note_pure_qualified_call_kext) 12964 << MD->getParent()->getDeclName() 12965 << MD->getDeclName(); 12966 } 12967 } 12968 12969 if (CXXDestructorDecl *DD = 12970 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) { 12971 // a->A::f() doesn't go through the vtable, except in AppleKext mode. 12972 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext; 12973 CheckVirtualDtorCall(DD, MemExpr->getLocStart(), /*IsDelete=*/false, 12974 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true, 12975 MemExpr->getMemberLoc()); 12976 } 12977 12978 return MaybeBindToTemporary(TheCall); 12979 } 12980 12981 /// BuildCallToObjectOfClassType - Build a call to an object of class 12982 /// type (C++ [over.call.object]), which can end up invoking an 12983 /// overloaded function call operator (@c operator()) or performing a 12984 /// user-defined conversion on the object argument. 12985 ExprResult 12986 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 12987 SourceLocation LParenLoc, 12988 MultiExprArg Args, 12989 SourceLocation RParenLoc) { 12990 if (checkPlaceholderForOverload(*this, Obj)) 12991 return ExprError(); 12992 ExprResult Object = Obj; 12993 12994 UnbridgedCastsSet UnbridgedCasts; 12995 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 12996 return ExprError(); 12997 12998 assert(Object.get()->getType()->isRecordType() && 12999 "Requires object type argument"); 13000 const RecordType *Record = Object.get()->getType()->getAs<RecordType>(); 13001 13002 // C++ [over.call.object]p1: 13003 // If the primary-expression E in the function call syntax 13004 // evaluates to a class object of type "cv T", then the set of 13005 // candidate functions includes at least the function call 13006 // operators of T. The function call operators of T are obtained by 13007 // ordinary lookup of the name operator() in the context of 13008 // (E).operator(). 13009 OverloadCandidateSet CandidateSet(LParenLoc, 13010 OverloadCandidateSet::CSK_Operator); 13011 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 13012 13013 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 13014 diag::err_incomplete_object_call, Object.get())) 13015 return true; 13016 13017 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 13018 LookupQualifiedName(R, Record->getDecl()); 13019 R.suppressDiagnostics(); 13020 13021 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 13022 Oper != OperEnd; ++Oper) { 13023 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 13024 Object.get()->Classify(Context), Args, CandidateSet, 13025 /*SuppressUserConversions=*/false); 13026 } 13027 13028 // C++ [over.call.object]p2: 13029 // In addition, for each (non-explicit in C++0x) conversion function 13030 // declared in T of the form 13031 // 13032 // operator conversion-type-id () cv-qualifier; 13033 // 13034 // where cv-qualifier is the same cv-qualification as, or a 13035 // greater cv-qualification than, cv, and where conversion-type-id 13036 // denotes the type "pointer to function of (P1,...,Pn) returning 13037 // R", or the type "reference to pointer to function of 13038 // (P1,...,Pn) returning R", or the type "reference to function 13039 // of (P1,...,Pn) returning R", a surrogate call function [...] 13040 // is also considered as a candidate function. Similarly, 13041 // surrogate call functions are added to the set of candidate 13042 // functions for each conversion function declared in an 13043 // accessible base class provided the function is not hidden 13044 // within T by another intervening declaration. 13045 const auto &Conversions = 13046 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 13047 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 13048 NamedDecl *D = *I; 13049 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 13050 if (isa<UsingShadowDecl>(D)) 13051 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 13052 13053 // Skip over templated conversion functions; they aren't 13054 // surrogates. 13055 if (isa<FunctionTemplateDecl>(D)) 13056 continue; 13057 13058 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 13059 if (!Conv->isExplicit()) { 13060 // Strip the reference type (if any) and then the pointer type (if 13061 // any) to get down to what might be a function type. 13062 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 13063 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 13064 ConvType = ConvPtrType->getPointeeType(); 13065 13066 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 13067 { 13068 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 13069 Object.get(), Args, CandidateSet); 13070 } 13071 } 13072 } 13073 13074 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13075 13076 // Perform overload resolution. 13077 OverloadCandidateSet::iterator Best; 13078 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(), 13079 Best)) { 13080 case OR_Success: 13081 // Overload resolution succeeded; we'll build the appropriate call 13082 // below. 13083 break; 13084 13085 case OR_No_Viable_Function: 13086 if (CandidateSet.empty()) 13087 Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper) 13088 << Object.get()->getType() << /*call*/ 1 13089 << Object.get()->getSourceRange(); 13090 else 13091 Diag(Object.get()->getLocStart(), 13092 diag::err_ovl_no_viable_object_call) 13093 << Object.get()->getType() << Object.get()->getSourceRange(); 13094 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); 13095 break; 13096 13097 case OR_Ambiguous: 13098 Diag(Object.get()->getLocStart(), 13099 diag::err_ovl_ambiguous_object_call) 13100 << Object.get()->getType() << Object.get()->getSourceRange(); 13101 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args); 13102 break; 13103 13104 case OR_Deleted: 13105 Diag(Object.get()->getLocStart(), 13106 diag::err_ovl_deleted_object_call) 13107 << Best->Function->isDeleted() 13108 << Object.get()->getType() 13109 << getDeletedOrUnavailableSuffix(Best->Function) 13110 << Object.get()->getSourceRange(); 13111 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); 13112 break; 13113 } 13114 13115 if (Best == CandidateSet.end()) 13116 return true; 13117 13118 UnbridgedCasts.restore(); 13119 13120 if (Best->Function == nullptr) { 13121 // Since there is no function declaration, this is one of the 13122 // surrogate candidates. Dig out the conversion function. 13123 CXXConversionDecl *Conv 13124 = cast<CXXConversionDecl>( 13125 Best->Conversions[0].UserDefined.ConversionFunction); 13126 13127 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, 13128 Best->FoundDecl); 13129 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc)) 13130 return ExprError(); 13131 assert(Conv == Best->FoundDecl.getDecl() && 13132 "Found Decl & conversion-to-functionptr should be same, right?!"); 13133 // We selected one of the surrogate functions that converts the 13134 // object parameter to a function pointer. Perform the conversion 13135 // on the object argument, then let ActOnCallExpr finish the job. 13136 13137 // Create an implicit member expr to refer to the conversion operator. 13138 // and then call it. 13139 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, 13140 Conv, HadMultipleCandidates); 13141 if (Call.isInvalid()) 13142 return ExprError(); 13143 // Record usage of conversion in an implicit cast. 13144 Call = ImplicitCastExpr::Create(Context, Call.get()->getType(), 13145 CK_UserDefinedConversion, Call.get(), 13146 nullptr, VK_RValue); 13147 13148 return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc); 13149 } 13150 13151 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); 13152 13153 // We found an overloaded operator(). Build a CXXOperatorCallExpr 13154 // that calls this method, using Object for the implicit object 13155 // parameter and passing along the remaining arguments. 13156 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 13157 13158 // An error diagnostic has already been printed when parsing the declaration. 13159 if (Method->isInvalidDecl()) 13160 return ExprError(); 13161 13162 const FunctionProtoType *Proto = 13163 Method->getType()->getAs<FunctionProtoType>(); 13164 13165 unsigned NumParams = Proto->getNumParams(); 13166 13167 DeclarationNameInfo OpLocInfo( 13168 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); 13169 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); 13170 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 13171 Obj, HadMultipleCandidates, 13172 OpLocInfo.getLoc(), 13173 OpLocInfo.getInfo()); 13174 if (NewFn.isInvalid()) 13175 return true; 13176 13177 // Build the full argument list for the method call (the implicit object 13178 // parameter is placed at the beginning of the list). 13179 SmallVector<Expr *, 8> MethodArgs(Args.size() + 1); 13180 MethodArgs[0] = Object.get(); 13181 std::copy(Args.begin(), Args.end(), MethodArgs.begin() + 1); 13182 13183 // Once we've built TheCall, all of the expressions are properly 13184 // owned. 13185 QualType ResultTy = Method->getReturnType(); 13186 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13187 ResultTy = ResultTy.getNonLValueExprType(Context); 13188 13189 CXXOperatorCallExpr *TheCall = new (Context) 13190 CXXOperatorCallExpr(Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, 13191 VK, RParenLoc, FPOptions()); 13192 13193 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method)) 13194 return true; 13195 13196 // We may have default arguments. If so, we need to allocate more 13197 // slots in the call for them. 13198 if (Args.size() < NumParams) 13199 TheCall->setNumArgs(Context, NumParams + 1); 13200 13201 bool IsError = false; 13202 13203 // Initialize the implicit object parameter. 13204 ExprResult ObjRes = 13205 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr, 13206 Best->FoundDecl, Method); 13207 if (ObjRes.isInvalid()) 13208 IsError = true; 13209 else 13210 Object = ObjRes; 13211 TheCall->setArg(0, Object.get()); 13212 13213 // Check the argument types. 13214 for (unsigned i = 0; i != NumParams; i++) { 13215 Expr *Arg; 13216 if (i < Args.size()) { 13217 Arg = Args[i]; 13218 13219 // Pass the argument. 13220 13221 ExprResult InputInit 13222 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 13223 Context, 13224 Method->getParamDecl(i)), 13225 SourceLocation(), Arg); 13226 13227 IsError |= InputInit.isInvalid(); 13228 Arg = InputInit.getAs<Expr>(); 13229 } else { 13230 ExprResult DefArg 13231 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 13232 if (DefArg.isInvalid()) { 13233 IsError = true; 13234 break; 13235 } 13236 13237 Arg = DefArg.getAs<Expr>(); 13238 } 13239 13240 TheCall->setArg(i + 1, Arg); 13241 } 13242 13243 // If this is a variadic call, handle args passed through "...". 13244 if (Proto->isVariadic()) { 13245 // Promote the arguments (C99 6.5.2.2p7). 13246 for (unsigned i = NumParams, e = Args.size(); i < e; i++) { 13247 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 13248 nullptr); 13249 IsError |= Arg.isInvalid(); 13250 TheCall->setArg(i + 1, Arg.get()); 13251 } 13252 } 13253 13254 if (IsError) return true; 13255 13256 DiagnoseSentinelCalls(Method, LParenLoc, Args); 13257 13258 if (CheckFunctionCall(Method, TheCall, Proto)) 13259 return true; 13260 13261 return MaybeBindToTemporary(TheCall); 13262 } 13263 13264 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 13265 /// (if one exists), where @c Base is an expression of class type and 13266 /// @c Member is the name of the member we're trying to find. 13267 ExprResult 13268 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, 13269 bool *NoArrowOperatorFound) { 13270 assert(Base->getType()->isRecordType() && 13271 "left-hand side must have class type"); 13272 13273 if (checkPlaceholderForOverload(*this, Base)) 13274 return ExprError(); 13275 13276 SourceLocation Loc = Base->getExprLoc(); 13277 13278 // C++ [over.ref]p1: 13279 // 13280 // [...] An expression x->m is interpreted as (x.operator->())->m 13281 // for a class object x of type T if T::operator->() exists and if 13282 // the operator is selected as the best match function by the 13283 // overload resolution mechanism (13.3). 13284 DeclarationName OpName = 13285 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 13286 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); 13287 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 13288 13289 if (RequireCompleteType(Loc, Base->getType(), 13290 diag::err_typecheck_incomplete_tag, Base)) 13291 return ExprError(); 13292 13293 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 13294 LookupQualifiedName(R, BaseRecord->getDecl()); 13295 R.suppressDiagnostics(); 13296 13297 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 13298 Oper != OperEnd; ++Oper) { 13299 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 13300 None, CandidateSet, /*SuppressUserConversions=*/false); 13301 } 13302 13303 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13304 13305 // Perform overload resolution. 13306 OverloadCandidateSet::iterator Best; 13307 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 13308 case OR_Success: 13309 // Overload resolution succeeded; we'll build the call below. 13310 break; 13311 13312 case OR_No_Viable_Function: 13313 if (CandidateSet.empty()) { 13314 QualType BaseType = Base->getType(); 13315 if (NoArrowOperatorFound) { 13316 // Report this specific error to the caller instead of emitting a 13317 // diagnostic, as requested. 13318 *NoArrowOperatorFound = true; 13319 return ExprError(); 13320 } 13321 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 13322 << BaseType << Base->getSourceRange(); 13323 if (BaseType->isRecordType() && !BaseType->isPointerType()) { 13324 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion) 13325 << FixItHint::CreateReplacement(OpLoc, "."); 13326 } 13327 } else 13328 Diag(OpLoc, diag::err_ovl_no_viable_oper) 13329 << "operator->" << Base->getSourceRange(); 13330 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base); 13331 return ExprError(); 13332 13333 case OR_Ambiguous: 13334 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 13335 << "->" << Base->getType() << Base->getSourceRange(); 13336 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base); 13337 return ExprError(); 13338 13339 case OR_Deleted: 13340 Diag(OpLoc, diag::err_ovl_deleted_oper) 13341 << Best->Function->isDeleted() 13342 << "->" 13343 << getDeletedOrUnavailableSuffix(Best->Function) 13344 << Base->getSourceRange(); 13345 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base); 13346 return ExprError(); 13347 } 13348 13349 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl); 13350 13351 // Convert the object parameter. 13352 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 13353 ExprResult BaseResult = 13354 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr, 13355 Best->FoundDecl, Method); 13356 if (BaseResult.isInvalid()) 13357 return ExprError(); 13358 Base = BaseResult.get(); 13359 13360 // Build the operator call. 13361 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 13362 Base, HadMultipleCandidates, OpLoc); 13363 if (FnExpr.isInvalid()) 13364 return ExprError(); 13365 13366 QualType ResultTy = Method->getReturnType(); 13367 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13368 ResultTy = ResultTy.getNonLValueExprType(Context); 13369 CXXOperatorCallExpr *TheCall = 13370 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(), 13371 Base, ResultTy, VK, OpLoc, FPOptions()); 13372 13373 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method)) 13374 return ExprError(); 13375 13376 if (CheckFunctionCall(Method, TheCall, 13377 Method->getType()->castAs<FunctionProtoType>())) 13378 return ExprError(); 13379 13380 return MaybeBindToTemporary(TheCall); 13381 } 13382 13383 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to 13384 /// a literal operator described by the provided lookup results. 13385 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, 13386 DeclarationNameInfo &SuffixInfo, 13387 ArrayRef<Expr*> Args, 13388 SourceLocation LitEndLoc, 13389 TemplateArgumentListInfo *TemplateArgs) { 13390 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); 13391 13392 OverloadCandidateSet CandidateSet(UDSuffixLoc, 13393 OverloadCandidateSet::CSK_Normal); 13394 AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs, 13395 /*SuppressUserConversions=*/true); 13396 13397 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13398 13399 // Perform overload resolution. This will usually be trivial, but might need 13400 // to perform substitutions for a literal operator template. 13401 OverloadCandidateSet::iterator Best; 13402 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { 13403 case OR_Success: 13404 case OR_Deleted: 13405 break; 13406 13407 case OR_No_Viable_Function: 13408 Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call) 13409 << R.getLookupName(); 13410 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args); 13411 return ExprError(); 13412 13413 case OR_Ambiguous: 13414 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); 13415 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args); 13416 return ExprError(); 13417 } 13418 13419 FunctionDecl *FD = Best->Function; 13420 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl, 13421 nullptr, HadMultipleCandidates, 13422 SuffixInfo.getLoc(), 13423 SuffixInfo.getInfo()); 13424 if (Fn.isInvalid()) 13425 return true; 13426 13427 // Check the argument types. This should almost always be a no-op, except 13428 // that array-to-pointer decay is applied to string literals. 13429 Expr *ConvArgs[2]; 13430 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 13431 ExprResult InputInit = PerformCopyInitialization( 13432 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), 13433 SourceLocation(), Args[ArgIdx]); 13434 if (InputInit.isInvalid()) 13435 return true; 13436 ConvArgs[ArgIdx] = InputInit.get(); 13437 } 13438 13439 QualType ResultTy = FD->getReturnType(); 13440 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13441 ResultTy = ResultTy.getNonLValueExprType(Context); 13442 13443 UserDefinedLiteral *UDL = 13444 new (Context) UserDefinedLiteral(Context, Fn.get(), 13445 llvm::makeArrayRef(ConvArgs, Args.size()), 13446 ResultTy, VK, LitEndLoc, UDSuffixLoc); 13447 13448 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD)) 13449 return ExprError(); 13450 13451 if (CheckFunctionCall(FD, UDL, nullptr)) 13452 return ExprError(); 13453 13454 return MaybeBindToTemporary(UDL); 13455 } 13456 13457 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the 13458 /// given LookupResult is non-empty, it is assumed to describe a member which 13459 /// will be invoked. Otherwise, the function will be found via argument 13460 /// dependent lookup. 13461 /// CallExpr is set to a valid expression and FRS_Success returned on success, 13462 /// otherwise CallExpr is set to ExprError() and some non-success value 13463 /// is returned. 13464 Sema::ForRangeStatus 13465 Sema::BuildForRangeBeginEndCall(SourceLocation Loc, 13466 SourceLocation RangeLoc, 13467 const DeclarationNameInfo &NameInfo, 13468 LookupResult &MemberLookup, 13469 OverloadCandidateSet *CandidateSet, 13470 Expr *Range, ExprResult *CallExpr) { 13471 Scope *S = nullptr; 13472 13473 CandidateSet->clear(OverloadCandidateSet::CSK_Normal); 13474 if (!MemberLookup.empty()) { 13475 ExprResult MemberRef = 13476 BuildMemberReferenceExpr(Range, Range->getType(), Loc, 13477 /*IsPtr=*/false, CXXScopeSpec(), 13478 /*TemplateKWLoc=*/SourceLocation(), 13479 /*FirstQualifierInScope=*/nullptr, 13480 MemberLookup, 13481 /*TemplateArgs=*/nullptr, S); 13482 if (MemberRef.isInvalid()) { 13483 *CallExpr = ExprError(); 13484 return FRS_DiagnosticIssued; 13485 } 13486 *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr); 13487 if (CallExpr->isInvalid()) { 13488 *CallExpr = ExprError(); 13489 return FRS_DiagnosticIssued; 13490 } 13491 } else { 13492 UnresolvedSet<0> FoundNames; 13493 UnresolvedLookupExpr *Fn = 13494 UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr, 13495 NestedNameSpecifierLoc(), NameInfo, 13496 /*NeedsADL=*/true, /*Overloaded=*/false, 13497 FoundNames.begin(), FoundNames.end()); 13498 13499 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc, 13500 CandidateSet, CallExpr); 13501 if (CandidateSet->empty() || CandidateSetError) { 13502 *CallExpr = ExprError(); 13503 return FRS_NoViableFunction; 13504 } 13505 OverloadCandidateSet::iterator Best; 13506 OverloadingResult OverloadResult = 13507 CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best); 13508 13509 if (OverloadResult == OR_No_Viable_Function) { 13510 *CallExpr = ExprError(); 13511 return FRS_NoViableFunction; 13512 } 13513 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range, 13514 Loc, nullptr, CandidateSet, &Best, 13515 OverloadResult, 13516 /*AllowTypoCorrection=*/false); 13517 if (CallExpr->isInvalid() || OverloadResult != OR_Success) { 13518 *CallExpr = ExprError(); 13519 return FRS_DiagnosticIssued; 13520 } 13521 } 13522 return FRS_Success; 13523 } 13524 13525 13526 /// FixOverloadedFunctionReference - E is an expression that refers to 13527 /// a C++ overloaded function (possibly with some parentheses and 13528 /// perhaps a '&' around it). We have resolved the overloaded function 13529 /// to the function declaration Fn, so patch up the expression E to 13530 /// refer (possibly indirectly) to Fn. Returns the new expr. 13531 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 13532 FunctionDecl *Fn) { 13533 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 13534 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 13535 Found, Fn); 13536 if (SubExpr == PE->getSubExpr()) 13537 return PE; 13538 13539 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 13540 } 13541 13542 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 13543 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 13544 Found, Fn); 13545 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 13546 SubExpr->getType()) && 13547 "Implicit cast type cannot be determined from overload"); 13548 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 13549 if (SubExpr == ICE->getSubExpr()) 13550 return ICE; 13551 13552 return ImplicitCastExpr::Create(Context, ICE->getType(), 13553 ICE->getCastKind(), 13554 SubExpr, nullptr, 13555 ICE->getValueKind()); 13556 } 13557 13558 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { 13559 if (!GSE->isResultDependent()) { 13560 Expr *SubExpr = 13561 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn); 13562 if (SubExpr == GSE->getResultExpr()) 13563 return GSE; 13564 13565 // Replace the resulting type information before rebuilding the generic 13566 // selection expression. 13567 ArrayRef<Expr *> A = GSE->getAssocExprs(); 13568 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end()); 13569 unsigned ResultIdx = GSE->getResultIndex(); 13570 AssocExprs[ResultIdx] = SubExpr; 13571 13572 return new (Context) GenericSelectionExpr( 13573 Context, GSE->getGenericLoc(), GSE->getControllingExpr(), 13574 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), 13575 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), 13576 ResultIdx); 13577 } 13578 // Rather than fall through to the unreachable, return the original generic 13579 // selection expression. 13580 return GSE; 13581 } 13582 13583 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 13584 assert(UnOp->getOpcode() == UO_AddrOf && 13585 "Can only take the address of an overloaded function"); 13586 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 13587 if (Method->isStatic()) { 13588 // Do nothing: static member functions aren't any different 13589 // from non-member functions. 13590 } else { 13591 // Fix the subexpression, which really has to be an 13592 // UnresolvedLookupExpr holding an overloaded member function 13593 // or template. 13594 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 13595 Found, Fn); 13596 if (SubExpr == UnOp->getSubExpr()) 13597 return UnOp; 13598 13599 assert(isa<DeclRefExpr>(SubExpr) 13600 && "fixed to something other than a decl ref"); 13601 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 13602 && "fixed to a member ref with no nested name qualifier"); 13603 13604 // We have taken the address of a pointer to member 13605 // function. Perform the computation here so that we get the 13606 // appropriate pointer to member type. 13607 QualType ClassType 13608 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 13609 QualType MemPtrType 13610 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 13611 // Under the MS ABI, lock down the inheritance model now. 13612 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) 13613 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType); 13614 13615 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, 13616 VK_RValue, OK_Ordinary, 13617 UnOp->getOperatorLoc(), false); 13618 } 13619 } 13620 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 13621 Found, Fn); 13622 if (SubExpr == UnOp->getSubExpr()) 13623 return UnOp; 13624 13625 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 13626 Context.getPointerType(SubExpr->getType()), 13627 VK_RValue, OK_Ordinary, 13628 UnOp->getOperatorLoc(), false); 13629 } 13630 13631 // C++ [except.spec]p17: 13632 // An exception-specification is considered to be needed when: 13633 // - in an expression the function is the unique lookup result or the 13634 // selected member of a set of overloaded functions 13635 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) 13636 ResolveExceptionSpec(E->getExprLoc(), FPT); 13637 13638 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 13639 // FIXME: avoid copy. 13640 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 13641 if (ULE->hasExplicitTemplateArgs()) { 13642 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 13643 TemplateArgs = &TemplateArgsBuffer; 13644 } 13645 13646 DeclRefExpr *DRE = DeclRefExpr::Create(Context, 13647 ULE->getQualifierLoc(), 13648 ULE->getTemplateKeywordLoc(), 13649 Fn, 13650 /*enclosing*/ false, // FIXME? 13651 ULE->getNameLoc(), 13652 Fn->getType(), 13653 VK_LValue, 13654 Found.getDecl(), 13655 TemplateArgs); 13656 MarkDeclRefReferenced(DRE); 13657 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); 13658 return DRE; 13659 } 13660 13661 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 13662 // FIXME: avoid copy. 13663 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 13664 if (MemExpr->hasExplicitTemplateArgs()) { 13665 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 13666 TemplateArgs = &TemplateArgsBuffer; 13667 } 13668 13669 Expr *Base; 13670 13671 // If we're filling in a static method where we used to have an 13672 // implicit member access, rewrite to a simple decl ref. 13673 if (MemExpr->isImplicitAccess()) { 13674 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 13675 DeclRefExpr *DRE = DeclRefExpr::Create(Context, 13676 MemExpr->getQualifierLoc(), 13677 MemExpr->getTemplateKeywordLoc(), 13678 Fn, 13679 /*enclosing*/ false, 13680 MemExpr->getMemberLoc(), 13681 Fn->getType(), 13682 VK_LValue, 13683 Found.getDecl(), 13684 TemplateArgs); 13685 MarkDeclRefReferenced(DRE); 13686 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); 13687 return DRE; 13688 } else { 13689 SourceLocation Loc = MemExpr->getMemberLoc(); 13690 if (MemExpr->getQualifier()) 13691 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 13692 CheckCXXThisCapture(Loc); 13693 Base = new (Context) CXXThisExpr(Loc, 13694 MemExpr->getBaseType(), 13695 /*isImplicit=*/true); 13696 } 13697 } else 13698 Base = MemExpr->getBase(); 13699 13700 ExprValueKind valueKind; 13701 QualType type; 13702 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 13703 valueKind = VK_LValue; 13704 type = Fn->getType(); 13705 } else { 13706 valueKind = VK_RValue; 13707 type = Context.BoundMemberTy; 13708 } 13709 13710 MemberExpr *ME = MemberExpr::Create( 13711 Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(), 13712 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found, 13713 MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind, 13714 OK_Ordinary); 13715 ME->setHadMultipleCandidates(true); 13716 MarkMemberReferenced(ME); 13717 return ME; 13718 } 13719 13720 llvm_unreachable("Invalid reference to overloaded function"); 13721 } 13722 13723 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 13724 DeclAccessPair Found, 13725 FunctionDecl *Fn) { 13726 return FixOverloadedFunctionReference(E.get(), Found, Fn); 13727 } 13728