1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ overloading.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/Overload.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/TypeOrdering.h"
21 #include "clang/Basic/Diagnostic.h"
22 #include "clang/Basic/DiagnosticOptions.h"
23 #include "clang/Basic/PartialDiagnostic.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "clang/Sema/Template.h"
29 #include "clang/Sema/TemplateDeduction.h"
30 #include "llvm/ADT/DenseSet.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallString.h"
35 #include <algorithm>
36 #include <cstdlib>
37 
38 using namespace clang;
39 using namespace sema;
40 
41 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42   return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
43     return P->hasAttr<PassObjectSizeAttr>();
44   });
45 }
46 
47 /// A convenience routine for creating a decayed reference to a function.
48 static ExprResult
49 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
50                       const Expr *Base, bool HadMultipleCandidates,
51                       SourceLocation Loc = SourceLocation(),
52                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
53   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
54     return ExprError();
55   // If FoundDecl is different from Fn (such as if one is a template
56   // and the other a specialization), make sure DiagnoseUseOfDecl is
57   // called on both.
58   // FIXME: This would be more comprehensively addressed by modifying
59   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
60   // being used.
61   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
62     return ExprError();
63   if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
64     S.ResolveExceptionSpec(Loc, FPT);
65   DeclRefExpr *DRE = new (S.Context)
66       DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
67   if (HadMultipleCandidates)
68     DRE->setHadMultipleCandidates(true);
69 
70   S.MarkDeclRefReferenced(DRE, Base);
71   return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
72                              CK_FunctionToPointerDecay);
73 }
74 
75 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
76                                  bool InOverloadResolution,
77                                  StandardConversionSequence &SCS,
78                                  bool CStyle,
79                                  bool AllowObjCWritebackConversion);
80 
81 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
82                                                  QualType &ToType,
83                                                  bool InOverloadResolution,
84                                                  StandardConversionSequence &SCS,
85                                                  bool CStyle);
86 static OverloadingResult
87 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
88                         UserDefinedConversionSequence& User,
89                         OverloadCandidateSet& Conversions,
90                         bool AllowExplicit,
91                         bool AllowObjCConversionOnExplicit);
92 
93 
94 static ImplicitConversionSequence::CompareKind
95 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
96                                    const StandardConversionSequence& SCS1,
97                                    const StandardConversionSequence& SCS2);
98 
99 static ImplicitConversionSequence::CompareKind
100 CompareQualificationConversions(Sema &S,
101                                 const StandardConversionSequence& SCS1,
102                                 const StandardConversionSequence& SCS2);
103 
104 static ImplicitConversionSequence::CompareKind
105 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
106                                 const StandardConversionSequence& SCS1,
107                                 const StandardConversionSequence& SCS2);
108 
109 /// GetConversionRank - Retrieve the implicit conversion rank
110 /// corresponding to the given implicit conversion kind.
111 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
112   static const ImplicitConversionRank
113     Rank[(int)ICK_Num_Conversion_Kinds] = {
114     ICR_Exact_Match,
115     ICR_Exact_Match,
116     ICR_Exact_Match,
117     ICR_Exact_Match,
118     ICR_Exact_Match,
119     ICR_Exact_Match,
120     ICR_Promotion,
121     ICR_Promotion,
122     ICR_Promotion,
123     ICR_Conversion,
124     ICR_Conversion,
125     ICR_Conversion,
126     ICR_Conversion,
127     ICR_Conversion,
128     ICR_Conversion,
129     ICR_Conversion,
130     ICR_Conversion,
131     ICR_Conversion,
132     ICR_Conversion,
133     ICR_OCL_Scalar_Widening,
134     ICR_Complex_Real_Conversion,
135     ICR_Conversion,
136     ICR_Conversion,
137     ICR_Writeback_Conversion,
138     ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
139                      // it was omitted by the patch that added
140                      // ICK_Zero_Event_Conversion
141     ICR_C_Conversion,
142     ICR_C_Conversion_Extension
143   };
144   return Rank[(int)Kind];
145 }
146 
147 /// GetImplicitConversionName - Return the name of this kind of
148 /// implicit conversion.
149 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
150   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
151     "No conversion",
152     "Lvalue-to-rvalue",
153     "Array-to-pointer",
154     "Function-to-pointer",
155     "Function pointer conversion",
156     "Qualification",
157     "Integral promotion",
158     "Floating point promotion",
159     "Complex promotion",
160     "Integral conversion",
161     "Floating conversion",
162     "Complex conversion",
163     "Floating-integral conversion",
164     "Pointer conversion",
165     "Pointer-to-member conversion",
166     "Boolean conversion",
167     "Compatible-types conversion",
168     "Derived-to-base conversion",
169     "Vector conversion",
170     "Vector splat",
171     "Complex-real conversion",
172     "Block Pointer conversion",
173     "Transparent Union Conversion",
174     "Writeback conversion",
175     "OpenCL Zero Event Conversion",
176     "C specific type conversion",
177     "Incompatible pointer conversion"
178   };
179   return Name[Kind];
180 }
181 
182 /// StandardConversionSequence - Set the standard conversion
183 /// sequence to the identity conversion.
184 void StandardConversionSequence::setAsIdentityConversion() {
185   First = ICK_Identity;
186   Second = ICK_Identity;
187   Third = ICK_Identity;
188   DeprecatedStringLiteralToCharPtr = false;
189   QualificationIncludesObjCLifetime = false;
190   ReferenceBinding = false;
191   DirectBinding = false;
192   IsLvalueReference = true;
193   BindsToFunctionLvalue = false;
194   BindsToRvalue = false;
195   BindsImplicitObjectArgumentWithoutRefQualifier = false;
196   ObjCLifetimeConversionBinding = false;
197   CopyConstructor = nullptr;
198 }
199 
200 /// getRank - Retrieve the rank of this standard conversion sequence
201 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
202 /// implicit conversions.
203 ImplicitConversionRank StandardConversionSequence::getRank() const {
204   ImplicitConversionRank Rank = ICR_Exact_Match;
205   if  (GetConversionRank(First) > Rank)
206     Rank = GetConversionRank(First);
207   if  (GetConversionRank(Second) > Rank)
208     Rank = GetConversionRank(Second);
209   if  (GetConversionRank(Third) > Rank)
210     Rank = GetConversionRank(Third);
211   return Rank;
212 }
213 
214 /// isPointerConversionToBool - Determines whether this conversion is
215 /// a conversion of a pointer or pointer-to-member to bool. This is
216 /// used as part of the ranking of standard conversion sequences
217 /// (C++ 13.3.3.2p4).
218 bool StandardConversionSequence::isPointerConversionToBool() const {
219   // Note that FromType has not necessarily been transformed by the
220   // array-to-pointer or function-to-pointer implicit conversions, so
221   // check for their presence as well as checking whether FromType is
222   // a pointer.
223   if (getToType(1)->isBooleanType() &&
224       (getFromType()->isPointerType() ||
225        getFromType()->isMemberPointerType() ||
226        getFromType()->isObjCObjectPointerType() ||
227        getFromType()->isBlockPointerType() ||
228        getFromType()->isNullPtrType() ||
229        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
230     return true;
231 
232   return false;
233 }
234 
235 /// isPointerConversionToVoidPointer - Determines whether this
236 /// conversion is a conversion of a pointer to a void pointer. This is
237 /// used as part of the ranking of standard conversion sequences (C++
238 /// 13.3.3.2p4).
239 bool
240 StandardConversionSequence::
241 isPointerConversionToVoidPointer(ASTContext& Context) const {
242   QualType FromType = getFromType();
243   QualType ToType = getToType(1);
244 
245   // Note that FromType has not necessarily been transformed by the
246   // array-to-pointer implicit conversion, so check for its presence
247   // and redo the conversion to get a pointer.
248   if (First == ICK_Array_To_Pointer)
249     FromType = Context.getArrayDecayedType(FromType);
250 
251   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
252     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
253       return ToPtrType->getPointeeType()->isVoidType();
254 
255   return false;
256 }
257 
258 /// Skip any implicit casts which could be either part of a narrowing conversion
259 /// or after one in an implicit conversion.
260 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
261   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
262     switch (ICE->getCastKind()) {
263     case CK_NoOp:
264     case CK_IntegralCast:
265     case CK_IntegralToBoolean:
266     case CK_IntegralToFloating:
267     case CK_BooleanToSignedIntegral:
268     case CK_FloatingToIntegral:
269     case CK_FloatingToBoolean:
270     case CK_FloatingCast:
271       Converted = ICE->getSubExpr();
272       continue;
273 
274     default:
275       return Converted;
276     }
277   }
278 
279   return Converted;
280 }
281 
282 /// Check if this standard conversion sequence represents a narrowing
283 /// conversion, according to C++11 [dcl.init.list]p7.
284 ///
285 /// \param Ctx  The AST context.
286 /// \param Converted  The result of applying this standard conversion sequence.
287 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
288 ///        value of the expression prior to the narrowing conversion.
289 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
290 ///        type of the expression prior to the narrowing conversion.
291 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
292 ///        from floating point types to integral types should be ignored.
293 NarrowingKind StandardConversionSequence::getNarrowingKind(
294     ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
295     QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
296   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
297 
298   // C++11 [dcl.init.list]p7:
299   //   A narrowing conversion is an implicit conversion ...
300   QualType FromType = getToType(0);
301   QualType ToType = getToType(1);
302 
303   // A conversion to an enumeration type is narrowing if the conversion to
304   // the underlying type is narrowing. This only arises for expressions of
305   // the form 'Enum{init}'.
306   if (auto *ET = ToType->getAs<EnumType>())
307     ToType = ET->getDecl()->getIntegerType();
308 
309   switch (Second) {
310   // 'bool' is an integral type; dispatch to the right place to handle it.
311   case ICK_Boolean_Conversion:
312     if (FromType->isRealFloatingType())
313       goto FloatingIntegralConversion;
314     if (FromType->isIntegralOrUnscopedEnumerationType())
315       goto IntegralConversion;
316     // Boolean conversions can be from pointers and pointers to members
317     // [conv.bool], and those aren't considered narrowing conversions.
318     return NK_Not_Narrowing;
319 
320   // -- from a floating-point type to an integer type, or
321   //
322   // -- from an integer type or unscoped enumeration type to a floating-point
323   //    type, except where the source is a constant expression and the actual
324   //    value after conversion will fit into the target type and will produce
325   //    the original value when converted back to the original type, or
326   case ICK_Floating_Integral:
327   FloatingIntegralConversion:
328     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
329       return NK_Type_Narrowing;
330     } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
331                ToType->isRealFloatingType()) {
332       if (IgnoreFloatToIntegralConversion)
333         return NK_Not_Narrowing;
334       llvm::APSInt IntConstantValue;
335       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
336       assert(Initializer && "Unknown conversion expression");
337 
338       // If it's value-dependent, we can't tell whether it's narrowing.
339       if (Initializer->isValueDependent())
340         return NK_Dependent_Narrowing;
341 
342       if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
343         // Convert the integer to the floating type.
344         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
345         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
346                                 llvm::APFloat::rmNearestTiesToEven);
347         // And back.
348         llvm::APSInt ConvertedValue = IntConstantValue;
349         bool ignored;
350         Result.convertToInteger(ConvertedValue,
351                                 llvm::APFloat::rmTowardZero, &ignored);
352         // If the resulting value is different, this was a narrowing conversion.
353         if (IntConstantValue != ConvertedValue) {
354           ConstantValue = APValue(IntConstantValue);
355           ConstantType = Initializer->getType();
356           return NK_Constant_Narrowing;
357         }
358       } else {
359         // Variables are always narrowings.
360         return NK_Variable_Narrowing;
361       }
362     }
363     return NK_Not_Narrowing;
364 
365   // -- from long double to double or float, or from double to float, except
366   //    where the source is a constant expression and the actual value after
367   //    conversion is within the range of values that can be represented (even
368   //    if it cannot be represented exactly), or
369   case ICK_Floating_Conversion:
370     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
371         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
372       // FromType is larger than ToType.
373       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
374 
375       // If it's value-dependent, we can't tell whether it's narrowing.
376       if (Initializer->isValueDependent())
377         return NK_Dependent_Narrowing;
378 
379       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
380         // Constant!
381         assert(ConstantValue.isFloat());
382         llvm::APFloat FloatVal = ConstantValue.getFloat();
383         // Convert the source value into the target type.
384         bool ignored;
385         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
386           Ctx.getFloatTypeSemantics(ToType),
387           llvm::APFloat::rmNearestTiesToEven, &ignored);
388         // If there was no overflow, the source value is within the range of
389         // values that can be represented.
390         if (ConvertStatus & llvm::APFloat::opOverflow) {
391           ConstantType = Initializer->getType();
392           return NK_Constant_Narrowing;
393         }
394       } else {
395         return NK_Variable_Narrowing;
396       }
397     }
398     return NK_Not_Narrowing;
399 
400   // -- from an integer type or unscoped enumeration type to an integer type
401   //    that cannot represent all the values of the original type, except where
402   //    the source is a constant expression and the actual value after
403   //    conversion will fit into the target type and will produce the original
404   //    value when converted back to the original type.
405   case ICK_Integral_Conversion:
406   IntegralConversion: {
407     assert(FromType->isIntegralOrUnscopedEnumerationType());
408     assert(ToType->isIntegralOrUnscopedEnumerationType());
409     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
410     const unsigned FromWidth = Ctx.getIntWidth(FromType);
411     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
412     const unsigned ToWidth = Ctx.getIntWidth(ToType);
413 
414     if (FromWidth > ToWidth ||
415         (FromWidth == ToWidth && FromSigned != ToSigned) ||
416         (FromSigned && !ToSigned)) {
417       // Not all values of FromType can be represented in ToType.
418       llvm::APSInt InitializerValue;
419       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
420 
421       // If it's value-dependent, we can't tell whether it's narrowing.
422       if (Initializer->isValueDependent())
423         return NK_Dependent_Narrowing;
424 
425       if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
426         // Such conversions on variables are always narrowing.
427         return NK_Variable_Narrowing;
428       }
429       bool Narrowing = false;
430       if (FromWidth < ToWidth) {
431         // Negative -> unsigned is narrowing. Otherwise, more bits is never
432         // narrowing.
433         if (InitializerValue.isSigned() && InitializerValue.isNegative())
434           Narrowing = true;
435       } else {
436         // Add a bit to the InitializerValue so we don't have to worry about
437         // signed vs. unsigned comparisons.
438         InitializerValue = InitializerValue.extend(
439           InitializerValue.getBitWidth() + 1);
440         // Convert the initializer to and from the target width and signed-ness.
441         llvm::APSInt ConvertedValue = InitializerValue;
442         ConvertedValue = ConvertedValue.trunc(ToWidth);
443         ConvertedValue.setIsSigned(ToSigned);
444         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
445         ConvertedValue.setIsSigned(InitializerValue.isSigned());
446         // If the result is different, this was a narrowing conversion.
447         if (ConvertedValue != InitializerValue)
448           Narrowing = true;
449       }
450       if (Narrowing) {
451         ConstantType = Initializer->getType();
452         ConstantValue = APValue(InitializerValue);
453         return NK_Constant_Narrowing;
454       }
455     }
456     return NK_Not_Narrowing;
457   }
458 
459   default:
460     // Other kinds of conversions are not narrowings.
461     return NK_Not_Narrowing;
462   }
463 }
464 
465 /// dump - Print this standard conversion sequence to standard
466 /// error. Useful for debugging overloading issues.
467 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
468   raw_ostream &OS = llvm::errs();
469   bool PrintedSomething = false;
470   if (First != ICK_Identity) {
471     OS << GetImplicitConversionName(First);
472     PrintedSomething = true;
473   }
474 
475   if (Second != ICK_Identity) {
476     if (PrintedSomething) {
477       OS << " -> ";
478     }
479     OS << GetImplicitConversionName(Second);
480 
481     if (CopyConstructor) {
482       OS << " (by copy constructor)";
483     } else if (DirectBinding) {
484       OS << " (direct reference binding)";
485     } else if (ReferenceBinding) {
486       OS << " (reference binding)";
487     }
488     PrintedSomething = true;
489   }
490 
491   if (Third != ICK_Identity) {
492     if (PrintedSomething) {
493       OS << " -> ";
494     }
495     OS << GetImplicitConversionName(Third);
496     PrintedSomething = true;
497   }
498 
499   if (!PrintedSomething) {
500     OS << "No conversions required";
501   }
502 }
503 
504 /// dump - Print this user-defined conversion sequence to standard
505 /// error. Useful for debugging overloading issues.
506 void UserDefinedConversionSequence::dump() const {
507   raw_ostream &OS = llvm::errs();
508   if (Before.First || Before.Second || Before.Third) {
509     Before.dump();
510     OS << " -> ";
511   }
512   if (ConversionFunction)
513     OS << '\'' << *ConversionFunction << '\'';
514   else
515     OS << "aggregate initialization";
516   if (After.First || After.Second || After.Third) {
517     OS << " -> ";
518     After.dump();
519   }
520 }
521 
522 /// dump - Print this implicit conversion sequence to standard
523 /// error. Useful for debugging overloading issues.
524 void ImplicitConversionSequence::dump() const {
525   raw_ostream &OS = llvm::errs();
526   if (isStdInitializerListElement())
527     OS << "Worst std::initializer_list element conversion: ";
528   switch (ConversionKind) {
529   case StandardConversion:
530     OS << "Standard conversion: ";
531     Standard.dump();
532     break;
533   case UserDefinedConversion:
534     OS << "User-defined conversion: ";
535     UserDefined.dump();
536     break;
537   case EllipsisConversion:
538     OS << "Ellipsis conversion";
539     break;
540   case AmbiguousConversion:
541     OS << "Ambiguous conversion";
542     break;
543   case BadConversion:
544     OS << "Bad conversion";
545     break;
546   }
547 
548   OS << "\n";
549 }
550 
551 void AmbiguousConversionSequence::construct() {
552   new (&conversions()) ConversionSet();
553 }
554 
555 void AmbiguousConversionSequence::destruct() {
556   conversions().~ConversionSet();
557 }
558 
559 void
560 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
561   FromTypePtr = O.FromTypePtr;
562   ToTypePtr = O.ToTypePtr;
563   new (&conversions()) ConversionSet(O.conversions());
564 }
565 
566 namespace {
567   // Structure used by DeductionFailureInfo to store
568   // template argument information.
569   struct DFIArguments {
570     TemplateArgument FirstArg;
571     TemplateArgument SecondArg;
572   };
573   // Structure used by DeductionFailureInfo to store
574   // template parameter and template argument information.
575   struct DFIParamWithArguments : DFIArguments {
576     TemplateParameter Param;
577   };
578   // Structure used by DeductionFailureInfo to store template argument
579   // information and the index of the problematic call argument.
580   struct DFIDeducedMismatchArgs : DFIArguments {
581     TemplateArgumentList *TemplateArgs;
582     unsigned CallArgIndex;
583   };
584 }
585 
586 /// Convert from Sema's representation of template deduction information
587 /// to the form used in overload-candidate information.
588 DeductionFailureInfo
589 clang::MakeDeductionFailureInfo(ASTContext &Context,
590                                 Sema::TemplateDeductionResult TDK,
591                                 TemplateDeductionInfo &Info) {
592   DeductionFailureInfo Result;
593   Result.Result = static_cast<unsigned>(TDK);
594   Result.HasDiagnostic = false;
595   switch (TDK) {
596   case Sema::TDK_Invalid:
597   case Sema::TDK_InstantiationDepth:
598   case Sema::TDK_TooManyArguments:
599   case Sema::TDK_TooFewArguments:
600   case Sema::TDK_MiscellaneousDeductionFailure:
601   case Sema::TDK_CUDATargetMismatch:
602     Result.Data = nullptr;
603     break;
604 
605   case Sema::TDK_Incomplete:
606   case Sema::TDK_InvalidExplicitArguments:
607     Result.Data = Info.Param.getOpaqueValue();
608     break;
609 
610   case Sema::TDK_DeducedMismatch:
611   case Sema::TDK_DeducedMismatchNested: {
612     // FIXME: Should allocate from normal heap so that we can free this later.
613     auto *Saved = new (Context) DFIDeducedMismatchArgs;
614     Saved->FirstArg = Info.FirstArg;
615     Saved->SecondArg = Info.SecondArg;
616     Saved->TemplateArgs = Info.take();
617     Saved->CallArgIndex = Info.CallArgIndex;
618     Result.Data = Saved;
619     break;
620   }
621 
622   case Sema::TDK_NonDeducedMismatch: {
623     // FIXME: Should allocate from normal heap so that we can free this later.
624     DFIArguments *Saved = new (Context) DFIArguments;
625     Saved->FirstArg = Info.FirstArg;
626     Saved->SecondArg = Info.SecondArg;
627     Result.Data = Saved;
628     break;
629   }
630 
631   case Sema::TDK_IncompletePack:
632     // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
633   case Sema::TDK_Inconsistent:
634   case Sema::TDK_Underqualified: {
635     // FIXME: Should allocate from normal heap so that we can free this later.
636     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
637     Saved->Param = Info.Param;
638     Saved->FirstArg = Info.FirstArg;
639     Saved->SecondArg = Info.SecondArg;
640     Result.Data = Saved;
641     break;
642   }
643 
644   case Sema::TDK_SubstitutionFailure:
645     Result.Data = Info.take();
646     if (Info.hasSFINAEDiagnostic()) {
647       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
648           SourceLocation(), PartialDiagnostic::NullDiagnostic());
649       Info.takeSFINAEDiagnostic(*Diag);
650       Result.HasDiagnostic = true;
651     }
652     break;
653 
654   case Sema::TDK_Success:
655   case Sema::TDK_NonDependentConversionFailure:
656     llvm_unreachable("not a deduction failure");
657   }
658 
659   return Result;
660 }
661 
662 void DeductionFailureInfo::Destroy() {
663   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
664   case Sema::TDK_Success:
665   case Sema::TDK_Invalid:
666   case Sema::TDK_InstantiationDepth:
667   case Sema::TDK_Incomplete:
668   case Sema::TDK_TooManyArguments:
669   case Sema::TDK_TooFewArguments:
670   case Sema::TDK_InvalidExplicitArguments:
671   case Sema::TDK_CUDATargetMismatch:
672   case Sema::TDK_NonDependentConversionFailure:
673     break;
674 
675   case Sema::TDK_IncompletePack:
676   case Sema::TDK_Inconsistent:
677   case Sema::TDK_Underqualified:
678   case Sema::TDK_DeducedMismatch:
679   case Sema::TDK_DeducedMismatchNested:
680   case Sema::TDK_NonDeducedMismatch:
681     // FIXME: Destroy the data?
682     Data = nullptr;
683     break;
684 
685   case Sema::TDK_SubstitutionFailure:
686     // FIXME: Destroy the template argument list?
687     Data = nullptr;
688     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
689       Diag->~PartialDiagnosticAt();
690       HasDiagnostic = false;
691     }
692     break;
693 
694   // Unhandled
695   case Sema::TDK_MiscellaneousDeductionFailure:
696     break;
697   }
698 }
699 
700 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
701   if (HasDiagnostic)
702     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
703   return nullptr;
704 }
705 
706 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
707   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
708   case Sema::TDK_Success:
709   case Sema::TDK_Invalid:
710   case Sema::TDK_InstantiationDepth:
711   case Sema::TDK_TooManyArguments:
712   case Sema::TDK_TooFewArguments:
713   case Sema::TDK_SubstitutionFailure:
714   case Sema::TDK_DeducedMismatch:
715   case Sema::TDK_DeducedMismatchNested:
716   case Sema::TDK_NonDeducedMismatch:
717   case Sema::TDK_CUDATargetMismatch:
718   case Sema::TDK_NonDependentConversionFailure:
719     return TemplateParameter();
720 
721   case Sema::TDK_Incomplete:
722   case Sema::TDK_InvalidExplicitArguments:
723     return TemplateParameter::getFromOpaqueValue(Data);
724 
725   case Sema::TDK_IncompletePack:
726   case Sema::TDK_Inconsistent:
727   case Sema::TDK_Underqualified:
728     return static_cast<DFIParamWithArguments*>(Data)->Param;
729 
730   // Unhandled
731   case Sema::TDK_MiscellaneousDeductionFailure:
732     break;
733   }
734 
735   return TemplateParameter();
736 }
737 
738 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
739   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
740   case Sema::TDK_Success:
741   case Sema::TDK_Invalid:
742   case Sema::TDK_InstantiationDepth:
743   case Sema::TDK_TooManyArguments:
744   case Sema::TDK_TooFewArguments:
745   case Sema::TDK_Incomplete:
746   case Sema::TDK_IncompletePack:
747   case Sema::TDK_InvalidExplicitArguments:
748   case Sema::TDK_Inconsistent:
749   case Sema::TDK_Underqualified:
750   case Sema::TDK_NonDeducedMismatch:
751   case Sema::TDK_CUDATargetMismatch:
752   case Sema::TDK_NonDependentConversionFailure:
753     return nullptr;
754 
755   case Sema::TDK_DeducedMismatch:
756   case Sema::TDK_DeducedMismatchNested:
757     return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
758 
759   case Sema::TDK_SubstitutionFailure:
760     return static_cast<TemplateArgumentList*>(Data);
761 
762   // Unhandled
763   case Sema::TDK_MiscellaneousDeductionFailure:
764     break;
765   }
766 
767   return nullptr;
768 }
769 
770 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
771   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
772   case Sema::TDK_Success:
773   case Sema::TDK_Invalid:
774   case Sema::TDK_InstantiationDepth:
775   case Sema::TDK_Incomplete:
776   case Sema::TDK_TooManyArguments:
777   case Sema::TDK_TooFewArguments:
778   case Sema::TDK_InvalidExplicitArguments:
779   case Sema::TDK_SubstitutionFailure:
780   case Sema::TDK_CUDATargetMismatch:
781   case Sema::TDK_NonDependentConversionFailure:
782     return nullptr;
783 
784   case Sema::TDK_IncompletePack:
785   case Sema::TDK_Inconsistent:
786   case Sema::TDK_Underqualified:
787   case Sema::TDK_DeducedMismatch:
788   case Sema::TDK_DeducedMismatchNested:
789   case Sema::TDK_NonDeducedMismatch:
790     return &static_cast<DFIArguments*>(Data)->FirstArg;
791 
792   // Unhandled
793   case Sema::TDK_MiscellaneousDeductionFailure:
794     break;
795   }
796 
797   return nullptr;
798 }
799 
800 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
801   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
802   case Sema::TDK_Success:
803   case Sema::TDK_Invalid:
804   case Sema::TDK_InstantiationDepth:
805   case Sema::TDK_Incomplete:
806   case Sema::TDK_IncompletePack:
807   case Sema::TDK_TooManyArguments:
808   case Sema::TDK_TooFewArguments:
809   case Sema::TDK_InvalidExplicitArguments:
810   case Sema::TDK_SubstitutionFailure:
811   case Sema::TDK_CUDATargetMismatch:
812   case Sema::TDK_NonDependentConversionFailure:
813     return nullptr;
814 
815   case Sema::TDK_Inconsistent:
816   case Sema::TDK_Underqualified:
817   case Sema::TDK_DeducedMismatch:
818   case Sema::TDK_DeducedMismatchNested:
819   case Sema::TDK_NonDeducedMismatch:
820     return &static_cast<DFIArguments*>(Data)->SecondArg;
821 
822   // Unhandled
823   case Sema::TDK_MiscellaneousDeductionFailure:
824     break;
825   }
826 
827   return nullptr;
828 }
829 
830 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
831   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
832   case Sema::TDK_DeducedMismatch:
833   case Sema::TDK_DeducedMismatchNested:
834     return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
835 
836   default:
837     return llvm::None;
838   }
839 }
840 
841 void OverloadCandidateSet::destroyCandidates() {
842   for (iterator i = begin(), e = end(); i != e; ++i) {
843     for (auto &C : i->Conversions)
844       C.~ImplicitConversionSequence();
845     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
846       i->DeductionFailure.Destroy();
847   }
848 }
849 
850 void OverloadCandidateSet::clear(CandidateSetKind CSK) {
851   destroyCandidates();
852   SlabAllocator.Reset();
853   NumInlineBytesUsed = 0;
854   Candidates.clear();
855   Functions.clear();
856   Kind = CSK;
857 }
858 
859 namespace {
860   class UnbridgedCastsSet {
861     struct Entry {
862       Expr **Addr;
863       Expr *Saved;
864     };
865     SmallVector<Entry, 2> Entries;
866 
867   public:
868     void save(Sema &S, Expr *&E) {
869       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
870       Entry entry = { &E, E };
871       Entries.push_back(entry);
872       E = S.stripARCUnbridgedCast(E);
873     }
874 
875     void restore() {
876       for (SmallVectorImpl<Entry>::iterator
877              i = Entries.begin(), e = Entries.end(); i != e; ++i)
878         *i->Addr = i->Saved;
879     }
880   };
881 }
882 
883 /// checkPlaceholderForOverload - Do any interesting placeholder-like
884 /// preprocessing on the given expression.
885 ///
886 /// \param unbridgedCasts a collection to which to add unbridged casts;
887 ///   without this, they will be immediately diagnosed as errors
888 ///
889 /// Return true on unrecoverable error.
890 static bool
891 checkPlaceholderForOverload(Sema &S, Expr *&E,
892                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
893   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
894     // We can't handle overloaded expressions here because overload
895     // resolution might reasonably tweak them.
896     if (placeholder->getKind() == BuiltinType::Overload) return false;
897 
898     // If the context potentially accepts unbridged ARC casts, strip
899     // the unbridged cast and add it to the collection for later restoration.
900     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
901         unbridgedCasts) {
902       unbridgedCasts->save(S, E);
903       return false;
904     }
905 
906     // Go ahead and check everything else.
907     ExprResult result = S.CheckPlaceholderExpr(E);
908     if (result.isInvalid())
909       return true;
910 
911     E = result.get();
912     return false;
913   }
914 
915   // Nothing to do.
916   return false;
917 }
918 
919 /// checkArgPlaceholdersForOverload - Check a set of call operands for
920 /// placeholders.
921 static bool checkArgPlaceholdersForOverload(Sema &S,
922                                             MultiExprArg Args,
923                                             UnbridgedCastsSet &unbridged) {
924   for (unsigned i = 0, e = Args.size(); i != e; ++i)
925     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
926       return true;
927 
928   return false;
929 }
930 
931 /// Determine whether the given New declaration is an overload of the
932 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
933 /// New and Old cannot be overloaded, e.g., if New has the same signature as
934 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't
935 /// functions (or function templates) at all. When it does return Ovl_Match or
936 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
937 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
938 /// declaration.
939 ///
940 /// Example: Given the following input:
941 ///
942 ///   void f(int, float); // #1
943 ///   void f(int, int); // #2
944 ///   int f(int, int); // #3
945 ///
946 /// When we process #1, there is no previous declaration of "f", so IsOverload
947 /// will not be used.
948 ///
949 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing
950 /// the parameter types, we see that #1 and #2 are overloaded (since they have
951 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
952 /// unchanged.
953 ///
954 /// When we process #3, Old is an overload set containing #1 and #2. We compare
955 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
956 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
957 /// functions are not part of the signature), IsOverload returns Ovl_Match and
958 /// MatchedDecl will be set to point to the FunctionDecl for #2.
959 ///
960 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
961 /// by a using declaration. The rules for whether to hide shadow declarations
962 /// ignore some properties which otherwise figure into a function template's
963 /// signature.
964 Sema::OverloadKind
965 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
966                     NamedDecl *&Match, bool NewIsUsingDecl) {
967   for (LookupResult::iterator I = Old.begin(), E = Old.end();
968          I != E; ++I) {
969     NamedDecl *OldD = *I;
970 
971     bool OldIsUsingDecl = false;
972     if (isa<UsingShadowDecl>(OldD)) {
973       OldIsUsingDecl = true;
974 
975       // We can always introduce two using declarations into the same
976       // context, even if they have identical signatures.
977       if (NewIsUsingDecl) continue;
978 
979       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
980     }
981 
982     // A using-declaration does not conflict with another declaration
983     // if one of them is hidden.
984     if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
985       continue;
986 
987     // If either declaration was introduced by a using declaration,
988     // we'll need to use slightly different rules for matching.
989     // Essentially, these rules are the normal rules, except that
990     // function templates hide function templates with different
991     // return types or template parameter lists.
992     bool UseMemberUsingDeclRules =
993       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
994       !New->getFriendObjectKind();
995 
996     if (FunctionDecl *OldF = OldD->getAsFunction()) {
997       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
998         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
999           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1000           continue;
1001         }
1002 
1003         if (!isa<FunctionTemplateDecl>(OldD) &&
1004             !shouldLinkPossiblyHiddenDecl(*I, New))
1005           continue;
1006 
1007         Match = *I;
1008         return Ovl_Match;
1009       }
1010 
1011       // Builtins that have custom typechecking or have a reference should
1012       // not be overloadable or redeclarable.
1013       if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1014         Match = *I;
1015         return Ovl_NonFunction;
1016       }
1017     } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1018       // We can overload with these, which can show up when doing
1019       // redeclaration checks for UsingDecls.
1020       assert(Old.getLookupKind() == LookupUsingDeclName);
1021     } else if (isa<TagDecl>(OldD)) {
1022       // We can always overload with tags by hiding them.
1023     } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1024       // Optimistically assume that an unresolved using decl will
1025       // overload; if it doesn't, we'll have to diagnose during
1026       // template instantiation.
1027       //
1028       // Exception: if the scope is dependent and this is not a class
1029       // member, the using declaration can only introduce an enumerator.
1030       if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1031         Match = *I;
1032         return Ovl_NonFunction;
1033       }
1034     } else {
1035       // (C++ 13p1):
1036       //   Only function declarations can be overloaded; object and type
1037       //   declarations cannot be overloaded.
1038       Match = *I;
1039       return Ovl_NonFunction;
1040     }
1041   }
1042 
1043   // C++ [temp.friend]p1:
1044   //   For a friend function declaration that is not a template declaration:
1045   //    -- if the name of the friend is a qualified or unqualified template-id,
1046   //       [...], otherwise
1047   //    -- if the name of the friend is a qualified-id and a matching
1048   //       non-template function is found in the specified class or namespace,
1049   //       the friend declaration refers to that function, otherwise,
1050   //    -- if the name of the friend is a qualified-id and a matching function
1051   //       template is found in the specified class or namespace, the friend
1052   //       declaration refers to the deduced specialization of that function
1053   //       template, otherwise
1054   //    -- the name shall be an unqualified-id [...]
1055   // If we get here for a qualified friend declaration, we've just reached the
1056   // third bullet. If the type of the friend is dependent, skip this lookup
1057   // until instantiation.
1058   if (New->getFriendObjectKind() && New->getQualifier() &&
1059       !New->getDescribedFunctionTemplate() &&
1060       !New->getDependentSpecializationInfo() &&
1061       !New->getType()->isDependentType()) {
1062     LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1063     TemplateSpecResult.addAllDecls(Old);
1064     if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1065                                             /*QualifiedFriend*/true)) {
1066       New->setInvalidDecl();
1067       return Ovl_Overload;
1068     }
1069 
1070     Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1071     return Ovl_Match;
1072   }
1073 
1074   return Ovl_Overload;
1075 }
1076 
1077 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1078                       bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
1079   // C++ [basic.start.main]p2: This function shall not be overloaded.
1080   if (New->isMain())
1081     return false;
1082 
1083   // MSVCRT user defined entry points cannot be overloaded.
1084   if (New->isMSVCRTEntryPoint())
1085     return false;
1086 
1087   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1088   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1089 
1090   // C++ [temp.fct]p2:
1091   //   A function template can be overloaded with other function templates
1092   //   and with normal (non-template) functions.
1093   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1094     return true;
1095 
1096   // Is the function New an overload of the function Old?
1097   QualType OldQType = Context.getCanonicalType(Old->getType());
1098   QualType NewQType = Context.getCanonicalType(New->getType());
1099 
1100   // Compare the signatures (C++ 1.3.10) of the two functions to
1101   // determine whether they are overloads. If we find any mismatch
1102   // in the signature, they are overloads.
1103 
1104   // If either of these functions is a K&R-style function (no
1105   // prototype), then we consider them to have matching signatures.
1106   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1107       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1108     return false;
1109 
1110   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1111   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1112 
1113   // The signature of a function includes the types of its
1114   // parameters (C++ 1.3.10), which includes the presence or absence
1115   // of the ellipsis; see C++ DR 357).
1116   if (OldQType != NewQType &&
1117       (OldType->getNumParams() != NewType->getNumParams() ||
1118        OldType->isVariadic() != NewType->isVariadic() ||
1119        !FunctionParamTypesAreEqual(OldType, NewType)))
1120     return true;
1121 
1122   // C++ [temp.over.link]p4:
1123   //   The signature of a function template consists of its function
1124   //   signature, its return type and its template parameter list. The names
1125   //   of the template parameters are significant only for establishing the
1126   //   relationship between the template parameters and the rest of the
1127   //   signature.
1128   //
1129   // We check the return type and template parameter lists for function
1130   // templates first; the remaining checks follow.
1131   //
1132   // However, we don't consider either of these when deciding whether
1133   // a member introduced by a shadow declaration is hidden.
1134   if (!UseMemberUsingDeclRules && NewTemplate &&
1135       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1136                                        OldTemplate->getTemplateParameters(),
1137                                        false, TPL_TemplateMatch) ||
1138        !Context.hasSameType(Old->getDeclaredReturnType(),
1139                             New->getDeclaredReturnType())))
1140     return true;
1141 
1142   // If the function is a class member, its signature includes the
1143   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1144   //
1145   // As part of this, also check whether one of the member functions
1146   // is static, in which case they are not overloads (C++
1147   // 13.1p2). While not part of the definition of the signature,
1148   // this check is important to determine whether these functions
1149   // can be overloaded.
1150   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1151   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1152   if (OldMethod && NewMethod &&
1153       !OldMethod->isStatic() && !NewMethod->isStatic()) {
1154     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1155       if (!UseMemberUsingDeclRules &&
1156           (OldMethod->getRefQualifier() == RQ_None ||
1157            NewMethod->getRefQualifier() == RQ_None)) {
1158         // C++0x [over.load]p2:
1159         //   - Member function declarations with the same name and the same
1160         //     parameter-type-list as well as member function template
1161         //     declarations with the same name, the same parameter-type-list, and
1162         //     the same template parameter lists cannot be overloaded if any of
1163         //     them, but not all, have a ref-qualifier (8.3.5).
1164         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1165           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1166         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1167       }
1168       return true;
1169     }
1170 
1171     // We may not have applied the implicit const for a constexpr member
1172     // function yet (because we haven't yet resolved whether this is a static
1173     // or non-static member function). Add it now, on the assumption that this
1174     // is a redeclaration of OldMethod.
1175     auto OldQuals = OldMethod->getMethodQualifiers();
1176     auto NewQuals = NewMethod->getMethodQualifiers();
1177     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1178         !isa<CXXConstructorDecl>(NewMethod))
1179       NewQuals.addConst();
1180     // We do not allow overloading based off of '__restrict'.
1181     OldQuals.removeRestrict();
1182     NewQuals.removeRestrict();
1183     if (OldQuals != NewQuals)
1184       return true;
1185   }
1186 
1187   // Though pass_object_size is placed on parameters and takes an argument, we
1188   // consider it to be a function-level modifier for the sake of function
1189   // identity. Either the function has one or more parameters with
1190   // pass_object_size or it doesn't.
1191   if (functionHasPassObjectSizeParams(New) !=
1192       functionHasPassObjectSizeParams(Old))
1193     return true;
1194 
1195   // enable_if attributes are an order-sensitive part of the signature.
1196   for (specific_attr_iterator<EnableIfAttr>
1197          NewI = New->specific_attr_begin<EnableIfAttr>(),
1198          NewE = New->specific_attr_end<EnableIfAttr>(),
1199          OldI = Old->specific_attr_begin<EnableIfAttr>(),
1200          OldE = Old->specific_attr_end<EnableIfAttr>();
1201        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1202     if (NewI == NewE || OldI == OldE)
1203       return true;
1204     llvm::FoldingSetNodeID NewID, OldID;
1205     NewI->getCond()->Profile(NewID, Context, true);
1206     OldI->getCond()->Profile(OldID, Context, true);
1207     if (NewID != OldID)
1208       return true;
1209   }
1210 
1211   if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1212     // Don't allow overloading of destructors.  (In theory we could, but it
1213     // would be a giant change to clang.)
1214     if (isa<CXXDestructorDecl>(New))
1215       return false;
1216 
1217     CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1218                        OldTarget = IdentifyCUDATarget(Old);
1219     if (NewTarget == CFT_InvalidTarget)
1220       return false;
1221 
1222     assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.");
1223 
1224     // Allow overloading of functions with same signature and different CUDA
1225     // target attributes.
1226     return NewTarget != OldTarget;
1227   }
1228 
1229   // The signatures match; this is not an overload.
1230   return false;
1231 }
1232 
1233 /// Tries a user-defined conversion from From to ToType.
1234 ///
1235 /// Produces an implicit conversion sequence for when a standard conversion
1236 /// is not an option. See TryImplicitConversion for more information.
1237 static ImplicitConversionSequence
1238 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1239                          bool SuppressUserConversions,
1240                          bool AllowExplicit,
1241                          bool InOverloadResolution,
1242                          bool CStyle,
1243                          bool AllowObjCWritebackConversion,
1244                          bool AllowObjCConversionOnExplicit) {
1245   ImplicitConversionSequence ICS;
1246 
1247   if (SuppressUserConversions) {
1248     // We're not in the case above, so there is no conversion that
1249     // we can perform.
1250     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1251     return ICS;
1252   }
1253 
1254   // Attempt user-defined conversion.
1255   OverloadCandidateSet Conversions(From->getExprLoc(),
1256                                    OverloadCandidateSet::CSK_Normal);
1257   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1258                                   Conversions, AllowExplicit,
1259                                   AllowObjCConversionOnExplicit)) {
1260   case OR_Success:
1261   case OR_Deleted:
1262     ICS.setUserDefined();
1263     // C++ [over.ics.user]p4:
1264     //   A conversion of an expression of class type to the same class
1265     //   type is given Exact Match rank, and a conversion of an
1266     //   expression of class type to a base class of that type is
1267     //   given Conversion rank, in spite of the fact that a copy
1268     //   constructor (i.e., a user-defined conversion function) is
1269     //   called for those cases.
1270     if (CXXConstructorDecl *Constructor
1271           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1272       QualType FromCanon
1273         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1274       QualType ToCanon
1275         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1276       if (Constructor->isCopyConstructor() &&
1277           (FromCanon == ToCanon ||
1278            S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1279         // Turn this into a "standard" conversion sequence, so that it
1280         // gets ranked with standard conversion sequences.
1281         DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1282         ICS.setStandard();
1283         ICS.Standard.setAsIdentityConversion();
1284         ICS.Standard.setFromType(From->getType());
1285         ICS.Standard.setAllToTypes(ToType);
1286         ICS.Standard.CopyConstructor = Constructor;
1287         ICS.Standard.FoundCopyConstructor = Found;
1288         if (ToCanon != FromCanon)
1289           ICS.Standard.Second = ICK_Derived_To_Base;
1290       }
1291     }
1292     break;
1293 
1294   case OR_Ambiguous:
1295     ICS.setAmbiguous();
1296     ICS.Ambiguous.setFromType(From->getType());
1297     ICS.Ambiguous.setToType(ToType);
1298     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1299          Cand != Conversions.end(); ++Cand)
1300       if (Cand->Viable)
1301         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1302     break;
1303 
1304     // Fall through.
1305   case OR_No_Viable_Function:
1306     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1307     break;
1308   }
1309 
1310   return ICS;
1311 }
1312 
1313 /// TryImplicitConversion - Attempt to perform an implicit conversion
1314 /// from the given expression (Expr) to the given type (ToType). This
1315 /// function returns an implicit conversion sequence that can be used
1316 /// to perform the initialization. Given
1317 ///
1318 ///   void f(float f);
1319 ///   void g(int i) { f(i); }
1320 ///
1321 /// this routine would produce an implicit conversion sequence to
1322 /// describe the initialization of f from i, which will be a standard
1323 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1324 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1325 //
1326 /// Note that this routine only determines how the conversion can be
1327 /// performed; it does not actually perform the conversion. As such,
1328 /// it will not produce any diagnostics if no conversion is available,
1329 /// but will instead return an implicit conversion sequence of kind
1330 /// "BadConversion".
1331 ///
1332 /// If @p SuppressUserConversions, then user-defined conversions are
1333 /// not permitted.
1334 /// If @p AllowExplicit, then explicit user-defined conversions are
1335 /// permitted.
1336 ///
1337 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1338 /// writeback conversion, which allows __autoreleasing id* parameters to
1339 /// be initialized with __strong id* or __weak id* arguments.
1340 static ImplicitConversionSequence
1341 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1342                       bool SuppressUserConversions,
1343                       bool AllowExplicit,
1344                       bool InOverloadResolution,
1345                       bool CStyle,
1346                       bool AllowObjCWritebackConversion,
1347                       bool AllowObjCConversionOnExplicit) {
1348   ImplicitConversionSequence ICS;
1349   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1350                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1351     ICS.setStandard();
1352     return ICS;
1353   }
1354 
1355   if (!S.getLangOpts().CPlusPlus) {
1356     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1357     return ICS;
1358   }
1359 
1360   // C++ [over.ics.user]p4:
1361   //   A conversion of an expression of class type to the same class
1362   //   type is given Exact Match rank, and a conversion of an
1363   //   expression of class type to a base class of that type is
1364   //   given Conversion rank, in spite of the fact that a copy/move
1365   //   constructor (i.e., a user-defined conversion function) is
1366   //   called for those cases.
1367   QualType FromType = From->getType();
1368   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1369       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1370        S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1371     ICS.setStandard();
1372     ICS.Standard.setAsIdentityConversion();
1373     ICS.Standard.setFromType(FromType);
1374     ICS.Standard.setAllToTypes(ToType);
1375 
1376     // We don't actually check at this point whether there is a valid
1377     // copy/move constructor, since overloading just assumes that it
1378     // exists. When we actually perform initialization, we'll find the
1379     // appropriate constructor to copy the returned object, if needed.
1380     ICS.Standard.CopyConstructor = nullptr;
1381 
1382     // Determine whether this is considered a derived-to-base conversion.
1383     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1384       ICS.Standard.Second = ICK_Derived_To_Base;
1385 
1386     return ICS;
1387   }
1388 
1389   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1390                                   AllowExplicit, InOverloadResolution, CStyle,
1391                                   AllowObjCWritebackConversion,
1392                                   AllowObjCConversionOnExplicit);
1393 }
1394 
1395 ImplicitConversionSequence
1396 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1397                             bool SuppressUserConversions,
1398                             bool AllowExplicit,
1399                             bool InOverloadResolution,
1400                             bool CStyle,
1401                             bool AllowObjCWritebackConversion) {
1402   return ::TryImplicitConversion(*this, From, ToType,
1403                                  SuppressUserConversions, AllowExplicit,
1404                                  InOverloadResolution, CStyle,
1405                                  AllowObjCWritebackConversion,
1406                                  /*AllowObjCConversionOnExplicit=*/false);
1407 }
1408 
1409 /// PerformImplicitConversion - Perform an implicit conversion of the
1410 /// expression From to the type ToType. Returns the
1411 /// converted expression. Flavor is the kind of conversion we're
1412 /// performing, used in the error message. If @p AllowExplicit,
1413 /// explicit user-defined conversions are permitted.
1414 ExprResult
1415 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1416                                 AssignmentAction Action, bool AllowExplicit) {
1417   ImplicitConversionSequence ICS;
1418   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1419 }
1420 
1421 ExprResult
1422 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1423                                 AssignmentAction Action, bool AllowExplicit,
1424                                 ImplicitConversionSequence& ICS) {
1425   if (checkPlaceholderForOverload(*this, From))
1426     return ExprError();
1427 
1428   // Objective-C ARC: Determine whether we will allow the writeback conversion.
1429   bool AllowObjCWritebackConversion
1430     = getLangOpts().ObjCAutoRefCount &&
1431       (Action == AA_Passing || Action == AA_Sending);
1432   if (getLangOpts().ObjC)
1433     CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1434                                       From->getType(), From);
1435   ICS = ::TryImplicitConversion(*this, From, ToType,
1436                                 /*SuppressUserConversions=*/false,
1437                                 AllowExplicit,
1438                                 /*InOverloadResolution=*/false,
1439                                 /*CStyle=*/false,
1440                                 AllowObjCWritebackConversion,
1441                                 /*AllowObjCConversionOnExplicit=*/false);
1442   return PerformImplicitConversion(From, ToType, ICS, Action);
1443 }
1444 
1445 /// Determine whether the conversion from FromType to ToType is a valid
1446 /// conversion that strips "noexcept" or "noreturn" off the nested function
1447 /// type.
1448 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1449                                 QualType &ResultTy) {
1450   if (Context.hasSameUnqualifiedType(FromType, ToType))
1451     return false;
1452 
1453   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1454   //                    or F(t noexcept) -> F(t)
1455   // where F adds one of the following at most once:
1456   //   - a pointer
1457   //   - a member pointer
1458   //   - a block pointer
1459   // Changes here need matching changes in FindCompositePointerType.
1460   CanQualType CanTo = Context.getCanonicalType(ToType);
1461   CanQualType CanFrom = Context.getCanonicalType(FromType);
1462   Type::TypeClass TyClass = CanTo->getTypeClass();
1463   if (TyClass != CanFrom->getTypeClass()) return false;
1464   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1465     if (TyClass == Type::Pointer) {
1466       CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1467       CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1468     } else if (TyClass == Type::BlockPointer) {
1469       CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1470       CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1471     } else if (TyClass == Type::MemberPointer) {
1472       auto ToMPT = CanTo.getAs<MemberPointerType>();
1473       auto FromMPT = CanFrom.getAs<MemberPointerType>();
1474       // A function pointer conversion cannot change the class of the function.
1475       if (ToMPT->getClass() != FromMPT->getClass())
1476         return false;
1477       CanTo = ToMPT->getPointeeType();
1478       CanFrom = FromMPT->getPointeeType();
1479     } else {
1480       return false;
1481     }
1482 
1483     TyClass = CanTo->getTypeClass();
1484     if (TyClass != CanFrom->getTypeClass()) return false;
1485     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1486       return false;
1487   }
1488 
1489   const auto *FromFn = cast<FunctionType>(CanFrom);
1490   FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1491 
1492   const auto *ToFn = cast<FunctionType>(CanTo);
1493   FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1494 
1495   bool Changed = false;
1496 
1497   // Drop 'noreturn' if not present in target type.
1498   if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1499     FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1500     Changed = true;
1501   }
1502 
1503   // Drop 'noexcept' if not present in target type.
1504   if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1505     const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1506     if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1507       FromFn = cast<FunctionType>(
1508           Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1509                                                    EST_None)
1510                  .getTypePtr());
1511       Changed = true;
1512     }
1513 
1514     // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1515     // only if the ExtParameterInfo lists of the two function prototypes can be
1516     // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1517     SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1518     bool CanUseToFPT, CanUseFromFPT;
1519     if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1520                                       CanUseFromFPT, NewParamInfos) &&
1521         CanUseToFPT && !CanUseFromFPT) {
1522       FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1523       ExtInfo.ExtParameterInfos =
1524           NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1525       QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1526                                             FromFPT->getParamTypes(), ExtInfo);
1527       FromFn = QT->getAs<FunctionType>();
1528       Changed = true;
1529     }
1530   }
1531 
1532   if (!Changed)
1533     return false;
1534 
1535   assert(QualType(FromFn, 0).isCanonical());
1536   if (QualType(FromFn, 0) != CanTo) return false;
1537 
1538   ResultTy = ToType;
1539   return true;
1540 }
1541 
1542 /// Determine whether the conversion from FromType to ToType is a valid
1543 /// vector conversion.
1544 ///
1545 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1546 /// conversion.
1547 static bool IsVectorConversion(Sema &S, QualType FromType,
1548                                QualType ToType, ImplicitConversionKind &ICK) {
1549   // We need at least one of these types to be a vector type to have a vector
1550   // conversion.
1551   if (!ToType->isVectorType() && !FromType->isVectorType())
1552     return false;
1553 
1554   // Identical types require no conversions.
1555   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1556     return false;
1557 
1558   // There are no conversions between extended vector types, only identity.
1559   if (ToType->isExtVectorType()) {
1560     // There are no conversions between extended vector types other than the
1561     // identity conversion.
1562     if (FromType->isExtVectorType())
1563       return false;
1564 
1565     // Vector splat from any arithmetic type to a vector.
1566     if (FromType->isArithmeticType()) {
1567       ICK = ICK_Vector_Splat;
1568       return true;
1569     }
1570   }
1571 
1572   // We can perform the conversion between vector types in the following cases:
1573   // 1)vector types are equivalent AltiVec and GCC vector types
1574   // 2)lax vector conversions are permitted and the vector types are of the
1575   //   same size
1576   if (ToType->isVectorType() && FromType->isVectorType()) {
1577     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1578         S.isLaxVectorConversion(FromType, ToType)) {
1579       ICK = ICK_Vector_Conversion;
1580       return true;
1581     }
1582   }
1583 
1584   return false;
1585 }
1586 
1587 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1588                                 bool InOverloadResolution,
1589                                 StandardConversionSequence &SCS,
1590                                 bool CStyle);
1591 
1592 /// IsStandardConversion - Determines whether there is a standard
1593 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1594 /// expression From to the type ToType. Standard conversion sequences
1595 /// only consider non-class types; for conversions that involve class
1596 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1597 /// contain the standard conversion sequence required to perform this
1598 /// conversion and this routine will return true. Otherwise, this
1599 /// routine will return false and the value of SCS is unspecified.
1600 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1601                                  bool InOverloadResolution,
1602                                  StandardConversionSequence &SCS,
1603                                  bool CStyle,
1604                                  bool AllowObjCWritebackConversion) {
1605   QualType FromType = From->getType();
1606 
1607   // Standard conversions (C++ [conv])
1608   SCS.setAsIdentityConversion();
1609   SCS.IncompatibleObjC = false;
1610   SCS.setFromType(FromType);
1611   SCS.CopyConstructor = nullptr;
1612 
1613   // There are no standard conversions for class types in C++, so
1614   // abort early. When overloading in C, however, we do permit them.
1615   if (S.getLangOpts().CPlusPlus &&
1616       (FromType->isRecordType() || ToType->isRecordType()))
1617     return false;
1618 
1619   // The first conversion can be an lvalue-to-rvalue conversion,
1620   // array-to-pointer conversion, or function-to-pointer conversion
1621   // (C++ 4p1).
1622 
1623   if (FromType == S.Context.OverloadTy) {
1624     DeclAccessPair AccessPair;
1625     if (FunctionDecl *Fn
1626           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1627                                                  AccessPair)) {
1628       // We were able to resolve the address of the overloaded function,
1629       // so we can convert to the type of that function.
1630       FromType = Fn->getType();
1631       SCS.setFromType(FromType);
1632 
1633       // we can sometimes resolve &foo<int> regardless of ToType, so check
1634       // if the type matches (identity) or we are converting to bool
1635       if (!S.Context.hasSameUnqualifiedType(
1636                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1637         QualType resultTy;
1638         // if the function type matches except for [[noreturn]], it's ok
1639         if (!S.IsFunctionConversion(FromType,
1640               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1641           // otherwise, only a boolean conversion is standard
1642           if (!ToType->isBooleanType())
1643             return false;
1644       }
1645 
1646       // Check if the "from" expression is taking the address of an overloaded
1647       // function and recompute the FromType accordingly. Take advantage of the
1648       // fact that non-static member functions *must* have such an address-of
1649       // expression.
1650       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1651       if (Method && !Method->isStatic()) {
1652         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1653                "Non-unary operator on non-static member address");
1654         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1655                == UO_AddrOf &&
1656                "Non-address-of operator on non-static member address");
1657         const Type *ClassType
1658           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1659         FromType = S.Context.getMemberPointerType(FromType, ClassType);
1660       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1661         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1662                UO_AddrOf &&
1663                "Non-address-of operator for overloaded function expression");
1664         FromType = S.Context.getPointerType(FromType);
1665       }
1666 
1667       // Check that we've computed the proper type after overload resolution.
1668       // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1669       // be calling it from within an NDEBUG block.
1670       assert(S.Context.hasSameType(
1671         FromType,
1672         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1673     } else {
1674       return false;
1675     }
1676   }
1677   // Lvalue-to-rvalue conversion (C++11 4.1):
1678   //   A glvalue (3.10) of a non-function, non-array type T can
1679   //   be converted to a prvalue.
1680   bool argIsLValue = From->isGLValue();
1681   if (argIsLValue &&
1682       !FromType->isFunctionType() && !FromType->isArrayType() &&
1683       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1684     SCS.First = ICK_Lvalue_To_Rvalue;
1685 
1686     // C11 6.3.2.1p2:
1687     //   ... if the lvalue has atomic type, the value has the non-atomic version
1688     //   of the type of the lvalue ...
1689     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1690       FromType = Atomic->getValueType();
1691 
1692     // If T is a non-class type, the type of the rvalue is the
1693     // cv-unqualified version of T. Otherwise, the type of the rvalue
1694     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1695     // just strip the qualifiers because they don't matter.
1696     FromType = FromType.getUnqualifiedType();
1697   } else if (FromType->isArrayType()) {
1698     // Array-to-pointer conversion (C++ 4.2)
1699     SCS.First = ICK_Array_To_Pointer;
1700 
1701     // An lvalue or rvalue of type "array of N T" or "array of unknown
1702     // bound of T" can be converted to an rvalue of type "pointer to
1703     // T" (C++ 4.2p1).
1704     FromType = S.Context.getArrayDecayedType(FromType);
1705 
1706     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1707       // This conversion is deprecated in C++03 (D.4)
1708       SCS.DeprecatedStringLiteralToCharPtr = true;
1709 
1710       // For the purpose of ranking in overload resolution
1711       // (13.3.3.1.1), this conversion is considered an
1712       // array-to-pointer conversion followed by a qualification
1713       // conversion (4.4). (C++ 4.2p2)
1714       SCS.Second = ICK_Identity;
1715       SCS.Third = ICK_Qualification;
1716       SCS.QualificationIncludesObjCLifetime = false;
1717       SCS.setAllToTypes(FromType);
1718       return true;
1719     }
1720   } else if (FromType->isFunctionType() && argIsLValue) {
1721     // Function-to-pointer conversion (C++ 4.3).
1722     SCS.First = ICK_Function_To_Pointer;
1723 
1724     if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1725       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1726         if (!S.checkAddressOfFunctionIsAvailable(FD))
1727           return false;
1728 
1729     // An lvalue of function type T can be converted to an rvalue of
1730     // type "pointer to T." The result is a pointer to the
1731     // function. (C++ 4.3p1).
1732     FromType = S.Context.getPointerType(FromType);
1733   } else {
1734     // We don't require any conversions for the first step.
1735     SCS.First = ICK_Identity;
1736   }
1737   SCS.setToType(0, FromType);
1738 
1739   // The second conversion can be an integral promotion, floating
1740   // point promotion, integral conversion, floating point conversion,
1741   // floating-integral conversion, pointer conversion,
1742   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1743   // For overloading in C, this can also be a "compatible-type"
1744   // conversion.
1745   bool IncompatibleObjC = false;
1746   ImplicitConversionKind SecondICK = ICK_Identity;
1747   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1748     // The unqualified versions of the types are the same: there's no
1749     // conversion to do.
1750     SCS.Second = ICK_Identity;
1751   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1752     // Integral promotion (C++ 4.5).
1753     SCS.Second = ICK_Integral_Promotion;
1754     FromType = ToType.getUnqualifiedType();
1755   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1756     // Floating point promotion (C++ 4.6).
1757     SCS.Second = ICK_Floating_Promotion;
1758     FromType = ToType.getUnqualifiedType();
1759   } else if (S.IsComplexPromotion(FromType, ToType)) {
1760     // Complex promotion (Clang extension)
1761     SCS.Second = ICK_Complex_Promotion;
1762     FromType = ToType.getUnqualifiedType();
1763   } else if (ToType->isBooleanType() &&
1764              (FromType->isArithmeticType() ||
1765               FromType->isAnyPointerType() ||
1766               FromType->isBlockPointerType() ||
1767               FromType->isMemberPointerType() ||
1768               FromType->isNullPtrType())) {
1769     // Boolean conversions (C++ 4.12).
1770     SCS.Second = ICK_Boolean_Conversion;
1771     FromType = S.Context.BoolTy;
1772   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1773              ToType->isIntegralType(S.Context)) {
1774     // Integral conversions (C++ 4.7).
1775     SCS.Second = ICK_Integral_Conversion;
1776     FromType = ToType.getUnqualifiedType();
1777   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1778     // Complex conversions (C99 6.3.1.6)
1779     SCS.Second = ICK_Complex_Conversion;
1780     FromType = ToType.getUnqualifiedType();
1781   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1782              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1783     // Complex-real conversions (C99 6.3.1.7)
1784     SCS.Second = ICK_Complex_Real;
1785     FromType = ToType.getUnqualifiedType();
1786   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1787     // FIXME: disable conversions between long double and __float128 if
1788     // their representation is different until there is back end support
1789     // We of course allow this conversion if long double is really double.
1790     if (&S.Context.getFloatTypeSemantics(FromType) !=
1791         &S.Context.getFloatTypeSemantics(ToType)) {
1792       bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1793                                     ToType == S.Context.LongDoubleTy) ||
1794                                    (FromType == S.Context.LongDoubleTy &&
1795                                     ToType == S.Context.Float128Ty));
1796       if (Float128AndLongDouble &&
1797           (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1798            &llvm::APFloat::PPCDoubleDouble()))
1799         return false;
1800     }
1801     // Floating point conversions (C++ 4.8).
1802     SCS.Second = ICK_Floating_Conversion;
1803     FromType = ToType.getUnqualifiedType();
1804   } else if ((FromType->isRealFloatingType() &&
1805               ToType->isIntegralType(S.Context)) ||
1806              (FromType->isIntegralOrUnscopedEnumerationType() &&
1807               ToType->isRealFloatingType())) {
1808     // Floating-integral conversions (C++ 4.9).
1809     SCS.Second = ICK_Floating_Integral;
1810     FromType = ToType.getUnqualifiedType();
1811   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1812     SCS.Second = ICK_Block_Pointer_Conversion;
1813   } else if (AllowObjCWritebackConversion &&
1814              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1815     SCS.Second = ICK_Writeback_Conversion;
1816   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1817                                    FromType, IncompatibleObjC)) {
1818     // Pointer conversions (C++ 4.10).
1819     SCS.Second = ICK_Pointer_Conversion;
1820     SCS.IncompatibleObjC = IncompatibleObjC;
1821     FromType = FromType.getUnqualifiedType();
1822   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1823                                          InOverloadResolution, FromType)) {
1824     // Pointer to member conversions (4.11).
1825     SCS.Second = ICK_Pointer_Member;
1826   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1827     SCS.Second = SecondICK;
1828     FromType = ToType.getUnqualifiedType();
1829   } else if (!S.getLangOpts().CPlusPlus &&
1830              S.Context.typesAreCompatible(ToType, FromType)) {
1831     // Compatible conversions (Clang extension for C function overloading)
1832     SCS.Second = ICK_Compatible_Conversion;
1833     FromType = ToType.getUnqualifiedType();
1834   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1835                                              InOverloadResolution,
1836                                              SCS, CStyle)) {
1837     SCS.Second = ICK_TransparentUnionConversion;
1838     FromType = ToType;
1839   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1840                                  CStyle)) {
1841     // tryAtomicConversion has updated the standard conversion sequence
1842     // appropriately.
1843     return true;
1844   } else if (ToType->isEventT() &&
1845              From->isIntegerConstantExpr(S.getASTContext()) &&
1846              From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1847     SCS.Second = ICK_Zero_Event_Conversion;
1848     FromType = ToType;
1849   } else if (ToType->isQueueT() &&
1850              From->isIntegerConstantExpr(S.getASTContext()) &&
1851              (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1852     SCS.Second = ICK_Zero_Queue_Conversion;
1853     FromType = ToType;
1854   } else {
1855     // No second conversion required.
1856     SCS.Second = ICK_Identity;
1857   }
1858   SCS.setToType(1, FromType);
1859 
1860   // The third conversion can be a function pointer conversion or a
1861   // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1862   bool ObjCLifetimeConversion;
1863   if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1864     // Function pointer conversions (removing 'noexcept') including removal of
1865     // 'noreturn' (Clang extension).
1866     SCS.Third = ICK_Function_Conversion;
1867   } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1868                                          ObjCLifetimeConversion)) {
1869     SCS.Third = ICK_Qualification;
1870     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1871     FromType = ToType;
1872   } else {
1873     // No conversion required
1874     SCS.Third = ICK_Identity;
1875   }
1876 
1877   // C++ [over.best.ics]p6:
1878   //   [...] Any difference in top-level cv-qualification is
1879   //   subsumed by the initialization itself and does not constitute
1880   //   a conversion. [...]
1881   QualType CanonFrom = S.Context.getCanonicalType(FromType);
1882   QualType CanonTo = S.Context.getCanonicalType(ToType);
1883   if (CanonFrom.getLocalUnqualifiedType()
1884                                      == CanonTo.getLocalUnqualifiedType() &&
1885       CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1886     FromType = ToType;
1887     CanonFrom = CanonTo;
1888   }
1889 
1890   SCS.setToType(2, FromType);
1891 
1892   if (CanonFrom == CanonTo)
1893     return true;
1894 
1895   // If we have not converted the argument type to the parameter type,
1896   // this is a bad conversion sequence, unless we're resolving an overload in C.
1897   if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1898     return false;
1899 
1900   ExprResult ER = ExprResult{From};
1901   Sema::AssignConvertType Conv =
1902       S.CheckSingleAssignmentConstraints(ToType, ER,
1903                                          /*Diagnose=*/false,
1904                                          /*DiagnoseCFAudited=*/false,
1905                                          /*ConvertRHS=*/false);
1906   ImplicitConversionKind SecondConv;
1907   switch (Conv) {
1908   case Sema::Compatible:
1909     SecondConv = ICK_C_Only_Conversion;
1910     break;
1911   // For our purposes, discarding qualifiers is just as bad as using an
1912   // incompatible pointer. Note that an IncompatiblePointer conversion can drop
1913   // qualifiers, as well.
1914   case Sema::CompatiblePointerDiscardsQualifiers:
1915   case Sema::IncompatiblePointer:
1916   case Sema::IncompatiblePointerSign:
1917     SecondConv = ICK_Incompatible_Pointer_Conversion;
1918     break;
1919   default:
1920     return false;
1921   }
1922 
1923   // First can only be an lvalue conversion, so we pretend that this was the
1924   // second conversion. First should already be valid from earlier in the
1925   // function.
1926   SCS.Second = SecondConv;
1927   SCS.setToType(1, ToType);
1928 
1929   // Third is Identity, because Second should rank us worse than any other
1930   // conversion. This could also be ICK_Qualification, but it's simpler to just
1931   // lump everything in with the second conversion, and we don't gain anything
1932   // from making this ICK_Qualification.
1933   SCS.Third = ICK_Identity;
1934   SCS.setToType(2, ToType);
1935   return true;
1936 }
1937 
1938 static bool
1939 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1940                                      QualType &ToType,
1941                                      bool InOverloadResolution,
1942                                      StandardConversionSequence &SCS,
1943                                      bool CStyle) {
1944 
1945   const RecordType *UT = ToType->getAsUnionType();
1946   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1947     return false;
1948   // The field to initialize within the transparent union.
1949   RecordDecl *UD = UT->getDecl();
1950   // It's compatible if the expression matches any of the fields.
1951   for (const auto *it : UD->fields()) {
1952     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1953                              CStyle, /*ObjCWritebackConversion=*/false)) {
1954       ToType = it->getType();
1955       return true;
1956     }
1957   }
1958   return false;
1959 }
1960 
1961 /// IsIntegralPromotion - Determines whether the conversion from the
1962 /// expression From (whose potentially-adjusted type is FromType) to
1963 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
1964 /// sets PromotedType to the promoted type.
1965 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1966   const BuiltinType *To = ToType->getAs<BuiltinType>();
1967   // All integers are built-in.
1968   if (!To) {
1969     return false;
1970   }
1971 
1972   // An rvalue of type char, signed char, unsigned char, short int, or
1973   // unsigned short int can be converted to an rvalue of type int if
1974   // int can represent all the values of the source type; otherwise,
1975   // the source rvalue can be converted to an rvalue of type unsigned
1976   // int (C++ 4.5p1).
1977   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1978       !FromType->isEnumeralType()) {
1979     if (// We can promote any signed, promotable integer type to an int
1980         (FromType->isSignedIntegerType() ||
1981          // We can promote any unsigned integer type whose size is
1982          // less than int to an int.
1983          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
1984       return To->getKind() == BuiltinType::Int;
1985     }
1986 
1987     return To->getKind() == BuiltinType::UInt;
1988   }
1989 
1990   // C++11 [conv.prom]p3:
1991   //   A prvalue of an unscoped enumeration type whose underlying type is not
1992   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1993   //   following types that can represent all the values of the enumeration
1994   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1995   //   unsigned int, long int, unsigned long int, long long int, or unsigned
1996   //   long long int. If none of the types in that list can represent all the
1997   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1998   //   type can be converted to an rvalue a prvalue of the extended integer type
1999   //   with lowest integer conversion rank (4.13) greater than the rank of long
2000   //   long in which all the values of the enumeration can be represented. If
2001   //   there are two such extended types, the signed one is chosen.
2002   // C++11 [conv.prom]p4:
2003   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
2004   //   can be converted to a prvalue of its underlying type. Moreover, if
2005   //   integral promotion can be applied to its underlying type, a prvalue of an
2006   //   unscoped enumeration type whose underlying type is fixed can also be
2007   //   converted to a prvalue of the promoted underlying type.
2008   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2009     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2010     // provided for a scoped enumeration.
2011     if (FromEnumType->getDecl()->isScoped())
2012       return false;
2013 
2014     // We can perform an integral promotion to the underlying type of the enum,
2015     // even if that's not the promoted type. Note that the check for promoting
2016     // the underlying type is based on the type alone, and does not consider
2017     // the bitfield-ness of the actual source expression.
2018     if (FromEnumType->getDecl()->isFixed()) {
2019       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2020       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2021              IsIntegralPromotion(nullptr, Underlying, ToType);
2022     }
2023 
2024     // We have already pre-calculated the promotion type, so this is trivial.
2025     if (ToType->isIntegerType() &&
2026         isCompleteType(From->getBeginLoc(), FromType))
2027       return Context.hasSameUnqualifiedType(
2028           ToType, FromEnumType->getDecl()->getPromotionType());
2029 
2030     // C++ [conv.prom]p5:
2031     //   If the bit-field has an enumerated type, it is treated as any other
2032     //   value of that type for promotion purposes.
2033     //
2034     // ... so do not fall through into the bit-field checks below in C++.
2035     if (getLangOpts().CPlusPlus)
2036       return false;
2037   }
2038 
2039   // C++0x [conv.prom]p2:
2040   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2041   //   to an rvalue a prvalue of the first of the following types that can
2042   //   represent all the values of its underlying type: int, unsigned int,
2043   //   long int, unsigned long int, long long int, or unsigned long long int.
2044   //   If none of the types in that list can represent all the values of its
2045   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
2046   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
2047   //   type.
2048   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2049       ToType->isIntegerType()) {
2050     // Determine whether the type we're converting from is signed or
2051     // unsigned.
2052     bool FromIsSigned = FromType->isSignedIntegerType();
2053     uint64_t FromSize = Context.getTypeSize(FromType);
2054 
2055     // The types we'll try to promote to, in the appropriate
2056     // order. Try each of these types.
2057     QualType PromoteTypes[6] = {
2058       Context.IntTy, Context.UnsignedIntTy,
2059       Context.LongTy, Context.UnsignedLongTy ,
2060       Context.LongLongTy, Context.UnsignedLongLongTy
2061     };
2062     for (int Idx = 0; Idx < 6; ++Idx) {
2063       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2064       if (FromSize < ToSize ||
2065           (FromSize == ToSize &&
2066            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2067         // We found the type that we can promote to. If this is the
2068         // type we wanted, we have a promotion. Otherwise, no
2069         // promotion.
2070         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2071       }
2072     }
2073   }
2074 
2075   // An rvalue for an integral bit-field (9.6) can be converted to an
2076   // rvalue of type int if int can represent all the values of the
2077   // bit-field; otherwise, it can be converted to unsigned int if
2078   // unsigned int can represent all the values of the bit-field. If
2079   // the bit-field is larger yet, no integral promotion applies to
2080   // it. If the bit-field has an enumerated type, it is treated as any
2081   // other value of that type for promotion purposes (C++ 4.5p3).
2082   // FIXME: We should delay checking of bit-fields until we actually perform the
2083   // conversion.
2084   //
2085   // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2086   // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2087   // bit-fields and those whose underlying type is larger than int) for GCC
2088   // compatibility.
2089   if (From) {
2090     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2091       llvm::APSInt BitWidth;
2092       if (FromType->isIntegralType(Context) &&
2093           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
2094         llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
2095         ToSize = Context.getTypeSize(ToType);
2096 
2097         // Are we promoting to an int from a bitfield that fits in an int?
2098         if (BitWidth < ToSize ||
2099             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
2100           return To->getKind() == BuiltinType::Int;
2101         }
2102 
2103         // Are we promoting to an unsigned int from an unsigned bitfield
2104         // that fits into an unsigned int?
2105         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
2106           return To->getKind() == BuiltinType::UInt;
2107         }
2108 
2109         return false;
2110       }
2111     }
2112   }
2113 
2114   // An rvalue of type bool can be converted to an rvalue of type int,
2115   // with false becoming zero and true becoming one (C++ 4.5p4).
2116   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2117     return true;
2118   }
2119 
2120   return false;
2121 }
2122 
2123 /// IsFloatingPointPromotion - Determines whether the conversion from
2124 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2125 /// returns true and sets PromotedType to the promoted type.
2126 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2127   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2128     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2129       /// An rvalue of type float can be converted to an rvalue of type
2130       /// double. (C++ 4.6p1).
2131       if (FromBuiltin->getKind() == BuiltinType::Float &&
2132           ToBuiltin->getKind() == BuiltinType::Double)
2133         return true;
2134 
2135       // C99 6.3.1.5p1:
2136       //   When a float is promoted to double or long double, or a
2137       //   double is promoted to long double [...].
2138       if (!getLangOpts().CPlusPlus &&
2139           (FromBuiltin->getKind() == BuiltinType::Float ||
2140            FromBuiltin->getKind() == BuiltinType::Double) &&
2141           (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2142            ToBuiltin->getKind() == BuiltinType::Float128))
2143         return true;
2144 
2145       // Half can be promoted to float.
2146       if (!getLangOpts().NativeHalfType &&
2147            FromBuiltin->getKind() == BuiltinType::Half &&
2148           ToBuiltin->getKind() == BuiltinType::Float)
2149         return true;
2150     }
2151 
2152   return false;
2153 }
2154 
2155 /// Determine if a conversion is a complex promotion.
2156 ///
2157 /// A complex promotion is defined as a complex -> complex conversion
2158 /// where the conversion between the underlying real types is a
2159 /// floating-point or integral promotion.
2160 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2161   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2162   if (!FromComplex)
2163     return false;
2164 
2165   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2166   if (!ToComplex)
2167     return false;
2168 
2169   return IsFloatingPointPromotion(FromComplex->getElementType(),
2170                                   ToComplex->getElementType()) ||
2171     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2172                         ToComplex->getElementType());
2173 }
2174 
2175 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2176 /// the pointer type FromPtr to a pointer to type ToPointee, with the
2177 /// same type qualifiers as FromPtr has on its pointee type. ToType,
2178 /// if non-empty, will be a pointer to ToType that may or may not have
2179 /// the right set of qualifiers on its pointee.
2180 ///
2181 static QualType
2182 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2183                                    QualType ToPointee, QualType ToType,
2184                                    ASTContext &Context,
2185                                    bool StripObjCLifetime = false) {
2186   assert((FromPtr->getTypeClass() == Type::Pointer ||
2187           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2188          "Invalid similarly-qualified pointer type");
2189 
2190   /// Conversions to 'id' subsume cv-qualifier conversions.
2191   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2192     return ToType.getUnqualifiedType();
2193 
2194   QualType CanonFromPointee
2195     = Context.getCanonicalType(FromPtr->getPointeeType());
2196   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2197   Qualifiers Quals = CanonFromPointee.getQualifiers();
2198 
2199   if (StripObjCLifetime)
2200     Quals.removeObjCLifetime();
2201 
2202   // Exact qualifier match -> return the pointer type we're converting to.
2203   if (CanonToPointee.getLocalQualifiers() == Quals) {
2204     // ToType is exactly what we need. Return it.
2205     if (!ToType.isNull())
2206       return ToType.getUnqualifiedType();
2207 
2208     // Build a pointer to ToPointee. It has the right qualifiers
2209     // already.
2210     if (isa<ObjCObjectPointerType>(ToType))
2211       return Context.getObjCObjectPointerType(ToPointee);
2212     return Context.getPointerType(ToPointee);
2213   }
2214 
2215   // Just build a canonical type that has the right qualifiers.
2216   QualType QualifiedCanonToPointee
2217     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2218 
2219   if (isa<ObjCObjectPointerType>(ToType))
2220     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2221   return Context.getPointerType(QualifiedCanonToPointee);
2222 }
2223 
2224 static bool isNullPointerConstantForConversion(Expr *Expr,
2225                                                bool InOverloadResolution,
2226                                                ASTContext &Context) {
2227   // Handle value-dependent integral null pointer constants correctly.
2228   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2229   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2230       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2231     return !InOverloadResolution;
2232 
2233   return Expr->isNullPointerConstant(Context,
2234                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2235                                         : Expr::NPC_ValueDependentIsNull);
2236 }
2237 
2238 /// IsPointerConversion - Determines whether the conversion of the
2239 /// expression From, which has the (possibly adjusted) type FromType,
2240 /// can be converted to the type ToType via a pointer conversion (C++
2241 /// 4.10). If so, returns true and places the converted type (that
2242 /// might differ from ToType in its cv-qualifiers at some level) into
2243 /// ConvertedType.
2244 ///
2245 /// This routine also supports conversions to and from block pointers
2246 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2247 /// pointers to interfaces. FIXME: Once we've determined the
2248 /// appropriate overloading rules for Objective-C, we may want to
2249 /// split the Objective-C checks into a different routine; however,
2250 /// GCC seems to consider all of these conversions to be pointer
2251 /// conversions, so for now they live here. IncompatibleObjC will be
2252 /// set if the conversion is an allowed Objective-C conversion that
2253 /// should result in a warning.
2254 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2255                                bool InOverloadResolution,
2256                                QualType& ConvertedType,
2257                                bool &IncompatibleObjC) {
2258   IncompatibleObjC = false;
2259   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2260                               IncompatibleObjC))
2261     return true;
2262 
2263   // Conversion from a null pointer constant to any Objective-C pointer type.
2264   if (ToType->isObjCObjectPointerType() &&
2265       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2266     ConvertedType = ToType;
2267     return true;
2268   }
2269 
2270   // Blocks: Block pointers can be converted to void*.
2271   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2272       ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2273     ConvertedType = ToType;
2274     return true;
2275   }
2276   // Blocks: A null pointer constant can be converted to a block
2277   // pointer type.
2278   if (ToType->isBlockPointerType() &&
2279       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2280     ConvertedType = ToType;
2281     return true;
2282   }
2283 
2284   // If the left-hand-side is nullptr_t, the right side can be a null
2285   // pointer constant.
2286   if (ToType->isNullPtrType() &&
2287       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2288     ConvertedType = ToType;
2289     return true;
2290   }
2291 
2292   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2293   if (!ToTypePtr)
2294     return false;
2295 
2296   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2297   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2298     ConvertedType = ToType;
2299     return true;
2300   }
2301 
2302   // Beyond this point, both types need to be pointers
2303   // , including objective-c pointers.
2304   QualType ToPointeeType = ToTypePtr->getPointeeType();
2305   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2306       !getLangOpts().ObjCAutoRefCount) {
2307     ConvertedType = BuildSimilarlyQualifiedPointerType(
2308                                       FromType->getAs<ObjCObjectPointerType>(),
2309                                                        ToPointeeType,
2310                                                        ToType, Context);
2311     return true;
2312   }
2313   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2314   if (!FromTypePtr)
2315     return false;
2316 
2317   QualType FromPointeeType = FromTypePtr->getPointeeType();
2318 
2319   // If the unqualified pointee types are the same, this can't be a
2320   // pointer conversion, so don't do all of the work below.
2321   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2322     return false;
2323 
2324   // An rvalue of type "pointer to cv T," where T is an object type,
2325   // can be converted to an rvalue of type "pointer to cv void" (C++
2326   // 4.10p2).
2327   if (FromPointeeType->isIncompleteOrObjectType() &&
2328       ToPointeeType->isVoidType()) {
2329     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2330                                                        ToPointeeType,
2331                                                        ToType, Context,
2332                                                    /*StripObjCLifetime=*/true);
2333     return true;
2334   }
2335 
2336   // MSVC allows implicit function to void* type conversion.
2337   if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2338       ToPointeeType->isVoidType()) {
2339     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2340                                                        ToPointeeType,
2341                                                        ToType, Context);
2342     return true;
2343   }
2344 
2345   // When we're overloading in C, we allow a special kind of pointer
2346   // conversion for compatible-but-not-identical pointee types.
2347   if (!getLangOpts().CPlusPlus &&
2348       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2349     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2350                                                        ToPointeeType,
2351                                                        ToType, Context);
2352     return true;
2353   }
2354 
2355   // C++ [conv.ptr]p3:
2356   //
2357   //   An rvalue of type "pointer to cv D," where D is a class type,
2358   //   can be converted to an rvalue of type "pointer to cv B," where
2359   //   B is a base class (clause 10) of D. If B is an inaccessible
2360   //   (clause 11) or ambiguous (10.2) base class of D, a program that
2361   //   necessitates this conversion is ill-formed. The result of the
2362   //   conversion is a pointer to the base class sub-object of the
2363   //   derived class object. The null pointer value is converted to
2364   //   the null pointer value of the destination type.
2365   //
2366   // Note that we do not check for ambiguity or inaccessibility
2367   // here. That is handled by CheckPointerConversion.
2368   if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2369       ToPointeeType->isRecordType() &&
2370       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2371       IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2372     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2373                                                        ToPointeeType,
2374                                                        ToType, Context);
2375     return true;
2376   }
2377 
2378   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2379       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2380     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2381                                                        ToPointeeType,
2382                                                        ToType, Context);
2383     return true;
2384   }
2385 
2386   return false;
2387 }
2388 
2389 /// Adopt the given qualifiers for the given type.
2390 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2391   Qualifiers TQs = T.getQualifiers();
2392 
2393   // Check whether qualifiers already match.
2394   if (TQs == Qs)
2395     return T;
2396 
2397   if (Qs.compatiblyIncludes(TQs))
2398     return Context.getQualifiedType(T, Qs);
2399 
2400   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2401 }
2402 
2403 /// isObjCPointerConversion - Determines whether this is an
2404 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2405 /// with the same arguments and return values.
2406 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2407                                    QualType& ConvertedType,
2408                                    bool &IncompatibleObjC) {
2409   if (!getLangOpts().ObjC)
2410     return false;
2411 
2412   // The set of qualifiers on the type we're converting from.
2413   Qualifiers FromQualifiers = FromType.getQualifiers();
2414 
2415   // First, we handle all conversions on ObjC object pointer types.
2416   const ObjCObjectPointerType* ToObjCPtr =
2417     ToType->getAs<ObjCObjectPointerType>();
2418   const ObjCObjectPointerType *FromObjCPtr =
2419     FromType->getAs<ObjCObjectPointerType>();
2420 
2421   if (ToObjCPtr && FromObjCPtr) {
2422     // If the pointee types are the same (ignoring qualifications),
2423     // then this is not a pointer conversion.
2424     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2425                                        FromObjCPtr->getPointeeType()))
2426       return false;
2427 
2428     // Conversion between Objective-C pointers.
2429     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2430       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2431       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2432       if (getLangOpts().CPlusPlus && LHS && RHS &&
2433           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2434                                                 FromObjCPtr->getPointeeType()))
2435         return false;
2436       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2437                                                    ToObjCPtr->getPointeeType(),
2438                                                          ToType, Context);
2439       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2440       return true;
2441     }
2442 
2443     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2444       // Okay: this is some kind of implicit downcast of Objective-C
2445       // interfaces, which is permitted. However, we're going to
2446       // complain about it.
2447       IncompatibleObjC = true;
2448       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2449                                                    ToObjCPtr->getPointeeType(),
2450                                                          ToType, Context);
2451       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2452       return true;
2453     }
2454   }
2455   // Beyond this point, both types need to be C pointers or block pointers.
2456   QualType ToPointeeType;
2457   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2458     ToPointeeType = ToCPtr->getPointeeType();
2459   else if (const BlockPointerType *ToBlockPtr =
2460             ToType->getAs<BlockPointerType>()) {
2461     // Objective C++: We're able to convert from a pointer to any object
2462     // to a block pointer type.
2463     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2464       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2465       return true;
2466     }
2467     ToPointeeType = ToBlockPtr->getPointeeType();
2468   }
2469   else if (FromType->getAs<BlockPointerType>() &&
2470            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2471     // Objective C++: We're able to convert from a block pointer type to a
2472     // pointer to any object.
2473     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2474     return true;
2475   }
2476   else
2477     return false;
2478 
2479   QualType FromPointeeType;
2480   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2481     FromPointeeType = FromCPtr->getPointeeType();
2482   else if (const BlockPointerType *FromBlockPtr =
2483            FromType->getAs<BlockPointerType>())
2484     FromPointeeType = FromBlockPtr->getPointeeType();
2485   else
2486     return false;
2487 
2488   // If we have pointers to pointers, recursively check whether this
2489   // is an Objective-C conversion.
2490   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2491       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2492                               IncompatibleObjC)) {
2493     // We always complain about this conversion.
2494     IncompatibleObjC = true;
2495     ConvertedType = Context.getPointerType(ConvertedType);
2496     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2497     return true;
2498   }
2499   // Allow conversion of pointee being objective-c pointer to another one;
2500   // as in I* to id.
2501   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2502       ToPointeeType->getAs<ObjCObjectPointerType>() &&
2503       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2504                               IncompatibleObjC)) {
2505 
2506     ConvertedType = Context.getPointerType(ConvertedType);
2507     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2508     return true;
2509   }
2510 
2511   // If we have pointers to functions or blocks, check whether the only
2512   // differences in the argument and result types are in Objective-C
2513   // pointer conversions. If so, we permit the conversion (but
2514   // complain about it).
2515   const FunctionProtoType *FromFunctionType
2516     = FromPointeeType->getAs<FunctionProtoType>();
2517   const FunctionProtoType *ToFunctionType
2518     = ToPointeeType->getAs<FunctionProtoType>();
2519   if (FromFunctionType && ToFunctionType) {
2520     // If the function types are exactly the same, this isn't an
2521     // Objective-C pointer conversion.
2522     if (Context.getCanonicalType(FromPointeeType)
2523           == Context.getCanonicalType(ToPointeeType))
2524       return false;
2525 
2526     // Perform the quick checks that will tell us whether these
2527     // function types are obviously different.
2528     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2529         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2530         FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2531       return false;
2532 
2533     bool HasObjCConversion = false;
2534     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2535         Context.getCanonicalType(ToFunctionType->getReturnType())) {
2536       // Okay, the types match exactly. Nothing to do.
2537     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2538                                        ToFunctionType->getReturnType(),
2539                                        ConvertedType, IncompatibleObjC)) {
2540       // Okay, we have an Objective-C pointer conversion.
2541       HasObjCConversion = true;
2542     } else {
2543       // Function types are too different. Abort.
2544       return false;
2545     }
2546 
2547     // Check argument types.
2548     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2549          ArgIdx != NumArgs; ++ArgIdx) {
2550       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2551       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2552       if (Context.getCanonicalType(FromArgType)
2553             == Context.getCanonicalType(ToArgType)) {
2554         // Okay, the types match exactly. Nothing to do.
2555       } else if (isObjCPointerConversion(FromArgType, ToArgType,
2556                                          ConvertedType, IncompatibleObjC)) {
2557         // Okay, we have an Objective-C pointer conversion.
2558         HasObjCConversion = true;
2559       } else {
2560         // Argument types are too different. Abort.
2561         return false;
2562       }
2563     }
2564 
2565     if (HasObjCConversion) {
2566       // We had an Objective-C conversion. Allow this pointer
2567       // conversion, but complain about it.
2568       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2569       IncompatibleObjC = true;
2570       return true;
2571     }
2572   }
2573 
2574   return false;
2575 }
2576 
2577 /// Determine whether this is an Objective-C writeback conversion,
2578 /// used for parameter passing when performing automatic reference counting.
2579 ///
2580 /// \param FromType The type we're converting form.
2581 ///
2582 /// \param ToType The type we're converting to.
2583 ///
2584 /// \param ConvertedType The type that will be produced after applying
2585 /// this conversion.
2586 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2587                                      QualType &ConvertedType) {
2588   if (!getLangOpts().ObjCAutoRefCount ||
2589       Context.hasSameUnqualifiedType(FromType, ToType))
2590     return false;
2591 
2592   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2593   QualType ToPointee;
2594   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2595     ToPointee = ToPointer->getPointeeType();
2596   else
2597     return false;
2598 
2599   Qualifiers ToQuals = ToPointee.getQualifiers();
2600   if (!ToPointee->isObjCLifetimeType() ||
2601       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2602       !ToQuals.withoutObjCLifetime().empty())
2603     return false;
2604 
2605   // Argument must be a pointer to __strong to __weak.
2606   QualType FromPointee;
2607   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2608     FromPointee = FromPointer->getPointeeType();
2609   else
2610     return false;
2611 
2612   Qualifiers FromQuals = FromPointee.getQualifiers();
2613   if (!FromPointee->isObjCLifetimeType() ||
2614       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2615        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2616     return false;
2617 
2618   // Make sure that we have compatible qualifiers.
2619   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2620   if (!ToQuals.compatiblyIncludes(FromQuals))
2621     return false;
2622 
2623   // Remove qualifiers from the pointee type we're converting from; they
2624   // aren't used in the compatibility check belong, and we'll be adding back
2625   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2626   FromPointee = FromPointee.getUnqualifiedType();
2627 
2628   // The unqualified form of the pointee types must be compatible.
2629   ToPointee = ToPointee.getUnqualifiedType();
2630   bool IncompatibleObjC;
2631   if (Context.typesAreCompatible(FromPointee, ToPointee))
2632     FromPointee = ToPointee;
2633   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2634                                     IncompatibleObjC))
2635     return false;
2636 
2637   /// Construct the type we're converting to, which is a pointer to
2638   /// __autoreleasing pointee.
2639   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2640   ConvertedType = Context.getPointerType(FromPointee);
2641   return true;
2642 }
2643 
2644 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2645                                     QualType& ConvertedType) {
2646   QualType ToPointeeType;
2647   if (const BlockPointerType *ToBlockPtr =
2648         ToType->getAs<BlockPointerType>())
2649     ToPointeeType = ToBlockPtr->getPointeeType();
2650   else
2651     return false;
2652 
2653   QualType FromPointeeType;
2654   if (const BlockPointerType *FromBlockPtr =
2655       FromType->getAs<BlockPointerType>())
2656     FromPointeeType = FromBlockPtr->getPointeeType();
2657   else
2658     return false;
2659   // We have pointer to blocks, check whether the only
2660   // differences in the argument and result types are in Objective-C
2661   // pointer conversions. If so, we permit the conversion.
2662 
2663   const FunctionProtoType *FromFunctionType
2664     = FromPointeeType->getAs<FunctionProtoType>();
2665   const FunctionProtoType *ToFunctionType
2666     = ToPointeeType->getAs<FunctionProtoType>();
2667 
2668   if (!FromFunctionType || !ToFunctionType)
2669     return false;
2670 
2671   if (Context.hasSameType(FromPointeeType, ToPointeeType))
2672     return true;
2673 
2674   // Perform the quick checks that will tell us whether these
2675   // function types are obviously different.
2676   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2677       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2678     return false;
2679 
2680   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2681   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2682   if (FromEInfo != ToEInfo)
2683     return false;
2684 
2685   bool IncompatibleObjC = false;
2686   if (Context.hasSameType(FromFunctionType->getReturnType(),
2687                           ToFunctionType->getReturnType())) {
2688     // Okay, the types match exactly. Nothing to do.
2689   } else {
2690     QualType RHS = FromFunctionType->getReturnType();
2691     QualType LHS = ToFunctionType->getReturnType();
2692     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2693         !RHS.hasQualifiers() && LHS.hasQualifiers())
2694        LHS = LHS.getUnqualifiedType();
2695 
2696      if (Context.hasSameType(RHS,LHS)) {
2697        // OK exact match.
2698      } else if (isObjCPointerConversion(RHS, LHS,
2699                                         ConvertedType, IncompatibleObjC)) {
2700      if (IncompatibleObjC)
2701        return false;
2702      // Okay, we have an Objective-C pointer conversion.
2703      }
2704      else
2705        return false;
2706    }
2707 
2708    // Check argument types.
2709    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2710         ArgIdx != NumArgs; ++ArgIdx) {
2711      IncompatibleObjC = false;
2712      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2713      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2714      if (Context.hasSameType(FromArgType, ToArgType)) {
2715        // Okay, the types match exactly. Nothing to do.
2716      } else if (isObjCPointerConversion(ToArgType, FromArgType,
2717                                         ConvertedType, IncompatibleObjC)) {
2718        if (IncompatibleObjC)
2719          return false;
2720        // Okay, we have an Objective-C pointer conversion.
2721      } else
2722        // Argument types are too different. Abort.
2723        return false;
2724    }
2725 
2726    SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2727    bool CanUseToFPT, CanUseFromFPT;
2728    if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2729                                       CanUseToFPT, CanUseFromFPT,
2730                                       NewParamInfos))
2731      return false;
2732 
2733    ConvertedType = ToType;
2734    return true;
2735 }
2736 
2737 enum {
2738   ft_default,
2739   ft_different_class,
2740   ft_parameter_arity,
2741   ft_parameter_mismatch,
2742   ft_return_type,
2743   ft_qualifer_mismatch,
2744   ft_noexcept
2745 };
2746 
2747 /// Attempts to get the FunctionProtoType from a Type. Handles
2748 /// MemberFunctionPointers properly.
2749 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2750   if (auto *FPT = FromType->getAs<FunctionProtoType>())
2751     return FPT;
2752 
2753   if (auto *MPT = FromType->getAs<MemberPointerType>())
2754     return MPT->getPointeeType()->getAs<FunctionProtoType>();
2755 
2756   return nullptr;
2757 }
2758 
2759 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2760 /// function types.  Catches different number of parameter, mismatch in
2761 /// parameter types, and different return types.
2762 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2763                                       QualType FromType, QualType ToType) {
2764   // If either type is not valid, include no extra info.
2765   if (FromType.isNull() || ToType.isNull()) {
2766     PDiag << ft_default;
2767     return;
2768   }
2769 
2770   // Get the function type from the pointers.
2771   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2772     const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2773                             *ToMember = ToType->getAs<MemberPointerType>();
2774     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2775       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2776             << QualType(FromMember->getClass(), 0);
2777       return;
2778     }
2779     FromType = FromMember->getPointeeType();
2780     ToType = ToMember->getPointeeType();
2781   }
2782 
2783   if (FromType->isPointerType())
2784     FromType = FromType->getPointeeType();
2785   if (ToType->isPointerType())
2786     ToType = ToType->getPointeeType();
2787 
2788   // Remove references.
2789   FromType = FromType.getNonReferenceType();
2790   ToType = ToType.getNonReferenceType();
2791 
2792   // Don't print extra info for non-specialized template functions.
2793   if (FromType->isInstantiationDependentType() &&
2794       !FromType->getAs<TemplateSpecializationType>()) {
2795     PDiag << ft_default;
2796     return;
2797   }
2798 
2799   // No extra info for same types.
2800   if (Context.hasSameType(FromType, ToType)) {
2801     PDiag << ft_default;
2802     return;
2803   }
2804 
2805   const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2806                           *ToFunction = tryGetFunctionProtoType(ToType);
2807 
2808   // Both types need to be function types.
2809   if (!FromFunction || !ToFunction) {
2810     PDiag << ft_default;
2811     return;
2812   }
2813 
2814   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2815     PDiag << ft_parameter_arity << ToFunction->getNumParams()
2816           << FromFunction->getNumParams();
2817     return;
2818   }
2819 
2820   // Handle different parameter types.
2821   unsigned ArgPos;
2822   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2823     PDiag << ft_parameter_mismatch << ArgPos + 1
2824           << ToFunction->getParamType(ArgPos)
2825           << FromFunction->getParamType(ArgPos);
2826     return;
2827   }
2828 
2829   // Handle different return type.
2830   if (!Context.hasSameType(FromFunction->getReturnType(),
2831                            ToFunction->getReturnType())) {
2832     PDiag << ft_return_type << ToFunction->getReturnType()
2833           << FromFunction->getReturnType();
2834     return;
2835   }
2836 
2837   if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2838     PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2839           << FromFunction->getMethodQuals();
2840     return;
2841   }
2842 
2843   // Handle exception specification differences on canonical type (in C++17
2844   // onwards).
2845   if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2846           ->isNothrow() !=
2847       cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2848           ->isNothrow()) {
2849     PDiag << ft_noexcept;
2850     return;
2851   }
2852 
2853   // Unable to find a difference, so add no extra info.
2854   PDiag << ft_default;
2855 }
2856 
2857 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2858 /// for equality of their argument types. Caller has already checked that
2859 /// they have same number of arguments.  If the parameters are different,
2860 /// ArgPos will have the parameter index of the first different parameter.
2861 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2862                                       const FunctionProtoType *NewType,
2863                                       unsigned *ArgPos) {
2864   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2865                                               N = NewType->param_type_begin(),
2866                                               E = OldType->param_type_end();
2867        O && (O != E); ++O, ++N) {
2868     if (!Context.hasSameType(O->getUnqualifiedType(),
2869                              N->getUnqualifiedType())) {
2870       if (ArgPos)
2871         *ArgPos = O - OldType->param_type_begin();
2872       return false;
2873     }
2874   }
2875   return true;
2876 }
2877 
2878 /// CheckPointerConversion - Check the pointer conversion from the
2879 /// expression From to the type ToType. This routine checks for
2880 /// ambiguous or inaccessible derived-to-base pointer
2881 /// conversions for which IsPointerConversion has already returned
2882 /// true. It returns true and produces a diagnostic if there was an
2883 /// error, or returns false otherwise.
2884 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2885                                   CastKind &Kind,
2886                                   CXXCastPath& BasePath,
2887                                   bool IgnoreBaseAccess,
2888                                   bool Diagnose) {
2889   QualType FromType = From->getType();
2890   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2891 
2892   Kind = CK_BitCast;
2893 
2894   if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2895       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2896           Expr::NPCK_ZeroExpression) {
2897     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2898       DiagRuntimeBehavior(From->getExprLoc(), From,
2899                           PDiag(diag::warn_impcast_bool_to_null_pointer)
2900                             << ToType << From->getSourceRange());
2901     else if (!isUnevaluatedContext())
2902       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2903         << ToType << From->getSourceRange();
2904   }
2905   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2906     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2907       QualType FromPointeeType = FromPtrType->getPointeeType(),
2908                ToPointeeType   = ToPtrType->getPointeeType();
2909 
2910       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2911           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2912         // We must have a derived-to-base conversion. Check an
2913         // ambiguous or inaccessible conversion.
2914         unsigned InaccessibleID = 0;
2915         unsigned AmbigiousID = 0;
2916         if (Diagnose) {
2917           InaccessibleID = diag::err_upcast_to_inaccessible_base;
2918           AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
2919         }
2920         if (CheckDerivedToBaseConversion(
2921                 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
2922                 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
2923                 &BasePath, IgnoreBaseAccess))
2924           return true;
2925 
2926         // The conversion was successful.
2927         Kind = CK_DerivedToBase;
2928       }
2929 
2930       if (Diagnose && !IsCStyleOrFunctionalCast &&
2931           FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
2932         assert(getLangOpts().MSVCCompat &&
2933                "this should only be possible with MSVCCompat!");
2934         Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
2935             << From->getSourceRange();
2936       }
2937     }
2938   } else if (const ObjCObjectPointerType *ToPtrType =
2939                ToType->getAs<ObjCObjectPointerType>()) {
2940     if (const ObjCObjectPointerType *FromPtrType =
2941           FromType->getAs<ObjCObjectPointerType>()) {
2942       // Objective-C++ conversions are always okay.
2943       // FIXME: We should have a different class of conversions for the
2944       // Objective-C++ implicit conversions.
2945       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2946         return false;
2947     } else if (FromType->isBlockPointerType()) {
2948       Kind = CK_BlockPointerToObjCPointerCast;
2949     } else {
2950       Kind = CK_CPointerToObjCPointerCast;
2951     }
2952   } else if (ToType->isBlockPointerType()) {
2953     if (!FromType->isBlockPointerType())
2954       Kind = CK_AnyPointerToBlockPointerCast;
2955   }
2956 
2957   // We shouldn't fall into this case unless it's valid for other
2958   // reasons.
2959   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2960     Kind = CK_NullToPointer;
2961 
2962   return false;
2963 }
2964 
2965 /// IsMemberPointerConversion - Determines whether the conversion of the
2966 /// expression From, which has the (possibly adjusted) type FromType, can be
2967 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
2968 /// If so, returns true and places the converted type (that might differ from
2969 /// ToType in its cv-qualifiers at some level) into ConvertedType.
2970 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2971                                      QualType ToType,
2972                                      bool InOverloadResolution,
2973                                      QualType &ConvertedType) {
2974   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2975   if (!ToTypePtr)
2976     return false;
2977 
2978   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2979   if (From->isNullPointerConstant(Context,
2980                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2981                                         : Expr::NPC_ValueDependentIsNull)) {
2982     ConvertedType = ToType;
2983     return true;
2984   }
2985 
2986   // Otherwise, both types have to be member pointers.
2987   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2988   if (!FromTypePtr)
2989     return false;
2990 
2991   // A pointer to member of B can be converted to a pointer to member of D,
2992   // where D is derived from B (C++ 4.11p2).
2993   QualType FromClass(FromTypePtr->getClass(), 0);
2994   QualType ToClass(ToTypePtr->getClass(), 0);
2995 
2996   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2997       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
2998     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2999                                                  ToClass.getTypePtr());
3000     return true;
3001   }
3002 
3003   return false;
3004 }
3005 
3006 /// CheckMemberPointerConversion - Check the member pointer conversion from the
3007 /// expression From to the type ToType. This routine checks for ambiguous or
3008 /// virtual or inaccessible base-to-derived member pointer conversions
3009 /// for which IsMemberPointerConversion has already returned true. It returns
3010 /// true and produces a diagnostic if there was an error, or returns false
3011 /// otherwise.
3012 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3013                                         CastKind &Kind,
3014                                         CXXCastPath &BasePath,
3015                                         bool IgnoreBaseAccess) {
3016   QualType FromType = From->getType();
3017   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3018   if (!FromPtrType) {
3019     // This must be a null pointer to member pointer conversion
3020     assert(From->isNullPointerConstant(Context,
3021                                        Expr::NPC_ValueDependentIsNull) &&
3022            "Expr must be null pointer constant!");
3023     Kind = CK_NullToMemberPointer;
3024     return false;
3025   }
3026 
3027   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3028   assert(ToPtrType && "No member pointer cast has a target type "
3029                       "that is not a member pointer.");
3030 
3031   QualType FromClass = QualType(FromPtrType->getClass(), 0);
3032   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
3033 
3034   // FIXME: What about dependent types?
3035   assert(FromClass->isRecordType() && "Pointer into non-class.");
3036   assert(ToClass->isRecordType() && "Pointer into non-class.");
3037 
3038   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3039                      /*DetectVirtual=*/true);
3040   bool DerivationOkay =
3041       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3042   assert(DerivationOkay &&
3043          "Should not have been called if derivation isn't OK.");
3044   (void)DerivationOkay;
3045 
3046   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3047                                   getUnqualifiedType())) {
3048     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3049     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3050       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3051     return true;
3052   }
3053 
3054   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3055     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3056       << FromClass << ToClass << QualType(VBase, 0)
3057       << From->getSourceRange();
3058     return true;
3059   }
3060 
3061   if (!IgnoreBaseAccess)
3062     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3063                          Paths.front(),
3064                          diag::err_downcast_from_inaccessible_base);
3065 
3066   // Must be a base to derived member conversion.
3067   BuildBasePathArray(Paths, BasePath);
3068   Kind = CK_BaseToDerivedMemberPointer;
3069   return false;
3070 }
3071 
3072 /// Determine whether the lifetime conversion between the two given
3073 /// qualifiers sets is nontrivial.
3074 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3075                                                Qualifiers ToQuals) {
3076   // Converting anything to const __unsafe_unretained is trivial.
3077   if (ToQuals.hasConst() &&
3078       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3079     return false;
3080 
3081   return true;
3082 }
3083 
3084 /// IsQualificationConversion - Determines whether the conversion from
3085 /// an rvalue of type FromType to ToType is a qualification conversion
3086 /// (C++ 4.4).
3087 ///
3088 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3089 /// when the qualification conversion involves a change in the Objective-C
3090 /// object lifetime.
3091 bool
3092 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3093                                 bool CStyle, bool &ObjCLifetimeConversion) {
3094   FromType = Context.getCanonicalType(FromType);
3095   ToType = Context.getCanonicalType(ToType);
3096   ObjCLifetimeConversion = false;
3097 
3098   // If FromType and ToType are the same type, this is not a
3099   // qualification conversion.
3100   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3101     return false;
3102 
3103   // (C++ 4.4p4):
3104   //   A conversion can add cv-qualifiers at levels other than the first
3105   //   in multi-level pointers, subject to the following rules: [...]
3106   bool PreviousToQualsIncludeConst = true;
3107   bool UnwrappedAnyPointer = false;
3108   while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3109     // Within each iteration of the loop, we check the qualifiers to
3110     // determine if this still looks like a qualification
3111     // conversion. Then, if all is well, we unwrap one more level of
3112     // pointers or pointers-to-members and do it all again
3113     // until there are no more pointers or pointers-to-members left to
3114     // unwrap.
3115     UnwrappedAnyPointer = true;
3116 
3117     Qualifiers FromQuals = FromType.getQualifiers();
3118     Qualifiers ToQuals = ToType.getQualifiers();
3119 
3120     // Ignore __unaligned qualifier if this type is void.
3121     if (ToType.getUnqualifiedType()->isVoidType())
3122       FromQuals.removeUnaligned();
3123 
3124     // Objective-C ARC:
3125     //   Check Objective-C lifetime conversions.
3126     if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
3127         UnwrappedAnyPointer) {
3128       if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3129         if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3130           ObjCLifetimeConversion = true;
3131         FromQuals.removeObjCLifetime();
3132         ToQuals.removeObjCLifetime();
3133       } else {
3134         // Qualification conversions cannot cast between different
3135         // Objective-C lifetime qualifiers.
3136         return false;
3137       }
3138     }
3139 
3140     // Allow addition/removal of GC attributes but not changing GC attributes.
3141     if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3142         (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3143       FromQuals.removeObjCGCAttr();
3144       ToQuals.removeObjCGCAttr();
3145     }
3146 
3147     //   -- for every j > 0, if const is in cv 1,j then const is in cv
3148     //      2,j, and similarly for volatile.
3149     if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3150       return false;
3151 
3152     //   -- if the cv 1,j and cv 2,j are different, then const is in
3153     //      every cv for 0 < k < j.
3154     if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
3155         && !PreviousToQualsIncludeConst)
3156       return false;
3157 
3158     // Keep track of whether all prior cv-qualifiers in the "to" type
3159     // include const.
3160     PreviousToQualsIncludeConst
3161       = PreviousToQualsIncludeConst && ToQuals.hasConst();
3162   }
3163 
3164   // Allows address space promotion by language rules implemented in
3165   // Type::Qualifiers::isAddressSpaceSupersetOf.
3166   Qualifiers FromQuals = FromType.getQualifiers();
3167   Qualifiers ToQuals = ToType.getQualifiers();
3168   if (!ToQuals.isAddressSpaceSupersetOf(FromQuals) &&
3169       !FromQuals.isAddressSpaceSupersetOf(ToQuals)) {
3170     return false;
3171   }
3172 
3173   // We are left with FromType and ToType being the pointee types
3174   // after unwrapping the original FromType and ToType the same number
3175   // of types. If we unwrapped any pointers, and if FromType and
3176   // ToType have the same unqualified type (since we checked
3177   // qualifiers above), then this is a qualification conversion.
3178   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3179 }
3180 
3181 /// - Determine whether this is a conversion from a scalar type to an
3182 /// atomic type.
3183 ///
3184 /// If successful, updates \c SCS's second and third steps in the conversion
3185 /// sequence to finish the conversion.
3186 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3187                                 bool InOverloadResolution,
3188                                 StandardConversionSequence &SCS,
3189                                 bool CStyle) {
3190   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3191   if (!ToAtomic)
3192     return false;
3193 
3194   StandardConversionSequence InnerSCS;
3195   if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3196                             InOverloadResolution, InnerSCS,
3197                             CStyle, /*AllowObjCWritebackConversion=*/false))
3198     return false;
3199 
3200   SCS.Second = InnerSCS.Second;
3201   SCS.setToType(1, InnerSCS.getToType(1));
3202   SCS.Third = InnerSCS.Third;
3203   SCS.QualificationIncludesObjCLifetime
3204     = InnerSCS.QualificationIncludesObjCLifetime;
3205   SCS.setToType(2, InnerSCS.getToType(2));
3206   return true;
3207 }
3208 
3209 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3210                                               CXXConstructorDecl *Constructor,
3211                                               QualType Type) {
3212   const FunctionProtoType *CtorType =
3213       Constructor->getType()->getAs<FunctionProtoType>();
3214   if (CtorType->getNumParams() > 0) {
3215     QualType FirstArg = CtorType->getParamType(0);
3216     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3217       return true;
3218   }
3219   return false;
3220 }
3221 
3222 static OverloadingResult
3223 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3224                                        CXXRecordDecl *To,
3225                                        UserDefinedConversionSequence &User,
3226                                        OverloadCandidateSet &CandidateSet,
3227                                        bool AllowExplicit) {
3228   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3229   for (auto *D : S.LookupConstructors(To)) {
3230     auto Info = getConstructorInfo(D);
3231     if (!Info)
3232       continue;
3233 
3234     bool Usable = !Info.Constructor->isInvalidDecl() &&
3235                   S.isInitListConstructor(Info.Constructor) &&
3236                   (AllowExplicit || !Info.Constructor->isExplicit());
3237     if (Usable) {
3238       // If the first argument is (a reference to) the target type,
3239       // suppress conversions.
3240       bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3241           S.Context, Info.Constructor, ToType);
3242       if (Info.ConstructorTmpl)
3243         S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3244                                        /*ExplicitArgs*/ nullptr, From,
3245                                        CandidateSet, SuppressUserConversions,
3246                                        /*PartialOverloading*/ false,
3247                                        AllowExplicit);
3248       else
3249         S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3250                                CandidateSet, SuppressUserConversions,
3251                                /*PartialOverloading*/ false, AllowExplicit);
3252     }
3253   }
3254 
3255   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3256 
3257   OverloadCandidateSet::iterator Best;
3258   switch (auto Result =
3259               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3260   case OR_Deleted:
3261   case OR_Success: {
3262     // Record the standard conversion we used and the conversion function.
3263     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3264     QualType ThisType = Constructor->getThisType();
3265     // Initializer lists don't have conversions as such.
3266     User.Before.setAsIdentityConversion();
3267     User.HadMultipleCandidates = HadMultipleCandidates;
3268     User.ConversionFunction = Constructor;
3269     User.FoundConversionFunction = Best->FoundDecl;
3270     User.After.setAsIdentityConversion();
3271     User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3272     User.After.setAllToTypes(ToType);
3273     return Result;
3274   }
3275 
3276   case OR_No_Viable_Function:
3277     return OR_No_Viable_Function;
3278   case OR_Ambiguous:
3279     return OR_Ambiguous;
3280   }
3281 
3282   llvm_unreachable("Invalid OverloadResult!");
3283 }
3284 
3285 /// Determines whether there is a user-defined conversion sequence
3286 /// (C++ [over.ics.user]) that converts expression From to the type
3287 /// ToType. If such a conversion exists, User will contain the
3288 /// user-defined conversion sequence that performs such a conversion
3289 /// and this routine will return true. Otherwise, this routine returns
3290 /// false and User is unspecified.
3291 ///
3292 /// \param AllowExplicit  true if the conversion should consider C++0x
3293 /// "explicit" conversion functions as well as non-explicit conversion
3294 /// functions (C++0x [class.conv.fct]p2).
3295 ///
3296 /// \param AllowObjCConversionOnExplicit true if the conversion should
3297 /// allow an extra Objective-C pointer conversion on uses of explicit
3298 /// constructors. Requires \c AllowExplicit to also be set.
3299 static OverloadingResult
3300 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3301                         UserDefinedConversionSequence &User,
3302                         OverloadCandidateSet &CandidateSet,
3303                         bool AllowExplicit,
3304                         bool AllowObjCConversionOnExplicit) {
3305   assert(AllowExplicit || !AllowObjCConversionOnExplicit);
3306   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3307 
3308   // Whether we will only visit constructors.
3309   bool ConstructorsOnly = false;
3310 
3311   // If the type we are conversion to is a class type, enumerate its
3312   // constructors.
3313   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3314     // C++ [over.match.ctor]p1:
3315     //   When objects of class type are direct-initialized (8.5), or
3316     //   copy-initialized from an expression of the same or a
3317     //   derived class type (8.5), overload resolution selects the
3318     //   constructor. [...] For copy-initialization, the candidate
3319     //   functions are all the converting constructors (12.3.1) of
3320     //   that class. The argument list is the expression-list within
3321     //   the parentheses of the initializer.
3322     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3323         (From->getType()->getAs<RecordType>() &&
3324          S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3325       ConstructorsOnly = true;
3326 
3327     if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3328       // We're not going to find any constructors.
3329     } else if (CXXRecordDecl *ToRecordDecl
3330                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3331 
3332       Expr **Args = &From;
3333       unsigned NumArgs = 1;
3334       bool ListInitializing = false;
3335       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3336         // But first, see if there is an init-list-constructor that will work.
3337         OverloadingResult Result = IsInitializerListConstructorConversion(
3338             S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3339         if (Result != OR_No_Viable_Function)
3340           return Result;
3341         // Never mind.
3342         CandidateSet.clear(
3343             OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3344 
3345         // If we're list-initializing, we pass the individual elements as
3346         // arguments, not the entire list.
3347         Args = InitList->getInits();
3348         NumArgs = InitList->getNumInits();
3349         ListInitializing = true;
3350       }
3351 
3352       for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3353         auto Info = getConstructorInfo(D);
3354         if (!Info)
3355           continue;
3356 
3357         bool Usable = !Info.Constructor->isInvalidDecl();
3358         if (ListInitializing)
3359           Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
3360         else
3361           Usable = Usable &&
3362                    Info.Constructor->isConvertingConstructor(AllowExplicit);
3363         if (Usable) {
3364           bool SuppressUserConversions = !ConstructorsOnly;
3365           if (SuppressUserConversions && ListInitializing) {
3366             SuppressUserConversions = false;
3367             if (NumArgs == 1) {
3368               // If the first argument is (a reference to) the target type,
3369               // suppress conversions.
3370               SuppressUserConversions = isFirstArgumentCompatibleWithType(
3371                   S.Context, Info.Constructor, ToType);
3372             }
3373           }
3374           if (Info.ConstructorTmpl)
3375             S.AddTemplateOverloadCandidate(
3376                 Info.ConstructorTmpl, Info.FoundDecl,
3377                 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3378                 CandidateSet, SuppressUserConversions,
3379                 /*PartialOverloading*/ false, AllowExplicit);
3380           else
3381             // Allow one user-defined conversion when user specifies a
3382             // From->ToType conversion via an static cast (c-style, etc).
3383             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3384                                    llvm::makeArrayRef(Args, NumArgs),
3385                                    CandidateSet, SuppressUserConversions,
3386                                    /*PartialOverloading*/ false, AllowExplicit);
3387         }
3388       }
3389     }
3390   }
3391 
3392   // Enumerate conversion functions, if we're allowed to.
3393   if (ConstructorsOnly || isa<InitListExpr>(From)) {
3394   } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3395     // No conversion functions from incomplete types.
3396   } else if (const RecordType *FromRecordType =
3397                  From->getType()->getAs<RecordType>()) {
3398     if (CXXRecordDecl *FromRecordDecl
3399          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3400       // Add all of the conversion functions as candidates.
3401       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3402       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3403         DeclAccessPair FoundDecl = I.getPair();
3404         NamedDecl *D = FoundDecl.getDecl();
3405         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3406         if (isa<UsingShadowDecl>(D))
3407           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3408 
3409         CXXConversionDecl *Conv;
3410         FunctionTemplateDecl *ConvTemplate;
3411         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3412           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3413         else
3414           Conv = cast<CXXConversionDecl>(D);
3415 
3416         if (AllowExplicit || !Conv->isExplicit()) {
3417           if (ConvTemplate)
3418             S.AddTemplateConversionCandidate(
3419                 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3420                 CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit);
3421           else
3422             S.AddConversionCandidate(
3423                 Conv, FoundDecl, ActingContext, From, ToType, CandidateSet,
3424                 AllowObjCConversionOnExplicit, AllowExplicit);
3425         }
3426       }
3427     }
3428   }
3429 
3430   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3431 
3432   OverloadCandidateSet::iterator Best;
3433   switch (auto Result =
3434               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3435   case OR_Success:
3436   case OR_Deleted:
3437     // Record the standard conversion we used and the conversion function.
3438     if (CXXConstructorDecl *Constructor
3439           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3440       // C++ [over.ics.user]p1:
3441       //   If the user-defined conversion is specified by a
3442       //   constructor (12.3.1), the initial standard conversion
3443       //   sequence converts the source type to the type required by
3444       //   the argument of the constructor.
3445       //
3446       QualType ThisType = Constructor->getThisType();
3447       if (isa<InitListExpr>(From)) {
3448         // Initializer lists don't have conversions as such.
3449         User.Before.setAsIdentityConversion();
3450       } else {
3451         if (Best->Conversions[0].isEllipsis())
3452           User.EllipsisConversion = true;
3453         else {
3454           User.Before = Best->Conversions[0].Standard;
3455           User.EllipsisConversion = false;
3456         }
3457       }
3458       User.HadMultipleCandidates = HadMultipleCandidates;
3459       User.ConversionFunction = Constructor;
3460       User.FoundConversionFunction = Best->FoundDecl;
3461       User.After.setAsIdentityConversion();
3462       User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3463       User.After.setAllToTypes(ToType);
3464       return Result;
3465     }
3466     if (CXXConversionDecl *Conversion
3467                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
3468       // C++ [over.ics.user]p1:
3469       //
3470       //   [...] If the user-defined conversion is specified by a
3471       //   conversion function (12.3.2), the initial standard
3472       //   conversion sequence converts the source type to the
3473       //   implicit object parameter of the conversion function.
3474       User.Before = Best->Conversions[0].Standard;
3475       User.HadMultipleCandidates = HadMultipleCandidates;
3476       User.ConversionFunction = Conversion;
3477       User.FoundConversionFunction = Best->FoundDecl;
3478       User.EllipsisConversion = false;
3479 
3480       // C++ [over.ics.user]p2:
3481       //   The second standard conversion sequence converts the
3482       //   result of the user-defined conversion to the target type
3483       //   for the sequence. Since an implicit conversion sequence
3484       //   is an initialization, the special rules for
3485       //   initialization by user-defined conversion apply when
3486       //   selecting the best user-defined conversion for a
3487       //   user-defined conversion sequence (see 13.3.3 and
3488       //   13.3.3.1).
3489       User.After = Best->FinalConversion;
3490       return Result;
3491     }
3492     llvm_unreachable("Not a constructor or conversion function?");
3493 
3494   case OR_No_Viable_Function:
3495     return OR_No_Viable_Function;
3496 
3497   case OR_Ambiguous:
3498     return OR_Ambiguous;
3499   }
3500 
3501   llvm_unreachable("Invalid OverloadResult!");
3502 }
3503 
3504 bool
3505 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3506   ImplicitConversionSequence ICS;
3507   OverloadCandidateSet CandidateSet(From->getExprLoc(),
3508                                     OverloadCandidateSet::CSK_Normal);
3509   OverloadingResult OvResult =
3510     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3511                             CandidateSet, false, false);
3512 
3513   if (!(OvResult == OR_Ambiguous ||
3514         (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3515     return false;
3516 
3517   auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, From);
3518   if (OvResult == OR_Ambiguous)
3519     Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3520         << From->getType() << ToType << From->getSourceRange();
3521   else { // OR_No_Viable_Function && !CandidateSet.empty()
3522     if (!RequireCompleteType(From->getBeginLoc(), ToType,
3523                              diag::err_typecheck_nonviable_condition_incomplete,
3524                              From->getType(), From->getSourceRange()))
3525       Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3526           << false << From->getType() << From->getSourceRange() << ToType;
3527   }
3528 
3529   CandidateSet.NoteCandidates(
3530                               *this, From, Cands);
3531   return true;
3532 }
3533 
3534 /// Compare the user-defined conversion functions or constructors
3535 /// of two user-defined conversion sequences to determine whether any ordering
3536 /// is possible.
3537 static ImplicitConversionSequence::CompareKind
3538 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3539                            FunctionDecl *Function2) {
3540   if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11)
3541     return ImplicitConversionSequence::Indistinguishable;
3542 
3543   // Objective-C++:
3544   //   If both conversion functions are implicitly-declared conversions from
3545   //   a lambda closure type to a function pointer and a block pointer,
3546   //   respectively, always prefer the conversion to a function pointer,
3547   //   because the function pointer is more lightweight and is more likely
3548   //   to keep code working.
3549   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3550   if (!Conv1)
3551     return ImplicitConversionSequence::Indistinguishable;
3552 
3553   CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3554   if (!Conv2)
3555     return ImplicitConversionSequence::Indistinguishable;
3556 
3557   if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3558     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3559     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3560     if (Block1 != Block2)
3561       return Block1 ? ImplicitConversionSequence::Worse
3562                     : ImplicitConversionSequence::Better;
3563   }
3564 
3565   return ImplicitConversionSequence::Indistinguishable;
3566 }
3567 
3568 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3569     const ImplicitConversionSequence &ICS) {
3570   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3571          (ICS.isUserDefined() &&
3572           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3573 }
3574 
3575 /// CompareImplicitConversionSequences - Compare two implicit
3576 /// conversion sequences to determine whether one is better than the
3577 /// other or if they are indistinguishable (C++ 13.3.3.2).
3578 static ImplicitConversionSequence::CompareKind
3579 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3580                                    const ImplicitConversionSequence& ICS1,
3581                                    const ImplicitConversionSequence& ICS2)
3582 {
3583   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3584   // conversion sequences (as defined in 13.3.3.1)
3585   //   -- a standard conversion sequence (13.3.3.1.1) is a better
3586   //      conversion sequence than a user-defined conversion sequence or
3587   //      an ellipsis conversion sequence, and
3588   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3589   //      conversion sequence than an ellipsis conversion sequence
3590   //      (13.3.3.1.3).
3591   //
3592   // C++0x [over.best.ics]p10:
3593   //   For the purpose of ranking implicit conversion sequences as
3594   //   described in 13.3.3.2, the ambiguous conversion sequence is
3595   //   treated as a user-defined sequence that is indistinguishable
3596   //   from any other user-defined conversion sequence.
3597 
3598   // String literal to 'char *' conversion has been deprecated in C++03. It has
3599   // been removed from C++11. We still accept this conversion, if it happens at
3600   // the best viable function. Otherwise, this conversion is considered worse
3601   // than ellipsis conversion. Consider this as an extension; this is not in the
3602   // standard. For example:
3603   //
3604   // int &f(...);    // #1
3605   // void f(char*);  // #2
3606   // void g() { int &r = f("foo"); }
3607   //
3608   // In C++03, we pick #2 as the best viable function.
3609   // In C++11, we pick #1 as the best viable function, because ellipsis
3610   // conversion is better than string-literal to char* conversion (since there
3611   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3612   // convert arguments, #2 would be the best viable function in C++11.
3613   // If the best viable function has this conversion, a warning will be issued
3614   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3615 
3616   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3617       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3618       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3619     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3620                ? ImplicitConversionSequence::Worse
3621                : ImplicitConversionSequence::Better;
3622 
3623   if (ICS1.getKindRank() < ICS2.getKindRank())
3624     return ImplicitConversionSequence::Better;
3625   if (ICS2.getKindRank() < ICS1.getKindRank())
3626     return ImplicitConversionSequence::Worse;
3627 
3628   // The following checks require both conversion sequences to be of
3629   // the same kind.
3630   if (ICS1.getKind() != ICS2.getKind())
3631     return ImplicitConversionSequence::Indistinguishable;
3632 
3633   ImplicitConversionSequence::CompareKind Result =
3634       ImplicitConversionSequence::Indistinguishable;
3635 
3636   // Two implicit conversion sequences of the same form are
3637   // indistinguishable conversion sequences unless one of the
3638   // following rules apply: (C++ 13.3.3.2p3):
3639 
3640   // List-initialization sequence L1 is a better conversion sequence than
3641   // list-initialization sequence L2 if:
3642   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3643   //   if not that,
3644   // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3645   //   and N1 is smaller than N2.,
3646   // even if one of the other rules in this paragraph would otherwise apply.
3647   if (!ICS1.isBad()) {
3648     if (ICS1.isStdInitializerListElement() &&
3649         !ICS2.isStdInitializerListElement())
3650       return ImplicitConversionSequence::Better;
3651     if (!ICS1.isStdInitializerListElement() &&
3652         ICS2.isStdInitializerListElement())
3653       return ImplicitConversionSequence::Worse;
3654   }
3655 
3656   if (ICS1.isStandard())
3657     // Standard conversion sequence S1 is a better conversion sequence than
3658     // standard conversion sequence S2 if [...]
3659     Result = CompareStandardConversionSequences(S, Loc,
3660                                                 ICS1.Standard, ICS2.Standard);
3661   else if (ICS1.isUserDefined()) {
3662     // User-defined conversion sequence U1 is a better conversion
3663     // sequence than another user-defined conversion sequence U2 if
3664     // they contain the same user-defined conversion function or
3665     // constructor and if the second standard conversion sequence of
3666     // U1 is better than the second standard conversion sequence of
3667     // U2 (C++ 13.3.3.2p3).
3668     if (ICS1.UserDefined.ConversionFunction ==
3669           ICS2.UserDefined.ConversionFunction)
3670       Result = CompareStandardConversionSequences(S, Loc,
3671                                                   ICS1.UserDefined.After,
3672                                                   ICS2.UserDefined.After);
3673     else
3674       Result = compareConversionFunctions(S,
3675                                           ICS1.UserDefined.ConversionFunction,
3676                                           ICS2.UserDefined.ConversionFunction);
3677   }
3678 
3679   return Result;
3680 }
3681 
3682 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3683 // determine if one is a proper subset of the other.
3684 static ImplicitConversionSequence::CompareKind
3685 compareStandardConversionSubsets(ASTContext &Context,
3686                                  const StandardConversionSequence& SCS1,
3687                                  const StandardConversionSequence& SCS2) {
3688   ImplicitConversionSequence::CompareKind Result
3689     = ImplicitConversionSequence::Indistinguishable;
3690 
3691   // the identity conversion sequence is considered to be a subsequence of
3692   // any non-identity conversion sequence
3693   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3694     return ImplicitConversionSequence::Better;
3695   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3696     return ImplicitConversionSequence::Worse;
3697 
3698   if (SCS1.Second != SCS2.Second) {
3699     if (SCS1.Second == ICK_Identity)
3700       Result = ImplicitConversionSequence::Better;
3701     else if (SCS2.Second == ICK_Identity)
3702       Result = ImplicitConversionSequence::Worse;
3703     else
3704       return ImplicitConversionSequence::Indistinguishable;
3705   } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3706     return ImplicitConversionSequence::Indistinguishable;
3707 
3708   if (SCS1.Third == SCS2.Third) {
3709     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3710                              : ImplicitConversionSequence::Indistinguishable;
3711   }
3712 
3713   if (SCS1.Third == ICK_Identity)
3714     return Result == ImplicitConversionSequence::Worse
3715              ? ImplicitConversionSequence::Indistinguishable
3716              : ImplicitConversionSequence::Better;
3717 
3718   if (SCS2.Third == ICK_Identity)
3719     return Result == ImplicitConversionSequence::Better
3720              ? ImplicitConversionSequence::Indistinguishable
3721              : ImplicitConversionSequence::Worse;
3722 
3723   return ImplicitConversionSequence::Indistinguishable;
3724 }
3725 
3726 /// Determine whether one of the given reference bindings is better
3727 /// than the other based on what kind of bindings they are.
3728 static bool
3729 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3730                              const StandardConversionSequence &SCS2) {
3731   // C++0x [over.ics.rank]p3b4:
3732   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3733   //      implicit object parameter of a non-static member function declared
3734   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3735   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3736   //      lvalue reference to a function lvalue and S2 binds an rvalue
3737   //      reference*.
3738   //
3739   // FIXME: Rvalue references. We're going rogue with the above edits,
3740   // because the semantics in the current C++0x working paper (N3225 at the
3741   // time of this writing) break the standard definition of std::forward
3742   // and std::reference_wrapper when dealing with references to functions.
3743   // Proposed wording changes submitted to CWG for consideration.
3744   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3745       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3746     return false;
3747 
3748   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3749           SCS2.IsLvalueReference) ||
3750          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3751           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3752 }
3753 
3754 /// CompareStandardConversionSequences - Compare two standard
3755 /// conversion sequences to determine whether one is better than the
3756 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3757 static ImplicitConversionSequence::CompareKind
3758 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3759                                    const StandardConversionSequence& SCS1,
3760                                    const StandardConversionSequence& SCS2)
3761 {
3762   // Standard conversion sequence S1 is a better conversion sequence
3763   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3764 
3765   //  -- S1 is a proper subsequence of S2 (comparing the conversion
3766   //     sequences in the canonical form defined by 13.3.3.1.1,
3767   //     excluding any Lvalue Transformation; the identity conversion
3768   //     sequence is considered to be a subsequence of any
3769   //     non-identity conversion sequence) or, if not that,
3770   if (ImplicitConversionSequence::CompareKind CK
3771         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3772     return CK;
3773 
3774   //  -- the rank of S1 is better than the rank of S2 (by the rules
3775   //     defined below), or, if not that,
3776   ImplicitConversionRank Rank1 = SCS1.getRank();
3777   ImplicitConversionRank Rank2 = SCS2.getRank();
3778   if (Rank1 < Rank2)
3779     return ImplicitConversionSequence::Better;
3780   else if (Rank2 < Rank1)
3781     return ImplicitConversionSequence::Worse;
3782 
3783   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3784   // are indistinguishable unless one of the following rules
3785   // applies:
3786 
3787   //   A conversion that is not a conversion of a pointer, or
3788   //   pointer to member, to bool is better than another conversion
3789   //   that is such a conversion.
3790   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3791     return SCS2.isPointerConversionToBool()
3792              ? ImplicitConversionSequence::Better
3793              : ImplicitConversionSequence::Worse;
3794 
3795   // C++ [over.ics.rank]p4b2:
3796   //
3797   //   If class B is derived directly or indirectly from class A,
3798   //   conversion of B* to A* is better than conversion of B* to
3799   //   void*, and conversion of A* to void* is better than conversion
3800   //   of B* to void*.
3801   bool SCS1ConvertsToVoid
3802     = SCS1.isPointerConversionToVoidPointer(S.Context);
3803   bool SCS2ConvertsToVoid
3804     = SCS2.isPointerConversionToVoidPointer(S.Context);
3805   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3806     // Exactly one of the conversion sequences is a conversion to
3807     // a void pointer; it's the worse conversion.
3808     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3809                               : ImplicitConversionSequence::Worse;
3810   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3811     // Neither conversion sequence converts to a void pointer; compare
3812     // their derived-to-base conversions.
3813     if (ImplicitConversionSequence::CompareKind DerivedCK
3814           = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3815       return DerivedCK;
3816   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3817              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3818     // Both conversion sequences are conversions to void
3819     // pointers. Compare the source types to determine if there's an
3820     // inheritance relationship in their sources.
3821     QualType FromType1 = SCS1.getFromType();
3822     QualType FromType2 = SCS2.getFromType();
3823 
3824     // Adjust the types we're converting from via the array-to-pointer
3825     // conversion, if we need to.
3826     if (SCS1.First == ICK_Array_To_Pointer)
3827       FromType1 = S.Context.getArrayDecayedType(FromType1);
3828     if (SCS2.First == ICK_Array_To_Pointer)
3829       FromType2 = S.Context.getArrayDecayedType(FromType2);
3830 
3831     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3832     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3833 
3834     if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3835       return ImplicitConversionSequence::Better;
3836     else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3837       return ImplicitConversionSequence::Worse;
3838 
3839     // Objective-C++: If one interface is more specific than the
3840     // other, it is the better one.
3841     const ObjCObjectPointerType* FromObjCPtr1
3842       = FromType1->getAs<ObjCObjectPointerType>();
3843     const ObjCObjectPointerType* FromObjCPtr2
3844       = FromType2->getAs<ObjCObjectPointerType>();
3845     if (FromObjCPtr1 && FromObjCPtr2) {
3846       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3847                                                           FromObjCPtr2);
3848       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3849                                                            FromObjCPtr1);
3850       if (AssignLeft != AssignRight) {
3851         return AssignLeft? ImplicitConversionSequence::Better
3852                          : ImplicitConversionSequence::Worse;
3853       }
3854     }
3855   }
3856 
3857   // Compare based on qualification conversions (C++ 13.3.3.2p3,
3858   // bullet 3).
3859   if (ImplicitConversionSequence::CompareKind QualCK
3860         = CompareQualificationConversions(S, SCS1, SCS2))
3861     return QualCK;
3862 
3863   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3864     // Check for a better reference binding based on the kind of bindings.
3865     if (isBetterReferenceBindingKind(SCS1, SCS2))
3866       return ImplicitConversionSequence::Better;
3867     else if (isBetterReferenceBindingKind(SCS2, SCS1))
3868       return ImplicitConversionSequence::Worse;
3869 
3870     // C++ [over.ics.rank]p3b4:
3871     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3872     //      which the references refer are the same type except for
3873     //      top-level cv-qualifiers, and the type to which the reference
3874     //      initialized by S2 refers is more cv-qualified than the type
3875     //      to which the reference initialized by S1 refers.
3876     QualType T1 = SCS1.getToType(2);
3877     QualType T2 = SCS2.getToType(2);
3878     T1 = S.Context.getCanonicalType(T1);
3879     T2 = S.Context.getCanonicalType(T2);
3880     Qualifiers T1Quals, T2Quals;
3881     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3882     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3883     if (UnqualT1 == UnqualT2) {
3884       // Objective-C++ ARC: If the references refer to objects with different
3885       // lifetimes, prefer bindings that don't change lifetime.
3886       if (SCS1.ObjCLifetimeConversionBinding !=
3887                                           SCS2.ObjCLifetimeConversionBinding) {
3888         return SCS1.ObjCLifetimeConversionBinding
3889                                            ? ImplicitConversionSequence::Worse
3890                                            : ImplicitConversionSequence::Better;
3891       }
3892 
3893       // If the type is an array type, promote the element qualifiers to the
3894       // type for comparison.
3895       if (isa<ArrayType>(T1) && T1Quals)
3896         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3897       if (isa<ArrayType>(T2) && T2Quals)
3898         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3899       if (T2.isMoreQualifiedThan(T1))
3900         return ImplicitConversionSequence::Better;
3901       else if (T1.isMoreQualifiedThan(T2))
3902         return ImplicitConversionSequence::Worse;
3903     }
3904   }
3905 
3906   // In Microsoft mode, prefer an integral conversion to a
3907   // floating-to-integral conversion if the integral conversion
3908   // is between types of the same size.
3909   // For example:
3910   // void f(float);
3911   // void f(int);
3912   // int main {
3913   //    long a;
3914   //    f(a);
3915   // }
3916   // Here, MSVC will call f(int) instead of generating a compile error
3917   // as clang will do in standard mode.
3918   if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3919       SCS2.Second == ICK_Floating_Integral &&
3920       S.Context.getTypeSize(SCS1.getFromType()) ==
3921           S.Context.getTypeSize(SCS1.getToType(2)))
3922     return ImplicitConversionSequence::Better;
3923 
3924   // Prefer a compatible vector conversion over a lax vector conversion
3925   // For example:
3926   //
3927   // typedef float __v4sf __attribute__((__vector_size__(16)));
3928   // void f(vector float);
3929   // void f(vector signed int);
3930   // int main() {
3931   //   __v4sf a;
3932   //   f(a);
3933   // }
3934   // Here, we'd like to choose f(vector float) and not
3935   // report an ambiguous call error
3936   if (SCS1.Second == ICK_Vector_Conversion &&
3937       SCS2.Second == ICK_Vector_Conversion) {
3938     bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3939         SCS1.getFromType(), SCS1.getToType(2));
3940     bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3941         SCS2.getFromType(), SCS2.getToType(2));
3942 
3943     if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
3944       return SCS1IsCompatibleVectorConversion
3945                  ? ImplicitConversionSequence::Better
3946                  : ImplicitConversionSequence::Worse;
3947   }
3948 
3949   return ImplicitConversionSequence::Indistinguishable;
3950 }
3951 
3952 /// CompareQualificationConversions - Compares two standard conversion
3953 /// sequences to determine whether they can be ranked based on their
3954 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3955 static ImplicitConversionSequence::CompareKind
3956 CompareQualificationConversions(Sema &S,
3957                                 const StandardConversionSequence& SCS1,
3958                                 const StandardConversionSequence& SCS2) {
3959   // C++ 13.3.3.2p3:
3960   //  -- S1 and S2 differ only in their qualification conversion and
3961   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3962   //     cv-qualification signature of type T1 is a proper subset of
3963   //     the cv-qualification signature of type T2, and S1 is not the
3964   //     deprecated string literal array-to-pointer conversion (4.2).
3965   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3966       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3967     return ImplicitConversionSequence::Indistinguishable;
3968 
3969   // FIXME: the example in the standard doesn't use a qualification
3970   // conversion (!)
3971   QualType T1 = SCS1.getToType(2);
3972   QualType T2 = SCS2.getToType(2);
3973   T1 = S.Context.getCanonicalType(T1);
3974   T2 = S.Context.getCanonicalType(T2);
3975   Qualifiers T1Quals, T2Quals;
3976   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3977   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3978 
3979   // If the types are the same, we won't learn anything by unwrapped
3980   // them.
3981   if (UnqualT1 == UnqualT2)
3982     return ImplicitConversionSequence::Indistinguishable;
3983 
3984   // If the type is an array type, promote the element qualifiers to the type
3985   // for comparison.
3986   if (isa<ArrayType>(T1) && T1Quals)
3987     T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3988   if (isa<ArrayType>(T2) && T2Quals)
3989     T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3990 
3991   ImplicitConversionSequence::CompareKind Result
3992     = ImplicitConversionSequence::Indistinguishable;
3993 
3994   // Objective-C++ ARC:
3995   //   Prefer qualification conversions not involving a change in lifetime
3996   //   to qualification conversions that do not change lifetime.
3997   if (SCS1.QualificationIncludesObjCLifetime !=
3998                                       SCS2.QualificationIncludesObjCLifetime) {
3999     Result = SCS1.QualificationIncludesObjCLifetime
4000                ? ImplicitConversionSequence::Worse
4001                : ImplicitConversionSequence::Better;
4002   }
4003 
4004   while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4005     // Within each iteration of the loop, we check the qualifiers to
4006     // determine if this still looks like a qualification
4007     // conversion. Then, if all is well, we unwrap one more level of
4008     // pointers or pointers-to-members and do it all again
4009     // until there are no more pointers or pointers-to-members left
4010     // to unwrap. This essentially mimics what
4011     // IsQualificationConversion does, but here we're checking for a
4012     // strict subset of qualifiers.
4013     if (T1.getQualifiers().withoutObjCLifetime() ==
4014         T2.getQualifiers().withoutObjCLifetime())
4015       // The qualifiers are the same, so this doesn't tell us anything
4016       // about how the sequences rank.
4017       // ObjC ownership quals are omitted above as they interfere with
4018       // the ARC overload rule.
4019       ;
4020     else if (T2.isMoreQualifiedThan(T1)) {
4021       // T1 has fewer qualifiers, so it could be the better sequence.
4022       if (Result == ImplicitConversionSequence::Worse)
4023         // Neither has qualifiers that are a subset of the other's
4024         // qualifiers.
4025         return ImplicitConversionSequence::Indistinguishable;
4026 
4027       Result = ImplicitConversionSequence::Better;
4028     } else if (T1.isMoreQualifiedThan(T2)) {
4029       // T2 has fewer qualifiers, so it could be the better sequence.
4030       if (Result == ImplicitConversionSequence::Better)
4031         // Neither has qualifiers that are a subset of the other's
4032         // qualifiers.
4033         return ImplicitConversionSequence::Indistinguishable;
4034 
4035       Result = ImplicitConversionSequence::Worse;
4036     } else {
4037       // Qualifiers are disjoint.
4038       return ImplicitConversionSequence::Indistinguishable;
4039     }
4040 
4041     // If the types after this point are equivalent, we're done.
4042     if (S.Context.hasSameUnqualifiedType(T1, T2))
4043       break;
4044   }
4045 
4046   // Check that the winning standard conversion sequence isn't using
4047   // the deprecated string literal array to pointer conversion.
4048   switch (Result) {
4049   case ImplicitConversionSequence::Better:
4050     if (SCS1.DeprecatedStringLiteralToCharPtr)
4051       Result = ImplicitConversionSequence::Indistinguishable;
4052     break;
4053 
4054   case ImplicitConversionSequence::Indistinguishable:
4055     break;
4056 
4057   case ImplicitConversionSequence::Worse:
4058     if (SCS2.DeprecatedStringLiteralToCharPtr)
4059       Result = ImplicitConversionSequence::Indistinguishable;
4060     break;
4061   }
4062 
4063   return Result;
4064 }
4065 
4066 /// CompareDerivedToBaseConversions - Compares two standard conversion
4067 /// sequences to determine whether they can be ranked based on their
4068 /// various kinds of derived-to-base conversions (C++
4069 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
4070 /// conversions between Objective-C interface types.
4071 static ImplicitConversionSequence::CompareKind
4072 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4073                                 const StandardConversionSequence& SCS1,
4074                                 const StandardConversionSequence& SCS2) {
4075   QualType FromType1 = SCS1.getFromType();
4076   QualType ToType1 = SCS1.getToType(1);
4077   QualType FromType2 = SCS2.getFromType();
4078   QualType ToType2 = SCS2.getToType(1);
4079 
4080   // Adjust the types we're converting from via the array-to-pointer
4081   // conversion, if we need to.
4082   if (SCS1.First == ICK_Array_To_Pointer)
4083     FromType1 = S.Context.getArrayDecayedType(FromType1);
4084   if (SCS2.First == ICK_Array_To_Pointer)
4085     FromType2 = S.Context.getArrayDecayedType(FromType2);
4086 
4087   // Canonicalize all of the types.
4088   FromType1 = S.Context.getCanonicalType(FromType1);
4089   ToType1 = S.Context.getCanonicalType(ToType1);
4090   FromType2 = S.Context.getCanonicalType(FromType2);
4091   ToType2 = S.Context.getCanonicalType(ToType2);
4092 
4093   // C++ [over.ics.rank]p4b3:
4094   //
4095   //   If class B is derived directly or indirectly from class A and
4096   //   class C is derived directly or indirectly from B,
4097   //
4098   // Compare based on pointer conversions.
4099   if (SCS1.Second == ICK_Pointer_Conversion &&
4100       SCS2.Second == ICK_Pointer_Conversion &&
4101       /*FIXME: Remove if Objective-C id conversions get their own rank*/
4102       FromType1->isPointerType() && FromType2->isPointerType() &&
4103       ToType1->isPointerType() && ToType2->isPointerType()) {
4104     QualType FromPointee1
4105       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4106     QualType ToPointee1
4107       = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4108     QualType FromPointee2
4109       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4110     QualType ToPointee2
4111       = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4112 
4113     //   -- conversion of C* to B* is better than conversion of C* to A*,
4114     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4115       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4116         return ImplicitConversionSequence::Better;
4117       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4118         return ImplicitConversionSequence::Worse;
4119     }
4120 
4121     //   -- conversion of B* to A* is better than conversion of C* to A*,
4122     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4123       if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4124         return ImplicitConversionSequence::Better;
4125       else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4126         return ImplicitConversionSequence::Worse;
4127     }
4128   } else if (SCS1.Second == ICK_Pointer_Conversion &&
4129              SCS2.Second == ICK_Pointer_Conversion) {
4130     const ObjCObjectPointerType *FromPtr1
4131       = FromType1->getAs<ObjCObjectPointerType>();
4132     const ObjCObjectPointerType *FromPtr2
4133       = FromType2->getAs<ObjCObjectPointerType>();
4134     const ObjCObjectPointerType *ToPtr1
4135       = ToType1->getAs<ObjCObjectPointerType>();
4136     const ObjCObjectPointerType *ToPtr2
4137       = ToType2->getAs<ObjCObjectPointerType>();
4138 
4139     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4140       // Apply the same conversion ranking rules for Objective-C pointer types
4141       // that we do for C++ pointers to class types. However, we employ the
4142       // Objective-C pseudo-subtyping relationship used for assignment of
4143       // Objective-C pointer types.
4144       bool FromAssignLeft
4145         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4146       bool FromAssignRight
4147         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4148       bool ToAssignLeft
4149         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4150       bool ToAssignRight
4151         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4152 
4153       // A conversion to an a non-id object pointer type or qualified 'id'
4154       // type is better than a conversion to 'id'.
4155       if (ToPtr1->isObjCIdType() &&
4156           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4157         return ImplicitConversionSequence::Worse;
4158       if (ToPtr2->isObjCIdType() &&
4159           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4160         return ImplicitConversionSequence::Better;
4161 
4162       // A conversion to a non-id object pointer type is better than a
4163       // conversion to a qualified 'id' type
4164       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4165         return ImplicitConversionSequence::Worse;
4166       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4167         return ImplicitConversionSequence::Better;
4168 
4169       // A conversion to an a non-Class object pointer type or qualified 'Class'
4170       // type is better than a conversion to 'Class'.
4171       if (ToPtr1->isObjCClassType() &&
4172           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4173         return ImplicitConversionSequence::Worse;
4174       if (ToPtr2->isObjCClassType() &&
4175           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4176         return ImplicitConversionSequence::Better;
4177 
4178       // A conversion to a non-Class object pointer type is better than a
4179       // conversion to a qualified 'Class' type.
4180       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4181         return ImplicitConversionSequence::Worse;
4182       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4183         return ImplicitConversionSequence::Better;
4184 
4185       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
4186       if (S.Context.hasSameType(FromType1, FromType2) &&
4187           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4188           (ToAssignLeft != ToAssignRight)) {
4189         if (FromPtr1->isSpecialized()) {
4190           // "conversion of B<A> * to B * is better than conversion of B * to
4191           // C *.
4192           bool IsFirstSame =
4193               FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4194           bool IsSecondSame =
4195               FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4196           if (IsFirstSame) {
4197             if (!IsSecondSame)
4198               return ImplicitConversionSequence::Better;
4199           } else if (IsSecondSame)
4200             return ImplicitConversionSequence::Worse;
4201         }
4202         return ToAssignLeft? ImplicitConversionSequence::Worse
4203                            : ImplicitConversionSequence::Better;
4204       }
4205 
4206       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
4207       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4208           (FromAssignLeft != FromAssignRight))
4209         return FromAssignLeft? ImplicitConversionSequence::Better
4210         : ImplicitConversionSequence::Worse;
4211     }
4212   }
4213 
4214   // Ranking of member-pointer types.
4215   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4216       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4217       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4218     const MemberPointerType * FromMemPointer1 =
4219                                         FromType1->getAs<MemberPointerType>();
4220     const MemberPointerType * ToMemPointer1 =
4221                                           ToType1->getAs<MemberPointerType>();
4222     const MemberPointerType * FromMemPointer2 =
4223                                           FromType2->getAs<MemberPointerType>();
4224     const MemberPointerType * ToMemPointer2 =
4225                                           ToType2->getAs<MemberPointerType>();
4226     const Type *FromPointeeType1 = FromMemPointer1->getClass();
4227     const Type *ToPointeeType1 = ToMemPointer1->getClass();
4228     const Type *FromPointeeType2 = FromMemPointer2->getClass();
4229     const Type *ToPointeeType2 = ToMemPointer2->getClass();
4230     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4231     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4232     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4233     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4234     // conversion of A::* to B::* is better than conversion of A::* to C::*,
4235     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4236       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4237         return ImplicitConversionSequence::Worse;
4238       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4239         return ImplicitConversionSequence::Better;
4240     }
4241     // conversion of B::* to C::* is better than conversion of A::* to C::*
4242     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4243       if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4244         return ImplicitConversionSequence::Better;
4245       else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4246         return ImplicitConversionSequence::Worse;
4247     }
4248   }
4249 
4250   if (SCS1.Second == ICK_Derived_To_Base) {
4251     //   -- conversion of C to B is better than conversion of C to A,
4252     //   -- binding of an expression of type C to a reference of type
4253     //      B& is better than binding an expression of type C to a
4254     //      reference of type A&,
4255     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4256         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4257       if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4258         return ImplicitConversionSequence::Better;
4259       else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4260         return ImplicitConversionSequence::Worse;
4261     }
4262 
4263     //   -- conversion of B to A is better than conversion of C to A.
4264     //   -- binding of an expression of type B to a reference of type
4265     //      A& is better than binding an expression of type C to a
4266     //      reference of type A&,
4267     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4268         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4269       if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4270         return ImplicitConversionSequence::Better;
4271       else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4272         return ImplicitConversionSequence::Worse;
4273     }
4274   }
4275 
4276   return ImplicitConversionSequence::Indistinguishable;
4277 }
4278 
4279 /// Determine whether the given type is valid, e.g., it is not an invalid
4280 /// C++ class.
4281 static bool isTypeValid(QualType T) {
4282   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4283     return !Record->isInvalidDecl();
4284 
4285   return true;
4286 }
4287 
4288 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4289 /// determine whether they are reference-related,
4290 /// reference-compatible, reference-compatible with added
4291 /// qualification, or incompatible, for use in C++ initialization by
4292 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4293 /// type, and the first type (T1) is the pointee type of the reference
4294 /// type being initialized.
4295 Sema::ReferenceCompareResult
4296 Sema::CompareReferenceRelationship(SourceLocation Loc,
4297                                    QualType OrigT1, QualType OrigT2,
4298                                    bool &DerivedToBase,
4299                                    bool &ObjCConversion,
4300                                    bool &ObjCLifetimeConversion) {
4301   assert(!OrigT1->isReferenceType() &&
4302     "T1 must be the pointee type of the reference type");
4303   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4304 
4305   QualType T1 = Context.getCanonicalType(OrigT1);
4306   QualType T2 = Context.getCanonicalType(OrigT2);
4307   Qualifiers T1Quals, T2Quals;
4308   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4309   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4310 
4311   // C++ [dcl.init.ref]p4:
4312   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4313   //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4314   //   T1 is a base class of T2.
4315   DerivedToBase = false;
4316   ObjCConversion = false;
4317   ObjCLifetimeConversion = false;
4318   QualType ConvertedT2;
4319   if (UnqualT1 == UnqualT2) {
4320     // Nothing to do.
4321   } else if (isCompleteType(Loc, OrigT2) &&
4322              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4323              IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4324     DerivedToBase = true;
4325   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4326            UnqualT2->isObjCObjectOrInterfaceType() &&
4327            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4328     ObjCConversion = true;
4329   else if (UnqualT2->isFunctionType() &&
4330            IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2))
4331     // C++1z [dcl.init.ref]p4:
4332     //   cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept
4333     //   function" and T1 is "function"
4334     //
4335     // We extend this to also apply to 'noreturn', so allow any function
4336     // conversion between function types.
4337     return Ref_Compatible;
4338   else
4339     return Ref_Incompatible;
4340 
4341   // At this point, we know that T1 and T2 are reference-related (at
4342   // least).
4343 
4344   // If the type is an array type, promote the element qualifiers to the type
4345   // for comparison.
4346   if (isa<ArrayType>(T1) && T1Quals)
4347     T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4348   if (isa<ArrayType>(T2) && T2Quals)
4349     T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4350 
4351   // C++ [dcl.init.ref]p4:
4352   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4353   //   reference-related to T2 and cv1 is the same cv-qualification
4354   //   as, or greater cv-qualification than, cv2. For purposes of
4355   //   overload resolution, cases for which cv1 is greater
4356   //   cv-qualification than cv2 are identified as
4357   //   reference-compatible with added qualification (see 13.3.3.2).
4358   //
4359   // Note that we also require equivalence of Objective-C GC and address-space
4360   // qualifiers when performing these computations, so that e.g., an int in
4361   // address space 1 is not reference-compatible with an int in address
4362   // space 2.
4363   if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4364       T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4365     if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4366       ObjCLifetimeConversion = true;
4367 
4368     T1Quals.removeObjCLifetime();
4369     T2Quals.removeObjCLifetime();
4370   }
4371 
4372   // MS compiler ignores __unaligned qualifier for references; do the same.
4373   T1Quals.removeUnaligned();
4374   T2Quals.removeUnaligned();
4375 
4376   if (T1Quals.compatiblyIncludes(T2Quals))
4377     return Ref_Compatible;
4378   else
4379     return Ref_Related;
4380 }
4381 
4382 /// Look for a user-defined conversion to a value reference-compatible
4383 ///        with DeclType. Return true if something definite is found.
4384 static bool
4385 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4386                          QualType DeclType, SourceLocation DeclLoc,
4387                          Expr *Init, QualType T2, bool AllowRvalues,
4388                          bool AllowExplicit) {
4389   assert(T2->isRecordType() && "Can only find conversions of record types.");
4390   CXXRecordDecl *T2RecordDecl
4391     = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4392 
4393   OverloadCandidateSet CandidateSet(
4394       DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4395   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4396   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4397     NamedDecl *D = *I;
4398     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4399     if (isa<UsingShadowDecl>(D))
4400       D = cast<UsingShadowDecl>(D)->getTargetDecl();
4401 
4402     FunctionTemplateDecl *ConvTemplate
4403       = dyn_cast<FunctionTemplateDecl>(D);
4404     CXXConversionDecl *Conv;
4405     if (ConvTemplate)
4406       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4407     else
4408       Conv = cast<CXXConversionDecl>(D);
4409 
4410     // If this is an explicit conversion, and we're not allowed to consider
4411     // explicit conversions, skip it.
4412     if (!AllowExplicit && Conv->isExplicit())
4413       continue;
4414 
4415     if (AllowRvalues) {
4416       bool DerivedToBase = false;
4417       bool ObjCConversion = false;
4418       bool ObjCLifetimeConversion = false;
4419 
4420       // If we are initializing an rvalue reference, don't permit conversion
4421       // functions that return lvalues.
4422       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4423         const ReferenceType *RefType
4424           = Conv->getConversionType()->getAs<LValueReferenceType>();
4425         if (RefType && !RefType->getPointeeType()->isFunctionType())
4426           continue;
4427       }
4428 
4429       if (!ConvTemplate &&
4430           S.CompareReferenceRelationship(
4431             DeclLoc,
4432             Conv->getConversionType().getNonReferenceType()
4433               .getUnqualifiedType(),
4434             DeclType.getNonReferenceType().getUnqualifiedType(),
4435             DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4436           Sema::Ref_Incompatible)
4437         continue;
4438     } else {
4439       // If the conversion function doesn't return a reference type,
4440       // it can't be considered for this conversion. An rvalue reference
4441       // is only acceptable if its referencee is a function type.
4442 
4443       const ReferenceType *RefType =
4444         Conv->getConversionType()->getAs<ReferenceType>();
4445       if (!RefType ||
4446           (!RefType->isLValueReferenceType() &&
4447            !RefType->getPointeeType()->isFunctionType()))
4448         continue;
4449     }
4450 
4451     if (ConvTemplate)
4452       S.AddTemplateConversionCandidate(
4453           ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4454           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4455     else
4456       S.AddConversionCandidate(
4457           Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4458           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4459   }
4460 
4461   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4462 
4463   OverloadCandidateSet::iterator Best;
4464   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4465   case OR_Success:
4466     // C++ [over.ics.ref]p1:
4467     //
4468     //   [...] If the parameter binds directly to the result of
4469     //   applying a conversion function to the argument
4470     //   expression, the implicit conversion sequence is a
4471     //   user-defined conversion sequence (13.3.3.1.2), with the
4472     //   second standard conversion sequence either an identity
4473     //   conversion or, if the conversion function returns an
4474     //   entity of a type that is a derived class of the parameter
4475     //   type, a derived-to-base Conversion.
4476     if (!Best->FinalConversion.DirectBinding)
4477       return false;
4478 
4479     ICS.setUserDefined();
4480     ICS.UserDefined.Before = Best->Conversions[0].Standard;
4481     ICS.UserDefined.After = Best->FinalConversion;
4482     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4483     ICS.UserDefined.ConversionFunction = Best->Function;
4484     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4485     ICS.UserDefined.EllipsisConversion = false;
4486     assert(ICS.UserDefined.After.ReferenceBinding &&
4487            ICS.UserDefined.After.DirectBinding &&
4488            "Expected a direct reference binding!");
4489     return true;
4490 
4491   case OR_Ambiguous:
4492     ICS.setAmbiguous();
4493     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4494          Cand != CandidateSet.end(); ++Cand)
4495       if (Cand->Viable)
4496         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4497     return true;
4498 
4499   case OR_No_Viable_Function:
4500   case OR_Deleted:
4501     // There was no suitable conversion, or we found a deleted
4502     // conversion; continue with other checks.
4503     return false;
4504   }
4505 
4506   llvm_unreachable("Invalid OverloadResult!");
4507 }
4508 
4509 /// Compute an implicit conversion sequence for reference
4510 /// initialization.
4511 static ImplicitConversionSequence
4512 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4513                  SourceLocation DeclLoc,
4514                  bool SuppressUserConversions,
4515                  bool AllowExplicit) {
4516   assert(DeclType->isReferenceType() && "Reference init needs a reference");
4517 
4518   // Most paths end in a failed conversion.
4519   ImplicitConversionSequence ICS;
4520   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4521 
4522   QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4523   QualType T2 = Init->getType();
4524 
4525   // If the initializer is the address of an overloaded function, try
4526   // to resolve the overloaded function. If all goes well, T2 is the
4527   // type of the resulting function.
4528   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4529     DeclAccessPair Found;
4530     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4531                                                                 false, Found))
4532       T2 = Fn->getType();
4533   }
4534 
4535   // Compute some basic properties of the types and the initializer.
4536   bool isRValRef = DeclType->isRValueReferenceType();
4537   bool DerivedToBase = false;
4538   bool ObjCConversion = false;
4539   bool ObjCLifetimeConversion = false;
4540   Expr::Classification InitCategory = Init->Classify(S.Context);
4541   Sema::ReferenceCompareResult RefRelationship
4542     = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4543                                      ObjCConversion, ObjCLifetimeConversion);
4544 
4545 
4546   // C++0x [dcl.init.ref]p5:
4547   //   A reference to type "cv1 T1" is initialized by an expression
4548   //   of type "cv2 T2" as follows:
4549 
4550   //     -- If reference is an lvalue reference and the initializer expression
4551   if (!isRValRef) {
4552     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4553     //        reference-compatible with "cv2 T2," or
4554     //
4555     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4556     if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4557       // C++ [over.ics.ref]p1:
4558       //   When a parameter of reference type binds directly (8.5.3)
4559       //   to an argument expression, the implicit conversion sequence
4560       //   is the identity conversion, unless the argument expression
4561       //   has a type that is a derived class of the parameter type,
4562       //   in which case the implicit conversion sequence is a
4563       //   derived-to-base Conversion (13.3.3.1).
4564       ICS.setStandard();
4565       ICS.Standard.First = ICK_Identity;
4566       ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4567                          : ObjCConversion? ICK_Compatible_Conversion
4568                          : ICK_Identity;
4569       ICS.Standard.Third = ICK_Identity;
4570       ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4571       ICS.Standard.setToType(0, T2);
4572       ICS.Standard.setToType(1, T1);
4573       ICS.Standard.setToType(2, T1);
4574       ICS.Standard.ReferenceBinding = true;
4575       ICS.Standard.DirectBinding = true;
4576       ICS.Standard.IsLvalueReference = !isRValRef;
4577       ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4578       ICS.Standard.BindsToRvalue = false;
4579       ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4580       ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4581       ICS.Standard.CopyConstructor = nullptr;
4582       ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4583 
4584       // Nothing more to do: the inaccessibility/ambiguity check for
4585       // derived-to-base conversions is suppressed when we're
4586       // computing the implicit conversion sequence (C++
4587       // [over.best.ics]p2).
4588       return ICS;
4589     }
4590 
4591     //       -- has a class type (i.e., T2 is a class type), where T1 is
4592     //          not reference-related to T2, and can be implicitly
4593     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4594     //          is reference-compatible with "cv3 T3" 92) (this
4595     //          conversion is selected by enumerating the applicable
4596     //          conversion functions (13.3.1.6) and choosing the best
4597     //          one through overload resolution (13.3)),
4598     if (!SuppressUserConversions && T2->isRecordType() &&
4599         S.isCompleteType(DeclLoc, T2) &&
4600         RefRelationship == Sema::Ref_Incompatible) {
4601       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4602                                    Init, T2, /*AllowRvalues=*/false,
4603                                    AllowExplicit))
4604         return ICS;
4605     }
4606   }
4607 
4608   //     -- Otherwise, the reference shall be an lvalue reference to a
4609   //        non-volatile const type (i.e., cv1 shall be const), or the reference
4610   //        shall be an rvalue reference.
4611   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4612     return ICS;
4613 
4614   //       -- If the initializer expression
4615   //
4616   //            -- is an xvalue, class prvalue, array prvalue or function
4617   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4618   if (RefRelationship == Sema::Ref_Compatible &&
4619       (InitCategory.isXValue() ||
4620        (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4621        (InitCategory.isLValue() && T2->isFunctionType()))) {
4622     ICS.setStandard();
4623     ICS.Standard.First = ICK_Identity;
4624     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4625                       : ObjCConversion? ICK_Compatible_Conversion
4626                       : ICK_Identity;
4627     ICS.Standard.Third = ICK_Identity;
4628     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4629     ICS.Standard.setToType(0, T2);
4630     ICS.Standard.setToType(1, T1);
4631     ICS.Standard.setToType(2, T1);
4632     ICS.Standard.ReferenceBinding = true;
4633     // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4634     // binding unless we're binding to a class prvalue.
4635     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4636     // allow the use of rvalue references in C++98/03 for the benefit of
4637     // standard library implementors; therefore, we need the xvalue check here.
4638     ICS.Standard.DirectBinding =
4639       S.getLangOpts().CPlusPlus11 ||
4640       !(InitCategory.isPRValue() || T2->isRecordType());
4641     ICS.Standard.IsLvalueReference = !isRValRef;
4642     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4643     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4644     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4645     ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4646     ICS.Standard.CopyConstructor = nullptr;
4647     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4648     return ICS;
4649   }
4650 
4651   //            -- has a class type (i.e., T2 is a class type), where T1 is not
4652   //               reference-related to T2, and can be implicitly converted to
4653   //               an xvalue, class prvalue, or function lvalue of type
4654   //               "cv3 T3", where "cv1 T1" is reference-compatible with
4655   //               "cv3 T3",
4656   //
4657   //          then the reference is bound to the value of the initializer
4658   //          expression in the first case and to the result of the conversion
4659   //          in the second case (or, in either case, to an appropriate base
4660   //          class subobject).
4661   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4662       T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4663       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4664                                Init, T2, /*AllowRvalues=*/true,
4665                                AllowExplicit)) {
4666     // In the second case, if the reference is an rvalue reference
4667     // and the second standard conversion sequence of the
4668     // user-defined conversion sequence includes an lvalue-to-rvalue
4669     // conversion, the program is ill-formed.
4670     if (ICS.isUserDefined() && isRValRef &&
4671         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4672       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4673 
4674     return ICS;
4675   }
4676 
4677   // A temporary of function type cannot be created; don't even try.
4678   if (T1->isFunctionType())
4679     return ICS;
4680 
4681   //       -- Otherwise, a temporary of type "cv1 T1" is created and
4682   //          initialized from the initializer expression using the
4683   //          rules for a non-reference copy initialization (8.5). The
4684   //          reference is then bound to the temporary. If T1 is
4685   //          reference-related to T2, cv1 must be the same
4686   //          cv-qualification as, or greater cv-qualification than,
4687   //          cv2; otherwise, the program is ill-formed.
4688   if (RefRelationship == Sema::Ref_Related) {
4689     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4690     // we would be reference-compatible or reference-compatible with
4691     // added qualification. But that wasn't the case, so the reference
4692     // initialization fails.
4693     //
4694     // Note that we only want to check address spaces and cvr-qualifiers here.
4695     // ObjC GC, lifetime and unaligned qualifiers aren't important.
4696     Qualifiers T1Quals = T1.getQualifiers();
4697     Qualifiers T2Quals = T2.getQualifiers();
4698     T1Quals.removeObjCGCAttr();
4699     T1Quals.removeObjCLifetime();
4700     T2Quals.removeObjCGCAttr();
4701     T2Quals.removeObjCLifetime();
4702     // MS compiler ignores __unaligned qualifier for references; do the same.
4703     T1Quals.removeUnaligned();
4704     T2Quals.removeUnaligned();
4705     if (!T1Quals.compatiblyIncludes(T2Quals))
4706       return ICS;
4707   }
4708 
4709   // If at least one of the types is a class type, the types are not
4710   // related, and we aren't allowed any user conversions, the
4711   // reference binding fails. This case is important for breaking
4712   // recursion, since TryImplicitConversion below will attempt to
4713   // create a temporary through the use of a copy constructor.
4714   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4715       (T1->isRecordType() || T2->isRecordType()))
4716     return ICS;
4717 
4718   // If T1 is reference-related to T2 and the reference is an rvalue
4719   // reference, the initializer expression shall not be an lvalue.
4720   if (RefRelationship >= Sema::Ref_Related &&
4721       isRValRef && Init->Classify(S.Context).isLValue())
4722     return ICS;
4723 
4724   // C++ [over.ics.ref]p2:
4725   //   When a parameter of reference type is not bound directly to
4726   //   an argument expression, the conversion sequence is the one
4727   //   required to convert the argument expression to the
4728   //   underlying type of the reference according to
4729   //   13.3.3.1. Conceptually, this conversion sequence corresponds
4730   //   to copy-initializing a temporary of the underlying type with
4731   //   the argument expression. Any difference in top-level
4732   //   cv-qualification is subsumed by the initialization itself
4733   //   and does not constitute a conversion.
4734   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4735                               /*AllowExplicit=*/false,
4736                               /*InOverloadResolution=*/false,
4737                               /*CStyle=*/false,
4738                               /*AllowObjCWritebackConversion=*/false,
4739                               /*AllowObjCConversionOnExplicit=*/false);
4740 
4741   // Of course, that's still a reference binding.
4742   if (ICS.isStandard()) {
4743     ICS.Standard.ReferenceBinding = true;
4744     ICS.Standard.IsLvalueReference = !isRValRef;
4745     ICS.Standard.BindsToFunctionLvalue = false;
4746     ICS.Standard.BindsToRvalue = true;
4747     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4748     ICS.Standard.ObjCLifetimeConversionBinding = false;
4749   } else if (ICS.isUserDefined()) {
4750     const ReferenceType *LValRefType =
4751         ICS.UserDefined.ConversionFunction->getReturnType()
4752             ->getAs<LValueReferenceType>();
4753 
4754     // C++ [over.ics.ref]p3:
4755     //   Except for an implicit object parameter, for which see 13.3.1, a
4756     //   standard conversion sequence cannot be formed if it requires [...]
4757     //   binding an rvalue reference to an lvalue other than a function
4758     //   lvalue.
4759     // Note that the function case is not possible here.
4760     if (DeclType->isRValueReferenceType() && LValRefType) {
4761       // FIXME: This is the wrong BadConversionSequence. The problem is binding
4762       // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4763       // reference to an rvalue!
4764       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4765       return ICS;
4766     }
4767 
4768     ICS.UserDefined.After.ReferenceBinding = true;
4769     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4770     ICS.UserDefined.After.BindsToFunctionLvalue = false;
4771     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4772     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4773     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4774   }
4775 
4776   return ICS;
4777 }
4778 
4779 static ImplicitConversionSequence
4780 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4781                       bool SuppressUserConversions,
4782                       bool InOverloadResolution,
4783                       bool AllowObjCWritebackConversion,
4784                       bool AllowExplicit = false);
4785 
4786 /// TryListConversion - Try to copy-initialize a value of type ToType from the
4787 /// initializer list From.
4788 static ImplicitConversionSequence
4789 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4790                   bool SuppressUserConversions,
4791                   bool InOverloadResolution,
4792                   bool AllowObjCWritebackConversion) {
4793   // C++11 [over.ics.list]p1:
4794   //   When an argument is an initializer list, it is not an expression and
4795   //   special rules apply for converting it to a parameter type.
4796 
4797   ImplicitConversionSequence Result;
4798   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4799 
4800   // We need a complete type for what follows. Incomplete types can never be
4801   // initialized from init lists.
4802   if (!S.isCompleteType(From->getBeginLoc(), ToType))
4803     return Result;
4804 
4805   // Per DR1467:
4806   //   If the parameter type is a class X and the initializer list has a single
4807   //   element of type cv U, where U is X or a class derived from X, the
4808   //   implicit conversion sequence is the one required to convert the element
4809   //   to the parameter type.
4810   //
4811   //   Otherwise, if the parameter type is a character array [... ]
4812   //   and the initializer list has a single element that is an
4813   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4814   //   implicit conversion sequence is the identity conversion.
4815   if (From->getNumInits() == 1) {
4816     if (ToType->isRecordType()) {
4817       QualType InitType = From->getInit(0)->getType();
4818       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4819           S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
4820         return TryCopyInitialization(S, From->getInit(0), ToType,
4821                                      SuppressUserConversions,
4822                                      InOverloadResolution,
4823                                      AllowObjCWritebackConversion);
4824     }
4825     // FIXME: Check the other conditions here: array of character type,
4826     // initializer is a string literal.
4827     if (ToType->isArrayType()) {
4828       InitializedEntity Entity =
4829         InitializedEntity::InitializeParameter(S.Context, ToType,
4830                                                /*Consumed=*/false);
4831       if (S.CanPerformCopyInitialization(Entity, From)) {
4832         Result.setStandard();
4833         Result.Standard.setAsIdentityConversion();
4834         Result.Standard.setFromType(ToType);
4835         Result.Standard.setAllToTypes(ToType);
4836         return Result;
4837       }
4838     }
4839   }
4840 
4841   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4842   // C++11 [over.ics.list]p2:
4843   //   If the parameter type is std::initializer_list<X> or "array of X" and
4844   //   all the elements can be implicitly converted to X, the implicit
4845   //   conversion sequence is the worst conversion necessary to convert an
4846   //   element of the list to X.
4847   //
4848   // C++14 [over.ics.list]p3:
4849   //   Otherwise, if the parameter type is "array of N X", if the initializer
4850   //   list has exactly N elements or if it has fewer than N elements and X is
4851   //   default-constructible, and if all the elements of the initializer list
4852   //   can be implicitly converted to X, the implicit conversion sequence is
4853   //   the worst conversion necessary to convert an element of the list to X.
4854   //
4855   // FIXME: We're missing a lot of these checks.
4856   bool toStdInitializerList = false;
4857   QualType X;
4858   if (ToType->isArrayType())
4859     X = S.Context.getAsArrayType(ToType)->getElementType();
4860   else
4861     toStdInitializerList = S.isStdInitializerList(ToType, &X);
4862   if (!X.isNull()) {
4863     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4864       Expr *Init = From->getInit(i);
4865       ImplicitConversionSequence ICS =
4866           TryCopyInitialization(S, Init, X, SuppressUserConversions,
4867                                 InOverloadResolution,
4868                                 AllowObjCWritebackConversion);
4869       // If a single element isn't convertible, fail.
4870       if (ICS.isBad()) {
4871         Result = ICS;
4872         break;
4873       }
4874       // Otherwise, look for the worst conversion.
4875       if (Result.isBad() || CompareImplicitConversionSequences(
4876                                 S, From->getBeginLoc(), ICS, Result) ==
4877                                 ImplicitConversionSequence::Worse)
4878         Result = ICS;
4879     }
4880 
4881     // For an empty list, we won't have computed any conversion sequence.
4882     // Introduce the identity conversion sequence.
4883     if (From->getNumInits() == 0) {
4884       Result.setStandard();
4885       Result.Standard.setAsIdentityConversion();
4886       Result.Standard.setFromType(ToType);
4887       Result.Standard.setAllToTypes(ToType);
4888     }
4889 
4890     Result.setStdInitializerListElement(toStdInitializerList);
4891     return Result;
4892   }
4893 
4894   // C++14 [over.ics.list]p4:
4895   // C++11 [over.ics.list]p3:
4896   //   Otherwise, if the parameter is a non-aggregate class X and overload
4897   //   resolution chooses a single best constructor [...] the implicit
4898   //   conversion sequence is a user-defined conversion sequence. If multiple
4899   //   constructors are viable but none is better than the others, the
4900   //   implicit conversion sequence is a user-defined conversion sequence.
4901   if (ToType->isRecordType() && !ToType->isAggregateType()) {
4902     // This function can deal with initializer lists.
4903     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4904                                     /*AllowExplicit=*/false,
4905                                     InOverloadResolution, /*CStyle=*/false,
4906                                     AllowObjCWritebackConversion,
4907                                     /*AllowObjCConversionOnExplicit=*/false);
4908   }
4909 
4910   // C++14 [over.ics.list]p5:
4911   // C++11 [over.ics.list]p4:
4912   //   Otherwise, if the parameter has an aggregate type which can be
4913   //   initialized from the initializer list [...] the implicit conversion
4914   //   sequence is a user-defined conversion sequence.
4915   if (ToType->isAggregateType()) {
4916     // Type is an aggregate, argument is an init list. At this point it comes
4917     // down to checking whether the initialization works.
4918     // FIXME: Find out whether this parameter is consumed or not.
4919     // FIXME: Expose SemaInit's aggregate initialization code so that we don't
4920     // need to call into the initialization code here; overload resolution
4921     // should not be doing that.
4922     InitializedEntity Entity =
4923         InitializedEntity::InitializeParameter(S.Context, ToType,
4924                                                /*Consumed=*/false);
4925     if (S.CanPerformCopyInitialization(Entity, From)) {
4926       Result.setUserDefined();
4927       Result.UserDefined.Before.setAsIdentityConversion();
4928       // Initializer lists don't have a type.
4929       Result.UserDefined.Before.setFromType(QualType());
4930       Result.UserDefined.Before.setAllToTypes(QualType());
4931 
4932       Result.UserDefined.After.setAsIdentityConversion();
4933       Result.UserDefined.After.setFromType(ToType);
4934       Result.UserDefined.After.setAllToTypes(ToType);
4935       Result.UserDefined.ConversionFunction = nullptr;
4936     }
4937     return Result;
4938   }
4939 
4940   // C++14 [over.ics.list]p6:
4941   // C++11 [over.ics.list]p5:
4942   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4943   if (ToType->isReferenceType()) {
4944     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4945     // mention initializer lists in any way. So we go by what list-
4946     // initialization would do and try to extrapolate from that.
4947 
4948     QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4949 
4950     // If the initializer list has a single element that is reference-related
4951     // to the parameter type, we initialize the reference from that.
4952     if (From->getNumInits() == 1) {
4953       Expr *Init = From->getInit(0);
4954 
4955       QualType T2 = Init->getType();
4956 
4957       // If the initializer is the address of an overloaded function, try
4958       // to resolve the overloaded function. If all goes well, T2 is the
4959       // type of the resulting function.
4960       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4961         DeclAccessPair Found;
4962         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4963                                    Init, ToType, false, Found))
4964           T2 = Fn->getType();
4965       }
4966 
4967       // Compute some basic properties of the types and the initializer.
4968       bool dummy1 = false;
4969       bool dummy2 = false;
4970       bool dummy3 = false;
4971       Sema::ReferenceCompareResult RefRelationship =
4972           S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2, dummy1,
4973                                          dummy2, dummy3);
4974 
4975       if (RefRelationship >= Sema::Ref_Related) {
4976         return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
4977                                 SuppressUserConversions,
4978                                 /*AllowExplicit=*/false);
4979       }
4980     }
4981 
4982     // Otherwise, we bind the reference to a temporary created from the
4983     // initializer list.
4984     Result = TryListConversion(S, From, T1, SuppressUserConversions,
4985                                InOverloadResolution,
4986                                AllowObjCWritebackConversion);
4987     if (Result.isFailure())
4988       return Result;
4989     assert(!Result.isEllipsis() &&
4990            "Sub-initialization cannot result in ellipsis conversion.");
4991 
4992     // Can we even bind to a temporary?
4993     if (ToType->isRValueReferenceType() ||
4994         (T1.isConstQualified() && !T1.isVolatileQualified())) {
4995       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4996                                             Result.UserDefined.After;
4997       SCS.ReferenceBinding = true;
4998       SCS.IsLvalueReference = ToType->isLValueReferenceType();
4999       SCS.BindsToRvalue = true;
5000       SCS.BindsToFunctionLvalue = false;
5001       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5002       SCS.ObjCLifetimeConversionBinding = false;
5003     } else
5004       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5005                     From, ToType);
5006     return Result;
5007   }
5008 
5009   // C++14 [over.ics.list]p7:
5010   // C++11 [over.ics.list]p6:
5011   //   Otherwise, if the parameter type is not a class:
5012   if (!ToType->isRecordType()) {
5013     //    - if the initializer list has one element that is not itself an
5014     //      initializer list, the implicit conversion sequence is the one
5015     //      required to convert the element to the parameter type.
5016     unsigned NumInits = From->getNumInits();
5017     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5018       Result = TryCopyInitialization(S, From->getInit(0), ToType,
5019                                      SuppressUserConversions,
5020                                      InOverloadResolution,
5021                                      AllowObjCWritebackConversion);
5022     //    - if the initializer list has no elements, the implicit conversion
5023     //      sequence is the identity conversion.
5024     else if (NumInits == 0) {
5025       Result.setStandard();
5026       Result.Standard.setAsIdentityConversion();
5027       Result.Standard.setFromType(ToType);
5028       Result.Standard.setAllToTypes(ToType);
5029     }
5030     return Result;
5031   }
5032 
5033   // C++14 [over.ics.list]p8:
5034   // C++11 [over.ics.list]p7:
5035   //   In all cases other than those enumerated above, no conversion is possible
5036   return Result;
5037 }
5038 
5039 /// TryCopyInitialization - Try to copy-initialize a value of type
5040 /// ToType from the expression From. Return the implicit conversion
5041 /// sequence required to pass this argument, which may be a bad
5042 /// conversion sequence (meaning that the argument cannot be passed to
5043 /// a parameter of this type). If @p SuppressUserConversions, then we
5044 /// do not permit any user-defined conversion sequences.
5045 static ImplicitConversionSequence
5046 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5047                       bool SuppressUserConversions,
5048                       bool InOverloadResolution,
5049                       bool AllowObjCWritebackConversion,
5050                       bool AllowExplicit) {
5051   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5052     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5053                              InOverloadResolution,AllowObjCWritebackConversion);
5054 
5055   if (ToType->isReferenceType())
5056     return TryReferenceInit(S, From, ToType,
5057                             /*FIXME:*/ From->getBeginLoc(),
5058                             SuppressUserConversions, AllowExplicit);
5059 
5060   return TryImplicitConversion(S, From, ToType,
5061                                SuppressUserConversions,
5062                                /*AllowExplicit=*/false,
5063                                InOverloadResolution,
5064                                /*CStyle=*/false,
5065                                AllowObjCWritebackConversion,
5066                                /*AllowObjCConversionOnExplicit=*/false);
5067 }
5068 
5069 static bool TryCopyInitialization(const CanQualType FromQTy,
5070                                   const CanQualType ToQTy,
5071                                   Sema &S,
5072                                   SourceLocation Loc,
5073                                   ExprValueKind FromVK) {
5074   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5075   ImplicitConversionSequence ICS =
5076     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5077 
5078   return !ICS.isBad();
5079 }
5080 
5081 /// TryObjectArgumentInitialization - Try to initialize the object
5082 /// parameter of the given member function (@c Method) from the
5083 /// expression @p From.
5084 static ImplicitConversionSequence
5085 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5086                                 Expr::Classification FromClassification,
5087                                 CXXMethodDecl *Method,
5088                                 CXXRecordDecl *ActingContext) {
5089   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5090   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5091   //                 const volatile object.
5092   Qualifiers Quals;
5093   if (isa<CXXDestructorDecl>(Method)) {
5094     Quals.addConst();
5095     Quals.addVolatile();
5096   } else {
5097     Quals = Method->getMethodQualifiers();
5098   }
5099 
5100   QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5101 
5102   // Set up the conversion sequence as a "bad" conversion, to allow us
5103   // to exit early.
5104   ImplicitConversionSequence ICS;
5105 
5106   // We need to have an object of class type.
5107   if (const PointerType *PT = FromType->getAs<PointerType>()) {
5108     FromType = PT->getPointeeType();
5109 
5110     // When we had a pointer, it's implicitly dereferenced, so we
5111     // better have an lvalue.
5112     assert(FromClassification.isLValue());
5113   }
5114 
5115   assert(FromType->isRecordType());
5116 
5117   // C++0x [over.match.funcs]p4:
5118   //   For non-static member functions, the type of the implicit object
5119   //   parameter is
5120   //
5121   //     - "lvalue reference to cv X" for functions declared without a
5122   //        ref-qualifier or with the & ref-qualifier
5123   //     - "rvalue reference to cv X" for functions declared with the &&
5124   //        ref-qualifier
5125   //
5126   // where X is the class of which the function is a member and cv is the
5127   // cv-qualification on the member function declaration.
5128   //
5129   // However, when finding an implicit conversion sequence for the argument, we
5130   // are not allowed to perform user-defined conversions
5131   // (C++ [over.match.funcs]p5). We perform a simplified version of
5132   // reference binding here, that allows class rvalues to bind to
5133   // non-constant references.
5134 
5135   // First check the qualifiers.
5136   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5137   if (ImplicitParamType.getCVRQualifiers()
5138                                     != FromTypeCanon.getLocalCVRQualifiers() &&
5139       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5140     ICS.setBad(BadConversionSequence::bad_qualifiers,
5141                FromType, ImplicitParamType);
5142     return ICS;
5143   }
5144 
5145   if (FromTypeCanon.getQualifiers().hasAddressSpace()) {
5146     Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5147     Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5148     if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5149       ICS.setBad(BadConversionSequence::bad_qualifiers,
5150                  FromType, ImplicitParamType);
5151       return ICS;
5152     }
5153   }
5154 
5155   // Check that we have either the same type or a derived type. It
5156   // affects the conversion rank.
5157   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5158   ImplicitConversionKind SecondKind;
5159   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5160     SecondKind = ICK_Identity;
5161   } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5162     SecondKind = ICK_Derived_To_Base;
5163   else {
5164     ICS.setBad(BadConversionSequence::unrelated_class,
5165                FromType, ImplicitParamType);
5166     return ICS;
5167   }
5168 
5169   // Check the ref-qualifier.
5170   switch (Method->getRefQualifier()) {
5171   case RQ_None:
5172     // Do nothing; we don't care about lvalueness or rvalueness.
5173     break;
5174 
5175   case RQ_LValue:
5176     if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5177       // non-const lvalue reference cannot bind to an rvalue
5178       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5179                  ImplicitParamType);
5180       return ICS;
5181     }
5182     break;
5183 
5184   case RQ_RValue:
5185     if (!FromClassification.isRValue()) {
5186       // rvalue reference cannot bind to an lvalue
5187       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5188                  ImplicitParamType);
5189       return ICS;
5190     }
5191     break;
5192   }
5193 
5194   // Success. Mark this as a reference binding.
5195   ICS.setStandard();
5196   ICS.Standard.setAsIdentityConversion();
5197   ICS.Standard.Second = SecondKind;
5198   ICS.Standard.setFromType(FromType);
5199   ICS.Standard.setAllToTypes(ImplicitParamType);
5200   ICS.Standard.ReferenceBinding = true;
5201   ICS.Standard.DirectBinding = true;
5202   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5203   ICS.Standard.BindsToFunctionLvalue = false;
5204   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5205   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5206     = (Method->getRefQualifier() == RQ_None);
5207   return ICS;
5208 }
5209 
5210 /// PerformObjectArgumentInitialization - Perform initialization of
5211 /// the implicit object parameter for the given Method with the given
5212 /// expression.
5213 ExprResult
5214 Sema::PerformObjectArgumentInitialization(Expr *From,
5215                                           NestedNameSpecifier *Qualifier,
5216                                           NamedDecl *FoundDecl,
5217                                           CXXMethodDecl *Method) {
5218   QualType FromRecordType, DestType;
5219   QualType ImplicitParamRecordType  =
5220     Method->getThisType()->getAs<PointerType>()->getPointeeType();
5221 
5222   Expr::Classification FromClassification;
5223   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5224     FromRecordType = PT->getPointeeType();
5225     DestType = Method->getThisType();
5226     FromClassification = Expr::Classification::makeSimpleLValue();
5227   } else {
5228     FromRecordType = From->getType();
5229     DestType = ImplicitParamRecordType;
5230     FromClassification = From->Classify(Context);
5231 
5232     // When performing member access on an rvalue, materialize a temporary.
5233     if (From->isRValue()) {
5234       From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5235                                             Method->getRefQualifier() !=
5236                                                 RefQualifierKind::RQ_RValue);
5237     }
5238   }
5239 
5240   // Note that we always use the true parent context when performing
5241   // the actual argument initialization.
5242   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5243       *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5244       Method->getParent());
5245   if (ICS.isBad()) {
5246     switch (ICS.Bad.Kind) {
5247     case BadConversionSequence::bad_qualifiers: {
5248       Qualifiers FromQs = FromRecordType.getQualifiers();
5249       Qualifiers ToQs = DestType.getQualifiers();
5250       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5251       if (CVR) {
5252         Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5253             << Method->getDeclName() << FromRecordType << (CVR - 1)
5254             << From->getSourceRange();
5255         Diag(Method->getLocation(), diag::note_previous_decl)
5256           << Method->getDeclName();
5257         return ExprError();
5258       }
5259       break;
5260     }
5261 
5262     case BadConversionSequence::lvalue_ref_to_rvalue:
5263     case BadConversionSequence::rvalue_ref_to_lvalue: {
5264       bool IsRValueQualified =
5265         Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5266       Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5267           << Method->getDeclName() << FromClassification.isRValue()
5268           << IsRValueQualified;
5269       Diag(Method->getLocation(), diag::note_previous_decl)
5270         << Method->getDeclName();
5271       return ExprError();
5272     }
5273 
5274     case BadConversionSequence::no_conversion:
5275     case BadConversionSequence::unrelated_class:
5276       break;
5277     }
5278 
5279     return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5280            << ImplicitParamRecordType << FromRecordType
5281            << From->getSourceRange();
5282   }
5283 
5284   if (ICS.Standard.Second == ICK_Derived_To_Base) {
5285     ExprResult FromRes =
5286       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5287     if (FromRes.isInvalid())
5288       return ExprError();
5289     From = FromRes.get();
5290   }
5291 
5292   if (!Context.hasSameType(From->getType(), DestType)) {
5293     CastKind CK;
5294     if (FromRecordType.getAddressSpace() != DestType.getAddressSpace())
5295       CK = CK_AddressSpaceConversion;
5296     else
5297       CK = CK_NoOp;
5298     From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5299   }
5300   return From;
5301 }
5302 
5303 /// TryContextuallyConvertToBool - Attempt to contextually convert the
5304 /// expression From to bool (C++0x [conv]p3).
5305 static ImplicitConversionSequence
5306 TryContextuallyConvertToBool(Sema &S, Expr *From) {
5307   return TryImplicitConversion(S, From, S.Context.BoolTy,
5308                                /*SuppressUserConversions=*/false,
5309                                /*AllowExplicit=*/true,
5310                                /*InOverloadResolution=*/false,
5311                                /*CStyle=*/false,
5312                                /*AllowObjCWritebackConversion=*/false,
5313                                /*AllowObjCConversionOnExplicit=*/false);
5314 }
5315 
5316 /// PerformContextuallyConvertToBool - Perform a contextual conversion
5317 /// of the expression From to bool (C++0x [conv]p3).
5318 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5319   if (checkPlaceholderForOverload(*this, From))
5320     return ExprError();
5321 
5322   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5323   if (!ICS.isBad())
5324     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5325 
5326   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5327     return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5328            << From->getType() << From->getSourceRange();
5329   return ExprError();
5330 }
5331 
5332 /// Check that the specified conversion is permitted in a converted constant
5333 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5334 /// is acceptable.
5335 static bool CheckConvertedConstantConversions(Sema &S,
5336                                               StandardConversionSequence &SCS) {
5337   // Since we know that the target type is an integral or unscoped enumeration
5338   // type, most conversion kinds are impossible. All possible First and Third
5339   // conversions are fine.
5340   switch (SCS.Second) {
5341   case ICK_Identity:
5342   case ICK_Function_Conversion:
5343   case ICK_Integral_Promotion:
5344   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5345   case ICK_Zero_Queue_Conversion:
5346     return true;
5347 
5348   case ICK_Boolean_Conversion:
5349     // Conversion from an integral or unscoped enumeration type to bool is
5350     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5351     // conversion, so we allow it in a converted constant expression.
5352     //
5353     // FIXME: Per core issue 1407, we should not allow this, but that breaks
5354     // a lot of popular code. We should at least add a warning for this
5355     // (non-conforming) extension.
5356     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5357            SCS.getToType(2)->isBooleanType();
5358 
5359   case ICK_Pointer_Conversion:
5360   case ICK_Pointer_Member:
5361     // C++1z: null pointer conversions and null member pointer conversions are
5362     // only permitted if the source type is std::nullptr_t.
5363     return SCS.getFromType()->isNullPtrType();
5364 
5365   case ICK_Floating_Promotion:
5366   case ICK_Complex_Promotion:
5367   case ICK_Floating_Conversion:
5368   case ICK_Complex_Conversion:
5369   case ICK_Floating_Integral:
5370   case ICK_Compatible_Conversion:
5371   case ICK_Derived_To_Base:
5372   case ICK_Vector_Conversion:
5373   case ICK_Vector_Splat:
5374   case ICK_Complex_Real:
5375   case ICK_Block_Pointer_Conversion:
5376   case ICK_TransparentUnionConversion:
5377   case ICK_Writeback_Conversion:
5378   case ICK_Zero_Event_Conversion:
5379   case ICK_C_Only_Conversion:
5380   case ICK_Incompatible_Pointer_Conversion:
5381     return false;
5382 
5383   case ICK_Lvalue_To_Rvalue:
5384   case ICK_Array_To_Pointer:
5385   case ICK_Function_To_Pointer:
5386     llvm_unreachable("found a first conversion kind in Second");
5387 
5388   case ICK_Qualification:
5389     llvm_unreachable("found a third conversion kind in Second");
5390 
5391   case ICK_Num_Conversion_Kinds:
5392     break;
5393   }
5394 
5395   llvm_unreachable("unknown conversion kind");
5396 }
5397 
5398 /// CheckConvertedConstantExpression - Check that the expression From is a
5399 /// converted constant expression of type T, perform the conversion and produce
5400 /// the converted expression, per C++11 [expr.const]p3.
5401 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5402                                                    QualType T, APValue &Value,
5403                                                    Sema::CCEKind CCE,
5404                                                    bool RequireInt) {
5405   assert(S.getLangOpts().CPlusPlus11 &&
5406          "converted constant expression outside C++11");
5407 
5408   if (checkPlaceholderForOverload(S, From))
5409     return ExprError();
5410 
5411   // C++1z [expr.const]p3:
5412   //  A converted constant expression of type T is an expression,
5413   //  implicitly converted to type T, where the converted
5414   //  expression is a constant expression and the implicit conversion
5415   //  sequence contains only [... list of conversions ...].
5416   // C++1z [stmt.if]p2:
5417   //  If the if statement is of the form if constexpr, the value of the
5418   //  condition shall be a contextually converted constant expression of type
5419   //  bool.
5420   ImplicitConversionSequence ICS =
5421       CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
5422           ? TryContextuallyConvertToBool(S, From)
5423           : TryCopyInitialization(S, From, T,
5424                                   /*SuppressUserConversions=*/false,
5425                                   /*InOverloadResolution=*/false,
5426                                   /*AllowObjcWritebackConversion=*/false,
5427                                   /*AllowExplicit=*/false);
5428   StandardConversionSequence *SCS = nullptr;
5429   switch (ICS.getKind()) {
5430   case ImplicitConversionSequence::StandardConversion:
5431     SCS = &ICS.Standard;
5432     break;
5433   case ImplicitConversionSequence::UserDefinedConversion:
5434     // We are converting to a non-class type, so the Before sequence
5435     // must be trivial.
5436     SCS = &ICS.UserDefined.After;
5437     break;
5438   case ImplicitConversionSequence::AmbiguousConversion:
5439   case ImplicitConversionSequence::BadConversion:
5440     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5441       return S.Diag(From->getBeginLoc(),
5442                     diag::err_typecheck_converted_constant_expression)
5443              << From->getType() << From->getSourceRange() << T;
5444     return ExprError();
5445 
5446   case ImplicitConversionSequence::EllipsisConversion:
5447     llvm_unreachable("ellipsis conversion in converted constant expression");
5448   }
5449 
5450   // Check that we would only use permitted conversions.
5451   if (!CheckConvertedConstantConversions(S, *SCS)) {
5452     return S.Diag(From->getBeginLoc(),
5453                   diag::err_typecheck_converted_constant_expression_disallowed)
5454            << From->getType() << From->getSourceRange() << T;
5455   }
5456   // [...] and where the reference binding (if any) binds directly.
5457   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5458     return S.Diag(From->getBeginLoc(),
5459                   diag::err_typecheck_converted_constant_expression_indirect)
5460            << From->getType() << From->getSourceRange() << T;
5461   }
5462 
5463   ExprResult Result =
5464       S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5465   if (Result.isInvalid())
5466     return Result;
5467 
5468   // Check for a narrowing implicit conversion.
5469   APValue PreNarrowingValue;
5470   QualType PreNarrowingType;
5471   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5472                                 PreNarrowingType)) {
5473   case NK_Dependent_Narrowing:
5474     // Implicit conversion to a narrower type, but the expression is
5475     // value-dependent so we can't tell whether it's actually narrowing.
5476   case NK_Variable_Narrowing:
5477     // Implicit conversion to a narrower type, and the value is not a constant
5478     // expression. We'll diagnose this in a moment.
5479   case NK_Not_Narrowing:
5480     break;
5481 
5482   case NK_Constant_Narrowing:
5483     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5484         << CCE << /*Constant*/ 1
5485         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5486     break;
5487 
5488   case NK_Type_Narrowing:
5489     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5490         << CCE << /*Constant*/ 0 << From->getType() << T;
5491     break;
5492   }
5493 
5494   if (Result.get()->isValueDependent()) {
5495     Value = APValue();
5496     return Result;
5497   }
5498 
5499   // Check the expression is a constant expression.
5500   SmallVector<PartialDiagnosticAt, 8> Notes;
5501   Expr::EvalResult Eval;
5502   Eval.Diag = &Notes;
5503   Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg
5504                                    ? Expr::EvaluateForMangling
5505                                    : Expr::EvaluateForCodeGen;
5506 
5507   if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) ||
5508       (RequireInt && !Eval.Val.isInt())) {
5509     // The expression can't be folded, so we can't keep it at this position in
5510     // the AST.
5511     Result = ExprError();
5512   } else {
5513     Value = Eval.Val;
5514 
5515     if (Notes.empty()) {
5516       // It's a constant expression.
5517       return ConstantExpr::Create(S.Context, Result.get(), Value);
5518     }
5519   }
5520 
5521   // It's not a constant expression. Produce an appropriate diagnostic.
5522   if (Notes.size() == 1 &&
5523       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5524     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5525   else {
5526     S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5527         << CCE << From->getSourceRange();
5528     for (unsigned I = 0; I < Notes.size(); ++I)
5529       S.Diag(Notes[I].first, Notes[I].second);
5530   }
5531   return ExprError();
5532 }
5533 
5534 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5535                                                   APValue &Value, CCEKind CCE) {
5536   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5537 }
5538 
5539 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5540                                                   llvm::APSInt &Value,
5541                                                   CCEKind CCE) {
5542   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5543 
5544   APValue V;
5545   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5546   if (!R.isInvalid() && !R.get()->isValueDependent())
5547     Value = V.getInt();
5548   return R;
5549 }
5550 
5551 
5552 /// dropPointerConversions - If the given standard conversion sequence
5553 /// involves any pointer conversions, remove them.  This may change
5554 /// the result type of the conversion sequence.
5555 static void dropPointerConversion(StandardConversionSequence &SCS) {
5556   if (SCS.Second == ICK_Pointer_Conversion) {
5557     SCS.Second = ICK_Identity;
5558     SCS.Third = ICK_Identity;
5559     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5560   }
5561 }
5562 
5563 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5564 /// convert the expression From to an Objective-C pointer type.
5565 static ImplicitConversionSequence
5566 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5567   // Do an implicit conversion to 'id'.
5568   QualType Ty = S.Context.getObjCIdType();
5569   ImplicitConversionSequence ICS
5570     = TryImplicitConversion(S, From, Ty,
5571                             // FIXME: Are these flags correct?
5572                             /*SuppressUserConversions=*/false,
5573                             /*AllowExplicit=*/true,
5574                             /*InOverloadResolution=*/false,
5575                             /*CStyle=*/false,
5576                             /*AllowObjCWritebackConversion=*/false,
5577                             /*AllowObjCConversionOnExplicit=*/true);
5578 
5579   // Strip off any final conversions to 'id'.
5580   switch (ICS.getKind()) {
5581   case ImplicitConversionSequence::BadConversion:
5582   case ImplicitConversionSequence::AmbiguousConversion:
5583   case ImplicitConversionSequence::EllipsisConversion:
5584     break;
5585 
5586   case ImplicitConversionSequence::UserDefinedConversion:
5587     dropPointerConversion(ICS.UserDefined.After);
5588     break;
5589 
5590   case ImplicitConversionSequence::StandardConversion:
5591     dropPointerConversion(ICS.Standard);
5592     break;
5593   }
5594 
5595   return ICS;
5596 }
5597 
5598 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5599 /// conversion of the expression From to an Objective-C pointer type.
5600 /// Returns a valid but null ExprResult if no conversion sequence exists.
5601 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5602   if (checkPlaceholderForOverload(*this, From))
5603     return ExprError();
5604 
5605   QualType Ty = Context.getObjCIdType();
5606   ImplicitConversionSequence ICS =
5607     TryContextuallyConvertToObjCPointer(*this, From);
5608   if (!ICS.isBad())
5609     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5610   return ExprResult();
5611 }
5612 
5613 /// Determine whether the provided type is an integral type, or an enumeration
5614 /// type of a permitted flavor.
5615 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5616   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5617                                  : T->isIntegralOrUnscopedEnumerationType();
5618 }
5619 
5620 static ExprResult
5621 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5622                             Sema::ContextualImplicitConverter &Converter,
5623                             QualType T, UnresolvedSetImpl &ViableConversions) {
5624 
5625   if (Converter.Suppress)
5626     return ExprError();
5627 
5628   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5629   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5630     CXXConversionDecl *Conv =
5631         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5632     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5633     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5634   }
5635   return From;
5636 }
5637 
5638 static bool
5639 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5640                            Sema::ContextualImplicitConverter &Converter,
5641                            QualType T, bool HadMultipleCandidates,
5642                            UnresolvedSetImpl &ExplicitConversions) {
5643   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5644     DeclAccessPair Found = ExplicitConversions[0];
5645     CXXConversionDecl *Conversion =
5646         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5647 
5648     // The user probably meant to invoke the given explicit
5649     // conversion; use it.
5650     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5651     std::string TypeStr;
5652     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5653 
5654     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5655         << FixItHint::CreateInsertion(From->getBeginLoc(),
5656                                       "static_cast<" + TypeStr + ">(")
5657         << FixItHint::CreateInsertion(
5658                SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5659     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5660 
5661     // If we aren't in a SFINAE context, build a call to the
5662     // explicit conversion function.
5663     if (SemaRef.isSFINAEContext())
5664       return true;
5665 
5666     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5667     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5668                                                        HadMultipleCandidates);
5669     if (Result.isInvalid())
5670       return true;
5671     // Record usage of conversion in an implicit cast.
5672     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5673                                     CK_UserDefinedConversion, Result.get(),
5674                                     nullptr, Result.get()->getValueKind());
5675   }
5676   return false;
5677 }
5678 
5679 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5680                              Sema::ContextualImplicitConverter &Converter,
5681                              QualType T, bool HadMultipleCandidates,
5682                              DeclAccessPair &Found) {
5683   CXXConversionDecl *Conversion =
5684       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5685   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5686 
5687   QualType ToType = Conversion->getConversionType().getNonReferenceType();
5688   if (!Converter.SuppressConversion) {
5689     if (SemaRef.isSFINAEContext())
5690       return true;
5691 
5692     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5693         << From->getSourceRange();
5694   }
5695 
5696   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5697                                                      HadMultipleCandidates);
5698   if (Result.isInvalid())
5699     return true;
5700   // Record usage of conversion in an implicit cast.
5701   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5702                                   CK_UserDefinedConversion, Result.get(),
5703                                   nullptr, Result.get()->getValueKind());
5704   return false;
5705 }
5706 
5707 static ExprResult finishContextualImplicitConversion(
5708     Sema &SemaRef, SourceLocation Loc, Expr *From,
5709     Sema::ContextualImplicitConverter &Converter) {
5710   if (!Converter.match(From->getType()) && !Converter.Suppress)
5711     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5712         << From->getSourceRange();
5713 
5714   return SemaRef.DefaultLvalueConversion(From);
5715 }
5716 
5717 static void
5718 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5719                                   UnresolvedSetImpl &ViableConversions,
5720                                   OverloadCandidateSet &CandidateSet) {
5721   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5722     DeclAccessPair FoundDecl = ViableConversions[I];
5723     NamedDecl *D = FoundDecl.getDecl();
5724     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5725     if (isa<UsingShadowDecl>(D))
5726       D = cast<UsingShadowDecl>(D)->getTargetDecl();
5727 
5728     CXXConversionDecl *Conv;
5729     FunctionTemplateDecl *ConvTemplate;
5730     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5731       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5732     else
5733       Conv = cast<CXXConversionDecl>(D);
5734 
5735     if (ConvTemplate)
5736       SemaRef.AddTemplateConversionCandidate(
5737           ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5738           /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
5739     else
5740       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5741                                      ToType, CandidateSet,
5742                                      /*AllowObjCConversionOnExplicit=*/false,
5743                                      /*AllowExplicit*/ true);
5744   }
5745 }
5746 
5747 /// Attempt to convert the given expression to a type which is accepted
5748 /// by the given converter.
5749 ///
5750 /// This routine will attempt to convert an expression of class type to a
5751 /// type accepted by the specified converter. In C++11 and before, the class
5752 /// must have a single non-explicit conversion function converting to a matching
5753 /// type. In C++1y, there can be multiple such conversion functions, but only
5754 /// one target type.
5755 ///
5756 /// \param Loc The source location of the construct that requires the
5757 /// conversion.
5758 ///
5759 /// \param From The expression we're converting from.
5760 ///
5761 /// \param Converter Used to control and diagnose the conversion process.
5762 ///
5763 /// \returns The expression, converted to an integral or enumeration type if
5764 /// successful.
5765 ExprResult Sema::PerformContextualImplicitConversion(
5766     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5767   // We can't perform any more checking for type-dependent expressions.
5768   if (From->isTypeDependent())
5769     return From;
5770 
5771   // Process placeholders immediately.
5772   if (From->hasPlaceholderType()) {
5773     ExprResult result = CheckPlaceholderExpr(From);
5774     if (result.isInvalid())
5775       return result;
5776     From = result.get();
5777   }
5778 
5779   // If the expression already has a matching type, we're golden.
5780   QualType T = From->getType();
5781   if (Converter.match(T))
5782     return DefaultLvalueConversion(From);
5783 
5784   // FIXME: Check for missing '()' if T is a function type?
5785 
5786   // We can only perform contextual implicit conversions on objects of class
5787   // type.
5788   const RecordType *RecordTy = T->getAs<RecordType>();
5789   if (!RecordTy || !getLangOpts().CPlusPlus) {
5790     if (!Converter.Suppress)
5791       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5792     return From;
5793   }
5794 
5795   // We must have a complete class type.
5796   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5797     ContextualImplicitConverter &Converter;
5798     Expr *From;
5799 
5800     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5801         : Converter(Converter), From(From) {}
5802 
5803     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5804       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5805     }
5806   } IncompleteDiagnoser(Converter, From);
5807 
5808   if (Converter.Suppress ? !isCompleteType(Loc, T)
5809                          : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5810     return From;
5811 
5812   // Look for a conversion to an integral or enumeration type.
5813   UnresolvedSet<4>
5814       ViableConversions; // These are *potentially* viable in C++1y.
5815   UnresolvedSet<4> ExplicitConversions;
5816   const auto &Conversions =
5817       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5818 
5819   bool HadMultipleCandidates =
5820       (std::distance(Conversions.begin(), Conversions.end()) > 1);
5821 
5822   // To check that there is only one target type, in C++1y:
5823   QualType ToType;
5824   bool HasUniqueTargetType = true;
5825 
5826   // Collect explicit or viable (potentially in C++1y) conversions.
5827   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5828     NamedDecl *D = (*I)->getUnderlyingDecl();
5829     CXXConversionDecl *Conversion;
5830     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5831     if (ConvTemplate) {
5832       if (getLangOpts().CPlusPlus14)
5833         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5834       else
5835         continue; // C++11 does not consider conversion operator templates(?).
5836     } else
5837       Conversion = cast<CXXConversionDecl>(D);
5838 
5839     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
5840            "Conversion operator templates are considered potentially "
5841            "viable in C++1y");
5842 
5843     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5844     if (Converter.match(CurToType) || ConvTemplate) {
5845 
5846       if (Conversion->isExplicit()) {
5847         // FIXME: For C++1y, do we need this restriction?
5848         // cf. diagnoseNoViableConversion()
5849         if (!ConvTemplate)
5850           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5851       } else {
5852         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5853           if (ToType.isNull())
5854             ToType = CurToType.getUnqualifiedType();
5855           else if (HasUniqueTargetType &&
5856                    (CurToType.getUnqualifiedType() != ToType))
5857             HasUniqueTargetType = false;
5858         }
5859         ViableConversions.addDecl(I.getDecl(), I.getAccess());
5860       }
5861     }
5862   }
5863 
5864   if (getLangOpts().CPlusPlus14) {
5865     // C++1y [conv]p6:
5866     // ... An expression e of class type E appearing in such a context
5867     // is said to be contextually implicitly converted to a specified
5868     // type T and is well-formed if and only if e can be implicitly
5869     // converted to a type T that is determined as follows: E is searched
5870     // for conversion functions whose return type is cv T or reference to
5871     // cv T such that T is allowed by the context. There shall be
5872     // exactly one such T.
5873 
5874     // If no unique T is found:
5875     if (ToType.isNull()) {
5876       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5877                                      HadMultipleCandidates,
5878                                      ExplicitConversions))
5879         return ExprError();
5880       return finishContextualImplicitConversion(*this, Loc, From, Converter);
5881     }
5882 
5883     // If more than one unique Ts are found:
5884     if (!HasUniqueTargetType)
5885       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5886                                          ViableConversions);
5887 
5888     // If one unique T is found:
5889     // First, build a candidate set from the previously recorded
5890     // potentially viable conversions.
5891     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5892     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5893                                       CandidateSet);
5894 
5895     // Then, perform overload resolution over the candidate set.
5896     OverloadCandidateSet::iterator Best;
5897     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5898     case OR_Success: {
5899       // Apply this conversion.
5900       DeclAccessPair Found =
5901           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5902       if (recordConversion(*this, Loc, From, Converter, T,
5903                            HadMultipleCandidates, Found))
5904         return ExprError();
5905       break;
5906     }
5907     case OR_Ambiguous:
5908       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5909                                          ViableConversions);
5910     case OR_No_Viable_Function:
5911       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5912                                      HadMultipleCandidates,
5913                                      ExplicitConversions))
5914         return ExprError();
5915       LLVM_FALLTHROUGH;
5916     case OR_Deleted:
5917       // We'll complain below about a non-integral condition type.
5918       break;
5919     }
5920   } else {
5921     switch (ViableConversions.size()) {
5922     case 0: {
5923       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5924                                      HadMultipleCandidates,
5925                                      ExplicitConversions))
5926         return ExprError();
5927 
5928       // We'll complain below about a non-integral condition type.
5929       break;
5930     }
5931     case 1: {
5932       // Apply this conversion.
5933       DeclAccessPair Found = ViableConversions[0];
5934       if (recordConversion(*this, Loc, From, Converter, T,
5935                            HadMultipleCandidates, Found))
5936         return ExprError();
5937       break;
5938     }
5939     default:
5940       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5941                                          ViableConversions);
5942     }
5943   }
5944 
5945   return finishContextualImplicitConversion(*this, Loc, From, Converter);
5946 }
5947 
5948 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
5949 /// an acceptable non-member overloaded operator for a call whose
5950 /// arguments have types T1 (and, if non-empty, T2). This routine
5951 /// implements the check in C++ [over.match.oper]p3b2 concerning
5952 /// enumeration types.
5953 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
5954                                                    FunctionDecl *Fn,
5955                                                    ArrayRef<Expr *> Args) {
5956   QualType T1 = Args[0]->getType();
5957   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
5958 
5959   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
5960     return true;
5961 
5962   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
5963     return true;
5964 
5965   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
5966   if (Proto->getNumParams() < 1)
5967     return false;
5968 
5969   if (T1->isEnumeralType()) {
5970     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
5971     if (Context.hasSameUnqualifiedType(T1, ArgType))
5972       return true;
5973   }
5974 
5975   if (Proto->getNumParams() < 2)
5976     return false;
5977 
5978   if (!T2.isNull() && T2->isEnumeralType()) {
5979     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
5980     if (Context.hasSameUnqualifiedType(T2, ArgType))
5981       return true;
5982   }
5983 
5984   return false;
5985 }
5986 
5987 /// AddOverloadCandidate - Adds the given function to the set of
5988 /// candidate functions, using the given function call arguments.  If
5989 /// @p SuppressUserConversions, then don't allow user-defined
5990 /// conversions via constructors or conversion operators.
5991 ///
5992 /// \param PartialOverloading true if we are performing "partial" overloading
5993 /// based on an incomplete set of function arguments. This feature is used by
5994 /// code completion.
5995 void Sema::AddOverloadCandidate(
5996     FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
5997     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
5998     bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
5999     ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions) {
6000   const FunctionProtoType *Proto
6001     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6002   assert(Proto && "Functions without a prototype cannot be overloaded");
6003   assert(!Function->getDescribedFunctionTemplate() &&
6004          "Use AddTemplateOverloadCandidate for function templates");
6005 
6006   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6007     if (!isa<CXXConstructorDecl>(Method)) {
6008       // If we get here, it's because we're calling a member function
6009       // that is named without a member access expression (e.g.,
6010       // "this->f") that was either written explicitly or created
6011       // implicitly. This can happen with a qualified call to a member
6012       // function, e.g., X::f(). We use an empty type for the implied
6013       // object argument (C++ [over.call.func]p3), and the acting context
6014       // is irrelevant.
6015       AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6016                          Expr::Classification::makeSimpleLValue(), Args,
6017                          CandidateSet, SuppressUserConversions,
6018                          PartialOverloading, EarlyConversions);
6019       return;
6020     }
6021     // We treat a constructor like a non-member function, since its object
6022     // argument doesn't participate in overload resolution.
6023   }
6024 
6025   if (!CandidateSet.isNewCandidate(Function))
6026     return;
6027 
6028   // C++ [over.match.oper]p3:
6029   //   if no operand has a class type, only those non-member functions in the
6030   //   lookup set that have a first parameter of type T1 or "reference to
6031   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6032   //   is a right operand) a second parameter of type T2 or "reference to
6033   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
6034   //   candidate functions.
6035   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6036       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6037     return;
6038 
6039   // C++11 [class.copy]p11: [DR1402]
6040   //   A defaulted move constructor that is defined as deleted is ignored by
6041   //   overload resolution.
6042   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6043   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6044       Constructor->isMoveConstructor())
6045     return;
6046 
6047   // Overload resolution is always an unevaluated context.
6048   EnterExpressionEvaluationContext Unevaluated(
6049       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6050 
6051   // Add this candidate
6052   OverloadCandidate &Candidate =
6053       CandidateSet.addCandidate(Args.size(), EarlyConversions);
6054   Candidate.FoundDecl = FoundDecl;
6055   Candidate.Function = Function;
6056   Candidate.Viable = true;
6057   Candidate.IsSurrogate = false;
6058   Candidate.IsADLCandidate = IsADLCandidate;
6059   Candidate.IgnoreObjectArgument = false;
6060   Candidate.ExplicitCallArguments = Args.size();
6061 
6062   if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6063       !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6064     Candidate.Viable = false;
6065     Candidate.FailureKind = ovl_non_default_multiversion_function;
6066     return;
6067   }
6068 
6069   if (Constructor) {
6070     // C++ [class.copy]p3:
6071     //   A member function template is never instantiated to perform the copy
6072     //   of a class object to an object of its class type.
6073     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6074     if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6075         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6076          IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6077                        ClassType))) {
6078       Candidate.Viable = false;
6079       Candidate.FailureKind = ovl_fail_illegal_constructor;
6080       return;
6081     }
6082 
6083     // C++ [over.match.funcs]p8: (proposed DR resolution)
6084     //   A constructor inherited from class type C that has a first parameter
6085     //   of type "reference to P" (including such a constructor instantiated
6086     //   from a template) is excluded from the set of candidate functions when
6087     //   constructing an object of type cv D if the argument list has exactly
6088     //   one argument and D is reference-related to P and P is reference-related
6089     //   to C.
6090     auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6091     if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6092         Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6093       QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6094       QualType C = Context.getRecordType(Constructor->getParent());
6095       QualType D = Context.getRecordType(Shadow->getParent());
6096       SourceLocation Loc = Args.front()->getExprLoc();
6097       if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6098           (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6099         Candidate.Viable = false;
6100         Candidate.FailureKind = ovl_fail_inhctor_slice;
6101         return;
6102       }
6103     }
6104 
6105     // Check that the constructor is capable of constructing an object in the
6106     // destination address space.
6107     if (!Qualifiers::isAddressSpaceSupersetOf(
6108             Constructor->getMethodQualifiers().getAddressSpace(),
6109             CandidateSet.getDestAS())) {
6110       Candidate.Viable = false;
6111       Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6112     }
6113   }
6114 
6115   unsigned NumParams = Proto->getNumParams();
6116 
6117   // (C++ 13.3.2p2): A candidate function having fewer than m
6118   // parameters is viable only if it has an ellipsis in its parameter
6119   // list (8.3.5).
6120   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6121       !Proto->isVariadic()) {
6122     Candidate.Viable = false;
6123     Candidate.FailureKind = ovl_fail_too_many_arguments;
6124     return;
6125   }
6126 
6127   // (C++ 13.3.2p2): A candidate function having more than m parameters
6128   // is viable only if the (m+1)st parameter has a default argument
6129   // (8.3.6). For the purposes of overload resolution, the
6130   // parameter list is truncated on the right, so that there are
6131   // exactly m parameters.
6132   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6133   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6134     // Not enough arguments.
6135     Candidate.Viable = false;
6136     Candidate.FailureKind = ovl_fail_too_few_arguments;
6137     return;
6138   }
6139 
6140   // (CUDA B.1): Check for invalid calls between targets.
6141   if (getLangOpts().CUDA)
6142     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6143       // Skip the check for callers that are implicit members, because in this
6144       // case we may not yet know what the member's target is; the target is
6145       // inferred for the member automatically, based on the bases and fields of
6146       // the class.
6147       if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6148         Candidate.Viable = false;
6149         Candidate.FailureKind = ovl_fail_bad_target;
6150         return;
6151       }
6152 
6153   // Determine the implicit conversion sequences for each of the
6154   // arguments.
6155   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6156     if (Candidate.Conversions[ArgIdx].isInitialized()) {
6157       // We already formed a conversion sequence for this parameter during
6158       // template argument deduction.
6159     } else if (ArgIdx < NumParams) {
6160       // (C++ 13.3.2p3): for F to be a viable function, there shall
6161       // exist for each argument an implicit conversion sequence
6162       // (13.3.3.1) that converts that argument to the corresponding
6163       // parameter of F.
6164       QualType ParamType = Proto->getParamType(ArgIdx);
6165       Candidate.Conversions[ArgIdx] = TryCopyInitialization(
6166           *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6167           /*InOverloadResolution=*/true,
6168           /*AllowObjCWritebackConversion=*/
6169           getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6170       if (Candidate.Conversions[ArgIdx].isBad()) {
6171         Candidate.Viable = false;
6172         Candidate.FailureKind = ovl_fail_bad_conversion;
6173         return;
6174       }
6175     } else {
6176       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6177       // argument for which there is no corresponding parameter is
6178       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6179       Candidate.Conversions[ArgIdx].setEllipsis();
6180     }
6181   }
6182 
6183   if (!AllowExplicit) {
6184     ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Function);
6185     if (ES.getKind() != ExplicitSpecKind::ResolvedFalse) {
6186       Candidate.Viable = false;
6187       Candidate.FailureKind = ovl_fail_explicit_resolved;
6188       return;
6189     }
6190   }
6191 
6192   if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
6193     Candidate.Viable = false;
6194     Candidate.FailureKind = ovl_fail_enable_if;
6195     Candidate.DeductionFailure.Data = FailedAttr;
6196     return;
6197   }
6198 
6199   if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) {
6200     Candidate.Viable = false;
6201     Candidate.FailureKind = ovl_fail_ext_disabled;
6202     return;
6203   }
6204 }
6205 
6206 ObjCMethodDecl *
6207 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6208                        SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6209   if (Methods.size() <= 1)
6210     return nullptr;
6211 
6212   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6213     bool Match = true;
6214     ObjCMethodDecl *Method = Methods[b];
6215     unsigned NumNamedArgs = Sel.getNumArgs();
6216     // Method might have more arguments than selector indicates. This is due
6217     // to addition of c-style arguments in method.
6218     if (Method->param_size() > NumNamedArgs)
6219       NumNamedArgs = Method->param_size();
6220     if (Args.size() < NumNamedArgs)
6221       continue;
6222 
6223     for (unsigned i = 0; i < NumNamedArgs; i++) {
6224       // We can't do any type-checking on a type-dependent argument.
6225       if (Args[i]->isTypeDependent()) {
6226         Match = false;
6227         break;
6228       }
6229 
6230       ParmVarDecl *param = Method->parameters()[i];
6231       Expr *argExpr = Args[i];
6232       assert(argExpr && "SelectBestMethod(): missing expression");
6233 
6234       // Strip the unbridged-cast placeholder expression off unless it's
6235       // a consumed argument.
6236       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6237           !param->hasAttr<CFConsumedAttr>())
6238         argExpr = stripARCUnbridgedCast(argExpr);
6239 
6240       // If the parameter is __unknown_anytype, move on to the next method.
6241       if (param->getType() == Context.UnknownAnyTy) {
6242         Match = false;
6243         break;
6244       }
6245 
6246       ImplicitConversionSequence ConversionState
6247         = TryCopyInitialization(*this, argExpr, param->getType(),
6248                                 /*SuppressUserConversions*/false,
6249                                 /*InOverloadResolution=*/true,
6250                                 /*AllowObjCWritebackConversion=*/
6251                                 getLangOpts().ObjCAutoRefCount,
6252                                 /*AllowExplicit*/false);
6253       // This function looks for a reasonably-exact match, so we consider
6254       // incompatible pointer conversions to be a failure here.
6255       if (ConversionState.isBad() ||
6256           (ConversionState.isStandard() &&
6257            ConversionState.Standard.Second ==
6258                ICK_Incompatible_Pointer_Conversion)) {
6259         Match = false;
6260         break;
6261       }
6262     }
6263     // Promote additional arguments to variadic methods.
6264     if (Match && Method->isVariadic()) {
6265       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6266         if (Args[i]->isTypeDependent()) {
6267           Match = false;
6268           break;
6269         }
6270         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6271                                                           nullptr);
6272         if (Arg.isInvalid()) {
6273           Match = false;
6274           break;
6275         }
6276       }
6277     } else {
6278       // Check for extra arguments to non-variadic methods.
6279       if (Args.size() != NumNamedArgs)
6280         Match = false;
6281       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6282         // Special case when selectors have no argument. In this case, select
6283         // one with the most general result type of 'id'.
6284         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6285           QualType ReturnT = Methods[b]->getReturnType();
6286           if (ReturnT->isObjCIdType())
6287             return Methods[b];
6288         }
6289       }
6290     }
6291 
6292     if (Match)
6293       return Method;
6294   }
6295   return nullptr;
6296 }
6297 
6298 static bool
6299 convertArgsForAvailabilityChecks(Sema &S, FunctionDecl *Function, Expr *ThisArg,
6300                                  ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap,
6301                                  bool MissingImplicitThis, Expr *&ConvertedThis,
6302                                  SmallVectorImpl<Expr *> &ConvertedArgs) {
6303   if (ThisArg) {
6304     CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6305     assert(!isa<CXXConstructorDecl>(Method) &&
6306            "Shouldn't have `this` for ctors!");
6307     assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
6308     ExprResult R = S.PerformObjectArgumentInitialization(
6309         ThisArg, /*Qualifier=*/nullptr, Method, Method);
6310     if (R.isInvalid())
6311       return false;
6312     ConvertedThis = R.get();
6313   } else {
6314     if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6315       (void)MD;
6316       assert((MissingImplicitThis || MD->isStatic() ||
6317               isa<CXXConstructorDecl>(MD)) &&
6318              "Expected `this` for non-ctor instance methods");
6319     }
6320     ConvertedThis = nullptr;
6321   }
6322 
6323   // Ignore any variadic arguments. Converting them is pointless, since the
6324   // user can't refer to them in the function condition.
6325   unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6326 
6327   // Convert the arguments.
6328   for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6329     ExprResult R;
6330     R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6331                                         S.Context, Function->getParamDecl(I)),
6332                                     SourceLocation(), Args[I]);
6333 
6334     if (R.isInvalid())
6335       return false;
6336 
6337     ConvertedArgs.push_back(R.get());
6338   }
6339 
6340   if (Trap.hasErrorOccurred())
6341     return false;
6342 
6343   // Push default arguments if needed.
6344   if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6345     for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6346       ParmVarDecl *P = Function->getParamDecl(i);
6347       Expr *DefArg = P->hasUninstantiatedDefaultArg()
6348                          ? P->getUninstantiatedDefaultArg()
6349                          : P->getDefaultArg();
6350       // This can only happen in code completion, i.e. when PartialOverloading
6351       // is true.
6352       if (!DefArg)
6353         return false;
6354       ExprResult R =
6355           S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6356                                           S.Context, Function->getParamDecl(i)),
6357                                       SourceLocation(), DefArg);
6358       if (R.isInvalid())
6359         return false;
6360       ConvertedArgs.push_back(R.get());
6361     }
6362 
6363     if (Trap.hasErrorOccurred())
6364       return false;
6365   }
6366   return true;
6367 }
6368 
6369 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
6370                                   bool MissingImplicitThis) {
6371   auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6372   if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6373     return nullptr;
6374 
6375   SFINAETrap Trap(*this);
6376   SmallVector<Expr *, 16> ConvertedArgs;
6377   // FIXME: We should look into making enable_if late-parsed.
6378   Expr *DiscardedThis;
6379   if (!convertArgsForAvailabilityChecks(
6380           *this, Function, /*ThisArg=*/nullptr, Args, Trap,
6381           /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6382     return *EnableIfAttrs.begin();
6383 
6384   for (auto *EIA : EnableIfAttrs) {
6385     APValue Result;
6386     // FIXME: This doesn't consider value-dependent cases, because doing so is
6387     // very difficult. Ideally, we should handle them more gracefully.
6388     if (EIA->getCond()->isValueDependent() ||
6389         !EIA->getCond()->EvaluateWithSubstitution(
6390             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6391       return EIA;
6392 
6393     if (!Result.isInt() || !Result.getInt().getBoolValue())
6394       return EIA;
6395   }
6396   return nullptr;
6397 }
6398 
6399 template <typename CheckFn>
6400 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6401                                         bool ArgDependent, SourceLocation Loc,
6402                                         CheckFn &&IsSuccessful) {
6403   SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6404   for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6405     if (ArgDependent == DIA->getArgDependent())
6406       Attrs.push_back(DIA);
6407   }
6408 
6409   // Common case: No diagnose_if attributes, so we can quit early.
6410   if (Attrs.empty())
6411     return false;
6412 
6413   auto WarningBegin = std::stable_partition(
6414       Attrs.begin(), Attrs.end(),
6415       [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6416 
6417   // Note that diagnose_if attributes are late-parsed, so they appear in the
6418   // correct order (unlike enable_if attributes).
6419   auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6420                                IsSuccessful);
6421   if (ErrAttr != WarningBegin) {
6422     const DiagnoseIfAttr *DIA = *ErrAttr;
6423     S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6424     S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6425         << DIA->getParent() << DIA->getCond()->getSourceRange();
6426     return true;
6427   }
6428 
6429   for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6430     if (IsSuccessful(DIA)) {
6431       S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6432       S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6433           << DIA->getParent() << DIA->getCond()->getSourceRange();
6434     }
6435 
6436   return false;
6437 }
6438 
6439 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6440                                                const Expr *ThisArg,
6441                                                ArrayRef<const Expr *> Args,
6442                                                SourceLocation Loc) {
6443   return diagnoseDiagnoseIfAttrsWith(
6444       *this, Function, /*ArgDependent=*/true, Loc,
6445       [&](const DiagnoseIfAttr *DIA) {
6446         APValue Result;
6447         // It's sane to use the same Args for any redecl of this function, since
6448         // EvaluateWithSubstitution only cares about the position of each
6449         // argument in the arg list, not the ParmVarDecl* it maps to.
6450         if (!DIA->getCond()->EvaluateWithSubstitution(
6451                 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6452           return false;
6453         return Result.isInt() && Result.getInt().getBoolValue();
6454       });
6455 }
6456 
6457 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6458                                                  SourceLocation Loc) {
6459   return diagnoseDiagnoseIfAttrsWith(
6460       *this, ND, /*ArgDependent=*/false, Loc,
6461       [&](const DiagnoseIfAttr *DIA) {
6462         bool Result;
6463         return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6464                Result;
6465       });
6466 }
6467 
6468 /// Add all of the function declarations in the given function set to
6469 /// the overload candidate set.
6470 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6471                                  ArrayRef<Expr *> Args,
6472                                  OverloadCandidateSet &CandidateSet,
6473                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6474                                  bool SuppressUserConversions,
6475                                  bool PartialOverloading,
6476                                  bool FirstArgumentIsBase) {
6477   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6478     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6479     ArrayRef<Expr *> FunctionArgs = Args;
6480 
6481     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6482     FunctionDecl *FD =
6483         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6484 
6485     if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6486       QualType ObjectType;
6487       Expr::Classification ObjectClassification;
6488       if (Args.size() > 0) {
6489         if (Expr *E = Args[0]) {
6490           // Use the explicit base to restrict the lookup:
6491           ObjectType = E->getType();
6492           // Pointers in the object arguments are implicitly dereferenced, so we
6493           // always classify them as l-values.
6494           if (!ObjectType.isNull() && ObjectType->isPointerType())
6495             ObjectClassification = Expr::Classification::makeSimpleLValue();
6496           else
6497             ObjectClassification = E->Classify(Context);
6498         } // .. else there is an implicit base.
6499         FunctionArgs = Args.slice(1);
6500       }
6501       if (FunTmpl) {
6502         AddMethodTemplateCandidate(
6503             FunTmpl, F.getPair(),
6504             cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6505             ExplicitTemplateArgs, ObjectType, ObjectClassification,
6506             FunctionArgs, CandidateSet, SuppressUserConversions,
6507             PartialOverloading);
6508       } else {
6509         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6510                            cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6511                            ObjectClassification, FunctionArgs, CandidateSet,
6512                            SuppressUserConversions, PartialOverloading);
6513       }
6514     } else {
6515       // This branch handles both standalone functions and static methods.
6516 
6517       // Slice the first argument (which is the base) when we access
6518       // static method as non-static.
6519       if (Args.size() > 0 &&
6520           (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6521                         !isa<CXXConstructorDecl>(FD)))) {
6522         assert(cast<CXXMethodDecl>(FD)->isStatic());
6523         FunctionArgs = Args.slice(1);
6524       }
6525       if (FunTmpl) {
6526         AddTemplateOverloadCandidate(
6527             FunTmpl, F.getPair(), ExplicitTemplateArgs, FunctionArgs,
6528             CandidateSet, SuppressUserConversions, PartialOverloading);
6529       } else {
6530         AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6531                              SuppressUserConversions, PartialOverloading);
6532       }
6533     }
6534   }
6535 }
6536 
6537 /// AddMethodCandidate - Adds a named decl (which is some kind of
6538 /// method) as a method candidate to the given overload set.
6539 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
6540                               QualType ObjectType,
6541                               Expr::Classification ObjectClassification,
6542                               ArrayRef<Expr *> Args,
6543                               OverloadCandidateSet& CandidateSet,
6544                               bool SuppressUserConversions) {
6545   NamedDecl *Decl = FoundDecl.getDecl();
6546   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6547 
6548   if (isa<UsingShadowDecl>(Decl))
6549     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6550 
6551   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6552     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
6553            "Expected a member function template");
6554     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6555                                /*ExplicitArgs*/ nullptr, ObjectType,
6556                                ObjectClassification, Args, CandidateSet,
6557                                SuppressUserConversions);
6558   } else {
6559     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6560                        ObjectType, ObjectClassification, Args, CandidateSet,
6561                        SuppressUserConversions);
6562   }
6563 }
6564 
6565 /// AddMethodCandidate - Adds the given C++ member function to the set
6566 /// of candidate functions, using the given function call arguments
6567 /// and the object argument (@c Object). For example, in a call
6568 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6569 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6570 /// allow user-defined conversions via constructors or conversion
6571 /// operators.
6572 void
6573 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6574                          CXXRecordDecl *ActingContext, QualType ObjectType,
6575                          Expr::Classification ObjectClassification,
6576                          ArrayRef<Expr *> Args,
6577                          OverloadCandidateSet &CandidateSet,
6578                          bool SuppressUserConversions,
6579                          bool PartialOverloading,
6580                          ConversionSequenceList EarlyConversions) {
6581   const FunctionProtoType *Proto
6582     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6583   assert(Proto && "Methods without a prototype cannot be overloaded");
6584   assert(!isa<CXXConstructorDecl>(Method) &&
6585          "Use AddOverloadCandidate for constructors");
6586 
6587   if (!CandidateSet.isNewCandidate(Method))
6588     return;
6589 
6590   // C++11 [class.copy]p23: [DR1402]
6591   //   A defaulted move assignment operator that is defined as deleted is
6592   //   ignored by overload resolution.
6593   if (Method->isDefaulted() && Method->isDeleted() &&
6594       Method->isMoveAssignmentOperator())
6595     return;
6596 
6597   // Overload resolution is always an unevaluated context.
6598   EnterExpressionEvaluationContext Unevaluated(
6599       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6600 
6601   // Add this candidate
6602   OverloadCandidate &Candidate =
6603       CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6604   Candidate.FoundDecl = FoundDecl;
6605   Candidate.Function = Method;
6606   Candidate.IsSurrogate = false;
6607   Candidate.IgnoreObjectArgument = false;
6608   Candidate.ExplicitCallArguments = Args.size();
6609 
6610   unsigned NumParams = Proto->getNumParams();
6611 
6612   // (C++ 13.3.2p2): A candidate function having fewer than m
6613   // parameters is viable only if it has an ellipsis in its parameter
6614   // list (8.3.5).
6615   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6616       !Proto->isVariadic()) {
6617     Candidate.Viable = false;
6618     Candidate.FailureKind = ovl_fail_too_many_arguments;
6619     return;
6620   }
6621 
6622   // (C++ 13.3.2p2): A candidate function having more than m parameters
6623   // is viable only if the (m+1)st parameter has a default argument
6624   // (8.3.6). For the purposes of overload resolution, the
6625   // parameter list is truncated on the right, so that there are
6626   // exactly m parameters.
6627   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6628   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6629     // Not enough arguments.
6630     Candidate.Viable = false;
6631     Candidate.FailureKind = ovl_fail_too_few_arguments;
6632     return;
6633   }
6634 
6635   Candidate.Viable = true;
6636 
6637   if (Method->isStatic() || ObjectType.isNull())
6638     // The implicit object argument is ignored.
6639     Candidate.IgnoreObjectArgument = true;
6640   else {
6641     // Determine the implicit conversion sequence for the object
6642     // parameter.
6643     Candidate.Conversions[0] = TryObjectArgumentInitialization(
6644         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6645         Method, ActingContext);
6646     if (Candidate.Conversions[0].isBad()) {
6647       Candidate.Viable = false;
6648       Candidate.FailureKind = ovl_fail_bad_conversion;
6649       return;
6650     }
6651   }
6652 
6653   // (CUDA B.1): Check for invalid calls between targets.
6654   if (getLangOpts().CUDA)
6655     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6656       if (!IsAllowedCUDACall(Caller, Method)) {
6657         Candidate.Viable = false;
6658         Candidate.FailureKind = ovl_fail_bad_target;
6659         return;
6660       }
6661 
6662   // Determine the implicit conversion sequences for each of the
6663   // arguments.
6664   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6665     if (Candidate.Conversions[ArgIdx + 1].isInitialized()) {
6666       // We already formed a conversion sequence for this parameter during
6667       // template argument deduction.
6668     } else if (ArgIdx < NumParams) {
6669       // (C++ 13.3.2p3): for F to be a viable function, there shall
6670       // exist for each argument an implicit conversion sequence
6671       // (13.3.3.1) that converts that argument to the corresponding
6672       // parameter of F.
6673       QualType ParamType = Proto->getParamType(ArgIdx);
6674       Candidate.Conversions[ArgIdx + 1]
6675         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6676                                 SuppressUserConversions,
6677                                 /*InOverloadResolution=*/true,
6678                                 /*AllowObjCWritebackConversion=*/
6679                                   getLangOpts().ObjCAutoRefCount);
6680       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6681         Candidate.Viable = false;
6682         Candidate.FailureKind = ovl_fail_bad_conversion;
6683         return;
6684       }
6685     } else {
6686       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6687       // argument for which there is no corresponding parameter is
6688       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6689       Candidate.Conversions[ArgIdx + 1].setEllipsis();
6690     }
6691   }
6692 
6693   if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6694     Candidate.Viable = false;
6695     Candidate.FailureKind = ovl_fail_enable_if;
6696     Candidate.DeductionFailure.Data = FailedAttr;
6697     return;
6698   }
6699 
6700   if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
6701       !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6702     Candidate.Viable = false;
6703     Candidate.FailureKind = ovl_non_default_multiversion_function;
6704   }
6705 }
6706 
6707 /// Add a C++ member function template as a candidate to the candidate
6708 /// set, using template argument deduction to produce an appropriate member
6709 /// function template specialization.
6710 void
6711 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
6712                                  DeclAccessPair FoundDecl,
6713                                  CXXRecordDecl *ActingContext,
6714                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6715                                  QualType ObjectType,
6716                                  Expr::Classification ObjectClassification,
6717                                  ArrayRef<Expr *> Args,
6718                                  OverloadCandidateSet& CandidateSet,
6719                                  bool SuppressUserConversions,
6720                                  bool PartialOverloading) {
6721   if (!CandidateSet.isNewCandidate(MethodTmpl))
6722     return;
6723 
6724   // C++ [over.match.funcs]p7:
6725   //   In each case where a candidate is a function template, candidate
6726   //   function template specializations are generated using template argument
6727   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6728   //   candidate functions in the usual way.113) A given name can refer to one
6729   //   or more function templates and also to a set of overloaded non-template
6730   //   functions. In such a case, the candidate functions generated from each
6731   //   function template are combined with the set of non-template candidate
6732   //   functions.
6733   TemplateDeductionInfo Info(CandidateSet.getLocation());
6734   FunctionDecl *Specialization = nullptr;
6735   ConversionSequenceList Conversions;
6736   if (TemplateDeductionResult Result = DeduceTemplateArguments(
6737           MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
6738           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6739             return CheckNonDependentConversions(
6740                 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
6741                 SuppressUserConversions, ActingContext, ObjectType,
6742                 ObjectClassification);
6743           })) {
6744     OverloadCandidate &Candidate =
6745         CandidateSet.addCandidate(Conversions.size(), Conversions);
6746     Candidate.FoundDecl = FoundDecl;
6747     Candidate.Function = MethodTmpl->getTemplatedDecl();
6748     Candidate.Viable = false;
6749     Candidate.IsSurrogate = false;
6750     Candidate.IgnoreObjectArgument =
6751         cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
6752         ObjectType.isNull();
6753     Candidate.ExplicitCallArguments = Args.size();
6754     if (Result == TDK_NonDependentConversionFailure)
6755       Candidate.FailureKind = ovl_fail_bad_conversion;
6756     else {
6757       Candidate.FailureKind = ovl_fail_bad_deduction;
6758       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6759                                                             Info);
6760     }
6761     return;
6762   }
6763 
6764   // Add the function template specialization produced by template argument
6765   // deduction as a candidate.
6766   assert(Specialization && "Missing member function template specialization?");
6767   assert(isa<CXXMethodDecl>(Specialization) &&
6768          "Specialization is not a member function?");
6769   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6770                      ActingContext, ObjectType, ObjectClassification, Args,
6771                      CandidateSet, SuppressUserConversions, PartialOverloading,
6772                      Conversions);
6773 }
6774 
6775 /// Add a C++ function template specialization as a candidate
6776 /// in the candidate set, using template argument deduction to produce
6777 /// an appropriate function template specialization.
6778 void Sema::AddTemplateOverloadCandidate(
6779     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
6780     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
6781     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6782     bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate) {
6783   if (!CandidateSet.isNewCandidate(FunctionTemplate))
6784     return;
6785 
6786   // C++ [over.match.funcs]p7:
6787   //   In each case where a candidate is a function template, candidate
6788   //   function template specializations are generated using template argument
6789   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
6790   //   candidate functions in the usual way.113) A given name can refer to one
6791   //   or more function templates and also to a set of overloaded non-template
6792   //   functions. In such a case, the candidate functions generated from each
6793   //   function template are combined with the set of non-template candidate
6794   //   functions.
6795   TemplateDeductionInfo Info(CandidateSet.getLocation());
6796   FunctionDecl *Specialization = nullptr;
6797   ConversionSequenceList Conversions;
6798   if (TemplateDeductionResult Result = DeduceTemplateArguments(
6799           FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
6800           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6801             return CheckNonDependentConversions(FunctionTemplate, ParamTypes,
6802                                                 Args, CandidateSet, Conversions,
6803                                                 SuppressUserConversions);
6804           })) {
6805     OverloadCandidate &Candidate =
6806         CandidateSet.addCandidate(Conversions.size(), Conversions);
6807     Candidate.FoundDecl = FoundDecl;
6808     Candidate.Function = FunctionTemplate->getTemplatedDecl();
6809     Candidate.Viable = false;
6810     Candidate.IsSurrogate = false;
6811     Candidate.IsADLCandidate = IsADLCandidate;
6812     // Ignore the object argument if there is one, since we don't have an object
6813     // type.
6814     Candidate.IgnoreObjectArgument =
6815         isa<CXXMethodDecl>(Candidate.Function) &&
6816         !isa<CXXConstructorDecl>(Candidate.Function);
6817     Candidate.ExplicitCallArguments = Args.size();
6818     if (Result == TDK_NonDependentConversionFailure)
6819       Candidate.FailureKind = ovl_fail_bad_conversion;
6820     else {
6821       Candidate.FailureKind = ovl_fail_bad_deduction;
6822       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6823                                                             Info);
6824     }
6825     return;
6826   }
6827 
6828   // Add the function template specialization produced by template argument
6829   // deduction as a candidate.
6830   assert(Specialization && "Missing function template specialization?");
6831   AddOverloadCandidate(
6832       Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
6833       PartialOverloading, AllowExplicit,
6834       /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions);
6835 }
6836 
6837 /// Check that implicit conversion sequences can be formed for each argument
6838 /// whose corresponding parameter has a non-dependent type, per DR1391's
6839 /// [temp.deduct.call]p10.
6840 bool Sema::CheckNonDependentConversions(
6841     FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
6842     ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
6843     ConversionSequenceList &Conversions, bool SuppressUserConversions,
6844     CXXRecordDecl *ActingContext, QualType ObjectType,
6845     Expr::Classification ObjectClassification) {
6846   // FIXME: The cases in which we allow explicit conversions for constructor
6847   // arguments never consider calling a constructor template. It's not clear
6848   // that is correct.
6849   const bool AllowExplicit = false;
6850 
6851   auto *FD = FunctionTemplate->getTemplatedDecl();
6852   auto *Method = dyn_cast<CXXMethodDecl>(FD);
6853   bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
6854   unsigned ThisConversions = HasThisConversion ? 1 : 0;
6855 
6856   Conversions =
6857       CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
6858 
6859   // Overload resolution is always an unevaluated context.
6860   EnterExpressionEvaluationContext Unevaluated(
6861       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6862 
6863   // For a method call, check the 'this' conversion here too. DR1391 doesn't
6864   // require that, but this check should never result in a hard error, and
6865   // overload resolution is permitted to sidestep instantiations.
6866   if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
6867       !ObjectType.isNull()) {
6868     Conversions[0] = TryObjectArgumentInitialization(
6869         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6870         Method, ActingContext);
6871     if (Conversions[0].isBad())
6872       return true;
6873   }
6874 
6875   for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
6876        ++I) {
6877     QualType ParamType = ParamTypes[I];
6878     if (!ParamType->isDependentType()) {
6879       Conversions[ThisConversions + I]
6880         = TryCopyInitialization(*this, Args[I], ParamType,
6881                                 SuppressUserConversions,
6882                                 /*InOverloadResolution=*/true,
6883                                 /*AllowObjCWritebackConversion=*/
6884                                   getLangOpts().ObjCAutoRefCount,
6885                                 AllowExplicit);
6886       if (Conversions[ThisConversions + I].isBad())
6887         return true;
6888     }
6889   }
6890 
6891   return false;
6892 }
6893 
6894 /// Determine whether this is an allowable conversion from the result
6895 /// of an explicit conversion operator to the expected type, per C++
6896 /// [over.match.conv]p1 and [over.match.ref]p1.
6897 ///
6898 /// \param ConvType The return type of the conversion function.
6899 ///
6900 /// \param ToType The type we are converting to.
6901 ///
6902 /// \param AllowObjCPointerConversion Allow a conversion from one
6903 /// Objective-C pointer to another.
6904 ///
6905 /// \returns true if the conversion is allowable, false otherwise.
6906 static bool isAllowableExplicitConversion(Sema &S,
6907                                           QualType ConvType, QualType ToType,
6908                                           bool AllowObjCPointerConversion) {
6909   QualType ToNonRefType = ToType.getNonReferenceType();
6910 
6911   // Easy case: the types are the same.
6912   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
6913     return true;
6914 
6915   // Allow qualification conversions.
6916   bool ObjCLifetimeConversion;
6917   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
6918                                   ObjCLifetimeConversion))
6919     return true;
6920 
6921   // If we're not allowed to consider Objective-C pointer conversions,
6922   // we're done.
6923   if (!AllowObjCPointerConversion)
6924     return false;
6925 
6926   // Is this an Objective-C pointer conversion?
6927   bool IncompatibleObjC = false;
6928   QualType ConvertedType;
6929   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
6930                                    IncompatibleObjC);
6931 }
6932 
6933 /// AddConversionCandidate - Add a C++ conversion function as a
6934 /// candidate in the candidate set (C++ [over.match.conv],
6935 /// C++ [over.match.copy]). From is the expression we're converting from,
6936 /// and ToType is the type that we're eventually trying to convert to
6937 /// (which may or may not be the same type as the type that the
6938 /// conversion function produces).
6939 void Sema::AddConversionCandidate(
6940     CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
6941     CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
6942     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
6943     bool AllowExplicit, bool AllowResultConversion) {
6944   assert(!Conversion->getDescribedFunctionTemplate() &&
6945          "Conversion function templates use AddTemplateConversionCandidate");
6946   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
6947   if (!CandidateSet.isNewCandidate(Conversion))
6948     return;
6949 
6950   // If the conversion function has an undeduced return type, trigger its
6951   // deduction now.
6952   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
6953     if (DeduceReturnType(Conversion, From->getExprLoc()))
6954       return;
6955     ConvType = Conversion->getConversionType().getNonReferenceType();
6956   }
6957 
6958   // If we don't allow any conversion of the result type, ignore conversion
6959   // functions that don't convert to exactly (possibly cv-qualified) T.
6960   if (!AllowResultConversion &&
6961       !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
6962     return;
6963 
6964   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
6965   // operator is only a candidate if its return type is the target type or
6966   // can be converted to the target type with a qualification conversion.
6967   if (Conversion->isExplicit() &&
6968       !isAllowableExplicitConversion(*this, ConvType, ToType,
6969                                      AllowObjCConversionOnExplicit))
6970     return;
6971 
6972   // Overload resolution is always an unevaluated context.
6973   EnterExpressionEvaluationContext Unevaluated(
6974       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6975 
6976   // Add this candidate
6977   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
6978   Candidate.FoundDecl = FoundDecl;
6979   Candidate.Function = Conversion;
6980   Candidate.IsSurrogate = false;
6981   Candidate.IgnoreObjectArgument = false;
6982   Candidate.FinalConversion.setAsIdentityConversion();
6983   Candidate.FinalConversion.setFromType(ConvType);
6984   Candidate.FinalConversion.setAllToTypes(ToType);
6985   Candidate.Viable = true;
6986   Candidate.ExplicitCallArguments = 1;
6987 
6988   // C++ [over.match.funcs]p4:
6989   //   For conversion functions, the function is considered to be a member of
6990   //   the class of the implicit implied object argument for the purpose of
6991   //   defining the type of the implicit object parameter.
6992   //
6993   // Determine the implicit conversion sequence for the implicit
6994   // object parameter.
6995   QualType ImplicitParamType = From->getType();
6996   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
6997     ImplicitParamType = FromPtrType->getPointeeType();
6998   CXXRecordDecl *ConversionContext
6999     = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
7000 
7001   Candidate.Conversions[0] = TryObjectArgumentInitialization(
7002       *this, CandidateSet.getLocation(), From->getType(),
7003       From->Classify(Context), Conversion, ConversionContext);
7004 
7005   if (Candidate.Conversions[0].isBad()) {
7006     Candidate.Viable = false;
7007     Candidate.FailureKind = ovl_fail_bad_conversion;
7008     return;
7009   }
7010 
7011   // We won't go through a user-defined type conversion function to convert a
7012   // derived to base as such conversions are given Conversion Rank. They only
7013   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7014   QualType FromCanon
7015     = Context.getCanonicalType(From->getType().getUnqualifiedType());
7016   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7017   if (FromCanon == ToCanon ||
7018       IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7019     Candidate.Viable = false;
7020     Candidate.FailureKind = ovl_fail_trivial_conversion;
7021     return;
7022   }
7023 
7024   // To determine what the conversion from the result of calling the
7025   // conversion function to the type we're eventually trying to
7026   // convert to (ToType), we need to synthesize a call to the
7027   // conversion function and attempt copy initialization from it. This
7028   // makes sure that we get the right semantics with respect to
7029   // lvalues/rvalues and the type. Fortunately, we can allocate this
7030   // call on the stack and we don't need its arguments to be
7031   // well-formed.
7032   DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7033                             VK_LValue, From->getBeginLoc());
7034   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7035                                 Context.getPointerType(Conversion->getType()),
7036                                 CK_FunctionToPointerDecay,
7037                                 &ConversionRef, VK_RValue);
7038 
7039   QualType ConversionType = Conversion->getConversionType();
7040   if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7041     Candidate.Viable = false;
7042     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7043     return;
7044   }
7045 
7046   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7047 
7048   // Note that it is safe to allocate CallExpr on the stack here because
7049   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7050   // allocator).
7051   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7052 
7053   llvm::AlignedCharArray<alignof(CallExpr), sizeof(CallExpr) + sizeof(Stmt *)>
7054       Buffer;
7055   CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7056       Buffer.buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7057 
7058   ImplicitConversionSequence ICS =
7059       TryCopyInitialization(*this, TheTemporaryCall, ToType,
7060                             /*SuppressUserConversions=*/true,
7061                             /*InOverloadResolution=*/false,
7062                             /*AllowObjCWritebackConversion=*/false);
7063 
7064   switch (ICS.getKind()) {
7065   case ImplicitConversionSequence::StandardConversion:
7066     Candidate.FinalConversion = ICS.Standard;
7067 
7068     // C++ [over.ics.user]p3:
7069     //   If the user-defined conversion is specified by a specialization of a
7070     //   conversion function template, the second standard conversion sequence
7071     //   shall have exact match rank.
7072     if (Conversion->getPrimaryTemplate() &&
7073         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7074       Candidate.Viable = false;
7075       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7076       return;
7077     }
7078 
7079     // C++0x [dcl.init.ref]p5:
7080     //    In the second case, if the reference is an rvalue reference and
7081     //    the second standard conversion sequence of the user-defined
7082     //    conversion sequence includes an lvalue-to-rvalue conversion, the
7083     //    program is ill-formed.
7084     if (ToType->isRValueReferenceType() &&
7085         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7086       Candidate.Viable = false;
7087       Candidate.FailureKind = ovl_fail_bad_final_conversion;
7088       return;
7089     }
7090     break;
7091 
7092   case ImplicitConversionSequence::BadConversion:
7093     Candidate.Viable = false;
7094     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7095     return;
7096 
7097   default:
7098     llvm_unreachable(
7099            "Can only end up with a standard conversion sequence or failure");
7100   }
7101 
7102   if (!AllowExplicit && Conversion->getExplicitSpecifier().getKind() !=
7103                             ExplicitSpecKind::ResolvedFalse) {
7104     Candidate.Viable = false;
7105     Candidate.FailureKind = ovl_fail_explicit_resolved;
7106     return;
7107   }
7108 
7109   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7110     Candidate.Viable = false;
7111     Candidate.FailureKind = ovl_fail_enable_if;
7112     Candidate.DeductionFailure.Data = FailedAttr;
7113     return;
7114   }
7115 
7116   if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7117       !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7118     Candidate.Viable = false;
7119     Candidate.FailureKind = ovl_non_default_multiversion_function;
7120   }
7121 }
7122 
7123 /// Adds a conversion function template specialization
7124 /// candidate to the overload set, using template argument deduction
7125 /// to deduce the template arguments of the conversion function
7126 /// template from the type that we are converting to (C++
7127 /// [temp.deduct.conv]).
7128 void Sema::AddTemplateConversionCandidate(
7129     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7130     CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7131     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7132     bool AllowExplicit, bool AllowResultConversion) {
7133   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
7134          "Only conversion function templates permitted here");
7135 
7136   if (!CandidateSet.isNewCandidate(FunctionTemplate))
7137     return;
7138 
7139   TemplateDeductionInfo Info(CandidateSet.getLocation());
7140   CXXConversionDecl *Specialization = nullptr;
7141   if (TemplateDeductionResult Result
7142         = DeduceTemplateArguments(FunctionTemplate, ToType,
7143                                   Specialization, Info)) {
7144     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7145     Candidate.FoundDecl = FoundDecl;
7146     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7147     Candidate.Viable = false;
7148     Candidate.FailureKind = ovl_fail_bad_deduction;
7149     Candidate.IsSurrogate = false;
7150     Candidate.IgnoreObjectArgument = false;
7151     Candidate.ExplicitCallArguments = 1;
7152     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7153                                                           Info);
7154     return;
7155   }
7156 
7157   // Add the conversion function template specialization produced by
7158   // template argument deduction as a candidate.
7159   assert(Specialization && "Missing function template specialization?");
7160   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7161                          CandidateSet, AllowObjCConversionOnExplicit,
7162                          AllowExplicit, AllowResultConversion);
7163 }
7164 
7165 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7166 /// converts the given @c Object to a function pointer via the
7167 /// conversion function @c Conversion, and then attempts to call it
7168 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
7169 /// the type of function that we'll eventually be calling.
7170 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7171                                  DeclAccessPair FoundDecl,
7172                                  CXXRecordDecl *ActingContext,
7173                                  const FunctionProtoType *Proto,
7174                                  Expr *Object,
7175                                  ArrayRef<Expr *> Args,
7176                                  OverloadCandidateSet& CandidateSet) {
7177   if (!CandidateSet.isNewCandidate(Conversion))
7178     return;
7179 
7180   // Overload resolution is always an unevaluated context.
7181   EnterExpressionEvaluationContext Unevaluated(
7182       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7183 
7184   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7185   Candidate.FoundDecl = FoundDecl;
7186   Candidate.Function = nullptr;
7187   Candidate.Surrogate = Conversion;
7188   Candidate.Viable = true;
7189   Candidate.IsSurrogate = true;
7190   Candidate.IgnoreObjectArgument = false;
7191   Candidate.ExplicitCallArguments = Args.size();
7192 
7193   // Determine the implicit conversion sequence for the implicit
7194   // object parameter.
7195   ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7196       *this, CandidateSet.getLocation(), Object->getType(),
7197       Object->Classify(Context), Conversion, ActingContext);
7198   if (ObjectInit.isBad()) {
7199     Candidate.Viable = false;
7200     Candidate.FailureKind = ovl_fail_bad_conversion;
7201     Candidate.Conversions[0] = ObjectInit;
7202     return;
7203   }
7204 
7205   // The first conversion is actually a user-defined conversion whose
7206   // first conversion is ObjectInit's standard conversion (which is
7207   // effectively a reference binding). Record it as such.
7208   Candidate.Conversions[0].setUserDefined();
7209   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7210   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7211   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7212   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7213   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7214   Candidate.Conversions[0].UserDefined.After
7215     = Candidate.Conversions[0].UserDefined.Before;
7216   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7217 
7218   // Find the
7219   unsigned NumParams = Proto->getNumParams();
7220 
7221   // (C++ 13.3.2p2): A candidate function having fewer than m
7222   // parameters is viable only if it has an ellipsis in its parameter
7223   // list (8.3.5).
7224   if (Args.size() > NumParams && !Proto->isVariadic()) {
7225     Candidate.Viable = false;
7226     Candidate.FailureKind = ovl_fail_too_many_arguments;
7227     return;
7228   }
7229 
7230   // Function types don't have any default arguments, so just check if
7231   // we have enough arguments.
7232   if (Args.size() < NumParams) {
7233     // Not enough arguments.
7234     Candidate.Viable = false;
7235     Candidate.FailureKind = ovl_fail_too_few_arguments;
7236     return;
7237   }
7238 
7239   // Determine the implicit conversion sequences for each of the
7240   // arguments.
7241   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7242     if (ArgIdx < NumParams) {
7243       // (C++ 13.3.2p3): for F to be a viable function, there shall
7244       // exist for each argument an implicit conversion sequence
7245       // (13.3.3.1) that converts that argument to the corresponding
7246       // parameter of F.
7247       QualType ParamType = Proto->getParamType(ArgIdx);
7248       Candidate.Conversions[ArgIdx + 1]
7249         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7250                                 /*SuppressUserConversions=*/false,
7251                                 /*InOverloadResolution=*/false,
7252                                 /*AllowObjCWritebackConversion=*/
7253                                   getLangOpts().ObjCAutoRefCount);
7254       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7255         Candidate.Viable = false;
7256         Candidate.FailureKind = ovl_fail_bad_conversion;
7257         return;
7258       }
7259     } else {
7260       // (C++ 13.3.2p2): For the purposes of overload resolution, any
7261       // argument for which there is no corresponding parameter is
7262       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7263       Candidate.Conversions[ArgIdx + 1].setEllipsis();
7264     }
7265   }
7266 
7267   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7268     Candidate.Viable = false;
7269     Candidate.FailureKind = ovl_fail_enable_if;
7270     Candidate.DeductionFailure.Data = FailedAttr;
7271     return;
7272   }
7273 }
7274 
7275 /// Add overload candidates for overloaded operators that are
7276 /// member functions.
7277 ///
7278 /// Add the overloaded operator candidates that are member functions
7279 /// for the operator Op that was used in an operator expression such
7280 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
7281 /// CandidateSet will store the added overload candidates. (C++
7282 /// [over.match.oper]).
7283 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7284                                        SourceLocation OpLoc,
7285                                        ArrayRef<Expr *> Args,
7286                                        OverloadCandidateSet& CandidateSet,
7287                                        SourceRange OpRange) {
7288   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7289 
7290   // C++ [over.match.oper]p3:
7291   //   For a unary operator @ with an operand of a type whose
7292   //   cv-unqualified version is T1, and for a binary operator @ with
7293   //   a left operand of a type whose cv-unqualified version is T1 and
7294   //   a right operand of a type whose cv-unqualified version is T2,
7295   //   three sets of candidate functions, designated member
7296   //   candidates, non-member candidates and built-in candidates, are
7297   //   constructed as follows:
7298   QualType T1 = Args[0]->getType();
7299 
7300   //     -- If T1 is a complete class type or a class currently being
7301   //        defined, the set of member candidates is the result of the
7302   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7303   //        the set of member candidates is empty.
7304   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7305     // Complete the type if it can be completed.
7306     if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7307       return;
7308     // If the type is neither complete nor being defined, bail out now.
7309     if (!T1Rec->getDecl()->getDefinition())
7310       return;
7311 
7312     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7313     LookupQualifiedName(Operators, T1Rec->getDecl());
7314     Operators.suppressDiagnostics();
7315 
7316     for (LookupResult::iterator Oper = Operators.begin(),
7317                              OperEnd = Operators.end();
7318          Oper != OperEnd;
7319          ++Oper)
7320       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7321                          Args[0]->Classify(Context), Args.slice(1),
7322                          CandidateSet, /*SuppressUserConversions=*/false);
7323   }
7324 }
7325 
7326 /// AddBuiltinCandidate - Add a candidate for a built-in
7327 /// operator. ResultTy and ParamTys are the result and parameter types
7328 /// of the built-in candidate, respectively. Args and NumArgs are the
7329 /// arguments being passed to the candidate. IsAssignmentOperator
7330 /// should be true when this built-in candidate is an assignment
7331 /// operator. NumContextualBoolArguments is the number of arguments
7332 /// (at the beginning of the argument list) that will be contextually
7333 /// converted to bool.
7334 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7335                                OverloadCandidateSet& CandidateSet,
7336                                bool IsAssignmentOperator,
7337                                unsigned NumContextualBoolArguments) {
7338   // Overload resolution is always an unevaluated context.
7339   EnterExpressionEvaluationContext Unevaluated(
7340       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7341 
7342   // Add this candidate
7343   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7344   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7345   Candidate.Function = nullptr;
7346   Candidate.IsSurrogate = false;
7347   Candidate.IgnoreObjectArgument = false;
7348   std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7349 
7350   // Determine the implicit conversion sequences for each of the
7351   // arguments.
7352   Candidate.Viable = true;
7353   Candidate.ExplicitCallArguments = Args.size();
7354   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7355     // C++ [over.match.oper]p4:
7356     //   For the built-in assignment operators, conversions of the
7357     //   left operand are restricted as follows:
7358     //     -- no temporaries are introduced to hold the left operand, and
7359     //     -- no user-defined conversions are applied to the left
7360     //        operand to achieve a type match with the left-most
7361     //        parameter of a built-in candidate.
7362     //
7363     // We block these conversions by turning off user-defined
7364     // conversions, since that is the only way that initialization of
7365     // a reference to a non-class type can occur from something that
7366     // is not of the same type.
7367     if (ArgIdx < NumContextualBoolArguments) {
7368       assert(ParamTys[ArgIdx] == Context.BoolTy &&
7369              "Contextual conversion to bool requires bool type");
7370       Candidate.Conversions[ArgIdx]
7371         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7372     } else {
7373       Candidate.Conversions[ArgIdx]
7374         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7375                                 ArgIdx == 0 && IsAssignmentOperator,
7376                                 /*InOverloadResolution=*/false,
7377                                 /*AllowObjCWritebackConversion=*/
7378                                   getLangOpts().ObjCAutoRefCount);
7379     }
7380     if (Candidate.Conversions[ArgIdx].isBad()) {
7381       Candidate.Viable = false;
7382       Candidate.FailureKind = ovl_fail_bad_conversion;
7383       break;
7384     }
7385   }
7386 }
7387 
7388 namespace {
7389 
7390 /// BuiltinCandidateTypeSet - A set of types that will be used for the
7391 /// candidate operator functions for built-in operators (C++
7392 /// [over.built]). The types are separated into pointer types and
7393 /// enumeration types.
7394 class BuiltinCandidateTypeSet  {
7395   /// TypeSet - A set of types.
7396   typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7397                           llvm::SmallPtrSet<QualType, 8>> TypeSet;
7398 
7399   /// PointerTypes - The set of pointer types that will be used in the
7400   /// built-in candidates.
7401   TypeSet PointerTypes;
7402 
7403   /// MemberPointerTypes - The set of member pointer types that will be
7404   /// used in the built-in candidates.
7405   TypeSet MemberPointerTypes;
7406 
7407   /// EnumerationTypes - The set of enumeration types that will be
7408   /// used in the built-in candidates.
7409   TypeSet EnumerationTypes;
7410 
7411   /// The set of vector types that will be used in the built-in
7412   /// candidates.
7413   TypeSet VectorTypes;
7414 
7415   /// A flag indicating non-record types are viable candidates
7416   bool HasNonRecordTypes;
7417 
7418   /// A flag indicating whether either arithmetic or enumeration types
7419   /// were present in the candidate set.
7420   bool HasArithmeticOrEnumeralTypes;
7421 
7422   /// A flag indicating whether the nullptr type was present in the
7423   /// candidate set.
7424   bool HasNullPtrType;
7425 
7426   /// Sema - The semantic analysis instance where we are building the
7427   /// candidate type set.
7428   Sema &SemaRef;
7429 
7430   /// Context - The AST context in which we will build the type sets.
7431   ASTContext &Context;
7432 
7433   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7434                                                const Qualifiers &VisibleQuals);
7435   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7436 
7437 public:
7438   /// iterator - Iterates through the types that are part of the set.
7439   typedef TypeSet::iterator iterator;
7440 
7441   BuiltinCandidateTypeSet(Sema &SemaRef)
7442     : HasNonRecordTypes(false),
7443       HasArithmeticOrEnumeralTypes(false),
7444       HasNullPtrType(false),
7445       SemaRef(SemaRef),
7446       Context(SemaRef.Context) { }
7447 
7448   void AddTypesConvertedFrom(QualType Ty,
7449                              SourceLocation Loc,
7450                              bool AllowUserConversions,
7451                              bool AllowExplicitConversions,
7452                              const Qualifiers &VisibleTypeConversionsQuals);
7453 
7454   /// pointer_begin - First pointer type found;
7455   iterator pointer_begin() { return PointerTypes.begin(); }
7456 
7457   /// pointer_end - Past the last pointer type found;
7458   iterator pointer_end() { return PointerTypes.end(); }
7459 
7460   /// member_pointer_begin - First member pointer type found;
7461   iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
7462 
7463   /// member_pointer_end - Past the last member pointer type found;
7464   iterator member_pointer_end() { return MemberPointerTypes.end(); }
7465 
7466   /// enumeration_begin - First enumeration type found;
7467   iterator enumeration_begin() { return EnumerationTypes.begin(); }
7468 
7469   /// enumeration_end - Past the last enumeration type found;
7470   iterator enumeration_end() { return EnumerationTypes.end(); }
7471 
7472   iterator vector_begin() { return VectorTypes.begin(); }
7473   iterator vector_end() { return VectorTypes.end(); }
7474 
7475   bool hasNonRecordTypes() { return HasNonRecordTypes; }
7476   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7477   bool hasNullPtrType() const { return HasNullPtrType; }
7478 };
7479 
7480 } // end anonymous namespace
7481 
7482 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7483 /// the set of pointer types along with any more-qualified variants of
7484 /// that type. For example, if @p Ty is "int const *", this routine
7485 /// will add "int const *", "int const volatile *", "int const
7486 /// restrict *", and "int const volatile restrict *" to the set of
7487 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7488 /// false otherwise.
7489 ///
7490 /// FIXME: what to do about extended qualifiers?
7491 bool
7492 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7493                                              const Qualifiers &VisibleQuals) {
7494 
7495   // Insert this type.
7496   if (!PointerTypes.insert(Ty))
7497     return false;
7498 
7499   QualType PointeeTy;
7500   const PointerType *PointerTy = Ty->getAs<PointerType>();
7501   bool buildObjCPtr = false;
7502   if (!PointerTy) {
7503     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7504     PointeeTy = PTy->getPointeeType();
7505     buildObjCPtr = true;
7506   } else {
7507     PointeeTy = PointerTy->getPointeeType();
7508   }
7509 
7510   // Don't add qualified variants of arrays. For one, they're not allowed
7511   // (the qualifier would sink to the element type), and for another, the
7512   // only overload situation where it matters is subscript or pointer +- int,
7513   // and those shouldn't have qualifier variants anyway.
7514   if (PointeeTy->isArrayType())
7515     return true;
7516 
7517   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7518   bool hasVolatile = VisibleQuals.hasVolatile();
7519   bool hasRestrict = VisibleQuals.hasRestrict();
7520 
7521   // Iterate through all strict supersets of BaseCVR.
7522   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7523     if ((CVR | BaseCVR) != CVR) continue;
7524     // Skip over volatile if no volatile found anywhere in the types.
7525     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7526 
7527     // Skip over restrict if no restrict found anywhere in the types, or if
7528     // the type cannot be restrict-qualified.
7529     if ((CVR & Qualifiers::Restrict) &&
7530         (!hasRestrict ||
7531          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7532       continue;
7533 
7534     // Build qualified pointee type.
7535     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7536 
7537     // Build qualified pointer type.
7538     QualType QPointerTy;
7539     if (!buildObjCPtr)
7540       QPointerTy = Context.getPointerType(QPointeeTy);
7541     else
7542       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7543 
7544     // Insert qualified pointer type.
7545     PointerTypes.insert(QPointerTy);
7546   }
7547 
7548   return true;
7549 }
7550 
7551 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7552 /// to the set of pointer types along with any more-qualified variants of
7553 /// that type. For example, if @p Ty is "int const *", this routine
7554 /// will add "int const *", "int const volatile *", "int const
7555 /// restrict *", and "int const volatile restrict *" to the set of
7556 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7557 /// false otherwise.
7558 ///
7559 /// FIXME: what to do about extended qualifiers?
7560 bool
7561 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7562     QualType Ty) {
7563   // Insert this type.
7564   if (!MemberPointerTypes.insert(Ty))
7565     return false;
7566 
7567   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7568   assert(PointerTy && "type was not a member pointer type!");
7569 
7570   QualType PointeeTy = PointerTy->getPointeeType();
7571   // Don't add qualified variants of arrays. For one, they're not allowed
7572   // (the qualifier would sink to the element type), and for another, the
7573   // only overload situation where it matters is subscript or pointer +- int,
7574   // and those shouldn't have qualifier variants anyway.
7575   if (PointeeTy->isArrayType())
7576     return true;
7577   const Type *ClassTy = PointerTy->getClass();
7578 
7579   // Iterate through all strict supersets of the pointee type's CVR
7580   // qualifiers.
7581   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7582   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7583     if ((CVR | BaseCVR) != CVR) continue;
7584 
7585     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7586     MemberPointerTypes.insert(
7587       Context.getMemberPointerType(QPointeeTy, ClassTy));
7588   }
7589 
7590   return true;
7591 }
7592 
7593 /// AddTypesConvertedFrom - Add each of the types to which the type @p
7594 /// Ty can be implicit converted to the given set of @p Types. We're
7595 /// primarily interested in pointer types and enumeration types. We also
7596 /// take member pointer types, for the conditional operator.
7597 /// AllowUserConversions is true if we should look at the conversion
7598 /// functions of a class type, and AllowExplicitConversions if we
7599 /// should also include the explicit conversion functions of a class
7600 /// type.
7601 void
7602 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7603                                                SourceLocation Loc,
7604                                                bool AllowUserConversions,
7605                                                bool AllowExplicitConversions,
7606                                                const Qualifiers &VisibleQuals) {
7607   // Only deal with canonical types.
7608   Ty = Context.getCanonicalType(Ty);
7609 
7610   // Look through reference types; they aren't part of the type of an
7611   // expression for the purposes of conversions.
7612   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7613     Ty = RefTy->getPointeeType();
7614 
7615   // If we're dealing with an array type, decay to the pointer.
7616   if (Ty->isArrayType())
7617     Ty = SemaRef.Context.getArrayDecayedType(Ty);
7618 
7619   // Otherwise, we don't care about qualifiers on the type.
7620   Ty = Ty.getLocalUnqualifiedType();
7621 
7622   // Flag if we ever add a non-record type.
7623   const RecordType *TyRec = Ty->getAs<RecordType>();
7624   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
7625 
7626   // Flag if we encounter an arithmetic type.
7627   HasArithmeticOrEnumeralTypes =
7628     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
7629 
7630   if (Ty->isObjCIdType() || Ty->isObjCClassType())
7631     PointerTypes.insert(Ty);
7632   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
7633     // Insert our type, and its more-qualified variants, into the set
7634     // of types.
7635     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
7636       return;
7637   } else if (Ty->isMemberPointerType()) {
7638     // Member pointers are far easier, since the pointee can't be converted.
7639     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
7640       return;
7641   } else if (Ty->isEnumeralType()) {
7642     HasArithmeticOrEnumeralTypes = true;
7643     EnumerationTypes.insert(Ty);
7644   } else if (Ty->isVectorType()) {
7645     // We treat vector types as arithmetic types in many contexts as an
7646     // extension.
7647     HasArithmeticOrEnumeralTypes = true;
7648     VectorTypes.insert(Ty);
7649   } else if (Ty->isNullPtrType()) {
7650     HasNullPtrType = true;
7651   } else if (AllowUserConversions && TyRec) {
7652     // No conversion functions in incomplete types.
7653     if (!SemaRef.isCompleteType(Loc, Ty))
7654       return;
7655 
7656     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7657     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7658       if (isa<UsingShadowDecl>(D))
7659         D = cast<UsingShadowDecl>(D)->getTargetDecl();
7660 
7661       // Skip conversion function templates; they don't tell us anything
7662       // about which builtin types we can convert to.
7663       if (isa<FunctionTemplateDecl>(D))
7664         continue;
7665 
7666       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7667       if (AllowExplicitConversions || !Conv->isExplicit()) {
7668         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
7669                               VisibleQuals);
7670       }
7671     }
7672   }
7673 }
7674 /// Helper function for adjusting address spaces for the pointer or reference
7675 /// operands of builtin operators depending on the argument.
7676 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
7677                                                         Expr *Arg) {
7678   return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
7679 }
7680 
7681 /// Helper function for AddBuiltinOperatorCandidates() that adds
7682 /// the volatile- and non-volatile-qualified assignment operators for the
7683 /// given type to the candidate set.
7684 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
7685                                                    QualType T,
7686                                                    ArrayRef<Expr *> Args,
7687                                     OverloadCandidateSet &CandidateSet) {
7688   QualType ParamTypes[2];
7689 
7690   // T& operator=(T&, T)
7691   ParamTypes[0] = S.Context.getLValueReferenceType(
7692       AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
7693   ParamTypes[1] = T;
7694   S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7695                         /*IsAssignmentOperator=*/true);
7696 
7697   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
7698     // volatile T& operator=(volatile T&, T)
7699     ParamTypes[0] = S.Context.getLValueReferenceType(
7700         AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
7701                                                 Args[0]));
7702     ParamTypes[1] = T;
7703     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7704                           /*IsAssignmentOperator=*/true);
7705   }
7706 }
7707 
7708 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
7709 /// if any, found in visible type conversion functions found in ArgExpr's type.
7710 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
7711     Qualifiers VRQuals;
7712     const RecordType *TyRec;
7713     if (const MemberPointerType *RHSMPType =
7714         ArgExpr->getType()->getAs<MemberPointerType>())
7715       TyRec = RHSMPType->getClass()->getAs<RecordType>();
7716     else
7717       TyRec = ArgExpr->getType()->getAs<RecordType>();
7718     if (!TyRec) {
7719       // Just to be safe, assume the worst case.
7720       VRQuals.addVolatile();
7721       VRQuals.addRestrict();
7722       return VRQuals;
7723     }
7724 
7725     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7726     if (!ClassDecl->hasDefinition())
7727       return VRQuals;
7728 
7729     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7730       if (isa<UsingShadowDecl>(D))
7731         D = cast<UsingShadowDecl>(D)->getTargetDecl();
7732       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7733         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7734         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7735           CanTy = ResTypeRef->getPointeeType();
7736         // Need to go down the pointer/mempointer chain and add qualifiers
7737         // as see them.
7738         bool done = false;
7739         while (!done) {
7740           if (CanTy.isRestrictQualified())
7741             VRQuals.addRestrict();
7742           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7743             CanTy = ResTypePtr->getPointeeType();
7744           else if (const MemberPointerType *ResTypeMPtr =
7745                 CanTy->getAs<MemberPointerType>())
7746             CanTy = ResTypeMPtr->getPointeeType();
7747           else
7748             done = true;
7749           if (CanTy.isVolatileQualified())
7750             VRQuals.addVolatile();
7751           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7752             return VRQuals;
7753         }
7754       }
7755     }
7756     return VRQuals;
7757 }
7758 
7759 namespace {
7760 
7761 /// Helper class to manage the addition of builtin operator overload
7762 /// candidates. It provides shared state and utility methods used throughout
7763 /// the process, as well as a helper method to add each group of builtin
7764 /// operator overloads from the standard to a candidate set.
7765 class BuiltinOperatorOverloadBuilder {
7766   // Common instance state available to all overload candidate addition methods.
7767   Sema &S;
7768   ArrayRef<Expr *> Args;
7769   Qualifiers VisibleTypeConversionsQuals;
7770   bool HasArithmeticOrEnumeralCandidateType;
7771   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7772   OverloadCandidateSet &CandidateSet;
7773 
7774   static constexpr int ArithmeticTypesCap = 24;
7775   SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
7776 
7777   // Define some indices used to iterate over the arithemetic types in
7778   // ArithmeticTypes.  The "promoted arithmetic types" are the arithmetic
7779   // types are that preserved by promotion (C++ [over.built]p2).
7780   unsigned FirstIntegralType,
7781            LastIntegralType;
7782   unsigned FirstPromotedIntegralType,
7783            LastPromotedIntegralType;
7784   unsigned FirstPromotedArithmeticType,
7785            LastPromotedArithmeticType;
7786   unsigned NumArithmeticTypes;
7787 
7788   void InitArithmeticTypes() {
7789     // Start of promoted types.
7790     FirstPromotedArithmeticType = 0;
7791     ArithmeticTypes.push_back(S.Context.FloatTy);
7792     ArithmeticTypes.push_back(S.Context.DoubleTy);
7793     ArithmeticTypes.push_back(S.Context.LongDoubleTy);
7794     if (S.Context.getTargetInfo().hasFloat128Type())
7795       ArithmeticTypes.push_back(S.Context.Float128Ty);
7796 
7797     // Start of integral types.
7798     FirstIntegralType = ArithmeticTypes.size();
7799     FirstPromotedIntegralType = ArithmeticTypes.size();
7800     ArithmeticTypes.push_back(S.Context.IntTy);
7801     ArithmeticTypes.push_back(S.Context.LongTy);
7802     ArithmeticTypes.push_back(S.Context.LongLongTy);
7803     if (S.Context.getTargetInfo().hasInt128Type())
7804       ArithmeticTypes.push_back(S.Context.Int128Ty);
7805     ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
7806     ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
7807     ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
7808     if (S.Context.getTargetInfo().hasInt128Type())
7809       ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
7810     LastPromotedIntegralType = ArithmeticTypes.size();
7811     LastPromotedArithmeticType = ArithmeticTypes.size();
7812     // End of promoted types.
7813 
7814     ArithmeticTypes.push_back(S.Context.BoolTy);
7815     ArithmeticTypes.push_back(S.Context.CharTy);
7816     ArithmeticTypes.push_back(S.Context.WCharTy);
7817     if (S.Context.getLangOpts().Char8)
7818       ArithmeticTypes.push_back(S.Context.Char8Ty);
7819     ArithmeticTypes.push_back(S.Context.Char16Ty);
7820     ArithmeticTypes.push_back(S.Context.Char32Ty);
7821     ArithmeticTypes.push_back(S.Context.SignedCharTy);
7822     ArithmeticTypes.push_back(S.Context.ShortTy);
7823     ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
7824     ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
7825     LastIntegralType = ArithmeticTypes.size();
7826     NumArithmeticTypes = ArithmeticTypes.size();
7827     // End of integral types.
7828     // FIXME: What about complex? What about half?
7829 
7830     assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
7831            "Enough inline storage for all arithmetic types.");
7832   }
7833 
7834   /// Helper method to factor out the common pattern of adding overloads
7835   /// for '++' and '--' builtin operators.
7836   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7837                                            bool HasVolatile,
7838                                            bool HasRestrict) {
7839     QualType ParamTypes[2] = {
7840       S.Context.getLValueReferenceType(CandidateTy),
7841       S.Context.IntTy
7842     };
7843 
7844     // Non-volatile version.
7845     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7846 
7847     // Use a heuristic to reduce number of builtin candidates in the set:
7848     // add volatile version only if there are conversions to a volatile type.
7849     if (HasVolatile) {
7850       ParamTypes[0] =
7851         S.Context.getLValueReferenceType(
7852           S.Context.getVolatileType(CandidateTy));
7853       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7854     }
7855 
7856     // Add restrict version only if there are conversions to a restrict type
7857     // and our candidate type is a non-restrict-qualified pointer.
7858     if (HasRestrict && CandidateTy->isAnyPointerType() &&
7859         !CandidateTy.isRestrictQualified()) {
7860       ParamTypes[0]
7861         = S.Context.getLValueReferenceType(
7862             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
7863       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7864 
7865       if (HasVolatile) {
7866         ParamTypes[0]
7867           = S.Context.getLValueReferenceType(
7868               S.Context.getCVRQualifiedType(CandidateTy,
7869                                             (Qualifiers::Volatile |
7870                                              Qualifiers::Restrict)));
7871         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7872       }
7873     }
7874 
7875   }
7876 
7877 public:
7878   BuiltinOperatorOverloadBuilder(
7879     Sema &S, ArrayRef<Expr *> Args,
7880     Qualifiers VisibleTypeConversionsQuals,
7881     bool HasArithmeticOrEnumeralCandidateType,
7882     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
7883     OverloadCandidateSet &CandidateSet)
7884     : S(S), Args(Args),
7885       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
7886       HasArithmeticOrEnumeralCandidateType(
7887         HasArithmeticOrEnumeralCandidateType),
7888       CandidateTypes(CandidateTypes),
7889       CandidateSet(CandidateSet) {
7890 
7891     InitArithmeticTypes();
7892   }
7893 
7894   // Increment is deprecated for bool since C++17.
7895   //
7896   // C++ [over.built]p3:
7897   //
7898   //   For every pair (T, VQ), where T is an arithmetic type other
7899   //   than bool, and VQ is either volatile or empty, there exist
7900   //   candidate operator functions of the form
7901   //
7902   //       VQ T&      operator++(VQ T&);
7903   //       T          operator++(VQ T&, int);
7904   //
7905   // C++ [over.built]p4:
7906   //
7907   //   For every pair (T, VQ), where T is an arithmetic type other
7908   //   than bool, and VQ is either volatile or empty, there exist
7909   //   candidate operator functions of the form
7910   //
7911   //       VQ T&      operator--(VQ T&);
7912   //       T          operator--(VQ T&, int);
7913   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
7914     if (!HasArithmeticOrEnumeralCandidateType)
7915       return;
7916 
7917     for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
7918       const auto TypeOfT = ArithmeticTypes[Arith];
7919       if (TypeOfT == S.Context.BoolTy) {
7920         if (Op == OO_MinusMinus)
7921           continue;
7922         if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
7923           continue;
7924       }
7925       addPlusPlusMinusMinusStyleOverloads(
7926         TypeOfT,
7927         VisibleTypeConversionsQuals.hasVolatile(),
7928         VisibleTypeConversionsQuals.hasRestrict());
7929     }
7930   }
7931 
7932   // C++ [over.built]p5:
7933   //
7934   //   For every pair (T, VQ), where T is a cv-qualified or
7935   //   cv-unqualified object type, and VQ is either volatile or
7936   //   empty, there exist candidate operator functions of the form
7937   //
7938   //       T*VQ&      operator++(T*VQ&);
7939   //       T*VQ&      operator--(T*VQ&);
7940   //       T*         operator++(T*VQ&, int);
7941   //       T*         operator--(T*VQ&, int);
7942   void addPlusPlusMinusMinusPointerOverloads() {
7943     for (BuiltinCandidateTypeSet::iterator
7944               Ptr = CandidateTypes[0].pointer_begin(),
7945            PtrEnd = CandidateTypes[0].pointer_end();
7946          Ptr != PtrEnd; ++Ptr) {
7947       // Skip pointer types that aren't pointers to object types.
7948       if (!(*Ptr)->getPointeeType()->isObjectType())
7949         continue;
7950 
7951       addPlusPlusMinusMinusStyleOverloads(*Ptr,
7952         (!(*Ptr).isVolatileQualified() &&
7953          VisibleTypeConversionsQuals.hasVolatile()),
7954         (!(*Ptr).isRestrictQualified() &&
7955          VisibleTypeConversionsQuals.hasRestrict()));
7956     }
7957   }
7958 
7959   // C++ [over.built]p6:
7960   //   For every cv-qualified or cv-unqualified object type T, there
7961   //   exist candidate operator functions of the form
7962   //
7963   //       T&         operator*(T*);
7964   //
7965   // C++ [over.built]p7:
7966   //   For every function type T that does not have cv-qualifiers or a
7967   //   ref-qualifier, there exist candidate operator functions of the form
7968   //       T&         operator*(T*);
7969   void addUnaryStarPointerOverloads() {
7970     for (BuiltinCandidateTypeSet::iterator
7971               Ptr = CandidateTypes[0].pointer_begin(),
7972            PtrEnd = CandidateTypes[0].pointer_end();
7973          Ptr != PtrEnd; ++Ptr) {
7974       QualType ParamTy = *Ptr;
7975       QualType PointeeTy = ParamTy->getPointeeType();
7976       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
7977         continue;
7978 
7979       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
7980         if (Proto->getMethodQuals() || Proto->getRefQualifier())
7981           continue;
7982 
7983       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
7984     }
7985   }
7986 
7987   // C++ [over.built]p9:
7988   //  For every promoted arithmetic type T, there exist candidate
7989   //  operator functions of the form
7990   //
7991   //       T         operator+(T);
7992   //       T         operator-(T);
7993   void addUnaryPlusOrMinusArithmeticOverloads() {
7994     if (!HasArithmeticOrEnumeralCandidateType)
7995       return;
7996 
7997     for (unsigned Arith = FirstPromotedArithmeticType;
7998          Arith < LastPromotedArithmeticType; ++Arith) {
7999       QualType ArithTy = ArithmeticTypes[Arith];
8000       S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8001     }
8002 
8003     // Extension: We also add these operators for vector types.
8004     for (BuiltinCandidateTypeSet::iterator
8005               Vec = CandidateTypes[0].vector_begin(),
8006            VecEnd = CandidateTypes[0].vector_end();
8007          Vec != VecEnd; ++Vec) {
8008       QualType VecTy = *Vec;
8009       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8010     }
8011   }
8012 
8013   // C++ [over.built]p8:
8014   //   For every type T, there exist candidate operator functions of
8015   //   the form
8016   //
8017   //       T*         operator+(T*);
8018   void addUnaryPlusPointerOverloads() {
8019     for (BuiltinCandidateTypeSet::iterator
8020               Ptr = CandidateTypes[0].pointer_begin(),
8021            PtrEnd = CandidateTypes[0].pointer_end();
8022          Ptr != PtrEnd; ++Ptr) {
8023       QualType ParamTy = *Ptr;
8024       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8025     }
8026   }
8027 
8028   // C++ [over.built]p10:
8029   //   For every promoted integral type T, there exist candidate
8030   //   operator functions of the form
8031   //
8032   //        T         operator~(T);
8033   void addUnaryTildePromotedIntegralOverloads() {
8034     if (!HasArithmeticOrEnumeralCandidateType)
8035       return;
8036 
8037     for (unsigned Int = FirstPromotedIntegralType;
8038          Int < LastPromotedIntegralType; ++Int) {
8039       QualType IntTy = ArithmeticTypes[Int];
8040       S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8041     }
8042 
8043     // Extension: We also add this operator for vector types.
8044     for (BuiltinCandidateTypeSet::iterator
8045               Vec = CandidateTypes[0].vector_begin(),
8046            VecEnd = CandidateTypes[0].vector_end();
8047          Vec != VecEnd; ++Vec) {
8048       QualType VecTy = *Vec;
8049       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8050     }
8051   }
8052 
8053   // C++ [over.match.oper]p16:
8054   //   For every pointer to member type T or type std::nullptr_t, there
8055   //   exist candidate operator functions of the form
8056   //
8057   //        bool operator==(T,T);
8058   //        bool operator!=(T,T);
8059   void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8060     /// Set of (canonical) types that we've already handled.
8061     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8062 
8063     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8064       for (BuiltinCandidateTypeSet::iterator
8065                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8066              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8067            MemPtr != MemPtrEnd;
8068            ++MemPtr) {
8069         // Don't add the same builtin candidate twice.
8070         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8071           continue;
8072 
8073         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8074         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8075       }
8076 
8077       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8078         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8079         if (AddedTypes.insert(NullPtrTy).second) {
8080           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8081           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8082         }
8083       }
8084     }
8085   }
8086 
8087   // C++ [over.built]p15:
8088   //
8089   //   For every T, where T is an enumeration type or a pointer type,
8090   //   there exist candidate operator functions of the form
8091   //
8092   //        bool       operator<(T, T);
8093   //        bool       operator>(T, T);
8094   //        bool       operator<=(T, T);
8095   //        bool       operator>=(T, T);
8096   //        bool       operator==(T, T);
8097   //        bool       operator!=(T, T);
8098   //           R       operator<=>(T, T)
8099   void addGenericBinaryPointerOrEnumeralOverloads() {
8100     // C++ [over.match.oper]p3:
8101     //   [...]the built-in candidates include all of the candidate operator
8102     //   functions defined in 13.6 that, compared to the given operator, [...]
8103     //   do not have the same parameter-type-list as any non-template non-member
8104     //   candidate.
8105     //
8106     // Note that in practice, this only affects enumeration types because there
8107     // aren't any built-in candidates of record type, and a user-defined operator
8108     // must have an operand of record or enumeration type. Also, the only other
8109     // overloaded operator with enumeration arguments, operator=,
8110     // cannot be overloaded for enumeration types, so this is the only place
8111     // where we must suppress candidates like this.
8112     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8113       UserDefinedBinaryOperators;
8114 
8115     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8116       if (CandidateTypes[ArgIdx].enumeration_begin() !=
8117           CandidateTypes[ArgIdx].enumeration_end()) {
8118         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8119                                          CEnd = CandidateSet.end();
8120              C != CEnd; ++C) {
8121           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8122             continue;
8123 
8124           if (C->Function->isFunctionTemplateSpecialization())
8125             continue;
8126 
8127           QualType FirstParamType =
8128             C->Function->getParamDecl(0)->getType().getUnqualifiedType();
8129           QualType SecondParamType =
8130             C->Function->getParamDecl(1)->getType().getUnqualifiedType();
8131 
8132           // Skip if either parameter isn't of enumeral type.
8133           if (!FirstParamType->isEnumeralType() ||
8134               !SecondParamType->isEnumeralType())
8135             continue;
8136 
8137           // Add this operator to the set of known user-defined operators.
8138           UserDefinedBinaryOperators.insert(
8139             std::make_pair(S.Context.getCanonicalType(FirstParamType),
8140                            S.Context.getCanonicalType(SecondParamType)));
8141         }
8142       }
8143     }
8144 
8145     /// Set of (canonical) types that we've already handled.
8146     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8147 
8148     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8149       for (BuiltinCandidateTypeSet::iterator
8150                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8151              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8152            Ptr != PtrEnd; ++Ptr) {
8153         // Don't add the same builtin candidate twice.
8154         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8155           continue;
8156 
8157         QualType ParamTypes[2] = { *Ptr, *Ptr };
8158         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8159       }
8160       for (BuiltinCandidateTypeSet::iterator
8161                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8162              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8163            Enum != EnumEnd; ++Enum) {
8164         CanQualType CanonType = S.Context.getCanonicalType(*Enum);
8165 
8166         // Don't add the same builtin candidate twice, or if a user defined
8167         // candidate exists.
8168         if (!AddedTypes.insert(CanonType).second ||
8169             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8170                                                             CanonType)))
8171           continue;
8172         QualType ParamTypes[2] = { *Enum, *Enum };
8173         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8174       }
8175     }
8176   }
8177 
8178   // C++ [over.built]p13:
8179   //
8180   //   For every cv-qualified or cv-unqualified object type T
8181   //   there exist candidate operator functions of the form
8182   //
8183   //      T*         operator+(T*, ptrdiff_t);
8184   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
8185   //      T*         operator-(T*, ptrdiff_t);
8186   //      T*         operator+(ptrdiff_t, T*);
8187   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
8188   //
8189   // C++ [over.built]p14:
8190   //
8191   //   For every T, where T is a pointer to object type, there
8192   //   exist candidate operator functions of the form
8193   //
8194   //      ptrdiff_t  operator-(T, T);
8195   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8196     /// Set of (canonical) types that we've already handled.
8197     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8198 
8199     for (int Arg = 0; Arg < 2; ++Arg) {
8200       QualType AsymmetricParamTypes[2] = {
8201         S.Context.getPointerDiffType(),
8202         S.Context.getPointerDiffType(),
8203       };
8204       for (BuiltinCandidateTypeSet::iterator
8205                 Ptr = CandidateTypes[Arg].pointer_begin(),
8206              PtrEnd = CandidateTypes[Arg].pointer_end();
8207            Ptr != PtrEnd; ++Ptr) {
8208         QualType PointeeTy = (*Ptr)->getPointeeType();
8209         if (!PointeeTy->isObjectType())
8210           continue;
8211 
8212         AsymmetricParamTypes[Arg] = *Ptr;
8213         if (Arg == 0 || Op == OO_Plus) {
8214           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8215           // T* operator+(ptrdiff_t, T*);
8216           S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8217         }
8218         if (Op == OO_Minus) {
8219           // ptrdiff_t operator-(T, T);
8220           if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8221             continue;
8222 
8223           QualType ParamTypes[2] = { *Ptr, *Ptr };
8224           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8225         }
8226       }
8227     }
8228   }
8229 
8230   // C++ [over.built]p12:
8231   //
8232   //   For every pair of promoted arithmetic types L and R, there
8233   //   exist candidate operator functions of the form
8234   //
8235   //        LR         operator*(L, R);
8236   //        LR         operator/(L, R);
8237   //        LR         operator+(L, R);
8238   //        LR         operator-(L, R);
8239   //        bool       operator<(L, R);
8240   //        bool       operator>(L, R);
8241   //        bool       operator<=(L, R);
8242   //        bool       operator>=(L, R);
8243   //        bool       operator==(L, R);
8244   //        bool       operator!=(L, R);
8245   //
8246   //   where LR is the result of the usual arithmetic conversions
8247   //   between types L and R.
8248   //
8249   // C++ [over.built]p24:
8250   //
8251   //   For every pair of promoted arithmetic types L and R, there exist
8252   //   candidate operator functions of the form
8253   //
8254   //        LR       operator?(bool, L, R);
8255   //
8256   //   where LR is the result of the usual arithmetic conversions
8257   //   between types L and R.
8258   // Our candidates ignore the first parameter.
8259   void addGenericBinaryArithmeticOverloads() {
8260     if (!HasArithmeticOrEnumeralCandidateType)
8261       return;
8262 
8263     for (unsigned Left = FirstPromotedArithmeticType;
8264          Left < LastPromotedArithmeticType; ++Left) {
8265       for (unsigned Right = FirstPromotedArithmeticType;
8266            Right < LastPromotedArithmeticType; ++Right) {
8267         QualType LandR[2] = { ArithmeticTypes[Left],
8268                               ArithmeticTypes[Right] };
8269         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8270       }
8271     }
8272 
8273     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8274     // conditional operator for vector types.
8275     for (BuiltinCandidateTypeSet::iterator
8276               Vec1 = CandidateTypes[0].vector_begin(),
8277            Vec1End = CandidateTypes[0].vector_end();
8278          Vec1 != Vec1End; ++Vec1) {
8279       for (BuiltinCandidateTypeSet::iterator
8280                 Vec2 = CandidateTypes[1].vector_begin(),
8281              Vec2End = CandidateTypes[1].vector_end();
8282            Vec2 != Vec2End; ++Vec2) {
8283         QualType LandR[2] = { *Vec1, *Vec2 };
8284         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8285       }
8286     }
8287   }
8288 
8289   // C++2a [over.built]p14:
8290   //
8291   //   For every integral type T there exists a candidate operator function
8292   //   of the form
8293   //
8294   //        std::strong_ordering operator<=>(T, T)
8295   //
8296   // C++2a [over.built]p15:
8297   //
8298   //   For every pair of floating-point types L and R, there exists a candidate
8299   //   operator function of the form
8300   //
8301   //       std::partial_ordering operator<=>(L, R);
8302   //
8303   // FIXME: The current specification for integral types doesn't play nice with
8304   // the direction of p0946r0, which allows mixed integral and unscoped-enum
8305   // comparisons. Under the current spec this can lead to ambiguity during
8306   // overload resolution. For example:
8307   //
8308   //   enum A : int {a};
8309   //   auto x = (a <=> (long)42);
8310   //
8311   //   error: call is ambiguous for arguments 'A' and 'long'.
8312   //   note: candidate operator<=>(int, int)
8313   //   note: candidate operator<=>(long, long)
8314   //
8315   // To avoid this error, this function deviates from the specification and adds
8316   // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8317   // arithmetic types (the same as the generic relational overloads).
8318   //
8319   // For now this function acts as a placeholder.
8320   void addThreeWayArithmeticOverloads() {
8321     addGenericBinaryArithmeticOverloads();
8322   }
8323 
8324   // C++ [over.built]p17:
8325   //
8326   //   For every pair of promoted integral types L and R, there
8327   //   exist candidate operator functions of the form
8328   //
8329   //      LR         operator%(L, R);
8330   //      LR         operator&(L, R);
8331   //      LR         operator^(L, R);
8332   //      LR         operator|(L, R);
8333   //      L          operator<<(L, R);
8334   //      L          operator>>(L, R);
8335   //
8336   //   where LR is the result of the usual arithmetic conversions
8337   //   between types L and R.
8338   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
8339     if (!HasArithmeticOrEnumeralCandidateType)
8340       return;
8341 
8342     for (unsigned Left = FirstPromotedIntegralType;
8343          Left < LastPromotedIntegralType; ++Left) {
8344       for (unsigned Right = FirstPromotedIntegralType;
8345            Right < LastPromotedIntegralType; ++Right) {
8346         QualType LandR[2] = { ArithmeticTypes[Left],
8347                               ArithmeticTypes[Right] };
8348         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8349       }
8350     }
8351   }
8352 
8353   // C++ [over.built]p20:
8354   //
8355   //   For every pair (T, VQ), where T is an enumeration or
8356   //   pointer to member type and VQ is either volatile or
8357   //   empty, there exist candidate operator functions of the form
8358   //
8359   //        VQ T&      operator=(VQ T&, T);
8360   void addAssignmentMemberPointerOrEnumeralOverloads() {
8361     /// Set of (canonical) types that we've already handled.
8362     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8363 
8364     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8365       for (BuiltinCandidateTypeSet::iterator
8366                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8367              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8368            Enum != EnumEnd; ++Enum) {
8369         if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8370           continue;
8371 
8372         AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
8373       }
8374 
8375       for (BuiltinCandidateTypeSet::iterator
8376                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8377              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8378            MemPtr != MemPtrEnd; ++MemPtr) {
8379         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8380           continue;
8381 
8382         AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
8383       }
8384     }
8385   }
8386 
8387   // C++ [over.built]p19:
8388   //
8389   //   For every pair (T, VQ), where T is any type and VQ is either
8390   //   volatile or empty, there exist candidate operator functions
8391   //   of the form
8392   //
8393   //        T*VQ&      operator=(T*VQ&, T*);
8394   //
8395   // C++ [over.built]p21:
8396   //
8397   //   For every pair (T, VQ), where T is a cv-qualified or
8398   //   cv-unqualified object type and VQ is either volatile or
8399   //   empty, there exist candidate operator functions of the form
8400   //
8401   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
8402   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
8403   void addAssignmentPointerOverloads(bool isEqualOp) {
8404     /// Set of (canonical) types that we've already handled.
8405     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8406 
8407     for (BuiltinCandidateTypeSet::iterator
8408               Ptr = CandidateTypes[0].pointer_begin(),
8409            PtrEnd = CandidateTypes[0].pointer_end();
8410          Ptr != PtrEnd; ++Ptr) {
8411       // If this is operator=, keep track of the builtin candidates we added.
8412       if (isEqualOp)
8413         AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
8414       else if (!(*Ptr)->getPointeeType()->isObjectType())
8415         continue;
8416 
8417       // non-volatile version
8418       QualType ParamTypes[2] = {
8419         S.Context.getLValueReferenceType(*Ptr),
8420         isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
8421       };
8422       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8423                             /*IsAssigmentOperator=*/ isEqualOp);
8424 
8425       bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8426                           VisibleTypeConversionsQuals.hasVolatile();
8427       if (NeedVolatile) {
8428         // volatile version
8429         ParamTypes[0] =
8430           S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8431         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8432                               /*IsAssigmentOperator=*/isEqualOp);
8433       }
8434 
8435       if (!(*Ptr).isRestrictQualified() &&
8436           VisibleTypeConversionsQuals.hasRestrict()) {
8437         // restrict version
8438         ParamTypes[0]
8439           = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8440         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8441                               /*IsAssigmentOperator=*/isEqualOp);
8442 
8443         if (NeedVolatile) {
8444           // volatile restrict version
8445           ParamTypes[0]
8446             = S.Context.getLValueReferenceType(
8447                 S.Context.getCVRQualifiedType(*Ptr,
8448                                               (Qualifiers::Volatile |
8449                                                Qualifiers::Restrict)));
8450           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8451                                 /*IsAssigmentOperator=*/isEqualOp);
8452         }
8453       }
8454     }
8455 
8456     if (isEqualOp) {
8457       for (BuiltinCandidateTypeSet::iterator
8458                 Ptr = CandidateTypes[1].pointer_begin(),
8459              PtrEnd = CandidateTypes[1].pointer_end();
8460            Ptr != PtrEnd; ++Ptr) {
8461         // Make sure we don't add the same candidate twice.
8462         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8463           continue;
8464 
8465         QualType ParamTypes[2] = {
8466           S.Context.getLValueReferenceType(*Ptr),
8467           *Ptr,
8468         };
8469 
8470         // non-volatile version
8471         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8472                               /*IsAssigmentOperator=*/true);
8473 
8474         bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8475                            VisibleTypeConversionsQuals.hasVolatile();
8476         if (NeedVolatile) {
8477           // volatile version
8478           ParamTypes[0] =
8479             S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8480           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8481                                 /*IsAssigmentOperator=*/true);
8482         }
8483 
8484         if (!(*Ptr).isRestrictQualified() &&
8485             VisibleTypeConversionsQuals.hasRestrict()) {
8486           // restrict version
8487           ParamTypes[0]
8488             = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8489           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8490                                 /*IsAssigmentOperator=*/true);
8491 
8492           if (NeedVolatile) {
8493             // volatile restrict version
8494             ParamTypes[0]
8495               = S.Context.getLValueReferenceType(
8496                   S.Context.getCVRQualifiedType(*Ptr,
8497                                                 (Qualifiers::Volatile |
8498                                                  Qualifiers::Restrict)));
8499             S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8500                                   /*IsAssigmentOperator=*/true);
8501           }
8502         }
8503       }
8504     }
8505   }
8506 
8507   // C++ [over.built]p18:
8508   //
8509   //   For every triple (L, VQ, R), where L is an arithmetic type,
8510   //   VQ is either volatile or empty, and R is a promoted
8511   //   arithmetic type, there exist candidate operator functions of
8512   //   the form
8513   //
8514   //        VQ L&      operator=(VQ L&, R);
8515   //        VQ L&      operator*=(VQ L&, R);
8516   //        VQ L&      operator/=(VQ L&, R);
8517   //        VQ L&      operator+=(VQ L&, R);
8518   //        VQ L&      operator-=(VQ L&, R);
8519   void addAssignmentArithmeticOverloads(bool isEqualOp) {
8520     if (!HasArithmeticOrEnumeralCandidateType)
8521       return;
8522 
8523     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8524       for (unsigned Right = FirstPromotedArithmeticType;
8525            Right < LastPromotedArithmeticType; ++Right) {
8526         QualType ParamTypes[2];
8527         ParamTypes[1] = ArithmeticTypes[Right];
8528         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8529             S, ArithmeticTypes[Left], Args[0]);
8530         // Add this built-in operator as a candidate (VQ is empty).
8531         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8532         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8533                               /*IsAssigmentOperator=*/isEqualOp);
8534 
8535         // Add this built-in operator as a candidate (VQ is 'volatile').
8536         if (VisibleTypeConversionsQuals.hasVolatile()) {
8537           ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8538           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8539           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8540                                 /*IsAssigmentOperator=*/isEqualOp);
8541         }
8542       }
8543     }
8544 
8545     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8546     for (BuiltinCandidateTypeSet::iterator
8547               Vec1 = CandidateTypes[0].vector_begin(),
8548            Vec1End = CandidateTypes[0].vector_end();
8549          Vec1 != Vec1End; ++Vec1) {
8550       for (BuiltinCandidateTypeSet::iterator
8551                 Vec2 = CandidateTypes[1].vector_begin(),
8552              Vec2End = CandidateTypes[1].vector_end();
8553            Vec2 != Vec2End; ++Vec2) {
8554         QualType ParamTypes[2];
8555         ParamTypes[1] = *Vec2;
8556         // Add this built-in operator as a candidate (VQ is empty).
8557         ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
8558         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8559                               /*IsAssigmentOperator=*/isEqualOp);
8560 
8561         // Add this built-in operator as a candidate (VQ is 'volatile').
8562         if (VisibleTypeConversionsQuals.hasVolatile()) {
8563           ParamTypes[0] = S.Context.getVolatileType(*Vec1);
8564           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8565           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8566                                 /*IsAssigmentOperator=*/isEqualOp);
8567         }
8568       }
8569     }
8570   }
8571 
8572   // C++ [over.built]p22:
8573   //
8574   //   For every triple (L, VQ, R), where L is an integral type, VQ
8575   //   is either volatile or empty, and R is a promoted integral
8576   //   type, there exist candidate operator functions of the form
8577   //
8578   //        VQ L&       operator%=(VQ L&, R);
8579   //        VQ L&       operator<<=(VQ L&, R);
8580   //        VQ L&       operator>>=(VQ L&, R);
8581   //        VQ L&       operator&=(VQ L&, R);
8582   //        VQ L&       operator^=(VQ L&, R);
8583   //        VQ L&       operator|=(VQ L&, R);
8584   void addAssignmentIntegralOverloads() {
8585     if (!HasArithmeticOrEnumeralCandidateType)
8586       return;
8587 
8588     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8589       for (unsigned Right = FirstPromotedIntegralType;
8590            Right < LastPromotedIntegralType; ++Right) {
8591         QualType ParamTypes[2];
8592         ParamTypes[1] = ArithmeticTypes[Right];
8593         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8594             S, ArithmeticTypes[Left], Args[0]);
8595         // Add this built-in operator as a candidate (VQ is empty).
8596         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8597         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8598         if (VisibleTypeConversionsQuals.hasVolatile()) {
8599           // Add this built-in operator as a candidate (VQ is 'volatile').
8600           ParamTypes[0] = LeftBaseTy;
8601           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8602           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8603           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8604         }
8605       }
8606     }
8607   }
8608 
8609   // C++ [over.operator]p23:
8610   //
8611   //   There also exist candidate operator functions of the form
8612   //
8613   //        bool        operator!(bool);
8614   //        bool        operator&&(bool, bool);
8615   //        bool        operator||(bool, bool);
8616   void addExclaimOverload() {
8617     QualType ParamTy = S.Context.BoolTy;
8618     S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
8619                           /*IsAssignmentOperator=*/false,
8620                           /*NumContextualBoolArguments=*/1);
8621   }
8622   void addAmpAmpOrPipePipeOverload() {
8623     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8624     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8625                           /*IsAssignmentOperator=*/false,
8626                           /*NumContextualBoolArguments=*/2);
8627   }
8628 
8629   // C++ [over.built]p13:
8630   //
8631   //   For every cv-qualified or cv-unqualified object type T there
8632   //   exist candidate operator functions of the form
8633   //
8634   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
8635   //        T&         operator[](T*, ptrdiff_t);
8636   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
8637   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
8638   //        T&         operator[](ptrdiff_t, T*);
8639   void addSubscriptOverloads() {
8640     for (BuiltinCandidateTypeSet::iterator
8641               Ptr = CandidateTypes[0].pointer_begin(),
8642            PtrEnd = CandidateTypes[0].pointer_end();
8643          Ptr != PtrEnd; ++Ptr) {
8644       QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
8645       QualType PointeeType = (*Ptr)->getPointeeType();
8646       if (!PointeeType->isObjectType())
8647         continue;
8648 
8649       // T& operator[](T*, ptrdiff_t)
8650       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8651     }
8652 
8653     for (BuiltinCandidateTypeSet::iterator
8654               Ptr = CandidateTypes[1].pointer_begin(),
8655            PtrEnd = CandidateTypes[1].pointer_end();
8656          Ptr != PtrEnd; ++Ptr) {
8657       QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
8658       QualType PointeeType = (*Ptr)->getPointeeType();
8659       if (!PointeeType->isObjectType())
8660         continue;
8661 
8662       // T& operator[](ptrdiff_t, T*)
8663       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8664     }
8665   }
8666 
8667   // C++ [over.built]p11:
8668   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8669   //    C1 is the same type as C2 or is a derived class of C2, T is an object
8670   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8671   //    there exist candidate operator functions of the form
8672   //
8673   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8674   //
8675   //    where CV12 is the union of CV1 and CV2.
8676   void addArrowStarOverloads() {
8677     for (BuiltinCandidateTypeSet::iterator
8678              Ptr = CandidateTypes[0].pointer_begin(),
8679            PtrEnd = CandidateTypes[0].pointer_end();
8680          Ptr != PtrEnd; ++Ptr) {
8681       QualType C1Ty = (*Ptr);
8682       QualType C1;
8683       QualifierCollector Q1;
8684       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8685       if (!isa<RecordType>(C1))
8686         continue;
8687       // heuristic to reduce number of builtin candidates in the set.
8688       // Add volatile/restrict version only if there are conversions to a
8689       // volatile/restrict type.
8690       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8691         continue;
8692       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8693         continue;
8694       for (BuiltinCandidateTypeSet::iterator
8695                 MemPtr = CandidateTypes[1].member_pointer_begin(),
8696              MemPtrEnd = CandidateTypes[1].member_pointer_end();
8697            MemPtr != MemPtrEnd; ++MemPtr) {
8698         const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8699         QualType C2 = QualType(mptr->getClass(), 0);
8700         C2 = C2.getUnqualifiedType();
8701         if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
8702           break;
8703         QualType ParamTypes[2] = { *Ptr, *MemPtr };
8704         // build CV12 T&
8705         QualType T = mptr->getPointeeType();
8706         if (!VisibleTypeConversionsQuals.hasVolatile() &&
8707             T.isVolatileQualified())
8708           continue;
8709         if (!VisibleTypeConversionsQuals.hasRestrict() &&
8710             T.isRestrictQualified())
8711           continue;
8712         T = Q1.apply(S.Context, T);
8713         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8714       }
8715     }
8716   }
8717 
8718   // Note that we don't consider the first argument, since it has been
8719   // contextually converted to bool long ago. The candidates below are
8720   // therefore added as binary.
8721   //
8722   // C++ [over.built]p25:
8723   //   For every type T, where T is a pointer, pointer-to-member, or scoped
8724   //   enumeration type, there exist candidate operator functions of the form
8725   //
8726   //        T        operator?(bool, T, T);
8727   //
8728   void addConditionalOperatorOverloads() {
8729     /// Set of (canonical) types that we've already handled.
8730     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8731 
8732     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8733       for (BuiltinCandidateTypeSet::iterator
8734                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8735              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8736            Ptr != PtrEnd; ++Ptr) {
8737         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8738           continue;
8739 
8740         QualType ParamTypes[2] = { *Ptr, *Ptr };
8741         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8742       }
8743 
8744       for (BuiltinCandidateTypeSet::iterator
8745                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8746              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8747            MemPtr != MemPtrEnd; ++MemPtr) {
8748         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8749           continue;
8750 
8751         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8752         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8753       }
8754 
8755       if (S.getLangOpts().CPlusPlus11) {
8756         for (BuiltinCandidateTypeSet::iterator
8757                   Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8758                EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8759              Enum != EnumEnd; ++Enum) {
8760           if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
8761             continue;
8762 
8763           if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8764             continue;
8765 
8766           QualType ParamTypes[2] = { *Enum, *Enum };
8767           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8768         }
8769       }
8770     }
8771   }
8772 };
8773 
8774 } // end anonymous namespace
8775 
8776 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
8777 /// operator overloads to the candidate set (C++ [over.built]), based
8778 /// on the operator @p Op and the arguments given. For example, if the
8779 /// operator is a binary '+', this routine might add "int
8780 /// operator+(int, int)" to cover integer addition.
8781 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8782                                         SourceLocation OpLoc,
8783                                         ArrayRef<Expr *> Args,
8784                                         OverloadCandidateSet &CandidateSet) {
8785   // Find all of the types that the arguments can convert to, but only
8786   // if the operator we're looking at has built-in operator candidates
8787   // that make use of these types. Also record whether we encounter non-record
8788   // candidate types or either arithmetic or enumeral candidate types.
8789   Qualifiers VisibleTypeConversionsQuals;
8790   VisibleTypeConversionsQuals.addConst();
8791   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8792     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8793 
8794   bool HasNonRecordCandidateType = false;
8795   bool HasArithmeticOrEnumeralCandidateType = false;
8796   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8797   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8798     CandidateTypes.emplace_back(*this);
8799     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8800                                                  OpLoc,
8801                                                  true,
8802                                                  (Op == OO_Exclaim ||
8803                                                   Op == OO_AmpAmp ||
8804                                                   Op == OO_PipePipe),
8805                                                  VisibleTypeConversionsQuals);
8806     HasNonRecordCandidateType = HasNonRecordCandidateType ||
8807         CandidateTypes[ArgIdx].hasNonRecordTypes();
8808     HasArithmeticOrEnumeralCandidateType =
8809         HasArithmeticOrEnumeralCandidateType ||
8810         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8811   }
8812 
8813   // Exit early when no non-record types have been added to the candidate set
8814   // for any of the arguments to the operator.
8815   //
8816   // We can't exit early for !, ||, or &&, since there we have always have
8817   // 'bool' overloads.
8818   if (!HasNonRecordCandidateType &&
8819       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8820     return;
8821 
8822   // Setup an object to manage the common state for building overloads.
8823   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8824                                            VisibleTypeConversionsQuals,
8825                                            HasArithmeticOrEnumeralCandidateType,
8826                                            CandidateTypes, CandidateSet);
8827 
8828   // Dispatch over the operation to add in only those overloads which apply.
8829   switch (Op) {
8830   case OO_None:
8831   case NUM_OVERLOADED_OPERATORS:
8832     llvm_unreachable("Expected an overloaded operator");
8833 
8834   case OO_New:
8835   case OO_Delete:
8836   case OO_Array_New:
8837   case OO_Array_Delete:
8838   case OO_Call:
8839     llvm_unreachable(
8840                     "Special operators don't use AddBuiltinOperatorCandidates");
8841 
8842   case OO_Comma:
8843   case OO_Arrow:
8844   case OO_Coawait:
8845     // C++ [over.match.oper]p3:
8846     //   -- For the operator ',', the unary operator '&', the
8847     //      operator '->', or the operator 'co_await', the
8848     //      built-in candidates set is empty.
8849     break;
8850 
8851   case OO_Plus: // '+' is either unary or binary
8852     if (Args.size() == 1)
8853       OpBuilder.addUnaryPlusPointerOverloads();
8854     LLVM_FALLTHROUGH;
8855 
8856   case OO_Minus: // '-' is either unary or binary
8857     if (Args.size() == 1) {
8858       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
8859     } else {
8860       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
8861       OpBuilder.addGenericBinaryArithmeticOverloads();
8862     }
8863     break;
8864 
8865   case OO_Star: // '*' is either unary or binary
8866     if (Args.size() == 1)
8867       OpBuilder.addUnaryStarPointerOverloads();
8868     else
8869       OpBuilder.addGenericBinaryArithmeticOverloads();
8870     break;
8871 
8872   case OO_Slash:
8873     OpBuilder.addGenericBinaryArithmeticOverloads();
8874     break;
8875 
8876   case OO_PlusPlus:
8877   case OO_MinusMinus:
8878     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
8879     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
8880     break;
8881 
8882   case OO_EqualEqual:
8883   case OO_ExclaimEqual:
8884     OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
8885     LLVM_FALLTHROUGH;
8886 
8887   case OO_Less:
8888   case OO_Greater:
8889   case OO_LessEqual:
8890   case OO_GreaterEqual:
8891     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
8892     OpBuilder.addGenericBinaryArithmeticOverloads();
8893     break;
8894 
8895   case OO_Spaceship:
8896     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
8897     OpBuilder.addThreeWayArithmeticOverloads();
8898     break;
8899 
8900   case OO_Percent:
8901   case OO_Caret:
8902   case OO_Pipe:
8903   case OO_LessLess:
8904   case OO_GreaterGreater:
8905     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8906     break;
8907 
8908   case OO_Amp: // '&' is either unary or binary
8909     if (Args.size() == 1)
8910       // C++ [over.match.oper]p3:
8911       //   -- For the operator ',', the unary operator '&', or the
8912       //      operator '->', the built-in candidates set is empty.
8913       break;
8914 
8915     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8916     break;
8917 
8918   case OO_Tilde:
8919     OpBuilder.addUnaryTildePromotedIntegralOverloads();
8920     break;
8921 
8922   case OO_Equal:
8923     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
8924     LLVM_FALLTHROUGH;
8925 
8926   case OO_PlusEqual:
8927   case OO_MinusEqual:
8928     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
8929     LLVM_FALLTHROUGH;
8930 
8931   case OO_StarEqual:
8932   case OO_SlashEqual:
8933     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
8934     break;
8935 
8936   case OO_PercentEqual:
8937   case OO_LessLessEqual:
8938   case OO_GreaterGreaterEqual:
8939   case OO_AmpEqual:
8940   case OO_CaretEqual:
8941   case OO_PipeEqual:
8942     OpBuilder.addAssignmentIntegralOverloads();
8943     break;
8944 
8945   case OO_Exclaim:
8946     OpBuilder.addExclaimOverload();
8947     break;
8948 
8949   case OO_AmpAmp:
8950   case OO_PipePipe:
8951     OpBuilder.addAmpAmpOrPipePipeOverload();
8952     break;
8953 
8954   case OO_Subscript:
8955     OpBuilder.addSubscriptOverloads();
8956     break;
8957 
8958   case OO_ArrowStar:
8959     OpBuilder.addArrowStarOverloads();
8960     break;
8961 
8962   case OO_Conditional:
8963     OpBuilder.addConditionalOperatorOverloads();
8964     OpBuilder.addGenericBinaryArithmeticOverloads();
8965     break;
8966   }
8967 }
8968 
8969 /// Add function candidates found via argument-dependent lookup
8970 /// to the set of overloading candidates.
8971 ///
8972 /// This routine performs argument-dependent name lookup based on the
8973 /// given function name (which may also be an operator name) and adds
8974 /// all of the overload candidates found by ADL to the overload
8975 /// candidate set (C++ [basic.lookup.argdep]).
8976 void
8977 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
8978                                            SourceLocation Loc,
8979                                            ArrayRef<Expr *> Args,
8980                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
8981                                            OverloadCandidateSet& CandidateSet,
8982                                            bool PartialOverloading) {
8983   ADLResult Fns;
8984 
8985   // FIXME: This approach for uniquing ADL results (and removing
8986   // redundant candidates from the set) relies on pointer-equality,
8987   // which means we need to key off the canonical decl.  However,
8988   // always going back to the canonical decl might not get us the
8989   // right set of default arguments.  What default arguments are
8990   // we supposed to consider on ADL candidates, anyway?
8991 
8992   // FIXME: Pass in the explicit template arguments?
8993   ArgumentDependentLookup(Name, Loc, Args, Fns);
8994 
8995   // Erase all of the candidates we already knew about.
8996   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
8997                                    CandEnd = CandidateSet.end();
8998        Cand != CandEnd; ++Cand)
8999     if (Cand->Function) {
9000       Fns.erase(Cand->Function);
9001       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9002         Fns.erase(FunTmpl);
9003     }
9004 
9005   // For each of the ADL candidates we found, add it to the overload
9006   // set.
9007   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9008     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9009 
9010     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9011       if (ExplicitTemplateArgs)
9012         continue;
9013 
9014       AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet,
9015                            /*SupressUserConversions=*/false, PartialOverloading,
9016                            /*AllowExplicit*/ true,
9017                            /*AllowExplicitConversions*/ false,
9018                            ADLCallKind::UsesADL);
9019     } else {
9020       AddTemplateOverloadCandidate(
9021           cast<FunctionTemplateDecl>(*I), FoundDecl, ExplicitTemplateArgs, Args,
9022           CandidateSet,
9023           /*SuppressUserConversions=*/false, PartialOverloading,
9024           /*AllowExplicit*/true, ADLCallKind::UsesADL);
9025     }
9026   }
9027 }
9028 
9029 namespace {
9030 enum class Comparison { Equal, Better, Worse };
9031 }
9032 
9033 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9034 /// overload resolution.
9035 ///
9036 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9037 /// Cand1's first N enable_if attributes have precisely the same conditions as
9038 /// Cand2's first N enable_if attributes (where N = the number of enable_if
9039 /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9040 ///
9041 /// Note that you can have a pair of candidates such that Cand1's enable_if
9042 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9043 /// worse than Cand1's.
9044 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9045                                        const FunctionDecl *Cand2) {
9046   // Common case: One (or both) decls don't have enable_if attrs.
9047   bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9048   bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9049   if (!Cand1Attr || !Cand2Attr) {
9050     if (Cand1Attr == Cand2Attr)
9051       return Comparison::Equal;
9052     return Cand1Attr ? Comparison::Better : Comparison::Worse;
9053   }
9054 
9055   auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9056   auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9057 
9058   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9059   for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9060     Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9061     Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9062 
9063     // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9064     // has fewer enable_if attributes than Cand2, and vice versa.
9065     if (!Cand1A)
9066       return Comparison::Worse;
9067     if (!Cand2A)
9068       return Comparison::Better;
9069 
9070     Cand1ID.clear();
9071     Cand2ID.clear();
9072 
9073     (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9074     (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9075     if (Cand1ID != Cand2ID)
9076       return Comparison::Worse;
9077   }
9078 
9079   return Comparison::Equal;
9080 }
9081 
9082 static bool isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9083                                           const OverloadCandidate &Cand2) {
9084   if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9085       !Cand2.Function->isMultiVersion())
9086     return false;
9087 
9088   // If Cand1 is invalid, it cannot be a better match, if Cand2 is invalid, this
9089   // is obviously better.
9090   if (Cand1.Function->isInvalidDecl()) return false;
9091   if (Cand2.Function->isInvalidDecl()) return true;
9092 
9093   // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9094   // cpu_dispatch, else arbitrarily based on the identifiers.
9095   bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9096   bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9097   const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9098   const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9099 
9100   if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9101     return false;
9102 
9103   if (Cand1CPUDisp && !Cand2CPUDisp)
9104     return true;
9105   if (Cand2CPUDisp && !Cand1CPUDisp)
9106     return false;
9107 
9108   if (Cand1CPUSpec && Cand2CPUSpec) {
9109     if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9110       return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size();
9111 
9112     std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9113         FirstDiff = std::mismatch(
9114             Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9115             Cand2CPUSpec->cpus_begin(),
9116             [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9117               return LHS->getName() == RHS->getName();
9118             });
9119 
9120     assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
9121            "Two different cpu-specific versions should not have the same "
9122            "identifier list, otherwise they'd be the same decl!");
9123     return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName();
9124   }
9125   llvm_unreachable("No way to get here unless both had cpu_dispatch");
9126 }
9127 
9128 /// isBetterOverloadCandidate - Determines whether the first overload
9129 /// candidate is a better candidate than the second (C++ 13.3.3p1).
9130 bool clang::isBetterOverloadCandidate(
9131     Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9132     SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9133   // Define viable functions to be better candidates than non-viable
9134   // functions.
9135   if (!Cand2.Viable)
9136     return Cand1.Viable;
9137   else if (!Cand1.Viable)
9138     return false;
9139 
9140   // C++ [over.match.best]p1:
9141   //
9142   //   -- if F is a static member function, ICS1(F) is defined such
9143   //      that ICS1(F) is neither better nor worse than ICS1(G) for
9144   //      any function G, and, symmetrically, ICS1(G) is neither
9145   //      better nor worse than ICS1(F).
9146   unsigned StartArg = 0;
9147   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9148     StartArg = 1;
9149 
9150   auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9151     // We don't allow incompatible pointer conversions in C++.
9152     if (!S.getLangOpts().CPlusPlus)
9153       return ICS.isStandard() &&
9154              ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9155 
9156     // The only ill-formed conversion we allow in C++ is the string literal to
9157     // char* conversion, which is only considered ill-formed after C++11.
9158     return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9159            hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9160   };
9161 
9162   // Define functions that don't require ill-formed conversions for a given
9163   // argument to be better candidates than functions that do.
9164   unsigned NumArgs = Cand1.Conversions.size();
9165   assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
9166   bool HasBetterConversion = false;
9167   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9168     bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9169     bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9170     if (Cand1Bad != Cand2Bad) {
9171       if (Cand1Bad)
9172         return false;
9173       HasBetterConversion = true;
9174     }
9175   }
9176 
9177   if (HasBetterConversion)
9178     return true;
9179 
9180   // C++ [over.match.best]p1:
9181   //   A viable function F1 is defined to be a better function than another
9182   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
9183   //   conversion sequence than ICSi(F2), and then...
9184   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9185     switch (CompareImplicitConversionSequences(S, Loc,
9186                                                Cand1.Conversions[ArgIdx],
9187                                                Cand2.Conversions[ArgIdx])) {
9188     case ImplicitConversionSequence::Better:
9189       // Cand1 has a better conversion sequence.
9190       HasBetterConversion = true;
9191       break;
9192 
9193     case ImplicitConversionSequence::Worse:
9194       // Cand1 can't be better than Cand2.
9195       return false;
9196 
9197     case ImplicitConversionSequence::Indistinguishable:
9198       // Do nothing.
9199       break;
9200     }
9201   }
9202 
9203   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
9204   //       ICSj(F2), or, if not that,
9205   if (HasBetterConversion)
9206     return true;
9207 
9208   //   -- the context is an initialization by user-defined conversion
9209   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
9210   //      from the return type of F1 to the destination type (i.e.,
9211   //      the type of the entity being initialized) is a better
9212   //      conversion sequence than the standard conversion sequence
9213   //      from the return type of F2 to the destination type.
9214   if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9215       Cand1.Function && Cand2.Function &&
9216       isa<CXXConversionDecl>(Cand1.Function) &&
9217       isa<CXXConversionDecl>(Cand2.Function)) {
9218     // First check whether we prefer one of the conversion functions over the
9219     // other. This only distinguishes the results in non-standard, extension
9220     // cases such as the conversion from a lambda closure type to a function
9221     // pointer or block.
9222     ImplicitConversionSequence::CompareKind Result =
9223         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9224     if (Result == ImplicitConversionSequence::Indistinguishable)
9225       Result = CompareStandardConversionSequences(S, Loc,
9226                                                   Cand1.FinalConversion,
9227                                                   Cand2.FinalConversion);
9228 
9229     if (Result != ImplicitConversionSequence::Indistinguishable)
9230       return Result == ImplicitConversionSequence::Better;
9231 
9232     // FIXME: Compare kind of reference binding if conversion functions
9233     // convert to a reference type used in direct reference binding, per
9234     // C++14 [over.match.best]p1 section 2 bullet 3.
9235   }
9236 
9237   // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9238   // as combined with the resolution to CWG issue 243.
9239   //
9240   // When the context is initialization by constructor ([over.match.ctor] or
9241   // either phase of [over.match.list]), a constructor is preferred over
9242   // a conversion function.
9243   if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9244       Cand1.Function && Cand2.Function &&
9245       isa<CXXConstructorDecl>(Cand1.Function) !=
9246           isa<CXXConstructorDecl>(Cand2.Function))
9247     return isa<CXXConstructorDecl>(Cand1.Function);
9248 
9249   //    -- F1 is a non-template function and F2 is a function template
9250   //       specialization, or, if not that,
9251   bool Cand1IsSpecialization = Cand1.Function &&
9252                                Cand1.Function->getPrimaryTemplate();
9253   bool Cand2IsSpecialization = Cand2.Function &&
9254                                Cand2.Function->getPrimaryTemplate();
9255   if (Cand1IsSpecialization != Cand2IsSpecialization)
9256     return Cand2IsSpecialization;
9257 
9258   //   -- F1 and F2 are function template specializations, and the function
9259   //      template for F1 is more specialized than the template for F2
9260   //      according to the partial ordering rules described in 14.5.5.2, or,
9261   //      if not that,
9262   if (Cand1IsSpecialization && Cand2IsSpecialization) {
9263     if (FunctionTemplateDecl *BetterTemplate
9264           = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
9265                                          Cand2.Function->getPrimaryTemplate(),
9266                                          Loc,
9267                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
9268                                                              : TPOC_Call,
9269                                          Cand1.ExplicitCallArguments,
9270                                          Cand2.ExplicitCallArguments))
9271       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9272   }
9273 
9274   // FIXME: Work around a defect in the C++17 inheriting constructor wording.
9275   // A derived-class constructor beats an (inherited) base class constructor.
9276   bool Cand1IsInherited =
9277       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9278   bool Cand2IsInherited =
9279       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9280   if (Cand1IsInherited != Cand2IsInherited)
9281     return Cand2IsInherited;
9282   else if (Cand1IsInherited) {
9283     assert(Cand2IsInherited);
9284     auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9285     auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9286     if (Cand1Class->isDerivedFrom(Cand2Class))
9287       return true;
9288     if (Cand2Class->isDerivedFrom(Cand1Class))
9289       return false;
9290     // Inherited from sibling base classes: still ambiguous.
9291   }
9292 
9293   // Check C++17 tie-breakers for deduction guides.
9294   {
9295     auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9296     auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9297     if (Guide1 && Guide2) {
9298       //  -- F1 is generated from a deduction-guide and F2 is not
9299       if (Guide1->isImplicit() != Guide2->isImplicit())
9300         return Guide2->isImplicit();
9301 
9302       //  -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9303       if (Guide1->isCopyDeductionCandidate())
9304         return true;
9305     }
9306   }
9307 
9308   // Check for enable_if value-based overload resolution.
9309   if (Cand1.Function && Cand2.Function) {
9310     Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9311     if (Cmp != Comparison::Equal)
9312       return Cmp == Comparison::Better;
9313   }
9314 
9315   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9316     FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9317     return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9318            S.IdentifyCUDAPreference(Caller, Cand2.Function);
9319   }
9320 
9321   bool HasPS1 = Cand1.Function != nullptr &&
9322                 functionHasPassObjectSizeParams(Cand1.Function);
9323   bool HasPS2 = Cand2.Function != nullptr &&
9324                 functionHasPassObjectSizeParams(Cand2.Function);
9325   if (HasPS1 != HasPS2 && HasPS1)
9326     return true;
9327 
9328   return isBetterMultiversionCandidate(Cand1, Cand2);
9329 }
9330 
9331 /// Determine whether two declarations are "equivalent" for the purposes of
9332 /// name lookup and overload resolution. This applies when the same internal/no
9333 /// linkage entity is defined by two modules (probably by textually including
9334 /// the same header). In such a case, we don't consider the declarations to
9335 /// declare the same entity, but we also don't want lookups with both
9336 /// declarations visible to be ambiguous in some cases (this happens when using
9337 /// a modularized libstdc++).
9338 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9339                                                   const NamedDecl *B) {
9340   auto *VA = dyn_cast_or_null<ValueDecl>(A);
9341   auto *VB = dyn_cast_or_null<ValueDecl>(B);
9342   if (!VA || !VB)
9343     return false;
9344 
9345   // The declarations must be declaring the same name as an internal linkage
9346   // entity in different modules.
9347   if (!VA->getDeclContext()->getRedeclContext()->Equals(
9348           VB->getDeclContext()->getRedeclContext()) ||
9349       getOwningModule(const_cast<ValueDecl *>(VA)) ==
9350           getOwningModule(const_cast<ValueDecl *>(VB)) ||
9351       VA->isExternallyVisible() || VB->isExternallyVisible())
9352     return false;
9353 
9354   // Check that the declarations appear to be equivalent.
9355   //
9356   // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9357   // For constants and functions, we should check the initializer or body is
9358   // the same. For non-constant variables, we shouldn't allow it at all.
9359   if (Context.hasSameType(VA->getType(), VB->getType()))
9360     return true;
9361 
9362   // Enum constants within unnamed enumerations will have different types, but
9363   // may still be similar enough to be interchangeable for our purposes.
9364   if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9365     if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9366       // Only handle anonymous enums. If the enumerations were named and
9367       // equivalent, they would have been merged to the same type.
9368       auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9369       auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9370       if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9371           !Context.hasSameType(EnumA->getIntegerType(),
9372                                EnumB->getIntegerType()))
9373         return false;
9374       // Allow this only if the value is the same for both enumerators.
9375       return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9376     }
9377   }
9378 
9379   // Nothing else is sufficiently similar.
9380   return false;
9381 }
9382 
9383 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9384     SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9385   Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9386 
9387   Module *M = getOwningModule(const_cast<NamedDecl*>(D));
9388   Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9389       << !M << (M ? M->getFullModuleName() : "");
9390 
9391   for (auto *E : Equiv) {
9392     Module *M = getOwningModule(const_cast<NamedDecl*>(E));
9393     Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9394         << !M << (M ? M->getFullModuleName() : "");
9395   }
9396 }
9397 
9398 /// Computes the best viable function (C++ 13.3.3)
9399 /// within an overload candidate set.
9400 ///
9401 /// \param Loc The location of the function name (or operator symbol) for
9402 /// which overload resolution occurs.
9403 ///
9404 /// \param Best If overload resolution was successful or found a deleted
9405 /// function, \p Best points to the candidate function found.
9406 ///
9407 /// \returns The result of overload resolution.
9408 OverloadingResult
9409 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9410                                          iterator &Best) {
9411   llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9412   std::transform(begin(), end(), std::back_inserter(Candidates),
9413                  [](OverloadCandidate &Cand) { return &Cand; });
9414 
9415   // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9416   // are accepted by both clang and NVCC. However, during a particular
9417   // compilation mode only one call variant is viable. We need to
9418   // exclude non-viable overload candidates from consideration based
9419   // only on their host/device attributes. Specifically, if one
9420   // candidate call is WrongSide and the other is SameSide, we ignore
9421   // the WrongSide candidate.
9422   if (S.getLangOpts().CUDA) {
9423     const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9424     bool ContainsSameSideCandidate =
9425         llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9426           return Cand->Function &&
9427                  S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9428                      Sema::CFP_SameSide;
9429         });
9430     if (ContainsSameSideCandidate) {
9431       auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9432         return Cand->Function &&
9433                S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9434                    Sema::CFP_WrongSide;
9435       };
9436       llvm::erase_if(Candidates, IsWrongSideCandidate);
9437     }
9438   }
9439 
9440   // Find the best viable function.
9441   Best = end();
9442   for (auto *Cand : Candidates)
9443     if (Cand->Viable)
9444       if (Best == end() ||
9445           isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
9446         Best = Cand;
9447 
9448   // If we didn't find any viable functions, abort.
9449   if (Best == end())
9450     return OR_No_Viable_Function;
9451 
9452   llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
9453 
9454   // Make sure that this function is better than every other viable
9455   // function. If not, we have an ambiguity.
9456   for (auto *Cand : Candidates) {
9457     if (Cand->Viable && Cand != Best &&
9458         !isBetterOverloadCandidate(S, *Best, *Cand, Loc, Kind)) {
9459       if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
9460                                                    Cand->Function)) {
9461         EquivalentCands.push_back(Cand->Function);
9462         continue;
9463       }
9464 
9465       Best = end();
9466       return OR_Ambiguous;
9467     }
9468   }
9469 
9470   // Best is the best viable function.
9471   if (Best->Function && Best->Function->isDeleted())
9472     return OR_Deleted;
9473 
9474   if (!EquivalentCands.empty())
9475     S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
9476                                                     EquivalentCands);
9477 
9478   return OR_Success;
9479 }
9480 
9481 namespace {
9482 
9483 enum OverloadCandidateKind {
9484   oc_function,
9485   oc_method,
9486   oc_constructor,
9487   oc_implicit_default_constructor,
9488   oc_implicit_copy_constructor,
9489   oc_implicit_move_constructor,
9490   oc_implicit_copy_assignment,
9491   oc_implicit_move_assignment,
9492   oc_inherited_constructor
9493 };
9494 
9495 enum OverloadCandidateSelect {
9496   ocs_non_template,
9497   ocs_template,
9498   ocs_described_template,
9499 };
9500 
9501 static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
9502 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
9503                           std::string &Description) {
9504 
9505   bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
9506   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
9507     isTemplate = true;
9508     Description = S.getTemplateArgumentBindingsText(
9509         FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
9510   }
9511 
9512   OverloadCandidateSelect Select = [&]() {
9513     if (!Description.empty())
9514       return ocs_described_template;
9515     return isTemplate ? ocs_template : ocs_non_template;
9516   }();
9517 
9518   OverloadCandidateKind Kind = [&]() {
9519     if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
9520       if (!Ctor->isImplicit()) {
9521         if (isa<ConstructorUsingShadowDecl>(Found))
9522           return oc_inherited_constructor;
9523         else
9524           return oc_constructor;
9525       }
9526 
9527       if (Ctor->isDefaultConstructor())
9528         return oc_implicit_default_constructor;
9529 
9530       if (Ctor->isMoveConstructor())
9531         return oc_implicit_move_constructor;
9532 
9533       assert(Ctor->isCopyConstructor() &&
9534              "unexpected sort of implicit constructor");
9535       return oc_implicit_copy_constructor;
9536     }
9537 
9538     if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
9539       // This actually gets spelled 'candidate function' for now, but
9540       // it doesn't hurt to split it out.
9541       if (!Meth->isImplicit())
9542         return oc_method;
9543 
9544       if (Meth->isMoveAssignmentOperator())
9545         return oc_implicit_move_assignment;
9546 
9547       if (Meth->isCopyAssignmentOperator())
9548         return oc_implicit_copy_assignment;
9549 
9550       assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
9551       return oc_method;
9552     }
9553 
9554     return oc_function;
9555   }();
9556 
9557   return std::make_pair(Kind, Select);
9558 }
9559 
9560 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
9561   // FIXME: It'd be nice to only emit a note once per using-decl per overload
9562   // set.
9563   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
9564     S.Diag(FoundDecl->getLocation(),
9565            diag::note_ovl_candidate_inherited_constructor)
9566       << Shadow->getNominatedBaseClass();
9567 }
9568 
9569 } // end anonymous namespace
9570 
9571 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
9572                                     const FunctionDecl *FD) {
9573   for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
9574     bool AlwaysTrue;
9575     if (EnableIf->getCond()->isValueDependent() ||
9576         !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
9577       return false;
9578     if (!AlwaysTrue)
9579       return false;
9580   }
9581   return true;
9582 }
9583 
9584 /// Returns true if we can take the address of the function.
9585 ///
9586 /// \param Complain - If true, we'll emit a diagnostic
9587 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
9588 ///   we in overload resolution?
9589 /// \param Loc - The location of the statement we're complaining about. Ignored
9590 ///   if we're not complaining, or if we're in overload resolution.
9591 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
9592                                               bool Complain,
9593                                               bool InOverloadResolution,
9594                                               SourceLocation Loc) {
9595   if (!isFunctionAlwaysEnabled(S.Context, FD)) {
9596     if (Complain) {
9597       if (InOverloadResolution)
9598         S.Diag(FD->getBeginLoc(),
9599                diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
9600       else
9601         S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
9602     }
9603     return false;
9604   }
9605 
9606   auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
9607     return P->hasAttr<PassObjectSizeAttr>();
9608   });
9609   if (I == FD->param_end())
9610     return true;
9611 
9612   if (Complain) {
9613     // Add one to ParamNo because it's user-facing
9614     unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
9615     if (InOverloadResolution)
9616       S.Diag(FD->getLocation(),
9617              diag::note_ovl_candidate_has_pass_object_size_params)
9618           << ParamNo;
9619     else
9620       S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
9621           << FD << ParamNo;
9622   }
9623   return false;
9624 }
9625 
9626 static bool checkAddressOfCandidateIsAvailable(Sema &S,
9627                                                const FunctionDecl *FD) {
9628   return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
9629                                            /*InOverloadResolution=*/true,
9630                                            /*Loc=*/SourceLocation());
9631 }
9632 
9633 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
9634                                              bool Complain,
9635                                              SourceLocation Loc) {
9636   return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
9637                                              /*InOverloadResolution=*/false,
9638                                              Loc);
9639 }
9640 
9641 // Notes the location of an overload candidate.
9642 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
9643                                  QualType DestType, bool TakingAddress) {
9644   if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
9645     return;
9646   if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
9647       !Fn->getAttr<TargetAttr>()->isDefaultVersion())
9648     return;
9649 
9650   std::string FnDesc;
9651   std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
9652       ClassifyOverloadCandidate(*this, Found, Fn, FnDesc);
9653   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
9654                          << (unsigned)KSPair.first << (unsigned)KSPair.second
9655                          << Fn << FnDesc;
9656 
9657   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
9658   Diag(Fn->getLocation(), PD);
9659   MaybeEmitInheritedConstructorNote(*this, Found);
9660 }
9661 
9662 // Notes the location of all overload candidates designated through
9663 // OverloadedExpr
9664 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
9665                                      bool TakingAddress) {
9666   assert(OverloadedExpr->getType() == Context.OverloadTy);
9667 
9668   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
9669   OverloadExpr *OvlExpr = Ovl.Expression;
9670 
9671   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9672                             IEnd = OvlExpr->decls_end();
9673        I != IEnd; ++I) {
9674     if (FunctionTemplateDecl *FunTmpl =
9675                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
9676       NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), DestType,
9677                             TakingAddress);
9678     } else if (FunctionDecl *Fun
9679                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
9680       NoteOverloadCandidate(*I, Fun, DestType, TakingAddress);
9681     }
9682   }
9683 }
9684 
9685 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
9686 /// "lead" diagnostic; it will be given two arguments, the source and
9687 /// target types of the conversion.
9688 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
9689                                  Sema &S,
9690                                  SourceLocation CaretLoc,
9691                                  const PartialDiagnostic &PDiag) const {
9692   S.Diag(CaretLoc, PDiag)
9693     << Ambiguous.getFromType() << Ambiguous.getToType();
9694   // FIXME: The note limiting machinery is borrowed from
9695   // OverloadCandidateSet::NoteCandidates; there's an opportunity for
9696   // refactoring here.
9697   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9698   unsigned CandsShown = 0;
9699   AmbiguousConversionSequence::const_iterator I, E;
9700   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
9701     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9702       break;
9703     ++CandsShown;
9704     S.NoteOverloadCandidate(I->first, I->second);
9705   }
9706   if (I != E)
9707     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
9708 }
9709 
9710 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
9711                                   unsigned I, bool TakingCandidateAddress) {
9712   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
9713   assert(Conv.isBad());
9714   assert(Cand->Function && "for now, candidate must be a function");
9715   FunctionDecl *Fn = Cand->Function;
9716 
9717   // There's a conversion slot for the object argument if this is a
9718   // non-constructor method.  Note that 'I' corresponds the
9719   // conversion-slot index.
9720   bool isObjectArgument = false;
9721   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
9722     if (I == 0)
9723       isObjectArgument = true;
9724     else
9725       I--;
9726   }
9727 
9728   std::string FnDesc;
9729   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
9730       ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
9731 
9732   Expr *FromExpr = Conv.Bad.FromExpr;
9733   QualType FromTy = Conv.Bad.getFromType();
9734   QualType ToTy = Conv.Bad.getToType();
9735 
9736   if (FromTy == S.Context.OverloadTy) {
9737     assert(FromExpr && "overload set argument came from implicit argument?");
9738     Expr *E = FromExpr->IgnoreParens();
9739     if (isa<UnaryOperator>(E))
9740       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
9741     DeclarationName Name = cast<OverloadExpr>(E)->getName();
9742 
9743     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
9744         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9745         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
9746         << Name << I + 1;
9747     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9748     return;
9749   }
9750 
9751   // Do some hand-waving analysis to see if the non-viability is due
9752   // to a qualifier mismatch.
9753   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
9754   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
9755   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
9756     CToTy = RT->getPointeeType();
9757   else {
9758     // TODO: detect and diagnose the full richness of const mismatches.
9759     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
9760       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
9761         CFromTy = FromPT->getPointeeType();
9762         CToTy = ToPT->getPointeeType();
9763       }
9764   }
9765 
9766   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
9767       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
9768     Qualifiers FromQs = CFromTy.getQualifiers();
9769     Qualifiers ToQs = CToTy.getQualifiers();
9770 
9771     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
9772       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
9773           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9774           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9775           << ToTy << (unsigned)isObjectArgument << I + 1;
9776       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9777       return;
9778     }
9779 
9780     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9781       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
9782           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9783           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9784           << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
9785           << (unsigned)isObjectArgument << I + 1;
9786       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9787       return;
9788     }
9789 
9790     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
9791       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
9792           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9793           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9794           << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
9795           << (unsigned)isObjectArgument << I + 1;
9796       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9797       return;
9798     }
9799 
9800     if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
9801       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
9802           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9803           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9804           << FromQs.hasUnaligned() << I + 1;
9805       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9806       return;
9807     }
9808 
9809     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
9810     assert(CVR && "unexpected qualifiers mismatch");
9811 
9812     if (isObjectArgument) {
9813       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
9814           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9815           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9816           << (CVR - 1);
9817     } else {
9818       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
9819           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9820           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9821           << (CVR - 1) << I + 1;
9822     }
9823     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9824     return;
9825   }
9826 
9827   // Special diagnostic for failure to convert an initializer list, since
9828   // telling the user that it has type void is not useful.
9829   if (FromExpr && isa<InitListExpr>(FromExpr)) {
9830     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
9831         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9832         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9833         << ToTy << (unsigned)isObjectArgument << I + 1;
9834     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9835     return;
9836   }
9837 
9838   // Diagnose references or pointers to incomplete types differently,
9839   // since it's far from impossible that the incompleteness triggered
9840   // the failure.
9841   QualType TempFromTy = FromTy.getNonReferenceType();
9842   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
9843     TempFromTy = PTy->getPointeeType();
9844   if (TempFromTy->isIncompleteType()) {
9845     // Emit the generic diagnostic and, optionally, add the hints to it.
9846     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
9847         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9848         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9849         << ToTy << (unsigned)isObjectArgument << I + 1
9850         << (unsigned)(Cand->Fix.Kind);
9851 
9852     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9853     return;
9854   }
9855 
9856   // Diagnose base -> derived pointer conversions.
9857   unsigned BaseToDerivedConversion = 0;
9858   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
9859     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
9860       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9861                                                FromPtrTy->getPointeeType()) &&
9862           !FromPtrTy->getPointeeType()->isIncompleteType() &&
9863           !ToPtrTy->getPointeeType()->isIncompleteType() &&
9864           S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
9865                           FromPtrTy->getPointeeType()))
9866         BaseToDerivedConversion = 1;
9867     }
9868   } else if (const ObjCObjectPointerType *FromPtrTy
9869                                     = FromTy->getAs<ObjCObjectPointerType>()) {
9870     if (const ObjCObjectPointerType *ToPtrTy
9871                                         = ToTy->getAs<ObjCObjectPointerType>())
9872       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
9873         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
9874           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9875                                                 FromPtrTy->getPointeeType()) &&
9876               FromIface->isSuperClassOf(ToIface))
9877             BaseToDerivedConversion = 2;
9878   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
9879     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
9880         !FromTy->isIncompleteType() &&
9881         !ToRefTy->getPointeeType()->isIncompleteType() &&
9882         S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
9883       BaseToDerivedConversion = 3;
9884     } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
9885                ToTy.getNonReferenceType().getCanonicalType() ==
9886                FromTy.getNonReferenceType().getCanonicalType()) {
9887       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
9888           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9889           << (unsigned)isObjectArgument << I + 1
9890           << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
9891       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9892       return;
9893     }
9894   }
9895 
9896   if (BaseToDerivedConversion) {
9897     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
9898         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9899         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9900         << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
9901     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9902     return;
9903   }
9904 
9905   if (isa<ObjCObjectPointerType>(CFromTy) &&
9906       isa<PointerType>(CToTy)) {
9907       Qualifiers FromQs = CFromTy.getQualifiers();
9908       Qualifiers ToQs = CToTy.getQualifiers();
9909       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9910         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
9911             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
9912             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9913             << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
9914         MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9915         return;
9916       }
9917   }
9918 
9919   if (TakingCandidateAddress &&
9920       !checkAddressOfCandidateIsAvailable(S, Cand->Function))
9921     return;
9922 
9923   // Emit the generic diagnostic and, optionally, add the hints to it.
9924   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
9925   FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9926         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9927         << ToTy << (unsigned)isObjectArgument << I + 1
9928         << (unsigned)(Cand->Fix.Kind);
9929 
9930   // If we can fix the conversion, suggest the FixIts.
9931   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
9932        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
9933     FDiag << *HI;
9934   S.Diag(Fn->getLocation(), FDiag);
9935 
9936   MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9937 }
9938 
9939 /// Additional arity mismatch diagnosis specific to a function overload
9940 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
9941 /// over a candidate in any candidate set.
9942 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
9943                                unsigned NumArgs) {
9944   FunctionDecl *Fn = Cand->Function;
9945   unsigned MinParams = Fn->getMinRequiredArguments();
9946 
9947   // With invalid overloaded operators, it's possible that we think we
9948   // have an arity mismatch when in fact it looks like we have the
9949   // right number of arguments, because only overloaded operators have
9950   // the weird behavior of overloading member and non-member functions.
9951   // Just don't report anything.
9952   if (Fn->isInvalidDecl() &&
9953       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
9954     return true;
9955 
9956   if (NumArgs < MinParams) {
9957     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
9958            (Cand->FailureKind == ovl_fail_bad_deduction &&
9959             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
9960   } else {
9961     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
9962            (Cand->FailureKind == ovl_fail_bad_deduction &&
9963             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
9964   }
9965 
9966   return false;
9967 }
9968 
9969 /// General arity mismatch diagnosis over a candidate in a candidate set.
9970 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
9971                                   unsigned NumFormalArgs) {
9972   assert(isa<FunctionDecl>(D) &&
9973       "The templated declaration should at least be a function"
9974       " when diagnosing bad template argument deduction due to too many"
9975       " or too few arguments");
9976 
9977   FunctionDecl *Fn = cast<FunctionDecl>(D);
9978 
9979   // TODO: treat calls to a missing default constructor as a special case
9980   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
9981   unsigned MinParams = Fn->getMinRequiredArguments();
9982 
9983   // at least / at most / exactly
9984   unsigned mode, modeCount;
9985   if (NumFormalArgs < MinParams) {
9986     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
9987         FnTy->isTemplateVariadic())
9988       mode = 0; // "at least"
9989     else
9990       mode = 2; // "exactly"
9991     modeCount = MinParams;
9992   } else {
9993     if (MinParams != FnTy->getNumParams())
9994       mode = 1; // "at most"
9995     else
9996       mode = 2; // "exactly"
9997     modeCount = FnTy->getNumParams();
9998   }
9999 
10000   std::string Description;
10001   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10002       ClassifyOverloadCandidate(S, Found, Fn, Description);
10003 
10004   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10005     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10006         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10007         << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
10008   else
10009     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10010         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10011         << Description << mode << modeCount << NumFormalArgs;
10012 
10013   MaybeEmitInheritedConstructorNote(S, Found);
10014 }
10015 
10016 /// Arity mismatch diagnosis specific to a function overload candidate.
10017 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10018                                   unsigned NumFormalArgs) {
10019   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10020     DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10021 }
10022 
10023 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10024   if (TemplateDecl *TD = Templated->getDescribedTemplate())
10025     return TD;
10026   llvm_unreachable("Unsupported: Getting the described template declaration"
10027                    " for bad deduction diagnosis");
10028 }
10029 
10030 /// Diagnose a failed template-argument deduction.
10031 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10032                                  DeductionFailureInfo &DeductionFailure,
10033                                  unsigned NumArgs,
10034                                  bool TakingCandidateAddress) {
10035   TemplateParameter Param = DeductionFailure.getTemplateParameter();
10036   NamedDecl *ParamD;
10037   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10038   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10039   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10040   switch (DeductionFailure.Result) {
10041   case Sema::TDK_Success:
10042     llvm_unreachable("TDK_success while diagnosing bad deduction");
10043 
10044   case Sema::TDK_Incomplete: {
10045     assert(ParamD && "no parameter found for incomplete deduction result");
10046     S.Diag(Templated->getLocation(),
10047            diag::note_ovl_candidate_incomplete_deduction)
10048         << ParamD->getDeclName();
10049     MaybeEmitInheritedConstructorNote(S, Found);
10050     return;
10051   }
10052 
10053   case Sema::TDK_IncompletePack: {
10054     assert(ParamD && "no parameter found for incomplete deduction result");
10055     S.Diag(Templated->getLocation(),
10056            diag::note_ovl_candidate_incomplete_deduction_pack)
10057         << ParamD->getDeclName()
10058         << (DeductionFailure.getFirstArg()->pack_size() + 1)
10059         << *DeductionFailure.getFirstArg();
10060     MaybeEmitInheritedConstructorNote(S, Found);
10061     return;
10062   }
10063 
10064   case Sema::TDK_Underqualified: {
10065     assert(ParamD && "no parameter found for bad qualifiers deduction result");
10066     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10067 
10068     QualType Param = DeductionFailure.getFirstArg()->getAsType();
10069 
10070     // Param will have been canonicalized, but it should just be a
10071     // qualified version of ParamD, so move the qualifiers to that.
10072     QualifierCollector Qs;
10073     Qs.strip(Param);
10074     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10075     assert(S.Context.hasSameType(Param, NonCanonParam));
10076 
10077     // Arg has also been canonicalized, but there's nothing we can do
10078     // about that.  It also doesn't matter as much, because it won't
10079     // have any template parameters in it (because deduction isn't
10080     // done on dependent types).
10081     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10082 
10083     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10084         << ParamD->getDeclName() << Arg << NonCanonParam;
10085     MaybeEmitInheritedConstructorNote(S, Found);
10086     return;
10087   }
10088 
10089   case Sema::TDK_Inconsistent: {
10090     assert(ParamD && "no parameter found for inconsistent deduction result");
10091     int which = 0;
10092     if (isa<TemplateTypeParmDecl>(ParamD))
10093       which = 0;
10094     else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10095       // Deduction might have failed because we deduced arguments of two
10096       // different types for a non-type template parameter.
10097       // FIXME: Use a different TDK value for this.
10098       QualType T1 =
10099           DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10100       QualType T2 =
10101           DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10102       if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10103         S.Diag(Templated->getLocation(),
10104                diag::note_ovl_candidate_inconsistent_deduction_types)
10105           << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10106           << *DeductionFailure.getSecondArg() << T2;
10107         MaybeEmitInheritedConstructorNote(S, Found);
10108         return;
10109       }
10110 
10111       which = 1;
10112     } else {
10113       which = 2;
10114     }
10115 
10116     S.Diag(Templated->getLocation(),
10117            diag::note_ovl_candidate_inconsistent_deduction)
10118         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10119         << *DeductionFailure.getSecondArg();
10120     MaybeEmitInheritedConstructorNote(S, Found);
10121     return;
10122   }
10123 
10124   case Sema::TDK_InvalidExplicitArguments:
10125     assert(ParamD && "no parameter found for invalid explicit arguments");
10126     if (ParamD->getDeclName())
10127       S.Diag(Templated->getLocation(),
10128              diag::note_ovl_candidate_explicit_arg_mismatch_named)
10129           << ParamD->getDeclName();
10130     else {
10131       int index = 0;
10132       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10133         index = TTP->getIndex();
10134       else if (NonTypeTemplateParmDecl *NTTP
10135                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10136         index = NTTP->getIndex();
10137       else
10138         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10139       S.Diag(Templated->getLocation(),
10140              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10141           << (index + 1);
10142     }
10143     MaybeEmitInheritedConstructorNote(S, Found);
10144     return;
10145 
10146   case Sema::TDK_TooManyArguments:
10147   case Sema::TDK_TooFewArguments:
10148     DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10149     return;
10150 
10151   case Sema::TDK_InstantiationDepth:
10152     S.Diag(Templated->getLocation(),
10153            diag::note_ovl_candidate_instantiation_depth);
10154     MaybeEmitInheritedConstructorNote(S, Found);
10155     return;
10156 
10157   case Sema::TDK_SubstitutionFailure: {
10158     // Format the template argument list into the argument string.
10159     SmallString<128> TemplateArgString;
10160     if (TemplateArgumentList *Args =
10161             DeductionFailure.getTemplateArgumentList()) {
10162       TemplateArgString = " ";
10163       TemplateArgString += S.getTemplateArgumentBindingsText(
10164           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10165     }
10166 
10167     // If this candidate was disabled by enable_if, say so.
10168     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10169     if (PDiag && PDiag->second.getDiagID() ==
10170           diag::err_typename_nested_not_found_enable_if) {
10171       // FIXME: Use the source range of the condition, and the fully-qualified
10172       //        name of the enable_if template. These are both present in PDiag.
10173       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10174         << "'enable_if'" << TemplateArgString;
10175       return;
10176     }
10177 
10178     // We found a specific requirement that disabled the enable_if.
10179     if (PDiag && PDiag->second.getDiagID() ==
10180         diag::err_typename_nested_not_found_requirement) {
10181       S.Diag(Templated->getLocation(),
10182              diag::note_ovl_candidate_disabled_by_requirement)
10183         << PDiag->second.getStringArg(0) << TemplateArgString;
10184       return;
10185     }
10186 
10187     // Format the SFINAE diagnostic into the argument string.
10188     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10189     //        formatted message in another diagnostic.
10190     SmallString<128> SFINAEArgString;
10191     SourceRange R;
10192     if (PDiag) {
10193       SFINAEArgString = ": ";
10194       R = SourceRange(PDiag->first, PDiag->first);
10195       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10196     }
10197 
10198     S.Diag(Templated->getLocation(),
10199            diag::note_ovl_candidate_substitution_failure)
10200         << TemplateArgString << SFINAEArgString << R;
10201     MaybeEmitInheritedConstructorNote(S, Found);
10202     return;
10203   }
10204 
10205   case Sema::TDK_DeducedMismatch:
10206   case Sema::TDK_DeducedMismatchNested: {
10207     // Format the template argument list into the argument string.
10208     SmallString<128> TemplateArgString;
10209     if (TemplateArgumentList *Args =
10210             DeductionFailure.getTemplateArgumentList()) {
10211       TemplateArgString = " ";
10212       TemplateArgString += S.getTemplateArgumentBindingsText(
10213           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10214     }
10215 
10216     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10217         << (*DeductionFailure.getCallArgIndex() + 1)
10218         << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
10219         << TemplateArgString
10220         << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
10221     break;
10222   }
10223 
10224   case Sema::TDK_NonDeducedMismatch: {
10225     // FIXME: Provide a source location to indicate what we couldn't match.
10226     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
10227     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
10228     if (FirstTA.getKind() == TemplateArgument::Template &&
10229         SecondTA.getKind() == TemplateArgument::Template) {
10230       TemplateName FirstTN = FirstTA.getAsTemplate();
10231       TemplateName SecondTN = SecondTA.getAsTemplate();
10232       if (FirstTN.getKind() == TemplateName::Template &&
10233           SecondTN.getKind() == TemplateName::Template) {
10234         if (FirstTN.getAsTemplateDecl()->getName() ==
10235             SecondTN.getAsTemplateDecl()->getName()) {
10236           // FIXME: This fixes a bad diagnostic where both templates are named
10237           // the same.  This particular case is a bit difficult since:
10238           // 1) It is passed as a string to the diagnostic printer.
10239           // 2) The diagnostic printer only attempts to find a better
10240           //    name for types, not decls.
10241           // Ideally, this should folded into the diagnostic printer.
10242           S.Diag(Templated->getLocation(),
10243                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10244               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10245           return;
10246         }
10247       }
10248     }
10249 
10250     if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10251         !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10252       return;
10253 
10254     // FIXME: For generic lambda parameters, check if the function is a lambda
10255     // call operator, and if so, emit a prettier and more informative
10256     // diagnostic that mentions 'auto' and lambda in addition to
10257     // (or instead of?) the canonical template type parameters.
10258     S.Diag(Templated->getLocation(),
10259            diag::note_ovl_candidate_non_deduced_mismatch)
10260         << FirstTA << SecondTA;
10261     return;
10262   }
10263   // TODO: diagnose these individually, then kill off
10264   // note_ovl_candidate_bad_deduction, which is uselessly vague.
10265   case Sema::TDK_MiscellaneousDeductionFailure:
10266     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10267     MaybeEmitInheritedConstructorNote(S, Found);
10268     return;
10269   case Sema::TDK_CUDATargetMismatch:
10270     S.Diag(Templated->getLocation(),
10271            diag::note_cuda_ovl_candidate_target_mismatch);
10272     return;
10273   }
10274 }
10275 
10276 /// Diagnose a failed template-argument deduction, for function calls.
10277 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10278                                  unsigned NumArgs,
10279                                  bool TakingCandidateAddress) {
10280   unsigned TDK = Cand->DeductionFailure.Result;
10281   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10282     if (CheckArityMismatch(S, Cand, NumArgs))
10283       return;
10284   }
10285   DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
10286                        Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
10287 }
10288 
10289 /// CUDA: diagnose an invalid call across targets.
10290 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
10291   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
10292   FunctionDecl *Callee = Cand->Function;
10293 
10294   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
10295                            CalleeTarget = S.IdentifyCUDATarget(Callee);
10296 
10297   std::string FnDesc;
10298   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10299       ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, FnDesc);
10300 
10301   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
10302       << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
10303       << FnDesc /* Ignored */
10304       << CalleeTarget << CallerTarget;
10305 
10306   // This could be an implicit constructor for which we could not infer the
10307   // target due to a collsion. Diagnose that case.
10308   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
10309   if (Meth != nullptr && Meth->isImplicit()) {
10310     CXXRecordDecl *ParentClass = Meth->getParent();
10311     Sema::CXXSpecialMember CSM;
10312 
10313     switch (FnKindPair.first) {
10314     default:
10315       return;
10316     case oc_implicit_default_constructor:
10317       CSM = Sema::CXXDefaultConstructor;
10318       break;
10319     case oc_implicit_copy_constructor:
10320       CSM = Sema::CXXCopyConstructor;
10321       break;
10322     case oc_implicit_move_constructor:
10323       CSM = Sema::CXXMoveConstructor;
10324       break;
10325     case oc_implicit_copy_assignment:
10326       CSM = Sema::CXXCopyAssignment;
10327       break;
10328     case oc_implicit_move_assignment:
10329       CSM = Sema::CXXMoveAssignment;
10330       break;
10331     };
10332 
10333     bool ConstRHS = false;
10334     if (Meth->getNumParams()) {
10335       if (const ReferenceType *RT =
10336               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
10337         ConstRHS = RT->getPointeeType().isConstQualified();
10338       }
10339     }
10340 
10341     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
10342                                               /* ConstRHS */ ConstRHS,
10343                                               /* Diagnose */ true);
10344   }
10345 }
10346 
10347 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
10348   FunctionDecl *Callee = Cand->Function;
10349   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
10350 
10351   S.Diag(Callee->getLocation(),
10352          diag::note_ovl_candidate_disabled_by_function_cond_attr)
10353       << Attr->getCond()->getSourceRange() << Attr->getMessage();
10354 }
10355 
10356 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
10357   ExplicitSpecifier ES;
10358   const char *DeclName;
10359   switch (Cand->Function->getDeclKind()) {
10360   case Decl::Kind::CXXConstructor:
10361     ES = cast<CXXConstructorDecl>(Cand->Function)->getExplicitSpecifier();
10362     DeclName = "constructor";
10363     break;
10364   case Decl::Kind::CXXConversion:
10365     ES = cast<CXXConversionDecl>(Cand->Function)->getExplicitSpecifier();
10366     DeclName = "conversion operator";
10367     break;
10368   case Decl::Kind::CXXDeductionGuide:
10369     ES = cast<CXXDeductionGuideDecl>(Cand->Function)->getExplicitSpecifier();
10370     DeclName = "deductiong guide";
10371     break;
10372   default:
10373     llvm_unreachable("invalid Decl");
10374   }
10375   assert(ES.getExpr() && "null expression should be handled before");
10376   S.Diag(Cand->Function->getLocation(),
10377          diag::note_ovl_candidate_explicit_forbidden)
10378       << DeclName;
10379   S.Diag(ES.getExpr()->getBeginLoc(),
10380          diag::note_explicit_bool_resolved_to_true);
10381 }
10382 
10383 static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) {
10384   FunctionDecl *Callee = Cand->Function;
10385 
10386   S.Diag(Callee->getLocation(),
10387          diag::note_ovl_candidate_disabled_by_extension)
10388     << S.getOpenCLExtensionsFromDeclExtMap(Callee);
10389 }
10390 
10391 /// Generates a 'note' diagnostic for an overload candidate.  We've
10392 /// already generated a primary error at the call site.
10393 ///
10394 /// It really does need to be a single diagnostic with its caret
10395 /// pointed at the candidate declaration.  Yes, this creates some
10396 /// major challenges of technical writing.  Yes, this makes pointing
10397 /// out problems with specific arguments quite awkward.  It's still
10398 /// better than generating twenty screens of text for every failed
10399 /// overload.
10400 ///
10401 /// It would be great to be able to express per-candidate problems
10402 /// more richly for those diagnostic clients that cared, but we'd
10403 /// still have to be just as careful with the default diagnostics.
10404 /// \param CtorDestAS Addr space of object being constructed (for ctor
10405 /// candidates only).
10406 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
10407                                   unsigned NumArgs,
10408                                   bool TakingCandidateAddress,
10409                                   LangAS CtorDestAS = LangAS::Default) {
10410   FunctionDecl *Fn = Cand->Function;
10411 
10412   // Note deleted candidates, but only if they're viable.
10413   if (Cand->Viable) {
10414     if (Fn->isDeleted()) {
10415       std::string FnDesc;
10416       std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10417           ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
10418 
10419       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
10420           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10421           << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
10422       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10423       return;
10424     }
10425 
10426     // We don't really have anything else to say about viable candidates.
10427     S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10428     return;
10429   }
10430 
10431   switch (Cand->FailureKind) {
10432   case ovl_fail_too_many_arguments:
10433   case ovl_fail_too_few_arguments:
10434     return DiagnoseArityMismatch(S, Cand, NumArgs);
10435 
10436   case ovl_fail_bad_deduction:
10437     return DiagnoseBadDeduction(S, Cand, NumArgs,
10438                                 TakingCandidateAddress);
10439 
10440   case ovl_fail_illegal_constructor: {
10441     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
10442       << (Fn->getPrimaryTemplate() ? 1 : 0);
10443     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10444     return;
10445   }
10446 
10447   case ovl_fail_object_addrspace_mismatch: {
10448     Qualifiers QualsForPrinting;
10449     QualsForPrinting.setAddressSpace(CtorDestAS);
10450     S.Diag(Fn->getLocation(),
10451            diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
10452         << QualsForPrinting;
10453     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10454     return;
10455   }
10456 
10457   case ovl_fail_trivial_conversion:
10458   case ovl_fail_bad_final_conversion:
10459   case ovl_fail_final_conversion_not_exact:
10460     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10461 
10462   case ovl_fail_bad_conversion: {
10463     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
10464     for (unsigned N = Cand->Conversions.size(); I != N; ++I)
10465       if (Cand->Conversions[I].isBad())
10466         return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
10467 
10468     // FIXME: this currently happens when we're called from SemaInit
10469     // when user-conversion overload fails.  Figure out how to handle
10470     // those conditions and diagnose them well.
10471     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10472   }
10473 
10474   case ovl_fail_bad_target:
10475     return DiagnoseBadTarget(S, Cand);
10476 
10477   case ovl_fail_enable_if:
10478     return DiagnoseFailedEnableIfAttr(S, Cand);
10479 
10480   case ovl_fail_explicit_resolved:
10481     return DiagnoseFailedExplicitSpec(S, Cand);
10482 
10483   case ovl_fail_ext_disabled:
10484     return DiagnoseOpenCLExtensionDisabled(S, Cand);
10485 
10486   case ovl_fail_inhctor_slice:
10487     // It's generally not interesting to note copy/move constructors here.
10488     if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
10489       return;
10490     S.Diag(Fn->getLocation(),
10491            diag::note_ovl_candidate_inherited_constructor_slice)
10492       << (Fn->getPrimaryTemplate() ? 1 : 0)
10493       << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
10494     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10495     return;
10496 
10497   case ovl_fail_addr_not_available: {
10498     bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
10499     (void)Available;
10500     assert(!Available);
10501     break;
10502   }
10503   case ovl_non_default_multiversion_function:
10504     // Do nothing, these should simply be ignored.
10505     break;
10506   }
10507 }
10508 
10509 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
10510   // Desugar the type of the surrogate down to a function type,
10511   // retaining as many typedefs as possible while still showing
10512   // the function type (and, therefore, its parameter types).
10513   QualType FnType = Cand->Surrogate->getConversionType();
10514   bool isLValueReference = false;
10515   bool isRValueReference = false;
10516   bool isPointer = false;
10517   if (const LValueReferenceType *FnTypeRef =
10518         FnType->getAs<LValueReferenceType>()) {
10519     FnType = FnTypeRef->getPointeeType();
10520     isLValueReference = true;
10521   } else if (const RValueReferenceType *FnTypeRef =
10522                FnType->getAs<RValueReferenceType>()) {
10523     FnType = FnTypeRef->getPointeeType();
10524     isRValueReference = true;
10525   }
10526   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
10527     FnType = FnTypePtr->getPointeeType();
10528     isPointer = true;
10529   }
10530   // Desugar down to a function type.
10531   FnType = QualType(FnType->getAs<FunctionType>(), 0);
10532   // Reconstruct the pointer/reference as appropriate.
10533   if (isPointer) FnType = S.Context.getPointerType(FnType);
10534   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
10535   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
10536 
10537   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
10538     << FnType;
10539 }
10540 
10541 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
10542                                          SourceLocation OpLoc,
10543                                          OverloadCandidate *Cand) {
10544   assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
10545   std::string TypeStr("operator");
10546   TypeStr += Opc;
10547   TypeStr += "(";
10548   TypeStr += Cand->BuiltinParamTypes[0].getAsString();
10549   if (Cand->Conversions.size() == 1) {
10550     TypeStr += ")";
10551     S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
10552   } else {
10553     TypeStr += ", ";
10554     TypeStr += Cand->BuiltinParamTypes[1].getAsString();
10555     TypeStr += ")";
10556     S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
10557   }
10558 }
10559 
10560 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
10561                                          OverloadCandidate *Cand) {
10562   for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
10563     if (ICS.isBad()) break; // all meaningless after first invalid
10564     if (!ICS.isAmbiguous()) continue;
10565 
10566     ICS.DiagnoseAmbiguousConversion(
10567         S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
10568   }
10569 }
10570 
10571 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
10572   if (Cand->Function)
10573     return Cand->Function->getLocation();
10574   if (Cand->IsSurrogate)
10575     return Cand->Surrogate->getLocation();
10576   return SourceLocation();
10577 }
10578 
10579 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
10580   switch ((Sema::TemplateDeductionResult)DFI.Result) {
10581   case Sema::TDK_Success:
10582   case Sema::TDK_NonDependentConversionFailure:
10583     llvm_unreachable("non-deduction failure while diagnosing bad deduction");
10584 
10585   case Sema::TDK_Invalid:
10586   case Sema::TDK_Incomplete:
10587   case Sema::TDK_IncompletePack:
10588     return 1;
10589 
10590   case Sema::TDK_Underqualified:
10591   case Sema::TDK_Inconsistent:
10592     return 2;
10593 
10594   case Sema::TDK_SubstitutionFailure:
10595   case Sema::TDK_DeducedMismatch:
10596   case Sema::TDK_DeducedMismatchNested:
10597   case Sema::TDK_NonDeducedMismatch:
10598   case Sema::TDK_MiscellaneousDeductionFailure:
10599   case Sema::TDK_CUDATargetMismatch:
10600     return 3;
10601 
10602   case Sema::TDK_InstantiationDepth:
10603     return 4;
10604 
10605   case Sema::TDK_InvalidExplicitArguments:
10606     return 5;
10607 
10608   case Sema::TDK_TooManyArguments:
10609   case Sema::TDK_TooFewArguments:
10610     return 6;
10611   }
10612   llvm_unreachable("Unhandled deduction result");
10613 }
10614 
10615 namespace {
10616 struct CompareOverloadCandidatesForDisplay {
10617   Sema &S;
10618   SourceLocation Loc;
10619   size_t NumArgs;
10620   OverloadCandidateSet::CandidateSetKind CSK;
10621 
10622   CompareOverloadCandidatesForDisplay(
10623       Sema &S, SourceLocation Loc, size_t NArgs,
10624       OverloadCandidateSet::CandidateSetKind CSK)
10625       : S(S), NumArgs(NArgs), CSK(CSK) {}
10626 
10627   bool operator()(const OverloadCandidate *L,
10628                   const OverloadCandidate *R) {
10629     // Fast-path this check.
10630     if (L == R) return false;
10631 
10632     // Order first by viability.
10633     if (L->Viable) {
10634       if (!R->Viable) return true;
10635 
10636       // TODO: introduce a tri-valued comparison for overload
10637       // candidates.  Would be more worthwhile if we had a sort
10638       // that could exploit it.
10639       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
10640         return true;
10641       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
10642         return false;
10643     } else if (R->Viable)
10644       return false;
10645 
10646     assert(L->Viable == R->Viable);
10647 
10648     // Criteria by which we can sort non-viable candidates:
10649     if (!L->Viable) {
10650       // 1. Arity mismatches come after other candidates.
10651       if (L->FailureKind == ovl_fail_too_many_arguments ||
10652           L->FailureKind == ovl_fail_too_few_arguments) {
10653         if (R->FailureKind == ovl_fail_too_many_arguments ||
10654             R->FailureKind == ovl_fail_too_few_arguments) {
10655           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
10656           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
10657           if (LDist == RDist) {
10658             if (L->FailureKind == R->FailureKind)
10659               // Sort non-surrogates before surrogates.
10660               return !L->IsSurrogate && R->IsSurrogate;
10661             // Sort candidates requiring fewer parameters than there were
10662             // arguments given after candidates requiring more parameters
10663             // than there were arguments given.
10664             return L->FailureKind == ovl_fail_too_many_arguments;
10665           }
10666           return LDist < RDist;
10667         }
10668         return false;
10669       }
10670       if (R->FailureKind == ovl_fail_too_many_arguments ||
10671           R->FailureKind == ovl_fail_too_few_arguments)
10672         return true;
10673 
10674       // 2. Bad conversions come first and are ordered by the number
10675       // of bad conversions and quality of good conversions.
10676       if (L->FailureKind == ovl_fail_bad_conversion) {
10677         if (R->FailureKind != ovl_fail_bad_conversion)
10678           return true;
10679 
10680         // The conversion that can be fixed with a smaller number of changes,
10681         // comes first.
10682         unsigned numLFixes = L->Fix.NumConversionsFixed;
10683         unsigned numRFixes = R->Fix.NumConversionsFixed;
10684         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
10685         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
10686         if (numLFixes != numRFixes) {
10687           return numLFixes < numRFixes;
10688         }
10689 
10690         // If there's any ordering between the defined conversions...
10691         // FIXME: this might not be transitive.
10692         assert(L->Conversions.size() == R->Conversions.size());
10693 
10694         int leftBetter = 0;
10695         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
10696         for (unsigned E = L->Conversions.size(); I != E; ++I) {
10697           switch (CompareImplicitConversionSequences(S, Loc,
10698                                                      L->Conversions[I],
10699                                                      R->Conversions[I])) {
10700           case ImplicitConversionSequence::Better:
10701             leftBetter++;
10702             break;
10703 
10704           case ImplicitConversionSequence::Worse:
10705             leftBetter--;
10706             break;
10707 
10708           case ImplicitConversionSequence::Indistinguishable:
10709             break;
10710           }
10711         }
10712         if (leftBetter > 0) return true;
10713         if (leftBetter < 0) return false;
10714 
10715       } else if (R->FailureKind == ovl_fail_bad_conversion)
10716         return false;
10717 
10718       if (L->FailureKind == ovl_fail_bad_deduction) {
10719         if (R->FailureKind != ovl_fail_bad_deduction)
10720           return true;
10721 
10722         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10723           return RankDeductionFailure(L->DeductionFailure)
10724                < RankDeductionFailure(R->DeductionFailure);
10725       } else if (R->FailureKind == ovl_fail_bad_deduction)
10726         return false;
10727 
10728       // TODO: others?
10729     }
10730 
10731     // Sort everything else by location.
10732     SourceLocation LLoc = GetLocationForCandidate(L);
10733     SourceLocation RLoc = GetLocationForCandidate(R);
10734 
10735     // Put candidates without locations (e.g. builtins) at the end.
10736     if (LLoc.isInvalid()) return false;
10737     if (RLoc.isInvalid()) return true;
10738 
10739     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10740   }
10741 };
10742 }
10743 
10744 /// CompleteNonViableCandidate - Normally, overload resolution only
10745 /// computes up to the first bad conversion. Produces the FixIt set if
10746 /// possible.
10747 static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
10748                                        ArrayRef<Expr *> Args) {
10749   assert(!Cand->Viable);
10750 
10751   // Don't do anything on failures other than bad conversion.
10752   if (Cand->FailureKind != ovl_fail_bad_conversion) return;
10753 
10754   // We only want the FixIts if all the arguments can be corrected.
10755   bool Unfixable = false;
10756   // Use a implicit copy initialization to check conversion fixes.
10757   Cand->Fix.setConversionChecker(TryCopyInitialization);
10758 
10759   // Attempt to fix the bad conversion.
10760   unsigned ConvCount = Cand->Conversions.size();
10761   for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
10762        ++ConvIdx) {
10763     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
10764     if (Cand->Conversions[ConvIdx].isInitialized() &&
10765         Cand->Conversions[ConvIdx].isBad()) {
10766       Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10767       break;
10768     }
10769   }
10770 
10771   // FIXME: this should probably be preserved from the overload
10772   // operation somehow.
10773   bool SuppressUserConversions = false;
10774 
10775   unsigned ConvIdx = 0;
10776   ArrayRef<QualType> ParamTypes;
10777 
10778   if (Cand->IsSurrogate) {
10779     QualType ConvType
10780       = Cand->Surrogate->getConversionType().getNonReferenceType();
10781     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10782       ConvType = ConvPtrType->getPointeeType();
10783     ParamTypes = ConvType->getAs<FunctionProtoType>()->getParamTypes();
10784     // Conversion 0 is 'this', which doesn't have a corresponding argument.
10785     ConvIdx = 1;
10786   } else if (Cand->Function) {
10787     ParamTypes =
10788         Cand->Function->getType()->getAs<FunctionProtoType>()->getParamTypes();
10789     if (isa<CXXMethodDecl>(Cand->Function) &&
10790         !isa<CXXConstructorDecl>(Cand->Function)) {
10791       // Conversion 0 is 'this', which doesn't have a corresponding argument.
10792       ConvIdx = 1;
10793     }
10794   } else {
10795     // Builtin operator.
10796     assert(ConvCount <= 3);
10797     ParamTypes = Cand->BuiltinParamTypes;
10798   }
10799 
10800   // Fill in the rest of the conversions.
10801   for (unsigned ArgIdx = 0; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
10802     if (Cand->Conversions[ConvIdx].isInitialized()) {
10803       // We've already checked this conversion.
10804     } else if (ArgIdx < ParamTypes.size()) {
10805       if (ParamTypes[ArgIdx]->isDependentType())
10806         Cand->Conversions[ConvIdx].setAsIdentityConversion(
10807             Args[ArgIdx]->getType());
10808       else {
10809         Cand->Conversions[ConvIdx] =
10810             TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ArgIdx],
10811                                   SuppressUserConversions,
10812                                   /*InOverloadResolution=*/true,
10813                                   /*AllowObjCWritebackConversion=*/
10814                                   S.getLangOpts().ObjCAutoRefCount);
10815         // Store the FixIt in the candidate if it exists.
10816         if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
10817           Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10818       }
10819     } else
10820       Cand->Conversions[ConvIdx].setEllipsis();
10821   }
10822 }
10823 
10824 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
10825     Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
10826     SourceLocation OpLoc,
10827     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
10828   // Sort the candidates by viability and position.  Sorting directly would
10829   // be prohibitive, so we make a set of pointers and sort those.
10830   SmallVector<OverloadCandidate*, 32> Cands;
10831   if (OCD == OCD_AllCandidates) Cands.reserve(size());
10832   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10833     if (!Filter(*Cand))
10834       continue;
10835     if (Cand->Viable)
10836       Cands.push_back(Cand);
10837     else if (OCD == OCD_AllCandidates) {
10838       CompleteNonViableCandidate(S, Cand, Args);
10839       if (Cand->Function || Cand->IsSurrogate)
10840         Cands.push_back(Cand);
10841       // Otherwise, this a non-viable builtin candidate.  We do not, in general,
10842       // want to list every possible builtin candidate.
10843     }
10844   }
10845 
10846   llvm::stable_sort(
10847       Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
10848 
10849   return Cands;
10850 }
10851 
10852 /// When overload resolution fails, prints diagnostic messages containing the
10853 /// candidates in the candidate set.
10854 void OverloadCandidateSet::NoteCandidates(PartialDiagnosticAt PD,
10855     Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
10856     StringRef Opc, SourceLocation OpLoc,
10857     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
10858 
10859   auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
10860 
10861   S.Diag(PD.first, PD.second);
10862 
10863   NoteCandidates(S, Args, Cands, Opc, OpLoc);
10864 }
10865 
10866 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
10867                                           ArrayRef<OverloadCandidate *> Cands,
10868                                           StringRef Opc, SourceLocation OpLoc) {
10869   bool ReportedAmbiguousConversions = false;
10870 
10871   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10872   unsigned CandsShown = 0;
10873   auto I = Cands.begin(), E = Cands.end();
10874   for (; I != E; ++I) {
10875     OverloadCandidate *Cand = *I;
10876 
10877     // Set an arbitrary limit on the number of candidate functions we'll spam
10878     // the user with.  FIXME: This limit should depend on details of the
10879     // candidate list.
10880     if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
10881       break;
10882     }
10883     ++CandsShown;
10884 
10885     if (Cand->Function)
10886       NoteFunctionCandidate(S, Cand, Args.size(),
10887                             /*TakingCandidateAddress=*/false, DestAS);
10888     else if (Cand->IsSurrogate)
10889       NoteSurrogateCandidate(S, Cand);
10890     else {
10891       assert(Cand->Viable &&
10892              "Non-viable built-in candidates are not added to Cands.");
10893       // Generally we only see ambiguities including viable builtin
10894       // operators if overload resolution got screwed up by an
10895       // ambiguous user-defined conversion.
10896       //
10897       // FIXME: It's quite possible for different conversions to see
10898       // different ambiguities, though.
10899       if (!ReportedAmbiguousConversions) {
10900         NoteAmbiguousUserConversions(S, OpLoc, Cand);
10901         ReportedAmbiguousConversions = true;
10902       }
10903 
10904       // If this is a viable builtin, print it.
10905       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
10906     }
10907   }
10908 
10909   if (I != E)
10910     S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
10911 }
10912 
10913 static SourceLocation
10914 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
10915   return Cand->Specialization ? Cand->Specialization->getLocation()
10916                               : SourceLocation();
10917 }
10918 
10919 namespace {
10920 struct CompareTemplateSpecCandidatesForDisplay {
10921   Sema &S;
10922   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
10923 
10924   bool operator()(const TemplateSpecCandidate *L,
10925                   const TemplateSpecCandidate *R) {
10926     // Fast-path this check.
10927     if (L == R)
10928       return false;
10929 
10930     // Assuming that both candidates are not matches...
10931 
10932     // Sort by the ranking of deduction failures.
10933     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10934       return RankDeductionFailure(L->DeductionFailure) <
10935              RankDeductionFailure(R->DeductionFailure);
10936 
10937     // Sort everything else by location.
10938     SourceLocation LLoc = GetLocationForCandidate(L);
10939     SourceLocation RLoc = GetLocationForCandidate(R);
10940 
10941     // Put candidates without locations (e.g. builtins) at the end.
10942     if (LLoc.isInvalid())
10943       return false;
10944     if (RLoc.isInvalid())
10945       return true;
10946 
10947     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10948   }
10949 };
10950 }
10951 
10952 /// Diagnose a template argument deduction failure.
10953 /// We are treating these failures as overload failures due to bad
10954 /// deductions.
10955 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
10956                                                  bool ForTakingAddress) {
10957   DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
10958                        DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
10959 }
10960 
10961 void TemplateSpecCandidateSet::destroyCandidates() {
10962   for (iterator i = begin(), e = end(); i != e; ++i) {
10963     i->DeductionFailure.Destroy();
10964   }
10965 }
10966 
10967 void TemplateSpecCandidateSet::clear() {
10968   destroyCandidates();
10969   Candidates.clear();
10970 }
10971 
10972 /// NoteCandidates - When no template specialization match is found, prints
10973 /// diagnostic messages containing the non-matching specializations that form
10974 /// the candidate set.
10975 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
10976 /// OCD == OCD_AllCandidates and Cand->Viable == false.
10977 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
10978   // Sort the candidates by position (assuming no candidate is a match).
10979   // Sorting directly would be prohibitive, so we make a set of pointers
10980   // and sort those.
10981   SmallVector<TemplateSpecCandidate *, 32> Cands;
10982   Cands.reserve(size());
10983   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10984     if (Cand->Specialization)
10985       Cands.push_back(Cand);
10986     // Otherwise, this is a non-matching builtin candidate.  We do not,
10987     // in general, want to list every possible builtin candidate.
10988   }
10989 
10990   llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
10991 
10992   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
10993   // for generalization purposes (?).
10994   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10995 
10996   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
10997   unsigned CandsShown = 0;
10998   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10999     TemplateSpecCandidate *Cand = *I;
11000 
11001     // Set an arbitrary limit on the number of candidates we'll spam
11002     // the user with.  FIXME: This limit should depend on details of the
11003     // candidate list.
11004     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
11005       break;
11006     ++CandsShown;
11007 
11008     assert(Cand->Specialization &&
11009            "Non-matching built-in candidates are not added to Cands.");
11010     Cand->NoteDeductionFailure(S, ForTakingAddress);
11011   }
11012 
11013   if (I != E)
11014     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
11015 }
11016 
11017 // [PossiblyAFunctionType]  -->   [Return]
11018 // NonFunctionType --> NonFunctionType
11019 // R (A) --> R(A)
11020 // R (*)(A) --> R (A)
11021 // R (&)(A) --> R (A)
11022 // R (S::*)(A) --> R (A)
11023 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
11024   QualType Ret = PossiblyAFunctionType;
11025   if (const PointerType *ToTypePtr =
11026     PossiblyAFunctionType->getAs<PointerType>())
11027     Ret = ToTypePtr->getPointeeType();
11028   else if (const ReferenceType *ToTypeRef =
11029     PossiblyAFunctionType->getAs<ReferenceType>())
11030     Ret = ToTypeRef->getPointeeType();
11031   else if (const MemberPointerType *MemTypePtr =
11032     PossiblyAFunctionType->getAs<MemberPointerType>())
11033     Ret = MemTypePtr->getPointeeType();
11034   Ret =
11035     Context.getCanonicalType(Ret).getUnqualifiedType();
11036   return Ret;
11037 }
11038 
11039 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11040                                  bool Complain = true) {
11041   if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11042       S.DeduceReturnType(FD, Loc, Complain))
11043     return true;
11044 
11045   auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11046   if (S.getLangOpts().CPlusPlus17 &&
11047       isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11048       !S.ResolveExceptionSpec(Loc, FPT))
11049     return true;
11050 
11051   return false;
11052 }
11053 
11054 namespace {
11055 // A helper class to help with address of function resolution
11056 // - allows us to avoid passing around all those ugly parameters
11057 class AddressOfFunctionResolver {
11058   Sema& S;
11059   Expr* SourceExpr;
11060   const QualType& TargetType;
11061   QualType TargetFunctionType; // Extracted function type from target type
11062 
11063   bool Complain;
11064   //DeclAccessPair& ResultFunctionAccessPair;
11065   ASTContext& Context;
11066 
11067   bool TargetTypeIsNonStaticMemberFunction;
11068   bool FoundNonTemplateFunction;
11069   bool StaticMemberFunctionFromBoundPointer;
11070   bool HasComplained;
11071 
11072   OverloadExpr::FindResult OvlExprInfo;
11073   OverloadExpr *OvlExpr;
11074   TemplateArgumentListInfo OvlExplicitTemplateArgs;
11075   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11076   TemplateSpecCandidateSet FailedCandidates;
11077 
11078 public:
11079   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11080                             const QualType &TargetType, bool Complain)
11081       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11082         Complain(Complain), Context(S.getASTContext()),
11083         TargetTypeIsNonStaticMemberFunction(
11084             !!TargetType->getAs<MemberPointerType>()),
11085         FoundNonTemplateFunction(false),
11086         StaticMemberFunctionFromBoundPointer(false),
11087         HasComplained(false),
11088         OvlExprInfo(OverloadExpr::find(SourceExpr)),
11089         OvlExpr(OvlExprInfo.Expression),
11090         FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11091     ExtractUnqualifiedFunctionTypeFromTargetType();
11092 
11093     if (TargetFunctionType->isFunctionType()) {
11094       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11095         if (!UME->isImplicitAccess() &&
11096             !S.ResolveSingleFunctionTemplateSpecialization(UME))
11097           StaticMemberFunctionFromBoundPointer = true;
11098     } else if (OvlExpr->hasExplicitTemplateArgs()) {
11099       DeclAccessPair dap;
11100       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11101               OvlExpr, false, &dap)) {
11102         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11103           if (!Method->isStatic()) {
11104             // If the target type is a non-function type and the function found
11105             // is a non-static member function, pretend as if that was the
11106             // target, it's the only possible type to end up with.
11107             TargetTypeIsNonStaticMemberFunction = true;
11108 
11109             // And skip adding the function if its not in the proper form.
11110             // We'll diagnose this due to an empty set of functions.
11111             if (!OvlExprInfo.HasFormOfMemberPointer)
11112               return;
11113           }
11114 
11115         Matches.push_back(std::make_pair(dap, Fn));
11116       }
11117       return;
11118     }
11119 
11120     if (OvlExpr->hasExplicitTemplateArgs())
11121       OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11122 
11123     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11124       // C++ [over.over]p4:
11125       //   If more than one function is selected, [...]
11126       if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
11127         if (FoundNonTemplateFunction)
11128           EliminateAllTemplateMatches();
11129         else
11130           EliminateAllExceptMostSpecializedTemplate();
11131       }
11132     }
11133 
11134     if (S.getLangOpts().CUDA && Matches.size() > 1)
11135       EliminateSuboptimalCudaMatches();
11136   }
11137 
11138   bool hasComplained() const { return HasComplained; }
11139 
11140 private:
11141   bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
11142     QualType Discard;
11143     return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
11144            S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
11145   }
11146 
11147   /// \return true if A is considered a better overload candidate for the
11148   /// desired type than B.
11149   bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
11150     // If A doesn't have exactly the correct type, we don't want to classify it
11151     // as "better" than anything else. This way, the user is required to
11152     // disambiguate for us if there are multiple candidates and no exact match.
11153     return candidateHasExactlyCorrectType(A) &&
11154            (!candidateHasExactlyCorrectType(B) ||
11155             compareEnableIfAttrs(S, A, B) == Comparison::Better);
11156   }
11157 
11158   /// \return true if we were able to eliminate all but one overload candidate,
11159   /// false otherwise.
11160   bool eliminiateSuboptimalOverloadCandidates() {
11161     // Same algorithm as overload resolution -- one pass to pick the "best",
11162     // another pass to be sure that nothing is better than the best.
11163     auto Best = Matches.begin();
11164     for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
11165       if (isBetterCandidate(I->second, Best->second))
11166         Best = I;
11167 
11168     const FunctionDecl *BestFn = Best->second;
11169     auto IsBestOrInferiorToBest = [this, BestFn](
11170         const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
11171       return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
11172     };
11173 
11174     // Note: We explicitly leave Matches unmodified if there isn't a clear best
11175     // option, so we can potentially give the user a better error
11176     if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
11177       return false;
11178     Matches[0] = *Best;
11179     Matches.resize(1);
11180     return true;
11181   }
11182 
11183   bool isTargetTypeAFunction() const {
11184     return TargetFunctionType->isFunctionType();
11185   }
11186 
11187   // [ToType]     [Return]
11188 
11189   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
11190   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
11191   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
11192   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
11193     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
11194   }
11195 
11196   // return true if any matching specializations were found
11197   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
11198                                    const DeclAccessPair& CurAccessFunPair) {
11199     if (CXXMethodDecl *Method
11200               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
11201       // Skip non-static function templates when converting to pointer, and
11202       // static when converting to member pointer.
11203       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11204         return false;
11205     }
11206     else if (TargetTypeIsNonStaticMemberFunction)
11207       return false;
11208 
11209     // C++ [over.over]p2:
11210     //   If the name is a function template, template argument deduction is
11211     //   done (14.8.2.2), and if the argument deduction succeeds, the
11212     //   resulting template argument list is used to generate a single
11213     //   function template specialization, which is added to the set of
11214     //   overloaded functions considered.
11215     FunctionDecl *Specialization = nullptr;
11216     TemplateDeductionInfo Info(FailedCandidates.getLocation());
11217     if (Sema::TemplateDeductionResult Result
11218           = S.DeduceTemplateArguments(FunctionTemplate,
11219                                       &OvlExplicitTemplateArgs,
11220                                       TargetFunctionType, Specialization,
11221                                       Info, /*IsAddressOfFunction*/true)) {
11222       // Make a note of the failed deduction for diagnostics.
11223       FailedCandidates.addCandidate()
11224           .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
11225                MakeDeductionFailureInfo(Context, Result, Info));
11226       return false;
11227     }
11228 
11229     // Template argument deduction ensures that we have an exact match or
11230     // compatible pointer-to-function arguments that would be adjusted by ICS.
11231     // This function template specicalization works.
11232     assert(S.isSameOrCompatibleFunctionType(
11233               Context.getCanonicalType(Specialization->getType()),
11234               Context.getCanonicalType(TargetFunctionType)));
11235 
11236     if (!S.checkAddressOfFunctionIsAvailable(Specialization))
11237       return false;
11238 
11239     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
11240     return true;
11241   }
11242 
11243   bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
11244                                       const DeclAccessPair& CurAccessFunPair) {
11245     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11246       // Skip non-static functions when converting to pointer, and static
11247       // when converting to member pointer.
11248       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11249         return false;
11250     }
11251     else if (TargetTypeIsNonStaticMemberFunction)
11252       return false;
11253 
11254     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
11255       if (S.getLangOpts().CUDA)
11256         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
11257           if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
11258             return false;
11259       if (FunDecl->isMultiVersion()) {
11260         const auto *TA = FunDecl->getAttr<TargetAttr>();
11261         if (TA && !TA->isDefaultVersion())
11262           return false;
11263       }
11264 
11265       // If any candidate has a placeholder return type, trigger its deduction
11266       // now.
11267       if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
11268                                Complain)) {
11269         HasComplained |= Complain;
11270         return false;
11271       }
11272 
11273       if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
11274         return false;
11275 
11276       // If we're in C, we need to support types that aren't exactly identical.
11277       if (!S.getLangOpts().CPlusPlus ||
11278           candidateHasExactlyCorrectType(FunDecl)) {
11279         Matches.push_back(std::make_pair(
11280             CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
11281         FoundNonTemplateFunction = true;
11282         return true;
11283       }
11284     }
11285 
11286     return false;
11287   }
11288 
11289   bool FindAllFunctionsThatMatchTargetTypeExactly() {
11290     bool Ret = false;
11291 
11292     // If the overload expression doesn't have the form of a pointer to
11293     // member, don't try to convert it to a pointer-to-member type.
11294     if (IsInvalidFormOfPointerToMemberFunction())
11295       return false;
11296 
11297     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11298                                E = OvlExpr->decls_end();
11299          I != E; ++I) {
11300       // Look through any using declarations to find the underlying function.
11301       NamedDecl *Fn = (*I)->getUnderlyingDecl();
11302 
11303       // C++ [over.over]p3:
11304       //   Non-member functions and static member functions match
11305       //   targets of type "pointer-to-function" or "reference-to-function."
11306       //   Nonstatic member functions match targets of
11307       //   type "pointer-to-member-function."
11308       // Note that according to DR 247, the containing class does not matter.
11309       if (FunctionTemplateDecl *FunctionTemplate
11310                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
11311         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
11312           Ret = true;
11313       }
11314       // If we have explicit template arguments supplied, skip non-templates.
11315       else if (!OvlExpr->hasExplicitTemplateArgs() &&
11316                AddMatchingNonTemplateFunction(Fn, I.getPair()))
11317         Ret = true;
11318     }
11319     assert(Ret || Matches.empty());
11320     return Ret;
11321   }
11322 
11323   void EliminateAllExceptMostSpecializedTemplate() {
11324     //   [...] and any given function template specialization F1 is
11325     //   eliminated if the set contains a second function template
11326     //   specialization whose function template is more specialized
11327     //   than the function template of F1 according to the partial
11328     //   ordering rules of 14.5.5.2.
11329 
11330     // The algorithm specified above is quadratic. We instead use a
11331     // two-pass algorithm (similar to the one used to identify the
11332     // best viable function in an overload set) that identifies the
11333     // best function template (if it exists).
11334 
11335     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
11336     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
11337       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
11338 
11339     // TODO: It looks like FailedCandidates does not serve much purpose
11340     // here, since the no_viable diagnostic has index 0.
11341     UnresolvedSetIterator Result = S.getMostSpecialized(
11342         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
11343         SourceExpr->getBeginLoc(), S.PDiag(),
11344         S.PDiag(diag::err_addr_ovl_ambiguous)
11345             << Matches[0].second->getDeclName(),
11346         S.PDiag(diag::note_ovl_candidate)
11347             << (unsigned)oc_function << (unsigned)ocs_described_template,
11348         Complain, TargetFunctionType);
11349 
11350     if (Result != MatchesCopy.end()) {
11351       // Make it the first and only element
11352       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
11353       Matches[0].second = cast<FunctionDecl>(*Result);
11354       Matches.resize(1);
11355     } else
11356       HasComplained |= Complain;
11357   }
11358 
11359   void EliminateAllTemplateMatches() {
11360     //   [...] any function template specializations in the set are
11361     //   eliminated if the set also contains a non-template function, [...]
11362     for (unsigned I = 0, N = Matches.size(); I != N; ) {
11363       if (Matches[I].second->getPrimaryTemplate() == nullptr)
11364         ++I;
11365       else {
11366         Matches[I] = Matches[--N];
11367         Matches.resize(N);
11368       }
11369     }
11370   }
11371 
11372   void EliminateSuboptimalCudaMatches() {
11373     S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
11374   }
11375 
11376 public:
11377   void ComplainNoMatchesFound() const {
11378     assert(Matches.empty());
11379     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
11380         << OvlExpr->getName() << TargetFunctionType
11381         << OvlExpr->getSourceRange();
11382     if (FailedCandidates.empty())
11383       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11384                                   /*TakingAddress=*/true);
11385     else {
11386       // We have some deduction failure messages. Use them to diagnose
11387       // the function templates, and diagnose the non-template candidates
11388       // normally.
11389       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11390                                  IEnd = OvlExpr->decls_end();
11391            I != IEnd; ++I)
11392         if (FunctionDecl *Fun =
11393                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
11394           if (!functionHasPassObjectSizeParams(Fun))
11395             S.NoteOverloadCandidate(*I, Fun, TargetFunctionType,
11396                                     /*TakingAddress=*/true);
11397       FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
11398     }
11399   }
11400 
11401   bool IsInvalidFormOfPointerToMemberFunction() const {
11402     return TargetTypeIsNonStaticMemberFunction &&
11403       !OvlExprInfo.HasFormOfMemberPointer;
11404   }
11405 
11406   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
11407       // TODO: Should we condition this on whether any functions might
11408       // have matched, or is it more appropriate to do that in callers?
11409       // TODO: a fixit wouldn't hurt.
11410       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
11411         << TargetType << OvlExpr->getSourceRange();
11412   }
11413 
11414   bool IsStaticMemberFunctionFromBoundPointer() const {
11415     return StaticMemberFunctionFromBoundPointer;
11416   }
11417 
11418   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
11419     S.Diag(OvlExpr->getBeginLoc(),
11420            diag::err_invalid_form_pointer_member_function)
11421         << OvlExpr->getSourceRange();
11422   }
11423 
11424   void ComplainOfInvalidConversion() const {
11425     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
11426         << OvlExpr->getName() << TargetType;
11427   }
11428 
11429   void ComplainMultipleMatchesFound() const {
11430     assert(Matches.size() > 1);
11431     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
11432         << OvlExpr->getName() << OvlExpr->getSourceRange();
11433     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11434                                 /*TakingAddress=*/true);
11435   }
11436 
11437   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
11438 
11439   int getNumMatches() const { return Matches.size(); }
11440 
11441   FunctionDecl* getMatchingFunctionDecl() const {
11442     if (Matches.size() != 1) return nullptr;
11443     return Matches[0].second;
11444   }
11445 
11446   const DeclAccessPair* getMatchingFunctionAccessPair() const {
11447     if (Matches.size() != 1) return nullptr;
11448     return &Matches[0].first;
11449   }
11450 };
11451 }
11452 
11453 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
11454 /// an overloaded function (C++ [over.over]), where @p From is an
11455 /// expression with overloaded function type and @p ToType is the type
11456 /// we're trying to resolve to. For example:
11457 ///
11458 /// @code
11459 /// int f(double);
11460 /// int f(int);
11461 ///
11462 /// int (*pfd)(double) = f; // selects f(double)
11463 /// @endcode
11464 ///
11465 /// This routine returns the resulting FunctionDecl if it could be
11466 /// resolved, and NULL otherwise. When @p Complain is true, this
11467 /// routine will emit diagnostics if there is an error.
11468 FunctionDecl *
11469 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
11470                                          QualType TargetType,
11471                                          bool Complain,
11472                                          DeclAccessPair &FoundResult,
11473                                          bool *pHadMultipleCandidates) {
11474   assert(AddressOfExpr->getType() == Context.OverloadTy);
11475 
11476   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
11477                                      Complain);
11478   int NumMatches = Resolver.getNumMatches();
11479   FunctionDecl *Fn = nullptr;
11480   bool ShouldComplain = Complain && !Resolver.hasComplained();
11481   if (NumMatches == 0 && ShouldComplain) {
11482     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
11483       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
11484     else
11485       Resolver.ComplainNoMatchesFound();
11486   }
11487   else if (NumMatches > 1 && ShouldComplain)
11488     Resolver.ComplainMultipleMatchesFound();
11489   else if (NumMatches == 1) {
11490     Fn = Resolver.getMatchingFunctionDecl();
11491     assert(Fn);
11492     if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
11493       ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
11494     FoundResult = *Resolver.getMatchingFunctionAccessPair();
11495     if (Complain) {
11496       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
11497         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
11498       else
11499         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
11500     }
11501   }
11502 
11503   if (pHadMultipleCandidates)
11504     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
11505   return Fn;
11506 }
11507 
11508 /// Given an expression that refers to an overloaded function, try to
11509 /// resolve that function to a single function that can have its address taken.
11510 /// This will modify `Pair` iff it returns non-null.
11511 ///
11512 /// This routine can only realistically succeed if all but one candidates in the
11513 /// overload set for SrcExpr cannot have their addresses taken.
11514 FunctionDecl *
11515 Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
11516                                                   DeclAccessPair &Pair) {
11517   OverloadExpr::FindResult R = OverloadExpr::find(E);
11518   OverloadExpr *Ovl = R.Expression;
11519   FunctionDecl *Result = nullptr;
11520   DeclAccessPair DAP;
11521   // Don't use the AddressOfResolver because we're specifically looking for
11522   // cases where we have one overload candidate that lacks
11523   // enable_if/pass_object_size/...
11524   for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
11525     auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
11526     if (!FD)
11527       return nullptr;
11528 
11529     if (!checkAddressOfFunctionIsAvailable(FD))
11530       continue;
11531 
11532     // We have more than one result; quit.
11533     if (Result)
11534       return nullptr;
11535     DAP = I.getPair();
11536     Result = FD;
11537   }
11538 
11539   if (Result)
11540     Pair = DAP;
11541   return Result;
11542 }
11543 
11544 /// Given an overloaded function, tries to turn it into a non-overloaded
11545 /// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
11546 /// will perform access checks, diagnose the use of the resultant decl, and, if
11547 /// requested, potentially perform a function-to-pointer decay.
11548 ///
11549 /// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
11550 /// Otherwise, returns true. This may emit diagnostics and return true.
11551 bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
11552     ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
11553   Expr *E = SrcExpr.get();
11554   assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
11555 
11556   DeclAccessPair DAP;
11557   FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
11558   if (!Found || Found->isCPUDispatchMultiVersion() ||
11559       Found->isCPUSpecificMultiVersion())
11560     return false;
11561 
11562   // Emitting multiple diagnostics for a function that is both inaccessible and
11563   // unavailable is consistent with our behavior elsewhere. So, always check
11564   // for both.
11565   DiagnoseUseOfDecl(Found, E->getExprLoc());
11566   CheckAddressOfMemberAccess(E, DAP);
11567   Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
11568   if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
11569     SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
11570   else
11571     SrcExpr = Fixed;
11572   return true;
11573 }
11574 
11575 /// Given an expression that refers to an overloaded function, try to
11576 /// resolve that overloaded function expression down to a single function.
11577 ///
11578 /// This routine can only resolve template-ids that refer to a single function
11579 /// template, where that template-id refers to a single template whose template
11580 /// arguments are either provided by the template-id or have defaults,
11581 /// as described in C++0x [temp.arg.explicit]p3.
11582 ///
11583 /// If no template-ids are found, no diagnostics are emitted and NULL is
11584 /// returned.
11585 FunctionDecl *
11586 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
11587                                                   bool Complain,
11588                                                   DeclAccessPair *FoundResult) {
11589   // C++ [over.over]p1:
11590   //   [...] [Note: any redundant set of parentheses surrounding the
11591   //   overloaded function name is ignored (5.1). ]
11592   // C++ [over.over]p1:
11593   //   [...] The overloaded function name can be preceded by the &
11594   //   operator.
11595 
11596   // If we didn't actually find any template-ids, we're done.
11597   if (!ovl->hasExplicitTemplateArgs())
11598     return nullptr;
11599 
11600   TemplateArgumentListInfo ExplicitTemplateArgs;
11601   ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
11602   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
11603 
11604   // Look through all of the overloaded functions, searching for one
11605   // whose type matches exactly.
11606   FunctionDecl *Matched = nullptr;
11607   for (UnresolvedSetIterator I = ovl->decls_begin(),
11608          E = ovl->decls_end(); I != E; ++I) {
11609     // C++0x [temp.arg.explicit]p3:
11610     //   [...] In contexts where deduction is done and fails, or in contexts
11611     //   where deduction is not done, if a template argument list is
11612     //   specified and it, along with any default template arguments,
11613     //   identifies a single function template specialization, then the
11614     //   template-id is an lvalue for the function template specialization.
11615     FunctionTemplateDecl *FunctionTemplate
11616       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
11617 
11618     // C++ [over.over]p2:
11619     //   If the name is a function template, template argument deduction is
11620     //   done (14.8.2.2), and if the argument deduction succeeds, the
11621     //   resulting template argument list is used to generate a single
11622     //   function template specialization, which is added to the set of
11623     //   overloaded functions considered.
11624     FunctionDecl *Specialization = nullptr;
11625     TemplateDeductionInfo Info(FailedCandidates.getLocation());
11626     if (TemplateDeductionResult Result
11627           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
11628                                     Specialization, Info,
11629                                     /*IsAddressOfFunction*/true)) {
11630       // Make a note of the failed deduction for diagnostics.
11631       // TODO: Actually use the failed-deduction info?
11632       FailedCandidates.addCandidate()
11633           .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
11634                MakeDeductionFailureInfo(Context, Result, Info));
11635       continue;
11636     }
11637 
11638     assert(Specialization && "no specialization and no error?");
11639 
11640     // Multiple matches; we can't resolve to a single declaration.
11641     if (Matched) {
11642       if (Complain) {
11643         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
11644           << ovl->getName();
11645         NoteAllOverloadCandidates(ovl);
11646       }
11647       return nullptr;
11648     }
11649 
11650     Matched = Specialization;
11651     if (FoundResult) *FoundResult = I.getPair();
11652   }
11653 
11654   if (Matched &&
11655       completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
11656     return nullptr;
11657 
11658   return Matched;
11659 }
11660 
11661 // Resolve and fix an overloaded expression that can be resolved
11662 // because it identifies a single function template specialization.
11663 //
11664 // Last three arguments should only be supplied if Complain = true
11665 //
11666 // Return true if it was logically possible to so resolve the
11667 // expression, regardless of whether or not it succeeded.  Always
11668 // returns true if 'complain' is set.
11669 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
11670                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
11671                       bool complain, SourceRange OpRangeForComplaining,
11672                                            QualType DestTypeForComplaining,
11673                                             unsigned DiagIDForComplaining) {
11674   assert(SrcExpr.get()->getType() == Context.OverloadTy);
11675 
11676   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
11677 
11678   DeclAccessPair found;
11679   ExprResult SingleFunctionExpression;
11680   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
11681                            ovl.Expression, /*complain*/ false, &found)) {
11682     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
11683       SrcExpr = ExprError();
11684       return true;
11685     }
11686 
11687     // It is only correct to resolve to an instance method if we're
11688     // resolving a form that's permitted to be a pointer to member.
11689     // Otherwise we'll end up making a bound member expression, which
11690     // is illegal in all the contexts we resolve like this.
11691     if (!ovl.HasFormOfMemberPointer &&
11692         isa<CXXMethodDecl>(fn) &&
11693         cast<CXXMethodDecl>(fn)->isInstance()) {
11694       if (!complain) return false;
11695 
11696       Diag(ovl.Expression->getExprLoc(),
11697            diag::err_bound_member_function)
11698         << 0 << ovl.Expression->getSourceRange();
11699 
11700       // TODO: I believe we only end up here if there's a mix of
11701       // static and non-static candidates (otherwise the expression
11702       // would have 'bound member' type, not 'overload' type).
11703       // Ideally we would note which candidate was chosen and why
11704       // the static candidates were rejected.
11705       SrcExpr = ExprError();
11706       return true;
11707     }
11708 
11709     // Fix the expression to refer to 'fn'.
11710     SingleFunctionExpression =
11711         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
11712 
11713     // If desired, do function-to-pointer decay.
11714     if (doFunctionPointerConverion) {
11715       SingleFunctionExpression =
11716         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
11717       if (SingleFunctionExpression.isInvalid()) {
11718         SrcExpr = ExprError();
11719         return true;
11720       }
11721     }
11722   }
11723 
11724   if (!SingleFunctionExpression.isUsable()) {
11725     if (complain) {
11726       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
11727         << ovl.Expression->getName()
11728         << DestTypeForComplaining
11729         << OpRangeForComplaining
11730         << ovl.Expression->getQualifierLoc().getSourceRange();
11731       NoteAllOverloadCandidates(SrcExpr.get());
11732 
11733       SrcExpr = ExprError();
11734       return true;
11735     }
11736 
11737     return false;
11738   }
11739 
11740   SrcExpr = SingleFunctionExpression;
11741   return true;
11742 }
11743 
11744 /// Add a single candidate to the overload set.
11745 static void AddOverloadedCallCandidate(Sema &S,
11746                                        DeclAccessPair FoundDecl,
11747                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
11748                                        ArrayRef<Expr *> Args,
11749                                        OverloadCandidateSet &CandidateSet,
11750                                        bool PartialOverloading,
11751                                        bool KnownValid) {
11752   NamedDecl *Callee = FoundDecl.getDecl();
11753   if (isa<UsingShadowDecl>(Callee))
11754     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
11755 
11756   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
11757     if (ExplicitTemplateArgs) {
11758       assert(!KnownValid && "Explicit template arguments?");
11759       return;
11760     }
11761     // Prevent ill-formed function decls to be added as overload candidates.
11762     if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
11763       return;
11764 
11765     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
11766                            /*SuppressUsedConversions=*/false,
11767                            PartialOverloading);
11768     return;
11769   }
11770 
11771   if (FunctionTemplateDecl *FuncTemplate
11772       = dyn_cast<FunctionTemplateDecl>(Callee)) {
11773     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
11774                                    ExplicitTemplateArgs, Args, CandidateSet,
11775                                    /*SuppressUsedConversions=*/false,
11776                                    PartialOverloading);
11777     return;
11778   }
11779 
11780   assert(!KnownValid && "unhandled case in overloaded call candidate");
11781 }
11782 
11783 /// Add the overload candidates named by callee and/or found by argument
11784 /// dependent lookup to the given overload set.
11785 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
11786                                        ArrayRef<Expr *> Args,
11787                                        OverloadCandidateSet &CandidateSet,
11788                                        bool PartialOverloading) {
11789 
11790 #ifndef NDEBUG
11791   // Verify that ArgumentDependentLookup is consistent with the rules
11792   // in C++0x [basic.lookup.argdep]p3:
11793   //
11794   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
11795   //   and let Y be the lookup set produced by argument dependent
11796   //   lookup (defined as follows). If X contains
11797   //
11798   //     -- a declaration of a class member, or
11799   //
11800   //     -- a block-scope function declaration that is not a
11801   //        using-declaration, or
11802   //
11803   //     -- a declaration that is neither a function or a function
11804   //        template
11805   //
11806   //   then Y is empty.
11807 
11808   if (ULE->requiresADL()) {
11809     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11810            E = ULE->decls_end(); I != E; ++I) {
11811       assert(!(*I)->getDeclContext()->isRecord());
11812       assert(isa<UsingShadowDecl>(*I) ||
11813              !(*I)->getDeclContext()->isFunctionOrMethod());
11814       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
11815     }
11816   }
11817 #endif
11818 
11819   // It would be nice to avoid this copy.
11820   TemplateArgumentListInfo TABuffer;
11821   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11822   if (ULE->hasExplicitTemplateArgs()) {
11823     ULE->copyTemplateArgumentsInto(TABuffer);
11824     ExplicitTemplateArgs = &TABuffer;
11825   }
11826 
11827   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11828          E = ULE->decls_end(); I != E; ++I)
11829     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
11830                                CandidateSet, PartialOverloading,
11831                                /*KnownValid*/ true);
11832 
11833   if (ULE->requiresADL())
11834     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
11835                                          Args, ExplicitTemplateArgs,
11836                                          CandidateSet, PartialOverloading);
11837 }
11838 
11839 /// Determine whether a declaration with the specified name could be moved into
11840 /// a different namespace.
11841 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
11842   switch (Name.getCXXOverloadedOperator()) {
11843   case OO_New: case OO_Array_New:
11844   case OO_Delete: case OO_Array_Delete:
11845     return false;
11846 
11847   default:
11848     return true;
11849   }
11850 }
11851 
11852 /// Attempt to recover from an ill-formed use of a non-dependent name in a
11853 /// template, where the non-dependent name was declared after the template
11854 /// was defined. This is common in code written for a compilers which do not
11855 /// correctly implement two-stage name lookup.
11856 ///
11857 /// Returns true if a viable candidate was found and a diagnostic was issued.
11858 static bool
11859 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
11860                        const CXXScopeSpec &SS, LookupResult &R,
11861                        OverloadCandidateSet::CandidateSetKind CSK,
11862                        TemplateArgumentListInfo *ExplicitTemplateArgs,
11863                        ArrayRef<Expr *> Args,
11864                        bool *DoDiagnoseEmptyLookup = nullptr) {
11865   if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
11866     return false;
11867 
11868   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
11869     if (DC->isTransparentContext())
11870       continue;
11871 
11872     SemaRef.LookupQualifiedName(R, DC);
11873 
11874     if (!R.empty()) {
11875       R.suppressDiagnostics();
11876 
11877       if (isa<CXXRecordDecl>(DC)) {
11878         // Don't diagnose names we find in classes; we get much better
11879         // diagnostics for these from DiagnoseEmptyLookup.
11880         R.clear();
11881         if (DoDiagnoseEmptyLookup)
11882           *DoDiagnoseEmptyLookup = true;
11883         return false;
11884       }
11885 
11886       OverloadCandidateSet Candidates(FnLoc, CSK);
11887       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
11888         AddOverloadedCallCandidate(SemaRef, I.getPair(),
11889                                    ExplicitTemplateArgs, Args,
11890                                    Candidates, false, /*KnownValid*/ false);
11891 
11892       OverloadCandidateSet::iterator Best;
11893       if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
11894         // No viable functions. Don't bother the user with notes for functions
11895         // which don't work and shouldn't be found anyway.
11896         R.clear();
11897         return false;
11898       }
11899 
11900       // Find the namespaces where ADL would have looked, and suggest
11901       // declaring the function there instead.
11902       Sema::AssociatedNamespaceSet AssociatedNamespaces;
11903       Sema::AssociatedClassSet AssociatedClasses;
11904       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
11905                                                  AssociatedNamespaces,
11906                                                  AssociatedClasses);
11907       Sema::AssociatedNamespaceSet SuggestedNamespaces;
11908       if (canBeDeclaredInNamespace(R.getLookupName())) {
11909         DeclContext *Std = SemaRef.getStdNamespace();
11910         for (Sema::AssociatedNamespaceSet::iterator
11911                it = AssociatedNamespaces.begin(),
11912                end = AssociatedNamespaces.end(); it != end; ++it) {
11913           // Never suggest declaring a function within namespace 'std'.
11914           if (Std && Std->Encloses(*it))
11915             continue;
11916 
11917           // Never suggest declaring a function within a namespace with a
11918           // reserved name, like __gnu_cxx.
11919           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
11920           if (NS &&
11921               NS->getQualifiedNameAsString().find("__") != std::string::npos)
11922             continue;
11923 
11924           SuggestedNamespaces.insert(*it);
11925         }
11926       }
11927 
11928       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
11929         << R.getLookupName();
11930       if (SuggestedNamespaces.empty()) {
11931         SemaRef.Diag(Best->Function->getLocation(),
11932                      diag::note_not_found_by_two_phase_lookup)
11933           << R.getLookupName() << 0;
11934       } else if (SuggestedNamespaces.size() == 1) {
11935         SemaRef.Diag(Best->Function->getLocation(),
11936                      diag::note_not_found_by_two_phase_lookup)
11937           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
11938       } else {
11939         // FIXME: It would be useful to list the associated namespaces here,
11940         // but the diagnostics infrastructure doesn't provide a way to produce
11941         // a localized representation of a list of items.
11942         SemaRef.Diag(Best->Function->getLocation(),
11943                      diag::note_not_found_by_two_phase_lookup)
11944           << R.getLookupName() << 2;
11945       }
11946 
11947       // Try to recover by calling this function.
11948       return true;
11949     }
11950 
11951     R.clear();
11952   }
11953 
11954   return false;
11955 }
11956 
11957 /// Attempt to recover from ill-formed use of a non-dependent operator in a
11958 /// template, where the non-dependent operator was declared after the template
11959 /// was defined.
11960 ///
11961 /// Returns true if a viable candidate was found and a diagnostic was issued.
11962 static bool
11963 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
11964                                SourceLocation OpLoc,
11965                                ArrayRef<Expr *> Args) {
11966   DeclarationName OpName =
11967     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
11968   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
11969   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
11970                                 OverloadCandidateSet::CSK_Operator,
11971                                 /*ExplicitTemplateArgs=*/nullptr, Args);
11972 }
11973 
11974 namespace {
11975 class BuildRecoveryCallExprRAII {
11976   Sema &SemaRef;
11977 public:
11978   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
11979     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
11980     SemaRef.IsBuildingRecoveryCallExpr = true;
11981   }
11982 
11983   ~BuildRecoveryCallExprRAII() {
11984     SemaRef.IsBuildingRecoveryCallExpr = false;
11985   }
11986 };
11987 
11988 }
11989 
11990 /// Attempts to recover from a call where no functions were found.
11991 ///
11992 /// Returns true if new candidates were found.
11993 static ExprResult
11994 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
11995                       UnresolvedLookupExpr *ULE,
11996                       SourceLocation LParenLoc,
11997                       MutableArrayRef<Expr *> Args,
11998                       SourceLocation RParenLoc,
11999                       bool EmptyLookup, bool AllowTypoCorrection) {
12000   // Do not try to recover if it is already building a recovery call.
12001   // This stops infinite loops for template instantiations like
12002   //
12003   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
12004   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
12005   //
12006   if (SemaRef.IsBuildingRecoveryCallExpr)
12007     return ExprError();
12008   BuildRecoveryCallExprRAII RCE(SemaRef);
12009 
12010   CXXScopeSpec SS;
12011   SS.Adopt(ULE->getQualifierLoc());
12012   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
12013 
12014   TemplateArgumentListInfo TABuffer;
12015   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12016   if (ULE->hasExplicitTemplateArgs()) {
12017     ULE->copyTemplateArgumentsInto(TABuffer);
12018     ExplicitTemplateArgs = &TABuffer;
12019   }
12020 
12021   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
12022                  Sema::LookupOrdinaryName);
12023   bool DoDiagnoseEmptyLookup = EmptyLookup;
12024   if (!DiagnoseTwoPhaseLookup(
12025           SemaRef, Fn->getExprLoc(), SS, R, OverloadCandidateSet::CSK_Normal,
12026           ExplicitTemplateArgs, Args, &DoDiagnoseEmptyLookup)) {
12027     NoTypoCorrectionCCC NoTypoValidator{};
12028     FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12029                                                 ExplicitTemplateArgs != nullptr,
12030                                                 dyn_cast<MemberExpr>(Fn));
12031     CorrectionCandidateCallback &Validator =
12032         AllowTypoCorrection
12033             ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12034             : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12035     if (!DoDiagnoseEmptyLookup ||
12036         SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12037                                     Args))
12038       return ExprError();
12039   }
12040 
12041   assert(!R.empty() && "lookup results empty despite recovery");
12042 
12043   // If recovery created an ambiguity, just bail out.
12044   if (R.isAmbiguous()) {
12045     R.suppressDiagnostics();
12046     return ExprError();
12047   }
12048 
12049   // Build an implicit member call if appropriate.  Just drop the
12050   // casts and such from the call, we don't really care.
12051   ExprResult NewFn = ExprError();
12052   if ((*R.begin())->isCXXClassMember())
12053     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12054                                                     ExplicitTemplateArgs, S);
12055   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
12056     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
12057                                         ExplicitTemplateArgs);
12058   else
12059     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
12060 
12061   if (NewFn.isInvalid())
12062     return ExprError();
12063 
12064   // This shouldn't cause an infinite loop because we're giving it
12065   // an expression with viable lookup results, which should never
12066   // end up here.
12067   return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
12068                                MultiExprArg(Args.data(), Args.size()),
12069                                RParenLoc);
12070 }
12071 
12072 /// Constructs and populates an OverloadedCandidateSet from
12073 /// the given function.
12074 /// \returns true when an the ExprResult output parameter has been set.
12075 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
12076                                   UnresolvedLookupExpr *ULE,
12077                                   MultiExprArg Args,
12078                                   SourceLocation RParenLoc,
12079                                   OverloadCandidateSet *CandidateSet,
12080                                   ExprResult *Result) {
12081 #ifndef NDEBUG
12082   if (ULE->requiresADL()) {
12083     // To do ADL, we must have found an unqualified name.
12084     assert(!ULE->getQualifier() && "qualified name with ADL");
12085 
12086     // We don't perform ADL for implicit declarations of builtins.
12087     // Verify that this was correctly set up.
12088     FunctionDecl *F;
12089     if (ULE->decls_begin() != ULE->decls_end() &&
12090         ULE->decls_begin() + 1 == ULE->decls_end() &&
12091         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
12092         F->getBuiltinID() && F->isImplicit())
12093       llvm_unreachable("performing ADL for builtin");
12094 
12095     // We don't perform ADL in C.
12096     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
12097   }
12098 #endif
12099 
12100   UnbridgedCastsSet UnbridgedCasts;
12101   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
12102     *Result = ExprError();
12103     return true;
12104   }
12105 
12106   // Add the functions denoted by the callee to the set of candidate
12107   // functions, including those from argument-dependent lookup.
12108   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
12109 
12110   if (getLangOpts().MSVCCompat &&
12111       CurContext->isDependentContext() && !isSFINAEContext() &&
12112       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
12113 
12114     OverloadCandidateSet::iterator Best;
12115     if (CandidateSet->empty() ||
12116         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
12117             OR_No_Viable_Function) {
12118       // In Microsoft mode, if we are inside a template class member function
12119       // then create a type dependent CallExpr. The goal is to postpone name
12120       // lookup to instantiation time to be able to search into type dependent
12121       // base classes.
12122       CallExpr *CE = CallExpr::Create(Context, Fn, Args, Context.DependentTy,
12123                                       VK_RValue, RParenLoc);
12124       CE->setTypeDependent(true);
12125       CE->setValueDependent(true);
12126       CE->setInstantiationDependent(true);
12127       *Result = CE;
12128       return true;
12129     }
12130   }
12131 
12132   if (CandidateSet->empty())
12133     return false;
12134 
12135   UnbridgedCasts.restore();
12136   return false;
12137 }
12138 
12139 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
12140 /// the completed call expression. If overload resolution fails, emits
12141 /// diagnostics and returns ExprError()
12142 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12143                                            UnresolvedLookupExpr *ULE,
12144                                            SourceLocation LParenLoc,
12145                                            MultiExprArg Args,
12146                                            SourceLocation RParenLoc,
12147                                            Expr *ExecConfig,
12148                                            OverloadCandidateSet *CandidateSet,
12149                                            OverloadCandidateSet::iterator *Best,
12150                                            OverloadingResult OverloadResult,
12151                                            bool AllowTypoCorrection) {
12152   if (CandidateSet->empty())
12153     return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
12154                                  RParenLoc, /*EmptyLookup=*/true,
12155                                  AllowTypoCorrection);
12156 
12157   switch (OverloadResult) {
12158   case OR_Success: {
12159     FunctionDecl *FDecl = (*Best)->Function;
12160     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
12161     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
12162       return ExprError();
12163     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12164     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12165                                          ExecConfig, /*IsExecConfig=*/false,
12166                                          (*Best)->IsADLCandidate);
12167   }
12168 
12169   case OR_No_Viable_Function: {
12170     // Try to recover by looking for viable functions which the user might
12171     // have meant to call.
12172     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
12173                                                 Args, RParenLoc,
12174                                                 /*EmptyLookup=*/false,
12175                                                 AllowTypoCorrection);
12176     if (!Recovery.isInvalid())
12177       return Recovery;
12178 
12179     // If the user passes in a function that we can't take the address of, we
12180     // generally end up emitting really bad error messages. Here, we attempt to
12181     // emit better ones.
12182     for (const Expr *Arg : Args) {
12183       if (!Arg->getType()->isFunctionType())
12184         continue;
12185       if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
12186         auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
12187         if (FD &&
12188             !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
12189                                                        Arg->getExprLoc()))
12190           return ExprError();
12191       }
12192     }
12193 
12194     CandidateSet->NoteCandidates(
12195         PartialDiagnosticAt(
12196             Fn->getBeginLoc(),
12197             SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
12198                 << ULE->getName() << Fn->getSourceRange()),
12199         SemaRef, OCD_AllCandidates, Args);
12200     break;
12201   }
12202 
12203   case OR_Ambiguous:
12204     CandidateSet->NoteCandidates(
12205         PartialDiagnosticAt(Fn->getBeginLoc(),
12206                             SemaRef.PDiag(diag::err_ovl_ambiguous_call)
12207                                 << ULE->getName() << Fn->getSourceRange()),
12208         SemaRef, OCD_ViableCandidates, Args);
12209     break;
12210 
12211   case OR_Deleted: {
12212     CandidateSet->NoteCandidates(
12213         PartialDiagnosticAt(Fn->getBeginLoc(),
12214                             SemaRef.PDiag(diag::err_ovl_deleted_call)
12215                                 << ULE->getName() << Fn->getSourceRange()),
12216         SemaRef, OCD_AllCandidates, Args);
12217 
12218     // We emitted an error for the unavailable/deleted function call but keep
12219     // the call in the AST.
12220     FunctionDecl *FDecl = (*Best)->Function;
12221     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12222     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12223                                          ExecConfig, /*IsExecConfig=*/false,
12224                                          (*Best)->IsADLCandidate);
12225   }
12226   }
12227 
12228   // Overload resolution failed.
12229   return ExprError();
12230 }
12231 
12232 static void markUnaddressableCandidatesUnviable(Sema &S,
12233                                                 OverloadCandidateSet &CS) {
12234   for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
12235     if (I->Viable &&
12236         !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
12237       I->Viable = false;
12238       I->FailureKind = ovl_fail_addr_not_available;
12239     }
12240   }
12241 }
12242 
12243 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
12244 /// (which eventually refers to the declaration Func) and the call
12245 /// arguments Args/NumArgs, attempt to resolve the function call down
12246 /// to a specific function. If overload resolution succeeds, returns
12247 /// the call expression produced by overload resolution.
12248 /// Otherwise, emits diagnostics and returns ExprError.
12249 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
12250                                          UnresolvedLookupExpr *ULE,
12251                                          SourceLocation LParenLoc,
12252                                          MultiExprArg Args,
12253                                          SourceLocation RParenLoc,
12254                                          Expr *ExecConfig,
12255                                          bool AllowTypoCorrection,
12256                                          bool CalleesAddressIsTaken) {
12257   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
12258                                     OverloadCandidateSet::CSK_Normal);
12259   ExprResult result;
12260 
12261   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
12262                              &result))
12263     return result;
12264 
12265   // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
12266   // functions that aren't addressible are considered unviable.
12267   if (CalleesAddressIsTaken)
12268     markUnaddressableCandidatesUnviable(*this, CandidateSet);
12269 
12270   OverloadCandidateSet::iterator Best;
12271   OverloadingResult OverloadResult =
12272       CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
12273 
12274   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
12275                                   ExecConfig, &CandidateSet, &Best,
12276                                   OverloadResult, AllowTypoCorrection);
12277 }
12278 
12279 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
12280   return Functions.size() > 1 ||
12281     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
12282 }
12283 
12284 /// Create a unary operation that may resolve to an overloaded
12285 /// operator.
12286 ///
12287 /// \param OpLoc The location of the operator itself (e.g., '*').
12288 ///
12289 /// \param Opc The UnaryOperatorKind that describes this operator.
12290 ///
12291 /// \param Fns The set of non-member functions that will be
12292 /// considered by overload resolution. The caller needs to build this
12293 /// set based on the context using, e.g.,
12294 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12295 /// set should not contain any member functions; those will be added
12296 /// by CreateOverloadedUnaryOp().
12297 ///
12298 /// \param Input The input argument.
12299 ExprResult
12300 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
12301                               const UnresolvedSetImpl &Fns,
12302                               Expr *Input, bool PerformADL) {
12303   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
12304   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
12305   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12306   // TODO: provide better source location info.
12307   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12308 
12309   if (checkPlaceholderForOverload(*this, Input))
12310     return ExprError();
12311 
12312   Expr *Args[2] = { Input, nullptr };
12313   unsigned NumArgs = 1;
12314 
12315   // For post-increment and post-decrement, add the implicit '0' as
12316   // the second argument, so that we know this is a post-increment or
12317   // post-decrement.
12318   if (Opc == UO_PostInc || Opc == UO_PostDec) {
12319     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
12320     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
12321                                      SourceLocation());
12322     NumArgs = 2;
12323   }
12324 
12325   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
12326 
12327   if (Input->isTypeDependent()) {
12328     if (Fns.empty())
12329       return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
12330                                          VK_RValue, OK_Ordinary, OpLoc, false);
12331 
12332     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12333     UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12334         Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12335         /*ADL*/ true, IsOverloaded(Fns), Fns.begin(), Fns.end());
12336     return CXXOperatorCallExpr::Create(Context, Op, Fn, ArgsArray,
12337                                        Context.DependentTy, VK_RValue, OpLoc,
12338                                        FPOptions());
12339   }
12340 
12341   // Build an empty overload set.
12342   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12343 
12344   // Add the candidates from the given function set.
12345   AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
12346 
12347   // Add operator candidates that are member functions.
12348   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12349 
12350   // Add candidates from ADL.
12351   if (PerformADL) {
12352     AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
12353                                          /*ExplicitTemplateArgs*/nullptr,
12354                                          CandidateSet);
12355   }
12356 
12357   // Add builtin operator candidates.
12358   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12359 
12360   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12361 
12362   // Perform overload resolution.
12363   OverloadCandidateSet::iterator Best;
12364   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12365   case OR_Success: {
12366     // We found a built-in operator or an overloaded operator.
12367     FunctionDecl *FnDecl = Best->Function;
12368 
12369     if (FnDecl) {
12370       Expr *Base = nullptr;
12371       // We matched an overloaded operator. Build a call to that
12372       // operator.
12373 
12374       // Convert the arguments.
12375       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12376         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
12377 
12378         ExprResult InputRes =
12379           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
12380                                               Best->FoundDecl, Method);
12381         if (InputRes.isInvalid())
12382           return ExprError();
12383         Base = Input = InputRes.get();
12384       } else {
12385         // Convert the arguments.
12386         ExprResult InputInit
12387           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12388                                                       Context,
12389                                                       FnDecl->getParamDecl(0)),
12390                                       SourceLocation(),
12391                                       Input);
12392         if (InputInit.isInvalid())
12393           return ExprError();
12394         Input = InputInit.get();
12395       }
12396 
12397       // Build the actual expression node.
12398       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
12399                                                 Base, HadMultipleCandidates,
12400                                                 OpLoc);
12401       if (FnExpr.isInvalid())
12402         return ExprError();
12403 
12404       // Determine the result type.
12405       QualType ResultTy = FnDecl->getReturnType();
12406       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12407       ResultTy = ResultTy.getNonLValueExprType(Context);
12408 
12409       Args[0] = Input;
12410       CallExpr *TheCall = CXXOperatorCallExpr::Create(
12411           Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
12412           FPOptions(), Best->IsADLCandidate);
12413 
12414       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
12415         return ExprError();
12416 
12417       if (CheckFunctionCall(FnDecl, TheCall,
12418                             FnDecl->getType()->castAs<FunctionProtoType>()))
12419         return ExprError();
12420 
12421       return MaybeBindToTemporary(TheCall);
12422     } else {
12423       // We matched a built-in operator. Convert the arguments, then
12424       // break out so that we will build the appropriate built-in
12425       // operator node.
12426       ExprResult InputRes = PerformImplicitConversion(
12427           Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
12428           CCK_ForBuiltinOverloadedOp);
12429       if (InputRes.isInvalid())
12430         return ExprError();
12431       Input = InputRes.get();
12432       break;
12433     }
12434   }
12435 
12436   case OR_No_Viable_Function:
12437     // This is an erroneous use of an operator which can be overloaded by
12438     // a non-member function. Check for non-member operators which were
12439     // defined too late to be candidates.
12440     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
12441       // FIXME: Recover by calling the found function.
12442       return ExprError();
12443 
12444     // No viable function; fall through to handling this as a
12445     // built-in operator, which will produce an error message for us.
12446     break;
12447 
12448   case OR_Ambiguous:
12449     CandidateSet.NoteCandidates(
12450         PartialDiagnosticAt(OpLoc,
12451                             PDiag(diag::err_ovl_ambiguous_oper_unary)
12452                                 << UnaryOperator::getOpcodeStr(Opc)
12453                                 << Input->getType() << Input->getSourceRange()),
12454         *this, OCD_ViableCandidates, ArgsArray,
12455         UnaryOperator::getOpcodeStr(Opc), OpLoc);
12456     return ExprError();
12457 
12458   case OR_Deleted:
12459     CandidateSet.NoteCandidates(
12460         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
12461                                        << UnaryOperator::getOpcodeStr(Opc)
12462                                        << Input->getSourceRange()),
12463         *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
12464         OpLoc);
12465     return ExprError();
12466   }
12467 
12468   // Either we found no viable overloaded operator or we matched a
12469   // built-in operator. In either case, fall through to trying to
12470   // build a built-in operation.
12471   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
12472 }
12473 
12474 /// Create a binary operation that may resolve to an overloaded
12475 /// operator.
12476 ///
12477 /// \param OpLoc The location of the operator itself (e.g., '+').
12478 ///
12479 /// \param Opc The BinaryOperatorKind that describes this operator.
12480 ///
12481 /// \param Fns The set of non-member functions that will be
12482 /// considered by overload resolution. The caller needs to build this
12483 /// set based on the context using, e.g.,
12484 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12485 /// set should not contain any member functions; those will be added
12486 /// by CreateOverloadedBinOp().
12487 ///
12488 /// \param LHS Left-hand argument.
12489 /// \param RHS Right-hand argument.
12490 ExprResult
12491 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
12492                             BinaryOperatorKind Opc,
12493                             const UnresolvedSetImpl &Fns,
12494                             Expr *LHS, Expr *RHS, bool PerformADL) {
12495   Expr *Args[2] = { LHS, RHS };
12496   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
12497 
12498   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
12499   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12500 
12501   // If either side is type-dependent, create an appropriate dependent
12502   // expression.
12503   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12504     if (Fns.empty()) {
12505       // If there are no functions to store, just build a dependent
12506       // BinaryOperator or CompoundAssignment.
12507       if (Opc <= BO_Assign || Opc > BO_OrAssign)
12508         return new (Context) BinaryOperator(
12509             Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
12510             OpLoc, FPFeatures);
12511 
12512       return new (Context) CompoundAssignOperator(
12513           Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
12514           Context.DependentTy, Context.DependentTy, OpLoc,
12515           FPFeatures);
12516     }
12517 
12518     // FIXME: save results of ADL from here?
12519     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12520     // TODO: provide better source location info in DNLoc component.
12521     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12522     UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12523         Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12524         /*ADL*/ PerformADL, IsOverloaded(Fns), Fns.begin(), Fns.end());
12525     return CXXOperatorCallExpr::Create(Context, Op, Fn, Args,
12526                                        Context.DependentTy, VK_RValue, OpLoc,
12527                                        FPFeatures);
12528   }
12529 
12530   // Always do placeholder-like conversions on the RHS.
12531   if (checkPlaceholderForOverload(*this, Args[1]))
12532     return ExprError();
12533 
12534   // Do placeholder-like conversion on the LHS; note that we should
12535   // not get here with a PseudoObject LHS.
12536   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
12537   if (checkPlaceholderForOverload(*this, Args[0]))
12538     return ExprError();
12539 
12540   // If this is the assignment operator, we only perform overload resolution
12541   // if the left-hand side is a class or enumeration type. This is actually
12542   // a hack. The standard requires that we do overload resolution between the
12543   // various built-in candidates, but as DR507 points out, this can lead to
12544   // problems. So we do it this way, which pretty much follows what GCC does.
12545   // Note that we go the traditional code path for compound assignment forms.
12546   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
12547     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12548 
12549   // If this is the .* operator, which is not overloadable, just
12550   // create a built-in binary operator.
12551   if (Opc == BO_PtrMemD)
12552     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12553 
12554   // Build an empty overload set.
12555   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12556 
12557   // Add the candidates from the given function set.
12558   AddFunctionCandidates(Fns, Args, CandidateSet);
12559 
12560   // Add operator candidates that are member functions.
12561   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12562 
12563   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
12564   // performed for an assignment operator (nor for operator[] nor operator->,
12565   // which don't get here).
12566   if (Opc != BO_Assign && PerformADL)
12567     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
12568                                          /*ExplicitTemplateArgs*/ nullptr,
12569                                          CandidateSet);
12570 
12571   // Add builtin operator candidates.
12572   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12573 
12574   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12575 
12576   // Perform overload resolution.
12577   OverloadCandidateSet::iterator Best;
12578   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12579     case OR_Success: {
12580       // We found a built-in operator or an overloaded operator.
12581       FunctionDecl *FnDecl = Best->Function;
12582 
12583       if (FnDecl) {
12584         Expr *Base = nullptr;
12585         // We matched an overloaded operator. Build a call to that
12586         // operator.
12587 
12588         // Convert the arguments.
12589         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12590           // Best->Access is only meaningful for class members.
12591           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
12592 
12593           ExprResult Arg1 =
12594             PerformCopyInitialization(
12595               InitializedEntity::InitializeParameter(Context,
12596                                                      FnDecl->getParamDecl(0)),
12597               SourceLocation(), Args[1]);
12598           if (Arg1.isInvalid())
12599             return ExprError();
12600 
12601           ExprResult Arg0 =
12602             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12603                                                 Best->FoundDecl, Method);
12604           if (Arg0.isInvalid())
12605             return ExprError();
12606           Base = Args[0] = Arg0.getAs<Expr>();
12607           Args[1] = RHS = Arg1.getAs<Expr>();
12608         } else {
12609           // Convert the arguments.
12610           ExprResult Arg0 = PerformCopyInitialization(
12611             InitializedEntity::InitializeParameter(Context,
12612                                                    FnDecl->getParamDecl(0)),
12613             SourceLocation(), Args[0]);
12614           if (Arg0.isInvalid())
12615             return ExprError();
12616 
12617           ExprResult Arg1 =
12618             PerformCopyInitialization(
12619               InitializedEntity::InitializeParameter(Context,
12620                                                      FnDecl->getParamDecl(1)),
12621               SourceLocation(), Args[1]);
12622           if (Arg1.isInvalid())
12623             return ExprError();
12624           Args[0] = LHS = Arg0.getAs<Expr>();
12625           Args[1] = RHS = Arg1.getAs<Expr>();
12626         }
12627 
12628         // Build the actual expression node.
12629         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12630                                                   Best->FoundDecl, Base,
12631                                                   HadMultipleCandidates, OpLoc);
12632         if (FnExpr.isInvalid())
12633           return ExprError();
12634 
12635         // Determine the result type.
12636         QualType ResultTy = FnDecl->getReturnType();
12637         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12638         ResultTy = ResultTy.getNonLValueExprType(Context);
12639 
12640         CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
12641             Context, Op, FnExpr.get(), Args, ResultTy, VK, OpLoc, FPFeatures,
12642             Best->IsADLCandidate);
12643 
12644         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
12645                                 FnDecl))
12646           return ExprError();
12647 
12648         ArrayRef<const Expr *> ArgsArray(Args, 2);
12649         const Expr *ImplicitThis = nullptr;
12650         // Cut off the implicit 'this'.
12651         if (isa<CXXMethodDecl>(FnDecl)) {
12652           ImplicitThis = ArgsArray[0];
12653           ArgsArray = ArgsArray.slice(1);
12654         }
12655 
12656         // Check for a self move.
12657         if (Op == OO_Equal)
12658           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
12659 
12660         checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
12661                   isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
12662                   VariadicDoesNotApply);
12663 
12664         return MaybeBindToTemporary(TheCall);
12665       } else {
12666         // We matched a built-in operator. Convert the arguments, then
12667         // break out so that we will build the appropriate built-in
12668         // operator node.
12669         ExprResult ArgsRes0 = PerformImplicitConversion(
12670             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
12671             AA_Passing, CCK_ForBuiltinOverloadedOp);
12672         if (ArgsRes0.isInvalid())
12673           return ExprError();
12674         Args[0] = ArgsRes0.get();
12675 
12676         ExprResult ArgsRes1 = PerformImplicitConversion(
12677             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
12678             AA_Passing, CCK_ForBuiltinOverloadedOp);
12679         if (ArgsRes1.isInvalid())
12680           return ExprError();
12681         Args[1] = ArgsRes1.get();
12682         break;
12683       }
12684     }
12685 
12686     case OR_No_Viable_Function: {
12687       // C++ [over.match.oper]p9:
12688       //   If the operator is the operator , [...] and there are no
12689       //   viable functions, then the operator is assumed to be the
12690       //   built-in operator and interpreted according to clause 5.
12691       if (Opc == BO_Comma)
12692         break;
12693 
12694       // For class as left operand for assignment or compound assignment
12695       // operator do not fall through to handling in built-in, but report that
12696       // no overloaded assignment operator found
12697       ExprResult Result = ExprError();
12698       StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
12699       auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
12700                                                    Args, OpLoc);
12701       if (Args[0]->getType()->isRecordType() &&
12702           Opc >= BO_Assign && Opc <= BO_OrAssign) {
12703         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
12704              << BinaryOperator::getOpcodeStr(Opc)
12705              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12706         if (Args[0]->getType()->isIncompleteType()) {
12707           Diag(OpLoc, diag::note_assign_lhs_incomplete)
12708             << Args[0]->getType()
12709             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12710         }
12711       } else {
12712         // This is an erroneous use of an operator which can be overloaded by
12713         // a non-member function. Check for non-member operators which were
12714         // defined too late to be candidates.
12715         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
12716           // FIXME: Recover by calling the found function.
12717           return ExprError();
12718 
12719         // No viable function; try to create a built-in operation, which will
12720         // produce an error. Then, show the non-viable candidates.
12721         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12722       }
12723       assert(Result.isInvalid() &&
12724              "C++ binary operator overloading is missing candidates!");
12725       CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
12726       return Result;
12727     }
12728 
12729     case OR_Ambiguous:
12730       CandidateSet.NoteCandidates(
12731           PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
12732                                          << BinaryOperator::getOpcodeStr(Opc)
12733                                          << Args[0]->getType()
12734                                          << Args[1]->getType()
12735                                          << Args[0]->getSourceRange()
12736                                          << Args[1]->getSourceRange()),
12737           *this, OCD_ViableCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
12738           OpLoc);
12739       return ExprError();
12740 
12741     case OR_Deleted:
12742       if (isImplicitlyDeleted(Best->Function)) {
12743         CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12744         Diag(OpLoc, diag::err_ovl_deleted_special_oper)
12745           << Context.getRecordType(Method->getParent())
12746           << getSpecialMember(Method);
12747 
12748         // The user probably meant to call this special member. Just
12749         // explain why it's deleted.
12750         NoteDeletedFunction(Method);
12751         return ExprError();
12752       }
12753       CandidateSet.NoteCandidates(
12754           PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
12755                                          << BinaryOperator::getOpcodeStr(Opc)
12756                                          << Args[0]->getSourceRange()
12757                                          << Args[1]->getSourceRange()),
12758           *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
12759           OpLoc);
12760       return ExprError();
12761   }
12762 
12763   // We matched a built-in operator; build it.
12764   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12765 }
12766 
12767 ExprResult
12768 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
12769                                          SourceLocation RLoc,
12770                                          Expr *Base, Expr *Idx) {
12771   Expr *Args[2] = { Base, Idx };
12772   DeclarationName OpName =
12773       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
12774 
12775   // If either side is type-dependent, create an appropriate dependent
12776   // expression.
12777   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12778 
12779     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12780     // CHECKME: no 'operator' keyword?
12781     DeclarationNameInfo OpNameInfo(OpName, LLoc);
12782     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12783     UnresolvedLookupExpr *Fn
12784       = UnresolvedLookupExpr::Create(Context, NamingClass,
12785                                      NestedNameSpecifierLoc(), OpNameInfo,
12786                                      /*ADL*/ true, /*Overloaded*/ false,
12787                                      UnresolvedSetIterator(),
12788                                      UnresolvedSetIterator());
12789     // Can't add any actual overloads yet
12790 
12791     return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn, Args,
12792                                        Context.DependentTy, VK_RValue, RLoc,
12793                                        FPOptions());
12794   }
12795 
12796   // Handle placeholders on both operands.
12797   if (checkPlaceholderForOverload(*this, Args[0]))
12798     return ExprError();
12799   if (checkPlaceholderForOverload(*this, Args[1]))
12800     return ExprError();
12801 
12802   // Build an empty overload set.
12803   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
12804 
12805   // Subscript can only be overloaded as a member function.
12806 
12807   // Add operator candidates that are member functions.
12808   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12809 
12810   // Add builtin operator candidates.
12811   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12812 
12813   bool HadMultipleCandidates = (CandidateSet.size() > 1);
12814 
12815   // Perform overload resolution.
12816   OverloadCandidateSet::iterator Best;
12817   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
12818     case OR_Success: {
12819       // We found a built-in operator or an overloaded operator.
12820       FunctionDecl *FnDecl = Best->Function;
12821 
12822       if (FnDecl) {
12823         // We matched an overloaded operator. Build a call to that
12824         // operator.
12825 
12826         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
12827 
12828         // Convert the arguments.
12829         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
12830         ExprResult Arg0 =
12831           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12832                                               Best->FoundDecl, Method);
12833         if (Arg0.isInvalid())
12834           return ExprError();
12835         Args[0] = Arg0.get();
12836 
12837         // Convert the arguments.
12838         ExprResult InputInit
12839           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12840                                                       Context,
12841                                                       FnDecl->getParamDecl(0)),
12842                                       SourceLocation(),
12843                                       Args[1]);
12844         if (InputInit.isInvalid())
12845           return ExprError();
12846 
12847         Args[1] = InputInit.getAs<Expr>();
12848 
12849         // Build the actual expression node.
12850         DeclarationNameInfo OpLocInfo(OpName, LLoc);
12851         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12852         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12853                                                   Best->FoundDecl,
12854                                                   Base,
12855                                                   HadMultipleCandidates,
12856                                                   OpLocInfo.getLoc(),
12857                                                   OpLocInfo.getInfo());
12858         if (FnExpr.isInvalid())
12859           return ExprError();
12860 
12861         // Determine the result type
12862         QualType ResultTy = FnDecl->getReturnType();
12863         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12864         ResultTy = ResultTy.getNonLValueExprType(Context);
12865 
12866         CXXOperatorCallExpr *TheCall =
12867             CXXOperatorCallExpr::Create(Context, OO_Subscript, FnExpr.get(),
12868                                         Args, ResultTy, VK, RLoc, FPOptions());
12869 
12870         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
12871           return ExprError();
12872 
12873         if (CheckFunctionCall(Method, TheCall,
12874                               Method->getType()->castAs<FunctionProtoType>()))
12875           return ExprError();
12876 
12877         return MaybeBindToTemporary(TheCall);
12878       } else {
12879         // We matched a built-in operator. Convert the arguments, then
12880         // break out so that we will build the appropriate built-in
12881         // operator node.
12882         ExprResult ArgsRes0 = PerformImplicitConversion(
12883             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
12884             AA_Passing, CCK_ForBuiltinOverloadedOp);
12885         if (ArgsRes0.isInvalid())
12886           return ExprError();
12887         Args[0] = ArgsRes0.get();
12888 
12889         ExprResult ArgsRes1 = PerformImplicitConversion(
12890             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
12891             AA_Passing, CCK_ForBuiltinOverloadedOp);
12892         if (ArgsRes1.isInvalid())
12893           return ExprError();
12894         Args[1] = ArgsRes1.get();
12895 
12896         break;
12897       }
12898     }
12899 
12900     case OR_No_Viable_Function: {
12901       PartialDiagnostic PD = CandidateSet.empty()
12902           ? (PDiag(diag::err_ovl_no_oper)
12903              << Args[0]->getType() << /*subscript*/ 0
12904              << Args[0]->getSourceRange() << Args[1]->getSourceRange())
12905           : (PDiag(diag::err_ovl_no_viable_subscript)
12906              << Args[0]->getType() << Args[0]->getSourceRange()
12907              << Args[1]->getSourceRange());
12908       CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
12909                                   OCD_AllCandidates, Args, "[]", LLoc);
12910       return ExprError();
12911     }
12912 
12913     case OR_Ambiguous:
12914       CandidateSet.NoteCandidates(
12915           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
12916                                         << "[]" << Args[0]->getType()
12917                                         << Args[1]->getType()
12918                                         << Args[0]->getSourceRange()
12919                                         << Args[1]->getSourceRange()),
12920           *this, OCD_ViableCandidates, Args, "[]", LLoc);
12921       return ExprError();
12922 
12923     case OR_Deleted:
12924       CandidateSet.NoteCandidates(
12925           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
12926                                         << "[]" << Args[0]->getSourceRange()
12927                                         << Args[1]->getSourceRange()),
12928           *this, OCD_AllCandidates, Args, "[]", LLoc);
12929       return ExprError();
12930     }
12931 
12932   // We matched a built-in operator; build it.
12933   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
12934 }
12935 
12936 /// BuildCallToMemberFunction - Build a call to a member
12937 /// function. MemExpr is the expression that refers to the member
12938 /// function (and includes the object parameter), Args/NumArgs are the
12939 /// arguments to the function call (not including the object
12940 /// parameter). The caller needs to validate that the member
12941 /// expression refers to a non-static member function or an overloaded
12942 /// member function.
12943 ExprResult
12944 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
12945                                 SourceLocation LParenLoc,
12946                                 MultiExprArg Args,
12947                                 SourceLocation RParenLoc) {
12948   assert(MemExprE->getType() == Context.BoundMemberTy ||
12949          MemExprE->getType() == Context.OverloadTy);
12950 
12951   // Dig out the member expression. This holds both the object
12952   // argument and the member function we're referring to.
12953   Expr *NakedMemExpr = MemExprE->IgnoreParens();
12954 
12955   // Determine whether this is a call to a pointer-to-member function.
12956   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
12957     assert(op->getType() == Context.BoundMemberTy);
12958     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
12959 
12960     QualType fnType =
12961       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
12962 
12963     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
12964     QualType resultType = proto->getCallResultType(Context);
12965     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
12966 
12967     // Check that the object type isn't more qualified than the
12968     // member function we're calling.
12969     Qualifiers funcQuals = proto->getMethodQuals();
12970 
12971     QualType objectType = op->getLHS()->getType();
12972     if (op->getOpcode() == BO_PtrMemI)
12973       objectType = objectType->castAs<PointerType>()->getPointeeType();
12974     Qualifiers objectQuals = objectType.getQualifiers();
12975 
12976     Qualifiers difference = objectQuals - funcQuals;
12977     difference.removeObjCGCAttr();
12978     difference.removeAddressSpace();
12979     if (difference) {
12980       std::string qualsString = difference.getAsString();
12981       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
12982         << fnType.getUnqualifiedType()
12983         << qualsString
12984         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
12985     }
12986 
12987     CXXMemberCallExpr *call =
12988         CXXMemberCallExpr::Create(Context, MemExprE, Args, resultType,
12989                                   valueKind, RParenLoc, proto->getNumParams());
12990 
12991     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
12992                             call, nullptr))
12993       return ExprError();
12994 
12995     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
12996       return ExprError();
12997 
12998     if (CheckOtherCall(call, proto))
12999       return ExprError();
13000 
13001     return MaybeBindToTemporary(call);
13002   }
13003 
13004   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
13005     return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue,
13006                             RParenLoc);
13007 
13008   UnbridgedCastsSet UnbridgedCasts;
13009   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
13010     return ExprError();
13011 
13012   MemberExpr *MemExpr;
13013   CXXMethodDecl *Method = nullptr;
13014   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
13015   NestedNameSpecifier *Qualifier = nullptr;
13016   if (isa<MemberExpr>(NakedMemExpr)) {
13017     MemExpr = cast<MemberExpr>(NakedMemExpr);
13018     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
13019     FoundDecl = MemExpr->getFoundDecl();
13020     Qualifier = MemExpr->getQualifier();
13021     UnbridgedCasts.restore();
13022   } else {
13023     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
13024     Qualifier = UnresExpr->getQualifier();
13025 
13026     QualType ObjectType = UnresExpr->getBaseType();
13027     Expr::Classification ObjectClassification
13028       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
13029                             : UnresExpr->getBase()->Classify(Context);
13030 
13031     // Add overload candidates
13032     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
13033                                       OverloadCandidateSet::CSK_Normal);
13034 
13035     // FIXME: avoid copy.
13036     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13037     if (UnresExpr->hasExplicitTemplateArgs()) {
13038       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13039       TemplateArgs = &TemplateArgsBuffer;
13040     }
13041 
13042     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
13043            E = UnresExpr->decls_end(); I != E; ++I) {
13044 
13045       NamedDecl *Func = *I;
13046       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
13047       if (isa<UsingShadowDecl>(Func))
13048         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
13049 
13050 
13051       // Microsoft supports direct constructor calls.
13052       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
13053         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
13054                              CandidateSet,
13055                              /*SuppressUserConversions*/ false);
13056       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
13057         // If explicit template arguments were provided, we can't call a
13058         // non-template member function.
13059         if (TemplateArgs)
13060           continue;
13061 
13062         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
13063                            ObjectClassification, Args, CandidateSet,
13064                            /*SuppressUserConversions=*/false);
13065       } else {
13066         AddMethodTemplateCandidate(
13067             cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
13068             TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
13069             /*SuppressUsedConversions=*/false);
13070       }
13071     }
13072 
13073     DeclarationName DeclName = UnresExpr->getMemberName();
13074 
13075     UnbridgedCasts.restore();
13076 
13077     OverloadCandidateSet::iterator Best;
13078     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
13079                                             Best)) {
13080     case OR_Success:
13081       Method = cast<CXXMethodDecl>(Best->Function);
13082       FoundDecl = Best->FoundDecl;
13083       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
13084       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
13085         return ExprError();
13086       // If FoundDecl is different from Method (such as if one is a template
13087       // and the other a specialization), make sure DiagnoseUseOfDecl is
13088       // called on both.
13089       // FIXME: This would be more comprehensively addressed by modifying
13090       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
13091       // being used.
13092       if (Method != FoundDecl.getDecl() &&
13093                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
13094         return ExprError();
13095       break;
13096 
13097     case OR_No_Viable_Function:
13098       CandidateSet.NoteCandidates(
13099           PartialDiagnosticAt(
13100               UnresExpr->getMemberLoc(),
13101               PDiag(diag::err_ovl_no_viable_member_function_in_call)
13102                   << DeclName << MemExprE->getSourceRange()),
13103           *this, OCD_AllCandidates, Args);
13104       // FIXME: Leaking incoming expressions!
13105       return ExprError();
13106 
13107     case OR_Ambiguous:
13108       CandidateSet.NoteCandidates(
13109           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13110                               PDiag(diag::err_ovl_ambiguous_member_call)
13111                                   << DeclName << MemExprE->getSourceRange()),
13112           *this, OCD_AllCandidates, Args);
13113       // FIXME: Leaking incoming expressions!
13114       return ExprError();
13115 
13116     case OR_Deleted:
13117       CandidateSet.NoteCandidates(
13118           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13119                               PDiag(diag::err_ovl_deleted_member_call)
13120                                   << DeclName << MemExprE->getSourceRange()),
13121           *this, OCD_AllCandidates, Args);
13122       // FIXME: Leaking incoming expressions!
13123       return ExprError();
13124     }
13125 
13126     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
13127 
13128     // If overload resolution picked a static member, build a
13129     // non-member call based on that function.
13130     if (Method->isStatic()) {
13131       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
13132                                    RParenLoc);
13133     }
13134 
13135     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
13136   }
13137 
13138   QualType ResultType = Method->getReturnType();
13139   ExprValueKind VK = Expr::getValueKindForType(ResultType);
13140   ResultType = ResultType.getNonLValueExprType(Context);
13141 
13142   assert(Method && "Member call to something that isn't a method?");
13143   const auto *Proto = Method->getType()->getAs<FunctionProtoType>();
13144   CXXMemberCallExpr *TheCall =
13145       CXXMemberCallExpr::Create(Context, MemExprE, Args, ResultType, VK,
13146                                 RParenLoc, Proto->getNumParams());
13147 
13148   // Check for a valid return type.
13149   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
13150                           TheCall, Method))
13151     return ExprError();
13152 
13153   // Convert the object argument (for a non-static member function call).
13154   // We only need to do this if there was actually an overload; otherwise
13155   // it was done at lookup.
13156   if (!Method->isStatic()) {
13157     ExprResult ObjectArg =
13158       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
13159                                           FoundDecl, Method);
13160     if (ObjectArg.isInvalid())
13161       return ExprError();
13162     MemExpr->setBase(ObjectArg.get());
13163   }
13164 
13165   // Convert the rest of the arguments
13166   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
13167                               RParenLoc))
13168     return ExprError();
13169 
13170   DiagnoseSentinelCalls(Method, LParenLoc, Args);
13171 
13172   if (CheckFunctionCall(Method, TheCall, Proto))
13173     return ExprError();
13174 
13175   // In the case the method to call was not selected by the overloading
13176   // resolution process, we still need to handle the enable_if attribute. Do
13177   // that here, so it will not hide previous -- and more relevant -- errors.
13178   if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
13179     if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
13180       Diag(MemE->getMemberLoc(),
13181            diag::err_ovl_no_viable_member_function_in_call)
13182           << Method << Method->getSourceRange();
13183       Diag(Method->getLocation(),
13184            diag::note_ovl_candidate_disabled_by_function_cond_attr)
13185           << Attr->getCond()->getSourceRange() << Attr->getMessage();
13186       return ExprError();
13187     }
13188   }
13189 
13190   if ((isa<CXXConstructorDecl>(CurContext) ||
13191        isa<CXXDestructorDecl>(CurContext)) &&
13192       TheCall->getMethodDecl()->isPure()) {
13193     const CXXMethodDecl *MD = TheCall->getMethodDecl();
13194 
13195     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
13196         MemExpr->performsVirtualDispatch(getLangOpts())) {
13197       Diag(MemExpr->getBeginLoc(),
13198            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
13199           << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
13200           << MD->getParent()->getDeclName();
13201 
13202       Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
13203       if (getLangOpts().AppleKext)
13204         Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
13205             << MD->getParent()->getDeclName() << MD->getDeclName();
13206     }
13207   }
13208 
13209   if (CXXDestructorDecl *DD =
13210           dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
13211     // a->A::f() doesn't go through the vtable, except in AppleKext mode.
13212     bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
13213     CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
13214                          CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
13215                          MemExpr->getMemberLoc());
13216   }
13217 
13218   return MaybeBindToTemporary(TheCall);
13219 }
13220 
13221 /// BuildCallToObjectOfClassType - Build a call to an object of class
13222 /// type (C++ [over.call.object]), which can end up invoking an
13223 /// overloaded function call operator (@c operator()) or performing a
13224 /// user-defined conversion on the object argument.
13225 ExprResult
13226 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
13227                                    SourceLocation LParenLoc,
13228                                    MultiExprArg Args,
13229                                    SourceLocation RParenLoc) {
13230   if (checkPlaceholderForOverload(*this, Obj))
13231     return ExprError();
13232   ExprResult Object = Obj;
13233 
13234   UnbridgedCastsSet UnbridgedCasts;
13235   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
13236     return ExprError();
13237 
13238   assert(Object.get()->getType()->isRecordType() &&
13239          "Requires object type argument");
13240   const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
13241 
13242   // C++ [over.call.object]p1:
13243   //  If the primary-expression E in the function call syntax
13244   //  evaluates to a class object of type "cv T", then the set of
13245   //  candidate functions includes at least the function call
13246   //  operators of T. The function call operators of T are obtained by
13247   //  ordinary lookup of the name operator() in the context of
13248   //  (E).operator().
13249   OverloadCandidateSet CandidateSet(LParenLoc,
13250                                     OverloadCandidateSet::CSK_Operator);
13251   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
13252 
13253   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
13254                           diag::err_incomplete_object_call, Object.get()))
13255     return true;
13256 
13257   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
13258   LookupQualifiedName(R, Record->getDecl());
13259   R.suppressDiagnostics();
13260 
13261   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13262        Oper != OperEnd; ++Oper) {
13263     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
13264                        Object.get()->Classify(Context), Args, CandidateSet,
13265                        /*SuppressUserConversions=*/false);
13266   }
13267 
13268   // C++ [over.call.object]p2:
13269   //   In addition, for each (non-explicit in C++0x) conversion function
13270   //   declared in T of the form
13271   //
13272   //        operator conversion-type-id () cv-qualifier;
13273   //
13274   //   where cv-qualifier is the same cv-qualification as, or a
13275   //   greater cv-qualification than, cv, and where conversion-type-id
13276   //   denotes the type "pointer to function of (P1,...,Pn) returning
13277   //   R", or the type "reference to pointer to function of
13278   //   (P1,...,Pn) returning R", or the type "reference to function
13279   //   of (P1,...,Pn) returning R", a surrogate call function [...]
13280   //   is also considered as a candidate function. Similarly,
13281   //   surrogate call functions are added to the set of candidate
13282   //   functions for each conversion function declared in an
13283   //   accessible base class provided the function is not hidden
13284   //   within T by another intervening declaration.
13285   const auto &Conversions =
13286       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
13287   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
13288     NamedDecl *D = *I;
13289     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
13290     if (isa<UsingShadowDecl>(D))
13291       D = cast<UsingShadowDecl>(D)->getTargetDecl();
13292 
13293     // Skip over templated conversion functions; they aren't
13294     // surrogates.
13295     if (isa<FunctionTemplateDecl>(D))
13296       continue;
13297 
13298     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
13299     if (!Conv->isExplicit()) {
13300       // Strip the reference type (if any) and then the pointer type (if
13301       // any) to get down to what might be a function type.
13302       QualType ConvType = Conv->getConversionType().getNonReferenceType();
13303       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
13304         ConvType = ConvPtrType->getPointeeType();
13305 
13306       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
13307       {
13308         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
13309                               Object.get(), Args, CandidateSet);
13310       }
13311     }
13312   }
13313 
13314   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13315 
13316   // Perform overload resolution.
13317   OverloadCandidateSet::iterator Best;
13318   switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
13319                                           Best)) {
13320   case OR_Success:
13321     // Overload resolution succeeded; we'll build the appropriate call
13322     // below.
13323     break;
13324 
13325   case OR_No_Viable_Function: {
13326     PartialDiagnostic PD =
13327         CandidateSet.empty()
13328             ? (PDiag(diag::err_ovl_no_oper)
13329                << Object.get()->getType() << /*call*/ 1
13330                << Object.get()->getSourceRange())
13331             : (PDiag(diag::err_ovl_no_viable_object_call)
13332                << Object.get()->getType() << Object.get()->getSourceRange());
13333     CandidateSet.NoteCandidates(
13334         PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
13335         OCD_AllCandidates, Args);
13336     break;
13337   }
13338   case OR_Ambiguous:
13339     CandidateSet.NoteCandidates(
13340         PartialDiagnosticAt(Object.get()->getBeginLoc(),
13341                             PDiag(diag::err_ovl_ambiguous_object_call)
13342                                 << Object.get()->getType()
13343                                 << Object.get()->getSourceRange()),
13344         *this, OCD_ViableCandidates, Args);
13345     break;
13346 
13347   case OR_Deleted:
13348     CandidateSet.NoteCandidates(
13349         PartialDiagnosticAt(Object.get()->getBeginLoc(),
13350                             PDiag(diag::err_ovl_deleted_object_call)
13351                                 << Object.get()->getType()
13352                                 << Object.get()->getSourceRange()),
13353         *this, OCD_AllCandidates, Args);
13354     break;
13355   }
13356 
13357   if (Best == CandidateSet.end())
13358     return true;
13359 
13360   UnbridgedCasts.restore();
13361 
13362   if (Best->Function == nullptr) {
13363     // Since there is no function declaration, this is one of the
13364     // surrogate candidates. Dig out the conversion function.
13365     CXXConversionDecl *Conv
13366       = cast<CXXConversionDecl>(
13367                          Best->Conversions[0].UserDefined.ConversionFunction);
13368 
13369     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
13370                               Best->FoundDecl);
13371     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
13372       return ExprError();
13373     assert(Conv == Best->FoundDecl.getDecl() &&
13374              "Found Decl & conversion-to-functionptr should be same, right?!");
13375     // We selected one of the surrogate functions that converts the
13376     // object parameter to a function pointer. Perform the conversion
13377     // on the object argument, then let BuildCallExpr finish the job.
13378 
13379     // Create an implicit member expr to refer to the conversion operator.
13380     // and then call it.
13381     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
13382                                              Conv, HadMultipleCandidates);
13383     if (Call.isInvalid())
13384       return ExprError();
13385     // Record usage of conversion in an implicit cast.
13386     Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
13387                                     CK_UserDefinedConversion, Call.get(),
13388                                     nullptr, VK_RValue);
13389 
13390     return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
13391   }
13392 
13393   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
13394 
13395   // We found an overloaded operator(). Build a CXXOperatorCallExpr
13396   // that calls this method, using Object for the implicit object
13397   // parameter and passing along the remaining arguments.
13398   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13399 
13400   // An error diagnostic has already been printed when parsing the declaration.
13401   if (Method->isInvalidDecl())
13402     return ExprError();
13403 
13404   const FunctionProtoType *Proto =
13405     Method->getType()->getAs<FunctionProtoType>();
13406 
13407   unsigned NumParams = Proto->getNumParams();
13408 
13409   DeclarationNameInfo OpLocInfo(
13410                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
13411   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
13412   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13413                                            Obj, HadMultipleCandidates,
13414                                            OpLocInfo.getLoc(),
13415                                            OpLocInfo.getInfo());
13416   if (NewFn.isInvalid())
13417     return true;
13418 
13419   // The number of argument slots to allocate in the call. If we have default
13420   // arguments we need to allocate space for them as well. We additionally
13421   // need one more slot for the object parameter.
13422   unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
13423 
13424   // Build the full argument list for the method call (the implicit object
13425   // parameter is placed at the beginning of the list).
13426   SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
13427 
13428   bool IsError = false;
13429 
13430   // Initialize the implicit object parameter.
13431   ExprResult ObjRes =
13432     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
13433                                         Best->FoundDecl, Method);
13434   if (ObjRes.isInvalid())
13435     IsError = true;
13436   else
13437     Object = ObjRes;
13438   MethodArgs[0] = Object.get();
13439 
13440   // Check the argument types.
13441   for (unsigned i = 0; i != NumParams; i++) {
13442     Expr *Arg;
13443     if (i < Args.size()) {
13444       Arg = Args[i];
13445 
13446       // Pass the argument.
13447 
13448       ExprResult InputInit
13449         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13450                                                     Context,
13451                                                     Method->getParamDecl(i)),
13452                                     SourceLocation(), Arg);
13453 
13454       IsError |= InputInit.isInvalid();
13455       Arg = InputInit.getAs<Expr>();
13456     } else {
13457       ExprResult DefArg
13458         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
13459       if (DefArg.isInvalid()) {
13460         IsError = true;
13461         break;
13462       }
13463 
13464       Arg = DefArg.getAs<Expr>();
13465     }
13466 
13467     MethodArgs[i + 1] = Arg;
13468   }
13469 
13470   // If this is a variadic call, handle args passed through "...".
13471   if (Proto->isVariadic()) {
13472     // Promote the arguments (C99 6.5.2.2p7).
13473     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
13474       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
13475                                                         nullptr);
13476       IsError |= Arg.isInvalid();
13477       MethodArgs[i + 1] = Arg.get();
13478     }
13479   }
13480 
13481   if (IsError)
13482     return true;
13483 
13484   DiagnoseSentinelCalls(Method, LParenLoc, Args);
13485 
13486   // Once we've built TheCall, all of the expressions are properly owned.
13487   QualType ResultTy = Method->getReturnType();
13488   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13489   ResultTy = ResultTy.getNonLValueExprType(Context);
13490 
13491   CXXOperatorCallExpr *TheCall =
13492       CXXOperatorCallExpr::Create(Context, OO_Call, NewFn.get(), MethodArgs,
13493                                   ResultTy, VK, RParenLoc, FPOptions());
13494 
13495   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
13496     return true;
13497 
13498   if (CheckFunctionCall(Method, TheCall, Proto))
13499     return true;
13500 
13501   return MaybeBindToTemporary(TheCall);
13502 }
13503 
13504 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
13505 ///  (if one exists), where @c Base is an expression of class type and
13506 /// @c Member is the name of the member we're trying to find.
13507 ExprResult
13508 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
13509                                bool *NoArrowOperatorFound) {
13510   assert(Base->getType()->isRecordType() &&
13511          "left-hand side must have class type");
13512 
13513   if (checkPlaceholderForOverload(*this, Base))
13514     return ExprError();
13515 
13516   SourceLocation Loc = Base->getExprLoc();
13517 
13518   // C++ [over.ref]p1:
13519   //
13520   //   [...] An expression x->m is interpreted as (x.operator->())->m
13521   //   for a class object x of type T if T::operator->() exists and if
13522   //   the operator is selected as the best match function by the
13523   //   overload resolution mechanism (13.3).
13524   DeclarationName OpName =
13525     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
13526   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
13527   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
13528 
13529   if (RequireCompleteType(Loc, Base->getType(),
13530                           diag::err_typecheck_incomplete_tag, Base))
13531     return ExprError();
13532 
13533   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
13534   LookupQualifiedName(R, BaseRecord->getDecl());
13535   R.suppressDiagnostics();
13536 
13537   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13538        Oper != OperEnd; ++Oper) {
13539     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
13540                        None, CandidateSet, /*SuppressUserConversions=*/false);
13541   }
13542 
13543   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13544 
13545   // Perform overload resolution.
13546   OverloadCandidateSet::iterator Best;
13547   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13548   case OR_Success:
13549     // Overload resolution succeeded; we'll build the call below.
13550     break;
13551 
13552   case OR_No_Viable_Function: {
13553     auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
13554     if (CandidateSet.empty()) {
13555       QualType BaseType = Base->getType();
13556       if (NoArrowOperatorFound) {
13557         // Report this specific error to the caller instead of emitting a
13558         // diagnostic, as requested.
13559         *NoArrowOperatorFound = true;
13560         return ExprError();
13561       }
13562       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
13563         << BaseType << Base->getSourceRange();
13564       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
13565         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
13566           << FixItHint::CreateReplacement(OpLoc, ".");
13567       }
13568     } else
13569       Diag(OpLoc, diag::err_ovl_no_viable_oper)
13570         << "operator->" << Base->getSourceRange();
13571     CandidateSet.NoteCandidates(*this, Base, Cands);
13572     return ExprError();
13573   }
13574   case OR_Ambiguous:
13575     CandidateSet.NoteCandidates(
13576         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
13577                                        << "->" << Base->getType()
13578                                        << Base->getSourceRange()),
13579         *this, OCD_ViableCandidates, Base);
13580     return ExprError();
13581 
13582   case OR_Deleted:
13583     CandidateSet.NoteCandidates(
13584         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13585                                        << "->" << Base->getSourceRange()),
13586         *this, OCD_AllCandidates, Base);
13587     return ExprError();
13588   }
13589 
13590   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
13591 
13592   // Convert the object parameter.
13593   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13594   ExprResult BaseResult =
13595     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
13596                                         Best->FoundDecl, Method);
13597   if (BaseResult.isInvalid())
13598     return ExprError();
13599   Base = BaseResult.get();
13600 
13601   // Build the operator call.
13602   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13603                                             Base, HadMultipleCandidates, OpLoc);
13604   if (FnExpr.isInvalid())
13605     return ExprError();
13606 
13607   QualType ResultTy = Method->getReturnType();
13608   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13609   ResultTy = ResultTy.getNonLValueExprType(Context);
13610   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13611       Context, OO_Arrow, FnExpr.get(), Base, ResultTy, VK, OpLoc, FPOptions());
13612 
13613   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
13614     return ExprError();
13615 
13616   if (CheckFunctionCall(Method, TheCall,
13617                         Method->getType()->castAs<FunctionProtoType>()))
13618     return ExprError();
13619 
13620   return MaybeBindToTemporary(TheCall);
13621 }
13622 
13623 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
13624 /// a literal operator described by the provided lookup results.
13625 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
13626                                           DeclarationNameInfo &SuffixInfo,
13627                                           ArrayRef<Expr*> Args,
13628                                           SourceLocation LitEndLoc,
13629                                        TemplateArgumentListInfo *TemplateArgs) {
13630   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
13631 
13632   OverloadCandidateSet CandidateSet(UDSuffixLoc,
13633                                     OverloadCandidateSet::CSK_Normal);
13634   AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
13635                         /*SuppressUserConversions=*/true);
13636 
13637   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13638 
13639   // Perform overload resolution. This will usually be trivial, but might need
13640   // to perform substitutions for a literal operator template.
13641   OverloadCandidateSet::iterator Best;
13642   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
13643   case OR_Success:
13644   case OR_Deleted:
13645     break;
13646 
13647   case OR_No_Viable_Function:
13648     CandidateSet.NoteCandidates(
13649         PartialDiagnosticAt(UDSuffixLoc,
13650                             PDiag(diag::err_ovl_no_viable_function_in_call)
13651                                 << R.getLookupName()),
13652         *this, OCD_AllCandidates, Args);
13653     return ExprError();
13654 
13655   case OR_Ambiguous:
13656     CandidateSet.NoteCandidates(
13657         PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
13658                                                 << R.getLookupName()),
13659         *this, OCD_ViableCandidates, Args);
13660     return ExprError();
13661   }
13662 
13663   FunctionDecl *FD = Best->Function;
13664   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
13665                                         nullptr, HadMultipleCandidates,
13666                                         SuffixInfo.getLoc(),
13667                                         SuffixInfo.getInfo());
13668   if (Fn.isInvalid())
13669     return true;
13670 
13671   // Check the argument types. This should almost always be a no-op, except
13672   // that array-to-pointer decay is applied to string literals.
13673   Expr *ConvArgs[2];
13674   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
13675     ExprResult InputInit = PerformCopyInitialization(
13676       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
13677       SourceLocation(), Args[ArgIdx]);
13678     if (InputInit.isInvalid())
13679       return true;
13680     ConvArgs[ArgIdx] = InputInit.get();
13681   }
13682 
13683   QualType ResultTy = FD->getReturnType();
13684   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13685   ResultTy = ResultTy.getNonLValueExprType(Context);
13686 
13687   UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
13688       Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
13689       VK, LitEndLoc, UDSuffixLoc);
13690 
13691   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
13692     return ExprError();
13693 
13694   if (CheckFunctionCall(FD, UDL, nullptr))
13695     return ExprError();
13696 
13697   return MaybeBindToTemporary(UDL);
13698 }
13699 
13700 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
13701 /// given LookupResult is non-empty, it is assumed to describe a member which
13702 /// will be invoked. Otherwise, the function will be found via argument
13703 /// dependent lookup.
13704 /// CallExpr is set to a valid expression and FRS_Success returned on success,
13705 /// otherwise CallExpr is set to ExprError() and some non-success value
13706 /// is returned.
13707 Sema::ForRangeStatus
13708 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
13709                                 SourceLocation RangeLoc,
13710                                 const DeclarationNameInfo &NameInfo,
13711                                 LookupResult &MemberLookup,
13712                                 OverloadCandidateSet *CandidateSet,
13713                                 Expr *Range, ExprResult *CallExpr) {
13714   Scope *S = nullptr;
13715 
13716   CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
13717   if (!MemberLookup.empty()) {
13718     ExprResult MemberRef =
13719         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
13720                                  /*IsPtr=*/false, CXXScopeSpec(),
13721                                  /*TemplateKWLoc=*/SourceLocation(),
13722                                  /*FirstQualifierInScope=*/nullptr,
13723                                  MemberLookup,
13724                                  /*TemplateArgs=*/nullptr, S);
13725     if (MemberRef.isInvalid()) {
13726       *CallExpr = ExprError();
13727       return FRS_DiagnosticIssued;
13728     }
13729     *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
13730     if (CallExpr->isInvalid()) {
13731       *CallExpr = ExprError();
13732       return FRS_DiagnosticIssued;
13733     }
13734   } else {
13735     UnresolvedSet<0> FoundNames;
13736     UnresolvedLookupExpr *Fn =
13737       UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
13738                                    NestedNameSpecifierLoc(), NameInfo,
13739                                    /*NeedsADL=*/true, /*Overloaded=*/false,
13740                                    FoundNames.begin(), FoundNames.end());
13741 
13742     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
13743                                                     CandidateSet, CallExpr);
13744     if (CandidateSet->empty() || CandidateSetError) {
13745       *CallExpr = ExprError();
13746       return FRS_NoViableFunction;
13747     }
13748     OverloadCandidateSet::iterator Best;
13749     OverloadingResult OverloadResult =
13750         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
13751 
13752     if (OverloadResult == OR_No_Viable_Function) {
13753       *CallExpr = ExprError();
13754       return FRS_NoViableFunction;
13755     }
13756     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
13757                                          Loc, nullptr, CandidateSet, &Best,
13758                                          OverloadResult,
13759                                          /*AllowTypoCorrection=*/false);
13760     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
13761       *CallExpr = ExprError();
13762       return FRS_DiagnosticIssued;
13763     }
13764   }
13765   return FRS_Success;
13766 }
13767 
13768 
13769 /// FixOverloadedFunctionReference - E is an expression that refers to
13770 /// a C++ overloaded function (possibly with some parentheses and
13771 /// perhaps a '&' around it). We have resolved the overloaded function
13772 /// to the function declaration Fn, so patch up the expression E to
13773 /// refer (possibly indirectly) to Fn. Returns the new expr.
13774 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
13775                                            FunctionDecl *Fn) {
13776   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
13777     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
13778                                                    Found, Fn);
13779     if (SubExpr == PE->getSubExpr())
13780       return PE;
13781 
13782     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
13783   }
13784 
13785   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
13786     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
13787                                                    Found, Fn);
13788     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
13789                                SubExpr->getType()) &&
13790            "Implicit cast type cannot be determined from overload");
13791     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
13792     if (SubExpr == ICE->getSubExpr())
13793       return ICE;
13794 
13795     return ImplicitCastExpr::Create(Context, ICE->getType(),
13796                                     ICE->getCastKind(),
13797                                     SubExpr, nullptr,
13798                                     ICE->getValueKind());
13799   }
13800 
13801   if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
13802     if (!GSE->isResultDependent()) {
13803       Expr *SubExpr =
13804           FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
13805       if (SubExpr == GSE->getResultExpr())
13806         return GSE;
13807 
13808       // Replace the resulting type information before rebuilding the generic
13809       // selection expression.
13810       ArrayRef<Expr *> A = GSE->getAssocExprs();
13811       SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
13812       unsigned ResultIdx = GSE->getResultIndex();
13813       AssocExprs[ResultIdx] = SubExpr;
13814 
13815       return GenericSelectionExpr::Create(
13816           Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
13817           GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
13818           GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
13819           ResultIdx);
13820     }
13821     // Rather than fall through to the unreachable, return the original generic
13822     // selection expression.
13823     return GSE;
13824   }
13825 
13826   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
13827     assert(UnOp->getOpcode() == UO_AddrOf &&
13828            "Can only take the address of an overloaded function");
13829     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
13830       if (Method->isStatic()) {
13831         // Do nothing: static member functions aren't any different
13832         // from non-member functions.
13833       } else {
13834         // Fix the subexpression, which really has to be an
13835         // UnresolvedLookupExpr holding an overloaded member function
13836         // or template.
13837         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13838                                                        Found, Fn);
13839         if (SubExpr == UnOp->getSubExpr())
13840           return UnOp;
13841 
13842         assert(isa<DeclRefExpr>(SubExpr)
13843                && "fixed to something other than a decl ref");
13844         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
13845                && "fixed to a member ref with no nested name qualifier");
13846 
13847         // We have taken the address of a pointer to member
13848         // function. Perform the computation here so that we get the
13849         // appropriate pointer to member type.
13850         QualType ClassType
13851           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
13852         QualType MemPtrType
13853           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
13854         // Under the MS ABI, lock down the inheritance model now.
13855         if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13856           (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
13857 
13858         return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
13859                                            VK_RValue, OK_Ordinary,
13860                                            UnOp->getOperatorLoc(), false);
13861       }
13862     }
13863     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13864                                                    Found, Fn);
13865     if (SubExpr == UnOp->getSubExpr())
13866       return UnOp;
13867 
13868     return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
13869                                      Context.getPointerType(SubExpr->getType()),
13870                                        VK_RValue, OK_Ordinary,
13871                                        UnOp->getOperatorLoc(), false);
13872   }
13873 
13874   // C++ [except.spec]p17:
13875   //   An exception-specification is considered to be needed when:
13876   //   - in an expression the function is the unique lookup result or the
13877   //     selected member of a set of overloaded functions
13878   if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
13879     ResolveExceptionSpec(E->getExprLoc(), FPT);
13880 
13881   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
13882     // FIXME: avoid copy.
13883     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13884     if (ULE->hasExplicitTemplateArgs()) {
13885       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
13886       TemplateArgs = &TemplateArgsBuffer;
13887     }
13888 
13889     DeclRefExpr *DRE =
13890         BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
13891                          ULE->getQualifierLoc(), Found.getDecl(),
13892                          ULE->getTemplateKeywordLoc(), TemplateArgs);
13893     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
13894     return DRE;
13895   }
13896 
13897   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
13898     // FIXME: avoid copy.
13899     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13900     if (MemExpr->hasExplicitTemplateArgs()) {
13901       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13902       TemplateArgs = &TemplateArgsBuffer;
13903     }
13904 
13905     Expr *Base;
13906 
13907     // If we're filling in a static method where we used to have an
13908     // implicit member access, rewrite to a simple decl ref.
13909     if (MemExpr->isImplicitAccess()) {
13910       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13911         DeclRefExpr *DRE = BuildDeclRefExpr(
13912             Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
13913             MemExpr->getQualifierLoc(), Found.getDecl(),
13914             MemExpr->getTemplateKeywordLoc(), TemplateArgs);
13915         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
13916         return DRE;
13917       } else {
13918         SourceLocation Loc = MemExpr->getMemberLoc();
13919         if (MemExpr->getQualifier())
13920           Loc = MemExpr->getQualifierLoc().getBeginLoc();
13921         Base =
13922             BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*isImplicit=*/true);
13923       }
13924     } else
13925       Base = MemExpr->getBase();
13926 
13927     ExprValueKind valueKind;
13928     QualType type;
13929     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13930       valueKind = VK_LValue;
13931       type = Fn->getType();
13932     } else {
13933       valueKind = VK_RValue;
13934       type = Context.BoundMemberTy;
13935     }
13936 
13937     return BuildMemberExpr(
13938         Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
13939         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
13940         /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
13941         type, valueKind, OK_Ordinary, TemplateArgs);
13942   }
13943 
13944   llvm_unreachable("Invalid reference to overloaded function");
13945 }
13946 
13947 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
13948                                                 DeclAccessPair Found,
13949                                                 FunctionDecl *Fn) {
13950   return FixOverloadedFunctionReference(E.get(), Found, Fn);
13951 }
13952